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ABSTRACT

Background: Despite similar education and background, program-

mers can exhibit vast differences in efficacy. While research has

identified some potential factors, such as programming experience

and domain knowledge, the effect of these factors on programmers’

efficacy is not well understood.

Aims: We aim at unraveling the relationship between efficacy

(speed and correctness) and measures of programming experience.

We further investigate the correlates of programmer efficacy in

terms of reading behavior and cognitive load.

Method: For this purpose, we conducted a controlled experiment

with 37 participants using electroencephalography (EEG) and eye

tracking. We asked participants to comprehend up to 32 Java source-

code snippets and observed their eye gaze and neural correlates of

cognitive load. We analyzed the correlation of participants’ efficacy

with popular programming experience measures.

Results:We found that programmerswith high efficacy read source

code more targeted and with lower cognitive load. Commonly used

experience levels do not predict programmer efficacy well, but self-

estimation and indicators of learning eagerness are fairly accurate.

Implications: The identified correlates of programmer efficacy

can be used for future research and practice (e.g., hiring). Future

research should also consider efficacy as a group sampling method,

rather than using simple experience measures.
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1 INTRODUCTION

Proficient programmers are essential for providing the critical in-

frastructure and functioning applications for our modern soci-

ety [28]. Although the learning strategies, education, and path-

ways to becoming a programmer may differ, the general expecta-

tion is that, with more time and experience, a programmer should

generally become more proficient. For example, many research

studies of programmers use years of experience [8, 44], education

level [17, 38, 57], or employment status [12, 13, 45] as foundational

measures for proficiency. While all these choices are sensible, they

all implicitly encode the expectation that higher proficiency should

correlate with more experience.

However, in practice, reported observations violate this expec-

tation. Hiring managers and technical founders [6] report that

they routinely encounter łengineers with years of experience who

couldn’t competently programž [2], who łstruggle with tiny prob-

lemsž [29], and łSenior Engineers who can’t write basic codež [1].

The original creator of the infamous FizzBuzz interview ques-

tion [29] only did so after seeing that the łmajority of comp sci

graduates... and self-proclaimed senior programmersž had difficulty

solving simple problems in a timely manner. Research has also

found that, in companies, the seniority level showed little corre-

lation to actual programming skill [39], and programmers with

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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similar education and background can exhibit vast differences in

productivity, up to factors of ten [49]. Research is still at a loss when

it comes to explaining the cause of these differences, accounting for

different trajectories of learning that underlie programming educa-

tion and training [24, 32], or identifying proficient programmers

during a hiring process [46].

In this paper, we explore the idea of unraveling programmer

efficacy1Ðbased on speed and correctnessÐwith the help of pro-

grammer experienceÐamount of learning or practice. To improve

our understanding of the relationship between efficacy and experi-

ence, we conducted a combined electroencephalography (EEG) and

eye-tracking study, allowing us to take a close look at how differ-

ences in efficacy and experience are related to cognitive differences

among programmers. In our study, 37 participants with varying

levels of experience performed program-comprehension tasks. We

found that programmers with higher efficacy read code more tar-

geted, with shorter fixations, fewer (re)fixations, and skipping more

code elements. They also complete their tasks with lower cognitive

load, in less time, and make fewer errors than programmers with

lower efficacy. Interestingly, we found that commonly used expe-

rience measures do not correlate with the observed efficacy, but

instead self-estimation and learning indicators have considerable

predictive power. To this end, we have identified correlates of high

programmer efficacy as well as experience measures that provide a

strong link to efficacy.

In summary, we make the following contributions:

• A combined EEG and eye-tracking experiment to investigate

programmer efficacy with a diverse participant pool.

• Confirmation of prior results that programmers with high

efficacy read source code more efficiently and with lower

cognitive load.

• Empirical evidence that conventional experience measures

have only poor predictive power for programmer efficacy.

Self-estimation and indicators of learning eagerness are bet-

ter suited.

• An online replication package2, including experiment design,

raw data, and executable analysis scripts.

2 RESEARCH QUESTIONS AND VARIABLES

Our study on programmer efficacy builds on the methodology of

previous experiments investigating program comprehension and

programming experience. Our aim is to incorporate measures of

program comprehension from these experiments into a single co-

herent study as shown in Table 1.We specifically designed our study

to better understand programmer efficacy across a wide range of

experience levels in the context of program-comprehension tasks.

Programmer efficacy is therefore the independent variable for our

experiment. We operationalize programmer efficacy as follows:

programmer efficacy =

number of correct code comprehension tasks
completion time in minutes

Note that programmer efficacy captures both the speed and

correctness of a participant’s behavior. Due to the strict one-hour

1Efficacy specifically refers to the ability to quickly produce the intended result. Notably,
this differs from expertise, which involves additional facets, such as deep knowledge,
effort, and mastery of skills.
2https://github.com/brains-on-code/NoviceVsExpert

time limit of the experiment (see Section 3.1), only fast participants

were able to see all snippets before the experiment ended. Our

definition of programmer efficacy eliminates effects arising from

a difference in the number of attempted tasks and is in line with

prior work [34, 69, 78].

To guide our experiment design regarding dependent variables,

we defined several research questions, which we introduce next.

2.1 Reading Behavior (RQ1)

Several studies have shown that experienced programmers show a

different reading behavior than novices based on eye-gaze measures.

The reading behavior describes a programmer’s eye movements

while they are comprehending a source-code snippet. Therefore,

we state the following research question:

RQ1

Do different levels of programmer efficacy exhibit dif-

ferences in reading behavior (in terms of navigation

strategy and code element coverage)?

Operationalization. For RQ1, we adopt 7 measures that have been

identified in the literature: In a longitudinal study, Al Madi et al. ob-

served differences in the navigation strategy at the token level [4].

Specifically, they analyzed fixation duration and how likely it was

that a participant (re)fixated on a token. Experts showed signifi-

cantly shorter fixation durations, a lower chance of refixating on

a token, and a higher chance to skip tokens. Likewise, Aljehane

et al. found differences between novices and experts in terms of

code element coverage [5]. It refers to the number of elements on

which a participant fixates during a task in contrast to the total

number of code elements. They found that novices read, in particu-

lar, more method signatures, variable declarations, identifiers, and

keywords. Finally, Busjahn et al. have also identified a difference in

code element coverage, in that novices fixate more code elements

than experts [13]. They also identified a difference in the reading
order. However, our replication study revealed that this effect is

principally driven by the execution order of the snippets [60]. As

our snippets are not balanced for this aspect, we will not consider

reading order as a measure; these studies used different measures

to pinpoint the participants’ reading behavior. In our study, we aim

at answering how programmer efficacy affects reading behavior

across all described measures to increase comparability.

2.2 Cognitive Load (RQ2)
Similar to reading behavior, previous studies found that different

levels of programming experience can be distinguished by the ob-

served neural correlates of cognitive load, which leads us to our

next research question:

RQ2
Do different levels of programmer efficacy exhibit dif-

ferences in neural correlates of cognitive load?

Operationalization. Related to RQ2, Crk et al. used event-related

desynchronization along alpha and theta powerbands measured

by an EEG device to classify participants into two programming

experience levels [16]. Similarly, Lee et al. found a similar effect

also using EEG, but using a more comprehensive analysis across
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Table 1: Overview of our research questions and chosen measures.

RQ Literature Selected Measure(s)

RQ1
Al Madi et al. [4]

Fixation durations (singe fixation duration, total fixation duration) and fixation pro-
babilities (skipping probability, single fixation probability, multiple fixation probability)

Aljehane et al. [5], Busjahn et al. [13] Code element coverage, code element coverage over time

RQ2
Lee et al. [45] Alpha, beta, theta, and gamma power
Medeiros et al. [52], Holm et al. [35] Ratio of theta power at frontal brain region and alpha power at parietal brain region

RQ3 Correlation between efficacy and experience measures

more EEG bands [45]. Ishida and Uwano found an increase in the

alpha frequency band for programmers who successfully finished

tasks [36]. However, Madeiros et al. compared several EEG mea-

sures to distinguish different experience levels and suggested the

ratio between theta and alpha power as a measure of cognitive

load [52]. Notably, this ratio is commonly used as a cognitive load

measure in other fields [35, 40]. We analyze both powerbands and

the ratio measure in our study to better understand the link between

programmer efficacy and cognitive load.

2.3 Experience Measures (RQ3)

Finally, we focus on programmer efficacy as a distinguishing fac-

tor between our participants. Prior research most commonly uses

rather simple experience measures to separate participants (e.g.,

years of programming). In this vein, we pose our last research

question:

RQ3
Do different levels of programmer efficacy correlate

with common measures of programming experience?

Operationalization. Many commonly used experience measures

can be inconsistent in their predictive power, which led us to use

programmer efficacy as the distinguishing factor. In RQ3, we an-

alyze widely used experience measures3 and distill the relevant

measures that correlate best with the observed programmer effi-

cacy.

3 STUDY DESIGN AND CONDUCT

To answer our research questions, we designed and conducted a

study, which we describe in this section. All materials including

snippets, tasks, and the experiment script, are available on the

project’s Web site.2

3.1 Experiment Plan

We opted for a within-subject experiment design [15], which we

illustrate in Figure 1. We presented up to 32 source-code snippets

with a program-comprehension task (cf. Section 3.3), which were

pseudo-randomized to avoid learning and fatigue effects. The ex-

periment ended after the 32 program-comprehension tasks were

completed or after 60 minutes, whichever happened first. The tasks

were presented in three runs of 20 minutes and a voluntary break of

5 minutes between runs. In addition to the program-comprehension

tasks, we included a search task, in which participants had to count

3We share the full list of experience measures on the project’s Web site.

1 public boolean containsSubstring(String word, String substring) {
2 boolean containsSubstring = false;
3

4 for (int i = 0; i < word.length(); i++) {
5 for (int j = 0; j < substring.length(); j++) {
6 if (i + j > word.length()) {
7 break;
8 }
9 if (word.charAt(i + j) != substring.charAt(j)) {
10 break;
11 } else {
12 if (j == substring.length() - 1) {
13 containsSubstring = true;
14 break;
15 }
16 }
17 }
18 }
19

20 return containsSubstring;
21 }

Listing 1: Example source-code snippet with intermedi-

ate complexity that checks a string for the existence of a

substring. An example input provided to the participant

would be containsSubstring("Example","Sample") with an-

swer options łAlways Falsež, łFalsež (correct), łTruež, and

ł3ž.

brackets. This serves as a baseline for neural activation and is com-

mon in neuroscience studies of program comprehension [59, 73].

We chose a 4:1 design, so a participant completes four program-

comprehension tasks and one search task. Between tasks, we in-

cluded a 30 second rest condition, in which participants were in-

structed to focus their eyes on a fixation cross and relax.

For the comprehension tasks, the participants could choose

among four answer options (cf. Listing 1) as well as the option

łnextž to skip a task. Participants used the left hand to press space

as łsubmitž and łcontinuež buttons, and the right hand to navigate

with the arrow keys between answer options. After a short training

session on the experiment flow (i.e., presentation of an example

snippet, example input/output task, answering possible clarification

questions), participants could use the keyboard without constantly

looking at their hands, which minimizes motion artifacts.

Our studywas approved by the ethical review board of the faculty

of Mathematics and Computer Science at Saarland University.

3.2 Snippet Selection

A crucial element of our experiment are the source-code snippets.

We aimed at selecting snippets covering a variety of complexities.

This ranges from simple snippets, with only a few lines that can be

understood within seconds, to complex source-code snippets that
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Figure 1: Visualization of the experiment design, which shows the first 4 comprehension tasks. The experiment ended after

all 32 comprehension tasks were completed, or, at latest, after 60 minutes. Participants could take a voluntary break after

20 minutes and 40 minutes.

Table 2: Overview of the source-code snippets used in the

experiment and the outcomes in terms of correctness and

response time. The number of times a snippet was shown is

unbalanced due to the randomized presentation and outlier

removal (cf. Section 4.1).

Snippet Correctness Response Time
(in %) (in sec, Mean ± SD)

Ackermann 5/36 (14%) 83.51 ± 53.16
ArrayAverage 30/35 (86%) 31.29 ± 17.03
BinarySearch 13/35 (37%) 55.57 ± 31.16
BinomialCoefficient 10/32 (31%) 77.70 ± 39.83
BinaryToDecimal 13/35 (37%) 62.18 ± 25.27
BogoSort 24/35 (69%) 79.64 ± 42.77
CheckIfLettersOnly 32/33 (97%) 36.81 ± 22.69
ContainsSubstring 31/32 (97%) 56.36 ± 29.74
DropNumber 15/36 (42%) 55.19 ± 25.67
GreatestCommonDivisor 29/31 (94%) 70.86 ± 32.40
HeightOfTree 26/34 (76%) 41.81 ± 23.63
hIndex 19/33 (58%) 100.60 ± 44.14
InsertionSort 34/35 (97%) 67.40 ± 38.21
IsAnagram 26/30 (87%) 101.70 ± 44.67
IsPrime 30/35 (86%) 21.67 ± 12.91
LengthOfLastWord 33/36 (92%) 64.52 ± 21.13
MedianOnSorted 23/30 (77%) 45.44 ± 22.32
Palindrome 35/35 (100%) 26.26 ± 14.57
PermuteString 21/35 (60%) 129.24 ± 50.06
Power 29/33 (88%) 34.08 ± 15.59
RabbitTortoise 11/33 (33%) 103.54 ± 46.45
RecursivePower 29/31 (94%) 23.68 ± 9.18
Rectangle 21/29 (72%) 26.28 ± 18.81
RemoveDoubleChar 30/33 (91%) 40.98 ± 17.68
ReverseArray 30/33 (91%) 40.73 ± 23.21
ReverseQueue 26/33 (79%) 41.26 ± 26.64
SieveOfEratosthenes 19/33 (58%) 105.38 ± 48.16
SignChecker 31/33 (94%) 28.53 ± 12.04
SmallGauss 18/36 (50%) 27.24 ± 16.68
SumArray 32/33 (97%) 13.70 ± 7.58
UnrolledSort 30/34 (88%) 61.85 ± 32.32
Vehicle 34/35 (97%) 36.13 ± 19.43

Overall 789/1072 (74%) 56.02 ± 41.63

require substantial mental effort to comprehend. Thus, our snippets

require different levels of cognitive effort to comprehend them. This

helps us to comprehensively capture program comprehension in

relation to programmer efficacy.

We started our search by selecting Java snippets from a variety

of previous studies of program comprehension [13, 59, 73]. We then

searched for further snippets implementing algorithms of compa-

rable complexity (in terms of size, nesting depth, and execution

length), which lead to a pool of 38 snippets. Three of the authors

independently assessed each snippet’s complexity and suitability

for the study (e.g., whether prior knowledge is necessary to com-

prehend it). While the snippets are in Java, we aimed at selecting

snippets that did not require deep knowledge of the language. This

resulted in 32 snippets. We show a sample snippet that checks for

the existence of a substring in Listing 1. We list all included snippets

in Table 2 and provide them in the replication package.

3.3 Program-Comprehension Task

We subdivided the program-comprehension task into two distinct

steps to isolate the underlying cognitive processes of program com-

prehension and mental calculation of the result. To this end, we first

presented the source-code snippet and instructed participants to

comprehend it. Once a participant confirmed they comprehended

its functionality (by pressing a button), we presented a sample in-

put. Then, the participant had to mentally calculate the resulting

output. The sample input was not shown until after the participant

fully comprehended the code snippet, to prevent premature mental

calculation without fully understanding the snippet. We informed

participants of this multiple-step process beforehand and ensured

their understanding with two training snippets.

3.4 Experiment Execution and Data Collection

All participants provided their informed consent and completed

our experience questionnaire (see Section 3.5). We put the EEG cap

on the participant’s head, calibrated the eye-tracker, and started the

experiment. After the experiment, we conducted a semi-structured

interview, including questions on their subjective views about the

experiment as well as each snippet.

The EEG laboratory is in a dim-light room with minimized dis-

tractions, such as external sounds or mobile devices. Participants sat

in a comfortable chair to prevent unnecessary muscle movements

to reduce noise and artifacts in the EEG signal. EEG signals were
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Table 3: Overview of our participant demographics and 8 out

of 49 overall measures from our experience questionnaire.
𝛼 denotes self-estimatedmeasures on a 1ś5 Likert scale [47].
𝛽 denotes measures that were only collected from (at least

part-time) professional programmers.

Participant Demographic/Experience Measure No./Mean ± SD

Number of (Included) Participants 37

Female 5

Male 31

Non-Binary 1

Age (in Years) 25.95 ± 6.76

Undergraduate/graduate students 27 of 37

. . . of which work (at least part time) 14 of 27

Full-time professionals 10 of 37

Years of Learning Programming 7.93 ± 6.14

Years of Professional Programming 3.55 ± 4.30

Years of Java Programming 4.54 ± 4.31

Number of Known Programming Languages 5.11 ± 2.02

Comparison to Peers𝛼 3.67 ± 0.76

Comparison to 10-Year Professional𝛼 2.25 ± 0.94

Hours per Week Spent in Software Engineering𝛽 24.76 ± 21.08

Hours per Week Spent Programming𝛽 10.78 ± 11.36

recorded using LiveAmp 644, which is a 64-channel EEG device. The

sampling rate was set to 500 Hz, and the international 10ś20 system

of electrode placement [37] was used to cover the entire scalp and

obtain spatial information from the brain recordings. For simul-

taneous eye tracking, we used the Tobii Pro Fusion eye-tracker5

attached to the screen. The eye gaze was recorded with a sampling

rate of 250 Hz. The experiment was run with a PsychoPy [58] script

(available in the replication package).

3.5 Participants

We recruited participants at Saarland University via e-mail lists and

online bulletin boards. Participants received 10 Euro compensation

each. The prerequisite for participation was, at least, one year of

experience with Java or, at least, three years of experience with

a related programming language, such as C#. It was important to

recruit a diverse set of programmers with a wide range of expe-

rience levels to explore the differences and commonalities across

different efficacy levels. In Table 3, we provide an overview of our

participants’ demographics. Based on the conventionally used ex-

perience measures, our participant sample exhibits a wide range of

programming experience, from programmers in their first year of

programming at the university to 30 years of experience in industry.

We invited 39 participants to start the experiment. 38 out of

the 39 measured participants completed the experiment.6 For one

participant, the eye-tracker could not be calibrated, but all other

modalities are available and the data are included in the analy-

sis. We later excluded one complete participant data set due to

4Brain Products GmbH, https://brainvision.com/products/liveamp-64/
5Tobii AB, https://www.tobiipro.com/product-listing/fusion/
6One participant aborted the experiment early due to personal time constraints.

their behavioral data consisting of a majority of outliers (cf. Sec-

tion 4.1), leaving us with 37 participants included in the data set.

We based our programming experience questions on a validated

questionnaire [72], but extended it to cover more topics for further

investigation (e.g., programming-content consumption and produc-

tion and daily work; the questionnaire is available in the replication

package).

4 DATA ANALYSIS

In this section, we describe our data-analysis procedure for eye-

tracking data, EEG data, and experience measures.

4.1 Outlier Removal

We started with removing outliers in response time for comprehend-

ing a source-code snippet. Specifically, we discarded the slowest

5% (i.e., a response time of over 2 min 32 s) as well as the fastest 5%

(under 11 s), but only if a participant chose the option łNextž, since

some tasks can be rapidly answered by proficient programmers

(e.g., the SignChecker snippet). This way, data points were only re-

moved when participants did not thoroughly attempt to understand

the snippet and program comprehension may not have occurred.

With these rules, we removed 9 data points7 in the lower 5% and

55 in the upper 5%, leaving 1072 data points for further analysis.

This led to the removal of more than half of the data points for one

(slow) participant, so we excluded the participant’s entire data set

from the study.

4.2 Eye-Tracking Data

We defined areas-of-interests (AOIs) for each source-code snippet

to relate eye-gaze behavior with particular regions and elements of

code. For this purpose, we first obtained the abstract syntax tree of

each source-code snippet to identify each token and code element.

Then, we manually identified higher-order syntactical structures

such as the head and body of loops or if-else-statements for each

snippet and thereupon defined AOIs based on categories defined in

previous work [4, 5].

We preprocessed the eye-tracking data to separate fixations and

saccades from the raw stream of (x,y) coordinates. For this pur-

pose, we used I2CM, which is a noise-robust algorithm [33]. Then,

we computed the token-level and element-coverage measures de-

scribed in Section 2.1.

4.3 EEG Data

Our cognitive load measures are based on a spectral analysis of

EEG data. To improve the robustness of our analysis, we calculate

cognitive load using two different approaches: theta/alpha power

ratio and relative power analysis.

Data Cleaning. First, we removed noise from the EEG data, espe-

cially movement artifacts, using established preprocessing methods:

We filtered the data using Hamming-windowed finite impulse re-

sponse (FIR) filters. Power line noise was removed by a notch filter

with a lower cutoff frequency of 49Hz and an upper cutoff fre-

quency of 51Hz. Second, to obtain a more robust performance in

7One data point here is the response time for one participant to one snippet
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the subsequent analysis, we also removed baseline drifts and high-

frequent noise with a bandpass filter ranging from 4 to 200Hz [63].

Due to the nature of the experiment, where participants have

to look at different points of the screen, eye movements and other

muscle activity cannot be fully avoided. Therefore, we performed

blind source separation as a second step to remove corresponding

artifacts. The used EEGLAB toolbox [19]8 provides an automated

implementation of the independent component analysis (ICA). For

each component, it yields a classification with a confidence level,

which we can use to automatically reject noisy components. Rejec-

tion thresholds for eye and muscle artifacts were set to the default

values of 0.9, while components without a clear assignment to a

group were rejected at 0.95.

Theta/Alpha Power Ratio. As a first technique, we computed the

cognitive load based on the work of Holm et al. [35] and Kartali et

al. [40] as the ratio of the relative power of the theta and alpha band

of the EEG. We calculated the power spectral density on a sliding

window obtaining the mean power within each frequency band of

interest. The sliding window had a size of 3 s andwas shifted by 0.1 s

over each task. The cognitive load measure is obtained by dividing

the mean power within a window. By using the sliding window, we

can observe the time course of the cognitive load during the tasks.

Relative Power Analysis. As a second technique, we also computed

a per-band and per-channel relative power analysis along alpha,

beta, gamma, and theta band based on the technique established

by Lee et al. [45], which is sensitive to the spatial location of brain

activation by considering the channel of the electrode.9

4.4 Efficacy and Experience

For RQ3, we correlated the observed efficacy with all collected

numerical and categorical experience measures. To this end, we

used Spearman’s 𝜌 correlation due to the mix of continuous and

ordinal nature of our data.

5 RESULTS AND DISCUSSION

In this section, we present the results of our EEG and eye-tracking

data analysis, along with their subsequent interpretation.

Applying our programmer efficacy definition to the data, we find

that, on average, 1 task was correctly solved around every 3 minutes

(i.e., mean programmer efficacy of 0.33 ± 0.10). We visualize the dis-

tribution of participant efficacy in Figure 2, which is a non-normal

distribution according to a Shapiro-Wilk test (𝑊 = 0.94, 𝑝 = 0.046).

It could be normalized by removing the upper tail (2 participants)Ð

neither which were the most experienced programmersÐbut since

we already removed outliers, this appears to be the real distribution

in our sample.

Figure 2: Illustration of behavioral data and the resulting dis-

tribution of programmer efficacy among our participants.

5.1 Reading Behavior (RQ1)

Our eye-tracking data show a change in reading behavior with

increasing efficacy levels. Based on the token-level measures from

Al Madi et al., we found that increased efficacy leads to:

• shorter (first) fixations (𝜌 = −0.14),

• shorter gaze duration (𝜌 = −0.19),

• a much lower chance that a token is revisited (𝜌 = −0.37),

and

• a slightly higher probability that a token is skipped (𝜌 =

0.08).

We visualize these relationships in Figure 3.

Regarding code element coverage, based on Aljehane et al. and

Busjahn et al., we find a similar result, such that higher efficacy

leads to a lower code element coverage (𝜌 = −0.35). Notably, this

difference increases throughout the task, as we illustrate in Figure 4.

To underline the difference between programmer with low and

high efficacy, we show an example scanpath in Figure 5 (Page 8).

Clearly, the programmer with high efficacy requires fewer fixations

and refixations to comprehend the source-code snippet.

Overall, this leads to the following answer to our research ques-

tion:

RQ1

We can confirm prior results that programmers with

higher efficacy read code more efficiently in terms of

shorter fixations on fewer code elements. However,

some measures show only weak correlations.

Discussion. Our results for RQ1 confirm prior results and corrob-

orate the theory that proficient programmers read source code more

efficiently [55] and are actively looking for an efficient way to solve

a task [64]. This supports the view that their knowledge guides

their eyes [77]. However, the established measures that we use

capture this effect to different degrees. Fixation duration measures

show only weak correlations (𝜌 = −0.14), while fixation probabili-

ties show, at best, medium correlations with programmer efficacy

(𝜌 = −0.37). These results support that proficient programmers read

individual elements faster, and, in particular, focus on the important

8Version 2021.1, https://sccn.ucsd.edu/eeglab/
9To facilitate comparison with Lee et al.’s work [45], which used two groups, we
formed two groups post-hoc based on experimental scores of efficacy. We separated
our participants by performance into thirds. For increased potential, we contrasted
the high-performing group (i.e., efficacy >= 0.35, n=12) and the low-performing group
(i.e., efficacy <= 0.29, n=13), leaving out the middle group.
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Figure 3: Spearman’s 𝜌 correlation between programmer efficacy and different eye-trackingmeasures: Programmers with high

efficacy show an efficient reading strategy in terms of shorter fixations, skipping more code elements, and fewer (re)fixations.

Figure 4: Spearman’s 𝜌 correlation betweenprogrammer effi-

cacy and code element coverage over time. In the beginning

of a task, the difference in code element coverage for differ-

ent efficacy levels is not substantial. It grows throughout the

task in that programmer with high efficacy skip more code

elements.

elementsÐskipping several parts that they deem unimportant. This

narrow focus on important elements is further highlighted in the

code element coverage measure. Programmers with high efficacy

read fewer code elements throughout the task, increasing over time

as shown in Figure 4. Even at the end of a task, they still only fixated

on 69% of the tokens, on averageÐskipping tokens they rate as

irrelevant.

While a narrow focus enables high performers to quickly solve a

task, they might overlook relevant elements. For example, research

in psychology has shown that experts’ internal filtering heuristics

can lead them to miss relevant information and make mistakes [65].

In programming, this effect was observed with experts missing

obvious syntax errors that novices consistently notice [60].

5.2 Cognitive Load (RQ2)

The observed ratio of alpha and theta band as an indicator of cog-

nitive load can be analyzed regarding different features, which we

summarize in Table 4. While generally the cognitive load appears

to be lower for programmers with higher efficacy (𝜌 = −0.09), the

correlations are weak. Still, it has to be taken into account that pro-

grammers with higher efficacy tend to complete their tasks faster.

In Figure 6, we visualize the cognitive load over time depending

on efficacy, which shows that the level of cognitive load generally

Table 4: Spearman’s 𝜌 correlation between cognitive-load

measures and programmer efficacy.

Alpha/Theta

Measures of Cognitive Load

Correlation with

Programmer Efficacy

Ratiomean −0.09

Ratiomedian −0.08

Ratiomin 0.19

Ratiomax −0.15

stays lower, and with fewer spikes, for programmers with higher

efficacy.

Results from our powerband analysis confirm results from Lee

et al. [45]. Like Lee et al., we separated our participants into a high-

performing and low-performing group (cf. Section 4.3). We found a

lower beta power for programmers with higher efficacy, and higher

alpha and gamma power, which is illustrated in Figure 7.

RQ2

The cognitive load is slightly lower for programmers

with higher efficacy, despite faster completion times.

Programmers with higher efficacy further experience

fewer high spikes of cognitive load. This is in line with

previous findings of lower beta and higher alpha and

gamma power for programmers with higher efficacy.

Discussion. The results of RQ2 indicate that programmers with

higher efficacy can not only comprehend source code faster, but

also with less mental effort. This could be explained by an increased

neural efficiency, which has been shown in other fields [54] or as an

effect of source code structures serving as beacons for program com-

prehension [73], but not as a factor of proficiency in programming.

One explanation would be a difference in underlying cognitive pro-

cessing: Experts may see the presented snippets as a task, that is,

they have a strategy to solve the problem, and simply need to im-

plement the solution. This is unlike novice programmers, who also

126



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore N. Peitek, A. Bergum, M. Rekrut, J. Mucke, M. Nadig, C. Parnin, J. Siegmund, S. Apel

Low Efficacy High Efficacy

Figure 5: Example scanpath of a programmer with low efficacy (left) and with high efficacy (right). The lines indicate the

vertical position in the snippet during comprehension of the code snippet. Clearly, the programmerwith high efficacy displays

a more targeted, efficient reading strategy.

Figure 6: Visualization of cognitive-load measure (i.e., ratio of alpha and theta band) over comprehension-task time. Each line

is one participant with the line color indicating their efficacy level.

Figure 7: Visualization of relative power along alpha, beta,

theta, and gamma bands for the high-performing (efficacy

top 33%) and low-performing group (efficacy bottom 33%).

need to find a strategy first, then implement the solution, which

leads to higher cognitive load and longer response times [50]. Due

to the lower cognitive-load levels, programmers with high efficacy

likely can sustain longer periods of work. By contrast, programmers

with lower efficacy are more likely to be overwhelmed by constant

spikes of cognitive load (Figure 6).

Synthesis of RQs1ś2. Our study was inspired by several prior ex-

periments investigating program comprehension with various oper-

ationalizations and different definitions of experience. We aimed at

finding a common ground across their measures, specifically when

focusing on programmer efficacy. Overall, our study confirmed

the accuracy of some of these measures, but to different degrees.

Programmers with higher efficacy can be particularly identified

due to their efficient reading strategy and lower spikes in cognitive

load. This is not only important for future research, but also has

practical implications. For example, a lot of hiring processes use

technical interviews in front of a whiteboard, which artificially in-

troduce stress and high cognitive load [10]. An alternative solution

to evaluate potential talent with measures that allow for accurate

and quick responses, without inducing unnecessary stress and cog-

nitive load, would be private interviews, comprehension tasks, or

other alternative interview methods, for example, as proposed by

Behroozi et al. [9].

Regarding programming language design, the combination of

eye tracking and EEG may have potential. Future work shall ex-

plore whether we can use eye-tracking data to pinpoint spikes in
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cognitive load to specific code elements, similar to Fakhoury et al.’s

work with functional near-infrared spectroscopy (fNIRS) [26] or

our prior work on combining eye tracking and fMRI [61]. Such com-

bination may reveal code structures that are particularly difficult

for programmers to comprehend.

5.3 Experience Measures (RQ3)

Table 5: Spearman’s 𝜌 correlation between various experi-

ence measures and programmer efficacy. Bold text high-

lights medium and strong correlations (𝜌 ≥ 0.3). All mea-

sures, including a full correlation matrix, raw data, and re-

sults are available on the project’s Web site.

Measure of Programming Experience
𝜌 Corr. with

Efficacy

T
im

e

Years of Programming 0.15

Years of Professional Programming 0.14

Years of Java 0.04

Years at Work −0.06

Se
lf
-E
st
im

at
io
n Experience Logical Paradigm 0.07

Experience Functional Paradigm 0.22

Experience Object-Oriented Paradigm 0.17

Experience Imperative Paradigm 0.32

Comparison to Peers 0.59

Comparison to 10-Year Programmer 0.38

W
o
rk

H
o
u
rs

p
er

W
ee
k

(P
ro
fe
ss
io
n
al
s
O
n
ly
,n

=
26
) Overall 0.43

Programming 0.06

Code Review 0.47

Meeting 0.16

Tests 0.35

Deploy 0.10

Mentoring 0.32

Learning 0.32

Other 0.27

Number of Programming Languages 0.42

In Table 5, we show the strength of correlations between pro-

grammer efficacy and a subset of popular measures of programming

experience. Notably, some commonly used experience measures

(e.g., years of (professional) programming [8]) show little predictive

power to our participants’ efficacy. But, several other dimensions

of experience show, at least, medium-strength correlations. Specif-

ically, self-estimation in comparison to peers (𝜌 = 0.59) and a 10-

year professional programmer (𝜌 = 0.38) show that our participants

seem to be keenly aware of their proficiency level. The number

of known programming languages also shows a medium-strength

correlation (𝜌 = 0.42). For the subset of professional program-

mers (𝑛 = 26), several questions that capture learning eagerness

(e.g., learning, mentoring, code review) show medium correlations.

However, strikingly, the time professionals spend on pure program-

ming does not correlate to their performance in our experiment

(𝜌 = 0.06).

Overall, these results allow us to answer this research question:

RQ3

Programmer efficacy does not correlate with com-

monly used experience measures, such as years of pro-

gramming. Self-estimation and indicators of learning

eagerness show, at least, medium correlations with

observed programmer efficacy.

Discussion. Our experiment highlights two fundamental prob-

lems for studying programmers. One issue is that programming

is such a diverse field with different technologies that require dif-

ferent skill sets, so it is incredibly difficult to accurately measure

a programmer’s experience. Therefore, many researchers rely on

simple measures, such as years of programming. However, this can

become problematic if the difference between the selected measure

and the actual proficiency level becomes a significant confound-

ing factor [74]. Our experiment, in line with prior research [20],

underlines how limited common experience measures are in pre-

dicting programmers’ efficacy. Thus, future research must carefully

consider collecting more comprehensive experience data, in partic-

ular, when using it to separate the participants into groups. While

this may not be completely new insights, our experiment further

corroborates this critical point. The use of too simplistic measures

can potentially weaken empirical studies of programmers and their

conclusions.

6 THREATS TO VALIDITY

In this section, we discuss threats to construct, internal, and external

validity of our study.

6.1 Construct Validity

Our programmer efficacy measure may deviate from a participant’s

true efficacy due to the nature of our selected snippets and program-

ming language. We mitigated this threat by selecting a variety of

source-code snippets such that prior knowledge plays a minuscule

role, and we ensured sufficient Java knowledge for each participant.

6.2 Internal Validity

We have operationalized program comprehension in a multiple-step

design, in which participants first had to comprehend a source-code

snippet, then compute an input/output task, and finally select the

output from four answers. Clearly, program comprehension is a

multi-faceted phenomenon for which a variety of operationaliza-

tions are possible [22], but our approach ensures that participants

genuinely comprehended each snippet.

Regarding data collection, we limited the experiment to a maxi-

mum of 1 hour (with two breaks) to avoid fatigue effects. Depending

on each participant’s speed, this led to an unequal number of col-

lected data points (17 of 37 participants completed all 32 snippets).

While we could have ended the experiment after, for example, 25

instead of 32 snippets for everyone, we would have lost around 10%

of data. Therefore, we chose a small potential bias as a trade-off

for a notably larger data set (to gain more statistical power and

external validity). We mitigated the threat of an unequal number

of snippets by randomizing the presentation order of snippets.
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Our results indicate a strong influence regarding measures of

several programming activities, including the amount of code re-

view and testing, on observed efficacy. This relationship between

observed efficacy and time spent with these identified programming

activities may be overly emphasized by our experiment design since

they are close in nature to our program-comprehension task.

6.3 External Validity

Due to our focus on internal validity, our presented study is limited

regarding its generalizability. While our participant sample covers

a wide range of experience and proficiency levels, the presented

tasks were limited to algorithms in an object-oriented program-

ming language. Thus, our study on program comprehension may

not generalize to all software-engineering activities, including com-

prehension of large code bases and other programming paradigms.

Still, our study pinned down an effect with high internal valid-

ity; future work shall replicate, vary, and extend the setup toward

external validity.

7 RELATED WORK

Our study is at the intersection between the fields of program

comprehension, eye tracking, neuroimaging, and programming

expertise, which we each discuss below.

Program Comprehension. There is a multitude of program-com-

prehension studies [3, 13, 25, 45, 71, 75], on which we build by re-

using source-code snippets as a foundation for our experiment. In

the early years, behavioral or reflective studies were popular [70].

Our study shares a similar design with them in terms of snippets

and tasks, but our observed measures are more in line with the

recent movement toward more objective measurement methods,

such as eye tracking or EEG [70], which we discuss next.

Eye Tracking. Eye tracking enables researchers to objectively

observe attention during complex tasks and has increased in pop-

ularity, including program comprehension [67]. Again, there is a

multitude of studies that use various eye-gaze measures [4, 5, 7, 8,

11, 13, 18, 55, 57, 60, 68]. We have used recently established eye-gaze

measures for differentiation of programmer expertise [4, 5, 13], but

we applied these measures to a larger pool of diverse programmers

than before and included insights from neural correlates via EEG

data. With efficacy, we also arguably used a better way to separate

participants (cf. Section 5.3).

Neural Correlates of Program Comprehension. In addition to eye

tracking, some studies have employed methods to observe neural

correlates of program comprehension. Some have used fMRI [14, 27]

or fNIRS [26, 53], others have used EEG [43, 45, 48, 51, 52, 80]. Our

study adopted the measures of cognitive load of Lee et al. (i.e., alpha

and beta power) [45] and Medeiros et al. (i.e., ratio of theta and

alpha) [52], but it differs in terms of the goal and the participant pool.

Lee et al. focused on classification between two distinct groups,

while Medeiros et al. focused on software metrics [52]. By contrast,

we focused on the programmer and investigated their efficacy on a

continuous distribution, without the need to create two groups.

Programming Experience and Expertise. There have beenmultiple

waves of program-comprehension research regarding expertise. In

the early years, several studies have devised theories of expertise, in

particular related to plans [31], mental models [62, 79], strategy [42]

and knowledge [30]. More recently, researchers have focused on

visual attention [8] and implementation style [56]. Our study dif-

fers in that we operationalize on a more narrow scope of expertise

based on programmer efficacy, rather than measures of knowledge,

mental representations, or other intangible factors. We argue our

operationalization offers a higher relevance to practical and educa-

tional problems as well as a clearer definition over an obfuscated

experience measure, because of its better link to task performance.

In summary, our experiment is a fusion of established research

designs from different fields and is novel by integrating several

measures in one experiment. Furthermore, we focused on inviting a

diverse participant pool as well as on efficacy as a separating factor

(while still collecting a wide array of experience measures).

8 PERSPECTIVES AND CONCLUSION

Measuring Programming Experience. For future studies, one ma-

jor obstacle is to select the correct measure of programming ex-

perience. Cognitive psychology has investigated the relationship

between experience and expertise in many fields beyond program-

ming [66]. One consistent finding is that the length of experience

can be part of expertise, as people continue to acquire skill [21], but

is not everything [65]. In programming, studies from the 1990s iden-

tified a similar effect, in that there are two elements at play: the time

and learning [76]. In our questionnaire, we aimed to capture many

aspects of programming experience, including measures of learn-

ing, but also regarding content creation and work-time distribution.

One theme that consistently showed a strong connection with ob-

served efficacy is the eagerness of learning and inquisitiveness.

The number of known programming languages, how much time

is spent on mentoring, and on code review are all highly relevant

factors. Psychology describes this conscious effort to keep learn-

ing as deliberate practice. It also highlights that not necessarily the

length of practice, but the intensity and goal-orientation is critical

to achieve expertise in a topic [23]. The effect of deliberate practice

has been observed in programming education and practice, as well.

For example, students show higher ability when participating in

programming competitions [81]. In an industry survey, software

engineers shared the notion that a great software engineer is shown

by their open-mindedness and eagerness to learn. They considered

the ability to learn as more important than technical skill [46]. This

was later confirmed in an experimental setting, in which company

seniority level showed little correlation to actual programming

skill [39]. Overall, the results of our experiment underlined that

the learning component is a highly relevant measure to capture

efficacy, which leads us to suggest it as important measure(s) for

future experiments.

Implications for Research. Beyond learning measures, our results

indicate that future research could maximize its potential when col-

lecting self-estimation measures. This result is in line with a similar

finding by Siegmund et al., which also highlighted self-estimated

comparison as a differentiating factor among students [72]. In the

same vein, Kleinschmager and Hanenberg found self-estimated

comparison, at least, as effective as pretests or university grades in
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its predictive power of efficacy [41]. Our shared experience ques-

tionnaire provides a proven basis for others to use to capture several

dimensions of programming experience.

Implications for Industry. From a practical perspective, our em-

pirical results provide scientific evidence that technical interviews

may be necessary for establishing efficacy, since common measures

selected for decisions (e.g., years of experience), have limited to no

predictive power. Our questionnaire provides a few promising di-

rections for operationalizing a more effective method for assessing

efficacy in industry, such as peer review and mentoring experience,

peer comparison, and learning behaviors. However, in high-stake

decisions, such as promotion or hiring, the degree to which self-

estimation can be reliable remains an open question.

Conclusion. Experience, expertise, and efficacy are three dimen-

sions of characteristics of programmers that are not well understood.

In particular, the relationship between them is unclear. In this paper,

we have presented correlates of efficacy in terms of reading order

and cognitive load across a wide range of programmers.

Commonly used experience measures do not correlate well to

observed efficacy. Instead, we underline to use self-estimation and

learning eagerness as more accurate measures for programming

experience.

Despite encouraging results, future work shall explore program-

mer efficacy in more detail. For example, the link between reading

behavior and cognitive load could be explored to understand causal-

ities. Is the more efficient reading strategy of programmers with

high efficacy the cause for lower cognitive load, or vice versa?
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