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Abstract: With increasing experience and in an attempt to shorten overall treatment times, implant
placement in combination with tooth extractions and sinus lift procedures has become popular.
In both cases, primary stability has to be achieved by either engaging apical and oral regions of
trabecular bone or by engaging residual host bone beneath the sinus cavity. Extraction sites were
formed by pressing a root analog into homogeneous low density polyurethane foam which was
used as bone surrogate while a 3 mm thick sheet of medium density foam was used for mimicking
a sinus lift situation. Two types (n = 10) of bone level implants with a conventional tapered design
and a cervical back taper (NobelActive; control) and a novel design characterized by a shift in core
diameter and thread geometry (AlfaGate; test) were placed in these models following conventional
osteotomy preparation. Insertion torque was measured using a surgical motor and primary stability
was determined by resonance frequency analysis. Statistical analysis was based on Welch two sample
t tests with the level of significance set at α = 0.05. In sinuslifting, NobelActive implants required
significantly higher insertion torques as compared to AlfaGate (p = 0.000) but did not achieve greater
implant stability (p = 0.076). In extraction sites, AlfaGate implants showed both, significantly higher
insertion torques (p = 0.004) and significantly greater implant stability (p = 0.000). The novel implant
design allowed for greater primary stability when being placed in simulated extraction sockets and
sinuslift situations. While in extraction sockets the position of condensing threads in combination
with an increase in core diameter is beneficial, the deep cervical threads of the novel implant lead to
superior performance in sinuslift situations.

Keywords: insertion torque; primary implant stability; extraction socket; sinus lift; implant design

1. Introduction

Attempting to reduce the number of surgical interventions, implant placement si-
multaneous with sinus lifting [1–3] and tooth extractions [4,5] has been advocated. Both
procedures are considered being technically sensitive requiring experience from the implant
surgeon [4–7].

Proper positioning seems to be the key factor in immediately placed implants [8] as
concerns regarding bone healing leading to greater bone loss still exist [9]. In the anterior
maxilla for instance, the implant osteotomy has to leave the alveolus palatally [10,11] result-
ing in a rather bone driven implant position in order not to perforate the concave alveolar
process [12] and for obtaining a stable buccal bone thickness of at least 1 mm [13]. Given
the mismatch between socket dimensions and implant diameter, implant selection [14,15]
is important. Wider and tapered implants are frequently employed for increasing primary
stability [16,17], which often collides with space limitations in single tooth gaps [18,19].
Two main sources for gaining primary implant stability [7] are available in extraction sites.
Circumferential support can be achieved by using wider implant diameters or bone apical
to the alveolus can be engaged by extending the osteotomy apically [1]. This however

Appl. Sci. 2023, 13, 7541. https://doi.org/10.3390/app13137541 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13137541
https://doi.org/10.3390/app13137541
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4430-7392
https://orcid.org/0000-0002-9619-9362
https://doi.org/10.3390/app13137541
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13137541?type=check_update&version=3


Appl. Sci. 2023, 13, 7541 2 of 8

may be limited by anatomical factors [20,21]. Despite these approaches, primary implant
stability in general has been shown to be lower as compared to healed sites [22–24].

In an attempt to optimize the use of the host bone present in extraction sites, a dental
implant with an “inverted body shift” has been introduced and described [25]. This
implant is characterized by an increase in its outer diameter aimed at engaging the socket
walls [3,19,21,26] rendering it unsuitable for healed implant sites.

In sinuslift situations [27] primary stability has to be derived from engaging residual
bone underneath the sinus cavity with cervical areas of the implant. Residual bone heights
have been reported to reach low values of 2 mm [28], 2.57 mm [29], 3.1 mm [30] and 3.86
mm [31]. Engaging cortical bone has been shown to greatly affect primary stability [32],
thereby questioning the benefit of implant designs characterized by a cervical region with a
back taper [33].

An implant macrodesign characterized by modulation in core diameter coinciding
with a change in thread geometry starting with sharp threads in the apical region, followed
by bone condensing threads in the middle portion and sharp threads in the cervical portion
of the implant has recently been described [34]. It was the goal of this in vitro experiment
to compare this novel implant design (Figure 1a) to an established tapered implant design
(Figure 1b; [33]) when being placed in simulated sinus lift situations and extraction sockets.
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Figure 1. Bone level implant types used in this study comprising NobelActive 4.3 × 10 mm (a) and
AlfaGate 4.3 × 10 mm (b).

2. Materials and Methods

A homogeneous, 3 mm thick [30] sheet of medium density foam (Solid Rigid polyurethane
foam 30 pcf, Sawbones Europe AB, Malmö, Sweden) was used for simulating the residual host
bone underneath the sinus floor (Figure 2). Mimicking sinus lift situations with simultaneous
implant placement, osteotomies were created using the drilling steps described in Table 1.
Similarly, low density polyurethane foam material (Solid Rigid polyurethane foam 10 pcf,
Sawbones Europe AB) was used as bone surrogate material [16,35,36] for simulating immediate
implant placement. To this end, an extracted maxillary premolar was impressed into silicone
material in order to achieve a negative form of its root portion which could subsequently be
filled with casting wax. The wax pattern and a centrally positioned shaft were then cast in
non-noble alloy (Heraenium CE, Kulzer, Hanau, Germany). The root analog was pushed into
the bone surrogate material using a surveyor thereby ensuring perpendicular alignment of the
extraction sockets to the bone surface (Figure 3). Mimicking clinical practice, apical and palatal
preparation of osteotomies was performed using the drilling steps described in Table 1.
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Figure 2. Simulation of sinuslift procedure with simultaneous implant placement following osteotomy
preparation with twist drills (a) and anchorage of implants in residual bone (b).

Table 1. Description of the implant systems and drill sequences used in this study for creating
osteotomies in simulated sinuslift situations and extraction sites. All implants were inserted with a
surgical motor set at 25 rpm.

Sinuslift Extraction Site

Implants NobelActive Internal RP 4.3 × 10 mm
REF 34131 LOT 13125039

NobelActive Internal RP 5.0 × 10 mm
REF 34137 LOT 12168347

AlfaGate Novel Design 4.3 × 10 mm AlfaGate Novel Design 5.0 × 10 mm

Drill sequence
2.0

2.4/2.8
3.2/3.6

Preformed Socket Depth: 10 mm
2.4/2.8
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In the control group, traditional tapered implants [33] with a cervical back taper
(Figure 1a) were placed while in the test group the novel implant design (Figure 1b) de-
scribed above was utilized. All implants (n = 10) were placed (Figure 2) with a surgical
motor capable of recording actual torque over time [16] and which was set at 25 rpm
(iChiropro, BienAir, Biel, Switzerland). Following implant placement, specific MulTi-
pegs (MulTipeg #51 for AlfaGate, MulTipeg #29 for NobelActive, Integration Diagnostics,
Gothenburg, Sweden) were attached to the implants and resonance frequency analysis
(RFA) was performed twice (Osstell ISQ, Osstell, Gothenburg, Sweden) [24].

For statistical analysis, mean values of RFA measurements were calculated and mean
maximum values were derived from the curves recorded for insertion torque [16]. Follow-
ing Shapiro-Wilk-Tests on normality of distribution of measurement values, Welch two
sample t tests were applied for comparisons between the two implant types with the level
of significance set at α = 0.05.

3. Results

The insertion of AlfaGate implants took up to three times longer as compared to
NobelActive implants due to their smaller thread pitch. In sinuslifting, both implant types
reached mean insertion torques greater than 40 Ncm and mean primary stability also
exceeded ISQ values of 40 (Table 2). In extraction sites, mean insertion torque values were
14.29 Ncm for NobelActive and 16.43 for AlfaGate with latter ones reaching mean primary
stability of ISQ 47.80 (Table 2).

Table 2. Mean values and standard deviations recorded for insertion torque and primary stability
for both implant types. Results of Shapiro-Wilk-Tests on normality of distribution of measurement
values are given as p-values; significant differences (p < 0.05) are written in bold.

Parameter
NobelActive Shapiro-Wilk-Test

(p-Value)

AlfaGate Shapiro-Wilk-Test
(p-Value)Mean SD Mean SD

Sinuslift
Maximum insertion

torque [Ncm] 48.49 1.965 0.0298 40.42 1.460 0.1877

Osstell [ISQ] 40.65 5.874 0.8498 44.70 3.164 0.6327

Extraction site
Maximum insertion

torque [Ncm] 14.29 1.244 0.4605 16.43 1.578 0.2829

Osstell [ISQ] 41.80 3.225 0.9252 47.80 2.541 0.5593

The Shapiro-Wilk-Tests (Table 2) could be assumed to be normally distributed measure-
ment values for all parameters with the exception of torque values recorded for NobelActive
in sinuslift situations (p = 0.0298). Given the large differences in mean torque values be-
tween the two implant types inserted in sinuslift situations, the non-normal distribution
could be neglected.

For simulated sinuslift procedures (Figure 4), NobelActive implants required signif-
icantly higher insertion torques as compared to AlfaGate (p = 0.000) but did not achieve
greater implant stability as measured by resonance frequency analysis (p = 0.076).

In extraction sites, AlfaGate implants showed both, significantly higher insertion
torques (p = 0.004) and significantly greater implant stability (p = 0.000).
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4. Discussion

Measuring insertion torque and primary implant stability, this experiment attempted
to compare a novel implant design characterized by a change in core diameter and thread
geometry (AlfaGate) to an existing, well established [33] tapered implant design (No-
belActive) when used for immediate placement in simulated extraction sites and sinuslift
situations respectively. The methodology applied in this experiment followed comparable
previous studies on round [34,37,38] and wedge-shaped [39] dental implants. In order
to benefit from standardized conditions, polyurethane foam was used as bone surrogate
material instead of using cadaver bone [40], which may be seen as the major limitation of
this experiment.

Compared to a recently introduced implant with an “inverted body shift” [25], which
is characterized by an increase in its outer diameter for engaging socket walls [3,19,21,26],
the experimental implant used here gains stability from an increased core diameter in
combination with a condensing thread design in the middle portion of the implant. The
outer diameter of the implant of the novel implant does not change in the middle and
cervical parts, which allows it to be also placed in healed sites.

An unsolved problem in implant dentistry is the evaluation of alveolar bone quality
based on which different drill protocols are recommended [41]. Many conventional screw-
type implants tend to induce high levels of stress in the cervical peri-implant bone area,
leading to bone loss [42]. In order to reduce this phenomenon, greater drill diameters or
countersink drills are recommended thereby removing precious bone quantity. The novel
implant design is aimed at simplifying the surgical procedure as osteotomy preparation is
mainly governed by the core diameter of the implant (Figure 1b) to be used instead of bone
quality judgement.

In a previous experiment [34], the novel implant was tested in homogeneous bone
surrogates while the situations simulated here are more critical as primary stability has
been shown to be lower in immediate implant cases as compared to healed sites [22–24].
Questioning two clinical studies on immediate implant placement [14,15] where no differ-
ence between implant design has been described, greater primary stability was observed
here with the novel implant design. The general notion that implant design in fact impacts
stability in extraction sites is supported by two previous reports [38,43]. Deviating from
clinical practice where immediate implants in the anterior maxilla are placed such way
that the implant leaves the alveolus palatally [10,11] and engages bone areas apical to the
socket, socket depth and implants had a length of 10 mm for creating a worst case scenario.
In contrast to the sinuslifting procedure, 5.0 mm implants had to be chosen here in order to
engage lateral walls which seems to be in line with clinical practice [14,15].

Similar to extraction sites, a wide variety of clinical situations exists in sinuslifting
which can not be standardized [28,30,31] and it may be argued whether or not a residual
bone height of 3 mm underneath the sinus floor is sufficient for placing implants. However,



Appl. Sci. 2023, 13, 7541 6 of 8

different clinical studies reported residual bone heights in the range of 3.1 to 9.6 mm [30],
3.86 mm [31] and even reaching a minimum of 2 mm of residual bone height [28]. As such
the situation simulated here with a layer of residual bone 3 mm in thickness may not even
be considered a worst-case scenario. Besides bone quantity, bone quality has also been
reported to be compromised in sinuslift procedures with soft bone being present [29] as
compared to the rather compact foam material used here.

In this in vitro study standardized bone models made from polyurethane foam ma-
terial have been used as a bone surrogate [36,44–46]. Consequently, the absolute values
measured here cannot be directly transferred to clinical reality where changes in bone
quality may occur over the length of an osteotomy. Additionally, these materials are not
able to fully mimic the elastic and anisotropic properties of alveolar bone, but in turn, allow
for reproducible measurements [47].

5. Conclusions

The novel implant design allowed for greater primary stability in both, extraction sites
and sinuslifting situations. This is due to the synergistic effect of changes in thread design
and core diameter of the implant along its axis. While the back taper of the outer implant
shape incorporated in the control implant used here is supposed to avoid over-compression
of cortical bone in healed sites, it causes a loss in stability when the implant is fully seated in
a sinuslift situation. The novel implant instead derives stability from condensing trabecular
areas of bone while engaging cortical bone with sharp threads. Despite the seemingly
advantageous behavior of the novel implant design, clinical studies will be required for
verifying a potentially positive effect on treatment outcomes.
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