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Abstract 

We describe a combined functional / logic programming language SASLOG which contains 

Turner's SASL, a fully lazy, higher-order functional language, and pure Prolog as subsets. 

Our integration is symmetric, Le. functional terms can appear in the logic part of the program and 

V.v. Exploiting the natural correspondence between backtracking and lazy streams yields an elegant 

solution to the problem of transferring alternative variable bindings to the calling functional part of 

the program. 

We replace the rewriting approach to function evaluation by combinator graph reduction, thereby 

regaining computational efficiency and the structure shar,ing properties. Our solution is equally well 

suited to a fixed combinator set and to a super combinator implementation. In the paper we use 

Turner's fixed combinator set. 

Keywords: 

functional programming, logic programming, lazy evaluation, combinators, graph reduction, 

streams, backtracking, set abstraction, semantic unification. 
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1. Introduction 

Declarative programming languages have been discussed now for several years. Declarative 

languages describe certain situations and facts without giving explicit instructions for computation. 

They are developed based on mathematical models independent of the requirements of concrete 

computing machines. Their mathematical well-foundedness results in certain benefits, e.g. greater 

expressive power, ease of parallel evaluation and the possibilitiy of fonnal manipulations thus 

supporting the verification of programs. 

Two kinds of programming styles belong to this group: functional programming and relational 

(logic) programming. The advantages of functional programming can be found in e.g. [Darlington, 

Henderson, Tumer82]. Several authors ([Turner82], [Hughes84]) emphasize that lazy evaluation 

and higher-order functions are two of the most important features of purely functional languages, 

enabling the programmer to easily modularize his/her programs. Lazy evaluation requires 

nonnal-order reduction, which can be implemented quite efficiently using combinator graph 

reduction (as shown in [Turner79]). Logic programming, based on first-order Predicate Calculus, 

is the other major declarative approach. Its most prominent exponent is Prolog ([Clocksin, 

Mellish84]). 

Both the functional and the logic programming style have their advantages. In order to be able to 

decide locally which part of a problem to represent using which style, many integrations of both 

paradigms have been published. Distinctions between these approaches can be made by the 

intensity of the integration, the functional and logic language used or the implementation technique 

used. 

The rest of the paper is organized as follows: following a sketch of the new constructs we define an 

operational semantics for SASLOG. In paragraph 6 we address the central implementation issues 

that arise out of the need to interface logic variables and (inherently variable-free) combinator 

expressions. We conclude with a brief statement about the current status and the future goals of the 

project. 

2. What's New? 

We present a fully symmetric integration of a pure functional higher-order language featuring lazy 

evaluation (SASL) implemented via combinator graph reduction and a classical interpreter for a 

logic language (pure Prolog). Lazy lists in the functional part and backtracking in the logic part are 

interlinked and yield a natural interface between the two programming styles. The primary concern 

of the paper is to propose a solution to the difficult problem of reconciling combinator graph 

reduction and logic variables that avoids the FUNARG problem. 
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Declarative programming languages have been discussed now for several years. Declarative
languages describe certain situations and facts without giving explicit instructions for computation.
They are developed based on mathematical models independent of the requirements of concrete
computing machines. Their mathematical well-founded ness results in certain benefits, e.g. greater
expressive power, ease of parallel evaluation and the possibilitiy of formal manipulations thus
supporting the verification of programs.
Two kinds of programming styles belong to this group: functional programming and relational
(logic) programming. The advantages of functional programming can be found in e.g. [Darlington‚
Henderson, Turner82]. Several authors ([Turner82], [Hughe384]) emphasize that lazy evaluation
and higher-order functions are two of the most important features of purely functional languages,
enabling the programmer to easily modularize his/her programs. Lazy evaluation requires
normal-order reduction, which can be implemented quite efficiently using combinator graph
reduction (as shown in [Turner79]). Logic programming, based on first-order Predicate Calculus,
is the other major declarative approach. Its most prominent exponent is Prolog ([Clocksin,
Mellish84]).
Both the functional and the logic programming style have their advantages. In order to be able to
decide locally which part of a problem to represent using which style, many integrations of both
paradigms have been published. Distinctions between these approaches can be made by the
intensity of the integration, the functional and logic language used or the implementation technique
used.
The rest of the paper is  organized as follows: following a sketch of the new constructs we define an
operational semantics for SASLOG. In paragraph 6 we address the central implementation issues
that arise out of the need to interface logic variables and (inherently variable-free) combinator
expressions. We conclude with a brief statement about the current status and the future goals of the
project.

2. What’s New?

We present a fully symmetric integration of a pure functional higher-order language featuring lazy
evaluation (SASL) implemented via combinator graph reduction and a classical interpreter for a
logic language (pure Prolog). Lazy lists in the functional part and backtracking in the logic part are
interlinked and yield a natural interface between the two programming styles. The primary concern
of the paper is to propose a solution to the difficult problem of reconciling combinator graph
reduction and logic variables that avoids the FUNARG problem.



3. Related Works 

We decided to integrate two (reasonably efficiently implemented) existing languages: SASL (St.
 

Andrews Static Language, [Turner83D, since it features lazy evaluation and higher-order functions,
 

and pure Prolog.
 

Unlike many known integrations we really interlink the two languages in both directions, Le.
 

Prolog goals can be proven from SASL as well as functions can be called from Prolog. Influenced
 

by Wadler ([Wadler85]) and Narain ([Narain86]) our integration is based on the kinship between
 

lazy evaluation and depth-first search with backtracking. This yields an elegant solution of the
 

opposition between detenninism in functional languages, where every expression has a definite
 

value, and nondetenninism in logic languages, where one goal can have multiple solutions.
 

Prolog goals in functional expressions are represented via set abstraction (or better list abstraction)
 

where the elements of such a potentially inifinite stream are the alternative solutions of the goal (cf.
 

[Darlington, Field, Pull86] or SUPERLOGLISP[Robinson83]). Because SASL is lazy, each
 

solution is computed only when it is needed.
 

Integrating a functional language in a logic language can be done at two distinct levels. At the
 

predicate level the integration essentially consists in adding a new built-in predicate eq (X, Y) ,
 

which computes the functional expression Y and unifies the result with the term X (cf. is in
 

Prolog). Systems like LISPLOG ([Boley 86]) or HORNE ([Frisch, Allen, Giulian083]) use
 

predicate-level integration. Integration at term level, as realized in SASLOG, consists in using
 

functional expressions as terms in predicates (cf. FUNLOG [Subrahmanyam, You86]). Term-level
 

integration requires an extension to the unification algorithm of the logic programming language to
 

take into account the semantics of the function symbols. See [Dincbas, vanHentenryck87] for a
 

discussion of different extended unification algorithms.
 

Several systems have been built that make available a functional and a logic language in a single
 

environment thereby implementing the logic language (mostly Prolog) in the functional language
 

(mostly LISP) with defined interfaces to evaluate functional expressions in the logic part. Examples
 

are LISPLOG ([Boley 86]), LOGLISP ([Robinson, Sibert 82a,bJ), HORNE ([Frisch, Allen,
 

Giulian083]) and LM-Prolog ([Kahn, Carlsson83J).
 

Instead of integrating two existing languages many attempts were made to invent a totally new
 

language or to augment an existing language with new features to achieve functional and logic
 

programming.
 

As can be found in [Reddy86] there are several ways to capture the additional expressive power of
 

logic programming within the framework of functional languages. The first way is to execute
 

nonground expressions by narrowing instead of reduction (as in FRESH[Smolka86]). Using set
 

expressions with free logic variables allows the importation of fresh variables in the output of
 

expressions. SUPERLOGLISP[Robinson83] and the language in [Darlington, Field, Pull86]
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3. R lat W rks

We decided to integrate two (reasonably efficiently implemented) existing languages: SASL (St.
Andrews Static Language, [Turner83]), since i t  features lazy evaluation and higher-order functions,

and pure Prolog.
Unlike many known integrations we really interlink the two languages in both directions, i.e.
Prolog goals can be proven from SASL as well as functions can be called from Prolog. Influenced
by Wadler ([Wadlcr85]) and Narain ([Narain86]) our integration is based on the kinship between
lazy evaluation and depth-first search with backtracking. This yields an elegant solution of the
opposition between determinism in functional languages, where every expression has a definite
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where the elements of such a potentially inifinite stream are the alternative solutions of the goal (cf.
[Darlington, Field, Pu1186] or SUPERLOGLISP[Robinson83]). Because SASL is lazy, each
solution is computed only when it is needed.

Integrating a functional language in a logic language can be done at two distinct levels. At the

predicate level the integration essentially consists in adding a new built-in predicate eq  (X, Y) ,
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integration requires an extension to the unification algorithm of the logic programming language to
take into account the semantics of the function symbols. See [Dincbas, vanHentenryck87] for a
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Instead of integrating two existing languages many attempts were made to invent a totally new
language or to augment an existing language with new features to achieve functional and logic
programming.
As can be found in [Reddy86] there are several ways to capture the additional expressive power of
logic programming within the framework of functional languages. The first way is to execute
nonground expressions by narrowin g instead of reduction (as in FRESH[Smolka86]). Using set
expressions with free logic variables allows the importation of fresh variables in the output of
expressions. SUPERLOGLISP[Robinson83] and the language in [Darlington, Field, Pu1186]



augment a functional language by set abstraction and unification to achieve relational programming. 

The translation of functional programs to logic programs with resolution used as their operational 

semantics results in the usage of functions as syntactic sugar (e.g. LEAF[Barbuti, Bellia, Levi86]). 

The introduction of functional notation into relational languages is achieved by the extension of 

Prolog with the equality relation ([Kornfeld83]). EQLOG ([Goguen, Meseguer86]) combines 

horn-clause logic with confluent and terminating equational theories. 

For a more detailled discussion of different methods to integrate functional and logic programming 

paradigms see [Bellia, Levi86]. 

4. A Review of SASLOG 

The SASL part is based on [Turner83]. For convenience in linking SASL to Prolog we added the 

object type constant to SASL. Constants are identifiers marked by t1, (like the abbrevation for tI 

QUOTE in Lisp); they are atomic and do not correspond to strings.
 

Examples:
 

constants: 'John , mary 'sam
 

~	 lover 'mary = 'John 

lover x = 'sam 

The link from SASL to Prolog is possible through two constructs: prove- and ZF-expressions. 

1. Instead of any boolean expression in a SASL tenn there can be an expression 

prove (prolog-goal) 

where prolog-goal can contain SASL variables and expressions. If the value of the 

prove-expression is needed (remember: SASL evaluation is lazy!) the Prolog interpreter is 

called with the given prolog-goal. If the goal can be proven, the expression yields TRUE; 

if the Prolog interpreter fails the result is FALSE. 

Regard the following SASL function which tests whether we know the mother of a given person 

(returning , ok) or not (' unknown): 

~ test x = prove(mother(_M,x)) -> 'ok; 'unknown 

Note that the Prolog goal contains (local) Prolog variables CM) and parameters from the SASL 

function (x). 

2. The more interesting link to Prolog (of which 1. is just a syntactically sugared special case) is 

through an extension of the ZF-expression (named after the underlying Zermelo-Fraenkel set 
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augment a functional language by set abstraction and unification to achieve relational programming.
The translation of functional programs to logic programs with resolution used as their Operational
semantics results in the usage of functions as syntactic sugar (e.g. LEAF[Barbuti, Bellia, Levi86]).

The introduction of functional notation into relational languages is achieved by the extension of
Prolog with the equality relation ([Kornfeld83]). EQLOG ([Goguen, Meseguer86]) combines
hom-clause logic with confluent and terminating equational theories.

For a more detailled discussion of different methods to integrate functional and logic programming
paradigms see [Bellia, Levi86].

4. A Review of SASLOG

The SASL part is based on [Turner83]. For convenience in linking SASL to Prolog we added the

object type 991151a to SASL. Constants are identifiers marked by " ' " (like the abbrevation for
QUOTE in Lisp); they are atomic and do gg; correspond to strings.

Examples:

constants: ' john ’ mary ' sam

ggf lover  ’mary  = ' j ohn

l ove r  x ' s am

The link from SASL to Prolog is possible through two constructs: prove-  and ZF-expressions.

1. Instead of any boolean expression in a SASL term there can be an expression
prove (prolog—goal)

where prolog—goal can contain SASL variables and expressions. If the value of the
prove-expression is needed (remember: SASL evaluation is  lazy!) the Prolog interpreter is

called with the given p ro log-goa l .  If the goal can be proven, the expression yields TRUE;
if the Prolog interpreter fails the result is FALSE.
Regard the following SASL function which tests whether we know the mother of a given person
(returning ' ok)  or not ( ’  unknown):

gg: test x = prove(mother(_M‚x)) —> ’ok; 'unknown
Note that the Prolog goal contains (local) Prolog variables (_M) and parameters from the SASL

function (x).

2. The more interesting link to Prolog (of which 1. is  just a syntactically sugared special case) is

through an extension of the ZF-expression (named after the underlying Zermelo-Fraenkel set



abstraction). The syntax of a SASLOG ZF-expression is as follows: 

[E; Q1 ; ... ; Qn ] 

where the result term E is an expression and the qualifiers Qk take the form 

vk <- Ek ("normal" generator) or 

[Vk1 ' ... , Vkm ] <- prolog-goal (Prolog generator) or 

E k ,Ek a boolean-valued expression (filter) 

The meaning of this ZF-expression is very much the same as the one of {E I Ql;...;Qn} in 

mathematical notation (reading "<_" for "e"), except that the ZF-expression denotes a list 

instead of a real set (i.e. doubles can occur and the order of members is significant). 

While Vk <- E k binds v k successively to the members of the list produced by E k , 

[Vk1 ' ... , Vkm ] <- prolog-goal binds the vki simultaneously to the values these Prolog 

variables take in the Prolog proof of prolog-goa l. If the next set of values is needed, 

backtracking on prolog-goal is started. 

Consider the following example, where the function f yields the list of all grandchilds of a 

given list of persons. Supposing the Prolog database contains several facts of the form 

parent (' john, , sue) we can define f as follows: 

~ f L = [gc; old <- L; [gc] <- parent(old,_X), parent(_X,_gc)] 

If we want to fIlter out only those grandchilds whose parent belongs to a certain set of people we 

could change the definition to 

~ 9 L = [gc; old <- L; 

[gc,X] <- parent(old,_X), parent(_X,_gc); 

member ['sue,'joe,'john,'mary] X ] 

(* Note that in SASL the order of the arguments to membe r is changed to make currying
 

easier. *)
 

While X and gc are logic variables inside the goal, they become SASL parameters outside the
 

generator.
 

Let us take a closer look at this example showing the combined computation with lazy evaluation
 

and backtracking. Given the following database definitions:
 

parent('john,'sue) . 

parent('john,'sam) . 

parent('sam,'mary) . 

parent (' joe,' linus) . 
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abstraction). The syntax of a SASLOG ZF-expression is as follows:

[E;Q1;m;Qn]
where the result term E is an expression and the qualifiers Qk take the form

Vk <— Ek ("nor-mal" generator) or
[ V k l  , ..., Vkm]  <-  p ro log -goa l  (Prolog generator) or
Ek , Ek  a boolean-valued expression (filter)

The meaning of this ZF-expression is very much the same as the one of {E I Q1;...;Qn} in
mathematical notation (reading "< - "  for "6"), except that the ZF-expression denotes a list
instead of a real set (i.e. doubles can occur and the order of members is significant).
While Vk <-  Ek  binds Vk successively to the members of the list produced by Ek,
[Vkl , ..., Vkm]  <-  pro log-goal  binds the Vki  simultaneously to the values these Prolog
variables take in the Prolog proof of prolog-goal  . If the next set of values is needed,
backtracking on pro log—goal  i s  started.

Consider the following example, where the function f yields the list of all grandchilds of a
given list of persons. Supposing the Prolog database contains several facts of the form
parent  ( '  j ohn ,  ' sue )  we can define f as follows:

ggf f L = [gc ;  o ld  <— L:  [gc ]  <— pa ren t (o ld ,_X) ,  pa ren t (_x ,_gc ) ]

If we want to filter out only those grandchilds whose parent belongs to a certain set of pe0ple we
could change the definition to

ggf g L = [gc; o ld  <— L;

[gC ,X]  <— parent(old‚_X)‚ parent(_x„_gc);

member ['sue‚’joe‚’john‚'mary] X ]

(* Note that in SASL the order of the arguments to member is  changed to make carrying
easier. *)
While x and go are logic variables inside the goal, they become SASL parameters outside the
generator.

Let us take a closer look at this example showing the combined computation with lazy evaluation
and backtracking. Given the following database definitions:

pa ren t ( ' j ohn , ' sue ) .
pa ren t ( ’ j ohn , ' s am) .

pa ren t ( ’ s am, ’mary ) .

pa ren t ( ’ j oe , ’ l i nus ) .



parent('sue,'charly) . 

parent ('mary,'lucy) . 

parent (' jeff,' joe) . 

and the definition of g as above, then the expression E = g [' john, , jeff] is evaluated 

as follows: 

a. The fIrst element of [' john, , jeff] (= , john) is assigned to old. 

b. The Prolog interpreter is started to prove parent (' john, _X), parent (_X, _gc) . 

c. The interpreter returns with X bound to ' sue and gc bound to ' charly. 

d. member [' sue, , j oe, , j ohn, , mary] , sue is evaluated to TRUE. 

e. Since no more qualifiers exist this is a acceptable solution and the value bound to gc (Le. 

'charlie) is delivered as the first element of the global expression E. 

f. If the next member of E is needed, the next element from the last satisfied generator must be 

generated; since in this case this is the Prolog interpreter, backtracking is started. 

g. Prolog finds another solution binding X to ' sam and gc to ' mary. 

h. member [' sue, , j oe, , j ohn, , mary] , sam is FALSE so another backtracking is 

started. 

i. Since there are no more solutions for parent ( , j ohn , _X), parent (_X, _gc) , the 

Prolog interpreter fails, thus the next element from the generator of old must be examined 

(thatis 'jeff). 

j. A "new" Prolog interpreter is started to prove 

parent('jeff,_X), parent (_X,_gc) . 

k. It finds a solution (x = , joe, gc = , linus) which satisfies the "member "-filter so 

that ' linus is the next member of E. 

1. No more solutions for ' j e f f can be found so the next element of L has to be used. 

Since there is no such element, the result list is terminated. 

Thus: g ['john,'jeff] = ['charly, 'linus]. 

Calling SASL from Prolog is a little easier: any term in the goals on the right hand side of a Prolog
 

clause may be an arbitrary SASL expression. These SASL terms may contain Prolog variables,
 

which must be bound to a value when being evaluated (we do not perform residuation). Naturally
 

SASL terms in Prolog goals can contain Prolog goals themselves (via prove- or ZF-expressions)
 

etc. and vice versa. Note that there is no need for an operator like "is", since "==" (unification)
 

serves the purpose equally well.
 

Suppose we want a predicate P (X, Y) which is true, if a person X has grandchilds who are
 

older than 20 (assuming the presence of a function age) and whose parent is either Sue, John, Joe
 

or Mary. It should allow to be called with any combination of bound/unbound variables. Of course
 

we want to use our previously defined function g.
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p a r e n t ( ' s u e ‚ ’ c h a r l y ) .

parent(’mary‚’lucy).

parent('jeff‚'joe).

and the definition of g as above, then the expression E = g [ ’  j ohn ,  ’ j e f f  ] is  evaluated

as follows:
a. The first element of [ '  john, ' j e f  f ] (= ’ john) i s  assigned to o ld .

The Prolog interpreter is  started to prove parent  ( '  john, __X) , parent (__X‚_gc) .
The interpreter returns with x bound to ’ sue  and gc  bound to ' Charly.
member [ ’  sue ,  ' joe, ' john,  ’ mary] ' sue  is  evaluated to TRUE.
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Since no more qualifiers exist this is  a acceptable solution and the value bound to go  (i.e.

' cha r l i e )  is  delivered as the first element of the global expression E.
f. If the next member of B is needed, the next element from the last satisfied generator must be

generated; since in this case this is the Prolog interpreter, backtracking is started.
g. Prolog finds another solution binding X to ’ sam and go  to ’ mary.
h.  member [ ’  sue ,  ' j oe ,  ’ j ohn ,  ' mary]  ' sam is  FALSE so another backtracking is

started.
i. Since there are no more solutions for pa ren t  ( ’ j ohn ,  _X) , parent  (___x, _gc) , the

Prolog interpreter fails, thus the next element from the generator of o ld  must be examined
(that is ' jeff).

j. A "new" Prolog interpreter i s  started to prove
pa ren t ( ’ j e f f , _X) ,  pa ren t (_x ,mgc) .

k. It finds a solution (x = ’ joe, go  = ’ l i nus )  which satisfies the "member"-fi1ter so
that ' linus is the next member of E.

1. No more solutions for ' j e f  f can be found so the next element of L has to be used.
Since there is no such element, the result list i s  terminated.

Thus: g [ ’  j ohn ,  ' j e f f ]  = [ '  Charly, ' linus] .

Calling SASL from Prolog is a little easier: any term in the goals on the right hand side of a Prolog
clause may be an arbitrary SASL expression. These SASL terms may contain Prolog variables,
which must be bound to a value when being evaluated (we do not perform residuation). Naturally

SASL terms in Prolog goals can contain Prolog goals themselves (via prove-  or ZF-expressions)
etc. and vice versa. Note that there i s  no  need for an operator like "is", since "==" (unification)

serves the purpose equally well.
Suppose we want a predicate P (X, Y) which is true, if a person X has grandchilds who are
older than 20 (assuming the presence of a function age )  and whose parent is either Sue, John, Joe
or Mary. It should allow to be called with any combination of bound/unbound variables. Of course
we want to use our previously defined function g .



- -

P(_X,_Y) '- person(_X), 

_Y == g [_X] , 

some « 20) (map age _Y) TRUE. 

~ some f [ ] FALSE 

some f [alx] (f a) or (some f x) 

~ map f [ ] [ ] 

map f [alx] [f a I map f x] 

Note that in a call of the Prolog predicate P the SASL function g is called which itself calls 

Prolog again. 

Looking at the usage of the well-known predicate member shows the interaction between lazy 

evaluation and backtracking in the Prolog part of SASLOG: 

member (_e, [_el_?]). 

member (_e, [_?I 1]) '- member(_e, 1). 

The goal 

?-member(_x, (from 1 where from n = [nl (from (n+l))])), p(_x). 

will succeed if there is a natural number x such that p ( x) is true. The expression (from 1 

where from n = [nl (from (n+l))]) denotes the infinite list of natural numbers. Due to 

the lazy evaluation paradigm the list is evaluated only far enough so that _x can be unified with an 

element in the list. If the subsequent goal p (_x) fails with this value, backtracking causes the 

further computation until x can be unified with another value. 

5. The Operational Semantics of SASLOG 

One reason to integrate two existing languages instead of creating a completely new one is to give 

the programmer a familiar basis to work on so that programs written in either of the two languages 

can still be used. This puts fairly strong restrictions on the semantics of the combined language: the 

separate semantics have to be retained as special cases and the new elements concerning the link 

between the languages must be injected into their union as unobtmsively as possible. In this 

paragraph we will constmct an operational semantics for SASLOG building on the operational 

semantics for SASL (i.e. the reduction mles for the combinators together with normal-order 

reduction) and Prolog, respectively. 
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P(_X‚_Y) :— person(_X)‚

__Y == g [___X ] r

some (<  20 )  (map age  _Y)  ==  TRUE.

dei some f [ ]  = FALSE

some f [ a lx ]  = ( f  a )  o r  ( some  f x )

def map f [ ]  = [ ]
[ f a l m a p f x ]map f [ a lx ]

Note that in a call of the Prolog predicate P the SASL function g is called which itself calls
Prolog again.

Looking at the usage of the well-known predicate member shows the interaction between lazy

evaluation and backtracking in the Prolog part of SASLOG:

member (_e , [_e | _? ] ) .
member (_e , [_? l_ l ] )  :— member (_e ,_ l ) .

The goal

? -member (_x , ( f rom l whe re  f rom n = [n l ( f rom ( n + l ) ) ] ) ) ‚  p ( _ x ) .

will succeed if there is a natural number ___x such that p (___x) is true. The expression (from 1
where from n = [n  | (from (n+1)  ) l ) denotes the infinite list of natural numbers. Due to
the lazy evaluation paradigm the list is evaluated only far enough so that ___x can be unified with an
element in the list. If the subsequent goal p (_x)  fails with this value, backtracking causes the
further computation until __x can be unified with another value.

5. The Operational Semantics of SASLQG

One reason to integrate two existing languages instead of creating a completely new one is to give
the programmer a familiar basis to work on so that programs written in either of the two languages
can still be used. This puts fairly strong restrictions on the semantics of the combined language: the
separate semantics have to be retained as Special cases and the new elements concerning the link
between the languages must be injected into their union as unobtrusively as possible. In this
paragraph we will construct an operational semantics for SASLOG building on the operational
semantics for SASL (i.e. the reduction rules for the combinators together with normal-order
reduction) and Prolog, respectively.



Before going into detail we give an informal overview of the semantics we have in mind for the 

new constructs: 

(i) A ZF-generatorofthe form list-of-vars <- prolog-goal is taken to generate the 

stream of all success bindings of prolog-goal projected onto the list-of-vars. In order 

to make the stream truly lazy we will introduce a special Prolog combinator that takes a Prolog 

continuation and reduces to a list of values and a new continuation. Logic variables which on return 

to SASL are still uninstantiated are mapped to ..1., the SASL value for "undefined". 

(ii) The basic unification algorithm is replaced by semantic unification. Two SASL terms which 

contain functions other than constructors unify iff they can be reduced to equal ground terms where 

ground terms are considered equal iff the SASL function eq yields TRUE for them. Prior to 

reduction all logic variables in the SASL temlS are replaced by their current bindings. No 

residuation takes place, yet an uninstantiated variable does not automatically mean that unification 

fails. As in (i) we substitute..1. for these variables; so if some of the functions in the term are 

non-strict, normal-order reduction may nevertheless produce a non-..1. result (e.g. when the 

unbound variable occurs in the non-selected arm of a conditional). 

(iii) To cope with logic variables in SASL terms we need the notion of reduction w.r.t. a binding 

environment which is in some way alien to the basic idea of combinator graph reduction. Since at 

any moment during the execution of a SASLOG program an arbitrary number of alternating Prolog 

incarnations and SASL reductions may be pending (each Prolog incarnation with its own current 

binding environment) we have to be careful in defining which term is to be reduced in which 

environment in order to evade both the upward and downward FUNARG problems. The 

convention regarding..1. outlined in (i) and (ii) ensures that no uninstantiated Prolog variable can 

appear in a reduction taking place outside of the scope of the Prolog incarnation to which it 

belongs. We shall see in the following paragraph how the formal solution below can be 

implemented with only a slight loss in laziness. 

The semantic unification algorithm 

Although our algorithm bears some resemblance to the one given in [Subrahmanyam, You 86] 

there is an important difference. Embedded SASL tenns are always reduced to their head-normal 

form by the combinator reduction machine rather than step by step under the control of the 

unification algorithm. This means that tenns containing uninstantiated variables are not treated as 

irreducible but as containing .1 subtenns. As a direct consequence in SASLOG only one notion of 

equality is left: that of the SASL function eq. Unification fails in exactly those cases where eq is 

FALSE for the head-normal forms of the terms and is aborted when eq yields..1.. 
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Before going into detail we give an informal overview of the semantics we have in mind for the

new constructs:

(i) A ZF-generator of the form 1 i s t  -o  f -va rs < -  prolog-goal is taken to generate the
stream of all success bindings of prolog—goal  projected onto the l i s t  —of-va rs. In order
to make the stream truly lazy we will introduce a special Prolog combinator that takes a Prolog
continuation and reduces to a list of values and a new continuation. Logic variables which on return
to SASL are still uninstantiated are mapped to .L, the SASL value for "undefined".

(ii) The basic unification algorithm is replaced by semantic unification. Two SASL terms which
contain functions other than constructors unify iff they can be reduCed to equal ground terms where
ground terms are considered equal iff the SASL function eq  yields TRUE for them. Prior to
reduction all logic variables in the SASL terms are replaced by their current bindings. No
residuation takes place, yet an uninstantiated variable does not automatically mean that unification
fails. As in (i) we substitute J. for these variables; so if some of the functions in the term are
non-strict, normal-order reduction may nevertheless produce a non-_L result (e. g. when the
unbound variable occurs in the non—selected arm of a conditional).

(iii) To cope with logic variables in SASL terms we need the notion of reduction w.r.t. a binding

environment which is in some way alien to the basic idea of combinator graph reduction. Since at
any moment during the execution of a SASLOG program an arbitrary number of alternating Prolog
incarnations and SASL reductions may be pending (each Prolog incarnation with its own current
binding environment) we have to be careful in defining which term is to be reduced in which
environment in order to evade both the upward and downward FUNARG problems. The
convention regarding J. outlined in (i) and (ii) ensures that no uninstantiated Prolog variable can
appear in a reduction taking place outside of the mom of the Prolog incarnation to which it
belongs. We shall see in the following paragraph how the formal solution below can be
implemented with only a slight loss in laziness.

The semantic unification algori thm

Although our algorithm bears some resemblance to the one given in [Subrahmanyam, You 86]
there is  an important difference. Embedded SASL terms are always reduced to their head-normal
form by the combinator reduction machine rather than step by step under the control of the
unification algorithm. This means that terms containing uninstantiated variables are not treated as
irreducible but as containing .1. subterms. As a direct consequence in SASLOG only one notion of

equality is left: that of the SASL function eq.  Unification fails in exactly those cases where eq  is
FALSE for the head-normal forms of the terms and is aborted when eq  yields J. .



One might note that by unifying tenns containing non-constructor functions only if they are equal 

w.r.t. equality in SASL we avoid importing higher-order predicate logic into SASLOO. Of course, 

a logic variable may be bound to a SASL function which in turn is defined as the characteristic 

function of a predicate, as in 

[ ] ) .
 
[_AI_X]) :- F ( A)
 

human('socrates) . 

human ( 'adam) . 

human (' eve) . 

~ s-human x = prove(human(x» 

?- all (s-human, [' adam, I eve] ) . 

However, by definition the SASL-function eq is undefined for any two functional values so that 

they cannot be unified. This limits the use of functional values to exactly those cases covered by the 

'call' meta-predicate in conventional Prolog implementations. 

We can now specify our unification algorithm which is the only departure from standard Prolog 

semantics. It differs from syntactic unification in the last four cases where two SASL terms are to 

be unified. 

IF a = 'FAIL' THEN RETURN 'FAIL';
 

FOR i=1,2 DO ti := ULTIMATE-ASSOC(ti' a);
 

IF t l is a variable THEN RETURN a u {(t l /t2)}; 

IF t2 is a variable THEN RETURN a u { (t2/tl) }; 

IF t l and t2 are in head-normal form 

THEN IF ti = g (sil' ... , sik)' g constructor 

THEN RETURN UNIFY (slk' s2k' UNIFY (...UNIFY (sll' s2l,a) » 

ELSE RETURN FAIL; 

IF t l is in head~normal form and t2 is not 

THEN RETURN UNIFY(t l ,SASL-REOUCE(ULTIMATE-INST(t2,a'»,a); 

IF t2 is in head-normal form and t l is not 

THEN RETURN UNIFY(SASL-REOUCE(ULTIMATE-INST(t l ,a'»,t2,a); 

FOR i=1,2 DO ti := ULTIMATE-INST(ti' a'); 

IF SASL-REOUCE(eq t l t2) TRUE THEN RETURN a; 

IF SASL-REOUCE(eq t 1 t2) = FALSE THEN RETURN FAIL; 

ABORT WITH ERROR 
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One might note that by unifying terms containing non-constructor functions only if they are equal
w.r.t. equality in SASL we avoid importing hi gher-order predicate logic into SASLOG. Of course,

a logic variable may be bound to a SASL function which in turn is  defined as the characteristic

function of a predicate, as in

all(_F, [1 ) .
a l l (_F ,  [_A|_X]) :— F(_A) == TRUE, a l l (flF ,_X) .

human( ' soc ra t e s ) .

human( ' adam) .

human( ' eve ) .

dei s—human x = p r o v e ( h u m a n ( x ) )

?— all(s—human‚ ['adam,'eve]).

However, by definition the SASL-function eq  is undefined for any two functional values so that
they cannot be unified. This limits the use of functional values to exactly those cases covered by the
'call' meta-predicate in conventional Prolog implementations.

We can now specify our unification algorithm which is the only departure from standard Prolog
semantics. It differs from syntactic unification in the last four cases where two SASL terms are to
be unified.

UNIFY t l  t 2  0:

IF  6 = ' F A I L '  THEN RETURN ' F A I L ' ;

FOR i=1,2 DO t i  := ULTIMATE-ASSOC(ti, 6) ;
IF  t l  i s  a va r i ab l e  THEN RETURN G LJ{(tl/t2)};

IF  t 2  i s  a va r i ab l e  THEN RETURN G L){ ( t2 / t 1 )} ;
IF  t l  and  t2  a r e  i n  head—norma l  fo rm

THEN IF  t i  = g ( s i 1 ‚ „ , s i k ) ‚  g cons t ruc to r

THEN RETURN UNIFY(slk,32k‚UNIFY(„UNIFY(sll‚821,6)))
ELSE RETURN FAIL;

IF  t l  i s  i n  headenormal  form and  t z  i s  no t

THEN RETURN UNIFY(t1,SASL-REDUCE(ULTIMATE-INST(t2,6')),O);

IF  t z  i s  i n  head-normal  fo rm and  t l  i s  no t

THEN RETURN UNIFY(SASL-REDUCE(ULTIMATE—INST(t1,G')),t2,6);
FOR i = l , 2  DO t i  :=  ULTIMATEwINSTlti, 0 ' ) ;

IF SASL—REDUCE(eq t l  t2)  = TRUE THEN RETURN 0;
IF  SASL-REDUCE(eq t l  t 2 )  = FALSE THEN RETURN F A I L ;

ABORT WITH ERROR



{ 
where for a variable x
 

O'(x), if xEDom(O')
0" (x) := ..L, else 

ULTlMATE-ASSOC dereferences a variable until a non-variable is encountered whereas 

ULTlMATE-INST applies ULTlMATE-ASSOC recursively to all variables in a tenn. 

But notice, that this unification algorithm is incomplete. Thus the unification of the tenns 

append [1 I_x] [3, 4] and append [1,2, 3] [4] with function definition 

.d&f	 append [] 1 = 1
 

append [alII] 12 = [al (append 11 12)]
 

does not succeed, if _xis a free variable. The function append is strict in its first argument and 

thus append [1 I_x] [3, 4] , with _x instantiated to ..L, will be reduced to ..L and unification 

aborts with error. 

One should note that although the unification algorithm above is described in the fonn of a 

procedure its sole purpose is the specification of the semantics. Some of the operations would be 

extremely costly if implemented in a straightforward manner. In particular we have avoided the 

issue of logic variables in SASL tenns by grounding them prior to reduction, as in 

SASL-REDUCE(ULTlMATE-INST(t2'0")) 

where t 2 may be any combinator graph. Obviously the application of a substitution to a large and 

probably cyclic structure would be quite expensive. In the paragraph on implementation issues we 

will address this and other problems. 

The augmented reduction semantics for SASL 

As we have seen we need not worry about the treatment of logic variables in the reduction process 

(at least as long as we are not interested in the implementation). All we have to specify is how the 

augmented ZF-expressions and prove-expressions are translated into combinator graphs and how 

the newly introduced combinators are to be reduced. Atoms can be treated as distinct constants 

requiring only a small adjustment in the reduction rule for eq. The rest of the combinators and 

their reduction rules remain completely unchanged. 

First, we observe that a prove-expression is in fact a special case of a ZF-expression since every 

expression of the fonn 

prove prolog-goal 

can be replaced by the equivalent 

[TRUE; [] <- prolog-goal] <> []. 
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where fo r  a variable x

. ‚_  6 (x ) ,  i f  xeDom(0‘ )
0' (x )  ' _  .L, else

ULTIMATE -—ASSOC dereferences a variable until a non-variable is encountered whereas

ULTIMATE-INST applies ULT IMATE-AS SOC recursively to all variables in a term.

But notice, that this unification algorithm is incomplete. Thus the unification of the terms
append [1  | _x ]  [3  , 4 ]  and append [ l  , 2 , 3 ]  [ 4 ]  with function definition

1

[ a | ( append  l l  12)]

stat append [ ] l
append [ a l l l ]  12

does not succeed, if _x is a free variable. The function append is strict in its first argument and
thus append [1  |___x] [3  , 4]  , with __x instantiated to J., will be reduced to _L and unification

aborts with error.

One should note that although the unification algorithm above is  described in the form of a
procedure its sole purpose is  the specification of the semantics. Some of the operations would be
extremely costly if implemented in a straightforward manner. In particular we have avoided the
issue of logic variables in SASL terms by grounding them prior to reduction, as in

SASL-REDUCE(ULTIMATE- INST( t2 ,G ' ) )

where t z  may be any combinator graph. Obviously the application of a substitution to a large and
probably cyclic structure would be quite expensive. In the paragraph on implementation issues we
will address this and other problems.

The augmented reduction semantics for SASL

As we have seen we need not worry about the treatment of logic variables in the reduction process
(at least as long as we are not interested in the implementation). All we have to specify is how the
augmented ZF—expressions and prove-expressions are translated into combinator graphs and how
the newly introduced combinators are to be reduced. Atoms can be treated as distinct constants
requiring only a small adjustment in the reduction rule for eq .  The rest of the combinators and
their reduction rules remain completely unchanged.

First, we observe that a prove-expression is  in fact a special case of a ZF—expression since every
expression of the form

prove  pro log-goa l

can be replaced by the equivalent
[TRUE ; [ ]  <— pro log -goa l ]  <>  [ ]  .
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Likewise ZF-expressions can be eliminated by a purely syntactical program transformation 

according to the following scheme: 

A ZF-expression Z generally takes the form 

[E; Q1 ; ... ; Qn ] 

where the result term E is an expression and the qualifiers Qk take the form 

vk <- E k ("normal" generator) or 

[Vk1f ... f <- prolog-goal (Prolog generator) orVkm] 

Ek f Ek a boolean-valued expression (filter) 

Assume that V1 r ••• f Vr are the generator variables of Z. We let T(Z) denote [Vr f ••• f V1 ] . Then 

map f [T(Z); Ql; ... ;Qn I where f T(Z) = E 

is equivalent to the original Z. 

A ZF-expression Z is said to be in normal form iff its result term is T(Z). Let NZn be a 

ZF-expression in normal form with n qualifiers. We inductively define norm(NZn), an equivalent 

ZF-free SASL expression as follows: 

case n = 0: norm(NZo) := [[]]. 

case n > 0, Qn = En (filter): 

norm(NZn):= filter f norm(NZn_1) where f T(NZn_l) = En' 

case n > 0, Qn = Vn <- En (normal generator): 

norm(NZn):= cp f norm(NZn_l) where f T(NZn_1) =En' 

case n > 0, Qn = [Vn1f "'f Vnm] <- prolog-goal: 

norm(NZ ):= cpp f norm(NZn_1)n
where f T(NZn_1) = goal prolog-goal [Vn1r ···f V ] • nm

The function f ilter is a predefined SASL function whereas cp f cpp (named for their 

superficial similarity to cartesian products) and the auxiliary functions join and joinp are new 

combinators with the reduction rules: 

cp f [ ] [ I 

cp f [a I xl = append ( join (f a) a) (cp f x) 

join [ ] e [ ] 

join [a Ix] e [[ale] I (join x e) ] 

cpp f [ ] [ ] 

cpp f [a Ix] append ( joinp (f a) a) (cpp f x) 

joinp [ ] e [ ] 

joinp [alx] e [ (append a e) I (joinp x e)] 
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Likewise ZF-expressions can be eliminated by a purely syntactical program transformation

according to the following scheme:

A ZF—expression Z generally takes the form

[E;Q1;„;Qn]

where the result term E is  an expression and the qualifiers Qk take the form
Vk <-  Ek  ("norma " generator) or
[Vk l 'm 'vkm]  <— pro log-goa l  (Prolog generator) or

Ek ,  Ek  a boolean-valued expression (filter)

Assume that V1 , ..., Vr are the generator variables of Z. We let T(Z) denote [Vr  , ..., V1] . Then
map f [T(Z);  Q1;...;Qn] where f T(Z) = E

is equivalent to the original Z.

A ZF-expression Z is  said to be in normal form iff its result term i s  T(Z). Let N21,l be a

ZF—expression in normal form with n qualifiers. We inductively define norm(NZn), an equivalent
ZF-free SASL expression as follows:

case n = 0: norm(NZO) :=  [[]].

casen>0 ,Qn  = E:n (filter):
norm(NZn):= filter f norm(NZn_1) whe re  f T(NZn_1)-—-En.

casen>0,Qn = Vn <-— En (normal generator):
norm(NZn) :=  cp f norm(NZn_1) where  f T (NZn_1)=En .

casen>0 ,  Qr1 = [ a " " ' vnm]  <-  p ro log—goa l :
norm(NZn) := cpp f norm(NZn_1)

where f T(NZn_1)-= goa l  prolog—goal  [a‚.„‚Vnm] .

The function filter is  a predefined SASL function whereas cp ,  cpp (named for their
superficial similarity to cartesian products) and the auxiliary functions j o in  and jo inp are new
combinators with the reduction rules:

[ ]
append ( j o in  ( f  a )  a )  ( cp  f x )

[ ]

[ [ a l e l  | (join X e ) ]

[ ]
append ( j o inp  ( f  a )  a )  (cpp f x )

[ ]
[ ( a p p e n d  a e )  I ( j o inp  x e ) ]

CP f [ ]
cp f [ a l x ] ll

j o in  [ ]  e

ll

j o in  [ a lx ]  e
CPP f [ ]
Opp f [a IX ]
j o inp  [ ]  e

II
IIj o inp  [ a lx ]  e
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The real interfacing between SASL and the Prolog interpreter is hidden in the reduction rules of the 

combinators goal and next: 

goal prolog-goal resultlist = [], ifprolog-goalisnotprovable 

goal prolog-goal resultlist = 
[ULTlMATE-INST (resultlist, first successful variable binding for prolog-goal) 

(next prolog-continuation resultlist)], otherwise 

next prolog-continuation resultlist = 
[], if there is no alternative proof of prolog-goal 

next prolog-continuation resultlist = 
[ULTlMATE-INST (resultlist, next successful variable binding for prolog-goal) 

(next prolog-continuation' resul tlist) ], otherwise 

In both cases ULTlMATE- INST replaces unbound variables by .1, i.e. cr' instead of cr is used. 

In addition to the operational semantics given above a denotational one would be desirable for a 

complete understanding. We feel, however, that resolving the clash between higher-order SASL 

functions and first-order Prolog requires substantial further work in this direction. 

6. Implementation Aspects 

SASL expressions containing logic variables 

One problem is caused by the destructive graph reduction technique. Being quite efficient in pure 

SASL applications it cannot be used for SASL expressions containing logic variables. The reason 

for this is that logic variables may change their value due to backtracking. Thus, a destructive first 

reduction of a SASL expression would prevent it from being evaluated a second time with new 

bindings for the logic variables it contains. 

Example: 

database: p (_x,_y,_z) .- r (_x, z), _Y 15. 

r(3,5). 

r(4,6) . 

goal: p(_u,_u+(_v+5) ,_v). 
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The real interfacing between SASL and the Prolog interpreter is  hidden in the reduction rules of the
combinators goal and next:

goal prolog-goal  r e su l t l i s t  [ ]  , if  prolog-“goal is not provable
goal prolog—goal  resultlist =

[ULTIMATE-INST ( r e su l t l i s t  , first successful variable binding for prolog—goal)
| (nex t  p ro log—con t inua t ion  r e su l t l i s t )  ] ,  otherwise

next pro log—con t inua t ion  r e su l t l i s t  =

[ ]  , if there is no alternative proof of pro log—goal

next  p ro log—con t inua t ion  r e su l t l i s t  =

[ULTIMATE— INST ( r e su l t l i s t  , next successful variable binding for prolog—goal)

| (next pro logwcont inua t i  on ' r e su l t l i s t )  ] ,  otherwise

In both cases ULTIMATE— INST replaces unbound variables by J_, i.e. 0' instead of o is used.

In addition to the Operational semantics given above a denotational one would be desirable for a
complete understanding. We feel, however, that resolving the clash between hi gher-order SASL
functions and first—order Prolog requires substantial further work in this direction.

6. Implemgntgtion Aspects

SASL expressions containing logic variables

One problem is caused by the destructive graph reduction technique. Being quite efficient in pure
SASL applications it cannot be used for SASL expressions containing logic variables. The reason
for this is  that logic variables may change their value due to backtracking. Thus, a destructive first
reduction of a SASL expression would prevent it from being evaluated a second time with new
bindings for the logic variables it  contains.

mm

database: p(__x‚___y‚__z) : -  r(___x‚__z)‚ ___y == 15 .
r(3‚5) .
r (4 r6 )  .

goal: p(_u‚___u+(__v+5) ‚_v) .
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- - - - -

Unifying the goal with the conclusion we get the substitution 

0' ={<_u/_x) , <_Y I_u+_v+5) , <_v/_z) }. Now we prove r <_x, _z) obtaining 

0' u {< x, 3) , ( z, 5) }. To prove y == 15 requires the reduction of u + ( v+5) . In a 

simplified form the internal representation before this reduction looks like: 

Environment: 

15 

A straightforward (and wrong!) reduction will simply destructively change the combinator 

expression. _ u is physically replaced by its value 3, ~v by its value 5; then the expression is 

reduced to 13 and we get the following situation: 

Environment: 

13 

15 

Because unification fails, backtracking is required. But by now the value of _y is a constant 

which is obviously false. 

13 

Unifying the goal with the conclusion we get the substitution
0': { (_u/_x) , (__y/_u+_v+5) , (__v/__z) }. Now we prove r (_x,_z) obtaining
0' U { (__x, 3)  , (__z, 5)  } .  To prove _y == 15  requires the reduction of _u+ (_v+5)  . In a

simplified form the internal representation before this reduction looks like:

m

rI— "w!  1 I "" " ,

E l I l— [l l I l

V +
u x v _z x 3 z 5

combinator
expression

contamm g __u,__v

A straightforward (and wrong!) reduction will simply destructively change the combinator
expression. ___u is physically replaced by its value 3 ,  ___v by its value 5 ;  then the expression is
reduced to 13 and we get the following situation:

Environment:

_u ___x __y ___v __ _ 3 _

13
Goal:

[EA-d .

Because unification fails, backtracking is required. But by now the value of ___y is  a constant
which is obviously false.

13



• • 

:Abstracting logic variables 

A naive solution would be to copy every expression before reduction, probably combined with 

instantiation. This would be correct but since the combinator expression may be a cyclic graph 

copying is an expensive (i.e. time and space consuming) operation. 

To solve this problem without having to copy at run-time we need to invest some effort at 

compile-time: First, we scan a clause for its global logic variables (Le. those logic variables that 

occur outside of any embedded prove- or zf-term). Then we can translate the SASL expressions 

into a special form: After collecting the global logic variables occurring in an expression E into a list 

(v1 ... vn) we translate E into a combinator expression COMB. If n=O, the translation is 

finished. Otherwise, we abstract the variables v 1 I • I V n from COMB, obtaining the 

variable-free combinator expression COMB', and finally replace E by the form 

(graph COMB' [v1 I ••• ,vn] ) . When reducing this form, we first instantiate the variables 

andreplacethepointerto (graph COMB' [vl / '" IVn ]) by one to the form 

(COMB' v 1 ' ••• vn ' ) , where the vi' are the ultimately instantiated values of the variables. If 

the environment contains no final (i.e. ground) binding for a v i at that time, viis bound to 1.. 

This technique prevents us from copying of and instantiating through arbitrarily complex 

combinator graphs. 

Example (continued): 

Thegoal p{_u / _u+{_v+5) I_V) isaliteralwithonlyoneSASL-expression u+ v+5. The 

internal representation of _ u+ (_v+5) is: 

+ v 5 
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aAbstract ing logic variables
I
A naive solution would be to copy every expression before reduction, probably combined with
instantiation. This would be correct but since the combinator expression may be a cyclic graph
copying is an expensive (i.e. time and space consuming) operation.

To solve this problem without having to copy at run-time we need to invest some effort at
compile-time: First, we scan a clause for its global logic variables (i.e. those logic variables that
occur outside of any embedded prove— or zf—term). Then we can translate the SASL expressions

into a special fonn: After collecting the global logic variables occurring in an expression E into a list
(v1  . . .vn) we translate E into a combinator expression COMB. If n=0, the translation is
finished. Otherwise, we abstract the variables V1 , . . . , Vn from COMB, obtaining the

variable-free combinator expression COMB ' , and finally replace E by the form
(graph  COMB' [v1  , . . . , vn]  ) . When reducing this form, we first instantiate the variables

and replace the pointer to (g raph  COMB ' [v1  , . . . , Vn]  ) by one to the form
(COMB' V1 ' . . . Vn '  ) , where the v -  ' are the ultimately instantiated values of the variables. If1

the environment contains no final (i.e. ground) binding for a Vi  at that time, v i is bound to J..
This technique prevents us from copying of and instantiating through arbitrarily complex
combinator graphs.

Example (continued ):

The goal p (_u,  ___u+ (_v+5) , _v) is a literal with only one SASL-expression _u+_v+ 5. The
internal representation of __u+ (___v+ 5) is:

+ _„ _- #4»?
+
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I 
COMB' = [_u] [_v] (_u+(_v+5» (C (B' +) (C + 5» (where [x]E denotes x 

abstracted from E) so we get 

p [] 

after translation. The combinator P is the internal list constructor.
 

When we reach the goal _y == 15, the environment and the goal have the following form:
 

Environment: 

p [] 

15 

15 

!
COMB' = [__u][_v] (___u+(___v+5)) = (C (B '  +) ( c  + 5) )  (where[x]Edenotcsx

abstracted from B) so we get

l “  I J "
constant F ;

expression P _u | | _ | ..
COMB' + + %

P
_

graph

after translation. The combinator P i s  the internal list constructor.

When we reach the goal ___y == 1 5 ,  the environment and the goal have the following form:

Environment:

EEEE\EE EEE EE

_

graph
constant

Pexpression
COMB'

Goal:

f_3ß"7+_
-- 15
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The instantiation process results in the following situation: 

Environment: 

p [] 

* * *
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The cloud representing the constant part of the expression u + ( v+ 5) needs not to be copied, 

while the nodes signed with "*" are new nodes. During the reduction process only constant 

subterms of COMB I can be changed preserving the functionality of the combinator expression. 

Now we see that the instantiation pattern of _y will still be correct if backtracking causes 

alteration of the bindings of _ x and _ z. 

Returning variable bindings to SASL 

While this procedure solves the problem of calling SASL from Prolog we still have to answer the 

question of how variable bindings found by the Prolog interpreter should be returned to the calling 

SASL program. The problem here is exemplified by the following situation: 
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The instantiation process results in the following situation:

Environment:

_Y

. I egääsisäén P _u i; Jr>||+1 @

P ___v [ ]

- -> |  " T—
i +
3 5

Egal;puagz
== 15

The cloud representing the constant part of the expression _u+ (__v+5) needs not to be copied,
while the nodes signed with "*" are new nodes. During the reduction process only constant
subterms of COMB ' can be changed preserving the functionality of the combinator expression.
Now we see that the instantiation pattern of _y will still be correct if backtracking causes
alteration of the bindings of ___x and _z .

Returning variable bindings to SASL

While this procedure solves the problem of calling SASL from Prolog we still have to answer the

question of how variable bindings found by the Prolog interpreter should be returned to the calling

SASL program. The problem here is  exemplified by the following situation:
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ZF-expression: [X; [X] <- foo (_X, _Y) ] 

variable binding found by the Prolog interpreter:
 

{(_Z/3), (_XI [_U,_V]), (_UI_Z), (_VI (graph (+ 1) [_U]»}
 

If we ultimately instantiate _x we get _x = [3, ( (+ 1) 3)]. 

There are two important decisions to make at this point. First, we have to decide when to instantiate 

a variable.The option that fits best with the lazy evaluation strategy would be to postpone the 

instantiation of logic variables until they are actually needed during subsequent reduction steps. 

While this solution has the advantage of being conceptually pleasing its consequences have 

nevertheless lead us to reject it. Postponing the instantiation presupposes (among other things) that 

the entire binding environment is kept along with the variable which would be extremely 

space-consuming if e.g. several successive solutions were to be gathered in a list. We therefore 

perform the ULTlMATE- INST in the reduction rules of goal and next immediately when 

the final variable binding is handed back by the Prolog interpreter. In doing so we run the risk of 

instantiating variables which will not be referred to subsequently; however, apart from a few 

special cases (such as counting the number of solutions without actually inspecting them) we do not 

expect this situation to occur very frequently in reality. 

The second major decision concerns the way that the method of ULTIMATE- INSTantiating 

affects structure sharing. Imagine that in the example above Z •s value were a large list structure 

instead of 3 and consider the following intermediate step during the ultimate instantiation of _x: 

_x = [_z, (graph... [ Z])] 

If the two occurrences of _Z were instantiated separately one would not only duplicate the 

computational effort but (even worse) _Z would be replaced by two copies of the list structure 

that would not be shared in memory. The structure sharing properties of combinator graph 

reduction which ordinarily guarantee that no expression has to be reduced more than once would be 

completely lost. The solution that we offer makes use of a memoized version of 

ULTlMATE- INST that records the ultimate instantiation of a variable in a working area when it is 

computed for the first time and looks it up when the same variable is again encountered later. We 

keep the working area until all the variables in the result list have been processed thereby achieving 

structure sharing and ultimate instantiation of all variables in only one sweep through the binding 

environment. A more detailed discussion of the enhanced ULT lMATE- INST is given in 

[Hinkelmann88] . 
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ZF—expression: [x ;  [X] < -  foo  (__x‚___Y)]

variable binding found by the Prolog interpreter:

{(__Z/3) , (_X/ [_U‚___V] ) , (_U/_Z) , (_V/ (g raph  (+  1)  [__U] ) ) }

Ifwe ultimately instantiate _X we get __x = [3 ‚  ( (+ 1 )  3 )  ] .

There are two important decisions to make at this point. First, we have to decide when to instantiate
a variable.The option that fits best with the lazy evaluation strategy would be to postpone the

instantiation of logic variables until they are actually needed during subsequent reduction steps.

While this solution has the advantage of being conceptually pleasing its consequences have
nevertheless lead us to reject it. Postponing the instantiation presupposes (among other things) that
the entire binding environment is kept along with the variable which would be extremely

space—consuming if e.g. several successive solutions were to be gathered in a list. We therefore

perform the ULTIMATE- INST in the reduction rules of goal  and next immediately when
the final variable binding is handed back by the Prolog interpreter. In doing so we run the risk of
instantiating variables which will not be referred to subsequently; however, apart from a few
special cases (such as counting the number of solutions without actually inspecting them) we do not
expect this situation to occur very frequently in reality.

The second major decision concerns the way that the method of ULTIMATE— INS Tantiating
affects structure sharing. Imagine that in the example above _Z ’s value were a large list structure
instead of 3 and consider the following intermediate step during the ultimate instantiation of _X:

_X = [__Z , (g raph  [_Z] ) ]

If the two occurrences of __Z were instantiated separately one would not only duplicate the
computational effort but (even worse) ___2. would be replaced by two copies of the list structure
that would not be shared in memory. The structure sharing properties of combinator graph
reduction which ordinarily guarantee that no expression has to be reduced more than once would be
completely lost. The solution that we offer makes use of a memoized version of
ULTIMATE— INST that records the ultimate instantiation of  a variable in a working area when it is
computed for the first time and looks it up when the same variable is again encountered later. We
keep the working area until all the variables in the result list have been processed thereby achieving
structure sharing m ultimate instantiation of all variables in only one sweep through the binding
environment. A more detailed discussion of the enhanced ULTIMATE— INST is given in
[Hinkelmann88].
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7. Status of the Implementation and Future Work 

The SASLOG interpreter has been implemented in Common Lisp and currently runs on a 

Symbolics Lisp machine. It contains as essential parts the former LISPLOG interpreter described in 

[Boley85] and the SASL interpreter written by two of the authors [Nokel,Rehbold86]. 

Our next step will be to implement a polymorphic type concept like the one in Miranda [Turner85] 

that allows typing of both functional and logic expressions. The introduction of named tuples into 

SASLOG will be a necessary prerequisite for the type concept; these tuples should be easy to 

implement and will allow constructors to be used throughout the Prolog and the SASL part as well. 
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