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Abstract
In the central nervous system, oligodendrocyte precursor cells (OPCs) are recognized as the progenitors responsible for the 
generation of oligodendrocytes, which play a critical role in myelination. Extensive research has shed light on the mechanisms 
underlying OPC proliferation and differentiation into mature myelin-forming oligodendrocytes. However, recent advances 
in the field have revealed that OPCs have multiple functions beyond their role as progenitors, exerting control over neural 
circuits and brain function through distinct pathways. This review aims to provide a comprehensive understanding of OPCs 
by first introducing their well-established features. Subsequently, we delve into the emerging roles of OPCs in modulat-
ing brain function in both healthy and diseased states. Unraveling the cellular and molecular mechanisms by which OPCs 
influence brain function holds great promise for identifying novel therapeutic targets for central nervous system diseases.
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Introduction

Proper brain function is achieved through coordinated activity 
between neurons and glial cells. Glial cells control the spatio-
temporal pattern of neural circuits by regulating cell density, 
synaptic activity, and the conduction velocity of action poten-
tials. While the contribution of microglia and astrocytes to 
neural synaptic plasticity has been extensively studied, the 
role of oligodendrocyte precursor cells (OPCs) in neuronal 
network activity is just beginning to be elucidated.

As their name suggests, OPCs generate oligodendrocytes 
(OLs), the only myelin-forming cells in the central nervous sys-
tem (CNS), throughout life [73]. OPCs maintain a relatively sta-
ble cell density, constituting approximately 5–8% of the total cell 
population in the CNS, as they continuously self-renew [7, 32]. 
Despite their ubiquitous distribution in the parenchyma, OPCs 
represent a rather heterogeneous population in respect to their 
origin [28, 40], location [39, 40, 64, 76], and receptor/channel 

expression [7, 41,  67]. In addition, OPCs exhibit distinct mor-
phology in different brain regions. Their processes in gray matter 
tend to be radially oriented, whereas in white matter they exhibit 
a more elongated shape [32]. Nevertheless, in both gray and 
white matter, their processes consist of lamellipodia and filopodia 
[32, 51], and many of them are in close contact with parasynaptic 
areas and nodes of Ranvier [12, 13, 32, 48, 63] (Fig. 1). This 
physical contact implies direct communication between OPCs 
and neurons. Indeed, in 2000, a direct synaptic neurotransmis-
sion on OPCs was first identified in the rat hippocampus [9]. 
Pyramidal neurons release glutamate at the synaptic cleft, and 
OPCs integrate this signal with the α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptor expressed on the 
postsynaptic membrane [9]. Subsequently, synaptic communi-
cation mediated by N-methyl D-aspartate (NMDA) receptor and 
gamma-aminobutyric acid (GABA) A receptors of OPCs has 
been observed in different brain regions and at different ages of 
mice and rats [27, 35, 53] (Fig. 1A). Both excitatory and inhibi-
tory synaptic neurotransmission are involved in the OPC prolif-
eration, differentiation, and subsequent myelination, which have 
been extensively reviewed by others [5, 24, 36]. Recently, a large 
body of evidence is mounting that OPCs are heterogeneously 
involved in the communication with neurons and other cells in 
the CNS. In this review, we elaborate on the functional hetero-
geneity of OPCs, focusing on their direct and indirect impact on 
neural circuits and brain functions in health and disease.
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Integration of OPCs into local neural circuits

OPCs are also known as NG2 glia as they express NG2 
protein (also known as chondroitin sulfate proteoglycan 
4). The expression of the membrane-spanning NG2 protein 
makes OPCs a distinct contributor to synaptic plasticity. 

Sakry et al. have reported that the ectodomain of NG2 
protein, cleaved by ADAM10 (A disintegrin and metal-
loproteinase domain-containing protein 10), is involved 
in AMPA receptor-mediated synaptic neurotransmis-
sion in cortical pyramidal neurons (Fig. 1B). Pharma-
cological inhibition of NG2 cleavage reduced NMDA 

Fig. 1   Integration of OPCs into neural circuits occurs through mul-
tiple pathways. A OPCs receive glutamatergic signals via AMPA 
and NMDA receptors, as well as GABAergic input through GABAA 
and GABAB receptors expressed on their postsynaptic membrane. 
B OPCs regulate neuronal density, activity, and synaptic plastic-
ity by releasing TNF-related weak inducer of apoptosis (TWEAK), 
fibroblast growth factor 2 (FGF2), and prostaglandin D2 synthase 
(PTGDS), and cleaved ectodomain of NG2 protein. C OPCs sense 
neuronal activity through the potassium channel Kir4.1. Upon axonal 
stimulation, Kir4.1 mediates an increase in intracellular potassium 
concentration in OPCs, potentially contributing to the maintenance 
of extracellular potassium homeostasis. D In the juvenile brain, OPCs 
phagocytose axons and excitatory presynapses, thus mediating neural 
network activity. E The interaction of OPCs with components of the 
neural vascular unit, including endothelial cells, pericytes, and astro-

glial endfeet, is crucial for maintaining the integrity of blood-brain 
barrier. For example, OPCs release hypoxia-inducible factor (HIF) to 
promote angiogenesis and tumor growth factor β (TGFβ) to increase 
tight junction protein (TJP) expression and subsequent BBB integrity. 
F OPCs modulate microglia activity and immune response by releas-
ing TGFβ, which acts on the TGFβ receptor (TGFβR) of microglia. 
Activation of TGFβR may upregulate proteins such as CX3CR1, 
CSF1R, P2Y12R, and TMEM119, since knockdown of TGFβR in 
microglia led to downregulation of these proteins. G OPCs also 
recruit T cells by releasing chemokines, such as C-C motif ligand 2 
(CCL2), CCL5, and CXCL10. The expression of major histocompat-
ibility complex I and II (MHC-I/II) by OPCs activates T cells, while 
the expression of programmed death ligands (PD-L) suppresses T cell 
activity. Furthermore, OPCs can induce T cell apoptosis through Fas 
ligand (FasL). (created with BioRe​nder.​com)

http://biorender.com
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receptor-dependent long-term potentiation (LTP), suggest-
ing a critical function of the ectodomain NG2 protein in 
synaptic plasticity [57]. Notably, the intracellular domain 
of NG2 also regulates the expression of neuromodulators 
[58]. Overexpression of the intracellular domain of the 
NG2 protein in Oli-neu cells (a well-established OPC cell 
line [26]) increased the expression of prostaglandin D2 
synthase (PTGDS) (Fig. 1B), which regulates prostaglan-
din D2 (PGD2) levels in the CNS by catalyzing the con-
version of prostaglandin H2 to PGD2. PGD2 is a potential 
neuromodulator involved in human sleep and emotion, as 
well as in the regulation of neural circuits in inflammation 
[1, 59, 65]. The modulation of OPCs in neural circuits is 
more than just the expression of NG2 protein. Birey et al. 
attempted a rather thorough approach to ablate all OPCs 
in the mouse brain and found that these mice exhibited 
depressive-like behavior [10]. These mutant mice exhib-
ited impaired glutamatergic signaling in the prefrontal cor-
tex (PFC), as the amplitude of miniature excitatory post-
synaptic currents (mEPSCs) from pyramidal neurons in 
the PFC was significantly reduced. This may be due to the 
loss of OPC-derived fibroblast growth factor 2 (FGF2), as 
knockdown of FGF2 in OPCs caused similar depressive-
like behaviors in mice [10] (Fig. 1B). All these studies 
highlight the NG2 protein and its cellular source, OPCs, 
as key regulators of the excitatory neural network.

Recently, two independent studies have demonstrated 
the significance of OPCs in cortical inhibition. Specific 
deletion of the B1 subunit of the GABA B receptor in 
OPCs at the postnatal day 7 and 8 resulted in the sur-
vival of supernumerary interneurons in the adult medial 
prefrontal cortex (mPFC) [22]. However, the amplitude 
of spontaneous inhibitory postsynaptic current (sIPSC) 
from layer V pyramidal neurons as well as the vGAT den-
sity was reduced in the mutant mouse mPFC. All of these 
changes led to a reduction in the cortical inhibitory tone in 
the adult brain and impaired cognition in the mice. Early 
postnatal disruption of GABA A receptor-mediated neuro-
transmission in OPCs caused a similar reduction in inhibi-
tory tone in the somatosensory cortex [8]. The GABA A 
receptor γ2 subunit is specifically involved in synaptic 
communication between interneurons and OPCs during the 
first postnatal weeks [6]. Genetic deletion of the γ2 subu-
nit selectively in OPCs from the postnatal day 3 resulted 
in impaired E/I balance in the somatosensory cortex [8]. 
In the somatosensory cortex of these mice, parvalbumin-
expressing interneurons displayed suppressed activity, 
reduced myelination, and an imbalance between excitation 
and inhibition. Concomitantly, these mice were unable to 
perform whisker-dependent texture discrimination, sug-
gesting a dysfunctional cortical sensory circuit in these 
mutant mice. These two studies highlight the importance 
of GABAergic neurotransmission on OPCs in fine-tuning 

of neural circuits. Of note, OPCs can also form synaptic 
complexes with hippocampal interneurons. OPCs release 
GABA via synaptobrevin 2/vesicle-associated membrane 
protein 2 (VAMP2), which acts on proximal interneurons 
to enhance the inhibitory synaptic neurotransmission [86]. 
All these studies suggest that OPCs, by forming postsyn-
apses and/or potential presynapses with neurons, or even 
by physical contact, modulate interneuron activity and 
inhibitory circuits in the brain.

Notably, by activating a Wnt/β-catenin signaling pathway, 
OPCs regulate both inhibitory and excitatory synapse forma-
tion. When disrupted-in-schizophrenia-1-Δ3 (DISC1-Δ3), a 
major DISC1 variant lacking exon 3, was overexpressed in 
OPCs, the mutant mice exhibited schizophrenia-like behavior 
[82]. In addition, synaptogenesis was suppressed in the PFC 
of these mutant mice. This disruption was attributed to the 
hyperactive Wnt/β-catenin pathway in OPCs, which subse-
quently upregulates Wnt inhibitory factor 1 (Wif1). Inhibition 
of Wif1 in OPCs could rescue the synapse loss and behavioral 
deficits of mutant mice, suggesting that OPCs are engaged in 
synaptogenesis via the Wnt signaling pathway [82]. The con-
tribution of OPCs in psychological disorders is also suggested 
by post-mortem brain samples with a history of child abuse. 
In the PFC of these victims, the density and morphological 
complexity of the perineuronal net (PNN) was increased [71]. 
Single-nucleus transcriptomic and immunohistological analy-
sis further showed that the canonical component of the PNN 
was enriched in OPCs and upregulated in the samples from 
child abuse victims. This implicates that OPC-mediated PNN 
formation is involved in impaired neuroplasticity of cortical 
circuits induced by early-life adversity. The impact of early-
life stress on OPCs goes further. Parental isolation during the 
first two postnatal weeks reduced the number of hippocampal 
OPCs. This alteration led to maldevelopment of the astrocyte 
network and subsequently impaired neuronal activity and psy-
chiatric behavior [79].

Oligodendrocyte transcription factor 2 (Olig2) is essential 
for OPC differentiation and has long been considered to be 
ubiquitously expressed in OPCs. However, a small popula-
tion of OPCs was found to be immunonegative for Olig2 in 
the mouse brain [21]. The emergence of this population of 
cells appeared to be temporal and correlated with the (re-)
establishment of the neural network. This population was 
enriched in the juvenile brain and almost disappeared with 
age. Acute brain injury and complex motor learning triggered 
the re-emergence of these cells in the associated brain regions, 
i.e., ipsilateral cortex of acute brain injury or hippocampus 
after motor learning [21]. Olig2 recruits SETDB1 to modify 
H3K9me3 of the Sox11 gene, which is an inhibitory factor for 
OPC differentiation [84]. Therefore, it is plausible that OPCs 
switch their fate commitment and remain in the precursor 
stage to modify the neural circuits as required by the estab-
lishment of neural network. Further investigation showed that 
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these Olig2-negative OPCs were derived from Olig2-positive 
OPCs, but were less proliferative. Similarly, a cluster of so-
called “quiescent” OPCs was observed in the zebra fish spinal 
cord [39]. These “quiescent” OPCs, located in the neuronal 
soma-enriched area, did not express the mitotic marker Ki67 
and rarely differentiated into oligodendrocytes. Rather, these 
cells generate another subset of OPCs that are preferentially 
positioned in the axon-dendrite-enriched region, with higher 
motility and differentiation rate [39]. Thus, all these studies 
suggest that OPCs integrate into neural circuits heterogene-
ously at the micromilieu.

Proper brain function is highly dependent on an extremely 
exquisite microenvironment. For example, the local extra-
cellular K+ concentration (K+

e) is critical for the membrane 
potential and excitability of neurons. There is a transient 
increase in K+

e concentration during the repolarization 
phase of an action potential. Rapid recovery of the K+

e con-
centration is therefore extremely important for maintain-
ing a precise chemical K+ gradient between the intra- and 
extracellular membrane and the resting potential. K+

e can 
be regulated by potassium channels expressed in astrocytes 
[77], microglia [56], and OPCs. The “buffering” of K+

e by 
OPCs is mainly achieved by inwardly rectifying K+ (Kir) 
channels [38], in particular Kir4.1 (encoded by Kcnj10 gene) 
(Fig. 1C). Stimulation of axons induced a slow inward current 
of K+ in nearby OPCs. Such a current could be abolished in 
the presence of the Kir blocker Ba2+ in the bath or when the 
cells were recorded with CsCl-based intracellular solution or 
acidic intracellular solution, conferring to OPCs the sensor 
of extracellular K+ with their Kir4.1 channels (Fig. 1C). A 
further characterization of Kir4.1 function in OPCs was very 
recently performed using NG2-CreERT2 x Kcnj10fl/fl mice 
[72]. In the mutant mouse CA1 region, the theta burst-stim-
ulated long-term potentiation (LTP) was impaired, suggest-
ing a critical contribution of OPCs to hippocampal synaptic 
plasticity. In addition, OPCs from mutant mice exhibited 
much larger and longer spontaneous and evoked postsynap-
tic currents (PSCs), indicating that deletion of Kir4.1 chan-
nels enhances synaptic input to OPCs, which could induce 
rapid calcium activity in OPCs, potentially through voltage-
gated calcium channels [70]. Interestingly, deletion of Kir4.1 
channels in the OL lineage cells using Olig2-Cre x Kcnj10fl/fl 
mice induced a slight upregulation of the L-type voltage-
gated Ca2+ channel Cav1.2 in OPCs [30]. Taken together, 
these observations suggest a potential compensatory role of 
Cav1.2 in the rapid recovery of neuronal membrane potential. 
Although it is unknown whether Cav1.2 is involved in the 
regulation of neuronal activity by OPCs, conditional dele-
tion of Cav1.2 and Cav1.3 in OPCs impaired the long-term 
potentiation (LTP) and NMDA induced long-term depression 
(LTD) in the hippocampus [87]. These studies suggest that 
OPCs may modulate the long-term neural circuit plasticity 
and synaptic function via Cav1.2 and Cav1.3 channels.

Taken together, OPCs regulate neural circuits by modulating 
neuronal activity and synapse formation in health and disease.

Synapse pruning and axonal remodeling 
by OPCs

In addition to synaptogenesis, OPCs also participate in axonal 
remodeling at different stages of development. In the zebra fish 
optic tectum, the axons of retinal ganglion cells (RGC) arrive at 
the tectum at 2 days post fertilization (dpf). When OPCs were 
ablated from two dpf, RGC axons developed abnormal branch-
ing as well as enlarged axon arbors [81]. However, late ablation 
of OPCs from seven dpf induced aberrant axonal remodeling, 
i.e., decreased axonal elimination but increased axon addi-
tions, resulting in impaired visual processing. This study sug-
gests that OPC-mediated axonal remodeling differs at different 
developmental stages. This may be due, at least partially, to the 
nature of the heterogeneity of OPCs, which are generated in 
different waves during the development. In the mouse brain, 
OPCs are generated in three waves (discussed in more detail 
in the next section). Remarkably, the majority of the first two 
waves are eliminated during the first two postnatal weeks. This 
process slightly precedes the elimination phase of synapses 
that occurs during the second and third postnatal weeks [33], 
indicating that the third wave of OPCs generated during the 
perinatal days are more likely to be engaged in synapse pruning. 
Recently, Buchanan et al. visualized the axonal fragments in 
proximal OPC processes in the cortex of p36 mice using high-
throughput transmission electron microscopy [11] (Fig. 1D). 
Further single-nucleus RNA sequencing analysis showed that 
numerous phagolysosome genes were abundantly expressed in 
the cortical OPCs as well as oligodendrocytes at the postna-
tal day 56, suggesting that OPCs may participate in synapse 
pruning. In parallel, another independent study showed that 
OPCs engulf thalamocortical presynapses in the visual cortex 
as early as postnatal day 10 [4]. These results may also explain 
the findings of Xiao et al. that early OPC ablation reduced 
axonal elimination. In addition, when microglia were depleted 
pharmacologically with a colony stimulating factor 1 receptor 
(CSF1R) inhibitor, the volume of vGlut in OPC processes was 
reduced [4]. This may be due to a crosstalk between microglia 
and OPCs regulating OPC-mediated pruning. However, further 
studies are required to address such interactions for synaptic 
pruning during neural network formation.

OPCs regulate interneuron migration 
and apoptosis

In the mouse brain, OPCs are born in three successive waves: 
the first wave from the Nkx2.1-expressing precursors in the 
medial ganglionic eminence (MGE) and the embryonic 
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preoptic area (ePOA) at embryonic day (E) 11.5–12.5, the 
second wave from the Gsx2-expressing precursors in the 
lateral and medial ganglionic eminences at E14.5, and from 
the Emx1+ cells in the cortex during perinatal days [28]. 
Interestingly, the majority of GABAergic interneurons 
are generated around E11.5–12.5 from the same precur-
sors in the MGE and ePOA as the first wave of OPCs [34]. 
Although OPCs share the same progenitors and a similar 
birth time with interneurons, they exclude interneurons from 
the blood vessels (BV) during migration [31]. This repul-
sion is mediated by Sema6a/6b, which is expressed on OPCs 
and binds to the Plxna3 receptor in interneurons, thereby 
achieving unidirectional contact repulsion. This seemingly 
competing mechanism is actually essential for the penetra-
tion and correct colonization of interneurons in the brain, as 
the depletion of the first wave of OPCs disrupted interneuron 
migration and distribution in the cortex. Once established 
in the cortex, interneurons connect with target cells. Only 
those cells that receive retro-trophic signals from the target 
cells can survive, while the rest undergo programmed cell 
death during the first two postnatal weeks [34, 66]. At a 
similar time, the first wave of OPCs in the dorsal cortex is 
also largely eliminated with an unknown mechanism [28]. 
However, the surviving OPCs are found to preferentially 
form synaptic connections with interneurons of the same 
origin [52]. Interestingly, when the death of both OPCs 
and interneurons were intervened by deleting Bax genes in 
the cells derived from Nkx2.1+ progenitors using Nkx2.1 
x Baxfl/fl mice, this preferential connectivity was reduced 
[52]. In addition, the cortical E/I ratio was reduced in these 
mice, suggesting that the correct removal of the first-wave 
OPCs and interneurons is pivotal for proper brain function. 
Interestingly, OPCs also attribute to the developmental loss 
of interneurons during the first two postnatal weeks [22]. 
Conditional deletion of GABABR in OPCs at the first post-
natal week, just after the generation of the third-wave OPCs, 
attenuated interneuron apoptosis, and subsequently, more 
interneurons were found in the adult mouse mPFC. Fur-
ther mechanistic studies revealed that OPCs release tumor 
necrosis factor (TNF)-related weak inducer of apoptosis 
(TWEAK or APO3L) upon GABA B receptor activation 
(Fig. 1B). TWEAK release from OPCs may be rather local 
at the contact site where the TWEAK receptors of interneu-
rons are recruited [15], thereby inducing specific interneuron 
apoptosis [22] (Fig. 1B). It is not clear whether TWEAK is 
released by the first and/or the third-wave OPCs. Since the 
first-wave OPCs assist interneuron migration, the third-wave 
OPCs are more likely to execute interneuron elimination. 
Taken together, it is possible that the first-wave OPCs are 
born to associate interneuron function in the cortex. During 
the embryonic stage, first-wave OPCs guide the migration 
of interneurons to their destination. After birth, although 
the majority of these OPCs are eliminated, the survived 

first-wave OPCs form synaptic connection with interneurons 
[52]. However, the newborn third-wave OPCs exert a dis-
tinct function by optimizing interneuron density and synapse 
pruning (as mentioned above) [4, 11, 22]. Indeed, single cell 
transcriptomic studies suggested that embryonic OPCs and 
postnatal OPCs express a distinct gene profile [40]. Fur-
thermore, it is even possible that the third-wave OPCs are 
involved in the phasing-out of the first-wave OPCs. How-
ever, further studies are needed to address these hypotheses.

OPCs for blood‑brain barrier integrity

The blood-brain barrier (BBB) is crucial for maintaining 
brain homeostasis through a highly selective exchange of 
substances between the brain parenchyma and the blood 
[18]. The BBB also acts as a “shield” to prevent pathogenic 
influences in the circulating blood from entering the brain 
parenchyma. The BBB is composed of endothelial cells that 
form the blood vessels (BV), while its integrity is highly 
dependent on regulation by pericytes, astroglial endfeet, 
and OPCs [18]. Embryonic vasculogenesis is controlled 
by region-specific transcription factors such as Nkx2.1. As 
mentioned above, the first wave of OPCs originates from 
Nkx2.1+ progenitors and migrates dorsally along the BVs 
[31, 74]. Nkx2.1+ OPCs are found either on the sprout-
ing endothelial tip cells or adhering to the vessel walls. 
Such intense physical contact is not only required for OPC 
migration, but also for vessel formation during develop-
ment. Conditional deletion of Nkx2.1+ progenitor-derived 
OPCs in Nkx2.1-Cre x Rosa-DTA or NG2-Cre x Rosa-
DTA transgenic mice reduced the density and branching 
of BVs at E18.5 [43]. However, one should note that nei-
ther of these mouse lines is specific for Nkx2.1-derived 
OPCs. The Nkx2.1-Cre line not only targets OPCs, but also 
interneurons. As discussed above, OPCs and interneurons 
interact during developmental migration. Similarly, in NG2-
Cre x Rosa-DTA mice, pericytes are also ablated as they 
also express NG2 protein. Pericytes are indispensable for 
BV formation and BBB function [18, 19]. Therefore, the 
atypical angiogenesis in these mice cannot be seen solely 
as a consequence of OPC loss. The contribution of OPCs to 
vasculogenesis continues after birth. OPCs release hypoxia-
inducible factor, which facilitates endothelial cell prolifera-
tion and BV formation in the corpus callosum [83] (Fig. 1E). 
In the mouse model of middle cerebral artery occlusion, 
transplantation of OPCs promoted functional angiogenesis. 
Further mechanism investigations showed that OPC-derived 
Wnt7 acts on β-catenin in endothelial cells, thereby facilitat-
ing angiogenesis and improving neurological outcome [78] 
(Fig. 1E). In addition, the barrier function of the BBB is 
achieved by the tight junctions formed between endothe-
lial cells. Tumor growth factor β (TGFβ) released from 
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OPCs promotes the expression of tight junction proteins 
and increases BBB integrity in vitro [61] (Fig. 1E). Spe-
cific deletion of TGFβ in OPCs resulted in cerebral hem-
orrhage and loss of BBB function in the neonatal mice. 
Please note, during development, endothelial cell-derived 
TGFβ in turn is crucial for OPC specification from neural 
progenitor cells [55], suggesting bi-directional communi-
cation between endothelial cells and OPCs is crucial for 
many biological processes. In addition, OPCs may regulate 
angiogenesis by secreting matrix metallopeptidase (MMP) 
[62] (Fig. 1E). The extracellular matrix (ECM) is involved 
in the entire process of angiogenesis, including endothelial 
cell migration, invasion, proliferation, and survival [47]. Of 
note, OPCs secrete MMP9 during migration [62]. Further 
studies are required to demonstrate whether OPC-derived 
MMP9 regulates angiogenesis.

OPCs interact not only with endothelial cells, but also 
with astrocytes and pericytes [37, 49, 69], the central ele-
ments of the BBB. Required by neuronal activity, astrocytes 
control cerebral blood flow via their endfeet that wrap the 
BV [18]. As OPCs migrate along the BV, extensive interac-
tion with astrocytes, particularly with endfeet, is expected. 
Perivascular OPCs detach from the BV at the site of astro-
glial endfeet [69] (Fig. 1E). However, when Wnt signaling 
in OPCs is genetically inhibited, OPC migration is impaired 
and OPCs form aberrant clusters along the BVs. This abnor-
mal physical occupation results in the loss of astroglial 
endfeet on the BVs and ultimately an increase in BBB per-
meability [49]. These studies suggest that an orchestrated 
interaction between OPCs and astroglial endfeet on the BVs 
is critical for BBB integrity. OPCs also regulate the peri-
cyte population. Conditioned medium from cultured OPCs 
promoted pericyte proliferation in vitro, suggesting another 
pathway by which OPCs regulate BBB function [37].

In summary, OPCs indirectly regulate the neural network 
activity by interacting with endothelial cells, astrocytes, and 
pericytes, thereby ultimately mediating BBB function and 
brain homeostasis.

Immunomodulation by OPCs

In many neuropathological conditions, such as acute brain 
injury, multiple sclerosis, and Alzheimer’s disease, there is a 
significant loss of neurons and disruption of neural circuits. 
Similar to microglia and astrocytes, OPCs respond to these 
insults and are involved in disease progression and regen-
eration. Morphologically, OPCs undergo hypertrophy, with 
their processes becoming shorter and thicker under patho-
logical conditions [32]. More importantly, OPCs migrate 
to lesion sites and subsequently become highly prolifera-
tive to replace oligodendrocytes lost in case of acute injury 
or demyelination [25, 80]. These responses contribute to 

several pathophysiological processes, including glial scar 
formation and remyelination [60]. Additionally, in patho-
logical contexts including Alzheimer’s disease (AD), depres-
sion, and epilepsy, OPCs alter their gene expression profile 
[42, 45, 54]. For example, in AD pathology, OPCs down-
regulate Olig1 and Sox8 [42], the genes involved in specifi-
cation of oligodendrocyte [17, 68], which may explain the 
myelin deficit in AD [75]. As well, in the OPCs from tem-
poral lobe epilepsy patients, genes related to myelination 
were downregulated [54]. These changes influence the fate 
commitment of OPCs in pathological context.

However, recent studies indicate that during neuroinflam-
mation and demyelination conditions, OPCs change their 
phenotype to modulate response of immune cells. Deple-
tion of OPCs using NG2-HSVtk transgenic mice, where her-
pes simplex virus thymidine kinase (HSVtk) is expressed 
under the control of the NG2 promoter, induced hippocam-
pal neuronal death as a result of neuroinflammation trig-
gered by microglial activation [46]. However, application 
of hepatocyte growth factor, potentially derived from OPCs, 
was able to reverse the neuronal loss and microglial abnor-
malities. This observation suggests that OPCs maintain the 
homeostatic signature of microglia in the healthy CNS. It is 
important to note that the authors claim that only OPCs were 
ablated by this strategy, without changing the coverage of 
pericytes. Although the pericyte coverage is unchanged, but 
their function, such as regulating blood vessel contraction 
and blood flow in the brain [50], might have been altered. 
Hence, there may still be other mechanisms contributing to 
these changes: (1) neuroinflammation could be caused by 
the increased BBB permeability due to the loss of perivas-
cular OPCs or dysfunctional pericytes, as mentioned above; 
(2) it cannot be ruled out that extensive OPC death in the 
transgenic mice caused microglial activation [46]. Never-
theless, another independent study utilizing NG2-Cre mice 
crossbred with DTRfl/fl (diphtheria toxin receptor) mice [85] 
demonstrated that OPCs, but not mature oligodendrocytes 
(using the PLP-Cre x DTRfl/fl line), are crucial to regu-
late the microglial response to lipopolysaccharide (LPS)-
induced neuroinflammation. In these NG2-Cre x DTRfl/fl 
mice, about 50% of OPCs were depleted in the absence of 
LPS challenge, but there was no presence of BBB leakage, 
suggesting that pericyte function remains unaltered in these 
mutant mice. Following LPS stimulation, pro-inflammatory 
cytokines (IL-1β, IL-6, IL-12β, TNF-α, iNOS) showed sig-
nificant upregulation in the brains of mutant mice compared 
to controls, suggesting that the loss of OPCs exacerbates 
microglial responses during neuroinflammation. Through 
a combination of transcriptomic analysis and co-culture 
approaches, it was demonstrated that tumor growth factor 
β (TGFβ) derived from OPCs acts on the TGFβ receptor 
in microglia, thereby regulating CX3CR1-mediated micro-
glial immune responses [85] (Fig. 1F). Hence, these studies 
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strongly suggest that OPCs may modulate microglial activity 
in health and disease.

Bi-directional communication between OPCs and other 
immune cells has also been suggested by many studies 
[2, 14, 29]. The modulation of T cell responses by OPCs 
has primarily been studied in the context of multiple sclero-
sis (MS) (Fig. 1G). In demyelinating lesions, OPCs release 
chemokines such as C-C motif ligand 2 (CCL2), CCL5 and 
CXCL10 to recruit T cells [44], and they activate T cells by 
expressing major histocompatibility complex (MHC) classes 
I and II, as well as antigens CD273 and CD274 (also known 
as programmed death ligand (PD-L)2 and PD-L1, respec-
tively) [20, 29, 88] (reviewed by Cabeza-Fernández et al, 
[14]) (Fig. 1G). When exposed to cerebrospinal fluid (CSF) 
from MS patients, especially CSF from patients in the phase 
of progressive MS (pMS), OPCs upregulate PD-L1, which 
suppresses T cell-induced inflammation [88]. In addition, 
CSF from pMS patients reduces the expression of MHC-II 
and TNF-α, as well as the activation of NF-kB in OPCs, 
compared to CSF from patients in the relapsing phase of 
MS. Thus, OPCs exposed to pMS CSF hinder T cell activa-
tion and proliferation [88]. Previous studies have noted that 
fewer monocytes are present in the CNS during pMS com-
pared to the rMS phase. Therefore, it is tempting to speculate 
that OPCs alter their phenotype under different conditions, 
thereby modulating T cell activity. The conversion of OPCs 
to a pro-inflammatory phenotype may be mediated by the 
low-density lipoprotein receptor-related protein (LRP1). 
OPCs lacking LRP1 express lower levels of MHC-I, MHC-
II, and immunoproteasome [3, 23] (Fig. 1G). Interestingly, 
LRP1 expression is increased in the MS lesion compared to 
the surrounding healthy tissue [16]. Although it is not clear 
which phase of MS the patients were in, these studies link 
the LRP1 to the shift in the OPC phenotype in MS. Taken 
together, therapeutic strategies should not only focus on the 
precursor functions of OPCs, but also consider the immu-
nomodulatory roles of OPCs.

Conclusion

OPCs have been extensively studied for their proliferative 
and differentiation mechanisms. However, recent studies 
have revealed a myriad of additional functions performed 
by OPCs that significantly impact brain function in both 
healthy and diseased states. Remarkably, OPCs not only 
receive synaptic input from neurons, but also release neu-
romodulators that effectively modulate neuronal density, 
activity, local neural circuits, and synaptic plasticity. In 
addition, OPCs play a crucial role as key regulators of the 
blood-brain barrier (BBB), engaging in intensive interac-
tions with other cellular components to ensure proper barrier 

function. Furthermore, by expressing genes associated with 
immune cells, OPCs exert phagocytic and immunomodula-
tory functions, which hold significance in both healthy and 
various neuropathological conditions. The comprehensive 
understanding of OPCs’ contribution to neural circuits is 
of paramount importance for unraveling complex neuro-
pathologies. Ultimately, such insights may pave the way for 
novel approaches to tackle diseases, particularly those with 
limited efficacy in neuron-specific treatments.
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