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A B S T R A C T

Realistic virtual human avatar is a crucial element in a wide range

of applications, from 3D animated movies to emerging AR/VR tech-

nologies. However, producing a believable 3D motion for such avatars

is widely known to be a challenging task. A traditional 3D human

motion generation pipeline consists of several stages, each requiring

expensive equipment and skilled human labor to perform, limiting its

usage beyond the entertainment industry despite its massive potential

benefits.

This thesis attempts to explore some alternative solutions to reduce

the complexity of the traditional 3D animation pipeline. To this end,

it presents several novel ways to perform 3D human motion capture,

synthesis, and control. Specifically, it focuses on using learning-based

methods to bypass the critical bottlenecks of the classical animation

approach. First, a new 3D pose estimation method from in-the-wild

monocular images is proposed, eliminating the need for a multi-camera

setup in the traditional motion capture system. Second, it explores

several data-driven designs to achieve a believable 3D human motion

synthesis and control that can potentially reduce the need for manual

animation. In particular, the problem of speech-driven 3D gesture syn-

thesis is chosen as the case study due to its uniquely ambiguous nature.

The improved motion generation quality is achieved by introducing a

novel adversarial objective that rates the difference between real and

synthetic data. A novel motion generation strategy is also introduced

by combining a classical database search algorithm with a powerful

deep learning method, resulting in a greater motion control variation

than the purely predictive counterparts.

Furthermore, this thesis also contributes a new way of collecting

a large-scale 3D motion dataset through the use of learning-based

monocular estimations methods. This result demonstrates the promis-

ing capability of learning-based monocular approaches and shows the

prospect of combining these learning-based modules into an integrated

3D animation framework.

The presented learning-based solutions open the possibility of de-

mocratizing the traditional 3D animation system that can be enabled
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using low-cost equipment, e.g., a single RGB camera. Finally, this thesis

also discusses the potential further integration of these learning-based

approaches to enhance 3D animation technology.
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Z U S A M M E N FA S S U N G

Realistische virtuelle menschliche Avatare sind ein entscheidendes Ele-

ment in einer Vielzahl von Anwendungen, von 3D-Animationsfilmen

bis hin zu neuen AR/VR-Technologien. Die Erzeugung glaubwürdiger

Bewegungen solcher Avatare in drei Dimensionen ist bekanntermaßen

eine herausfordernde Aufgabe. Traditionelle Pipelines zur Erzeugung

menschlicher 3D-Bewegungen bestehen aus mehreren Stufen, die jede

für sich genommen teure Ausrüstung und den Einsatz von Experten-

wissen erfordern und daher trotz ihrer enormen potenziellen Vorteile

abseits der Unterhaltungsindustrie nur eingeschränkt verwendbar sind.

Diese Arbeit untersucht verschiedene Alternativen um die Kom-

plexität der traditionellen 3D-Animations-Pipeline zu reduzieren. Zu

diesem Zweck stellt sie mehrere neuartige Möglichkeiten zur Erfas-

sung, Synthese und Steuerung humanoider 3D-Bewegungen vor. Sie

konzentriert sich auf die Verwendung lernbasierter Methoden, um

kritische Teile des klassischen Animationsansatzes zu überbrücken:

Zunächst wird eine neue 3D-Pose-Estimation-Methode für monoku-

lare Bilder vorgeschlagen, um die Notwendigkeit mehrerer Kameras

im traditionellen Motion-Capture-Ansatz zu beseitigen. Des Weiteren

untersucht die Arbeit mehrere datengetriebene Ansätze zur Synthese

und Steuerung glaubwürdiger humanoider 3D-Bewegungen, die mög-

licherweise den Bedarf an manueller Animation reduzieren können.

Als Fallstudie wird, aufgrund seiner einzigartig mehrdeutigen Natur,

das Problem der sprachgetriebenen 3D-Gesten-Synthese untersucht.

Die Verbesserungen in der Qualität der erzeugten Bewegungen wird

durch eine neuartige Kostenfunktion erreicht, die den Unterschied zwi-

schen realen und synthetischen Daten bewertet. Außerdem wird eine

neue Strategie zur Bewegungssynthese beschrieben, die eine klassische

Datenbanksuche mit einer leistungsstarken Deep-Learning-Methode

kombiniert, was zu einer größeren Variation der Bewegungssteuerung

führt, als rein lernbasierte Verfahren sie bieten.

Ein weiterer Beitrag dieser Dissertation besteht in einer neuen Me-

thode zum Aufbau eines großen Datensatzes dreidimensionaler Be-

wegungen, auf Grundlage lernbasierter monokularer Pose-Estimation-

Methoden. Dies demonstriert die vielversprechenden Möglichkeiten
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lernbasierter monokularer Methoden und lässt die Aussicht erken-

nen, diese lernbasierten Module zu einem integrierten 3D-Animations-

Framework zu kombinieren.

Die in dieser Arbeit vorgestellten lernbasierten Lösungen eröffnen

die Möglichkeit, das traditionelle 3D-Animationssystem auch mit kos-

tengünstiger Ausrüstung, wie z.B. einer einzelnen RGB-Kamera ver-

wendbar zu machen. Abschließend diskutiert diese Arbeit auch die

mögliche weitere Integration dieser lernbasierten Ansätze zur Verbes-

serung der 3D-Animationstechnologie.
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1
I N T R O D U C T I O N

1.1 motivation

Producing realistic 3D human motion plays a vital role in many tradi-

tional computer graphics applications, such as the generation of virtual

characters in movies and video games. Representing motion in 3D

is also key to simulating the lifelike behavior of humans in a virtual

environment, which is essential to creating an immersive experience

for interactive augmented and virtual systems.

The standard techniques for generating 3D human animation are

generally classified into two main categories: direct motion capture

and motion synthesis. Motion capture is operated by tracking and

recording a real human performer’s body joint positions using a mo-

tion capture (mocap) system into a digital 3D representation. Once

the captured motion data is cleaned, it can then be used directly to

animate a virtual character. In contrast to direct capture, synthesis

approaches generate a new 3D animation sequence either through a

manual animation process or by using a particular synthesis algorithm.

A typical motion synthesis procedure is conducted by combining and

editing a collection of pre-recorded motion capture data into a new

3D animation. Alternatively, a synthesis algorithm can be designed to

associate the motion information with a set of intuitive signals, e.g.,

directional locomotion information, driven by an analog controller. By

manipulating these signals, motion control can then be performed to

direct how the motion should be generated, thus, enabling a real-time

motion synthesis. However, despite numerous available techniques to

choose from, 3D motion generation is still widely known to be a chal-

lenging task to perform. Many existing approaches have considerable

limitations and bottlenecks that demand expensive tools and skilled

labor to overcome.

Animating 3D human motion has been generally reserved for a

handful of dedicated practitioners in the movie or video game indus-

tries. The motion capture system commonly used today is typically

performed in a studio setting using a specialized multi-view camera

1



2 introduction

system to track the position of several optical markers attached to

the actor’s body. This setup has several limitations: it requires costly

equipment, often uses a tight body suit that limits both performers’

movement flexibility and appearance, and cannot be used in outdoor or

heavily occluded environments. Similarly, motion synthesis approaches

also come with their own set of limitations. Manually animating a col-

lection of motion capture data is a tedious task requiring hours of

human labor to complete.

Motion control algorithms used in 3D video games are also not

trivial to design and implement, as they rely on a large-scale motion

state machine from where the final motion output is queried. The data

of such a state machine is usually stored in a database consisting of

tens of thousands motion captured data performing specific labeled

actions. Constructing this state machine involves manually arranging

tens of thousands of different motion sequences into hundreds of

distinct action hierarchies along with the complex logic to select the

correct action given the current state and control input.

Therefore, it is natural to examine a new set of techniques that

can simplify and reduce the bottlenecks that hinder the current 3D

generation approaches. This effort has the potential to democratize

3D animation technology in ways that will not only benefit the exist-

ing 3D animation pipeline but also has the potential to enable novel

applications beyond the graphics-related industry.

Several recent attempts have demonstrated the benefits of simplify-

ing the 3D animation process. Motion capture can now be alternatively

performed using depth-based sensor cameras (Baak et al., 2011; Gana-

pathi et al., 2012; Girshick et al., 2011; Moon et al., 2018; Shotton et al.,

2011; Ye et al., 2016) or markerless multi-view capture systems (Elhayek

et al., 2016; Rhodin et al., 2015; Starck and Hilton, 2003; Stoll et al.,

2011b) (see also Figure 1.1a). Depth-based camera systems can pro-

duce reasonably accurate motion capture results without the need for

multiple sensors, and they have shown to be successful in commercial

applications such as gaming consoles. Recent progress in markerless

multi-view mocap technologies have also shown promising results,

enabling motion capture in outdoor environments without the trouble

of wearing a tight body suit. Lately, this technology has been used

to guide soccer game officials in conducting critical decision-making

by considering the 3D body positions of the players in the field (see

also Figure 1.1b). Similarly, a lot of progress has also been made to
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(a) Markerless Mocap
(The Captury)

(b) Offside Detection
(FIFA)

Figure 1.1: Markerless multi-view mocap system demonstrates several bene-
fits of relaxing the constraints of the current 3D animation technology. Left:
a commercial system offered by The Captury allows for a production-level
motion tracking quality without the need for a specific body suit. Right: The
recently introduced semi-automated markerless multi-view offside detection
technology used by FIFA exhibits the potential of what a less constrained
mocap system can achieve beyond the graphics industry.

reduce the bottlenecks in the task of synthesizing 3D motion. As an

alternative to building an animation database, novel data-driven mo-

tion synthesis algorithms such as deep neural networks promise a new

way to simplify 3D animation design by removing the need to create

a complex motion state machine (Fragkiadaki et al., 2015; Habibie

et al., 2017; Holden et al., 2017, 2016; Taylor and Hinton, 2009). For

instance, the Motion Matching algorithm (Büttner and Clavet., 2015)

used in the AAA-level video game The Last of Us 2 demonstrated

considerably more expressive motion control results than the previous

state-of-the-art approaches. While these alternatives are not without

their limitations, it is clear that such efforts have elevated the impact

of 3D animation technology compared to the existing methods.

Inspired by the recent progress, this thesis contributes to further

expediting and simplifying several bottlenecks in the space of 3D

motion generation. By leveraging predictive models that can learn

from data, the proposed approaches presented in this thesis can be

used together to automate the task of capturing, synthesizing, and

controlling human motion using only low-cost commodity equipment.

In particular, this thesis proposes a method for improving monocular

3D pose capture through a weak supervision strategy, two approaches

to generating and controlling 3D gestures from speech, and a method
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to perform 3D human motion synthesis from a text description. These

are briefly explained in the following.

1.2 monocular 3d human pose estimation

To design a democratized and easy-to-use motion capture technology,

we ideally want a system that can be deployed and applied with an

affordable and ubiquitous commercial device. With this in mind, this

thesis considers the task of accurately estimating 3D human body pose

from a single RGB image. Unfortunately, monocular human motion

capture is an underconstrained problem that is known to be hard to

solve. Without multi-view information or dedicated body markers, the

capture process must deal with ambiguity, occlusion, and arbitrary

foreground and background appearance variations. A popular way to

solve this problem is by building a predictive capture model, which

incorporates a strong prior to accurately infer the most likely 3D pose

of the person in the given input image. Constructing such a prior

involves extracting meaningful statistical information from a large

collection of data.

Following their success in other vision-related tasks, recent data-

driven approaches for monocular 3D pose estimation in the form of

deep learning have shown significant improvement over the existing

ideas, such as template-based body model fitting or graph-based priors

(Andriluka et al., 2009; Guan et al., 2009; Sigal et al., 2007; Stoll et

al., 2011b). These new methods usually employ a deep convolutional

neural network, which has more parameters than the number of sample

points, allowing it to learn a strong prior from the patterns found in

the dataset. Most of these methods are trained in a supervised manner

and assume that the training data consists of a pair of RGB images

and its corresponding 3D body joint annotations. However, due to

the inherent limitation of the contemporary commercial 3D motion

capture setup, the 3D annotations are challenging to collect. The 3D

labeled datasets used for this task are recorded in a studio setting with

uniform background and show only a handful of unique subjects. The

domain gap between the studio-specific training data and the endless

potential appearance variations of the test data can lead to a significant

performance drop when the model is tested on images containing

outdoor scenes, which the model has never observed during training.
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On the other hand, annotating the 2D pose of a human from a

general RGB image taken in-the-wild is an easier task than its 3D

counterparts as it can be performed manually. Learning-based 2D pose

estimation models also do not suffer from the domain gap problem,

as the images can be manually labeled regardless of the environment.

Based on this observation, this thesis presents a weakly supervised 3D

pose estimation approach that can learn 3D pose priors from 2D labels.

This allows the model to be trained on the 2D-only labeled image when

the 3D label is unavailable, such as the in-the-wild images. The key idea

of presented in Chapter 3 of this thesis is a novel network architecture

that can learn to update its 3D pose representation from 2D pose

information by leveraging several weak supervision approaches. This

results in a state-of-the-art model that generalizes better on outdoor

scenes, even when it has never been explicitly trained on any 3D

labeled in-the-wild images.

1.3 motion synthesis and control from multi-modal sig-

nals

Recently, deep learning approaches have also shown superior perfor-

mance in 3D motion synthesis and control, despite being traditionally

known as a challenging task to solve due to the high-dimensional

nature of the problem. Several works have demonstrated the capability

of deep neural networks to synthesize high-quality 3D human locomo-

tion from a given directional control information (Henter et al., 2020;

Holden et al., 2020, 2017; Lee et al., 2014). This is a significant step

towards automating the design process of creating 3D human motion

animation. However, there are scenarios where directional information

is not the most suitable signal to guide motion synthesis. As an exam-

ple, it is not reasonable to use an analog controller to drive the body

gesture of a talking character in virtual telepresence or Role-playing

Games (RPG). Designing a system that can perform such a mapping

will naturally improve the quality of the virtual interaction between

users. The availability of such tools could allow animators to easily

create new motion without having to capture excessive amounts of

data. Therefore, this thesis examines novel techniques for generating

human motion using non-directional control input, notably from audio

signals.



6 introduction

(a) Stage 1: data capture

(b) Stage 2: speech-driven 3D motion synthesis

Figure 1.2: An illustration of the proposed speech-driven gesture synthesis
approach by Habibie et al. (2021a). In the first stage (a), a large scale 3D
annotations of hand and body poses, as well as facial expressions are collected
from in-the-wild videos using monocular estimation methods. Then, in the
second stage (b), a neural network learns how to map the speech input into
3D gestures of the hand, body, and facial expression using the captured
training data. This work demonstrates the first step toward designing a
unified capture and animation pipeline using learning-based approaches.

One particularly well-known multi-modal human motion synthesis

topic is the task of predicting body gestures from the speech audio of

a talking person. The existence of such correspondence has been sup-

ported by a number of psycho-linguistic studies, suggesting a strong

correlation between speech and the body gesture that accompanies

it. From the animation perspective, this problem can be modeled as a

mapping from the input speech, which can be treated as the control

signal, to the 3D gesture of the human body as output. However, the

speech-to-gesture correlation is known to be ambiguous, as there exist

multiple correct gestures that can satisfy the same speech input. Model-

ing this correspondence naively using a standard supervised learning
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approach typically leads to a dampened gesture result, as such models

do not take the stochastic nature of the gesture into consideration. This

causes the model to predict an averaged-out gesture output, making

the results appear unnatural. Another major hurdle in training a pre-

dictive speech-to-gesture model is the prospect of collecting hours of

3D gesture annotations, which is tedious and exhausting to perform,

especially using the traditional marker-based motion capture system

that limits the naturalness of the gesture. Chapter 4 of this thesis pro-

poses a new adversarial training procedure to resolve the averaging

problem commonly found in the task of gesture synthesis. We over-

come the challenge of capturing hours of speech-gesture annotations

by using 3D monocular capture approaches to annotate the 3D body,

hand, and facial expression from in-the-wild monocular videos (see

also Figure 1.2).

Furthermore, Chapter 5 of this thesis also proposes a further en-

hanced version of the previously described method that combines the

adversarial learning-based approach with database matching, thus

enabling the model to generate multiple plausible gestures from a

single speech input. The idea is to pre-select a number of plausible

motion candidates that satisfy a certain similarity score with respect

to the audio and the previously generated motion. These pre-selected

gestures are then combined with the original speech input to produce

the final 3D gesture using an adversarial network. Interestingly, the

proposed database search algorithm can also be conditioned by con-

straining the search space using a certain quantifiable aspect of the

gesture like the position or speed of the hand. This feature allows

the animator far greater flexibility in designing the motion towards a

particular style or emotion, such as fast, subdued, or angry gestures.

1.4 structure

This thesis consists of six main chapters. Each of chapter can be sum-

marized as follows:

• Chapter 1 explored the motivation of this research topic and

provides an overview of the content of the thesis.

• Chapter 2 introduces several technical background concepts re-

quired for later chapters.
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• Chapter 3 (published as Habibie et al. (2019)) presents an ap-

proach to improve the performance of learning-based 3D monoc-

ular human pose estimation methods on in-the-wild images. The

key contribution of the proposed method is the introduction

of an explicit 2D pose representation in the latent space and a

3D-to-2D projection layer. This allows the neural network to be

jointly trained on 2D-only labeled data, which is far easier to

collect than the studio-captured 3D pose annotations.

• Chapter 4 (published as Habibie et al. (2021a)) proposes a learning-

based method that can simultaneously drive the face and the

prosody-correlated 3D upper body and hand of a 3D virtual

human avatar from the corresponding speech input. This task

is challenging to solve using a naive learning-based approach,

as the multi-modal nature of the speech gesture can result in an

averaged motion generation that appears unnatural. This work

introduces an adversarial learning strategy to resolve this issue

by classifying whether the predicted motion can be distinguished

from the real gesture distribution or not. Furthermore, this work

also provides a large scale 3D upper body, hand, and face anno-

tations from more than 30 hours of in-the-wild videos of talking

people, which is expensive to conduct in a controlled setting.

• Chapter 5 (published as Habibie et al. (2022)) introduces a novel

framework for a speech-driven 3D upper body motion synthesis

that can incorporate different levels of gesture style control. This

includes high-level control signals such as hand height and ve-

locity or even lower-level control, such as frame-based gesture

matching. The proposed approach combines the flexibility of a

database search algorithm that allows for convenient constraint-

based look-up with the effectiveness of the adversarial learning

approach, thus, further enhancing the quality of the previously

retrieved gesture sequences.

• Chapter 6 concludes this thesis through a brief summary of

insights that have been gathered from the previous chapters and

provides an outlook on the potential future ideas.
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P R E R E Q U I S I T E S

This chapter introduces several background concepts that will support

the description of the methods proposed in this thesis. First, relevant

3D data representation regarding the human body, hands, and face

is introduced. Second, it also discusses an approach to extract useful

features of human speech, which will be used as a control signal for

the motion generation models introduced in Chapter 4 and Chapter 5.

2.1 3d representation of human body, hand, and face

Figure 2.1: A muscoskeletal model
of a human body. This representa-
tion can be simplified by only using
its kinematic structure, where only
relevants joints (shown as blue and
green spheres) and their connec-
tions are considered (Figure taken
from Lee et al. (2019b)).

Due to the complex structure of hu-

man anatomy, modeling a digitally

accurate representation of its parts

and interactions is a computation-

ally challenging task. For this reason,

specific data structures are often re-

quired to capture essential informa-

tion regarding the visual 3D model

of the human body to avoid high

computational penalty. This thesis

uses two separate models to simplify

the 3D representation of the human

body.

The 3D body and hands of the vir-

tual characters are modeled using

a skeleton representation, which de-

scribes the 3D articulation of human

bodies using the 3D position of sev-

eral key body joints. These joints are

represented by 3D vertices, with the

bones connecting them represented

as hypothetical lines with fixed dis-

tances (see Figure 2.1). This skeleton

11
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representation can easily be extended by adding more complexities

depending on the application, such as by introducing the muscles to

model the dynamical constraints.

To model the face, this thesis uses a 3D morphable model (3DMM)

representation (Blanz and Vetter, 1999) that parameterizes a 3D face

mesh using semantic attributes such as shape, expression, albedo,

lighting, and head rotation. The 3DMM is used to represent the facial

expression of a virtual talking human introduced in Chapter 4. Essen-

tial information such as lip movement and facial expression can be

extracted from the mesh to obtain key 3D landmarks that represent

the change of expression.

2.1.1 Skeleton Model of Body and Hands

Psychological studies on simplified body representation have shown

that humans can perceive and recognize natural human movement

behavior using only a few key points of the body (Johansson, 1973).

This study suggests that a collection of body joints is a sufficient data

points to represent human pose and motion. In this data structure, the

body pose at frame t can be represented using a vector that stores the

global x, y, and z positions of the N number of key body joints.

For the task of capturing or synthesizing the animation of the 3D

body and hands, the goal is to predict the joint location at every

frame. Key point locations of the body often serve as a more effective

and accurate way to represent the target prediction for such models.

Consequently, this thesis mainly uses 3D joint positions to represent

output prediction for 3D monocular pose estimation task (Chapter 3)

and motion synthesis from speech (Chapter 4 and Chapter 5).

Alternatively, the temporal evolution of the skeleton can also be

modeled based on its kinematic properties. To model changes between

different body poses, every joint j in the skeleton S is associated with

a transformation Tj ∈ SE(3) that can be used to map its own local

coordinate to the local coordinate of its parent par(j). Every joint is

assumed to be at the origin of its own local coordinate. This rigid

transformation can be described in homogeneous coordinate using
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Jp
j = Tj ·

[
0 0 0 1

]T
, (2.1)

Jp
j =


R
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ty

tz

0 0 0 1




0

0

0

1

 , (2.2)

where R ∈ SO(3) is the rotational component of the transformation,

and the vector t = [tx, ty, tz]T is the offset which represent the bone

distance from a joint j to its immediate parent. Hence, a particular

3D pose of the skeleton in the global coordinate can be performed

by recursively applying a series of local transformations along the

kinematic chain. In general, the global position of a joint i can be found

by iteratively applying the local transformation Jp
j from the root node:

Jg
i = ( ∏

parents(j)
Tj) · Ti ·

[
0 0 0 1

]T
, (2.3)

where parents(j) denotes the list of parental nodes of joint j from the

root node.

This kinematic representation is also commonly found in commercial

3D animation systems, and it can be directly extended with a more

detailed surface or volumetric representation of the body. The motion

of a mesh-based 3D virtual character is typically controlled by the

kinematic skeleton representation, which is achieved by rigging the

model to the skeleton. Consequently, it is often necessary to transform

a set of 3D human keypoints, e.g. from a 3D monocular prediction of

human pose, into the kinematic representation. The parameters can be

recovered by applying inverse kinematic algorithms (Aristidou et al.,

2018). This is achieved by estimating the optimal rigid transformation

parameters Tj with respect to the given global 3D joint positions.

2.1.2 3D Morphable Model of Human Faces

Compared to the sparse 3D keypoints for kinematic representation, a

denser 3D model is typically required to capture the shape and expres-

sion of a human face accurately. One popular approach to represent

this information is by using a 3D morphable model (3DMM). A 3DMM
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Figure 2.2: The 3D morphable model of a face can be used to generate a
certain face based on a specific shape, expression, as well as skin reflectance
by varying the coefficient values of each attributes. (Figure taken from Li
et al., 2017)

of a human face (Egger et al., 2020) captures both the geometry and

appearance of the face by parameterizing a 3D mesh consisting of N
number of vertices. With this parameterization, a 3DMM can be used

to either represent or generate a new instance of a face based on some

semantically meaningful attributes, e.g., face identity or expression.

In this way, a 3DMM offers an efficient way to describe a specific

deformation of the data, offering a significant parameter reduction

compared to using the 3D vertex positions directly. As a result, the

3DMM is often used for various tasks related to 3D face reconstruction,

including learning-based 3D geometry prediction. This thesis makes

use of this capability by employing a state-of-the-art monocular dense

face reconstruction method to obtain the 3D annotations in terms of

3DMM parameters for the speech-gesture training data introduced in

Chapter 4. Similarly, the task of predicting 3D facial expression from

speech can be defined as predicting the expression parameters of a

3DMM.

The parameters of a face 3DMM are usually learned from a col-

lection of real-world 3D scans of human faces involving a number

of subject performing various expressions. By carefully curating the

samples of this captured data, the variation of the face can be mod-

eled using several semantically meaningful criteria, including shape

geometry, expression, and skin reflectance (see also Figure 2.2). This
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process is commonly performed by decomposing the data using dimen-

sionality reduction techniques such as Principal Component Analysis

(PCA). The semantically disentangled attributes are modeled by the

eigenvectors obtained during the PCA decomposition.

The semantic attributes of the geometry of a 3DMM are represented

as matrices of the face shape model Es ∈ R3N×Ns and face expression

model Ee ∈ R3N×Ne where Ns and Ne denote number of eigenvectors

which correspond to the Ns and Ne highest eigenvalues in their respec-

tive PCA decomposition. A specific instance of a 3D face can then be

expressed as a linear combination between the template 3D face and

the semantic attributes. By defining the weight of each facial attributes

in terms of the face shape coefficients αs ∈ RNs and expression coeffi-

cients αe ∈ RNe , an instance of a 3D face mesh geometry V ∈ R3N can

be expressed using

V = Ts +Esαs +Eeαe, (2.4)

where Ts ∈ R3N denotes the vertex position of the average face mesh

template.

2.2 human speech feature extraction

To properly control human motion from speech signals using a learning-

based approach, meaningful features need to be extracted from the

original waveform representation of speech. In speech recognition,

one popular choice of speech feature representation is the Mel Fre-

quency Cepstrum (MFC) (Davis and Mermelstein, 1980; Mermelstein,

1976). These features are designed to capture the distinct phonemes

generated by the human vocal tract. In particular, human speech char-

acteristic is embedded in the envelope of the log power spectrum of

the original audio signal. The MFC features are formulated to extract

this information effectively.

The commonly used algorithm to extract MFC features can be de-

scribed by the following steps:

1. Windowing. The speech signal is first divided into multiple chunks

of short audio frames with some overlap. The window size of

each frame typically falls between 25-40 ms with an overlapping

step size of 10 ms between them. These operations ensure that the
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window size is sufficient to perform spectral analysis, while at

the same time also short enough to center and isolate individual

phonemes.

2. Compute Power Spectrum Periodogram. In the next stage, the frame

of the signal x(n) is transformed into the frequency domain by

applying the Discrete Fourier Transform (DFT):

X(k) =
N−1

∑
n=0

h(n) · x(n) · exp
{
−i2πnk

N

}
, (2.5)

where n, N, and k respectively denote the signal sample index,

the number of signal frames, and the frequency bin index. A

window function h(n) such as the Hanning window is often

used in this operation to counter the side effects of performing a

Fourier Transform on a short-time signal.

For the purpose of creating a meaningful speech feature, we

are interested in analyzing the power distribution of the speech

in terms of its frequencies. To this end, the periodogram of the

power spectrum is computed according to the following:

P(k) =
1
N
|X(k)|2. (2.6)

3. Mel Spectrum. Human ears perceive audio frequencies in a non-

linear way, with a stronger sensitivity in the lower frequency

range. The Mel-scale is introduced to adjust the physical fre-

quency of the data f to match the sensitivity of human ears,

defined by

fMel = 2595 log10(1 +
f

700
). (2.7)

The next objective is to compute the Mel spectrum s(m), which

is obtained by applying m number of band-pass filters known

as the Mel-filter bank to the power spectrum of the audio frame

P(k). The filter bank is constructed by converting a collection of

evenly-spaced triangular filters in the frequency domain to the

Mel scale according to the formula introduced in Equation 2.7.

As shown in Figure 2.3, the Mel-filter bank usually consists of

m = 40 different band-pass filters.
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Figure 2.3: A visualization of the Mel-filter bank (Figure taken from Rao and
Manjunath, 2017).

4. Inverse Discrete Fourier Transform (DFT). In the last step, an Inverse

DFT is applied to the log of the Mel spectrum log10(s(m)). The

purpose of this step is to decorrelate the signal. Since the signal

is real-valued, a Discrete Cosine Transform (DCT) is commonly

used to implement the Inverse DFT. The DCT transforms the

spectral coefficient of the signal into the cepstral domain. The

results of this transformation are commonly referred to as the

Mel-frequency Cepstral Coefficients (MFCC). Since the DCT can

also be seen as a compression step, we can choose the first few

coefficients of the resulting cepstrum as the final feature of the

audio signal. In this thesis, the first 13 MFCC coefficients are used

as the input feature for the gesture synthesis models proposed

in Chapter 4 and Chapter 5.
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I N - T H E - W I L D 3 D M O N O C U L A R P O S E E S T I M AT I O N

This chapter introduces a new deep learning-based monocular 3D

human pose estimation method that shows high accuracy and gener-

alizes better to in-the-wild scenes (published as Habibie et al., 2019).

Unlike many prior learning-based approaches that primarily rely on

studio-captured 3D pose annotations, the proposed network architec-

ture enables novel ways to weakly supervise a 3D pose estimator using

2D pose labels when the 3D pose information is unavailable. This ar-

chitecture allows the network to be trained on large corpora of 2D pose

annotated images that are easier to obtain, achieving state-of-the-art

accuracy on challenging in-the-wild data.

3.1 introduction

Human motion capture has a wide range of applications in computer

animation and also other areas such as biomechanics, medicine, and

human-computer interaction. However, the standard 3D human mo-

tion capture systems typically require marker suits and/or multiple

cameras recording in a controlled setting which are expensive and

complicated to set up, and are impractical outside of the lab or studio

environments. Methods that infer 3D pose only from monocular im-

ages overcome many such limitations and make 3D pose estimation

more widely applicable. However, due to the under-constrained nature

of monocular 3D pose estimation, achieving accurate 3D prediction is

still a challenging task.

Recent progress of Convolutional Neural Networks (CNN) (Krizhevsky

et al., 2012, He et al., 2016) has enabled promising learning-based meth-

ods for 3D human pose estimation from a single color image. Training

such methods typically requires a large amount of RGB images anno-

tated with reference 3D poses from either marker-based or markerless

multi-camera motion capture systems (Elhayek et al., 2015; Joo et al.,

2018; Rhodin et al., 2016; Stoll et al., 2011a), synthetic data (Chen et

al., 2016), or IMU-based systems (Huang et al., 2018; Marcard et al.,

19
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(a) 2D and 3D labeled multi-view studio vs. 2D labeled in-the-wild data

(b) Prediction results of the proposed method

Figure 3.1: (a) This chapter aims to improve the quality of learning-based 3D
monocular pose estimation approaches by leveraging the 2D annotations of
the in-the-wild-images. (b) Example 3D pose prediction results of the weakly
supervised method for general scenes proposed in this chapter.

2018, 2017). Owing to this complex reference data capturing, diversity

in real-world appearance or pose is hard to achieve in training data,

which limits the generalization of trained networks on in-the-wild

scenes.

Previous work has leveraged features learned on in-the-wild an-

notated 2D pose data to improve in-the-wild generalization. Some

methods (Mehta et al., 2017a,b) proposed to finetune this learned rep-

resentation on 3D pose prediction using 3D pose datasets captured in

a studio. Others (Zhou et al., 2017) use this learned representation as

initialization to jointly predict 2D key points and depth information.

For images where the 3D annotations are available, both 2D keypoints

and depth are supervised, with supervision coming from geomet-

ric constraints otherwise. In this way, networks carry features useful

for in-the-wild 2D in order to achieve better 3D pose estimation in

out-of-studio settings.
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Using a strong pre-existing pose prior, like a parametric body model,

can also help a network to predict more accurate 3D poses if labeled

3D training data is scarce (Kanazawa et al., 2018; Yang et al., 2018).

Since 3D pose labels on general scene images are hard to obtain while

larger annotated 2D training corpora exist, several deep learning based

methods resort to using 2D pose as the target prediction, followed

by an additional 3D pose lifting step (Bogo et al., 2016; Chen and

Ramanan, 2017; Insafutdinov et al., 2016; Martinez et al., 2017b; Tomè

et al., 2017; Wang et al., 2018; Yasin et al., 2016). Using such, Martinez et

al. (2017b) showed that 2D pose data alone is enough to train a network

that achieves promising 3D pose estimation accuracy. However, solely

predicting 3D from 2D pose is an inherently ambiguous task, and

in these approaches, important 3D pose cues from the image are

neglected.

This chapter introduces a new convolutional neural network archi-

tecture for 3D pose estimation that achieves state-of-the-art accuracy on

challenging in-the-wild data. It has two main innovations that enable

us to effectively train the network using both, more scarcely available

image data with 3D annotation and more easy to generate image data

with only 2D annotation.

The first innovation is inspired by 2D-to-3D pose lifting (Martinez

et al., 2017b), but maintains the network’s capability to utilize 3D cues

in images explicitly. To this end, explicit 2D keypoint features are

encoded as joint heatmaps in some channels of the convolutional latent

space, leaving the rest of the features to contain “depth” information

about the human pose. Separating the 2D and depth, and supervising

2D with additional in-the-wild data, which has been the primary driver

of accurate 2D pose estimation methods (Cao et al., 2017; Newell et al.,

2016; Wei et al., 2016), allows the network to consequently predict

3D pose more reliably even under a significant shift of the input

appearance between the training and testing time. These 2D pose

features can be trained jointly with depth features on data with 3D

annotations or trained independently on data with 2D annotations,

while in both cases improving overall network performance.

The second innovation is a supervised approach that reduces 3D-

to-2D ambiguity when training on data with 2D annotations only. To

this end, this chapter introduces a neural network that learns how to

estimate the location of 2D body joints by using the 3D human pose

predicted from the earlier network layers as latent features. More specif-
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ically, the proposed network learns to predict the weak perspective

camera parameters of the given monocular image input that projects

the predicted 3D pose to the 2D space. During training, this projec-

tion loss can be used to update the information on 3D joint positions

regardless of whether the training image has 3D labels or only 2D

labels.

The proposed approach achieves a state-of-the-art accuracy of 70.4%

3D PCK on the MPI-INF-3DHP benchmark with challenging outdoor

scenes, even when trained only using images with 3D pose labels from

the H3.6M (Ionescu et al., 2014) studio dataset. When jointly training

on larger corpora of in-studio images with 3D labels and in-the-wild

data with 2D labels, we achieve 91.3% 3D PCK on MPI-INF-3DHP,

which outperforms all previous methods.

3.2 related work

Human pose estimation is an actively studied area in computer vision.

This section focuses discussion on recent learning-based approaches

that are relevant to the proposed method.

3.2.1 3D pose from 2D keypoint detection

Due to the robustness of some recent CNN-based 2D pose detection

methods (Cao et al., 2017; Newell et al., 2016; Tompson et al., 2015;

Toshev and Szegedy, 2014; Wei et al., 2016), many 3D pose estima-

tion methods reformulate the task as a combination of 2D keypoints

prediction and body depth regression. Mehta et al. (2017b) combine

2D heatmap prediction with 3D location maps to estimate the posi-

tion of each joint in the 3D space. Zhou et al. (2017) propose a weak

supervision training scheme using a stacked hourglass network by

Newell et al. (2016) on both in-the-wild 2D data and studio data with

3D labels. The network is trained to predict 2D pose on both studio

and outdoor datasets and, at the same time, also learns to predict

depth information from the 3D labeled data. Yang et al. (2018) also use

similar weak supervision, but they extend this idea by introducing an

adversarial network that learns how to differentiate between ground

truth and a predicted pose generated by the 3D pose prediction net-

work. Another similar line of work is proposed by Dabral et al. (2018),
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which improves this approach further by using body symmetry con-

straints and a separate temporal prediction network to achieve better

3D prediction stability across sequential frames. To take full advantage

of the detection-based method, Pavlakos et al. (2017) proposed using a

volumetric representation as an extension of the 2D joint heatmaps in

the 3D space. However, this formulation is computationally expensive

to perform even after using the coarse-to-fine strategy proposed to

mitigate this issue.

3.2.2 Direct 3D pose prediction

Instead of using the combination of 2D and depth prediction, several

works regress 3D body keypoints directly. Tekin et al. (2016) enhance a

direct 3D prediction network by learning human body structure using

a pose autoencoder.

Mehta et al. (2017a) use multiple intermediate supervision tasks,

such as predicting the output at various network levels and predicting

2D heatmaps as an additional objective. They use two-step training

approach to improve generalization. The network is first trained to

learn 2D joint heatmaps and then refined on the task of directly pre-

dicting 3D joint location maps from 3D annotated studio data. Instead

of directly predicting the keypoints, Zhou et al. (2016) regresses the

joint angles on a kinematic body model, assuming that the bone length

of the subject is known. Sun et al. (2017) uses a geometry-aware for-

mulation that also predicts bone length and vector orientation instead

of only regressing 3D keypoint locations.

Rhodin et al. (2018b) proposed a multi-view consistent prediction

approach during training to refine neural network’s monocular pose

prediction on general scenes, but it requires synchronized multi-camera

footage to train. Multi-view settings can also be used to perform

unsupervised or semi-supervised learning on human pose estimation

by training the network to learn a geometry-aware latent space that

can generate novel views on different cameras (Rhodin et al., 2018a).

3.2.3 3D lifting without depth information

Some methods compute 3D pose by estimating the depth from the

detected 2D keypoints only. Tomè et al. (2017) performs a sequence
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of 3D lifting and reprojection to improve prediction quality iteratively.

Chen and Ramanan (2017) find the closest 3D pose from a library of

human poses that best matches the detected 2D pose. Martinez et al.

(2017b) use a fully connected neural network with a residual connection

can achieve accurate 3D pose estimation performance using 2D ground

truth or a very accurate 2D keypoint detection as input. Regardless,

these approaches cannot overcome the principled ambiguity that there

are many possible 3D body poses that can be correctly projected into

the corresponding 2D pose. To reduce this ambiguity of 3D lifting

from 2D estimates, Pavlakos et al. (2018) use ordinal depth annotation

between joint pairs, which is a special case of posebits introduced by

Pons-Moll et al. (2014).

3.2.4 Estimating 3D pose using 2D projection information

Bogo et al. (2016) fit the 2D keypoints projection of the parametric

SMPL body model (Loper et al., 2015) to 2D predictions from a sep-

arate method using an optimization approach. Brau and Jiang (2016)

demonstrated that 2D projection, body pose prior, and body part

length information could be used as the training loss objectives for

3D pose prediction. The method proposed in this chapter extends the

idea of Brau and Jiang (2016) by introducing additional 3D supervision

and paired training on the in-the-wild dataset. Kanazawa et al. (2018)

showed that pose and shape parameters of the SMPL body model from

monocular images could be learned using a neural network. While

their method uses a 2D projection loss of the body model as the main

objective, their method also requires an adversarial regularizer against

parametric body models. This method can be further improved by

using additional labels of 3D pose and SMPL parameters if available.

Omran et al. (2018) proposed another deep learning approach to infer

the parameters of the SMPL body model and analyzed performance

when varying the input representation (silhouettes, 2D keypoints, part

segmentations) and the proportion of 2D and 3D data.

The above review shows that many methods tackle generalizability

on the in-the-wild images using either transfer learning from the

2D pose task or by decoupling the 3D pose estimation into separate

2D keypoint detection and depth regression problems. For methods

that decouple the 3D representation [Dabral et al., 2018; Yang et al.,
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Figure 3.2: The overview of the proposed architecture. It uses a CNN fRGB
to learn 3D pose features represented as 2D heatmap locations h2D and
additional 3D pose cues d in the latent space. Both information are used
to predict a root centered 3D pose p3D and viewpoint parameters c using
networks f3D and fc, respectively. Finally, p3D and c are concatenated to
learn 2D keypoint information h2D, allowing the network to update 3D pose
information even if 3D labels are not available.

2018; Zhou et al., 2017], depth information is predicted if 3D labels

are available. Otherwise, some weak supervision constraints (e.g.,

a parametric body model) are used for regularization. This chapter

proposes a new architecture that combines explicit encoding of separate

2D and 3D depth features in hidden space instead of operating on

vectorized 2D predictions as in previous lifting schemes. The trained

projection network further stabilizes overall 3D prediction accuracy.

3.3 approach

The proposed method estimates the root (pelvis) relative 3D locations

of K human body joints P = {J1, . . . , JK} in the camera reference frame

from a monocular RGB image. The method also assumes that a crop

around the subject is available.

A baseline strategy for the approach can be described as follows:

Given a training set consisting of pairs of RGB images and their cor-

responding 3D pose labels D = {(In, PGT
n )}N

n=1, train a convolution-

based neural network fRGB(In,θ) that could predict a vectorized repre-

sentation of 3D joint locations. Network parameters θ could be trained

by minimizing the difference L3D between pose prediction and ground

truth

L3Dpose =
1
N

N

∑
n=1
‖ fRGB(In,θ)− PGT

n ‖2
2 . (3.1)
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By training on currently available image data sets with 3D pose annota-

tion, such direct supervision approach can already enable the network

to achieve reasonable performance on studio test images. However,

such a baseline method is still constrained in its ability to generalize

to in-the-wild scenes due to the limited amount of available real-world

images with ground truth 3D poses.

Therefore, several strategies need to be introduced to augment such

a 3D pose network such that it performs better in in-the-wild scenes.

The proposed augmented network can be trained on both images with

3D labels and in-the-wild images with only 2D labels. First, using

an explicit 2D pose representation in the feature space of the CNN

combined with 2D pre-training can significantly boost the quality of

the prediction. Second, additional supervision is proposed by using a

trained projection sub-network that learns weak perspective camera

information for projecting 3D pose estimates to the 2D image space.

The overview of the proposed network is shown in Figure 3.2.

3.3.1 Explicit 2D feature representation for 3D pose prediction

Martinez et al. (2017b) showed that a simple neural network is capable

of directly regressing 3D human pose with good accuracy by using

only vectorized 2D poses as input. This indicates that a neural network

is able to estimate the structure of a natural 3D human pose from

corresponding 2D information to some extent. However, such a lifting

scheme can only remedy to some extent the fundamental ambiguity

that multiple 3D poses can look the same in 2D. Pavlakos et al. (2018)

showed that additional weak ordinal depth supervision could partially

resolve the ambiguity of the problem.

Based on this observation, it can be argued that a 2D-to-3D lifting

approach can also be applied to 2D heatmap input instead of the

vectorized 2D pose representation. To test this hypothesis, this chapter

proposes a pose estimator CNN where the convolutional features are

designed to encode 2D pose heatmap information explicitly. The idea

behind this decision is to explicitly decouple 2D pose information

from other learned features in the convolutional latent space. The

network can use the rest of the feature maps to capture additional

image information related to 3D human pose, such as 3D depth. In

this way, the network is guided to learn 3D pose features that are
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more reliable due to the robust 2D pose prediction and are easier to

interpret. Furthermore, by using a 2D training loss on this component,

the network is allowed to learn valuable features from images when

3D pose labels are not available.

To this end, a convolutional feature map F3D = [h2D, d] is intro-

duced after the extractor network fRGB. This feature map consists of

64 output channels with a spatial dimension of 16× 16. The first 14

channels are used to capture the 2D pose information. This region is

optimized during training by minimizing the loss compared to the 2D

ground truth heatmap in the least square sense. The rest of the feature

channels d are not directly constrained by any explicit loss and will be

supervised through the 3D pose, 2D projection, as well as additional

pose constraint losses explained later.

To infer 3D pose from F3D, the explicit 2D heatmaps h2D are first

combined with the additional features d learned by the convolutional

encoder by using a simple fully connected layer into a latent vector z ∈
R1024. Then, a fully connected network with residual connections f3D is

used to learn the vectorized 3D pose representation p3D. The network

f3D is designed to be similar to the lifting architecture in Martinez

et al., 2017b. More specifically, a series of four fully connected layers

and ReLU activations are used, each with the width of 1024. A residual

connection is also incorporated to connect z with the output of the

second layer of f3D.

Several earlier works reported that detection-based approaches using

a heatmap or volumetric representation tend to achieve better perfor-

mance on both 2D and 3D pose estimation tasks than approaches

regressing vectorized predictions. However, additional structure-aware

supervision can lift the performance of vectorized prediction to a

competitive level (Sun et al., 2017). Since the proposed method also

performs vectorized 3D pose prediction, the 3D training loss L3Dpose

(equation 3.3) is complemented with a bone supervision loss Lbone. For

3D training data, Lbone measures the similarity of the vector between a

joint Jk to its corresponding parent in the kinematic chain to ground

truth. For 2D data, it measures the difference of scalar bone lengths to

ground truth.
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3.3.2 Predicting 2D projection from 3D pose

To further improve the method’s ability to utilize 2D pose data for

training 3D pose prediction, a sub-network is trained to project the

predicted 3D pose to the image space. The camera network fc predicts

the principal coordinate (cx, cy) and the focal length (αx, αy) parame-

ters of a weak perspective camera model from the given input image.

By using the features extracted from the latent representation z, a

multi-layer perceptron is used to infer the camera parameters c ∈ R4.

During training, a 2D loss L2Dpose measures the L2 distance between

ground truth 2D pose and 2D projection p2D of the predicted 3D pose:

p2Dproj. =

πx(p3D)

πy(p3D)

 =

αxp3D(x) + cx

αyp3D(y) + cy

 (3.2)

The projection formulation allows the network to learn partial infor-

mation about the 3D pose even when only 2D pose annotations are

available. However, no constraints can guarantee the correctness of

the predicted depth information. To regularize 3D pose prediction

when training on 2D data, the additional bone loss Lbone is used to en-

force bone length similarity to ground truth for additional supervision.

The bone length is selected by randomly picking one of the training

subjects as the ground truth for every training instance.

3.3.3 Network design

An adapted ResNet-50 (He et al., 2016) is used as the basis of the

backbone subnetwork fRGB (Figure 5.4) that extracts pose features from

2D images. This offers a good trade-off between prediction accuracy

and inference time, allowing the network to be optionally used in real-

time applications. The original ResNet-50 architecture is used up to

level Res4f, and we train level Res5a from scratch without striding while

also reducing its number of output channels to 1024. This extractor

network is then followed by the 3D pose regressor network described

in 3.3.1.

The studio datasets with 3D labels and the outdoor data sets with

2D labels tend to have slightly different image statistics due to contrast

differences and foreground-background augmentations on the 3D data
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sets. To further mitigate this residual domain gap beyond what the

new network architecture can already do by its design, a pre-training

approach is employed, similar to several earlier 3D pose prediction

methods, e.g. Mehta et al., 2017a. To this end, the ResNet-50 network

is pre-trained on ImageNet features to perform 2D heatmap prediction

only. Here, intermediate 2D pose supervision is used on the first 14

channels of the res4d and res5a feature maps. The same intermediate

supervision is also used later when finetuning the complete network

on both 2D and 3D pose data. After pre-training, the final training

of the full network on both outdoor images with 2D annotations and

studio images with 3D annotations results in learned features that

generalize well to in-the-wild scenes and yield high accuracy in 3D

pose estimation.

The algorithm can be modified to handle input images of arbitrary

framing around the human because the subnetwork fRGB is convolu-

tional. For example, a tight bounding box cropping can be performed

around the detected 2D keypoints before passing the rescaled image

into the subsequent sub-network.

3.3.4 Loss functions

Given an input image I ∈ Rw×h×3, the extractor network fRGB will

predict the features F3D which consist of the explicit 2D pose features

h2D and additional pose cues d as feature maps. The predicted 2D

pose features are defined as 2D per-joint heatmaps Tompson et al.,

2014

h2D = (m1, m2, . . . , mK), mk ∈ R
w
s ×

h
s ,

where s = 16 is the heatmap down-sampling factor. Similarly, the

ground truth heatmaps are defined as

hGT = (mGT
1 , mGT

2 , . . . , mGT
K ), mGT

k ∈ R
w
s ×

h
s .

To train the 2D pose features, the difference between the predicted

2D joint heatmaps and the ground truth maps is minimized using an

L2 loss

L2Dheatmap =
K

∑
k=1

bk ‖ mk −mGT
k ‖2

2, (3.3)



30 in-the-wild 3d monocular pose estimation

where bk ∈ {0, 1} is a binary mask to ensure that the objective is not

evaluated if the annotation of a particular joint is not available.

The latent features F3D are then used to predict the 3D pose P3D ∈
R21×3 by the sub-network f3D. Given a 3D pose annotation PGT ∈
R21×3, the 3D joint position loss is calculated as follows

L3Dpose =‖ P3D − PGT ‖2
2 . (3.4)

Given that Parent(Jk) is the position of the parent of a joint Jk ∈ R3 in

the kinematic chain, when the 3D joint position ground truth JGT
k ∈ R3

is available, the bone during training is defined as

Lbone =
K

∑
k=1

∥∥∥∥(Parent(Jk)− Jk

)
−
(

Parent(JGT
k )− JGT

k

)∥∥∥∥2

2
. (3.5)

On the other hand, if we train on data for which only 2D joint

annotations, but no 3D annotations are available, then we instead only

compare the bone length magnitude between the predicted joint with

a bone length JS
k randomly selected from a training annotation

Lbone =
K

∑
k=1

∥∥∥∥‖ Parent(Jk)− Jk ‖2
2 − ‖ Parent(JS

k )− JS
k ‖2

2

∥∥∥∥2

2
. (3.6)

Finally, given a predicted 2D pose from the projection layer p2D and

its corresponding ground truth 2D joint coordinates in the image space

pGT
2D , the projection loss is defined as

L2Dpose =‖ p2D − pGT
2D ‖2

2 . (3.7)

The final training loss can be expressed as

Lall = λ2DheatmapL2Dheatmap + λ3DposeL3Dpose

+ λboneLbone + λ2DposeL2Dpose,
(3.8)

where λ3Dpose = 10, λ2Dheatmap = 0.1, λ2Dpose = 10. λbone = 10 if the

bone direction is considered (i.e. 3D pose annotations are given) and

λbone = 100 if only the bone length scalar is estimated (i.e. only 2D

annotations are given).
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Table 3.1: 3D PCK (higher is better) on the MPI-INF-3DHP dataset after
training with MPI-INF-3DHP and H3.6M 3D training sets, and MPII and LSP
2D training sets. The proposed method outperform all other methods that
use a similar combined 2D and 3D training on this benchmark with both
indoor and in-the-wild scenes. This holds true for all evaluation protocols
(unscaled (US), glob. scaled (GS), Procrustes (PA)).

Method PCK PCK PCK PCK AUC MPJPE
GS No GS Outdoor All All All

Mehta et al. (2017a) 84.6 72.4 69.7 76.5 - -
Mehta et al. (2017b) - - - 76.6 40.4 124.7
Dabral et al. (2018) - - - 76.7 39.1 103.8

Proposed (US) 87.8 80.2 73.8 81.5 44.5 90.7
Proposed (GS) 88.0 80.5 74.8 82.0 44.7 91.0

Proposed (PA) 94.9 92.4 84.0 91.3 57.5 65.4

3.4 results and evaluation

This section discussed the datasets, training strategy, as well as quanti-

tative and qualitative comparisons of the proposed method against the

prior arts.

The H3.6M data set (Ionescu et al., 2014) is used to compare gen-

eral 3D pose estimation accuracy on in-studio data. Furthermore, the

proposed method is compared against previous methods on the more

general MPI-INF-3DHP benchmark set (Mehta et al. (2017a)). The

latter features more diverse motions and scenes, including indoor

scenes with green screen background (GS), as well as more in-the-

wild scenes with general backgrounds, both indoors (No GS) and

outdoors (Outdoor). An ablation analysis shows the significance of the

individual components in the proposed approach.

3.4.1 Datasets and evaluation metrics

As training data with ground truth 3D pose, the proposed method uses

a combination of the H3.6M training set, as well as both background

augmented and unaugmented MPI-INF-3DHP training sets, which

consist of 350k training images in total. As in-the-wild training images

with only 2D pose annotation, the method is trained using the MPII

(Andriluka et al., 2014) and LSP (Johnson and Everingham, 2011;
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Figure 3.3: Qualitative examples from the MPI-INF-3DHP test set (row 1, 2,
and 3) and LSP (row 4, 5, and 6).
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Figure 3.4: Qualitative examples of applying the proposed method to the
MPI-INF-3DHP test set.
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Figure 3.5: Additional qualitative examples of applying our method on the
LSP test set.
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Johnson and Everingham, 2010) datasets which are augmented by

randomly cropping, translating and rotating the images.

At test time, the proposed approach is compared against other

previous methods on both standard H3.6M and MPI-INF-3DHP test

data to show both general 3D pose prediction accuracy as well as state-

of-the-art generalization on outdoor scenes. The qualitative result of the

proposed algorithm on in-the-wild images is visualized in Figure 3.3,

Figure 3.4, and Figure 3.5.

The quantitative performance is evaluated by comparing the Mean

Per Joint Position Error (MPJPE), the Percentage of Correct 3D Key-

points (3D PCK) under a 150 mm radius from the reference joint

location (Mehta et al., 2017a), as well as the Area Under Curve (AUC)

metric which corresponds to the thresholds of the 3D PCK. Since eval-

uation protocols in previous work are not uniform, the quantitative

analysis is evaluated under the three most commonly used protocols:

(i) 3D joint predictions are neither scaled nor aligned to ground truth

(unscaled), (ii) 3D joint predictions are globally scaled with ground

truth scale before evaluation (glob. scaled), and (iii) 3D joint predictions

are aligned to ground truth with full Procrustes alignment (Procrustes).

The evaluation conducted in this chapter follows standard practice

in monocular 3D pose estimation by cropping a tight bounding box

in test images using 2D ground truth information. Since cropping

essentially performs a virtual rotation from the original camera, per-

spective correction (Mehta et al., 2017a) is used to re-align the pose to

the correct view.

3.4.2 Training procedure

As outlined earlier, the proposed network is trained in two stages.

First, the feature extractor network is pre-trained on the 2D heatmap

regression task on both MPII (Andriluka et al., 2014) and LSP (Johnson

and Everingham, 2011; Johnson and Everingham, 2010) datasets. At this

stage, the network is trained for 186k iterations with a minibatch size

of 21. The initial learning rate is 0.05, which is decayed exponentially.

After pre-training, the learned weights are used to initialize the

weights of the whole 3D pose prediction network. The entire network

is then trained on both the 3D labeled studio data as well as the in-

the-wild data with only 2D annotations. Image data with 3D and 2D
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annotations are both fed into the network with a minibatch size of 10 to

train for 240k iterations. For this second stage, the training again starts

by using a learning rate of 0.05 with decay over 60k iterations. Adadelta

with a momentum of 0.9 is used as the optimization algorithm in both

training stages.

Using learning rate discrepancy on the pre-trained layers is empiri-

cally found to preserve in-the-wild features, as suggested by Mehta

et al. (2017a), and is necessary to achieve good generalization if 3D

training data is very limited or more biased. The experiments indicate

that a learning rate discrepancy with a factor of 100 when training

using H3.6M data as the only source of 3D pose labels yields the best

result when tested on the MPI-INF-3DHP dataset. On the other hand,

the best performance is achieved without using any such discrepancies

when training on both H3.6M and the augmented data of MPI-INF-

3DHP as the source of 3D labels. This suggests that foreground and

background augmentation of the 3D data can further close the domain

gap between the indoor and outdoor scenes.

Table 3.2: Mean Per Joint Position Error (MPJPE) on H3.6M when trained
on H3.6M (the proposed method is glob. scaled for evaluation). (*) indicates
methods that also use 2D labeled datasets during training or pre-training.

Direct. Discuss Eat Greet Phone

Mehta et al. (2017a)* 59.7 69.7 60.6 68.8 76.4

Mehta et al. (2017b)* 62.6 78.1 63.4 72.5 88.3

Pavlakos et al. (2017) 67.4 72.0 66.7 69.1 72.0

Martinez et al. (2017b)* 51.8 56.2 58.1 59.0 69.5

Zhou et al. (2017)* 54.8 60.7 58.2 71.4 62.0

Yang et al. (2018)* 51.5 58.9 50.4 57.0 62.1

Sun et al. (2017)* 52.8 54.8 54.2 54.3 61.8

Kanazawa et al., 2018* - - - - -

Luvizon et al., 2018* 49.2 51.6 47.6 50.5 51.8

Dabral et al., 2018* 46.9 53.8 47.0 52.8 56.9

Proposed* (H80K) 57.1 69.6 61.6 66.0 73.4

Proposed* (5 fps) 54.0 65.1 58.5 62.9 67.9

Pose Purch. Sit SitD Smoke

Mehta et al. (2017a)* 59.1 75.0 96.2 122.9 70.8

Mehta et al. (2017b)* 63.1 74.8 106.6 138.7 78.8
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Pavlakos et al. (2017) 65.0 68.3 83.7 96.5 71.7

Martinez et al. (2017b)* 55.2 58.1 74.0 94.6 62.3

Zhou et al. (2017)* 53.8 55.9 75.2 111.6 64.1

Yang et al. (2018)* 49.8 52.7 69.2 85.2 57.4

Sun et al. (2017)* 53.1 53.6 71.7 86.7 61.5

Kanazawa et al., 2018* - - - - -

Luvizon et al., 2018* 48.5 51.7 61.5 70.9 53.7

Dabral et al., 2018* 45.2 48.2 68.0 94.0 55.7

Proposed* (H80K) 57.1 70.9 89.8 109.2 68.6

Proposed* (5 fps) 54.0 60.6 82.7 98.2 63.3

Photo Wait Walk WalkD WalkP Avg.

Mehta et al. (2017a)* 85.4 68.5 54.4 82.0 59.8 74.1

Mehta et al. (2017b)* 93.8 73.9 55.8 82.0 59.6 80.5

Pavlakos et al. (2017) 77.0 65.8 59.1 74.9 63.2 71.9

Martinez et al. (2017b)* 78.4 59.1 49.5 65.1 52.4 62.9

Zhou et al. (2017)* 65.5 66.1 63.2 51.4 55.3 64.9

Yang et al. (2018)* 65.4 58.4 60.1 43.6 47.7 58.6

Sun et al. (2017)* 67.2 53.4 47.1 61.6 53.4 59.1

Kanazawa et al. (2018)* - - - - - 88.0

Luvizon et al. (2018)* 60.3 48.9 44.4 57.9 48.9 53.2

Dabral et al. (2018)* 63.6 51.6 40.3 55.4 44.3 55.5

Proposed* (H80K) 81.3 65.8 54.3 78.4 58.2 71.1

Proposed* (5 fps) 75.0 61.2 50.0 66.9 56.5 65.7

3.4.3 Quantitative comparison

Table 3.1 compares the proposed method on the MPI-INF-3DHP bench-

mark against the closest competing approaches that can be trained on

both, images with 2D and 3D annotations. All methods were trained us-

ing both H3.6M and augmented and unaugmented MPI-INF-3DHP 3D

datasets, and the LSP and MPII 2D datasets. Unless stated otherwise,

the training procedure used the H80K samples of the H3.6M dataset

which consists of around 41K training samples before augmentation.

The proposed algorithm achieves by far the highest accuracy (across

all evaluation protocols), yielding 82.0% 3D PCK, 44.7% AUC and 91.0
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Table 3.3: Mean Per Joint Position Error (MPJPE) on H3.6M when trained
on H3.6M. (*) indicates methods that also use 2D labeled datasets during
training or pre-training. (Procrustes for evaluation).

Direct. Discuss Eat Greet Phone

Sun et al. (2017)* 42.1 44.3 45.0 45.4 51.5
Kanazawa et al. (2018)* - - - - -
Dabral et al. (2018)* 32.8 36.8 42.5 38.5 42.4
Omran et al. (2018) - - - - -

Proposed* (H80K) 46.1 51.3 46.8 51.0 55.9
Proposed* (5 fps) 43.7 46.9 45.4 48.0 50.2

Pose Purch. Sit SitD Smoke

Sun et al. (2017)* 43.2 41.3 59.3 73.3 51.0
Kanazawa et al. (2018)* - - - - -
Dabral et al. (2018)* 35.4 34.3 53.6 66.2 46.5
Omran et al. (2018) - - - - -

Proposed* (H80K) 43.9 48.8 65.8 81.6 52.2
Proposed* (5 fps) 40.6 41.6 60.7 75.6 48.8

Photo Wait Walk WalkD WalkP Avg.

Sun et al. (2017)* 53.0 44.0 38.3 48.0 44.8 48.3
Kanazawa et al. (2018)* - - - - - 56.8
Dabral et al. (2018)* 49.0 34.1 30.0 42.3 39.7 42.2
Omran et al. (2018) - - - - - 59.9

Proposed* (H80K) 59.7 51.1 40.8 54.8 45.2 53.4
Proposed* (5 fps) 54.9 46.8 36.9 47.5 43.9 49.2

mm MPJPE overall (using glob. scaled for evaluation). It also achieves

the state-of-the-art result specifically on the outdoor scenes with 74.8%

3D PCK. Further, the average 3D PCK of 91.3% is the highest ever

reported by all algorithms that evaluated on the MPI-INF-3DHP, irre-

spective of what training data they used.

Table 3.4 further shows the comparison of the proposed approach to

other methods on MPI-INF-3DHP, when all methods are trained using

only H3.6M as the source of 3D pose labels. The proposed method

achieves the highest accuracy in terms of 3D PCK and AUC on the

basis of all three evaluation protocols.

Finally, the proposed method is compared by only using the H80K

samples of H3.6M as the 3D pose dataset and testing on every 64th
frame of the S9 and S11 subjects in H3.6M, see Table 3.2 (here we use
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Table 3.4: Comparison on MPI-INF-3DHP after training only on H3.6M
dataset. The proposed approach outperforms all other competing approaches
in all metrics and testing protocols.

Method PCK AUC MPJPE

Mehta et al. (2017a) 64.7 31.7 -
Yang et al. (2018) 69.0 32.0 -
Zhou et al. (2017) 69.2 32.5 -

Proposed (unscaled) 69.6 35.5 127.0
Proposed (glob. scaled) 70.4 36.0 129.1

Proposed (Procrustes) 82.9 45.4 92.0

glob. scaled following Zhou et al., 2017, Yang et al., 2018, Dabral et al.,

2018) and Table 3.3 (Procrustes). On this test set which is heavily biased

to in-studio data of a single background, the proposed method geared

for in-the-wild generalization cannot beat the best-performing methods.

However, it still achieves competitive accuracy. When the number of

training data is increased by sampling from H3.6M at 5 frames per

second, the proposed method achieved a better MPJPE of 65.7 mm

while maintaining competitive result when tested on MPI-INF-3DHP

with 71.2% 3D PCK and 36.3% AUC. When using Procrustes during

comparison, a state-of-the-art accuracy of 53.4 mm average MPJPE

is achieved when trained using H80K samples and 49.2 mm average

MPJPE when trained using H3.6M data sampled at 5 fps. Notably,

here the proposed approach also outperforms other methods that use

some pose projection operation related to the proposed architecture

and regularization with a statistical body model, namely Kanazawa

et al., 2018 and Omran et al., 2018.

3.4.4 Activity-wise result

The activity-wise performance of the proposed method tested on MPI-

INF-3DHP is shown in Table 3.5. The proposed method achieves a very

high 3D PCK of more than 80% on almost all categories, except for the

on-the-floor activities (60.7%), which are in general also challenging

for other methods.
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Table 3.5: Activity-wise 3D PCK of the proposed method on the MPI-INF-
3DHP test set. The proposed method achieved more than 80% 3D PCK in
most actions except for the challenging on-the-floor examples (60.7% 3D
PCK).

Action PCK AUC
Head Neck Shou Elbow Total

Standing/Walking 93.2 100.0 99.6 89.8 89.7 51.2
Exercising 91.3 98.2 98.2 87.6 85.6 47.2
Sitting 81.7 92.8 91.8 76.7 80.0 43.7
Reaching/Crouching 76.6 91.1 91.3 83.3 84.6 47.6
On The Floor 62.8 83.9 78.9 54.7 60.7 28.5
Sports 90.0 99.2 98.7 84.9 87.0 49.3
Miscellaneous 80.8 96.8 95.3 71.3 80.4 43.4

All 82.3 94.9 93.7 78.0 81.5 44.7

Action PCK AUC
Wrist Hip Knee Ankle Total

Standing/Walking 74.3 100.0 90.0 77.3 89.7 51.2
Exercising 75.6 100.0 77.6 65.5 85.6 47.2
Sitting 65.1 99.8 75.8 63.9 80.0 43.7
Reaching/Crouching 78.0 98.7 84.2 73.2 84.6 47.6
On The Floor 40.9 94.6 53.9 28.6 60.7 28.5
Sports 67.8 100.0 90.6 72.4 87.0 49.3
Miscellaneous 53.8 100.0 86.5 66.9 80.4 43.4

All 64.5 99.3 81.2 65.5 81.5 44.7

3.4.5 Ablation study

An ablation study is conducted to measure the effectiveness of the pro-

posed contributions (Table 3.6). A direct 3D pose regression method

with 2D pose pre-training without the explicit 2D pose loss in the

feature space and without the 2D-from-3D projection loss is used as a

baseline. The baseline is trained on 3D data only and uses both joint

position and bone losses as training objective. All of the comparison re-

sults were trained on the H80K samples of H3.6M and then performed

the evaluation tests on the MPI-INF-3DHP dataset.

The baseline reaches 62.3% 3D PCK. Using the explicit 2D pose

in the latent feature space allows us to use the outdoor data during
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Table 3.6: Ablation study on MPI-INF-3DHP test data (split into scene sub-
categories: in-studio with green screen (GS), and more in-the-wild scenes
indoors (No GS) and outdoors (Outdoor)). Only H3.6M data with ground
truth 3D labels were used for training. 3D predictions are globally scaled.

Method PCK AUC

Baseline (direct 3D prediction + bone loss) 62.3 30.3

+ 2D latent loss + outdoor data 66.4 33.0

+ 3D-to-2D projection loss + outdoor data 69.5 35.3

+ 2D latent loss + outdoor data + 3D-to-2D projection
loss

70.4 36.0

the training. This addition improves the performance by 3.1% against

the baseline. Similarly, adding the 3D-to-2D projection loss improves

the performance of the method even without the explicit 2D pose in

latent feature space. Using both the proposed components advances

the result to the state-of-the-art result with 70.4% 3D PCK.

3.4.6 Qualitative results

Example prediction results is visualized on MPI-INF-3DHP and LSP

test images in Figure 3.3. The proposed method performs consistently

well on studio, general indoor and in-the-wild images.

Several failure cases are shown in Figure 3.6. The proposed method

can fail on challenging poses that are heavily (self-) occluded, on poses

seen from unusual camera angles, or poses that are from what was seen

in the training set. Such failure cases are common to many monocular

3D pose estimation approaches.

3.5 additional comparisons on mpi-inf-3dhp

At some point in the past, the authors of MPI-INF-3DHP released a

correction to the ground truth annotations of a subset of two their six

test sequences. For all tests, this chapter reported the corrected data.

Their very first version of the test set contained small errors on the

in-studio sequences with general, i.e. no green screen, background

(test subject 3 and 4, meaning sequences labelled as No GS). On these

sequences, before correction, the annotations were temporally mis-
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Figure 3.6: Examples of prediction failures by the proposed method.

aligned by one or two frames. It is difficult to say what previous paper

we compared against may have unknowingly used the uncorrected

subset of sequences.

For the tests to be as transparent and fair as possible, we therefore

also provide a comparison on the subset of 4 out of 6 MPI-INF-3DHP

test sequences (GS and Outdoors) that were always correct.

Table 3.7 shows the comparison for methods trained on both H3.6M

and MPI-INF-3DHP using the mentioned subset for testing. We include

methods that in their original papers reported the respective results on

the subsets of test sequences. All evaluations of the proposed method

are performed with the corrected annotations. The proposed method

is also state-of-the-art when tested on this subset of sequences.
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Table 3.7: Comparison on the subset of MPI-INF-3DHP test sequences that
was not corrected at some point by the authors of MPI-INF-3DHP (GS and
Outdoors). All here refers to the average on this subset of sequences. Unless
stated otherwise, all H3.6M training data mentioned in this table use H80K
samples.

Method 3D training PCK PCK PCK AUC MPJPE
data GS Outdoor All All All

Mehta et al. (2017a) H3.6M + 3DHP 84.6 69.7 78.8 - -
Mehta et al. (2017a) H3.6M 70.8 58.5 66.0 - -
Zhou et al. (2017) H3.6M 71.1 72.7 71.7 - -

Ours (unscaled) H3.6M + 3DHP 87.8 73.8 82.3 45.3 91.4
Ours (unscaled) H3.6M 74.6 64.0 70.5 36.3 128.7
Ours (glob. scaled) H3.6M (5 fps) 75.4 66.9 72.1 37.2 125.5
Ours (glob. scaled) H3.6M + 3DHP 88.0 74.8 82.9 45.6 91.8
Ours (glob. scaled) H3.6M 75.2 65.3 71.4 36.9 131.4
Ours (glob. scaled) H3.6M (5 fps) 75.8 67.9 72.8 37.8 128.6

Ours (Procrustes) H3.6M + 3DHP 94.9 84.0 90.7 58.0 66.1
Ours (Procrustes) H3.6M 85.9 78.8 83.2 46.6 91.1
Ours (Procrustes) H3.6M (5 fps) 86.2 78.0 83.0 47.5 89.6

3.6 conclusion

While the proposed method can still fail to produce accurate esti-

mates in some scenarios, such as heavily occluded scenes or highly

uncommon pose articulation, the experiments show that the method

can achieve state-of-the-art 3D monocular pose estimation results that

appear consistent without the need for temporal smoothing, especially

if the given test images contain poses that have been observed in the

training data. Based on this observation, it is natural to consider the fea-

sibility of deploying such monocular approaches as a motion capture

system on in-the-wild images. Leveraging a learning-based monocular

motion capture approach for downstream 3D animation tasks also

demonstrates the possibility of synthesizing 3D human motion in a de-

mocratized manner. The following two chapters of this thesis attempt

to explore this plausibility by making use of 3D monocular annota-

tions to train speech-driven 3D motion synthesis and control models.

This setting is also particularly suitable to benchmark the monocular

capture system, as the in-the-wild target videos may contain various
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challenging scenarios in 3D pose estimation, such as partial occlusions

as well as appearance and articulation variations.



4
L E A R N I N G S P E E C H - D R I V E N 3 D C O N V E R S AT I O N A L

G E S T U R E S F R O M V I D E O

The previous chapter discusses a method that performs 3D pose es-

timation of a human body from monocular images. The ability to

estimate 3D human body joints can be utilized to directly drive the

motion of a character in the virtual world. Alternatively, the captured

3D data can be used to train downstream 3D animation models that

can generate new human motion from a certain control input. This

offers a major advantage compared to classical approaches, as it allows

us to collect a much larger amount of 3D data from monocular videos,

avoiding the need to comply with the multi-view studio capture con-

straints. In particular, this chapter proposes an approach to synthesize

the synchronous 3D conversational body and hand gestures, as well

as 3D face and head animations, of a virtual character from speech

input (published as Habibie et al., 2021a). Leveraging the capability

of the monocular tracking approaches similar to the one presented in

Chapter 3, this chapter introduces a new corpus that contains more

than 33 hours of annotated data from in-the-wild videos of talking

people to train the model. To this end, several state-of-the-art monocu-

lar approaches for 3D body and hand pose estimation as well as 3D

face performance capture are applied to the video corpus to obtain 3D

annotations. In particular, we use a multi-person 3D pose estimation

approach of Mehta et al. (2020) to capture the 3D pose of the body, as

this method is found to be robust to partially visible subjects in the

scene commonly found in the target speech gesture videos. In this way,

orders of magnitude more training data can be used than previous

algorithms that resort to complex in-studio motion capture solutions

and thereby train more expressive synthesis algorithms.

In addition to the new way of capturing speech gestures, this chap-

ter also proposes a new algorithm that uses a CNN architecture to

leverage the inherent correlation between facial expressions and hand

gestures. This task is traditionally challenging, as synthesizing conver-

sational body gestures is a multi-modal problem where several gesture

variations can plausibly accompany the same input speech. To this

45
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end, a Generative Adversarial Network (GAN) based model is trained

to measure the plausibility of the generated sequences of 3D body

motion when paired with the input audio features.

4.1 introduction

Animating the motion of virtual human characters is a crucial task

in many computer graphics pipeline. Traditionally, their generation

requires a combination of complex motion capture recordings and

tedious work by animation experts to generate plausible appearance

and movement. The particular challenges include the animation of

the conversational body gestures of a talking avatar, as well as the

facial expressions accompanying the audio in conveying the emotion

and mannerisms of the speaker. Both are traditionally achieved by

manually specified key-frame animation. Automated tools for animat-

ing body gestures and facial expressions directly from speech would

tremendously ease the effort required and allow non-experts to au-

thor higher-quality character animations. Further, such tools would

enable users to drive real-time embodied conversational avatars of

themselves populating shared virtual spaces and animate them with

on-the-fly body gestures and facial expressions in tune with speech.

In psycho-linguistics studies, it has been shown that user interfaces

showing avatars with plausible body gestures, facial expressions, and

speech are perceived as more believable and trustworthy (Van Mulken

et al., 1998). Studies have shown that non-verbal behavior is essential

for conveying information (Goldin-Meadow, 1999), providing a view

into the speaker’s internal state, and both speech and body gestures

are tightly correlated, arising from the same internal process (Kendon,

2004; McNeill, 2000).

Prior work on speech-driven virtual characters has been limited

either to the generation of co-verbal body gestures through heuristic

rule-based (Marsella et al., 2013) or learning-based (Ferstl and McDon-

nell, 2018; Levine et al., 2010, 2009) approaches, or the generation of

facial expressions (Karras et al., 2017) and head movements (Sadoughi

et al., 2017) in tune with speech. Many learning-based approaches use

motion and gesture training data captured in a studio with complex

motion capture systems (Alexanderson et al., 2020a; Ferstl and McDon-

nell, 2018; Ferstl et al., 2019; Lee et al., 2019a; Levine et al., 2010, 2009;
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Figure 4.1: This chapter proposes the first approach to jointly synthesize
the synchronous 3D conversational body gestures and 3D face animations
of a virtual character from speech input. It is trained using the 3D facial
expression, body, and hand pose annotation for a large corpus of in-the-wild
video of talking people introduced in this work.

Takeuchi et al., 2017b). In this way, it is hard to record large corpora

of data reflecting gesture variation across subjects, or subject-specific

idiosyncrasies revealed only in long term observation.

This chapter introduces the first approach to jointly generate synchro-

nized conversational 3D gestures of the arms, torso, and hands, as well

as a simple but expressive 3D face and head movement of an animated

character from speech. It is based on the following contributions:

1. A new set of 3D training data annotations from more than 33

hours of in-the-wild videos of talking subjects, which was used

for learning a purely 2D gesturing model, without face expres-

sion synthesis, before (Ginosar et al., 2019a). The ground truth

annotations are created by applying monocular in-the-wild 3D

body pose reconstruction (Mehta et al., 2020), 3D hand pose



48 learning speech-driven 3d conversational gestures from video

reconstruction (Zhou et al., 2020), and monocular dense 3D face

reconstruction (Garrido et al., 2016) on these videos.

2. A novel CNN architecture that synthesizes face, body, and hand

gestures from speech input. It has a common encoder for body

and hands gesture as well as facial expression, which learns the

inherent correlation between them and three decoder heads to

jointly generate realistic motion sequences for body, hands, and

face. In addition to facial expressions and head poses in tune

with audio, it synthesizes plausible conversational gestures, such

as beat gestures that humans use to emphasize spoken words,

and gestures that reflect mood and personal conversational style.

Note that, the goal is not to generate gestures relating to semantic

speech content, or carrying specific language meaning, like in

sign language.

3. Synthesis of body gestures is a multi-modal problem; several

gestures could accompany the same utterance. To prevent con-

vergence to the mean pose in training and ensure expressive

gesture synthesis, the prior 2D work of Ginosar et al. (2019a)

used adversarial training (Goodfellow et al., 2014). This pro-

posed work improves upon this idea by not only designing a

discriminator that can measure whether the synthesized body

and hand gestures look natural, but also the plausibility of the

synthesized gestures when paired with the ground truth audio

features. Figure 4.1 summarizes the proposed contribution.

4.2 related work

Human gestures and facial expressions are known to be highly corre-

lated to speech and often convey meaningful information. This section

discusses various techniques that have been proposed to learn the

correlation between gesture and speech, especially data-driven ap-

proaches which are relevant to the method proposed in this chapter.

Like many other data-driven models (Ferstl et al., 2019; Ginosar et al.,

2019b), the main goal is to model the generation of beat gestures,

which are the repetitive motion used to emphasize certain parts of

the speech (McNeill, 2000). However, the proposed formulation also

allows the model to generate a specific type of gesture at a particular
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time by leveraging additional information to produce body motion

beyond beat gestures.

4.2.1 Speech-Driven Body Gestures and Head Motion

The prior art can be grouped into rule-based and data-driven methods.

The seminal works by Cassell et al. (1994) and Cassell (2000) show

that automatic body gesture and facial expression generation of a

virtual character can be synchronized with the audio by using a set of

manually defined rules. Other works incorporate linguistic analysis

(Cassell et al., 2004) into an extendable rule-based framework. Marsella

et al. (2013) develop a rule-based system to generate body gesture

(and facial expression) by analyzing the text input and audio content.

However, such methods heavily rely on the study of language-specific

rules and cannot easily handle non-phoneme sounds.

To overcome these problems, data-driven approaches, which do

not rely on expert knowledge in the linguistic domain, have attracted

increasing attention. Neff et al. (2008) propose a method to create a

person-specific gesture performance using manually annotated video

corpora, given the spoken text and performer’s gesture profile. The

gesture script is then used to animate a virtual avatar. Levine et al.

(2009) use a complex motion capture setup to capture 45 minutes

of training data and trained a Hidden Markov Model to select the

most probable body gesture clip based on the speech prosody in real

time. Levine et al. (2010) map the audio signal into a latent kinematic

feature space using a variant of Hidden Conditional Random Fields

(CRF). The learned model is then used to select a gesture sequence via

reinforcement learning approach. Mariooryad and Busso (2012) use

a combination of Dynamic Bayesian Networks (DBN) to synthesize

head pose and eyebrow motion from speech. Sadoughi et al. (2014)

extend this approach by modeling discourse functions as additional

constraints of the DBNs. Sadoughi et al. (2017) use a learning-based

approach that can leverage text-to-speech (TTS) system to synthesize

head motion and propose a method that can solve the mismatch

between real and synthetic speech during training. Chiu and Marsella

(2011) train a Conditional Restricted Boltzmann Machine (CRBM)

to directly synthesize sequences of body poses from speech. Chiu

and Marsella propose using Gaussian Process Latent Variable Models
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(GPLVM) to learn a low dimensional embedding to select the most

probable body gestures from a given speech input (Chiu and Marsella,

2014).

In recent years, deep learning has demonstrated its superiority in

automatically learning discriminative features from big data. Bidirec-

tional LSTM is used by Takeuchi et al. (2017a), Hasegawa et al. (2018),

and Ferstl and McDonnell (2018) to synthesize body gestures from

speech. Similarly, Haag and Shimodaira (2016) use LSTM to synthe-

size head motion from speech. Kucherenko et al. (2019) propose a

denoising autoencoder to learn lower dimensional representation of

body motion and then combines it with an audio encoder to perform

audio-to-gesture synthesis at test time. Lee et al. (2019a) contribute a

large scale motion capture dataset of synchronized body-finger motion

and audio, and propose a method to predict finger motion based on

both audio and arm position as input. Ferstl et al. (2019) use a multi-

objective adversarial model and make use of a classifier that is trained

to predict the gesture phase of the motion to improve gesture synthesis

quality.

Recent works also try to incorporate text-based semantic informa-

tion to improve generation quality of body gestures from speech

(Kucherenko et al., 2020; Yoon et al., 2020). Alexanderson et al. (2020a)

propose a normalizing flow-based generative model that can synthe-

size multiple plausible 3D body gesture from the same speech input

and also allows some degrees of control to the synthesis. Ahuja et al.

(2020) show that a single learning-based mixture model can be trained

to perform gesture style transfer between multiple speakers. In con-

trast, the focus of the method presented in this chapter is to find the

best solution of predicting all relevant body modalities from audio

using a single framework, which is a challenging problem even when

trained in a person-specific manner.

Deep learning approaches typically require a large scale training

corpus of audio and 3D motion pairs, which is usually captured with

complex and expensive in-studio motion capture systems. To tackle

this problem, Ginosar et al. (2019a) propose a learning-based speech-

driven generation of 2D upper body and hand gesture model from a

large scale in-the-wild video collection. With this solution, they are able

to build an order of magnitude larger corpus from community video.

Similarly, Yoon et al. (2019) train a speech-to-gesture method using

ground truth 2D poses extracted from TED Talk videos via OpenPose
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(Cao et al., 2017). Their model employs a Bidirectional LSTM to map

audio input into a sequence of 2D human body pose. In contrast to

existing methods, the method proposed in this chapter synthesizes not

only the 3D upper body and hand gestures, but also head rotation and

facial expression of the speaker.

4.2.2 Speech-Driven Facial Expressions

Current techniques can be classified into: 1) face model-based (Cha

et al., 2018; Cudeiro et al., 2019; Liu et al., 2015; Pham et al., 2018;

Taylor et al., 2017; Tzirakis et al., 2019) and 2) model-free based. Model-

based approaches parameterize expressions in terms of blendshapes

and estimate these parameters from the audio input. Model-free based

approaches, however, directly map the audio into 3D vertices of a

face mesh (Karras et al., 2017) or 2D point positions of the mouth

Suwajanakorn et al., 2017. In Karras et al. (2017), an LSTM is used

to learn this mapping, and in Suwajanakorn et al. (2017), final pho-

torelistic results are generated. Cudeiro et al. (2019) use DeepSpeech

voice recognition (Hannun et al., 2014) to produce an intermediate

representation of the audio signal. This is then regressed into the pa-

rameters of the FLAME face model (Li et al., 2017). Taylor et al. (2017)

use an off-the-shelf speech recognition method to map the audio into

phoneme transcripts. A network is trained to translate the phonemes

into the parameters of a reference face model. Tzirakis et al. (2019) use

a Deep Canonical Attentional Warping (DCAW) to translate the audio

into expression blendshapes. Pham et al. (2018) directly map the audio

to the blendshape parameters even though their results suffer from

strong jitter. While current audio-driven facial expression techniques

produce interesting results, most of them show results on voice data

recorded in controlled studios with minimal background noise (Cha et

al., 2018; Cudeiro et al., 2019; Karras et al., 2017; Liu et al., 2015; Pham

et al., 2018; Taylor et al., 2017). Cudeiro et al. (2019) show interesting

results in handling different noise levels.

Nevertheless, there is currently no audio-driven technique that esti-

mates high quality facial expressions in-the-wild, as well as estimates

the head motion and body conversational gestures. The proposed

method uses the face model as the first category. In contrast to other

methods, the proposed approach applies a simple but effective ap-
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Figure 4.2: The 3D annotations are created from monocular in-the-wild videos
using the monocular dense 3D facial reconstruction (dense face mesh visual-
ized) approaches of Garrido et al. (2015), 3D hand pose estimation of Zhou
et al. (2020), and 3D body pose estimation approach of Mehta et al. (2020).

proach to jointly learn the 3D head and face animation with body

gestures, by directly regressing the facial parameters captured from a

large corpus of community video.

4.3 dataset creation

4.3.1 Creating 3D Annotations from Video

A major bottleneck for previous speech-driven animation synthesis

work is the generation of sufficient training data. Many methods resort

to complex in-studio capture of face and full-body motion with multi-

camera motion capture systems. Therefore, this chapter proposes the

first approach to extract automatic annotations of 3D face animation

parameters, 3D head pose, 3D hands, and 3D upper body gestures

from a large corpus of community videos with audio. In this way,

much larger training corpora spanning over several long temporal

windows and diverse subjects can be created more easily.

In particular, the approach uses the dataset of Ginosar et al. (2019a),

which features 144 hours of in-the-wild video of 10 subjects (e.g., talk

show hosts) talking into the camera in both standing and sitting poses.

From these videos, Ginosar et al. (2019a) extracted 2D keypoints of the

arms and hands, as well as 2D sparse face landmarks. They used a

subset of these annotations to train a network synthesizing only 2D
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arm and finger motion from speech. While showing the potential of

speech-driven animation, their approach does not synthesize 3D body

motion; does not synthesize 3D motions of the torso, such as leaning,

which is an element of personal speaker style; and does not predict 3D

head pose and detailed face animation parameters. To train a method

jointly synthesizing the latter more complete 3D animation parameters

in tune with input speech, the approach introduced in this chapter

annotates the dataset with state-of-the-art 3D face performance capture

and monocular 3D body and hand pose estimation algorithms, see

Figure 4.2 and Figure 4.3.

For monocular 3D face performance capture, the optimization-based

tracker of Garrido et al. (2015) is used to predict parameters of a

parametric face model, specifically: 64 expression blend shape coeffi-

cients, 80 PCA coefficients of identity geometry, 80 PCA coefficients

of face albedo, 27 incident illumination parameters, and 6 coefficients

for 3D head rotation and position. The face tracker expects tightly

cropped face bounding boxes as input. The face tracker from Saragih

et al. (2011) is used for bounding box extraction and temporally filter

the bounding box locations; the experimental results found this to be

more stable than using the default 2D face landmarks in Ginosar’s

dataset for bounding box tracking. To train the algorithm, we use the

face expression coefficients θFace ∈ R64 and head rotation coefficients

R ∈ SO(3) are used.

For 3D body capture, the approach needs to be robust to body

self-occlusions, occlusions by other people, occlusions of the body by

a desk (sitting poses by talk show hosts), or occlusions by camera

framing not showing the full body, even in standing poses. Therefore,

the XNect (Mehta et al., 2020) monocular 3D pose estimation approach

is used as it is designed to handle these cases. Specifically, in each

video frame, the 3D body keypoint predictions from XNect’s network

output are extracted to obtain the 13 upper body joints (2 for head, 3

for each arm, 1 for neck, 1 for spine, 3 for hip/pelvis). This results in a

39-dimensional representation K ∈ R39 for the body pose. The head

rotation R predicted by the face tracker is grouped together with the

3D body keypoints K in a 42-dimensional vector θBody ∈ R42.

To perform hand tracking, the state-of-the-art monocular 3D hand

pose estimation method of Zhou et al. (2020) is employed. To ensure

good prediction results, we first tightly crop the hand images using

the 2D hand keypoint annotations provided by Ginosar et al. (2019a)
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before feeding it to the 3D hand pose predictor. Since the hands can

be occluded or out of view, we also employ an off-the-shelf cubic

interpolation method to fill in potentially missing 3D hand poses

information. This results in 21 joints prediction for each hands, which

we group into a 126-dimensional vector θHand ∈ R126.

To improve the robustness of our data, we exclude the data if the

prediction confidence of the face landmarks or hand keypoints within

a certain number of frames falls below a stipulated threshold. This is

obtained by reinterpreting the maximum value of the 2D joint heatmap

prediction of the body parts produced by the tracker as a confidence

measure. We also remove 4 out of 10 subjects provided by Ginosar

et al. (2019a) due to the low resolution of the videos which lead to poor

quality 3D face reconstruction results. Our final 3D dataset consists

of more than 33 hours of videos from 6 subjects. We use the same

training, validation, and test split as the original 2D dataset, which

comprise around 80%, 10%, and 10% of the total data respectively, even

after accounting for the excluded data.

The 3D body and hand pose prediction as well as the head rotation

results are temporally smoothed using a Gaussian filter with a standard

deviation of σ = 1.5 to improve the visual quality of the output. The

same filter is also applied to the ground truth sequences in the video

results.

4.3.2 Annotation Quality

The training data is created by annotating in-the-wild videos using 3D

monocular tracking approaches. Naturally, the quality of our pseudo

ground truth is less accurate compared to using a standard multi-view

motion capture or performance capture system. Unlike Ginosar et al.

(2019a) which evaluate their automatic 2D labels against human anno-

tations, it is not possible for us to quantitatively measure the quality

of our 3D annotations. However, due to the controlled setting of the

recordings, most of the tracked videos consist of commonly observed

poses often found in the training set of the monocular tracking meth-

ods we employ. Through manual inspection of the tracking results, we

found that the prediction is quite reliable for our task.

To filter out low-quality data, the average confidence of the 2D key-

point predictions over a sequence is used based on a certain threshold.
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Figure 4.3: Additional subject-specific examples of the 3D face, body, and
hand annotations in the proposed training data obtained from monocular
estimation approaches.
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Figure 4.4: Occlusion scenarios are commonly observed in the video corpus,
and they happen frequently for standing subjects. To alleviate this issue, a
confidence-based filter is applied to remove these occluded frames. To ensure
sufficient training data can be collected for each subject, the filtering threshold
is designed to tolerate hand occlusion cases if they occur over a short time
period.
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However, the hands of the subject are also often out of view, especially

in the videos where the subjects are standing, e.g. Ellen and Conan. To

prevent losing a significant amount of data, our confidence threshold

is designed to allow some of the occluded hand cases to be included

in the dataset if they occur over a short time window. Some of these

hand occlusion examples are shown in Figure 4.4.

Please refer to the original paper of the 3D body tracker XNect

(Mehta et al., 2020), the hand tracker (Zhou et al., 2020), and the face

tracker (Garrido et al., 2015) for the detailed quantitative performance

of their respective methods on several benchmark datasets.

4.3.2.1 2D-to-3D Lifting vs. Image-to-Body Pose

The footage from Ginosar et al. is annotated with 2D body keypoint

locations. One way to achieve 3D annotations is by running state-of-

the-art 2D-to-3D lifting methods such as Martinez et al. (2017a) and

Pavllo et al. (2019) on the provided 2D keypoints. However, multiple

subjects in the dataset are either seated behind a desk or have parts of

the upper body outside the image frame. The occluded pelvis (by the

desk) causes the already ambiguous 2D-to-3D lifting approaches to

have no information for correctly predicting the torso leaning, which

is crucial for conveying conversational gestures. Approaches such as

XNect (Mehta et al., 2020) are designed to be robust against partial

occlusion and utilize image cues to predict the potentially missing

torso.

4.3.3 Audio features pre-preprocessing

Similar to Suwajanakorn et al. (2017), we compute the Mel-frequency

cepstral coefficients (MFCC) (Davis and Mermelstein, 1980; Mermel-

stein, 1976) of each input video frame after normalizing the audio using

FFMPEG (FFmpeg Developers, 2016; Robitza, 2019). This work uses

CMU Sphinx (Lamere et al., 2003) for computing the coefficients, and

use 13 MFC coefficients and an additional feature to account for the

log mean energy of the input. These, together with their temporal first

derivatives, yield a 28-dimensional vector FMFC ∈ R28 representing

the speech input at each time step. MFCC encodes the characteristics of

how human speech is perceived, which make it useful for a wide range

of applications such as speech recognition. Encoding the characteristics
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Figure 4.5: The proposed approach produces a temporal sequence of 3D facial
expression parameters, head orientation, and 3D keypoints of the upper body
and hands given a speech signal as input. An adversarial loss is employed in
which the discriminator network tries to distinguish whether the input audio
and body pose features are real or generated by the generator network.

of speech perception make MFC coefficients a good representation for

predicting facial expressions because modulation of face shapes is a

part of the speech production process. For predicting body gestures,

the change of MFCC features over the sequence carries the rhythm

information needed to produce beat gestures.

4.4 approach

The proposed approach produces a temporal sequence of 3D facial

expression parameters, head orientation, 3D body, and 3D hand pose

keypoints given a speech signal as input. Temporal variations in these

aforementioned parameters contain gestural information. As described

in section 4.3.3, the speech input is pre-processed to yield MFC based

feature frames FMFC[t] ∈ R28 for each discrete time step t. The facial

expression parameters at each time step are indicated as θFace[t] ∈ R64,

3D keypoints for both hands as θHand[t] ∈ R126, and the head orienta-

tion and 3D body keypoints are represented together as θBody[t] ∈ R42.

The temporal sequences are sampled at 15Hz.
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(a) Generator architecture.

(b) Discriminator architecture.

Figure 4.6: Details of the proposed network architecture. The design of the
generator has a common encoder, but separate decoders for facial expression
parameters, hands, and body pose (including head pose). The numbers in
the blocks represent the number of feature channels output by the block. The
discriminator uses the body and hand parameters which we concatenate with
the audio features as input to the network.

4.4.1 Network Architecture

Similar to other adversarial learning-based approaches, the proposed

model consists of 2 main neural networks, referred as the generator

network G and discriminator network D. The proposed design follows

prior human motion and gesture synthesis approaches (Ginosar et al.,

2019a; Holden et al., 2016, 2015) by using 1D convolutional networks

to model the temporal relationship of the audio and body features

across different frames.

A 1D convolutional Encoder-Decoder architecture is employed for

the generator network G to map the input audio feature sequence

FMFC[0 : T] to 3D face expression parameter sequence θ̂Face[0 : T],
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3D body pose parameter sequence θ̂Body[0 : T], and 3D hand pose

parameter sequence θ̂Hand[0 : T] which is also trained in a supervised

manner. Here, θ̂Face[0 : T], θ̂Body[0 : T], and θ̂Hand[0 : T] refer to the

predicted outputs for the 3D face, body, and hands, respectively.

The proposed 1D convolutional architecture for the generator G
is adapted from a reference implementation (Usuyama, 2018) of the

U-Net (Ronneberger et al., 2015) architecture originally proposed for

2D image segmentation. The architecture utilizes a single encoder,

comprised of 8 1D [Conv-BN-ReLU] blocks with a kernel size of 3, and

is interleaved with MaxPool after every second block except the last.

The last block is followed by an upsampling layer (nearest neighbor).

Each face, body, and hand sequences utilize a separate decoder to learn

body-part-specific motion characteristics. The decoders are symmetric

with the encoder and comprised of 7 1D [Conv-BN-ReLU] blocks and

a final 1D convolution layer, interleaved with upsampling layers after

every second block. The decoders, being symmetric with the encoder,

utilize skip connectivity from the corresponding layers in the encoder.

The discriminator network is designed to predict whether its input

audio and pose features are real or not. This network is comprised of 6

1D [Conv-BN-ReLU] blocks with a kernel size of 3, and is interleaved

with MaxPool after every second block. Afterwards, it is followed by a

linear layer and a sigmoid activation layer.

A schema of the architecture is shown in Figure 5.2. Figure 5.4 shows

a diagrammatic representation of the network architecture.

4.4.2 Training Details

The proposed networks are trained on subject specific training sets in

order to capture the particular gesture characteristics of the subject.

Each mini-batch for training comprises of a random sampling of such

64-frame sub-sequences extracted from all training sequences. Adam

optimization algorithm (Kingma and Ba, 2014) is used for training,

with a learning rate of 5e − 4, a mini-batch size of 25, and trained

until 300,000 iterations per subject. Since the generator network is

fully convolutional, the network can handle input speech features of

arbitrary duration during test time.

The proposed generator network G is supervised with the following

loss terms:
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LReg = w1 ∗ LFace + w2 ∗ LBody + w3 ∗ LHand. (4.1)

LFace is the L2 error of facial expression parameters

LFace =
T−1

∑
t=0
‖θFace[t]− θ̂Face[t]‖2.

LBody is the L1 error of 3D body keypoint locations and head orienta-

tion, and LHand is the L1 error of 3D hand keypoint locations

LBody =
T−1

∑
t=0
‖θBody[t]− θ̂Body[t]‖1,

LHand =
T−1

∑
t=0
‖θHand[t]− θ̂Hand[t]‖1.

The hyperparameters are defined as w1 = 0.37, w2 = 600, and w3 =

840 to ensure that each term is equally weighted during training.

In practice, experiments show that only employing L1 or L2 error

for body keypoints results in less expressive gestures, as has also been

pointed out in prior work on 2D body gesture synthesis of Ginosar

et al. (2019a). Inspired by the adversarial training approach of Ginosar

et al. (2019a), the proposed experiments show that incorporating an

adversarial loss using a discriminator network D which is trained

to judge whether an input pose is real or fakely generated by the

generator G, can lead to more expressive gestures that are also in-

sync with the speech input. When trained together with the generator

network in a minimax game scenario, it will push the generator to

produce a higher quality 3D body and hand pose synthesis in order to

fool the discriminator. The proposed method follows similar approach

to the work of Ferstl et al. (2019) by using not only the pose but also the

audio features as input to the discriminator. This way, the discriminator

is not only tasked to measure if the input gesture looks real, but it

also needs to determine if the gesture is in-sync with the input audio

features or not. Since the multi-modality of the body gestures mainly

occurs for the body and hands, the facial expression parameters are

excluded from the adversarial loss formulation:
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LAdv(G, D) = EFMFC [log(1− D(FMFC, G∗(FMFC)))]

+ EFMFC ,θBody,θHand [log D(FMFC,θBody,θHand)] (4.2)

where G∗ indicates that only use the predicted θBody and θHand outputs

of the original generator network G.

Combined with the direct supervision loss, the overall loss is

L = LReg + w ·min
D

max
G
LAdv(G, D) (4.3)

where w is set to be 5.

4.5 results

The proposed approach addresses essential aspects of animating virtual

humans: synthesizing facial expressions, body, and hand gestures in

tune with speech. For visualization of the results, as well as for the

user study, to allow observers to focus on the face and body motion,

we render an abstract 3D character that showcases all the important

skeletal and facial elements without the risk of falling in the uncanny

valley, following similar approaches in prior work (Ginosar et al., 2019a;

Levine et al., 2009). Since the proposed approach only predicts upper

body motion, we fuse it with a pre-recorded base motion of the lower

body in both sitting and standing scenarios.

Since the synthesis of conversational gestures is a multi-modal prob-

lem, direct comparison with the tracked annotations would not be

meaningful for all aspects of the synthesized results, particularly

for evaluating the realism of the synthesized gestures. The proposed

method is evaluated through extensive user studies to judge the quality

and the plausibility of our results, and it is compared against various

baselines. Further, the prediction of the facial expressions is measured

by comparing the 3D lip keypoints extracted from selected vertices

of the predicted 3D face model against the automatically generated

ground truth lip keypoints obtained from the source image. A qualita-

tive example of the synthesis result is shown in Figure 4.7.
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Table 4.1: User study result measuring both the naturalness and synchroniza-
tion between the synthesized face+body+hand gesture and speech.

Method Naturalness Sync.

Ground truth 4.29± 0.86 4.39± 0.77
Direct regression 3.54± 1.11 3.78± 1.08

LSTM (adopted from Shlizerman et al.
(2018))

3.15± 1.03 3.21± 1.11

Adv. loss on velocity (adopted from Gi-
nosar et al. (2019a))

3.03± 0.98 3.38± 0.95

Adv. loss on audio+3D pose (proposed) 4.05± 0.85 4.00± 0.91

4.5.1 Baseline Comparisons

The proposed approach is evaluated against other methods that per-

form body gesture prediction, which use audio features as input. Other

baseline methods are trained using the same MFCC features described

in 4.3.3. The first baseline is the direct regression 1D CNN model of the

proposed network architecture without using adversarial loss. Next,

the method is compared against a Recurrent Neural Network (RNN)-

based Long Short-term Memory (LSTM) architecture by Shlizerman

et al. (2018), which is originally designed to temporally predict 2D

hand and finger poses. Since the original method is not designed to

handle multi-modal data, we train three LSTM models for face, body,

and hand gesture are trained separately on the newly proposed 3D

data.

An adaptation of Ginosar et al. (2019a) is trained using the proposed

model with the adversarial loss to distinguish between the real and

fake synthesis of the gesture in the velocity space similar to their pro-

posed approach and use this version as the baseline comparison. The

proposed method is also compared against the work of Alexanderson

et al. (2020a) by retraining their method on our in-the-wild 3D data.

Their model is originally trained on clean mocap data of 3D body pose

without face or hand annotations. The model of Alexanderson et al.

(2020a) is found to be sensitive to the hyperparameters used. Because

of this, it is only trained on the body and hand data to simplify the

problem. An optimal set of hyperparameters that can produce the

best results in terms of naturalness and synchronization are manu-

ally searched based on the recommendation of the original authors

of the work. Following their instruction, multiple experiments were
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conducted by varying the number of units H between 512, 700, and 800

and the number of flow-steps K from 8 up to 16. The MoGlow-based

model is found to produce the best results when using the number of

units H = 800 and the number of steps K = 10.

4.5.2 Gesture Synthesis User Study Evaluation

Two separate user studies are conducted for the qualitative evalua-

tion of the proposed method. The first user study compares methods

that synthesize the 3D face, body, and hand gestures from audio. In

particular, the participants were shown 3 out of 6 randomly selected

video sequences (12 seconds/sequence) synthesized by the proposed

method, along with the baselines, and the ground truth (tracked) an-

notations. This study involved 67 participants. Each user was asked

to judge the naturalness and the synchronization between the audio

and the generated 3D face and body gestures on a scale of 1 to 5, with

5 being the most plausible and 1 being the least plausible. As shown

in Table 4.1, the ground truth sequences are perceived as both the

most natural and in-tune with the input speech compared to other syn-

thesized gesture videos, which is rated at 4.29± 0.86 and 4.39± 0.77,

respectively. Compared to other baseline methods, the participants

agree that the results produced by the proposed method look more

natural and in tune with the speech audio with the score of 4.05± 0.85

in terms of naturalness and 4.00± 0.91 in terms of synchronization

with the speech.

Table 4.2: User study result measuring both the naturalness and synchroniza-
tion between the synthesized body+hand gesture and speech. The users were
specifically asked to ignore the quality of the facial expression.

Method Naturalness Synchron.

MoGlow (Alexanderson et al. (2020a)) 2.88± 1.02 3.11± 1.13

Proposed 4.01± 0.82 3.93± 0.92

A second user study is conducted to evaluate the synthesis of the

3D body and hand gestures and compare the proposed method with

the MoGlow-based model of Alexanderson et al. (2020a). For this

study, the participants were specifically asked to ignore the quality

of the facial expressions in the video. To ensure a fair comparison,

all videos presented in this study were synthesized by using the 3D



4.5 results 65

facial expression predicted by the proposed method. Similar to the

first study, each of the 45 participants was asked to rate the quality of

the gestures from 3 out of 6 possible videos for each method on a scale

between 1 to 5. As shown in Table 4.2, the proposed method is rated

as both more natural and in-sync with the audio.

Table 4.3: Quantitative comparison to baseline methods for lip motion predic-
tion error against the ground truth (in mm). (*) indicates that the method is
adopted and retrained on the proposed 3D speech-to-gesture dataset.

Method Oliver Meyers Ellen

Direct regression 0.29 0.35 0.29

LSTM*
(Shlizerman et al. (2018))

0.3 0.36 0.30

Adv. loss*
(Ginosar et al. (2019a))

0.29 0.35 0.3

Random 0.49 0.57 0.47

Proposed 0.29 0.35 0.28

Method Kubinec Stewart O’Brien

Direct regression 0.28 0.39 0.37
LSTM*

(Shlizerman et al. (2018))
0.32 0.41 0.39

Adv. loss*
(Ginosar et al. (2019a))

0.29 0.39 0.38

Random 0.43 0.57 0.52

Proposed 0.28 0.39 0.37

4.5.3 Facial Expression Evaluation

Table 4.3 compares the 3D lip keypoints of the generated face ver-

tices corresponding to the facial expressions predicted by various

approaches against the image-based face tracker’s 3D lip keypoints

in a neutral head pose. The comparison was performed on the whole

test set, which consists of 578 sequences (12 seconds/sequence) across

all subjects. As a sanity check baseline, the evaluation also computes

the difference between the optimization-based tracked annotations

of one sequence to the optimization-based annotations on a different
sequence chosen randomly. The evaluation shows that the proposed

method achieves similar or slightly better performance against other

proposed baselines. This result also demonstrates that the proposed
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unified whole-body architecture is suitable for simultaneous face ex-

pression synthesis at decent quality and better than simultaneous

face synthesis with other body gesture synthesis architectures. Note

here that the work proposed in this chapter is not claiming that the

proposed design advances the state-of-the-art in face-only expression

synthesis. This is outside the scope of this chapter and left for future

work.

4.6 discussion

While mouth expressions are strongly correlated with speech, the rest

of the intended generation targets, such as body gestures, do not have

a one-to-one mapping. Coupled with the noisy nature of the proposed

monocular data, as observed in the experiments, this multi-modal

nature of the problem makes both designing and analyzing a stable

expressive model challenging. It is also observed that a lower value

of L1 or L2 loss on the validation set does not always guarantee to

produce a qualitatively better gesture synthesis, which further shows

the importance of the adversarial loss. The data is also inherently noisy

due to the use of 3D monocular trackers, which may lead to jittery 3D

motion that can affect the performance of the proposed model and

comparison baselines. However, the effect of the noise is observed to

be minimal, as it can be suppressed by applying temporal filters to the

prediction output.

Based on the observed results, it can be argued that the discriminator

network can potentially be used as a plausibility metric to rate the

quality of a gesture synthesis from speech, similar to how the inception

score is used Salimans et al. (2016), if trained with enough gesture and

noise variations. One way to validate this idea is to train the model

to classify whether its audio-gesture pair input is in-sync or off-sync.

The ground truth audio-gesture pairs can be used directly as in-sync

(positive) samples, while off-sync (negative) samples can be prepared

by pairing the audio sequence with a different gesture from a random

pair.

When the discriminator network is trained in this setup, it can

reliably classify unseen test pairs of subject “Oliver” with high accuracy

of 87.4%, see Table 4.4. Unfortunately, since the classifier is trained

only on ground-truth motion sequences, it is not yet possible to extend



4.6 discussion 67

Figure 4.7: Several qualitative result examples of the proposed approach.
As demonstrated in the user study (Table 4.1), the method can generate a
plausible gesture of 3D body and hands, as well as 3D facial expression
from speech input across multiple speakers when trained in a subject-specific
manner. Motion visualization is based on the Harris shutter effect.
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this model as a quantitative metric for gesture synthesis methods.

When this classifier is tested on the baseline models, it produces

inconsistent results. For example, it rates the proposed model to be

more plausible than the ground truth sequences, which contradicts

the result of the user study. A specific dataset containing different

gesture noise characteristics may be required if one wants to extend

this classifier into a more general gesture plausibility metric.

Table 4.4: Quantitative result of the discriminator when trained as an audio-to-
body sync/off-sync pair classifier on Oliver test sequences (higher is better).

Seq. length In-sync pair Off-sync pair Combined

64 frames 82.7% 92.1% 87.4%

32 frames 81.4% 83.1% 82.2%

16 frames 74.1% 80.8% 77.5%

4.7 conclusion

This chapter proposes the first approach for full 3D face, body, and

hand gesture prediction from speech to automatically drive a virtual

character or an embodied conversational agent. Inspired by the promis-

ing monocular human pose estimation result presented in Chapter 3,

this work leverages monocular 3D face reconstruction and body pose

reconstruction approaches on in-the-wild footage of talking subjects to

acquire training data for the proposed learning-based approach, gen-

erating 3D face, body, and hand pose annotations for approximately

33 hours of footage. The key insight on incorporating an adversarial

penalty not only on the 3D pose but also its combination with the

audio input allows the model to successfully generate expressive body

gestures that are in-sync with the speech.

The method presented in this chapter demonstrates the ability of

a deep neural network model to resolve the problem of regressing to

the mean pose commonly found in speech-driven synthesis tasks. The

following chapter extends this idea by allowing user-guided gesture

modification from various control signals, which is a desirable feature

in a 3D animation pipeline.
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C O N T R O L L A B L E S P E E C H - D R I V E N 3 D G E S T U R E

S Y N T H E S I S U S I N G D ATA B A S E M AT C H I N G

Chapter 4 presents a deep learning-based approach that shows promis-

ing results for synthesizing 3D human gestures from speech input.

However, that approach offers limited freedom to incorporate addi-

tional user control. Furthermore, training an audio-to-gesture mapping

in a supervised manner often does not capture the multi-modal nature

of the data, mainly because the same audio input can produce differ-

ent gesture outputs. To address these problems, this chapter presents

an approach for generating controllable 3D gestures that combine

the advantage of database matching and deep generative modeling

(published as Habibie et al., 2022).

The method proposed in this chapter predicts 3D body motion by

sequentially searching for the most plausible audio-gesture clips from

a database using a k-Nearest Neighbors (k-NN) algorithm that con-

siders the similarity between the input audio and the previous body

pose information. To further improve the synthesis quality, this chapter

proposes a conditional Generative Adversarial Network (cGAN) model

to provide a data-driven refinement to the k-NN result by compar-

ing its plausibility against the ground truth audio-gesture pairs. The

novel approach enables direct and more varied control manipulation

that is not possible with prior learning-based counterparts, such as

user-guided manipulation that alter the position or velocity of the

generated gesture to reflect a particular speaking style or emotional

state. Experiments show that the proposed approach outperforms re-

cent models on control-based synthesis tasks using high-level signals

such as motion statistics, e.g., hand speed or wrist height placement.

Moreover, this strategy also enables flexible and effective user control

for lower-level signals, such as direct frame-based gesture replacement

based on specific matching criteria, thus opening the possibility for

semantic control based on specific keywords observed in the given

input speech.

69
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Figure 5.1: The approach proposed in this chapter allows for controllable
speech-to-gesture synthesis by combining a novel database matching algo-
rithm and a conditional adversarial network.

5.1 introduction

Creating human-like 3D avatars is important in order to provide im-

mersive experiences in virtual worlds. Advances in 3D vision and

graphics can now synthesize human-like virtual characters that emu-

late various aspects of human anatomy, thus potentially simplifying the

production of personalized avatars. Designing an easy and accessible

way to control such avatars can improve social interactivity between

users and such avatars in shared virtual environments.

An appealing approach for developing intuitive character control is

to synthesize character gestures from input speech. However, devel-

oping an algorithm for speech-to-gesture synthesis is known to be a

challenging task (Alexanderson et al., 2020b; Ferstl et al., 2019; Ginosar

et al., 2019b; Habibie et al., 2021b). This is partly due to the nature

of the audio-to-gesture relationship, where many different gesture se-

quences may be appropriate for a given speech input. Hence, training a

regression-based model in a supervised manner can lead to unnatural

“averaged” gesture results as the consequence of regressing multiple

outcomes of a single input signal. While recent methods (Ferstl et al.,

2019; Ginosar et al., 2019b; Habibie et al., 2021b) use adversarial learn-

ing to mitigate the problem of “averaged” synthesis, they provide very

limited options for controlling the output, and hence they predict only

one particular motion sequence for every speech input. Since human
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gesture is known to be related to the personality and internal state of

the speaker (Smith and Neff, 2017), the ability to control body motion

based on a specific input signal, such as their emotional state can

significantly improve the usability of the method. Recently, generative

models were employed to introduce probabilistic synthesis to allow

some degree of high-level gesture control (Alexanderson et al., 2020b).

However, such methods typically need high-quality training data to

work well, are slow to train, and require separate pre-trained models

to produce different types of control, thus limiting their usability when

multiple aspects of the control signal should be varied.

This chapter proposes a new approach for controllable 3D body

gesture generation from speech inspired by the popular Motion Match-

ing algorithm commonly found in locomotion synthesis (Büttner and

Clavet., 2015) (see Figure 5.2). At the core of the method is a novel k-

Nearest Neighbor-based (k-NN) algorithm that selects short clips from

a database and is specifically designed to leverage the similarity both

in the audio and in the motion space to ensure a continuous, natural,

and synchronous gesture output. The quality of the initial synthesis

is further improved by passing the k-NN output into a conditional

Generative Adversarial Network (cGAN). The cGAN is conditioned

on both the audio and the motion synthesized by the k-NN as input

and is tasked with producing a new motion that looks similar to the

real ground truth motion in the database. This allows the network

to perform correction on any less plausible motion generated by the

k-NN, especially around the transition boundary between segments.

The proposed gesture synthesis formulation can be naturally extended

to select motion based on control information by only considering

motion candidates that match the control criteria. Unlike the most

related approach of Alexanderson et al. (2020b), the synthesis output

can be controlled at any particular time and with various types of

conditioning without the need to re-train the model for every given

type of control signal. Furthermore, the control criteria extend beyond

high-level signals, such as motion statistics, to include direct per-frame

manipulation, which can be exploited for various exciting applications

such as semantic-level control.

Experiments show that the proposed model outperforms related

control-based audio-driven synthesis (Alexanderson et al., 2020b), both

in terms of naturalness and audio synchronization. Furthermore, even

in the absence of control, the proposed technique achieved better
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Figure 5.2: The proposed pipeline consists of two main stages. In Stage
1, the method first employ a k-Nearest Neighbor search to find the most
plausible sequence considering the audio and previous pose similarity in the
database. At any given time step, additional information can be provided
to incorporate further control over of the synthesis output. The 3D gesture
generated through Stage 1 is then passed to a conditional GAN trained to
produce a refined gesture sequence by comparing the output against real
audio-gesture sequences.

synthesis quality than the previous state-of-the-art approach (Habibie

et al., 2021b). In summary, the contributions proposed in this chapter

are three-fold:

1. A novel Motion Matching-based algorithm for gesture synthesis

from speech,

2. A deep generative modeling approach to resynchronize and

enhance the synthesis quality from the k-NN by leveraging the

whole training data that cannot be fully exploited using database

features alone,

3. A more interpretable design that enables a greater set of control

signals than other previous learning-based approaches, thus

facilitating a more comprehensive range of potential applications.
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5.2 related work

Several relevant related works on the problem of speech-driven gesture

synthesis have been discussed in Chapter 4. This section additionally

surveys prior arts for 3D human motion control since it is one of the

main objectives of the method introduced in this chapter.

Graph-based algorithms were amongst the most popular choice

for classical data-driven character animation and control (Arikan and

Forsyth, 2002; Kovar et al., 2002; Lee et al., 2002; Safonova and Hodgins,

2007). For example, a motion graph can be constructed to model

connections and transitions between motion clips in a dataset, and

motion synthesis can be achieved by traversing the graph. However,

graph-based approaches do not scale well with data and at times,

can be imprecise and unresponsive to the control input. Instead of

directly using the actual pose representation in the search space of

the graph-based approaches, Lee et al. (2014) propose motion fields
to generalize the motion representation into a higher dimensional

vector space, enabling more responsive synthesis. To achieve control,

a reinforcement learning (RL) model is trained to find the best action

that can satisfy the user’s input. Büttner and Clavet. (2015) propose

Motion Matching to further simplify this process and approximate the

RL algorithm by casting it as a k-Nearest Neighbor search. Motion

generation and control are performed by selecting the most suitable clip

from the database that best matches the previous pose and the user’s

desired trajectory, see also Figure 5.3. Holden et al. (2016) propose

one of the earliest deep learning based framework to achieve 3D

human motion synthesis and control. Habibie et al. (2017) explore the

possibility of using a deep generative model for 3D motion control

based on a combination of a variational autoencoder (Kingma and

Welling, 2014) and an LSTM network. Holden et al. (2017) propose a

real-time character control approach using a phase-functioned neural

network. Zhang et al. (2018) extend this approach to achieve high-

quality synthesis on locomotion data where the walking phase is

unstructured. Starke et al. (2019) propose a further extension of this

idea to enable scene-aware motion control.

Holden et al. (2020) propose a fully learning-based approach to

Motion Matching for locomotion by emulating the database look-up

process with a neural network regressor. This is possible for locomotion
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Figure 5.3: A schema of the Motion Matching algorithm. Figure taken from
Ubisoft (2020).

control since there is a precise mapping between motion trajectory and

the corresponding 3D joint position of the character. Unfortunately,

this approach does not work well for speech-to-gesture synthesis. This

is because there are multiple plausible 3D gestures that can be mapped

from a single speech input, making it very difficult to replace database

search using a standard regression algorithm. In contrast, this chapter

used a classical nearest neighbor-based approach to perform synthesis.

Since the k-NN approach makes direct use of the input data, the

proposed algorithm can be extended to allow various types of gesture

control by restricting access to subsets of this data. A learning-based

model is further used to refine and re-synchronize the outcome of the

k-NN.

5.3 approach

The proposed system consists of two main components. This section

first describes the design of the proposed nearest neighbor (k-NN)

algorithm for gesture synthesis and control. Then, it also describes the

design choices to improve the k-NN result through the use of a cGAN

to transform the gesture into a more natural and synchronized motion.
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5.3.1 Nearest Neighbor-based Gesture Synthesis

The proposed k-NN is inspired by the Motion Matching algorithm,

which has become a popular method of choice for locomotion synthesis

in the gaming industry due to its flexibility and good visual quality

(Büttner and Clavet., 2015; Holden et al., 2020). Direct selection over

the database using k-NN naturally avoids the problem of regressing

to the mean pose while also providing more flexible control options.

Multi-modal synthesis can be generated by either selecting different

k-values or choosing different pose initializations.

5.3.1.1 Input/Output Parameters.

The proposed k-NN algorithm takes as input a sequence of audio

features F = [f0, f1, ..., fT−1], one frame of previous initial pose features

p−1, and optionally a sequence of control masks C = [c0, c1, ..., cT−1],

where T is the number of frames in the sequence. The output is a

sequence of 3D body poses G = [g0, g1, ..., gT−1]. Each audio feature

frame ft and pose feature frame pt encode information about the rele-

vant future frames. The audio feature consists of the first 13 coefficients

of the Mel-frequency cepstral coefficients (MFCC) as well as the audio

log mean energy. The pose feature is derived from the 3D locations of

the wrists, elbows, index finger roots, and little finger roots of both

hands.

To find the output sequence, the input features need to be matched

with the sequences in the Matching Database. The database is con-

structed from a collection of ground truth audio and 3D body mo-

tion pairs. It consists of M sequences of training audio features F =

[F̃0, ..., F̃M−1], training pose features P = [P̃0, ..., P̃M−1], as well as

the corresponding gesture sequence G = [G̃0, ..., G̃M−1] where F̃m =

[f̃m
0 , ..., f̃m

Tmatch−1], P̃m = [p̃m
0 , ..., p̃m

Tmatch−1], and G̃m = [g̃m
0 , ..., g̃m

Tmatch−1]. The

sequences in the database are prepared by segmenting the original

videos into Tmatch = 64 frame chunks.

5.3.1.2 Details on Constructing the Audio and Pose Features.

Each audio feature at frame t stores the relevant audio information

at time t, t + 2, ..., t + 14 (at 15 fps). For the audio, we use the first

13 coefficients of the Mel-frequency cepstral coefficients (MFCC) as

well as the log mean energy of the input audio mt ∈ R14. We stack
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these together into a 1-D vector {mt, mt+2, ..., mt+14} = ft ∈ R112 (112

= 14 features × 8 frames). Similarly, every pose feature frame at time

t stores information about the 3D pose coordinate of both left and

right wrists, elbows, index finger root, and little finger root at time t,
t + 2, t + 4, and t + 6. We combine the 3D positions of all 8 joints into

a single vector pt ∈ R96 (96 = 2 hands × 4 joints × 3 dims × 4 frames).

This is equivalent to storing the hand trajectory within the next 0.5

seconds. The output pose at frame t contains the 3D coordinate of 13

body joints (pelvis-relative), and 21 joints for each hand, which we

combine into a 1-D vector gt ∈ R165 (165 = 55 joints × 3 dims).

5.3.1.3 Proposed Search Algorithm.

To find the optimal output gesture sequence G from the database, the

algorithm considers both the similarity with respect to the current test

audio features ft, as well as the previously searched pose features pt−1

for every N frame interval. Please note that each feature frame contains

information of future frames. In the first iteration, the previous pose

feature p−1 is initialized by either randomly sampling a frame from

the database or set to be the mean pose. Weighting the importance of

audio and pose terms is a challenging task since their quantities cannot

be directly compared. The proposed algorithm resolves this issue by

aggregating the similarity rank of the candidates in both audio and

pose space. For every iteration, a gesture sequence candidate is picked

if the sum of its audio and pose similarity rank is the lowest compared

to other candidates.

To speed up search computation, the best candidate from each

training sequence (F̃m, P̃m) in the database is pre-selected based on

either the pose similarity (“pose pre-selected”) or audio similarity

(“audio pre-selected”) before scoring them based on both pose and

audio similarity scores. This section focuses on the description of the

“pose pre-selected” k-NN version of the algorithm, which is also used

as input to the later stage, even though experiments also find the result

of “audio pre-selected” compelling.

The gesture selection is performed at a regular interval of N = 8

frames. During each iteration, given the current frame t, M pose

sequence candidates are first pre-selected from the database by com-

paring the Euclidean distance to the previous pose feature pt−1 at

frame t− 1, denoted as {p̂0
0:(N−1), p̂1

0:(N−1), ..., p̂M−1
0:(N−1)}. The similarity
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of the audio features is also measured by comparing the current test

audio feature ft against the corresponding audio feature frame candi-

dates from the database {f̂0
0:(N−1), f̂1

0:(N−1), ..., f̂M−1
0:(N−1)} using a cosine

distance metric.

To aggregate both metrics, two separate rankings are created based

on audio match quality and pose match quality using their similarity

scores. Afterward, both the pose similarity and audio similarity ranks

for every candidate are combined by adding their respective ranks in

both lists. This combined rank list Rcombined is then used as the new

metric to select the best gesture sequence. A gesture output candidate

g∗0:(N−1) is selected as the best output gesture gt:(t+N−1) for the current

frame t if its corresponding audio and pose features result in the lowest

rank in Rcombined.

Algorithm 1 summarizes the proposed matching-based approach.

5.3.2 Search Database

The Matching Database consists of 9624 unique gesture G̃, audio F̃,

and pose P̃ feature sequences, each of which is Tmatch = 64 frames,

as is commonly used for this dataset. We use the non-overlapping

“Oliver” sequences of the in-the-wild speech-to-gesture data originally

prepared by Ginosar et al. (2019b) and 3D tracked by Habibie et al.

(2021b) as the search database. This data consists of more than 11

hours of audio-gesture pairs of 3D face, body, and hand poses tracked

using state-of-the-art monocular trackers, and contain various range of

conversational 3D upper body and hand gestures. Table 5.1 describes

the detail of the search database used in the experiments.

5.3.2.1 Enabling Gesture Control with k-NN search.

Since the algorithm performs an explicit comparison between features

in the database, this process can be naturally extended to enforce

high to mid-level control over the synthesis, allowing a more direct

and interpretable way to achieve the desired behavior. For example,

simulating gesture generation that follows a particular motion statistic

can be achieved by simply labeling parts of the training data that satisfy

the criteria. For example, to produce a sequence of body gestures where

the left hand is always higher than the specified threshold r, the search

can be restricted to only consider frames where hand heights are higher
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Algorithm 1: audio-to-gesture k-NN search
Data:
list of audio feat. sequence F = [F̃0, F̃1, ..., F̃M−1],
list of pose feat. sequence P = [P̃0, P̃1, ..., P̃M−1],
list of gesture sequence G = [G̃0, G̃1, ..., G̃M−1],
F̃ = [f̃0, f̃1, ..., f̃Tmatch−1], P̃ = [p̃0, p̃1, ..., p̃Tmatch−1],
G̃ = [g̃0, g̃1, ..., g̃Tmatch−1],
f̃ ∈ R112, p̃ ∈ R96, g̃ ∈ R165

Input : k ∈ Z, the desired k-best neighbors,
audio feat. sequence F = [f0, f1, ..., fT−1],
control C = [c0, c1, ..., cT−1],
initial pose feat. p(−1),
f ∈ R112, p ∈ R96, c ∈ {0, 1}

Output : gesture sequence G = [g0, g1, ..., gT−1],
g ∈ R165

t = 0;
initialize G = [], P = [p(−1)];
while t < T do

P̂ = [], F̂ = [], Ĝ = [];
for m← 0 to M− 1 do

r = 0;
pdist = ∞;
for s← 1 to Tmatch − 1 do

if cs == 1 then
if d(p̂m

s ∈ P̃m, pt−1) < pdist then
pdist = d(p̂m

s ∈ P̃m, pt−1);
r = s;

end
end

end
append(P̂, p̂m

r:(r+N−1));

append(F̂, f̂m
r:(r+N−1));

append(Ĝ, ĝm
r:(r+N−1));

end
P̂ = {p̂0

0:(N−1), p̂1
0:(N−1), ..., p̂M−1

0:(N−1)};
F̂ = {f̂0

0:(N−1), f̂1
0:(N−1), ..., f̂M−1

0:(N−1)};
Ĝ = {ĝ0

0:(N−1), ĝ1
0:(N−1), ..., ĝM−1

0:(N−1)};
Raudio = relrank[d(f̂0

0, ft), d(f̂1
0, ft), ...];

Rpose = relrank[d(p̂0
0, pt−1), d(p̂1

0, pt−1), ...];
Rcombined = Raudio + Rpose (elem. wise);
sort Rcombined, sort its indices into Icombined;
i = Icombined[k];
append(G, ĝi

(0:(N−1)));

append(P, p̂i
(0:(N−1)));

t = t + N;
end
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Table 5.1: Summary of the search database for the “Oliver” sequences. The
data is recorded from an “in-the-wild” setting, and thus contain various types
of speech gestures unseen in other studio-captured datasets.

Total duration 11.4 hours

Total unique videos 105 videos

Total unique clips 9624 clips

Duration per clip 64 frames @ 15 fps

than r. Formally, this controlled synthesis can be performed by using

a binary control mask matrix c ∈ {0, 1}M×Tmatch which is constructed

by checking if the gesture at a particular frame t is eligible according

to the control signal or not. This allows us to limit the search space

to the desired data effectively. In practice, only the first and the last

frame of each search window (N = 8 frames long) are considered

to allow a broader range of possible options. Unconstrained gesture

synthesis can be seen as a special case where the value of c is always

one at every frame. Compared to the controlled synthesis performed

by MoGlow (Alexanderson et al., 2020b), the proposed control design

is more flexible as it can be used to mix different control criteria at

either the same or different frames seamlessly without requiring hours

of re-training the neural network for each given criteria. A range of

masks C can easily be calculated for various control features of interest.

5.3.3 Gesture Resynchronization using cGAN

The proposed experiments suggest that the 3D gesture produced in

the first stage appears natural and in-sync with the audio. However,

since the similarity metric of the k-NN serves as an approximation

to the real audio-gesture correspondence, its predicted frames may

not always lead to the most optimal solution. Furthermore, the use of

window-based search at a regular interval may also limit the ability

of the algorithm to consider longer correlations. To address these

issues, the synthesis quality is enhanced by passing the output of the

first stage into a learned conditional Generative Adversarial Network

(cGAN). Adversarial-based generative models are known for their

ability to produce high quality synthesis that closely matches the real

data distribution, especially if they are also guided by a conditional

input signal (Isola et al., 2017; Mirza and Osindero, 2014). To this end,
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the proposed approach uses a generator network G which transforms

an audio-gesture pair (F̄, GkNN) generated by the k-NN into another

pair (F̄, Gsyn) which has similar characteristics to the real audio-gesture

pairs {(F̄m, Gm
real)}

M−1
m=0 in the training data. Every feature f̄t ∈ R28 in

a sequence F̄ is denoted as the concatenation of the MFCC feature

mt ∈ R14 with its first derivative. A separate discriminator network

D is trained to classify between the real audio-gesture sequence pairs

from the real 3D gesture distribution and the fake audio-gesture pairs

generated by the k-NN. Both networks are trained in an alternating

fashion to compete with each other. Once the training converges, the

generator is expected to produce more realistic 3D body and hand

gestures given the conditioning 3D gesture input from the k-NN. As

the task of the generator is to update the initial 3D gesture produced

by the k-NN, experimental results suggest that using parent-relative

representation for Greal , GkNN , and Gsync leads to a more stable result.

The Wasserstein GAN loss formulation (Arjovsky et al., 2017) with

gradient penalty (Gulrajani et al., 2017) is used as the training objective

for the model:

LAdv(G, D) = EF̄,Greal

[
D(F̄, Greal)

]
−EF̄,Gsyn

[
D(F̄, Gsyn)

]
, (5.1)

where Gsyn = G(F̄, GkNN). Furthermore, the gradient penalty is de-

fined as follows:

LGP(G, D) = EGsyn

[
(‖ ∇Gsyn D(Gsyn) ‖ −1)2]. (5.2)

To ensure that the output of the generator can be guided by the

3D gesture produced by the k-NN, a reconstruction loss LRec =

L1(GkNN , Gsyn) is used to encourage gesture similarity between the

k-NN and generator output.

L = w1 · LRec + w2 · LAdv(G, D) + w3 · LGP(G, D). (5.3)

The architecture of the proposed network closely follows the ar-

chitecture introduced in Chapter 4 with several minor tweaks. The

generator takes as input MFCC features F̄ ∈ RB×Cm×Tmatch and the 3D

gesture GkNN ∈ RB×Cg×Tmatch , where B is the batch size, while Cm and

Cg are respectively the size of the audio and gesture features. For

the generator G, the encoder of the network is comprised of 8 blocks

of 1D convolution, 1D batch normalization (BN) (Ioffe and Szegedy,
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2015, and ReLU activation functions Nair and Hinton, 2010). A Max

Pooling layer is used after every second block with the exception of

the last. The decoder consists of 8 blocks mirroring the encoder, each

of which contains [1D conv, 1D BN, ReLU] layers except for the last

one, which uses just a single 1D convolution to produce the final resyn-

chronized gesture Gsyn. The decoder blocks are interleaved with an

upsampling layer after every second block. On the other hand, the

discriminator takes as input the MFCC features F̄ ∈ RB×Cm×Tmatch and

either the real Greal ∈ RB×Cg×Tmatch or generated GkNN ∈ RB×Cg×Tmatch

gesture sequence (see Equation 1). The discriminator D consists of

6 blocks of 1D convolution, 1D instance normalization, and a leaky

ReLU activation function with an Average Pooling layer after every

second block, followed by a fully-connected layer at the end to produce

a scalar value that rates the similarity of the input with respect to the

real audio-gesture distribution.

Figure 5.4 shows a detailed representation of the cGAN-based resyn-

chronization network architecture. We use a similar architecture to

Habibie et al. (2021b) with a modification to accommodate the input

motion from the k-NN. The input channel of the first layer of the

generator consists of 193 parameters (165 parameters for body+hand

and 28 parameters for audio) instead of only 28 parameters. Since it

does not predict facial expressions, the cGAN uses only one decoder

which produces 165 parameters as output. The incorporation of the

additional motion matched input has not been previously explored.

A standard WGAN-GP formulation is employed to train the method.

To this end, the last sigmoid layer is removed from the discriminator.

The generator is updated after every 5 iterations to ensure that the

average of the combined real and fake critic training curve fluctuates

around 0.

5.3.4 Training Details

The method is trained using the 3D annotated speech-to-gesture data

introduced in Chapter 4. A new dataset is prepared to train the cGAN

resynchronization network, which contains audio-gesture sequences

with a strided overlap of 5 frames between each consecutive sample.

Since the adversarial loss compares the real 3D gesture sequence Greal

with the “fake” or k-NN-generated 3D gesture sequence GkNN , the
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(a) Generator architecture.

(b) Discriminator architecture.

Figure 5.4: The proposed network for the cGAN gesture resynchronization.
The generator takes as input the MFCC audio feature and the 3D gesture
generated by the k-NN and produces a refined 3D gesture. The numbers
in the blocks represent the number of feature channels output by the block.
Since Wasserstein GAN formulation with Gradient Penalty is employed, the
last layer of the discriminator or critic network does not include a sigmoid
activation.

model also needs to generate the fake gesture “ground truth” GkNN . To

achieve this, the k-NN algorithm is applied over the training sequences

to generate GkNN by using the training audio features as input. To

ensure that the network can handle different gesture characteristics

from different k-nearest neighbors, 50% of the data is sampled from

k = 1 while the rest 50% is sampled uniformly from k = 2 to k = 15.

In all experiments, the initial pose feature for the k-NN is generated by

randomly sampling a feature frame from the database. The network is

trained over 300,000 iterations using Adam optimizer (Kingma and Ba,

2015) with a learning rate of 1e− 4. The hyperparameters w1, w2 and

w3 are set to be 0.1, 1, and 100, respectively.

5.4 results

To verify the feasibility of the proposed approach, this section discusses

the evaluation of the proposed method’s performance with various
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control signals. It also examines the versatility of the proposed design

in achieving various types of control without the need for re-training

and shows how the method can be extended to perform semantically

meaningful gesture synthesis. Finally, in the absence of a control signal,

the experiments also show that the proposed method achieves better

performance than the prior state-of-the-art approach (Habibie et al.,

2021b).

Since multiple motions may be correct for a given audio sequence,

there are no well-established metrics for assessing performance. Hence,

the proposed evaluation resort to user studies for performance eval-

uation which is the most standard evaluation protocol for many ges-

ture synthesis tasks (Alexanderson et al., 2020b; Habibie et al., 2021b;

Kucherenko et al., 2021; Yoon et al., 2019).

Because gesture style is known to be speaker-specific, most prior

works train and test their models on the same speaker. To this end, a

single speaker (John Oliver) of the 3D annotated version (Habibie et al.,

2021b) of the in-the-wild Berkeley speech-gesture dataset (Ginosar

et al., 2019b) is used to train and test the examined methods. In this

case, using a single subject also makes it easier for the participants to

recognize their speaking style.

All user study participants were recruited from Amazon Mechanical

Turk. Before the study, each user was shown two real video examples

of the speaker along with the 3D face, body, and hand tracking results.

The users were asked to ignore the synthesis of the facial expression,

which always use 3D tracked ground truth keypoints. During each

study, the 3D rendered gesture videos, along with their audio, were

shown one-by-one to the user. The video playback control was disabled

once the user clicked the play button, and the user was not able to

proceed until the playback had been completed. At the end of every

video, each user was asked to rate the quality of the gesture synthesis

using a seven-point scale, ranging from 1 (lowest) to 7 (highest). The

users were asked to rate each video based on two prompts: 1) Does

the clip appear natural and the gesture follows the speaking style of

the speaker?, and 2) Are the gesture and the audio well synchronized?

Multiple preliminary tests were conducted to ensure that the objective

of the study is well understood by the participants based on their

feedback. All comparison videos are 24 seconds long and are uniquely

and randomly sampled for each user from the original test dataset of

Ginosar et al. (2019b).
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(a) Wrist position using “high hand" control

(b) Wrist position using “fast speed" control

(c) Wrist position using “low hand" control

(d) Wrist position using “slow speed" control

Figure 5.5: Control-based comparison of hight hand height (a), high hand
velocity (b), low hand height (c), and low hand velocity (d) between k-NN
(proposed, blue), k-NN+cGAN (proposed, orange), and MoGlow (Alexander-
son et al., 2020b, green) over a test sequence. The larger variation produced
by the proposed methods lead to more natural motion variations, unlike
MoGlow, which could lead to a temporally static gesture w.r.t. the control
signal.
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Table 5.2: A user study for evaluating various control-based synthesis tech-
niques. The proposed approach was consistently rated as more natural and
more in-sync than MoGlow (Alexanderson et al., 2020b).

Method Naturalness ↑ Synchrony. ↑
GT 5.95± 1.06 6.00± 1.17

Proposed Height 5.25± 1.26 5.10± 1.53
MoGlow Height 4.79± 1.45 4.71± 1.65

Proposed Speed 5.33± 1.36 5.25± 1.55
MoGlow Speed 5.20± 1.35 5.21± 1.36

Proposed Symmetry 5.21± 1.16 5.33± 1.12
MoGlow Symmetry 4.77± 1.58 4.70± 1.62

5.4.1 Evaluation of High-level Gesture Control

subjective evaluation The performance of the proposed k-

NN+cGAN method is evaluated and compared against the state-of-the-

art, audio-driven, control-based gesture synthesis approach of MoGlow

(Alexanderson et al., 2020b). Here, three different control signals are

examined: left wrist height, left wrist speed, and wrist height symmetry.

To this end, the MoGlow model is re-trained on the 3D annotated

version (Habibie et al., 2021b) of the Berkeley speech-to-gesture data

(Ginosar et al., 2019b) based on their publicly available implementation.

Gaussian smoothing is applied to the training data to ease the training

process and use the best qualitative result after conducting a grid

search over around 30 different parameter combinations. For each

control category, two different results were synthesized, one on the

higher (e.g., “high left wrist position") and one on the lower (e.g.,

“low left wrist speed") end of each control signal value, defined by

the 85th and 15th percentile of the training data. For the proposed

method, this effectively limits its search space to only 15% of the total

training data. The evaluation also includes the ground truth as the

topline comparison. Each user was shown one video from each control

level. The audio track is randomly sampled from one of six possible

test sequences. The user study involved 42 respondents. Table 5.2

summarizes the result of the study. The proposed k-NN+cGAN is

consistently better at producing natural-looking and in-sync results

compared to MoGlow. This result also suggests that the proposed

search-based approach can produce a plausible synthesis even with a

smaller search space created by conditioning.
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(a) Moglow

(b) Proposed k-NN+cGAN

(c) Proposed k-NN+cGAN

Figure 5.6: Frame-aligned synthesis comparison between MoGlow (a), the
proposed k-NN (b), and the proposed k-NN+cGAN (c) when conditioned
using "high left hand" control on the same speech input. While MoGlow
generates motion that satisfies the given hand height value, it fails to produce
natural-looking gestures due to the constant height of the generated hand.
In contrast, the proposed method can satisfy the control signal while at the
same time producing realistic gesture variation.

quantitative evaluation Here, the performance of each method

is quantitatively analyzed when subjected to a particular control sig-

nal. It should be noted that the proposed method and MoGlow use

the control signals differently to produce the desired outcome. The

proposed k-NN-based algorithm achieves gesture control by using the

control value as a threshold to limit the search space, while MoGlow di-

rectly uses the control value as a regression target to modify a specific

outcome of the gesture. Because of this, the control signal is treated

differently for each method. To allow a higher gesture variation, the

control is only enforced on the first and last frame of the gesture

candidate. While this allows the output to vary outside the specified

threshold, this ensures the average value of the controlled variable will
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be close to the desired (threshold) value while at the same time ensur-

ing greater motion variability. In contrast, MoGlow uses the control

input directly as a target value that needs to be satisfied in the output

space. Therefore, their output gesture often produces less variation

over the motion space, although it generally stays closer to the intended

control signal. For example, if the left hand is conditioned to be at a cer-

tain height, it is no longer able to produce body gestures with varying

hand height. This, in many cases, makes the hand appear “stuck” at the

given height. Correcting this would require significant manual labor.

In contrast, the controlled results produced by the proposed method

appear more realistic since combining real motion sequences from the

database will likely induce natural modulation. Table 5.3 compares

the predicted value with respect to the control signal of each method,

and Figure 5.5 shows the quantitative behavior of each method when

conditioned by the given control signal. The qualitative comparison

shown in Figure 5.6 and Figure 5.7 demonstrates the efficacy of the

proposed method to follow the provided control input.

5.4.2 Synthesis with Complex and Low-level Control

Unlike MoGlow (Alexanderson et al., 2020b), the proposed gesture

control can be achieved without model re-training. Hence, various

control signals can be given during test time at any particular frame

window, enabling the user to perform far more complex motion con-

trol. This is particularly useful when generating gestures that reflect

the emotional state of the speaker. For example, if the speech of the

speaker reflects an emotional change from sad to angry, we may want

to synthesize gestures with slow and low hand positions at the be-

ginning, and progress towards fast and extended hand form at the

end of the speech. Such a synthesis scenario can be achieved by the

proposed framework in one pass without requiring any re-training.

On the other hand, pure learning-based controlled synthesis methods

will fail in such tasks since producing gestures with different control

signals (e.g. “speed" vs. “height" control) requires other models with

different training sets. In addition to the high-level control synthesis

described above, the proposed formulation can also be extended to

follow time-specific signals, including signals with semantically mean-

ingful information. As an example, it can be experimentally shown
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(a) Low left hand control result of k-NN

(b) High left hand control result of k-NN

(c) Low left hand control result of k-NN + cGAN

(d) High left hand control result of k-NN + cGAN

Figure 5.7: Qualitative comparison of the controlled synthesis of k-NN with
low left hand signal (a), k-NN with high hand signal (b), k-NN + cGAN with
low hand signal (c), and k-NN + cGAN with high hand signal (d) over a test
sequence. The proposed k-NN and k-NN+cGAN produce a wide gesture
variation even when constrained by the control signals.
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Table 5.3: Quantitative comparison of control-based synthesis for left wrist
height, speed, and symmetry. The proposed approach generates more natural
looking gestures with larger motion variations. MoGlow, however, produces
gestures with less variation which can be “stuck” at a given control signal,
such as height, rendering unnatural-looking results.

Method
Threshold/

Target
Mean

Deviation/
Variation ↑

k-NN (wrist high) 22.2 cm 25.6 cm 3.4 cm
k-NN+cGAN (wrist high) 22.2 cm 23.4 cm 4.2 cm
MoGlow (wrist high) 22.2 cm 22.2 cm 1.1 cm

k-NN (wrist low) 9.7 cm 8.5 cm 2.1 cm
k-NN+cGAN (wrist low) 9.7 cm 9.1 cm 2.9 cm
MoGlow (wrist low) 9.7 cm 9.9 cm 0.6 cm

k-NN (wrist fast) 19.1 cm/s 22.8 cm/s 12.0 cm/s
k-NN+cGAN (wrist fast) 19.1 cm/s 17.5 cm/s 10.3 cm/s
MoGlow (wrist fast) 19.1 cm/s 11.6 cm/s 5.8 cm/s

k-NN (wrist slow) 3 cm/s 5.9 cm/s 3.8 cm/s
k-NN+cGAN (wrist slow) 3 cm/s 5.4 cm/s 4.1 cm/s
MoGlow (wrist slow) 3 cm/s 5.5 cm/s 3.0 cm/s

k-NN (asymm.) 10 cm 12.2 cm 3.0 cm
k-NN+cGAN (asymm.) 10 cm 10.4 cm 3.9 cm
MoGlow (asymm.) 10 cm 9.7 cm 1.6 cm

k-NN (symmetric) 0 cm 1.0 cm 1.2 cm
k-NN+cGAN (symmetric) 0 cm 2.1 cm 2.0 cm
MoGlow (symmetric) 0 cm 0.7 cm 0.5 cm

that the proposed framework can be used to produce a specific body

gesture whenever a specific keyword is detected in the speech. The

keywords can be inferred from speech by applying an off-the-shelf

speech-to-text system to the input audio. When such a keyword is

detected, instead of loading a gesture from the standard database, the

gesture is selected from a separate database containing gestures that

are semantically correlated with the keyword.

5.4.3 Synthesis Evaluation without Control Signals

Here, the result of the approach without the presence of any control

signals is evaluated by comparing the performance of both of the

proposed components against the ground truth and four different

baselines. This includes two different versions of the proposed k-NN:
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Figure 5.8: Qualitative results of the unconditional gesture synthesis using
the proposed k-NN+cGAN approach. Even though it is mainly designed for
controllable synthesis, the proposed method achieves competitive synthesis
quality against the state-of-the-art for gesture generation without control
signals. Motion visualization is based on the Harris shutter effect.



5.4 results 91

Table 5.4: User study results assessing the performance between synthesis
methods in the absence of control signals. The proposed k-NN + cGAN
outperforms other baselines both in terms of naturalness and synchronization.

Method Naturalness ↑ Synchrony. ↑
Ground Truth 6.26± 1.02 5.99± 1.02

Mismatched audio-gesture - 5.48± 1.34
Habibie et al. (2021b) 5.79± 1.16 5.66± 1.14
MoGlow (Alexanderson et al.,
2020b)

4.84± 1.79 4.83± 1.65

k-NN pose-only similarity 4.57± 2.11 4.82± 1.93
Proposed kNN (Audio pre-
selected)

5.73± 1.13 5.50± 1.21

Proposed kNN (Pose pre-
selected)

5.55± 1.38 5.33± 1.34

Proposed kNN+cGAN 5.83± 1.26 5.82± 1.13

one where the candidates are first selected based on pose similarity

(pose pre-selected k-NN), and another one where the pre-selection is

performed based on audio similarity (audio pre-selected k-NN). The

kNN-cGAN, which uses the pose pre-selected k-NN result as input, is

also included in this evaluation.

The first baseline is a simple k-NN that only predicts the next

gesture based on the 3D pose similarity at every frame T without

considering audio similarity. Next, the proposed method is compared

against randomly paired audio-gesture sequences. This baseline has

been reported to perform strongly in previous studies (Kucherenko

et al., 2021). Another baseline included in the evaluation is the recent

GAN-based gesture regression approach by Habibie et al. (2021b).

Finally, the proposed method is compared against Alexanderson et al.

(2020b).

The evaluation is conducted through a user study involving 41

different respondents using the exact instructions discussed at the

beginning of Sec. 5.4. During the survey, each respondent was shown

16 different synthesis videos from two different random audio tracks

sampled from a total of 15 possible tracks.

The result of the study is shown in Table 5.4. The gesture refine-

ment results produced by the proposed k-NN+cGAN achieved the

highest score in terms of synchronization and naturalness, including

the prior state-of-the-art method of Habibie et al. (2021b). Moreover,
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unlike their approach, which directly predicts the gesture from the

audio input, the proposed method can follow various control signals

and generate different gesture sequences given the same audio. The

proposed method also performed better than the control-aware 3D

gesture synthesis approach of Alexanderson et al. (2020b) in terms of

naturalness and synchronization. Overall, the results obtained by the

proposed method show that it consistently outperforms the state-of-

the-art at synthesizing both control-based as well as unconstrained

gestures. Figure 5.8 shows several gesture synthesis examples of the

proposed method under this unconditional setting.

5.5 conclusion

This chapter presents an improvement over the gesture synthesis

method introduced in Chapter 4. The presented approach allows for

controllable speech-driven body gesture synthesis, which cannot be

achieved using a direct speech-to-gesture mapping using only a neural

network. To this end, the new approach utilizes database search to-

gether with adversarial learning to produce natural and synchronized

gestures. Compared to prior work, it offers more diverse manipulation

and does not require re-training for every control signal. Results show

that the proposed approach outperforms the state-of-the-art both in

terms of naturalness and audio-synchronicity, even in the absence of

control.

Despite its benefits, the proposed approach also has several limita-

tions. Currently, hand-designed criteria are used for extracting and

estimating feature similarity. Hence, future work can investigate using

a learning-based approach for extracting and measuring such feature

similarity, akin to the work of Chung and Zisserman (2016) for the

audio and lip sync alignment task. The proposed cGAN is currently

not conditioned on the control signal, which may lead the result to

deviate from the intended outcome, even though the experiments sug-

gest that the deviation is tolerable. Another limitation of the proposed

search-based algorithm is the potentially expensive computation time

compared to single-pass inference approaches of the purely learning-

based counterparts. Since the method searches through the whole

database to find the closest candidate for every frame window, the

time complexity grows quadratically with the number of sequences
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in the database. A potential extension to remedy this issue is to train

both stages of the method (k-NN and cGAN) in an end-to-end manner

like the work of Holden et al. (2020).





6
C O N C L U S I O N

This thesis explored novel ways to ease the creation of 3D human

animation, specifically in the space of motion capture, synthesis, and

control from multi-modal input signals. The common thread of the

presented approaches is that they all leverage predictive algorithms

that learn from a large amount of data. One of the main challenges of

employing learning-based methods in this domain is the need for more

accurate 3D annotations of human motion. This thesis incorporated

several novel approaches to overcome this problem by introducing new

techniques that enable motion capture and synthesis by using partially

annotated and noisy data.

Chapter 3 introduces a novel approach to improve the accuracy of

3D human body pose estimation from in-the-wild monocular images.

It is achieved by introducing a novel neural network architecture, as

well as a combination of loss functions that can effectively use 2D

pose labels, which are easier to obtain than studio-captured 3D pose

annotations. The abundance of 2D labels from in-the-wild images

provides an order of magnitude higher 3D pose variations, foreground

appearance, background, and occlusions than one can achieve from a

studio capture recording.

Based on the promising monocular estimation results, this thesis

makes use of state-of-the-art monocular 3D face reconstruction, as

well as 3D body and pose estimation approaches to collect a large

dataset that can be used to train downstream motion synthesis tasks.

In addition to the 3D hand pose estimator of Zhou et al. (2020) and

the 3D face tracker of Garrido et al. (2015), the proposed solution uses

the XNect (Mehta et al., 2020) pose estimation approach to capture the

3D body motion, as XNect is designed to be robust to partial occlusion

scenarios. This thesis explores two novel algorithms for generating 3D

body gestures from speech input, which is a challenging task due to

the inherent ambiguity between the input and output space. To resolve

the ambiguity issue, Chapter 4 of this thesis introduces an adversarial

neural network to ensure the naturalness of the motion prediction

95
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with respect to the speech input, thus preventing the generation from

collapsing into a dampened motion.

In Chapter 5, this adversarial-based formulation is then extended to

allow for a more controllable gesture synthesis that can be modulated

from various control signals, such as hand height and velocity. A

novel motion matching-inspired algorithm is introduced to enable

this feature, allowing for a direct and efficient database search based

on speech and previous pose similarity. Furthermore, the generated

gesture is further synchronized with the input audio using a neural

network.

6.1 insights

6.1.1 The Effectiveness of Automatically Annotated Data from 3D Monocu-
lar Estimation

This thesis proposes the first large-scale publicly available dataset for

the task of 3D gesture synthesis from speech that contains 3D dense

face reconstruction, as well as 3D body and hand pose annotations.

It consists of more than 33 hours of six different subjects recorded

in the in-the-wild setting, which is unreasonable to obtain from a

controlled studio setup. By design, this dataset can be easily extended

on a virtually endless amount of human motion videos.

Two separate studies presented in this thesis demonstrated the usage

of monocular 3D reconstructions, especially for 3D gesture synthesis,

which often involves subtle gestures. Despite the ill-posed nature of

the setup and various challenging occlusion scenarios, the approach

produces high-quality monocular 3D pose estimation outputs that

appear consistent throughout the dataset. As a result, such monocular

approach enables hours of motion capture from in-the-wild that would

be tedious to perform in a studio setting. As shown in Chapter 4 and

Chapter 5 of this thesis, the annotation produced by 3D monocular

estimation approaches can be used for the task of gesture synthesis

from speech by leveraging a deep neural network or a motion matching-

based approach that achieves competitive performances.
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6.1.2 Leveraging Incomplete Annotations

The monocular pose estimation method presented in Chapter 3 em-

ploys a form of weak supervision as one of the key components of its

training objective. While a weakly supervised approach does not have

access to the complete information during training, it significantly ben-

efits from a much larger 2D labeled training data that is significantly

easier to annotate. The experiments presented in Chapter 3 show that

a combination of weak supervision in the form of 2D pre-training,

2D-to-3D lifting, and 3D-to-2D projection can be used to improve 3D

estimation quality by leveraging 2D data.

As shown in the ablation study of Chapter 3, adding each of the

proposed terms gradually improves the final pose estimation result of

the method. In addition, using multiple weak supervision strategies

addresses the generalization performance of the model from different

angles. Since 2D monocular pose estimation is a considerably easier

task, pre-training our 3D pose estimator neural network on the 2D

labeled in-the-wild images allows the model to learn a strong corre-

lation between relevant parts of a human body on a wide range of

foreground and background scene appearance variations. To ensure

that the model is capturing such correlations, parts of the network’s

latent features are designed to explicitly capture 2D pose information.

In this way, the 2D pose representation can be seamlessly combined

another weak supervision strategy in the form of 2D-to-3D lifting.

This lifting approach has been shown to achieve a competitive per-

formance against direct 3D pose prediction (Martinez et al., 2017b).

To accommodate the potential prediction errors due to the failure to

disambiguate multiple plausible 3D mapping from the same 2D pose

input, the proposed lifting approach combines both the explicit latent

2D pose representation with additional unconstrained latent space

to learn the necessary information. Finally, the proposed 3D-to-2D

projection allows the model to receive a weak supervision on its 3D

prediction even when the 3D pose annotation is not available.

Considering the competitive performance achieved by combining

multiple incomplete annotation through various loss functions and

neural network design as shown in Chapter 3, it is highly probable

that further performance gains can be accomplished by incorporating

other forms weak supervisions.
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6.1.3 Combining Database Search and Deep Learning for Motion Generation

While the proposed adversarial-based training in Chapter 4 has shown

state-of-the-art performance for 3D gesture synthesis, it is not able

to reproduce the stochastic and multi-modal nature of the problem

where a single speech input of a speaker can be mapped into multiple

correct 3D gestures. Furthermore, it is also often helpful to control

the style of the gesture to match the speaker’s mood or internal state.

Unfortunately, style-based conditioning is often not feasible using pure

learning-based approaches without the need for re-training for every

type of control.

Chapter 5 shows that the aforementioned issues can be resolved

by introducing a novel Nearest Neighbor-based synthesis approach

inspired by the Motion Matching algorithm (Büttner and Clavet., 2015),

which has recently become the method of choice for 3D animation in

many AAA video games. Motion generation is performed by querying

the most plausible sequence from a database with respect to the control

signal using the nearest neighbor algorithm. Due to the search-based

nature of the algorithm, adjusting the synthesis according to a particu-

lar style can be achieved by limiting the search space according to the

control criteria.

However, unlike locomotion data, speech-to-gesture mapping is

unique due to the ambiguous nature of the data. This thesis presents

two key contributions that enable Motion Matching for the task of

gesture synthesis. First, it proposes a new motion matching-based

search algorithm that considers both the similarity of the audio and

previously generated motion. The second contribution is re-purposing

the adversarial loss to enhance the pure matching-based approach by

comparing real motion samples with the gestures generated by the

adopted Motion Matching algorithm. This step is crucial to improve

synthesis quality, as the best matching gesture in the database does

not always guarantee optimal synchronization with the speech. This

hybrid solution can also be generalized to other motion generation

tasks beyond the 3D speech-to-gesture domain, as ambiguity is a

common problem in most motion control scenarios.
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6.2 future directions

6.2.1 Occlusion-robust Integrated Full-body Capture of 3D Face, Body, And
Hands

Chapter 3 of this thesis mainly focuses on a monocular 3D pose esti-

mation approach for human body. However, Chapter 4 of this thesis

also introduces a speech-to-gesture dataset that consists of 3D human

face, body, and hand annotations predicted from monocular videos

found on the internet. So far, each of the body-part annotations is pre-

dicted using separate algorithms without any information exchange

between them. However, the motion between parts of human bodies

are inherently correlated by nature. Integrating their inter-correlation

may improve 3D monocular estimation quality, especially for challeng-

ing cases involving rarely seen poses or occluded parts. This issue

can be addressed by employing a full-body model which explicitly

incorporates the correlation between body parts, such as the work of

Rong et al. (2021) and Zhou et al. (2020).

As also discussed in Chapter 4, one of the main bottlenecks in using

monocular pose estimation approaches on RGB images and videos is

the presence of severe body occlusions. While a good 3D pose estimator

may be able to produce the most likely natural 3D pose to fill-in the

missing body parts, the result may not always be consistent when

the method is applied to a video input. To resolve the issue of severe

body occlusion, one may resort to the use of optimization strategies

that combine the 3D pose prediction with its temporal history as

well as its 2D estimate (Mehta et al., 2020, 2017b; Xiang et al., 2019).

Monocular models with explicit training on the temporal domain can

also significantly improve visual stability to address the temporal noise

due to monocular image prediction (Arnab et al., 2019; Dabral et al.,

2018; Kanazawa et al., 2019; Kocabas et al., 2020).

6.2.2 An End-to-end Learning-based 3D Animation Pipeline

This thesis has shown the promising potential of using purely data-

driven approaches to solve several independent problems in the do-

main of 3D human animation, specifically for the tasks of motion

capture, synthesis, and control. Among the most exciting potential
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future directions shown by this thesis is the possibility to design a

new animation framework that combines the traditionally separate

3D motion capture and 3D motion synthesis systems into a unified

pipeline, thus opening new possibilities for creatively producing 3D

animation by solely leveraging monocular videos that can either be

captured using affordable monocular cameras or collected from the

internet.

So far, this thesis has explored the learning-based solutions of motion

capture and motion synthesis in separation. However, the approach

discussed in Chapter 4 have also shown that it is possible to use

a learning-based 3D monocular capture method to collect massive

amounts of 3D motion data to train a learning-based 3D motion syn-

thesis model. Extending this pipeline into a unified learning-based

3D animation framework will not only result in a more streamlined

process between the captured data and the synthesis algorithms, but

also allows animators to combine different motion capture datasets

to train a relevant synthesis task. One of the potential benefit is the

access to pre-train a particular motion synthesis or control model when

the training data of the desired task is scarce. Another benefit of hav-

ing such framework is the ability to mix-and-match various types of

motion control modalities, such as directional, audio, or text inputs.

Furthermore, the availability of such a unified pipeline can open

novel ways of performing learning-based animation design. For exam-

ple, instead of following the traditional approach of using the captured

motion data to train a synthesis model, the pipeline can enable the use

of synthesis models as a motion prior to achieve a more accurate 3D

motion capture system. Rempe et al. (2021) presents a particular mani-

festation of this idea, in which a learned prior model trained on a large

amount of motion data is used to improve the accuracy of 3D monocu-

lar pose estimation approaches. Different types of motion priors can

be designed based of the size and types of modalities that are available

in the framework. The next-generation 3D animation system may be

constructed by coupling the aforementioned learning-based synthesis

algorithms and motion priors into a generalized framework where

the capture and synthesis components can be contiguously trained

to reinforce each other. For example, a large amount of standing and

walking poses in the motion capture data can be used to enhance the

quality of 3D locomotion synthesis, and similarly, a powerful gesture

synthesis models may be used to enhance the quality of 3D hand pose
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estimation (see also Ng et al. (2021)). The existence of shared modules

and datasets will also ease the design of synthesis methods from vari-

ous control signals, including the recently popular text-based motion

synthesis approaches (Ahuja and Morency, 2019; Ghosh et al., 2021;

Guo et al., 2022; Tevet et al., 2022). Given the tedious and expensive

nature of the traditional animation workflow, such frameworks may

further democratize the use of 3D motion generation.

6.2.3 A Quantitative Metric for Gesture Synthesis

Due to the multi-modal nature of the speech gesture, one of the biggest

challenges in analyzing the 3D gesture quality of speech-driven syn-

thesis models is the lack of agreeable quantitative metrics to assess

their performance. In general, a given speech input can have multiple

correct gesture solutions. Measuring the alignment between the motion

and the prosody signal is not trivial, as speech gestures are inherently

stochastic, and a matching beat between the speech pulse and the

gesture stroke may not always indicate a correct gesture. Furthermore,

the naturalness of the gesture is also hard to quantify, as it is correlated

with the speaking style and the internal state of the particular speaker.

While several studies have proposed various intuitive potential strate-

gies to resolve this issue, most of them fail to demonstrate consistent

evaluation compared to human-rated assessment. Chapter 4 briefly

discusses an idea to quantitatively rate the synthesis quality that shows

good consistency when using score gesture misalignment with the au-

dio. Here, the misalignment score is computed by passing an audio and

gesture pair into a network that has been trained to classify between

pairs of aligned and misaligned audio-gesture data. Unfortunately,

it fails to generalize its performance on synthesized data. Another

promising solution is through the use of a likeliked-based approach,

e.g., Alexanderson et al. (2020a). Probabilistic generative models such

as Normalizing Flows (Dinh et al., 2015; Dinh et al., 2016; Germain et

al., 2015; Rezende and Mohamed, 2015) rely on optimizing a likelihood

value as way to measure of how well their predicted output matches

the target probability distribution. This associated likelihood value can

be used to guide performance selections between models. However,

its consistency when compared to human-based ratings has yet to be
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proven. Resolving this issue will undoubtedly ease the effort to design

powerful speech-driven gesture synthesis models in the future.
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