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A B S T R A C T

As virtual and augmented reality (VR/AR) technology gains popularity,
facilitating intuitive digital interactions in 3D is of crucial importance.
Tools such as VR controllers exist, but such devices support only a
limited range of interactions, mapped onto complex sequences of button
presses that can be intimidating to learn. In contrast, users already have
an instinctive understanding of manual interactions in the real world,
which is readily transferable to the virtual world. This makes hands the
ideal mode of interaction for down-stream applications such as robotic
teleoperation, sign-language translation, and computer-aided design.

Existing hand-tracking systems come with several inconvenient limita-
tions. Wearable solutions such as gloves and markers unnaturally limit
the range of articulation. Multi-camera systems are not trivial to calibrate
and have specialized hardware requirements which make them cumber-
some to use. Given these drawbacks, recent research tends to focus on
monocular inputs, as these do not constrain articulation and suitable
devices are pervasive in everyday life.

3D reconstruction in this setting is severely under-constrained, however,
due to occlusions and depth ambiguities. The majority of state-of-the-art
works rely on a learning framework to resolve these ambiguities statisti-
cally; as a result they have several limitations in common. For example,
they require a vast amount of annotated 3D data that is labor intensive
to obtain and prone to systematic error. Additionally, traits that are hard
to quantify with annotations - the details of individual hand appearance
- are difficult to reconstruct in such a framework. Existing methods also
make the simplifying assumption that only a single hand is present in the
scene. Two-hand interactions introduce additional challenges, however,
in the form of inter-hand occlusion, left-right confusion, and collision
constraints, that single hand methods cannot address.

To tackle the aforementioned shortcomings of previous methods, this
thesis advances the state-of-the-art through the novel use of model-
based priors to incorporate hand-specific knowledge. In particular, this
thesis presents a training method that reduces the amount of annotations
required and is robust to systemic biases; it presents the first tracking
method that addresses the challenging two-hand-interaction scenario
using monocular RGB video, and also the first probabilistic method to
model image ambiguity for two-hand interactions. Additionally, this
thesis also contributes the first parametric hand texture model with
example applications in hand personalization.
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Z U S A M M E N FA S S U N G

Virtual- und Augmented-Reality-Technologien (VR/AR) gewinnen ra-
pide an Beliebtheit und Einfluss, und so ist die Erleichterung intuitiver
digitaler Interaktionen in 3D von wachsender Bedeutung. Zwar gibt es
Tools wie VR-Controller, doch solche Geräte unterstützen nur ein be-
grenztes Spektrum an Interaktionen, oftmals abgebildet auf komplexe
Sequenzen von Tastendrücken, deren Erlernen einschüchternd sein kann.
Im Gegensatz dazu haben Nutzer bereits ein instinktives Verständnis
für manuelle Interaktionen in der realen Welt, das sich leicht auf die
virtuelle Welt übertragen lässt. Dies macht Hände zum idealen Werkzeug
der Interaktion für nachgelagerte Anwendungen wie robotergestützte Te-
leoperation, Übersetzung von Gebärdensprache und computergestütztes
Design.

Existierende Hand-Tracking Systeme leiden unter mehreren unbeque-
men Einschränkungen. Tragbare Lösungen wie Handschuhe und auf-
gesetzte Marker schränken den Bewegungsspielraum auf unnatürliche
Weise ein. Systeme mit mehreren Kameras erfordern genaue Kalibrie-
rung und haben spezielle Hardwareanforderungen, die ihre Anwendung
umständlich gestalten. Angesichts dieser Nachteile konzentriert sich
die neuere Forschung tendenziell auf monokularen Input, da so Be-
wegungsabläufe nicht gestört werden und geeignete Geräte im Alltag
allgegenwärtig sind.

Die 3D-Rekonstruktion in diesem Kontext stößt jedoch aufgrund von
Okklusionen und Tiefenmehrdeutigkeiten schnell an ihre Grenzen. Die
Mehrheit der Arbeiten auf dem neuesten Stand der Technik setzt hierbei
auf ein ML-Framework, um diese Mehrdeutigkeiten statistisch aufzu-
lösen; infolgedessen haben all diese mehrere Einschränkungen gemein.
Beispielsweise benötigen sie eine große Menge annotierter 3D-Daten,
deren Beschaffung arbeitsintensiv und anfällig für systematische Fehler
ist. Darüber hinaus sind Merkmale, die mit Anmerkungen nur schwer
zu quantifizieren sind – die Details des individuellen Erscheinungsbil-
des – in einem solchen Rahmen schwer zu rekonstruieren. Bestehende
Verfahren gehen auch vereinfachend davon aus, dass nur eine einzige
Hand in der Szene vorhanden ist. Zweihand-Interaktionen bringen je-
doch zusätzliche Herausforderungen in Form von Okklusion der Hände
untereinander, Links-Rechts-Verwirrung und Kollisionsbeschränkungen
mit sich, die Einhand-Methoden nicht bewältigen können.
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Um die oben genannten Mängel früherer Methoden anzugehen, bringt
diese Arbeit den Stand der Technik durch die neuartige Verwendung mo-
dellbasierter Priors voran, um Hand-spezifisches Wissen zu integrieren.
Insbesondere stellt diese Arbeit eine Trainingsmethode vor, die die Menge
der erforderlichen Annotationen reduziert und robust gegenüber syste-
mischen Verzerrungen ist; es wird die erste Tracking-Methode vorgestellt,
die das herausfordernde Zweihand-Interaktionsszenario mit monoku-
larem RGB-Video angeht, und auch die erste probabilistische Methode
zur Modellierung der Bildmehrdeutigkeit für Zweihand-Interaktionen.
Darüber hinaus trägt diese Arbeit auch das erste parametrische Handtex-
turmodell mit Beispielanwendungen in der Hand-Personalisierung bei.
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1
I N T R O D U C T I O N

1.1 motivation

Interacting with the digital world has become a natural part of daily life,
and with the rising popularity of virtual reality (VR) and augmented real-
ity (AR) technology, digital interactions are on the cusp of being brought
into the 3D space. Intuitive interaction in this novel space, however, is
still an open challenge. Conventional interfaces like keyboard and mouse
are unsuitable since they rely on metaphors that are constrained to text
or 2D. In real world environments, instinctive 3D interactions already
exist through manual manipulation. Therefore, bringing the users’ hands
into the digital space can extend human’s innate mastery of natural sur-
roundings into this new, digital frontier. This transfer would be critical
for enabling diverse applications such as VR/AR training, teleconference,
robotic telepresence, and computer-aided design.

In order to democratize these emerging technologies, hand tracking
methods should have low hardware requirements and be easy to set up.
Solutions like data or motion capture gloves require expensive specialized
hardware that is hard to personalize. They also inhibit natural articulation
and interaction due to the bulkiness of the sensors. Static multi-view sys-
tems remove these physical constraints, but involve complex calibration
for set-up. They additionally limit the usable area to a predefined capture
volume, constraining their use case to controlled in-door environments.
Recent head-mounted multi-view systems are more flexible due to their
portability. However, they still require specialized hardware to reliably
capture, transmit, and process high volumes of data.

In comparison, monocular systems are cheap, flexible, and ubiquitous;
this make them the ideal input modality for hand reconstruction. Still,
many technical challenges arise from this simplified setup. Single camera
systems already suffer from depth ambiguities, and this is made worse by
the severe occlusion encountered during hand articulation and interaction.
Hands also possess high degrees of freedom, while having self-similar
geometry and texture. Together, these traits make 3D reconstruction of
hands underconstrained and error prone.

Many recent approaches demonstrated promising results by using neu-
ral networks and tackling this ambiguous problem statistically (Boukhayma
et al., 2019; Tompson et al., 2014; Zimmermann and Brox, 2017). These
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2 introduction

methods learn a mapping between image and 3D pose by directly penal-
izing the pose error over a training dataset. Despite their successes, still
many limitations remain that have not been addressed. These approaches
cannot, for example, reconstruct finer details that are difficult to quantify,
such as hand texture. At the same time, they require large-scale datasets
that are either labor intensive to annotate manually, or require automated
annotation that is prone to systematic errors and biases. In the latter case,
training with biased data would cause these methods to reproduce the
errors at inference time.

Most recent methods also only tackle reconstructing a single hand in
free space or with a rigid object. Yet naturally people communicate and
interact with both hands in every day life. Generalizing these approaches
to two-hand interactions is not trivial, due to more complex articula-
tion, left-right confusion, inter-hand occlusions, and collision resolution.
Highly ambiguous inputs also often occur in these scenarios and multi-
ple plausible reconstructions exist with wildly different poses. Existing
methods cannot quantify this ambiguity, and instead deterministically
output a single reconstruction that may be far from the ground truth.

The goal of this thesis is to overcome these limitations through the use
of hand-specific priors, and experimentally show how new priors and
different methods of incorporating them pushes forward the state-of-the-
art. To this end, the thesis presents novel hand capture methods with
reduced annotation requirements, while correcting annotation biases.
It also presents the first method to track two hand interactions from
RGB video in real time, as well as a way to estimate pose distribution
of plausible interactions from a single ambiguous RGB image. Finally
the thesis presents the first hand appearance prior and demonstrates its
advantages in hand texture personalization tasks.

1.2 overview

This thesis examines different ways in which prior knowledge about the
hands can be incorporated into neural networks.

In the setting of single hand pose estimation using a monocular depth
camera, the thesis shows how a volumetric model of the hand can be
used as a self-supervised loss with the help of differentiable image-
formation in chapter 4. This prior knowledge of hand geometry allows
a method to make use of the depth map itself as the supervision signal,
which reduces the need for difficult-to-acquire 3D annotations and helps
overcome annotation bias to which existing methods overfit.

The thesis then tackles the task of two-hand tracking using monocular
RGB input. This setting broadens the applicability of the methods, since



1.2 overview 3

(a) Chapter 4: Self-supervision enables bet-
ter predictions (green) than biased annota-
tions (blue) and existing methods (black).

(b) Chapter 5: Real-time reconstruction of
two interacting hands from monocular RGB
video.

(c) Chapter 6: Estimating distributions of
plausible two hand reconstructions that are
consistent with ambiguous RGB input.

(d) Chapter 7: Parametric texture model as
a prior for reconstructing hand appearance
for model personalization.

Figure 1.1: The methods of this thesis use various hand priors (geometric,
ambiguity, appearance) to improve upon the state of the art.

RGB cameras are more ubiquitous and less sensitive to ambient infrared
light. Tracking both hands also allows for more natural communication
and interaction for the user. Additional challenges such as depth ambigu-
ity and larger appearance variation need to be accounted for when using
such RGB input, however, and left-right disambiguation and inter-hand
occlusions need to be addressed with two hands in the scene.

These challenges make the self-supervision approach presented in
chapter 4 difficult in particular. In chapter 5, this thesis shows instead
how prior knowledge can be incorporated in a second stage as a model-
fitting step, as long as a neural network is trained to regress carefully
designed image-level features. These features efficiently encode hand
segmentation, dense correspondence, 2D keypoints, hand articulation,
and root offset, and their use enables the development of the first real-
time RGB-based two-hand tracker.

Although the strategy of integrating geometric hand priors allows
the method to arrive at a plausible solution, the actual pose may be very
different when the input exhibits extreme ambiguity due to, for example,
whole-hand occlusions. In chapter 6, this thesis introduce a method
which seeks to quantify this ambiguity and explore the limits of what
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information is available in a single RGB image, by explicitly modeling
the range of possible poses as a statistical prior. Rather than a single
pose, the method estimates a pose distribution supervised by 2D image
consistency losses and by a novel regularization term for encouraging 3D
diversity of the pose samples. To train and evaluate such a method, the
thesis additionally contributes the first dataset with multiple plausible
annotations called MultiHands. As will be shown, this approach out-
performs existing methods in capturing pose variability, and the output
distribution can also be exploited for downstream tasks such as viewpoint
selection in a multi-view setup.

Finally, this thesis contributes the first parametric hand texture model
in chapter 7 which enables the reconstruction of hand appearance. This
model serves as a hand appearance prior, and its application as a loss
for hand personalization was demonstrated for both model fitting and
learning. This can be further used to generate synthetic data with realistic
appearance, which was used in chapter 5.

1.3 structure

The ideas of this thesis will be presented in 8 chapters:

• Chapter 1 motivates the topic of hand reconstruction, and gives
an overview of the specific challenges this thesis will tackle. It lays
out the structure of the thesis and highlights the main technical
contributions.

• Chapter 2 summarizes the previous state-of-the-art and places the
contributions of this work in context.

• Chapter 3 discusses the different hand modeling techniques, which
serve as foundational background needed to understand the thesis.

• Chapters 4, 5, and 6 introduce novel methods that integrate hand
specific priors into a learning-based system for 3D hand reconstruc-
tion, and provide extensive experimental results to demonstrate the
advantages of the proposed model integration.

• Chapter 7 presents the first parametric hand appearance model,
and demonstrates its application for hand personalization.

• Chapter 8 summarizes the contributions of this thesis and discusses
what future challenges still need to be addressed.
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1.4 contributions

The main contributions of this thesis are summarized in the following.

The contributions of Chapter 4 (published as Wang et al. (2020b)) are:

• A new self-supervised approach that incorporates a model-based
analysis-by-synthesis loss to reduce annotation requirements for
3D hand pose estimation from depth maps.

• Experimental evaluation demonstrating how the proposed loss can
overcome biases in annotation, and produce predictions that fit the
depth maps better than the "ground truth".

The contributions of Chapter 5 (published as Wang et al. (2020a)) are:

• The first real-time tracking system to reconstruct two interacting
hand meshes from monocular RGB video.

• The method uses a novel scalable representation of dense 3D ge-
ometry that enables a model fitting formulation for reconstruction.
This allows the method to combine advantages of both model-based
and learning-based approaches.

The contributions of Chapter 6 (published as Wang et al. (2022)) are:

• The first method to estimate the pose distribution from a single
RGB image of interacting hands for modeling pose ambiguity.

• A new benchmark dataset MultiHands designed for evaluating
predicted pose distributions by providing multiple plausible an-
notations per image. A new evaluation protocol and metrics are
proposed to make use of this dataset for quantitative evaluation of
output distributions.

The contributions of Chapter 7 (published as Qian et al. (2020)) are:

• The first parametric hand texture model that can be used to render
realistic RGB images of hands.

• Experiments showing applications of the model for hand personal-
ization in both a learning and model-fitting context.
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1.5 publications

The works presented in this thesis are also published in the following
publications:

• Jiayi Wang et al. (2020b). “Generative Model-Based Loss to the
Rescue: A Method to Overcome Annotation Errors for Depth-Based
Hand Pose Estimation.” In: Automatic Face and Gesture Recognition
(FG). IEEE, pp. 93–100

• Jiayi Wang et al. (Dec. 2020a). “RGB2Hands: Real-Time Tracking
of 3D Hand Interactions from Monocular RGB Video.” In: ACM
Transactions on Graphics (TOG) 39.6

• Jiayi Wang et al. (2022). “HandFlow: Quantifying View-Dependent
3D Ambiguity in Two-Hand Reconstruction with Normalizing
Flow.” In: Vision, Modeling and Visualization (VMV) Best Paper Hon-
orable Mention

• Neng Qian et al. (2020). “HTML: A Parametric Hand Texture Model
for 3D Hand Reconstruction and Personalization.” In: European
Conference on Computer Vision (ECCV). Springer

Additional contributions were made to the following publications but
are not included as part of this thesis:

• Tarun Yenamandra et al. (2019). “Convex Optimisation for Inverse
Kinematics.” In: International Conference on 3D Vision (3DV). IEEE,
pp. 318–327

• Viktor Rudnev et al. (2021). “EventHands: Real-Time Neural 3D
Hand Pose Estimation from an Event Stream.” In: International
Conference on Computer Vision (ICCV)



2
R E L AT E D W O R K

Hand reconstruction from a monocular image is an active research area
due to its myriad applications. Although many methods exists to tackle
the various challenges of the task, the problem is commonly formulated
as a search for parameters that best fit the observations given a digital
representation of the hand. This review of existing work will first catego-
rize the types of prior information that can be formulated using different
hand representations in the literature. It will then discuss how existing
methods approach the search in parameter space. Lastly, this review will
present an overview of the common simplifying assumptions made about
hand interactions, as well as how recent works address the additional
challenges that arise from relaxing these assumptions.

2.1 hand modeling for real-time reconstruction

Due to the importance of real-time performance in many applications,
hand representations should enable efficient evaluation of its parameters’
fitness to given observations. At the same time, it should be easy to
impose additional constraints for narrowing down the parameter space
in order to reduce search time. As such, the process of designing a hand
model is about finding the best trade-off between reconstruction quality
and efficiency, and about how to limit search space without excluding
better fitting solutions. This section reviews how existing representations
make this trade-off in order to better incorporate additional knowledge
of hand articulation, geometry, appearance, and ambiguities.

2.1.1 Articulation Modeling

Articulation can be seen as a configuration of joints to describe the de-
formation of hands as rigid parts. As joint configurations are limited by
the hand anatomy, Rehg and Kanade (1994) applied a kinematic model,
a chain of rigid transformations with reduced degrees of freedom to
incorporate these mechanical constraints. Lin et al. (2000) and Wu et al.
(2001) incorporate additional limits on rotation angle range for each indi-
vidual joint to prevent hyperextension. These rotation parameterization
and joint articulation limits formed the foundational model upon which
many later models are built.

7
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More recently, methods apply data-driven techniques to formulate
additional constraints that capture inter-correlations of rotations between
different degrees of freedom. Spurr et al. (2020) models the space of
plausible co-articluations as a convex hull, while Romero et al. (2017)
construct a statistical model of pose likelihood using principle component
analysis (PCA).

2.1.2 Geometric Modeling

Although hand articulation provides a coarse view of hand deformations,
it does not encode the volumetric extent of the hand. To capture this
information, methods often extend the articulation model with additional
structure for geometry modeling.

To ensure that such models are tractable, one approach is to heuris-
tically simplify the hand into a small number of volumetric primi-
tives (Oikonomidis et al., 2011; Qian et al., 2014; Sridhar et al., 2013;
Tagliasacchi et al., 2015; Tkach et al., 2016). Although the surface extent of
these models is fast to evaluate, the geometry they represent is coarse and
discretized. Personalization of these models is also over-parameterized,
which often leads to implausible geometric configurations.

Another approach is to use polygonal primitives to capture the hand
surface in more detail by using a mesh representation. La Gorce et al.
(2011) capture surface deformation as a function of the underlying articu-
lation using linear blend skinning (LBS). Blend shape models additionally
parameterize surface variations between individuals by interpolating be-
tween registered meshes (Khamis et al., 2015) or between their deforma-
tions from a template mesh (Romero et al., 2017). This was later extended
with PCA shape space and pose-dependent shape correction (Romero
et al., 2017), and filled out with anatomically correct bones and muscles
(Li et al., 2021, 2022b) to increase the level of detail captured by the
model.

The discrete mesh surface can also be made smooth using Loop sub-
division surfaces (Khamis et al., 2015; Taylor et al., 2016), Phong sur-
faces (Shen et al., 2020), and articulated signed distance fields (Taylor
et al., 2017). These smooth parameterizations enable efficient approxi-
mations of the optimization problem needed to be solved for tracking,
resulting in real-time performance even without GPU acceleration.

2.1.3 Appearance Modeling

Modeling the hand texture is important for increasing immersion and
the sense of “body-ownership” in VR applications, and it can also aid
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in tracking in analysis-by-synthesis approaches (see 2.2.1). When hand
texture is needed, most existing methods use a texture map or per-
vertex coloring where each color value can vary independently (Chen
et al., 2021; La Gorce et al., 2011, 2008). This approach provides partial
estimates of the observable hand texture when given a pose estimate
and an image. However, this over-parameterization results in unrealistic
hand textures when pose errors cause background color to be assigned
to the hand. It also leaves out details in the unobserved part of the hand.
To address these issues, this thesis contributes the first parametric hand
appearance model HTML in Chapter 7. It better constrains the appearance
by providing a low dimensional PCA space for reconstruction.

2.1.4 Ambiguity Modeling

Given monocular image input, many ambiguities arise from projective
geometry and occlusions in the scene. Although the abovementioned
modeling priors can eliminate implausible pose, geometry, or appearance
to narrow down the solution space, multiple plausible reconstructions
could still exist. Few methods explicitly model this ambiguity, and instead
deterministically reconstruct a single solution. However, doing so could
incorporate undesired bias during reconstruction and does not reflect the
inherent uncertainty in the input. For single hand reconstruction from
depth map input, two works exist to address this issue: Ye and Kim
(2018) use a hierarchy of Gaussian mixtures to model the distribution of
joint locations, and Tkach et al. (2017) use a Gaussian distribution in the
model parameter space to model both shape and pose ambiguity. Unlike
existing works, this thesis tackles the much more ambiguous task of
two-hand reconstruction from RGB input in Chapter 6, where plausible
variations are too complex to model with a simple Gaussian.

2.2 hand tracking approaches

Given a hand representation and its corresponding parameter space, the
approaches to searching for the optimal reconstruction can be broadly
categorized into generative, discriminative, or hybrid.

2.2.1 Generative Approaches

Generative approaches start with a proposed vector of hand parameters as
initialization, and then use analysis-by-synthesis techniques to iteratively
update the parameter to fit the image better. The quality of the fit is
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defined as an energy that measures how well the hand model matches
pixel-wise or heuristic image features. By using optimization algorithms
to minimize this energy, generative methods attempt to recover the correct
model parameters (La Gorce et al., 2011, 2008; Oikonomidis et al., 2011;
Qian et al., 2014; Sridhar et al., 2013; Tagliasacchi et al., 2015; Tkach et al.,
2016). However, due to the self-similarity of the hand structures, the
energy derived from heuristic image features has many local minima
and is thus sensitive to initialization. On the other hand, generative
approaches can easily enforce prior information by incorporating losses
and constraints during optimization. They also do not require hard-to-
acquire training data and annotations, which eliminates dataset bias as a
source of error for generalization.

2.2.2 Discriminative Approaches

In contrast to generative approaches, purely discriminative methods
attempt to infer the correct parameters from the image. These approaches
typically make use of learning-based algorithms to automatically discover
powerful high-level image features that can be used to map images to
hand parameters directly. To train these algorithms, the correct mapping
function is optimized over a large scale image dataset with annotations,
usually in the form of 3D joint locations.

Many works explored different learning algorithms, architectures, data
representations, and training procedures to best make use of the available
data (a non-exhaustive list of such methods includes: Ge et al., 2016,
2017; Keskin et al., 2012; Oberweger et al., 2017; Oberweger et al., 2015;
Spurr et al., 2021; Tompson et al., 2014; Wu et al., 2018; Xu and Cheng,
2013; Yang and Yao, 2019; Zhao et al., 2020; Zimmermann and Brox,
2017). However, accurate 3D annotations are difficult to obtain manually
and automated annotations are limited to multi-view set-ups with a
constrained environment. Given this scarcity of data, it is difficult for
purely discriminative methods to generalize, as they tend to overfit to
the many biases in the dataset. Due to the lack of explicit priors on hand
geometry, reconstruction failures also may no longer resemble hands.

2.2.3 Hybrid Approaches

Given the complementary advantages and disadvantages of the two pre-
vious approaches, it is natural to investigate how to combine them into
a single hybrid approach. One way is to use a discriminative approach
to extract interpretable image features, such as 2D finger tip and joint
positions (Pavlakos et al., 2019; Shen et al., 2020; Taylor et al., 2016; Ye
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et al., 2016), part segmentation (Sridhar et al., 2015), or dense correspon-
dence (Mueller et al., 2019), and to use these to formulate an energy in
an optimization framework. Another is to use model parameters as a
constrained output space, and make use of the prior terms in the opti-
mization energy as losses to train the image-to-pose mapping function
(Boukhayma et al., 2019; Malik et al., 2017; Zhou et al., 2016; Zimmer-
mann et al., 2019). Of these methods, some additionally incorporate an
efficient image formation model that enables self-supervision on image
input to reduce requirements on training data (Chen et al., 2021; Dibra
et al., 2017; Wan et al., 2019).

The methods presented in this thesis further advance this space of
hybrid designs to demonstrate their application for overcoming anno-
tation bias (Chapter 4), appearance reconstruction (Chapter 7), tracking
two-hand interactions from RGB videos (Chapter 5), and estimating pose
ambiguity (Chapter 6).

2.3 hand interaction

Accounting for the presence of objects during tracking is important for
many applications that focus on interactions. However, the majority of
the works discussed so far investigate the reconstruction of a single hand
in free air. In contrast, capturing hand interactions with arbitrary objects
is more challenging due to the immense range of variety in both object
appearance and geometry. To simplify the problem, existing methods
either reconstruct only the hand pose (Armagan et al., 2020; Hasson et al.,
2019; Mueller et al., 2018, 2017; Rogez et al., 2015), or restrict the object
to a set of predefined model class (Doosti et al., 2020; Grady et al., 2021;
Hampali et al., 2020; Hasson et al., 2020; Karunratanakul et al., 2020;
Kyriazis and Argyros, 2014; Liu et al., 2021; Sridhar et al., 2016; Tekin
et al., 2019; Tzionas et al., 2016).

Methods from this thesis tackle the even more challenging scenario
where the object is known to be another hand. Compared to the object
classes addressed using aforementioned methods, another hand is more
complex since it can articulate and both hands have similar image features.
While some methods (Han et al., 2018; Oikonomidis et al., 2012; Simon et
al., 2017) leverage multi-view input to better constrain the problem, most
recent works use a single depth map (Kyriazis and Argyros, 2014; Mueller
et al., 2019; Taylor et al., 2016, 2017) to reduce the need for calibration and
setup. To simplify the input requirements further, this thesis presents (in
Chapter 5) the first methods to reconstruct two interacting hands from
only monocular RGB video by using a hybrid approach.
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Concurrently, Moon et al., 2020 developed a discriminative method
trained using the first real dataset with large scale 3D annotations. Later
discriminative methods (Fan et al., 2021; Kim et al., 2021) take into
account part visibility or segmentation to account for challenging oc-
clusions. To enable surface reconstruction, other methods formulated
the output space as a parametric model (Zhang et al., 2021) or as mesh
vertices (Li et al., 2022a). Both also introduce attention modules to learn
none-local relationships within the image. These methods have in com-
mon that they deterministically reconstruct the hands. However, during
interactions, the image input often exhibits heavy occlusions between
hands or ambiguous semantics that allow for a wide range of plausi-
ble reconstructions. In Chapter 6, this thesis presents the first method
to explicitly model this ambiguity with a probabilistic approach, and
contributes the first benchmark dataset designed to evaluate this task.



3
B A C K G R O U N D

This chapter provides foundational concepts used to model hands in this
thesis. First, principal component analysis is presented in Section 3.1, and
will be used as a widely applicable technique used to restrict the search
space of a model. The kinematic skeleton model is then introduced in
Section 3.2, which is used to describe the hierarchical nature of hand
articulation. This articulation model is then extended with a volume
model (Section 3.3), a surface model (Section 3.4), and an appearance
model (Section 3.5) to increase the fidelity of the hand representation.
Finally, normalizing flow is introduced as a tractable method to parame-
terize arbitrary distribution (Section 3.6); this is later used to model pose
ambiguity.

3.1 principal component analysis

Principal component analysis (PCA) is a commonly used technique
for dimensionality reduction. Given a data representation that is over-
parameterized, PCA can be used to discover a subspace that can still
accurately explain the observed variations in the dataset.

When given a set of n data points {vi}n
i=1 with each d-dimensional

point vi ∈ Rd representing, for example, the parameters of a hand, PCA
first computes the data covariance matrix

C =
1

n− 1

n

∑
i=1

(vi − v̄) (vi − v̄)⊤ , (3.1)

where v̄ = 1
n ∑n

i=1 vi is the average hand parameter.
Subsequently, eigenvalue decomposition of C = ΦΛΦT is used to

obtain the principal components Φ ∈ Rd×d and the diagonal matrix of
eigenvalues Λ ∈ Rd×d. To reduce the dimensionality of data to k < d, a
subset of principal components with k largest eigenvalues Φ′ ∈ Rd×k is
considered. The reduced parameter space can be expressed as α ∈ Rk

and the corresponding hand parameter v can be recovered using

v(α) = v̄ + Φ′ Λ′
1
2 α , (3.2)

where Λ′ ∈ Rk×k is the matrix of eigenvalues corresponding to Φ′.

13
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This technique is used to create a bone length subspace in Chapter
4, a hand texture subspace in Chapter 7, and a hand pose and shape
subspace in Section 3.4.

3.2 kinematic skeletons

Figure 3.1: An anatomical model of the the
hand. Black lines labels the bone and red
lines labels the joints. (Figure taken from
Wheatland et al., 2015)

The hand is a complex anatom-
ical structure with bones,
joints, tendons and muscles
all interacting to articulate the
fingers. Commonly, geometric
models of the hand consider
only the bones and joints (See
Figure 3.1), while the impact
of other internal structures is
abstracted as articulation con-
straints. To simplify things fur-
ther, each finger is described
with three joints (DIP, PIP,
MCP), while the thumb con-
tains the CMC rather than
the PIP joint. The bottom-most
joint of each finger is then con-
nected to the radiocarpal joint
(wrist), which removes the carpal bones from consideration. The resulting
model is composed of 16 joints and 20 bones.

A kinematic skeleton parameterizes the locations of joints by represent-
ing them as a hierarchy of rigid transformations T ∈ SE(3) organized
in a tree structure. Here each node corresponds to a joint, and an edge
exist between two nodes whose joints are connected by a bone. The root
of the tree encodes the global transformation of the root joint, which
is often chosen to be the wrist. From there, each ith child node in the
tree contains the transformation Ti that would map a point in the child
local coordinate to the parent local coordinate. By convention, the joint is
positioned at the origin of its own local coordinate. Thus the joint location
of the ith joint in the parent’s local coordinate Jp

i can be calculated using

Jp
i = Ti ·


0

0

0

1

 . (3.3)
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Here, the translation in Ti can be interpreted as the local bone vector in
the canonical pose, and the rotation as the local articulation. The global
position Jg

i can then be obtained by iteratively applying a chain of parent
transformations

Jg
i =

(
∏
j∈ αi

Tl
j

)
· Tl

i ·


0

0

0

1

 , (3.4)

where αm denotes the path from the m-th node to the root. Note that the
impact of local articulation is efficiently passed down the kinematic chain
when calculating global position.

Since the range of articulation at each joint is limited by tendon and
muscle configuration, the transformation can be further constrained.
Romero et al. (2017) applied PCA on a captured pose dataset to reduce
the degrees of freedom by using a lower dimensional subspace, used in
Chapter 5.

Another approach to reduce degrees of freedom is by limiting articula-
tion along 1 or 2 rotation axes (Rehg and Kanade, 1994). This explicitly
models the abduction/adduction and flexion/extension capabilities of
each joint (See Figure 3.2). For each rotation axis, a valid range of angles
can further be defined to model mechanical limits (Lin et al., 2000).

Kinematic Skeleton

Figure 3.2: A model of hand joints and their
degrees of freedom.

These joint limit constraints
are used in Chapter 4. As the
fingertip location is often of in-
terest, it can be included in the
kinematic skeleton model by
treating it as a joint with 0 de-
grees of freedom for articula-
tion.

Although a kinematic skele-
ton captures bone articulation,
it can not represent the hand
surface or volume. In Section
3.3 and 3.4, extensions are pre-
sented which address these
shortcomings.
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3.3 sum-of-gaussians model

Figure 3.3: A volumetric
model of the hand

The Sum-of-Gaussians model (SoG) was intro-
duced by Stoll et al. (2011) to approximate,
among other things, the volumetric extent of
the hand (Sridhar et al., 2013). The model uses
3D Gaussians as primitives, which efficiently
approximate the space the hand occupies by
considering spheres of 1 standard deviation ra-
dius. These primitives are then attached rigidly
to the bones, so that they can articulation with
the joints (See Figure 3.3).

The choice of Gaussian as primitives serves
three advantages: First, the projection of 3D
Gaussians to the image plane can be found an-
alytically. This provides an efficient image formation model for an SoG
hand. Second, there is also an analytical solution to the overlap between
two Gaussians, which enables tractable computation of similarity or dis-
similarity losses. Lastly, when considering the similarity between two
SoG models, the infinite extent of the Gaussians implicitly approximates
a soft closest-point correspondence assignment. This provides differen-
tiable correspondence that is simultaneously optimized along with the
similarity loss.

To see how these three properties are derived, consider the 3D model
isotropic Gaussian gµh,σh(x) parameterized by the mean µh and the stan-
dard deviation σh. Given an intrinsic camera matrix K, the projected 2D
Gaussian is gµp,σp(x) = ΠK(gµh,σh(x)), where

µp =
K · µh

[µh]z
, (3.5)

σp =
σh f
[µh]z

. (3.6)

Here, f is the focal length of K, and [µh]z is the z component of µh.
The overlap Sh,k between two d-dimensional isotropic Gaussians gµh,σh(x)

and gµk ,σk(x) can be found using

Sh,k =
∫

Rd
gµh,σh(x) · gµk ,σk(x) dx (3.7)

=

√
(2π)d(σ2

h σ2
k )

d√
(σ2

h + σ2
k )

d
exp

(
− ||µh −µk||22

2(σ2
h + σ2

k )

)
.

This analytical solution is differentiable with respect to the mean and
can be minimized to avoid collision by moving apart the two Gaussian
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centers. When a 2D Gaussian image representation is available, its overlap
with the projected 2D model Gaussian can be maximized to improve how
well the model fits the image.

When considering the overlap between two SoG models, the total
overlap Stotal can be found using

Stotal =
Nh

∑
h=1

Nk

∑
k=1

Sh,k (3.8)

=
Nh

∑
h=1

Nk

∑
k=1

√
(2π)d(σ2

h σ2
k )

d√
(σ2

h + σ2
k )

d
exp

(
− ||µh −µk||22

2(σ2
h + σ2

k )

)
.

The exponential term wh,k = exp(− ||µh−µk ||22
2(σ2

h+σ2
k )

) can be seen as a dis-
tance base weighing between a pair of Gaussians. As it assigns higher
weights to closer pairs than farther ones, it can be interpreted as a soft
differentiable approximation to closest-point correspondence.

In Chapter 4, the SoG hand model is used to formulate a self-supervised
loss to train a pose estimator using depth map input. In Chapter 5, it is
used in combination with a mesh model as an efficient collision proxy.

3.4 hand mesh

Figure 3.4: A mesh
model of the hand

A mesh representation approximates a surface by
discretizing it into as a collection of polygonal prim-
itives, usually triangles (see Figure 3.4). It is usually
stored as a graph, which note the vertex position and
connectivity. Compared to a SoG model, a mesh can
represent detailed surface at the cost of using more
primitives.

In order to use hand meshes for reconstruction,
the surface variations due to articulation and hand
shapes must be parameterized. A low dimensional
blend-shape space can be introduced to constrain
the deformation so that only natural variations in
hand shape is modeled (Khamis et al., 2015; Romero et al., 2017). Given
a template mesh T, a blend shape basis is defined as a set of per-vertex
deformations Sn from the template, which is often created using a dataset
of 3D scans with varying hand shapes. Additional deformations is then
represented as a linear combination of blend shape basis. This repa-
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rameterization of hand shape T̃ in terms of the linear weights β can be
expressed as

T̃(β) =T +
|β|

∑
n=1

βnSn . (3.9)

Romero et al. (2017) introduced a pose blend shape function to further
account for deformations of the mesh as a result of articulation. The final
hand template is then defined as

T̂(β, θ) =T̃(β) +
k

∑
n=1

αn(θ)Pn , (3.10)

where Pn is the set of pose blend shape basis, k is the size of this set,
θ encodes the articulation of the joints and αn(θ) are pose-dependent
weights (see Romero et al. (2017) for details of how αn(θ) is defined). To
articulate the template, linear blend skinning (LBS) is performed (Lewis
et al., 2000), i.e.

X (β, θ) = LBS(T̂(β, θ), J(β), θ, W) , (3.11)

where X is the vertex positions of the articulated mesh, J(·) computes
the 3D position of the hand joints in the template, and W is a matrix of
rigging weights used by the skinning function.

One popular parametric mesh model is MANO (Romero et al., 2017).
MANO built its blend shape basis by using PCA on 1, 000 scans of 30

different subjects in a variety of poses. The result is a mesh with 778
vertices, 1, 538 triangular faces, and 16 joints that can be deformed using
shape parameters β ∈ R10 and the pose parameters θ ∈ R45.

Chapter 7 extends MANO with an appearance model to enable simul-
taneous reconstruction of hand pose and appearance. MANO is also used
in Chapter 5 and 6 for hand surface parameterization.

3.5 hand texture

In order to represent also the visual appearance of the hand and not
just the geometry, the mesh model needs to be extended with coloration.
Although it is possible to define per-vertex color on the mesh itself and
use barycentric interpolation to propagate the color to the rest of the
faces, the texture detail will be limited by the coarseness of the mesh.

Instead, a highly detailed 2D UV image Ω : w→ c can be defined to
represent a flattened surface of the hand (See Figure 3.5). Here, w = (u, v)
is the 2D pixel coordinate of the UV image, and c ∈ [0, 1]3 is the color
value at the pixel. Then a texture mapping function F : ν → w can be
defined by assigning every mesh vertex ν to a UV coordinate w.
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Figure 3.5: A example UV texture image.

Therefore, the vertex
color can be found by com-
positing the two functions
c(v) = Ω(F(ν)). To find
the color of a point p ∈
R3 on a triangle face de-
fined by vertices ν1, ν2, ν3,
the barycentric coordinate
of the point b(p) = (λ1, λ2)

can be used to interpolate
the UV coordinates of the corresponding vertices, i.e.

c(p) = Ω(λ1F(ν1) + λ2F(ν2) + (1− λ1 − λ2)F(ν3)) . (3.12)

Since the interpolation happens in the UV coordinate rather than in color
space, the high frequency details in the UV image are preserved through
the mapping.

Although texture mapping can create detailed appearances even on
a coarse hand mesh, the UV image itself is over-parameterized and a
represent arbitrary images. Chapter 7 presents a low dimensional texture
model to limit the UV image to statistically likely hand textures. This is
used to extend MANO for hand appearance personalization tasks.

3.6 normalizing flow

Due to the many ambiguities present in monocular 3D reconstruction,
many solutions in the parameter space of the model could explain the
image equally well. It is useful to model this space of plausible solutions
as a distribution, so that the likelihood of a reconstruction can be queried.
To find the best matching distribution, a search space must be defined by
finding a way to parameterize potentially complicated distributions; one
such parameterization is available through the use of a normalizing flow
network.

A normalizing flow describes a target distribution pY(y) as sequential
invertible transformations f : Rd → Rd of a simple probability density
pZ(z), i. e.

pY(y) = pZ( f−1(y))
∣∣∣∣det

∂ f−1(y)
∂y

∣∣∣∣ . (3.13)

This can be rewritten by using z = f−1(y) and the inverse function
theorem as

pY(y) = pZ(z)
∣∣∣∣det

∂ f (z)
∂z

∣∣∣∣−1

. (3.14)



20 background

Typically, a multivariate normal distribution N (0, I) is used as the base
distribution pZ.

When carefully choosing the building blocks, a neural network can
represent a transformation f that fulfills all the assumptions made. In
this way, the target distribution is parameterized as learned weights in a
normalizing flow network. Compared to other parameterizations (such
as GANs and VAEs), normalizing flow provides a tractable way to both
sample from the distribution, and estimate the probability of a given
sample. This allows for an efficient way to compute loss both on the
sampled pose space, and in terms of the sample likelihood. For a more
detailed overview, refer to Kobyzev et al., 2020.

In order to model varying distributions when given different ambigu-
ous observations, a conditioning input can be incorporated into this
framework. Normalizing flow can be extended to conditional normaliz-
ing flow (Winkler et al., 2019) by using transformations fx : Rd → Rd that
are parameterized by x, so that for f (·; x) := fx(·) the following results
are derived:

pY|X(y|x) = pZ|X( f−1
x (y)|x)

∣∣∣∣det
∂ f−1

x (y)
∂y

∣∣∣∣ (3.15)

= pZ|X(z|x)
∣∣∣∣det

∂ fx(z)
∂z

∣∣∣∣−1

. (3.16)

This reduces the search for a best fitting distribution to the image to a
search for the best conditioning input instead.

This parameterization is used in Chapter 6 to model the pose ambiguity
in hand interaction reconstruction from a monocular RGB image.



4
M O D E L - B A S E D S E L F - S U P E RV I S I O N F O R H A N D P O S E
E S T I M AT I O N

This chapter presents a model-based generative loss for training hand
pose estimators on depth images (published as Wang et al. (2020b)). The
additional loss allows training of a hand pose estimator that accurately
infers the entire set of 21 hand keypoints while only using supervision
for 6 easy-to-annotate keypoints (fingertips and wrist). It is shown that
the partially-supervised method achieves results that are better than
those of fully-supervised methods like Malik et al. (2017). Moreover, it
is demonstrated for the first time that such an approach can mitigate
the effects of erroneous annotations, i.e. “ground truth” with notable
measurement error, during training. As a result, the predictions during
inference are able to explain the inputs better than the given “ground
truths” (see Figure 4.1).

4.1 introduction
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Figure 4.1: The proposed method compen-
sates for erroneous “ground truths” (Blue),
resulting in better predictions (Green).

Accurate hand-pose estima-
tion from monocular depth
images is vital for enabling
fine-grained control in human-
computer interaction in VR
and AR settings (Soliman et al.,
2018). However, this is a chal-
lenging task due to, e.g. , com-
plex poses, self-similarities,
and self-occlusions.

Many existing methods ad-
dress these challenges with
powerful learning-based tools.
Such methods dominate the
benchmarks on large public
datasets such as NYU (Tomp-
son et al., 2014), and Hands in
the Million Challenge (HIM) (Yuan et al., 2017). Most of these approaches
are trained in a fully supervised manner to predict keypoint positions in
3D. However, the current lack of large-scale training datasets that are both

21
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accurate and diverse causes such methods to overfit. This makes it diffi-
cult to generalize well to new settings, or even across benchmarks (Yuan
et al., 2017). Retraining these methods on different data requires the full
set of 21 keypoint annotations, which are tedious to obtain. More impor-
tantly, the annotation process is prone to errors, either due to systematic
biases during measurement, or due to human errors. Additionally, meth-
ods that learn a direct mapping from depth image to keypoints often
ignore the inherent geometry of the hands, such as constant bone lengths
or joint angle limits. As such, albeit their general good performance, these
methods often produce bio-mechanically implausible poses (Wöhlke et
al., 2018).

An alternative to learning-based approaches are model-based hand
tracking methods, such as Sridhar et al. (2015), Taylor et al. (2017), and
Tkach et al. (2017), among others. These methods use generative hand
models to recover the pose that best explains the image through an
analysis-by-synthesis strategy. While not suffering from anatomical incon-
sistencies, and generalizing better to yet-unseen scenarios, they require
good initialization of the model parameters in order to minimize the
non-convex energy function.

This chapter addresses the shortcomings of both approaches with a
generative model-based loss embedded into a learning-based method.
Based on a volumetric Gaussian hand model, this loss incorporates ad-
ditional annotation-free self-supervision from the depth image. When
combined with anatomical priors, this supervision can take the place of
joint annotations for resolving both hand pose and bone length ambigui-
ties. In total, this approach reduces the number of required annotations
from 21 to 6, a 71% decrease. At the same time, the learning-based
framework enables accurate and efficient inference without requiring
initialization. This effectively combines the main advantages of the two
popular categories.

Most existing methods that utilize model-based losses (Malik et al.,
2017; Wöhlke et al., 2018; Zhou et al., 2016) do not explain the input
images in a generative manner. As such, they still require the full set of 21
annotated keypoints. Additionally, due to the reliance on the annotations
as the only source of supervision, these methods can overfit to errors and
biases in the annotations. This chapter demonstrate that the proposed
method can overcome such errors through the use of proposed additional
generative loss (see Figure 4.1).
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Dissimilarity 
Loss

Depth Image
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Joint 
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Collision Prior

Autoencoder ‘Rendered’ Model

CNN Encoder Model Decoder3D Code Vector

Resnet-18 ‘Rendering’ Layer

(θ, β) ∈ ℝ𝟒𝟔

Quadtree Image Summary
Bone Length Prior
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Figure 4.2: Framework Overview. The method regresses a code vector represent-
ing the parameters of a volumetric Gaussian hand model. It is supervised with a
dissimilarity loss, which compares the model to a Gaussian image representation
constructed using quadtree, and a joint loss defined on a subset of keypoints.
Additional bone lengths and pose prior are used to regularize the encoding.

The main contributions are as follows:
• Compared to classical fully supervised methods, the proposed

generative loss significantly reduces the amount of annotations
need to accurately infer the full hand pose.

• Despite ambiguities resulting from the reduced annotations, the
proposed method can simultaneously infer pose and bone lengths.

• The chapter provide a new dataset, HandId, which includes finger-
tips and wrist annotations for 7 users to address the lack of hand
shape variations in existing datasets.

• Most importantly, it is demonstrated for the first time that a method
trained with a self-supervised loss can produce hand pose that
better fits the input than the “ground truth” annotations.

4.2 method

The main idea of the approach is to explain a depth image of a hand based
on a generative hand model, cf. Figure. 4.2. Given a depth image as input,
the method uses a CNN-based encoder to obtain a low-dimensional
embedding of the depth image. The decoder is build upon a parametric
hand model that produces a volumetric representation of the hand from
the semantically meaningful code vector. By using a suitable representa-
tion of the input depth image, the overlap between a “rendering" of the
hand representation and the input depth can be used to train the encoder.
To be more specific, the volume of the hand are modeled with a collection
of 3D Gaussians rigidly attached to a kinematic hand skeleton model. The
corresponding image space representation of the hand can be obtained by
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Volumetric Gaussian Model

1 DOF
2 DOF
6 DOF

0 DOF

Kinematic Skeleton

Figure 4.3: Left: The skeleton comprises of 20 bones and 15 articulating joints
with varying degrees of freedom (DOF). In total, there are 26 joint parameters,
and 20 bone length parameters. Right: The volumetric Gaussian model.

projecting the Gaussians using the camera intrinsics. Moreover, the depth
image can also be reduced to a Gaussian representation that summarizes
regions of homogeneous depth obtained with quadtree-decomposition.
The similarity between the rendered model and the image can then be
described as the depth-weighted overlap of all pairs of model and image
Gaussians, and can serve as generative model-based loss during network
training. Additional prior losses are added to avoid inter-penetrations of
hand parts, violations of joint limits, and unphysiological combinations
of bone lengths. Lastly, supervision for a small subset of keypoints is pro-
vided as a way to mitigate the multiple minima present in the non-convex
energy.

4.2.1 Hand Model

Kinematic Skeleton: The shape of the kinematic skeleton is parame-
terized in terms of bone lengths, and pose as articulation angles with
respect to the predefined rotation axes. It comprises of 20 bones with
lengths b ∈ R20 and 26 degrees of freedom (DOF) θ ∈ R26 (20 DOF for
articulation and 6 DOF for global rotation and translation), see Figure. 4.3.

To ensure that the predicted bone length vector is plausible, b is pa-
rameterized by an affine model constructed using 20 PCA basis vectors,
i.e.

b = bavg + Mpcaβ . (4.1)

Here, bavg ∈ R20 is the average bone length vector and Mpca ∈ R20×20

are the linear PCA basis vectors of the bone length variations scaled
by the square root of their eigenvalues. By scaling the basis vectors, β
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follows an isotropic standard normal distribution, and deviations along
each basis are penalized inversely to how much natural variation exists
in that direction. Both bavg and Mpca are obtained from bone length
vectors computed from 10,000 hand meshes sampled from the linear PCA
parameters of the MANO model (Romero et al., 2017).

The pose parameter vector θ controls the angles of articulation with
respect to the joint axes in the forward kinematics chain, as well as the
global translation and rotation of the entire hand, where the latter is
parameterized using Euler angles. Given the bone length parameters β

and pose θ, the Nj joint positions can be obtained by applying forward
kinematics F(θ, β) ∈ RNj×3.

Volumetric Gaussian Model: Similar to Sridhar et al. (2015) and Stoll
et al. (2011), the hand volume is modeled with a mixture of Nm 3D
Gaussians, i.e.

G3D(x) =
Nm

∑
h=1

gµh(θ,β),σh
(x) , (4.2)

where g is an isotropic Gaussian with mean µh(θ, β) and standard devia-
tion σh. Each Gaussian is attached to a bone on the kinematic skeleton
and articulates with that bone.

4.2.2 Depth Image Representation

The depth image is represented by a collection of 2D image Gaussian
and depth value pairs {(gµi ,σi(x), zi)}Ni

i=1. Each Gaussian and depth value
pair summarizes a roughly homogeneous region with a single depth. To
obtain these regions, quadtree clustering is used to recursively divide the
image into sub-quadrants until the depth difference within each region is
below a threshold c (c = 20mm is used for all experiments). The Gaussian
gµi ,σi(x), is chosen so that µi is the center and σi is half the side length of
the region. The associated depth value zi is then the average depth value
of the quadrant.

4.2.3 Model-based Decoder

To measure the quality of the predicted hand pose and bone length
parameters for a given input depth image, a decoder layer is incor-
porated to “render” the 3D model representation to a 2.5D represen-
tation similar to the image representation. The camera-facing surface
of the h-th 3D Gaussian is approximated by a projected 2D Gaussian
gµp,σp(x) = ΠK(gµh,σh(x)) using the intrinsic camera matrix K and an
associated depth value zp.
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4.2.4 Loss Layer

For training the network, the loss is decomposed into an unsupervised
dissimilarity term Edissim for measuring the discrepancy between depth
image and hand model, Ecollision to prevent self intersection, Ebone for
regularizing the bone length parameters β, Elim for regularizing the joint
angles θ, and a supervised Ejoint term for explaining the provided joint
locations. The relative importance of each term is balanced with scaling
factors λ and the values can be found in Appendix A.1. With that, the
total energy reads

E(θ, β) =λdissimEdissim(θ, β) + λcollisionEcollision(θ, β)+

λboneEbone(β) + λlimElim(θ) + λjointEjoint(θ, β) .
(4.3)

In the following sections, the individual energy terms are described.

4.2.4.1 Dissimilarity Measure

To measure the overall similarity between two given (2D Gaussian, depth)
tuples, the similarity Si,p between the two Gaussians are weighted by
their distance in depth values ∆(i, p). The pairwise similarity between
image Gaussian gµi ,σi and projected model Gaussian gµp,σp is defined
using the integral over the product of the two functions. Since the model
Gaussian directly depends on the hand pose vector θ and bone length
vector β, Si,p is given by

Si,p(θ, β) =
∫

R2

gµi ,σi(x)gµp(θ,β),σp(x) dx . (4.4)

To incorporate depth information, Si,p(θ, β) is weighted by the depth
difference

∆(i, p) =

0, if |zi − zp| ≥ 2σh

1− |zi−zp|
2σh

, if |zi − zp| < 2σh

, (4.5)

where σh is the standard deviation of the unprojected Gaussian gµh,σh

associated with gµp,σp . This forces the model to not only match the area
of the hand in the depth image, but also the observed depth values.

The overall similarity Ssim is defined as the sum over all possible
pairings between the model and the image Gaussians, and is given by

Ssim =
∑Ni

i=1 ∑Nm
p=1 ∆(i, p)Si,p

∑Ni
i=1 ∑Ni

k=1 Si,k
, (4.6)
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where the denominator is the self-similarity of the image Gaussians used
for normalization. The dissimilarity loss is then defined as Edissim =

−Ssim so it can be used in a loss minimization learning framework.

4.2.4.2 Collision Prior

To ensure that the surface represented by the 1σ isosurface of the 3D
Gaussians does not (self-)interpenetrate, a repulsive term based on the 3D
overlap of the model Gaussians is used. Overloading the notation for the
Gaussian overlap Si,j (cf. Equation (4.4)) to denote the similarity between
two different model Gaussian components, the loss can be analogously
defined

Ecollision =
Nm

∑
j=1

Nm

∑
k=j+1

Sj,k , (4.7)

so that Gaussians do not overlap in 3D.

4.2.4.3 Bone Length Prior

To keep the bone lengths β plausible, the loss

Ebone = ||β||22 , (4.8)

can be imposed to penalize the deviation of the predicted bone length
parameters from the mean parameter. With that, this term helps to keep
the predictions in the high probability region of the normal distribution
used in the PCA prior.

4.2.4.4 Joint Limits

To keep joint articulations within mechanically and anatomically plausi-
ble limits, a joint limit penalty is imposed using

Elim = ∑
θj∈θ


0, if θl

j ≤ θj ≤ θh
j

(θl
j − θj)

2, if θj < θl
j

(θj − θh
j )

2, if θj > θh
j

, (4.9)

where θl
j and θh

j are the lower and upper limits of θj, which are defined
based on anatomical studies of the hand (Serra, 2011).
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4.2.4.5 Joint Location Supervision

An additional supervision loss Ejoint on a small subset of joint positions
J1, . . . , JNs can be applied in order to help the optimizer converge to a
good minimum in the overall generative loss function. A combination of
2D and 3D joint location supervisions are used depending on availability.
If for a given joint with index j a full 3D supervision is provided, the
distance Φj between the annotation Jj ∈ R3 and the model joint Fj is
given by their ℓ2 distance. If only 2D supervision is provided, Φj is the
closest ℓ2 distance between Fj and the ray J j to which the annotation is
projected using the camera intrinsics. Hence, Φj is defined as

Φj =

||Fj − ⟨Fj, J j⟩J j||2 , if Jj ∈ R2

||Fj − Jj||2 , if Jj ∈ R3
, (4.10)

where Fj = F(θ, β)j is the j-th joint obtained from applying forward
kinematics with the model parameters.

Due to inaccuracies in the annotation, the ground truth may conflict
with the observed image. Hence, the joint loss is modified to account
for annotation uncertainty by introducing a “slack” radius s ∈ R+ that
models the expected uncertainty in millimeters. All predictions within
this radius of the ground truth will not be penalized. This allows the
encoder to be more robust to erroneous annotations. Together, the joint
loss for the subset of Ns joints Ejoint is defined as

Ejoint =
Ns

∑
j=1

0, if Φj ≤ s

(Φj − s)2, if Φj > s
. (4.11)

4.3 experiments

Here, the impact of the generative model-based loss is evaluated in terms
of pose accuracy and bone length consistency when trained with a re-
duced set of keypoints. Additionally, the predictions of the proposed
method and the erroneous “ground truth” are shown on existing dataset
to demonstrate the regularizing effect of the proposed loss against anno-
tation errors.

4.3.1 Architecture and Training

The Caffe framework (Jia et al., 2014) is used for implementation of the
networks and losses. The Resnet-18 architecture (He et al., 2016) pre-
trained on ImageNet is used as the encoder to the proposed method. For
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Self Comparison KeypointsMatching NYU Keypoints

Lab-6

Unlab-15Unmatch-3

Match-11

Figure 4.4: Left: For comparisons against the state of the art, the proposed model
is evaluated on a subset of NYU keypoints (Match-11) due to mismatches in
skeleton. Right: For self-comparison, evaluation was performed on 21 keypoints
(All-21), 6 of which have supervision (Lab-6), and 15 without supervision
(Unlab-15).

optimization, Adam (Kingma and Ba., 2015) is used with a learning rate
of 10−5 and a batch size of 16. During training, a forward-backward pass
with batch size 16 takes 89ms. A forward pass at inference time takes
only 5ms.

4.3.2 Datasets

The proposed method is evaluated on two common benchmarks, the NYU
dataset (Tompson et al., 2014) and the Hands in the Million Challenge
dataset (HIM) (Yuan et al., 2018). The new HandID dataset is additionally
introduced for training to address the lack of hand shape variation in the
NYU training data.

NYU Dataset: The NYU dataset is collected using Microsoft Kinect
sensors. It contains 72,757 depth images from a single subject in the
training set, and 8,252 depth images from two subjects in the test set.

HandID Dataset: Since the NYU training data only contains a single
subject, additional training data with more hand shape variations is
introduced to help with shape generalization. The HandID dataset con-
sists of 3,601 frames (640 x 480) from 7 subjects captured with the Intel
SR300 sensor. A total of 6 pixels that correspond to the fingertips and
wrist are annotated per frame, each with its own occlusion label (See
Appendix A.2 for details). During training, a batch contains examples
from both HandID and the NYU dataset with a mixing ratio of 1 : 3.
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(a) Ablation Study: All components of
the method need to work together to re-
solve ambiguities from the reduced key-
point supervision (all keypoints (All-21)
evaluated).

0 10 20 30 40 50 60 70 80
Maximum allowed distance to GT (mm)

0

10

20

30

40

50

60

70

80

90

100

Fr
ac

tio
n 

of
 fr

am
es

 w
ith

in
 d

ist
an

ce
 (%

)

Baek et al. (CVPR 2018)
DeepPrior++ (ICCVW17)
3DCNN (CVPR 2017)
Malik et al. (3DV 2017)
Zhou et al. (IJCAI 2016)
Full
Full+HIM

(b) Comparison to SoTA: The proposed
method (Full) outperforms competing hy-
brid methods. By incorporating the HIM
dataset(Full+HIM), the results are further
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Figure 4.5: Quantitative evaluation on the NYU dataset.

To emphasize that it is significantly easier to annotate just the fingertips
and wrist keypoints, the 5 annotators were asked to label all 21 keypoints
for a subset of 10 depth images. It was observed that the additional
keypoints take longer to annotate (each joint annotation takes 1.4 times
longer) and are less consistent across annotators (with average distance
to mean of 10.4 pixels vs 7.3 pixels). In total, the full annotation of 21
joints for 10 images requires 21.2 minutes, while the fingertip and wrist
only needs 4.7 minutes.

Hands in the Million Challenge (HIM) Dataset: The proposed method
is also evaluated on the HIM dataset (Yuan et al., 2018), where a system-
atic error in the “ground truth” annotations was discovered. Although
the 2D projection of the keypoints into the image plane looks plausible,
the 3D keypoint locations do not match the anatomical locations of hand
joints (see Figure 4.6).

To quantitatively evaluate this, the minimum-distance-to-point-cloud
(MDPC) per joint was used to approximately quantify how well the joint
predictions agree with the observed depth image. The NYU annotations
and the erroneous HIM annotations have median MDPCs of 9.10mm (avg
10.99mm) and 21.54mm (avg 23.98mm), respectively. By assuming that
the physical joint is located roughly at the center of the finger, the HIM
annotations would imply an implausible finger thickness of ≈43mm,
while the NYU annotations estimates a more reasonable thickness of
≈18mm. This could be caused by a systematic pose-dependent error in
corresponding the 3D magnetic sensor positions to the depth camera co-



4.3 experiments 31

ordinate. Using the generative model-based loss, the proposed method’s
predictions are significantly more consistent with the observed depth
images. The detailed experiment is presented in Section 4.3.4.

Pre-processing: Similar to established procedures (Baek et al., 2018), the
hand is first localized by using the ground truth joint locations and crop
the image to a fixed-size cube with 300mm side length. Once localized,
the image is re-cropped using the same cube, but centered at the average
depth. The cropped image is then normalized to a resolution of 128
x 128 with a scaled depth range between [−1, 1]. During training, in-
image-plane translation and rotation augmentations, as well as depth
augmentations, are applied.

Model Mismatch: Due to a difference in joint definition, only 11 (Match-
11) of the 14 commonly evaluated NYU keypoints have a joint roughly
corresponding to the volumetric model (Figure. 4.4). Therefore, only
this subset is evaluated when comparing to other methods. To better
demonstrate that the method can infer the positions of unsupervised key-
points, self comparison is done on an expanded set of 21 NYU keypoints
(All-21) which roughly correspond to anatomical joints of the kinematic
skeleton (Figure 4.4, right). The results are further broken down for the 6
supervised (Lab-6) and the 15 unsupervised keypoints (Unlab-15).

4.3.3 Ablation Studies

Method Unlab-15 Lab-6 All-21

Full 16.13 20.72 17.45

w.o. Edissim 19.06 21.47 19.75

w.o. Ebone 18.53 22.03 19.53

w.o. Ecollision 16.80 22.20 18.34

w.o. Elim 18.72 22.24 19.73

w.o. HandID 17.01 23.20 18.78

Table 4.1: Ablation study on the NYU
dataset (see Figure 4.4). All errors are re-
ported in mm.

An ablation study was per-
formed on the NYU dataset.
Two metrics are used to evalu-
ate the results.

Keypoint Accuracy: All com-
ponents are necessary as re-
moving them from the full
method (Full) reduces accu-
racy. See Table 4.1 for the aver-
age per-joint error in mm, and
Figure 4.5a for the percentage
of correct frames curve.

Bone Lengths: For bone length evaluation, the ground-truth and the
predicted bone lengths are not directly comparable due to the mismatch
in model definitions (cf. Figure 4.4, left). Instead, the 20 bone lengths of
the hand are treated as a 20-dimensional vector and k-means clustering
with k = 2 is used to identify the two subjects in the test set of the NYU
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dataset. In Table 4.2, the F1 scores (defined as 2·precision·recall
precision+recall ) of the two

clusters is shown. k-means is meaningful for this task as clustering bone
lengths of the annotations (Ground Truth) results in perfect F1 scores for
both subjects. Note that poses with high self-occlusion have very little
information to help disambiguate hand shapes. Thus, one cannot expect
methods that perform per-frame estimation to attain a perfect F1 score
from the given input.

Method S1 S2

Ground Truth 1.00 1.00

Full+HIM 0.70 0.80

Full 0.63 0.70

w.o. Edissim 0.57 0.59

w.o. Ebone 0.52 0.42

w.o. Ecollision 0.62 0.68

w.o. Elim 0.6 0.42

w.o. HandID 0.55 0.54

Table 4.2: F1 score of k-means clus-
tering of bone lengths vectors for
the two subjects in the test set.

Discussion: Given the reduced super-
vision, it is ambiguous whether the
loss is minimized by deforming the
bone lengths or updating the hand
pose. Consequently, the method with-
out bone length prior can arbitrarily
distort the bone lengths as long as
the fingertips are correctly estimated
(see w.o. Ebone, Table 4.1). This results
in a significant drop in accuracy for
keypoints without direct supervision
(Unlab-15). Correspondingly, k-means
clustering fails to find consistent clus-
ters for the two subjects.

However, the bone length prior
alone is not enough to resolve the ambiguity in hand shape. A similar
drop in accuracy on unsupervised keypoints (Unlab-15) occurs when the
dissimilarity loss is removed (see w.o. Edissim, Table 4.1). This is because
statistically plausible bone lengths can still vary wildly to accommodate
the fingertip annotations, without being constrained to explain the im-
age. Pose priors in the form of joint limits (w.o. Elim) and collision prior
(w.o. Ecollision) additionally constrain the articulations, which improve the
keypoint accuracy (Table 4.1).

Due to the NYU training data containing only one hand shape, the
method cannot learn to discriminate between hand shapes of different
users, leading to F1 scores that are close to random (see w.o. HandID,
Table 4.2). Hence, for the unseen hand shape in the test set this leads to
greatly reduced accuracy on supervised keypoints (Lab-6). This can be
accounted for if hand shape variations are present in the training data.
The result of this can be seen when the HandID dataset is used (Full)
and the accuracy is further improved when HIM is (Full+HIM).
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Figure 4.6: Annotation Errors in HIM: Although both the “ground truth” (Blue)
and the predictions of the proposed method (Green) seem consistent in the
camera view. The side views show the “ground truth” is erroneous. State-of-the-
art (SotA) method (Wu et al., 2018) (black) over fits to the systematic error.

4.3.4 Comparison to the State of the Art (SotA)

Method Match-11

Full+HIM 17.73

Full 18.50

Full+HIM (w.o. Edissim) 20.01

Zhou et al., 2016 19.21

Malik et al., 2017 18.35

Baek et al., 2018 14.71

Oberweger et al., 2017 13.10

Ge et al., 2017 15.09

Table 4.3: Comparison to SotA:
regression-based methods (bottom)
do not enforce kinematic consis-
tency while others (top, middle) do.

Although state-of-the-art methods ob-
tain mean per-joint errors lower than
10mm on the HIM dataset (Ge et al.,
2017; Wu et al., 2018), it should be em-
phasized that this is against the erro-
neous “ground truth”. The proposed
method is trained using a “slack” ra-
dius of 25 mm to account for this,
which results in better fitting pose pre-
dictions than even the “ground truth”
(see Figure 4.6 and Figure 4.7 for more
qualitative evaluation).

For a more fair quantitative evalua-
tion, the minimum-distance-to-point-
cloud (MDPC) is used instead to ap-
proximate how well the predictions fit the input. On the HIM test set
comprising of 95,540 images, the proposed method achieves median MD-
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PCs of 11.74mm (avg 13.87mm), while Wu et al., 2018 achieves 21.97mm
(avg 24.16mm). The predictions of the proposed method better match the
NYU annotations with median MDPCs of 9.10 mm (avg 10.99 mm). This
suggests that the proposed method produce better fitting predictions
while most state-of-the-art methods learn to replicate the errors in the
training data. This ability to prevent overfitting is verified in the qualita-
tive evaluations in Figure 4.6 and Figure 4.7 where the propose method
can be seen to have more 3D consistent predictions in novel views.

On the NYU dataset (see Table 4.3 and Fig. 4.5b), the proposed method
outperforms the other kinematic model-based methods of Malik et al.
(2017) and Zhou et al. (2016) while requiring less keypoint annotations.
Although methods that directly predict 3D joint positions perform bet-
ter (Baek et al., 2018; Ge et al., 2017; Oberweger et al., 2017), it should be
emphasized that these methods without a model-based generative loss
are liable to learning the annotation errors as shown.

In the self-supervised setting, although Dibra et al. (2017) does not pro-
vide their predictions on the subset of Match-11 keypoints, their method
performs similarly to Zhou et al. (2016) which the proposed method
greatly outperforms. Compared to Wan et al. (2019)’s method with single
view training, the proposed method achieved similar performance. While
their methods do not require any annotation, the proposed method addi-
tionally solves the more ambiguous and harder problem of adapting to
the hand shapes of the user during test time. The method of Wan et al.
(2019) can only fit to the average hand shape of the training data or to
preset bone lengths.

4.3.5 Adaptation to a New Domain
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Figure 4.8: Cross Benchmark Test: The
performance on the NYU dataset after
training only on the HIM dataset.

Despite the aforementioned anno-
tation errors, the HIM dataset con-
tains a variety of views, poses, and
hand shapes that could be useful.
To show the effect of the annotation
bias and how the dissimilarity loss
overcomes it, the proposed method
is trained only on the HIM data and
then tested on the NYU data. In Fig-
ure 4.8, it can be seen that the dis-
similarity loss significantly improve
generalization performance.

Therefore by incorporating this
data into training by mixing the
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NYU, HIM, and HandID datasets in a single batch with a ratio of
3:3:2, the proposed method can still benefit from all available data. In
Figure 4.5b and Table 4.3, it is shown that the dissimilarity loss is still
vital to make use of data with erroneous annotations.

4.4 limitations & discussion

Although the proposed method outperforms other kinematic model-
based methods, even with less annotations, there is still a gap to recent
learning-based methods that regress 3D joint positions. However, these
methods

• are not explicitly penalized for producing anatomically implausible
shapes due to the lack of an underlying kinematic hand model, and

• are prone to overfit to errors in the training annotations, as well as
to errors in the annotation collection method.

Additionally, for poses with heavy self-occlusions, the monocular depth
data is not sufficient to resolve ambiguities with the reduced annotation
set. Extra supervision, such as from temporal consistency, or from multi-
view constraints (as done in Wan et al., 2019), is needed to estimate the
pose and shape in these cases.

4.5 conclusion

This chapter has shown that a generative model-based loss can reduce the
amount of supervision needed to learn both the pose and shape of hands.
This greatly reduces the amount of annotations needed to adapt a method
to data obtained in a new domain. Furthermore, it was shown that the
generative model-based loss helps to regularize against annotation errors,
for example on the HIM dataset, while existing methods overfit to these
errors. This demonstrates the importance of ensuring that the model
predictions explain not only the annotations but also the image itself.
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Visualization of Predictions on the Biased HIM dataset
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Figure 4.7: Predictions of proposed method are in green, the “ground truth”
annotations are in blue, and State-of-the-Art (SotA) (Wu et al., 2018) predictions
are in black. Each cell shows the camera view (left), a novel view (middle), and
the same novel view with SotA predictions (right). Note that these results are
randomly selected and are representative of the whole HIM dataset.



5
L I V E R E C O N S T R U C T I O N O F H A N D I N T E R A C T I O N S
F R O M M O N O C U L A R R G B V I D E O

The previous chapter introduced a new approach to train hand pose
estimators from monocular depth camera input by using a model-based
self-supervised loss. This chapter (published as Wang et al., 2020a) relaxes
the single hand assumption by considering hand-hand interactions and
moves beyond depth input to the more ubiquitous but more challenging
RGB input. As a result, it presents the first real-time method for motion
capture of both skeletal pose and 3D surface geometry of hands from a
single RGB camera that explicitly considers close interactions. In order
to address the inherent ambiguities in RGB data, this chapter proposes
a novel multi-task CNN that regresses multiple complementary pieces
of information, including segmentation, dense matchings to a 3D hand
model, and 2D keypoint positions, together with newly proposed intra-
hand relative depth and inter-hand distance maps. These predictions are
subsequently used in a generative model fitting framework to aggregate
the aforementioned image evidence in order to predict the final pose and
shape parameters of 3D hand models for both hands.

The individual components of the proposed RGB two-hand tracking
pipeline are experimentally verified through an extensive ablation study.
Moreover, the approach is demonstrated to achieve previously unseen
two-hand tracking performance from RGB, and quantitatively and quali-
tatively outperforms existing RGB-based methods that were not explicitly
designed for two-hand interactions. Furthermore, the proposed method
even performs on-par with depth-based real-time methods that have less
ambiguous input data.

5.1 introduction

Marker-less 3D hand motion capture is a challenging and important
problem. With the abundance of smart and mobile devices, interaction
paradigms with computers are changing rapidly and moving farther
away from the traditional desktop setting. With the recent progress on
virtual and augmented reality (VR/AR), hand pose estimation has gained
further attention as direct, natural, and immersive way to interact. The
numerous opportunities for application also include robotics, activity
recognition, or sign language recognition and translation. Hence, hand

37
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VR View

3D View

Figure 5.1: The proposed RGB2Hands approach tracks and reconstructs the 3D
pose and shape of two interacting hands in real time using a single RGB camera
(right). This recovers the global 3D pose and shape (bottom left), which can be
used to visualize interacting hands in VR (upper left), among other applications.

pose estimation has been an actively researched topic for years. Depend-
ing on the application, several properties are desirable for the method,
e.g., marker-less capture, real time performance, capabilities for tracking
two interacting hands, automatically adapting to the users’ hand shape,
or the use of a single RGB camera. However, due to a range of challenges,
such as frequent occlusion, depth-scale ambiguity, and self-similarity of
hand parts, achieving all of these properties is a difficult task.

To ease the problem, many previous works on 3D hand pose esti-
mation use special depth cameras to provide partial 3D information.
Nevertheless, many of them focused on tracking a single isolated hand
(Yuan et al., 2018), with only a few exceptions that are able to handle
object interactions (Sridhar et al., 2016; Tzionas et al., 2016) or interactions
with a second hand (Mueller et al., 2019; Taylor et al., 2016, 2017). In
recent years, the research focus has shifted towards methods that use
a single RGB camera since these sensors are ubiquitous (Mueller et al.,
2018; Zimmermann and Brox, 2017). Despite tremendous progress, to
date there is no method explicitly designed for and capable of recon-
structing close two-hand interactions from single RGB input. However,
humans naturally use both of their hands for interaction with real and
virtual surroundings, and for gesturing and communication. Therefore,
many applications require hand pose estimation of both hands in close
interaction simultaneously.

To this end, this chapter presents the first method for marker-less
capture of 3D hand motion and shape from monocular RGB input that
successfully handles two closely interacting hands (see Figure 5.1). This
real-time approach automatically adapts to the user’s hand shape, and
reliably captures collision-resolved poses also under difficult occlusions.
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Since color images carry no explicit 3D information, the method also have
to cope with scale and depth ambiguities. A proper handling of these
ambiguities, which are inherent to monocular RGB data, is particularly
important in the two-hand case, since mismatches in per-hand depth
estimates would lead to incorrectly captured interactions in 3D. Hence,
the target setting with a monocular RGB camera is significantly more
challenging compared to previous works that make use of depth data,
such as Mueller et al. (2019) and Tzionas et al. (2016). To achieve this goal,
and thus overcome the challenges and ambiguities of monocular RGB
data, a novel multi-task CNN is proposed to regress multiple variables
simultaneously. This includes per-pixel left/right hand segmentation
masks, dense vertex matchings to a parametric hand model, intra-hand
relative depth maps, inter-hand distance, as well as occlusion-robust 2D
keypoint positions. These regression targets are designed to explicitly
consider the challenges of monocular two-hand reconstruction like strong
occlusions and ambiguous relative 3D placement of the hands. The
resulting predictions are used in a generative model fitting framework to
robustly estimate for both hands the pose and shape parameters of a 3D
hand model (see Figure 5.2).

For training the multi-task network, both real and synthetic data are
combined from different sources to bridge the domain gap. Since none of
the publicly available datasets are sufficient for this purpose, additional
dataset comprising both real and synthetic images are created. To ob-
tain real data with (possibly noisy) annotations, the depth-based CNN
from Mueller et al. (2019) and an RGB-D sensor is used. To obtain per-
fectly annotated synthetic data, a simulation system is used that captures
physically correct two-hand interactions with diverse hand shapes and
appearances. It is shown experimentally that the proposed mixed-data
training set, in conjunction with the multi-task CNN, is crucial for suc-
cessful optimization of the hand model parameters on monocular RGB
images. The extensive evaluation, in both 2D and 3D, is enabled by a
new benchmark dataset RGB2Hands that contains significantly stronger
hand interactions compared to previous benchmarks.

In summary, this chapter propose the first monocular-RGB-based
method for 3D motion capture of two strongly interacting hands, which
simultaneously estimates hand pose and shape, while running in real
time. The technical contributions in order to achieve this include:

• A generative model fitting formulation that is specifically tailored
towards fitting parametric 3D hand models of two interacting hands
to an RGB image, while taking inherent depth ambiguities and
occlusions into account. To this end, information is extracted from
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Figure 5.2: Illustration of the proposed RGB2Hands approach. The RGB image
is processed by neural predictors that estimate segmentation, dense matching,
intra-hand relative depth, inter-hand distances, as well as 2D keypoints. This
is then used within a two-hand tracking energy minimization framework. The
output are pose and shape of the 3D MANO model (Romero et al., 2017) of both
hands, which directly give rise to a bimanual 3D reconstruction.

the input image based on a machine learning pipeline, which is
then used as fitting target.

• An alternative image-based representation of 3D geometry information
is proposed, namely intra-hand relative depth, and inter-hand dis-
tance, which can be extracted directly from RGB images using the
multi-task CNN and is scalable to dense hand surfaces. In combi-
nation with 2D keypoints, and an image-to-hand-model matching
prediction, this allows the parametric model to be effectively fitted.

• To train these machine learning predictors, synthetic data is used
to complement a real dataset that has possibly noisy annotations.
For the former, a physically-correct synthetic data generation framework
is introduced, which is able to account for interacting hands with
varying hand identities, both in terms of shape and appearance.

• For performance evaluation, a new benchmark dataset RGB2Hands

is introduced. It consists of real two-hand image sequences that
comes with manual keypoint annotations of position and occlusion
state. Synchronously recorded depth data enables 3D evaluation.
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5.2 overview

An overview of the approach is presented in Figure 5.2. Given a monocu-
lar RGB image that depicts a two-hand interaction scenario, the goal is to
recover the global 3D pose and surface geometry by fitting a parametric
hand model to both hands in the input image, as described in Section 5.3.
Such a model-fitting task requires information extracted from the input
image to be used as a fitting target, which however represents a major
challenge when using only RGB data. Previous methods that rely on
depth data (Mueller et al., 2019; Taylor et al., 2017) are implicitly provided
with a much richer input (i.e., global depth), which is the fundamental
ingredient for an accurate 3D pose and shape fit. Global depth estimation
from a single RGB image, on the other hand, is ill posed.

Note that, in particular in the two-hand case, inconsistent depth esti-
mates per hand would lead to incorrectly captured interactions in 3D.
Thus, the method and the scene representation need to be able to handle
these ambiguities well. Therefore, in Section 5.4, an alternative repre-
sentation of dense 3D geometry information is proposed, tailored for
a two-hand scenario, which is amenable to be directly extracted from
RGB images based on a machine learning pipeline. This is in contrast
to existing representations which are limited to sparse (i.e., per-hand
and/or per-joint) information and cannot be extended to dense geometry
in a scalable way, such as joint heatmaps (Mueller et al., 2018; Zimmer-
mann and Brox, 2017) or part orientation fields (Xiang et al., 2019). To
this end, inter-hand distance and intra-hand depth maps are regressed
instead, in combination with robust 2D keypoints. This design choice
explicitly provides sufficient information to resolve depth ambiguities in
the model-fitting step. Furthermore, dense per-pixel surface matchings to
the parametric hand model is also regressed directly from input images.
This step is designed to be robust against the significant skin tone and
illumination variability in RGB images.

Finally, this chapter describes the training data that is used to train
the machine learning components in Section 5.5, where a novel method-
ology is introduced to generate photorealistic and physically accurate
synthetic data of sequences with interacting hand motions. To this end, a
motion capture-driven physics-based simulation is employed to generate
physically-correct sequences of hands with varying identities (skin tone
and shape).
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5.3 two-hand tracking framework

The proposed hand representation builds on the parametric surface hand
model MANO proposed by Romero et al. (2017), which is summarized
below. Subsequently, the proposed model-based fitting framework will
be derived.

5.3.1 Parametric Pose and Shape Model

MANO was built from more than 1,000 scans of 30 subjects performing a
large variety of poses, and consequently the model is capable of repro-
ducing hand shape variability and surface deformations of articulated
hands with high detail. Specifically, for a single hand, MANO outputs a
set of 3D vertex positions X of an articulated 3D hand mesh, i. e.

X (β,θ) = W(T(β,θ), J(β), W) , (5.1)

where β ∈ R10 and θ ∈ R51 are the shape and pose parameters with
the latter consisting of 45 articulation parameters and 6 global rotation
and translation parameters. T(·) is a parametric hand template in rest
pose with pose-dependent corrections to reduce skinning artifacts, J(·)
computes the 3D position of the hand joints, and W is a matrix of rigging
weights used by the skinning function W (based on linear blend skinning).
See Romero et al., 2017 and Section 3.4 for further details.

As this method targets two-hand scenario, two sets of shape and pose
parameters (βh,θh), h ∈ {left, right}, are used for the left and right hand
respectively. To simplify the notation, the parameters of both hands
are stacked as β = (βleft,βright) ∈ R20 and θ = (θleft,θright) ∈ R102, and
define the unique set of vertices X = (Xleft,Xright), where the dependence
of X on β and θ may be omitted for brevity.

5.3.2 Overview of Model-Based Fitting Formulation

In order to track two interacting hands in an image sequence, the para-
metric MANO model is used within an energy minimization framework.
To this end the fitting energy f (β,θ) is introduced as

f (β,θ) = Φ(β,θ) + Ω(β,θ) , (5.2)

where Φ(·) is the image fitting term that accounts for fitting the model to
the observed RGB image, and Ω(·) is the regularizer that has the purpose
of obtaining a plausible and well-behaved tracking result. By minimizing
the fitting energy f , the pose and shape parameters θ ∈ R102,β ∈ R20 (of
both hands) are jointly estimated for each frame of the image sequence.
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5.3.3 Image-fitting Term

Due to the 2D nature of RGB images and the so-resulting depth ambigu-
ities, as well as the additional level of difficulty caused by interactions
between the left and right hand, the proposed novel image-fitting term Φ
is designed carefully in order to allow for a reliable fit of the parametric
hand model. In particular it uses specific information that the multi-task
CNN (see Section 5.4) extracts from 2D images that enables the estimation
of correct and coherent 3D pose of both hands in interaction, and mini-
mizes the risk of implausible interaction capture due to ambiguous 3D
pose estimates of each individual hand. The proposed method combines
five components, where the follow terms are used

1. the dense 2D fitting term Φdense,
2. the silhouette term Φsil,
3. the 2D keypoint term Φkey,
4. the intra-hand relative depth term Φintra, and
5. the inter-hand distance term Φinter.

It should be emphasized that existing methods that are capable of
tracking two hands in interaction avoid 3D pose ambiguities by heavily
relying on depth-based input data that is used in their image-fitting
term, which, however complicates the hardware setup. In contrast, the
proposed energy terms Φdense, Φintra, Φinter are designed to compensate
for the lack of available depth information and enable 3D consistent
two-hand reconstructions by using a strong neural prior that extracts
suitable information from RGB images only.

With that, the complete image fitting term that accounts for the model-
to-image fitting reads

Φ(β,θ) = Φdense + Φsil + Φkey + Φintra + Φinter , (5.3)

where the explicit dependence on (β,θ) of the terms have been omitted
for the sake of readability. Term weights are provided in Appendix A.5.

The camera intrinsics are assumed to be known and Π : R3 → Γ
defines the projection from camera space onto the image plane. When
this is not available, plausible intrinsics can be provided to obtain results
accurate up to a scale.

One crucial part for defining the image fitting term is the dense matching
map ψ : X → Γ, which predicts for each vertex x ∈ X the corresponding
pixel position (u, v) ∈ Γ in the input image. For the time being ψ is
assumed to be known, and later in Section 5.4 how this is obtained will
be explained. In the following, when the vertices vertices in the set X is
summed over, only those vertices that are visible are considered, where a
vertex x is considered to be visible whenever ψ(x) ̸= ∅.
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The individual components will now be explained in depth.

Dense 2D Fitting: Since an RGB image does not contain explicit 3D
information, the actual depth of a model vertex is unknown. Hence, the
2D image-plane distance between a projected visible vertex Π(x) and
its corresponding pixel ψ(x) is penalized. the dense 2D fitting term is
defined as

Φdense(β,θ) = λd ∑
x∈X
∥Π(x)− ψ(x)∥2

2 , (5.4)

where λd is the relative weight of this term.

Silhouettes: Since the dense matching map might not be perfectly precise
for neighboring vertices and pixels, an occlusion-aware silhouette term
is introduced to improve the projection error of the estimated hand
models in the input image. Similar to previous work (Habermann et al.,
2019), a set of boundary vertices Xb is defined and their distance from the
silhouette edges in the input image is penalized. The set of boundary
vertices is determined based on the current pose and shape estimate in
every iteration of the optimization. All hand model vertices that lie close
to model-to-background edges in the projected view are chosen.

To efficiently represent the distance to the silhouette edges without
explicit correspondences, a Euclidean distance transform representation
is used. Since the method need to distinguish the right and left hand, two
distance transform images DTright and DTleft are created, one for each
hand respectively. To this end, the predicted segmentation mask S (see
Section 5.4.1) is used to extract silhouette edges per hand.

Since the method specifically target close two-hand interactions, the
segmentation mask does not only contain silhouette edges but also occlu-
sion boundaries (i.e., hand-hand boundaries). Without proper handling,
vertices that are occluded by the other hand would be drawn towards
the occlusion boundary, which in turn would encourage shrinking of
the occluded hand. Thus, the distance transform image for each hand is
set to 0 at all pixels that are predicted to belong to the other hand (see
Figure 5.3). With that, boundary vertices that project onto the other hand
in the input image are not pulled towards the occlusion boundary, which
would produce an undesirable distortion effect, leading to a grasping
pose, everytime a hand is occluded. Mathematically, this occlusion-aware
silhouette term is formulated as

Φsil(β,θ) = λsil ∑
xb∈Xb

(
DTh(xb)(Π(xb))

)2
, (5.5)

where h(xb) gives the handedness of boundary vertex xb. Note that an
additional normal-based weight is used for each summand as introduced
by Habermann et al. (2019). Please refer to this paper for further details.
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Figure 5.3: Visualization of log(DTleft + 1) with (top left) and without (top
right) occlusion handling. The reconstructed hand without occlusion handling
(bottom right) incorrectly articulates to explain an occlusion boundary, while
the proposed method (bottom left) correctly handles the occlusion.

2D keypoints: Since the dense 2D fitting only constrains visible parts
of the hand model, an occlusion-robust 2D keypoint term is added.
This term penalizes the discrepancy between corresponding keypoint
predictions on the RGB image and the hand model projected to the image
plane. The keypoint detection is designed to also be available under
occlusion, increasing the robustness to strong occlusions that frequently
occur in the two-hand scenario. For each hand the center of the wrist and
the 5 fingertip positions are used as keypoints, leading to a total number
of 12 keypoints across both hands. xj ∈ R3 are used to denote the 3D
position of the j-th keypoint of the hand model. Similarly, Qkey(j) ∈ Γ
denote the pixel position of the j-th keypoint in the image, which is
obtained based on the keypoint predictor Qkey that will be defined in
Sec. 5.4. Let J be the set of detected keypoints, which may have less
than 12 elements whenever some keypoints do not meet the confidence
threshold (see Section 5.4.1). With that, the 2D keypoint term reads

Φkey(β,θ) = λkey ∑
j∈J
∥Π(xj)−Qkey(j)∥2

2 . (5.6)

Intra-hand relative depth: In order to address depth ambiguities within
estimated 3D pose and shape of each individual hand (cf. the Bas-Relief
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Ambiguity (Belhumeur et al., 1999)), the intra-hand relative depth term is
introduced to penalize the differences between per-hand root-relative
depth values of the 3D hand model and per-hand relative depth predic-
tions obtained from the RGB image. To this end, the estimated distance
along the camera direction (which will be referred to as z-direction) from
the hand root joint in the model is compared to an analogous output of
a machine learning predictor (Section 5.4) that serves as relative depth
prior conditioned on the RGB image. Let the function root(x) compute
the 3D position of the root joint of the hand to which the vertex x belongs
to, and let (·)z denote the extraction of the z-component of a 3D vector.
Moreover, Qintra(u, v) denotes the relative depth that was predicted by a
neural network in the image at the pixel (u, v). With that, the intra-hand
relative depth term Φintra is defined as

Φintra(β,θ) = λintra ∑
x∈X

(Qintra(ψ(x))− (xz − root(x)z))
2 . (5.7)

Inter-hand distance: In addition to the intra-hand relative depth, the
inter-hand distance is also taken into account, where the estimated distance
between the root of both hands is compared to the output of a trained
learning system predicting the same conditioned on the RGB image. Note
that this term is crucial to obtain correct relative placement of the two
hands in 3D from monocular RGB data. Let rooth, h ∈ {left, right} be the
3D position of the root joint of a hand and let qinter denote the relative
distance of the left hand from the right hand as predicted by a neural
network. With that, the inter-hand distance term is defined as

Φinter(β,θ) = λinter
(
(rootleft)z − (rootright)z − qinter

)2 . (5.8)

5.3.4 Hand Model and Tracking Regularization

In order to enable a plausible and realistic tracking, a regularizer Ω(β,θ)
that combines different terms is defined to account for an appropriate
regularization of the parametric hand model:

Ω(β,θ) = Ω0(β,θ) + Ωoverlap(β,θ) + Ωscale(β) . (5.9)

Below, structural regularizers Ω0 and Ωoverlap, which are well-established
terms in hand tracking and reconstruction settings, are summarized. For a
detailed description, please refer to previous works, such as Mueller et al.
(2019), Romero et al. (2017), and Tagliasacchi et al. (2015). Subsequently,
the new (optional) hand scale prior Ωscale is introduced, which is designed
to address the scale ambiguity that arises specifically when performing
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3D reconstruction in monocular RGB data. If this prior is provided, the
method is able to obtain metric 3D pose and shape reconstruction results.

Structural Regularization: Tikhonov regularization is imposed upon
the shape parameter β, which accounts for it following a multivariate
standard normal distribution. Similarly, a thresholded version thereof is
used for the pose paraemter θ, so that poses close to the mean pose are
not penalized. Furthermore, a temporal regularization is imposed that
penalizes the difference between the parameters at the current and the
previous frame. Moreover, in order to ensure that the shapes of the left
and right hand are similar, the discrepancies between the hand shapes
are penalized. These structural regularizers are written in terms of the
squared ℓ2-norm summarily as

Ω0(β,θ) =
∥∥


λββ

λθ 1>tθ
(θ)

λτ(β′ − β)

λτ(θ′ − θ)

λsym(βleft − βright)


∥∥2

2 , (5.10)

where 1>tθ
(θ) is a function yielding θ if ||θ||2 > tθ , and 0 otherwise.

The variables β′ and θ′ denote the shape and pose parameters from the
previous frame, and λ• are the respective weights.

For avoiding collisions between the two hands, as well as within
each hand, mesh overlaps as approximated with 3D Gaussians that are
attached to the parametric hand model are penalized. The position and
size of the Gaussians change according to the shape and pose parameters
(β,θ) (Mueller et al., 2019). For Ni(z|β,θ) denoting the i-th 3D Gaussian
evaluated at the position z ∈ R3, the overlap between all pairs (i, j) of
Gaussians is computed as

Ωoverlap(β,θ) = λN ∑
i,j

( ∫
R3
Ni(z|β,θ) · Nj(z|β,θ) dz

)2 . (5.11)

Hand Scale Prior: Since reconstruction from monocular RGB data is
inherently ambiguous up to a single scalar factor, the option is given
to provide a single metric measurement of the user’s hand in order to
produce metric results. This measurement is chosen to be the length of
the palm, defined as the distance between the middle finger metacar-
pophalangeal joint (MCP) and the wrist. If the user does not provide this
measurement, the palm length is assumed to be given by the mean shape
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of the MANO model, i.e., for β = 0. The hand scale prior is formulated
to penalize deviations from the pre-defined palm length α as

Ωscale(β) = λs ∑
h∈{left,right}

(palmlength (βh)− α)2 , (5.12)

where the function palmlength(·) computes the length of the palm of the
hand model given a set of shape parameters.

5.3.5 Numerical Optimization

For the numerical optimization of the fitting energy f in Equation 5.2 a
Levenberg-Marquardt (LM) approach is used. The main idea here is to
iteratively update the parameters ν := (β,θ) using the Jacobian matrix
J f of f as

ν = νold − (JT
f J f + µI)−1JT

f f (ν
old) , (5.13)

where f is the vector-valued function that stacks all the individual
(quadratic) residuals of f , and µ is the LM damping factor. Based on
empirical evidence, the LM method is generally known for rapidly de-
creasing the objective function with very few iterations. Hence, and in
order to maintain real-time performance, in addition to efficiently evalu-
ating the Jacobian on the GPU, the iterative optimization is terminated
after 10 iterations.

5.4 dense matching and depth regression

In order to obtain the predictions that were described in the previous
section, including predictions for segmentation, dense matching, intra-
hand depth, inter-hand distance and 2D keypoints, the RGB input image
were feed to a fully-convolutional neural network. This enables the
method to work on entire images without requiring a potentially error-
prone bounding box estimation for each hand. Since the network is
trained using a large training corpus, it successfully learns priors to
handle the inherent ambiguities in monocular RGB data. In the following,
the network is described, including the outputs, losses, and architecture,
in more detail.

5.4.1 Network Outputs

The proposed network architecture comprises two stages. In the first
stage the network performs per-pixel segmentation into left hand, right
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Figure 5.4: Visualization of network outputs. Left to right: 2D keypoints, seg-
mentation, dense matching map, inter-hand distance, intra-hand relative depth.

hand, and background pixels. Then, the architecture branch into multiple
subnetworks to regress dense matching, 2D keypoints, intra-hand relative
depth, and inter-hand distance (the latter two using a shared multi-task
subnetwork). The input for the second stage are both the original RGB
input image, as well as the segmentation masks predicted in the first
stage. Figure 5.4 shows all outputs predicted from test images.

Segmentation: Let the image have height h and width w. Given only
the RGB input image, the first-stage segmentation network predicts
probability maps S ′ ∈ [0, 1]h×w× 3 for three classes left, right, and
bg. The probability maps are converted to a segmentation mask S ∈
{left, right, bg}h×w by assigning each pixel the most probable class.

Figure 5.5: Dense matching encoding of
MANO model, front and back.

Dense Matching: The dense
matching subnetwork regresses
a dense matching image M ∈
Rh×w× k, where k is the num-
ber of features. Each pixel γ =

(u, v) ∈ Γ contains the feature vec-
tor M(γ) ∈ Rk that uniquely de-
termines the surface point of the
3D hand model which is visible at
this pixel. The mapping from the feature vector to the 3D model surface
is called dense matching encoding (see Figure 5.5). Note that the dense
matching encoding is the same for the left and right hand, where the
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segmentation mask S is used for disambiguation. The same encoding as
Mueller et al., 2019 is used to embed the hand surface to a 3D feature
space for the dense matching map. This is done using the method of
Bronstein et al., 2006 to approximately preserve geodesic distances in the
feature space. The feature space is then mapped to an HSV color space
cylinder which results in each finger being assigned a different hue. The
extended feature vector at vertex x is denoted as η′(x) ∈ Rk+1 and define
η′(x) = [η(x), s(x)], where η : X → Rk is the original dense matching
encoding defined on the mesh. The scalar s(x) yields a different value
σ(right) = 0.5 or σ(left) = 0.0 that encodes which hand x belongs to.
The matching distance between 3D hand model vertices x and pixels γ in
the image can then be measured as

∆M,S (γ,x) = || [M(γ), σ(S(γ))]− η′(x) ||2 . (5.14)

The dense matching map ψ : X → Γ needed to establish correspon-
dence between model vertices and the RGB image can be formulated
as

ψ′(x) = arg min
γ∈Γ

∆M,S (γ,x) (5.15)

ψ(x) =

ψ′(x) , if ∆M,S (ψ
′(x),x) < tc

∅ , otherwise
. (5.16)

If the minimum distance of vertex x to all pixels is larger than the
threshold tc, this vertex is likely not visible and be set to ψ(x) = ∅.
The calculation of the dense matching map ψ is efficiently implemented
using parallel reduction in CUDA. The dense matching encoding η(·) is
defined analogously to the approach by Mueller et al. (2019) with k = 3.

Intra-Hand Relative Depth: The network further learns to predict an
intra-hand relative depth map Dintra ∈ Rh×w. For each hand pixel, it
contains the estimated depth difference of this hand point to the root
of the respective hand. Note that Dintra is scale-normalized due to the
inherent ambiguity in RGB images. This is multiplied with the palm
length α to obtain the metric relative depth map Qintra, which is used for
3D model fitting (cf. Equation 5.7).

Inter-Hand Distance: The multi-task CNN also learns to estimate the
distance in depth between the two hands. Instead of predicting a single
scalar, the distance is regressed as an image Dinter ∈ Rh×w. This allows
the method to use a fully-convolutional network and thereby enables
feature sharing with the intra-hand depth prediction task. Every pixel in
Dinter that belongs to a hand contains the distance of its root joint from
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the other hand’s root (in the case for only a single hand being visible,
a constant value is assigned to all pixels). Note that each pixel in the
output can thus be seen as member of an ensemble. Analogous to the
intra-hand relative depth, the inter-hand distance is normalized with
the size of the hand for training. The ensemble is summarized with one
relative distance value dh per hand by calculating the median over all
pixels that are predicted to belong to the respective hand based on the
segmentation mask S , i.e.

dh = median
γ∈Γ,S(γ)=h

Dinter(γ) . (5.17)

The robust relative distance is set to dinter = mean(dleft,−dright). When
the two hands are close, dleft and dright can be degenerate and have the
same sign. In this case, dinter is set to 0. For the model fitting, the metric
absolute distance is defined as qinter := α · dinter (cf. Equation 5.8).

2D Keypoints: Let Jtotal be the set of all 12 keypoints, namely the finger-
tips and wrist of each of the two hands. The 2D keypoint estimation is
formulated as heatmap regression task. The network outputs heatmaps
H ∈ Rh×w×|Jtotal|, a one-channel image for each of the keypoints. Each
ground-truth heatmap contains a Gaussian with radius 0.07 · rc, where rc

is the edge length of the larger edge of a tight hand crop, scaled to have
maximum value 1, centered at the 2D keypoint position. Note that the
ground truth is also provided for occluded keypoints which enables the
network at test time to predict keypoint locations under strong occlusions
which are common for two-hand interactions. The maximum location of
each predicted heatmap is extracted using

γmax
j = arg max

γ∈Γ
H(γ, j) . (5.18)

A threshold th is used to filter out low-confidence estimates and obtain
the 2D keypoint location as

Qkey(j) =

γmax
j , ifH(γmax

j , j) > th

∅ , otherwise
. (5.19)

5.4.2 Network Architecture and Training

The proposed network consists of several subnetworks as shown in
Figure 5.2. Each subnetwork is a U-Net (Ronneberger et al., 2015) with
4 layers for down-sampling and 4 layers for up-sampling, resulting in
a bottleneck resolution of h

16 ×
w
16 . Skip connections are used between
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layers of the same resolution in the down- and up-sampling stream to
better preserve local information. Instance normalization is employed
instead of batch normalization at every layer as proposed by Ulyanov
et al. (2016).

The softmax cross-entropy loss is used for the segmentation prediction
and ℓ2-losses for all other outputs. For real data, a loss mask is used to
disable the losses for holes in the annotations, which are present due
to the projection between the depth and color channel. Appendix A.3
describes the annotation transfer from the depth to the color image. The
whole network is trained end-to-end for 400k iterations using Adam
with a learning rate of 0.001 and a beta of 0.9. Data augmentations is
performed on-the-fly to further increase the diversity of the training set
(see Appendix A.4).

5.5 training data

For training the regressor in a supervised manner, for a given RGB image
containing two potentially interacting hands, a ground-truth relative
depth map DGT

intra, the relative inter-hand distance map DGT
inter, a dense

matching imageMGT, and 2D joint position heatmaps HGT are ideally
required. Existing datasets like the Rendered Hands Dataset (RHD) (Zim-
mermann and Brox, 2017) or Panoptic (Joo et al., 2017) only provide a
subset of the required annotations (see Table 5.1) and, in particular, do
not have dense matching annotations. The former does also not show re-
alistic and physically plausible close two-hand interactions, an important
requirement for the target setting. The recent FreiHand dataset (Zimmer-
mann et al., 2019) provides crops of single hands with annotated MANO
fits, sometimes even with objects, but no two-hand frames. Generating
synthetic interacting hands images from these would require composit-
ing and would lead to unrealistic interaction. Therefore, since manual
annotation of the labels required is impossible, a new set of strategies is
proposed to obtain annotations for both real and synthetic images. The
existing datasets RHD and Panoptic are added to the proposed real and
synthetic datasets to increase data diversity and hence improve general-
ization. Table 5.1 presents a summary of the different datasets used for
training, and gives details about the ground-truth annotations available
in each of them. In the following, the procedure for creating the proposed
synthetic and real dataset is described. Furthermore, in Section 5.6.2 an
ablation study is presented that demonstrates how the proposed real
data (with noisy annotations) helps bridge the real-synthetic domain gap,
and the perfectly annotated synthetic data mitigates influence of noise.
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Segmentation

Dense Corrs.

Intra-Hand

Inter-H
and

2
D Keypoints

Synthetic Data ✓ ✓ ✓ ✓ ✓

Real Data ✓ ✓ ✓ ✓ ✓

RHD ✓ ✗ ✓ ✓ ✓

Panoptic ✗ ✗ ✗ ✗ ✓

Table 5.1: Available annotations in ex-
isting hand tracking datasets and the
proposed datasets.

Real Data: The state-of-the-art
depth-based two hand tracker of
Mueller et al. (2019) is lever-
aged to track sequences of two
hands in interaction with an RGB-
D sensor that captures synchro-
nized color and depth images.
These sequences are recorded in
front of a green screen to enable
background augmentation as post-
processing. Mueller’s approach
outputs MANO per-frame shape β and pose θ parameters, which, in
combination with the extrinsic parameters of the RGB and depth sensors
of the camera, is used to reproject the surface of the tracked hand to
the RGB image. For details on the reprojection see Appendix A.3. Subse-
quently, the relative depth maps DGT

intra, inter-hand relative distance maps
DGT

inter, and dense matching imagesMGT can be compute for the real RGB
image. Additionally, the 2D keypoint positions from Joo et al., 2017 are
used to construct heatmaps HGT for supervision. Since tracking a single
hand is usually more robust and accurate than tracking two interacting
hands, single-hand sequences are also included in the proposed dataset.
Depth-based composition is then used to obtain images depicting two
hands, see Appendix A.4. Note that bad tracking results and 2D keypoint
predictions are leaned manually by visual inspection to ensure reasonable
quality in the real data annotations.

Synthetic Data: The above-described approach to annotate real data is
not perfect. In some poses the depth-based tracker may exhibit tracking
errors. Also, the RGB-D camera has separate depth and RGB optics
which are apart by a small baseline. The resulting parallax leads to some
occlusion-disocclusion-related holes in the annotations when reprojecting
them from the depth channel to the color channel. This makes the real
data not sufficiently accurate and unable to produce annotations for
highly-challenging poses. To address this issue, synthetically generating
images with corresponding annotations are created to complement the
real dataset. To this end, and similar in spirit to Zhao et al. (2013) and
Mueller et al. (2019), a motion capture-driven physics-based simulation
is employed to generate physically-correct hand sequences (e.g., without
self-collisions, with accurate inter-hand contact, and with a soft-skin
layer) where two hands realistically interact in a large variety of poses.
To increase the realism and variety of simulated hand sequences, and
in contrast to existing approaches that use a hand template of fixed
shape and appearance in the simulation framework, the surface-based
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parametric model of MANO is extended to a volumetric representation
that is subsequently fed into the simulation (Verschoor et al., 2018). This
allows the synthesis of complex hand motions driven by a motion capture
sequence, including 2D keypoint positions and heatmaps HGT, dense
correspondence images CGT, relative depth maps DGT

intra, and relative inter-
hand distance maps DGT

inter, with varying subject identities. Therefore, data
with varying hand shapes can be generated.

Additionally, the MANO model is further extended with photorealistic
appearances by a standard texture mapping approach. Hand textures
were generated by the HTML appearance model to be presented in chap-
ter 7. The model captures data from users with varying ethnicity, gender
and age. In practice, 10 different hand textures are generated. The ability
to render physically plausible two-hand interactions for various hand
shapes and appearances enables the proposed approach to generalize
better to real world scene diversity.

5.6 experiments

In this section the proposed RGB two-hand tracking approach is experi-
mentally evaluated in order to demonstrate its merits. First, the dataset
and metrics used in the evaluation is introduced. Subsequently, an abla-
tion study is conducted that evidences the importance of the individual
components. Afterwards, the proposed method is compared quantita-
tively and qualitatively to other related works. Moreover, additional
qualitative two-hand tracking results are presented.

5.6.1 Datasets and Metrics

Although the dataset by Tzionas et al. (2016) is commonly used to eval-
uate two-hand tracking methods, it is not well-suited for evaluating
two-hand tracking methods with strong interactions. This is because in
their dataset only very few frames actually exhibit close two-hand inter-
actions. For a more comprehensive evaluation of challenging interaction
settings, this chapter introduce a new benchmark dataset, RGB2Hands,
which exhibits stronger interactions and more overlap between the left
and right hand. It is illustrated in Figure 5.6 that RGB2Hands contains
more frames with stronger hand-hand interactions compared to the
dataset by Tzionas et al. (2016), which is measured in terms of the overlap
of the bounding box from the left and right hand.

In the following, details of both dataset are presented as well as the
evaluation metrics.
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Figure 5.6: The two-hand Tzionas dataset has significantly fewer frames
with strongly interacting and overlapping hands compared to the proposed
RGB2Hands dataset. The plot shows the percentage of frames (y-axis) where
the overlap (in terms of the intersection over union, IOU) of the left and right
hand bounding box is greater than a certain threshold (x-axis).

Tzionas Dataset: The Tzionas dataset contains 7 two-hand sequences
with a total number of 1,307 RGB-D frames. 2D annotations on the depth
image are provided every 5th frame for the 14 interior joints of each
hand when visible. The camera calibration can be used to obtain 3D
annotations by backprojection.

RGB2Hands Dataset: The proposed dataset RGB2Hands has a total of
1,724 frames which are divided into 4 sequences, where each sequence
contains between 316 and 572 frames. To enable 3D evaluation, synchro-
nized depth data are recorded. Using the depth camera calibration, 3D
annotations can be obtained for the visible keypoints by backprojection.
For quantitative comparisons, out of the 4 sequences, at least every 5th
frame was annotated starting from the beginning of the interaction, re-
sulting in a total of 319 annotated frames. The annotation was performed
manually, where annotators were asked to identify the 14 interior joints
of each hand as done for previous datasets Tzionas et al., 2016. If the
location of an occluded joint could be inferred with high confidence, an-
notators marked this location while also flagging the occlusion to signify
that depth cannot be recovered for 3D evaluation. If no reliable guess
was possible, this joint was not annotated. Note that this is an advantage
over the Tzionas dataset where only visible joints are annotated.

Metrics: For quantitative comparisons in 2D and 3D, two metrics were
used to compare the errors between the annotated ground-truth keypoints
and corresponding estimates obtained. First, the mean per-keypoint error
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Figure 5.7: Energy term ablation study on the RGB2Hands dataset.
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Figure 5.8: Training data ablation study on the RGB2Hands dataset.

in pixels for 2D or in millimeters for 3D are used. Second, to enable
a more fine-grained analysis, the Percentage of Correct Keypoints (PCK)
metric in 2D and 3D are employed. A keypoint estimate is counted as
correct if its distance from the ground truth is less than tPCK. By varying
the threshold tPCK on the horizontal axis, and showing the respective
value on the vertical axis, a PCK curve is plotted.

To address the inherent depth-scale ambiguity of RGB images in the
3D evaluation, the estimated keypoints were aligned to the ground truth
using Procrustes analysis without rotation. Note that the alignment is
performed for both hands jointly, i.e. a single translation and scale value
is estimated for both. Hence, the aligned 3D error still captures the quality
of the relative hand placement in 3D.



5.6 experiments 57

5.6.2 Ablation Study

For the ablation experiments, different settings were considered when
evaluating the results on the proposed RGB2Hands dataset. To be more
specific, ablations were done to evaluate the effects of

(i) the individual terms in the fitting energy f in Equation 5.2,
(ii) the importance of using the real and the synthetic dataset.

(a) w.o silhouette (b) with silhouette

(c) w.o. 2D keypoints (d) with 2D keypoints

(e) w.o. inter-hand dist. (f) with inter-hand dist.

(g) w.o. intra-hand dist. (h) with intra-hand dist.

Figure 5.9: Energy term ablation study.

Fitting Energy Terms: In Fig-
ure 5.7 the PCK curves across
all sequences are shown when
leaving out one of the terms in
the proposed fitting function,
compared to using the whole
function in Equation 5.2. All
of the terms improve the 3D
error. It is notable that the sil-
houette term does this at the
cost of 2D keypoint error. This
could be due to the fact that
the energy function without sil-
houette term has local minima
with accurate 2D keypoints,
but inaccurate 3D pose, which
the silhouette term helps to es-
cape from. In Figure 5.9, addi-
tional qualitative results of this
ablation study are presented.
To this end, tracking results
with and without individual
terms of the optimization prob-
lem are shown.

Importance of the Proposed Datasets: Additionally, the behavior of
the proposed hand tracker is analyzed when training the prediction
networks either without the real dataset, or without the synthetic dataset,
respectively, see Figure 5.8. When not using the real dataset, or when
omitting the synthetic dataset, the PCK curves drop substantially (see
green and orange lines), compared to using both datasets (blue line).
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Method
Tzionas Dataset RGB2Hands Dataset Properties

2D Error Missed 2D Error 3D Error Missed
Output

Runtime

(pixels) Frames (pixels) (mm) Frames (ms/frame)

Tzionas et al. (2016) 5.04 0 - - - global 3D 4960

Mueller et al. (2019) 10.80 0 - - - global 3D 33

Boukhayma et al. (2019) 12.91 13 19.31 27.47 20 weak-persp. 3D (516) + 16

OpenPose 9.68 13 13.32 - 20 2D keypoints 516

Ours 13.31 0 13.43 20.02 0 global 3D (up to scale) 47

Table 5.2: The proposed method is compared with depth-based and RGB-based
hand pose estimation methods on the Tzionas and the RGB2Hands datasets.

5.6.3 Comparison to Other Methods

In this section, evaluation is performed comparing the proposed method
to existing depth-based as well as RGB-based methods on the RGB2Hands

and the Tzionas dataset. Specifically, for depth-based methods, com-
parisons to Tzionas et al. (2016) and Mueller et al. (2019) are shown.
For RGB-based methods, since there is no hand tracking system that
was explicitly designed for such input modality and for the scenario of
two closely interacting hands, comparisons to the single-hand method
by Boukhayma et al. (2019) are shown. For a fair comparison, their pro-
cedure of cropping the image around the hand based on OpenPose
keypoint predictions (Cao et al., 2019; Simon et al., 2017) is followed. This
approach is applied for each hand independently, horizontally flipping
the left hand images since their method was designed for right hands
only. Although OpenPose does not respect a valid 3D hand geometry,
and merely obtains 2D keypoint positions, for the sake of completeness
comparisons to the plain OpenPose predictions is conducted.

Comparison on Tzionas Dataset: In Table 5.2 quantitative comparisons
to Tzionas et al. (2016), Mueller et al. (2019), Boukhayma et al. (2019),
and OpenPose is shown. Although in terms of mean error the proposed
method performs worse than the depth-based method by Tzionas et al.
(2016), it should be emphasized that theirs is an offline method that is
about 100 times slower. However, the results from the proposed method
is close to the depth-based real-time method by Mueller et al. (2019),
despite the fact that they use much richer input data that contains 3D
information. In comparison to the RGB-only method by Boukhayma
et al. (2019), in terms of mean error the proposed method achieve results
that are on par, while being significantly slower and thereby not real-
time capable. In contrast to all other methods, the RGB-based OpenPose
is trained to regress 2D keypoint locations which exactly matches the
evaluated metric and hence yields a better result. However, it should be
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Figure 5.10: Quantitative comparison of the proposed method to Boukhayma
et al. (2019) and OpenPose on the RGB2Hands dataset.

pointed out that such 2D predictions generally do not represent plausible
poses, which is also highlighted in the subsequent comparison using the
new RGB2Hands dataset. Contrary to the proposed full-frame method,
the other two RGB-only methods require bounding boxes to obtain a
hand crop. Consequently, there are 13 frames in the dataset for which
no estimates are available due to missing bounding box detection. The
proposed method also outputs global 3D pose and shape (up to a scale
factor) and runs much faster compared to the other RGB-only methods.

As shown in Figure. 5.6, the Tzionas dataset does not contain many
frames with strongly interacting and overlapping hands. This is the main
reason why the evaluated crop-based single-hand RGB methods succeed
on this dataset. The advantages of our method become more apparent
when compared on more challenging interaction scenarios, which will be
presented next.

Comparison on RGB2Hands Dataset: The RGB2Hands dataset is cre-
ated to enable evaluation of more challenging hand interactions than
previously seen in other datasets. Figure 5.10 shows quantitative results
demonstrating that the proposed method (blue line) leads to substantially
better PCK curves than the method by Boukhayma et al. (2019) (orange
line). Although OpenPose appears to produce good results in terms of
the percentage of correct individual keypoints (Figure 5.10, solid line), its
percentage of correct frames (PCF), where a frame is considered correct
if the maximum keypoint error is under a threshold, is substantially
lower compared to others (Figure 5.10, dotted line). This confirms that
OpenPose is often accurate for some of the keypoints in a frame while
producing large errors for harder (e.g., occluded) keypoints in the same
frame. This in turn is a strong indicator that the predicted 2D hand
keypoints do not constitute a plausible hand pose due to the missing 3D
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Figure 5.11: Qualitative comparison of the proposed RGB2Hands to Boukhayma
et al. (2019) and OpenPose.
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Figure 5.12: Qualitative comparison to SMPLify-X (Pavlakos et al., 2019).

model constraint. This can also be seen in Figure 5.11, where qualitative
results are shown. In addition, OpenPose and hence also the method by
Boukhayma et al. (2019) fail to detect the hands completely in several
frames (see Table 5.2). Lastly, since competing methods do not perform
temporal filtering, the proposed method is also evaluated without tem-
poral smoothing (“w.o. Smoothing” in Figure 5.10). It can be seen that
the proposed method still outperforms the competitors.

This evaluation on the new RGB2Hands dataset validates the need for
methods that are specifically tailored to handle two strongly interacting
hands. Running single-hand methods on crops of the two hands indi-
vidually cannot jointly reason about the two hands, which is crucial for
effectively dealing with close interactions.
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Figure 5.14: Additional results of the proposed RGB2Hands method.

qualitative comparison to smplify-x Qualitative comparisons
to SMPLify-X (Pavlakos et al., 2019), which fits a full human body model
to monocular RGB images, are shown in Figure 5.12, . Such methods
rely on the estimated body pose to detect the hand and to regularize the
hand orientation. As such, the proposed method is more stable when
the body is not fully visible. SMPLify-X also does not explicitly address
overlapping or interacting hands and hence also fails when the hand
detection and orientation are correctly estimated.

5.6.4 Additional Qualitative Results

Figure 5.13: Results on single
hand scenes.

Next, the global 3D tracking of two in-
teracting hands in various involved set-
tings are shown. The purpose of this
section is to demonstrate the generality
and the wide scope of hand tracking
scenarios and non-trivial two-hand in-
teractions that the proposed method is
capable of handling in real time. Results
are also shown on single hand scenes to
emphasize that the proposed formula-
tion does not require both hands to be
present. Visualizations can be found in
Figure 5.1, Figure 5.13, and Figure 5.14.



62 live reconstruction of hand interactions from monocular rgb video

Figure 5.15: Example Failure Cases

5.7 discussion & future work

Overall this chapter has presented compelling 3D tracking and recon-
struction results on challenging sequences of two interacting hands. One
important property of this approach is that it directly works on the full
input image, rather than explicitly localizing a hand first, and then using
a cropped image for further processing. This is in contrast to existing
single-hand methods, both RGB-based and depth-based, which could in
principle also be applied to the tracking of two hands (by localizing and
processing each hand individually). However, these methods oftentimes
fail in the case of heavy hand-hand interactions, since in this case it is
not possible to obtain a reliable crop, or the visibility of parts of the other
hand lead to errors due to severe self-similarities.

Despite the overall good performance of the proposed method, par-
ticularly for close hand-hand interaction settings, there are also some
downsides that can be addressed in the future. Currently, the proposed
method may not always be able to correctly track very fast hand motions,
since in this case motion blur may lead to unreliable predictions of the
neural network. One potential way to address this is to also include data
with simulated motion blur, so that the neural network is able to deal
with such cases. Moreover, it is difficult to find a good trade-off between
the MANO pose prior and the other energy terms, so that one has to
sacrifice either pose variability or pose plausibility. This is most notice-
able for thumb articulations (Figure 5.15, left). This could for example
be addressed by equipping the MANO model with a kinematic skeleton,
and then enforcing explicit joint limit constraints while still using the
pose space to capture correlations in joint articulations. Due to inherent
depth ambiguity, the proposed method may also have difficulties recon-
structing interactions where high precision in relative hand positioning
is required; e.g. slotting a ring onto a finger (see Figure 5.15, right). For
such tasks, additional cues from a depth sensor or a stereo camera might
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be requires. It would be interesting as well to explore the explicit use
of the temporal dimension, so that for example hand shape information
can be integrated over time, in a similar spirit to bundle adjustment in
multi-view reconstruction. Moreover, temporal neural network architec-
tures can be used to obtain temporally smoother predictions and thus
further improve temporal tracking consistency. Another open point is
optimizing for person-specific hand textures based on a parametric hand
texture space.

5.8 conclusion

This chapter has presented the first approach that is specifically tailored
towards tracking and reconstruction of two hands in interaction in global
3D from only RGB video. A major challenge in this setting are depth
ambiguities, which is addressed here by combining two strong priors,
one in form of a parametric 3D hand model, and the other one in form
of a multi-task neural network predictor that is trained based on a large
body of real and synthetic training data. For training, existing datasets
are combined with two new proposed datasets that created specifically
for this task. The first one is a real dataset for which (potentially noisy)
annotations were obtained based on RGB-D frames. It is complemented
by a new synthetic dataset that models physically correct hand interac-
tions while taking hand variability in terms of shape and appearance into
account. Moreover, a new benchmark dataset, RGB2Hands, is introduced
which contains annotated sequences showing significantly stronger inter-
actions between two hands in comparison to previous benchmarks. The
proposed approach is shown to outperform previous RGB-only methods
in complex hand-hand interaction settings, both quantitatively and qual-
itatively, and even performs on par with a state-of-the-art depth-based
real-time approach.





6
M O D E L I N G H A N D I N T E R A C T I O N U N C E RTA I N T Y O F
M O N O C U L A R I N P U T

While the previous chapter proposed the first method to reconstruct two
interacting hands from monocular RGB input, the prediction is a single
plausible reconstruction given the ambiguities that stem from projective
geometry and heavy occlusions. The fact that many other valid recon-
structions exists that fit the image evidence equally well is not reflected in
this point estimate. This chapter (published as Wang et al., 2022) propose
to address this issue by explicitly modeling the distribution of plausible
reconstructions in a conditional normalizing flow framework. This al-
lows the posterior distribution to be directly supervised through a novel
determinant magnitude regularization, which is key to varied 3D hand
pose samples that project well into the input image. It is also demon-
strated that metrics commonly used to assess reconstruction quality are
insufficient to evaluate pose predictions under such severe ambiguity. To
address this, this chapter propose the first dataset with multiple plausible
annotations per image, called MultiHands. The additional annotations
enable evaluation of the estimated distributions using the maximum
mean discrepancy metric. Through this, the quality of the proposed
probabilistic reconstruction is demonstrated and it is shown that explicit
ambiguity modeling is better-suited for this challenging problem.

6.1 introduction

Reconstructing two interacting hands in 3D is an actively researched
topic, as it enables applications in various areas of vision and graphics,
including augmented and virtual reality, robotics, or sign language trans-
lation. While earlier methods leverage multi-camera setups (Ballan et al.,
2012; Sridhar et al., 2013) or depth sensors (Mueller et al., 2019; Taylor
et al., 2017), recent works focus on using monocular RGB cameras to
enable potential applications in mobile or wearable settings.

However, hand pose estimation from monocular RGB images is a very
challenging problem. Hand interactions lead to severe occlusions; and
monocular color images exhibit an inherent depth and scale ambiguity.
Existing methods (Moon et al., 2020; Wang et al., 2020a; Zhang et al., 2021)
aim to deterministically estimate the relative depth between the two hands
directly. However, this is prone to error in heavily occluded situations

65
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Figure 6.1: Given a single RGB image of two-hand interaction, the proposed
method predicts a probability distribution of plausible 3D hand poses that could
explain the image. Two different samples projected into the image (top) and
into a new viewpoint (bottom) are shown. The proposed probabilistic approach
captures the inherent ambiguity of monocular two-hand interaction images.

due to the ill-posed nature of the problem. For example, a small error in
hand scale or depth can cause a significant difference in touch points and
hence semantics of the interaction. As a result, most methods evaluate
the pose of each hand independently using the root-relative pose error
which discards important information regarding the the positioning of
the hands with respect to each other.

Given these extreme challenges, this chapter proposes to instead ex-
plicitly model the ambiguities (see Figure 6.1). Inspired by previous work
on reconstruction of human body and face (Kolotouros et al., 2021; Ko-
rtylewski et al., 2018; Schönborn et al., 2017; Wehrbein et al., 2021), the
proposed approach aims to predict a distribution over likely two-hand
poses. To this end, normalizing flow (Rezende and Mohamed, 2015) is
adopted as a way to parameterize the posterior distribution that en-
ables not only fast sampling but also differentiable likelihood estimates.
This allows the formulation of a novel loss to supervise the shape of
the distribution. The proposed regularization term encourages diversity
in distribution without sacrificing image consistency, which is key to
modeling the severe ambiguities in the target setting.

It is quantitatively demonstrated that the sampled reconstructions
capture the range of plausible articulations better than existing state-of-
the-art methods. This is facilitated by a new proposed dataset, Multi-
Hands, the first to provide multiple plausible annotations per image for
measuring the accuracy of distribution predictions.

In summary, the main contributions of this chapter are:

• A method for reconstructing two-hand interactions that can gener-
ate diverse 3D poses which match the observed image.
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Figure 6.2: The proposed HandFlowNet first extracts an image feature vector v
from 2D cues in the input image. The feature vector is then used as conditioning
input to a normalizing flow network to output a distribution of 3D hand poses
that plausibly explain the monocular input.

• A new regularization term for training conditional normalizing
flow to encourage diversity of samples.

• The first dataset to account for pose ambiguity by providing multi-
ple pose annotations.

Finally, it is demonstrated that the estimated pose distribution can be
leveraged for disambiguating view-point selection, a downstream appli-
cation not possible with deterministic approaches.

6.2 method

The goal of the method is to estimate a distribution of 3D hand poses that
are plausible to explain a given monocular color image. To address this,
HandFlowNet is proposed. The method first extracts a feature encoding
from the input image, which is then used to generate the desired output
pose distribution from a normalizing flow network (Section 6.2.2). The
estimated 3D hand poses are parameterized using the MANO hand
model (Section 6.2.1).

6.2.1 Hand Model

The MANO hand model (Romero et al., 2017) is used to represent the
hand surface with additional parameters used for the rigid transforma-
tion. The parameterization of a single hand is first described, which is
then readily expanded to two hands.

Given 15 joint rotations R ∈ R15×3×3 represented as stacked rotation
matrices and shape parameters β ∈ R10, the MANO model computes
both the hand surface as a mesh and 3D hand keypoint positions. In order
to place the hand correctly relative to the camera, the global rotation
parameters r ∈ R3×3, the hand root position in image coordinates t ∈ R2,
and the perspective scale factor s ∈ R are additionally estimated. This
enables the recovery of the global pose when the focal length is known
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at inference (Boukhayma et al., 2019). The combined global and joint
rotations {r, R} are parameterized using the 6 DOF representation θ ∈
R16×3×2 as proposed in Zhou et al. (2019)

Therefore, the full set of parameters for a single hand is defined as
ψ = {θ, β, t, s} ∈ Ψ, where Ψ denotes the parameter space, and the full
set of parameters for both hands is defined as ψboth = [ψright, ψleft]. In the
following, ψboth will be referred to simply as ψ.

6.2.2 HandFlowNet

Given a monocular input image, HandFlowNet regresses a distribution
of 3D hand poses corresponding to plausible hand poses that could be
observed in the image (see Figure 6.2). HandFlowNet can be divided into
two parts, an image feature extractor and a conditional normalizing flow
network that produces a 3D pose distribution and is conditioned on the
extracted image feature vector.

Image Feature Extractor: The image feature extractor summarizes the
visible, unambiguous features that the sampled poses should reconstruct.
ResNet-50 (He et al., 2016) is used as the backbone architecture. From
an input image with resolution 224× 224, the 2048-dimensional feature
vector v ∈ V is extracted from the average pooling of the last residual
block, and is used as the conditional vector for the next step.

Normalizing Flow Network: To predict a range of plausible poses, a way
to parameterize a pose distribution pY(y) must be chosen.

Normalizing flow (Rezende and Mohamed, 2015) does this by learning
an invertible transformation f : Rd → Rd of a simple distribution pZ(z),
i. e.

pY(y) = pZ(z)
∣∣∣∣det

∂ f (z)
∂z

∣∣∣∣−1

. (6.1)

where y = f (z). This invertible parameterization allows for both differ-
entiable sampling and likelihood estimation. As a result, losses can be
applied on each sample to improve reconstruction quality, while supervis-
ing the entire distribution using negative log likelihood loss and multiple
annotations (as will be discussed in Section 6.2.3). Since a distribution
over the space of 3D hand poses Ψ is to be estimated given an image
feature vector v, the conditional distribution pΨ|V (ψ|v) is of interest. To
enable this, normalizing flow can be extended to conditional normaliz-
ing flow (Winkler et al., 2019) by using transformations fv : Rd → Rd

parameterized by v, so that

pΨ|V (ψ|v) = pZ|V (z|v)
∣∣∣∣det

∂ fv(z)
∂z

∣∣∣∣−1

. (6.2)
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For implementation, the conditional GLOW architecture is used for fv

which has been successfully used in previous work (Kolotouros et al.,
2021) due to its quick sampling and probability estimation. For a more
detailed overview, please refer to Kobyzev et al. (2020).

By setting pZ|V = pZ ∼ N (0, I), the mode of the distribution pΨ|V (ψ|v)
can be obtained as fv(0). This design is chosen to provide easy access to
the mode sample for use in the losses.

6.2.3 Training Losses

In the following, the losses used for training are detailed. The entire loss
is given by

L = Lnll + LDetMag + Lψ + LJ3D + LJ2D + Lθ . (6.3)

Here, Lnll and LDetMag are used to supervise the likelihood of the anno-
tations, and Lψ, LJ3D , LJ2D , and Lθ are used to supervise the quality of
the sampled reconstructions. For network training parameters and loss
weights, please refer to Appendix A.7.

Maximum Likelihood Estimation: Given images and their 3D annotation,
the probability of the pose annotation ψ∗ should be maximized. Hence,
the negative log likelihood (NLL) loss is minimized

Lnll = − ln pΨ|V (ψ
∗|v)

= − ln pZ( f−1
v (ψ∗))

∣∣∣∣det
∂ fv(z)

∂z

∣∣∣∣−1

. (6.4)

When multiple annotations {ψ∗0 , ..., ψ∗n} are available, the NLL loss is
minimized over all annotated poses.

Enhancing Pose Variety: It is observed that training the network using
just the term Lnll quickly collapses the variety in the output pose dis-

tribution. To explain this, note that Lnll maximizes
∣∣∣det ∂ fv(z)

∂z

∣∣∣−1
, which

describes the compression factor between the two spaces for density con-
servation. Therefore, the network can trivially optimize the conditional
distribution by concentrating the density in the pose space, leading to
the collapse in pΨ|V (ψ|v). To prevent this, the following regularization
term is added

LDetMag = − ln
∣∣∣∣det

∂ fv(z)
∂z

∣∣∣∣ . (6.5)

Since this term aims at increasing variation in the output distribution of
the normalizing flow network only, its gradient is not backpropagate into
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the image feature extractor. Otherwise, the extraction network might be
hindered in learning pose-relevant features.

Mode Supervision: While Lnll encourages the probability of the pose
annotations to be maximized, the mode sample fv(0) should also be a
valid reconstruction. To accomplish this, the following loss is used

Lψ = || fv(0)− ψ∗||22 . (6.6)

Note that Lψ is complementary to Lnll and both together form a two-
sided loss that ensures plausible pose predictions. When multiple anno-
tations exist, one fixed pose is randomly chosen as the mode sample.

Although data with MANO parameter annotation exists, the amount is
limited compared to the amount of data with joint position annotations.
To make use of all available data, an additional 3D joint position loss on
all NJ joints is imposed

LJ3D =
NJ

∑
i=1
||J (ψ)i − P3D

i ||
2
2 , (6.7)

where J is a function defined by the hand model that calculates the 3D
joint positions given pose parameters ψ, and P3D are the joint annotations.

2D Consistency: HandFlowNet aims to provide a distribution of poses
that all correspond to the same input image. Hence, the 2D position of
visible joints should be the same for the mode and the samples of the
distribution, and should thus match the annotation. The loss

LJ2D =
NJ

∑
i=1

ηi ||Π(J (ψ)i)− P2D
i ||22 , (6.8)

is employed, where Π is the known camera projection, P2D are the 2D
joint position annotations, and ηi = 1 if the joint i is visible and 0 other-
wise. These visibility scores are computed from the meshes of MANO
pose annotations. LJ2D is calculated on the mode of the distribution fv(0)
and on two samples from the estimated distribution pΨ|V (ψ|v).

Rotation Regularization: As explained in Section 6.2.1, the continuous
6-dimensional representation for 3D rotations proposed by Zhou et al.
(2019) is used. The representation is not unique, i. e., there are multiple
A ∈ R3×2 that represent the same 3D rotation R ∈ SO(3). To encourage
consistent output, a regularizer is added (Kolotouros et al., 2021) that
constrains all rotations in their 6-dimensional representation A to be
orthonormal

Lθ = ∑
A∈θ

||A⊤A− I||2F . (6.9)
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6.3 creating additional annotations

While there exists a single ground-truth pose, i.e. the one that forms a
given image, recovering this exact pose from an image is ambiguous
since there are multiple plausible pose annotations. Since the goal is to
model this ambiguity with a distribution, the single ground truth found
in most datasets is not sufficient for evaluating the predictions and more
annotations are needed.

The following section describes how additional annotations are ob-
tained from a provided MANO ground truth.

Plausible Pose Annotations: Given the ground-truth pose parameters ψgt

and a camera projection Π, an annotation ψannot is plausible if the hand
joints fit the observed image and the overall articulation is anatomically
possible. To ensure this, the following criteria are used:

• The 2D locations of visible joints should be within a pixel threshold
of the ground-truth locations.

• Occluded joints in the original pose should remain occluded.

• The pose should be anatomically likely as measured using the pose
PCA space of the MANO model (Romero et al., 2017). A likelihood
threshold is used to eliminate extreme articulations.

• No collision between hands. Collisions are detected using Gaus-
sian proxies (Mueller et al., 2019) attached to the MANO model.
Collision occurs when the one-standard-deviation spheres of the
Gaussian proxies intersect each other.

Annotation Generation: Starting from the ground-truth pose parameters
ψgt, the hand pose parameters are perturbed to generate hand pose
proposals. These proposals are checked for plausibility as defined in
the above criteria, and implausible pose annotations are rejected. The
accepted plausible pose annotations will now serve as new starting poses
for the next iteration. This perturbation and plausibility checking is
repeated for a fixed number of iterations to obtain the final plausible
pose annotations. For additional implementation details, please refer to
Appendix A.8.

6.4 experimental results

The proposed method is evaluated on existing datasets (Section 6.4.1),
and the limitations of commonly used metrics in dealing with ambiguity
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Figure 6.3: The proposed MultiHands dataset captures the ambiguities of monoc-
ular input with diverse 3D reconstructions that fit the input images.
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Figure 6.4: The predicted samples are consistent in the camera view (top row),
while the 3D diversity can be seen in the novel view (bottom row). This diversity
allows for samples that are close to the single InterHand2.6M ground truth,
while the deterministic InterNet fails due to ambiguity or heavy occlusions.

are discussed (Section 6.4.2 and 6.4.3). To deal with this ambiguity, an
alternative metric is proposed (Section 6.4.3) for evaluation (Section 6.4.7,
6.4.6). Finally, an application beyond pose estimation is shown to demon-
strate the advantages of distribution estimation (Section 6.4.8).

6.4.1 Datasets

Here each dataset along with practical considerations to be taken into
account to run the experiments are described.

InterHand2.6M Dataset: 673,514 training frames labeled as interacting
hands from the dataset of Moon et al. (2020) are used for training. Notice
that the terms Lnll, Lψ from Equation 6.4, 6.6, respectively, require MANO
parameter annotations. These losses are applied to the subset of 394,599
frames where these are available.

Following the method of InterNet (Moon et al., 2020), RootNet (Moon
et al., 2019) is used for hand detection. A 334×334 crop centered around
the provided bounding box is used for the image feature extractor.

MultiHands Dataset: Using the method described in Section 6.3, Inter-
Hand2.6M is extended with 100 additional annotations for each of the
281, 369 test and 394, 599 training images with MANO annotations. Since
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the losses Lnll and LDetMag can use multiple annotations, MultiHands is
also for training. See Figure 6.3 and Figure A.2 for example annotations.

Tzionas Dataset: To demonstrate that the learned 3D pose distribution
generalizes to other settings, qualitative results are shown on the Tzionas
Dataset (Tzionas et al., 2016). This dataset has seven sequences captured
in an office environment with only 2D annotations.

Following Moon et al. (2020), 90% of the annotated 2D frames are used
for training and results are shown on the remaining 10%.

6.4.2 Pose Alignment

Three different alignments are used to evaluate the mean per-joint posi-
tion error (MPJPE) in mm. All equations can be found in Appendix A.9.
Root-Relative (RR) MPJPE captures the errors in articulation, where each
hand is individually root-aligned. Right-Root-Relative (RRR) MPJPE mea-
sures the accuracy of the two hands together, where both hands are
aligned to just the root of the right hand. Global MPJPE captures the
accuracy of the global pose estimate, without any alignment.

Although the RR metric is most commonly reported in the literature,
it evaluates the two hands independently by ignoring the relative hand
placements. Since this placement is vital for most applications, the analy-
sis show and focus on the RRR and Global metrics.

6.4.3 Problem with Traditional Metrics

Method Global ↓ RRR ↓ RR* ↓

InterNet (min) 67.2 24.5 22.6

InterNet (max) 103.6 42.2 24.6

Fan et al. (min) 65.7 27.1 20.5

Fan et al. (max) 102.1 45.9 22.5

Table 6.1: MPJPE in mm of deterministic
methods. For RR*, the MPJPE is reported
for occluded joints.

When the observed image is
ambiguous, the choice of the
target pose can greatly im-
pact the MPJPE even though
equally valid alternatives exist.
To quantify this effect on In-
terHand2.6M, InterNet (Moon
et al., 2020) and Fan et al.
(2021) predictions are evalu-
ated against the closest and farthest annotation in MultiHands (Table 6.1).

For the challenging Global and RRR metrics, the choice of plausible
annotation accounts for a difference of 36mm and 18mm on average.
Even when each hand is evaluated independently with the RR metric,
the occluded joints differ by 2mm on average.

This sensitivity to the choice of annotation makes MPJPE unsuitable
for the highly ambiguous task of monocular two-hand reconstruction.
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Instead, a metric that measures the distances between two pose distribu-
tions would better reflect the quality of the predictions.

6.4.4 Maximum Mean Discrepancy (MMD)

How well the estimated distribution matches the annotation distribution
can be measured using the MMD (Gretton et al., 2012).

The empirical MMD can be estimated given sampled predictions, mul-
tiple annotations, and the selection of a kernel function. 100 samples and
annotations were used, and Gaussian kernels were chosen for evaluation.
All reported MMD are averaged over different kernel distance scales (see
Appendix A.9.2 for equations).

6.4.5 Comparison to the State of the Art

Competing methods: The widely applied probabilistic baselines Monte
Carlo dropout (MC-dropout) (Gal and Ghahramani, 2016), aleatoric uncer-
tainty (Gaussian) (Kendall and Gal, 2017), and Variational Auto Encoder
(VAE) (Kingma and Welling, 2014) are implemented for comparisons.
The implementation details can be found in Appendix A.10. As reference,
comparisons against deterministic methods, Fan et al. (2021) and Moon
et al. (2020), are also made by treating the estimates as a Dirac delta
distribution. Given each method, 100 pose samples are drawn to find the
MMD to ground-truth samples. MMD is computed for RR, RRR, and
Global alignment to better understand the sources of ambiguity.

Method Global ↓ RRR ↓ RR ↓

HandFlowNet 0.50 0.42 0.44

VAE 0.61 0.47 0.48

Gaussian 0.82 0.51 0.46

MCDropout 0.91 0.60 0.51

InterNet 1.12 0.59 0.56

Fan et al. 1.12 0.63 0.50

Table 6.2: Evaluation of predicted distribu-
tions in MMD.

Results: Overall, the proposed
method produces estimates
that best match the ground-
truth distribution (Table 6.2).
This is especially notable for
the challenging Global and
RRR MMD metric, which
demonstrates the benefits of
the proposed formulation un-
der ambiguity. State-of-the-art
deterministic methods fail to
account for ground truth variability (Figure 6.4). As a result, they have
one of the worst MMD. See Appendix A.12 for more visualizations.

For reference, a comprehensive evaluation of the proposed method
using the single provided InterHand2.6M annotation can be found in
Appendix A.11. There, it is shown that the best sample of the proposed
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Input Camera View Side View Input Camera View Side View

Figure 6.5: Here 30 pose samples are shown superimposed as semi-transparent
skeletons. Samples are aligned to the root joint of one hand and the mode of the
distribution is made opaque for ease of visualization. Examples are from the
InterHand2.6M dataset (left) and the Tzionas dataset (right), where learned 3D
ambiguity modeling are transferred using only 2D annotations.

method out-performs the state-of-the-art methods while still remaining
competitive as a single pose estimator.

6.4.6 Ablation Study

Method Global ↓ RRR ↓ RR ↓

HandFlowNet 0.50 0.42 0.44

w.o. MultiHands 0.53 0.44 0.46

w.o. LDetMag 0.72 0.49 0.46

w.o. LJ3D 0.65 0.62 0.52

w.o. LJ2D 0.74 0.74 0.46

w.o. Lψ 0.55 0.42 0.45

w.o. Lθ 0.61 0.46 0.45

Table 6.3: Ablation study on dataset and loss
terms. All results are in MMD.

It is shown in Table 6.3 that
every loss helps to make the
predicted samples match the
ground-truth distribution. In
particular, the proposed deter-
minant magnitude regulariza-
tion LDetMag is vital for increas-
ing the diversity of 3D sam-
ples. The mean standard de-
viation of the joint positions
is improved from 18 to 31
mm while lowering the MMD.
Lastly, it is observed that using multiple annotations from MultiHands
in the Lnll and LDetMag terms further improves the MMD, which demon-
strate the advantage of the differentiable likelihood estimation in the
normalizing flow formulation.
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6.4.7 More Qualitative Results

In Figure 6.5 and Appendix A.12, qualitative results are shown to demon-
strate the diversity and accuracy of the learned pose distribution. Specifi-
cally, pose samples are shown visualized as superimposed transparent
kinematic skeletons. Note that pose variations well reflect the expected
monocular ambiguity, and occlusions further increase variability. Hence,
the standard deviation of the samples can serve as an indicator for the
ambiguity in the input image and thus uncertainty in the pose prediction.

6.4.8 Application: View Selection
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Figure 6.6: Each column shows the Best
Mono and Worst Mono views selected with
regards to ambiguity; Likewise, the Best
Stereo and Worst stereo pairs are shown.

By using the sample standard
deviations to estimate pose am-
biguity, camera views that pro-
vide the most information for
a given motion sequence can
be identified. Such informa-
tion can be useful, for example,
in a multi-view capture setup
where uninformative cameras
can be removed to reduce the
hardware and data bandwidth
requirements. This is demon-
strated on the InterHand2.6M
test set with over 100 images in
the sequence. The data consist
of the 7 sequences in Capture0-
1 with interacting hands, each
with 140 camera views.

The view quality is evaluated using regret (Berry and Fristedt, 1985)
in MPJPE: the difference between the MPJPE on the selected view and
the lowest MPJPE. The best and worst views selected by the proposed
method have a regret of 3.1 and 15.9 mm respectively, while the average
regret over the cameras is 10.7 mm. This shows that the proposed method
is able to eliminate cameras with ambiguous views where the monocular
pose estimator is not expected to perform well, while keeping cameras
views where the estimator is likely to succeed.

This view selection task can be extended to stereo camera pairs by
combining two monocular pose distributions. By assuming conditional
independence, the pose samples from each view can be approximated
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with normal distributions and thus can be combined by taking their
product. See Figure 6.6 for a qualitative evaluation of the selected views.

6.5 limitations and future work

Although promising results are demonstrated, there are some limitations
that could be addressed in future work.

Currently, physically implausible intersections are not penalized in the
reconstructions. As demonstrated in related work (Hasson et al., 2019;
Wang et al., 2020a), an explicit loss to prevent these intersections could
be used to improve the results.

Although promising generalization results are shown on the Tzionas
dataset, the method does not tackle completely unconstrained in-the-wild
images. This can be solved in the future with more data, especially 2D
annotations for in-the-wild data.

While the experiments verified the need for probabilistic pose estimates
in ambiguous scenarios, many applications can only make use of a
single pose prediction. Future work could investigate ways to integrate
additional observations (e. g., temporal information, multi-view images,
depth images, task-based priors) to disambiguate the output distribution
for a given down-stream task.

6.6 conclusion

This chapter have presents the first two-hand reconstruction approach
to explicitly model the inherent ambiguities that arise from using a
single monocular input image. Given this challenging setting, the method
produces a distribution of plausible reconstructions, from which diverse
3D pose samples can be drawn that all explain the observed image
evidence. Additionally, existing evaluation schemes for the performance
of hand pose estimation methods are shown to be problematic as they
assume a single correct pose even though multiple solutions are equally
valid. Along with the proposed dataset with multiple annotations and
the distribution metric, the work presented in this chapter demonstrates
the need for probabilistic approaches and provides a way to evaluate
them.





7
PA R A M E T R I C H A N D T E X T U R E M O D E L

While the previous chapters focus on leveraging model-based priors to
resolve ambiguities in order to achieve more robust geometric reconstruc-
tion, they offer no mechanism to model the hand appearance. To address
this, this chapter presents HTML, the first parametric texture model of
human hands (published as Qian et al., 2020. The proposed model spans
several dimensions of hand appearance variability (e. g. related to gender,
ethnicity, or age) and only requires a commodity camera for data acqui-
sition. It is experimentally demonstrated that the proposed appearance
model can be used to tackle a range of challenging problems such as 3D
hand reconstruction from a single monocular image. Furthermore, the
proposed appearance model can be used to define a neural rendering
layer that enables training with a self-supervised photometric loss.

7.1 introduction

Hands are one of the most natural ways for humans to interact with their
environment. As interest in virtual and augmented reality grows, so does
the need for reconstructing a user’s hands to enable intuitive and immer-
sive interactions with the virtual environment. Ideally, this reconstruction
contains accurate hand shape, pose, and appearance. However, it is a
challenging task to capture a user’s hands from just images due to the
complexity of hand interactions and self-occlusion. In recent years, there
has been significant progress in hand pose estimation from monocular
depth (Baek et al., 2018; Oberweger et al., 2015; Tompson et al., 2014;
Wan et al., 2017) and RGB (Mueller et al., 2018; Yang and Yao, 2019;
Zimmermann and Brox, 2017) images. Although most of these works
estimate only joint positions, a few recent works attempt to reconstruct
the hand geometry as well (Boukhayma et al., 2019; Malik et al., 2020;
Zhang et al., 2019).

Despite these recent advances, there is little work that addresses the
reconstruction of hand appearance. However, hand appearance per-
sonalization is important for increasing immersion and the sense of
“body-ownership” in VR applications (Jung and Hughes, 2016), and for
improved tracking and pose estimation through analysis-by-synthesis
approaches. Without a personalized appearance model, existing pose
estimation methods must use much coarser hand silhouettes (Boukhayma

79
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component 0
Texture Map
component 1 component 2 component 0

Mesh Visualization
component 1 component 2

-3σ

+3σ

Figure 7.1: HTML is the first parametric hand texture model. The model success-
fully captures appearance variations from different gender, age, and ethnicity.

et al., 2019; Zhang et al., 2019) as an approximation of appearance. One
approach to obtain a personalized hand texture is to project the tracked
geometry to the RGB image and copy the observed color to the texture
map (La Gorce et al., 2011). However, only a partial appearance of the
observed hand parts can be recovered with this method and tracking
errors can lead to unnatural appearances. In addition, without explicit
lighting estimation, lighting effects will be baked into the results of these
projection-based methods.

To address this gap, this chapter present HTML, the first data-driven
parametric Hand Texture ModeL (see Figure 7.1). A large variety of
hands were captured and the scans aligned in order to enable principal
component analysis (PCA) and build a textured parametric hand model.
PCA compresses the variations of natural hand appearances to a low
dimensional appearance basis, thus enabling a more robust appearance
fitting. The proposed model can additionally produce plausible appear-
ance of the entire hand from fitting to partial observations from a single
RGB image. The main contributions can be summarized as follows:

• The chapter introduce a novel parametric model of hand texture,
HTML, that is made publicly available. The model is based on a
dataset of high-resolution hand scans of 51 subjects with variety in
gender, age, and ethnicity.

• The scans are registered to the popular MANO hand model (Romero
et al., 2017) in order to create a statistical hand appearance model
that is also compatible with it.

• The new parametric texture model is demonstrated to enable per-
sonalization of 3D hand mesh from a single RGB image of the
user’s hand in an optimization approach.

• A proof-of-concept neural network layer is presented that combines
the MANO model with the proposed texture model in an analysis-
by-synthesis fashion. This enables a self-supervised photometric
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Figure 7.2: Overview of the hand texture acquisition pipeline. Rigid structure
from motion (SfM) is ran on a set of input images to obtain a scanned mesh
for palm and backside of the hand, respectively. After removing background
vertices, the MANO template mesh is fitted to extract the texture from the
scan. The lighting effects are removed and the front and back textures are
seamlessly stitched together, resulting in a complete texture for the captured
hand (visualized on the 3D hand mesh from 2 virtual views on the right).

loss that is used to train a method that jointly recovers the hand
pose, shape and appearance.

7.2 textured parametric hand model

The hand texture acquisition pipeline used is summarized in Figure 7.2.
First, two image sequences are recorded observing the palm side and the
back side of the hand, respectively. Subsequently, rigid structure from
motion (SfM) (Bailer et al., 2012; Schönberger and Frahm, 2016) is used
to obtain a 3D reconstruction of the observed hand side (Section 7.2.1).
Next, the scene background is removed, and both (partial) hand scans are
registered to the MANO model Romero et al., 2017 based on nonlinear
optimization. Afterwards, the texture of the partial hand scans is mapped
to the registered mesh. The shading effects are then removed from the
textures and the two partial scans are stitched to obtain a complete hand
texture (Section 7.2.2). The parametric texture model in subsequently
generated using PCA (Section 7.2.3).

7.2.1 Data Acquisition

In total, data from 51 subjects with varying gender, age, and ethnicity are
captured (see Figure 7.3). To minimize hand motion during scanning, the
palm side and backside of the hand are recorded separately, so that the
subjects can rest their hand on a flat surface. As such, for each subject
four scans are obtained, i. e. back and palm sides for both left and right
hands. The scanning takes ∼90 seconds for one hand side, so that the
total scanning time of ∼6 minutes is required per person.
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Figure 7.3: Distribution of age, gender, and skin color for the 51 captured
subjects. The Goldman world classification scale (Shiffman et al., 2007) is used
for classifying skin color.

To obtain 3D hand scans, SONY’s 3DCreator App is used. The 3D
reconstruction pipeline includes three stages, i. e. initial anchor point
extraction, simultaneous localization and mapping (SLAM) with sparse
points (Klein and Murray, 2007), and online dense 3D reconstruction
(sculpting) (Sony Corporation, 2018). The output is a textured high-
resolution surface mesh (of one hand side as well as the background),
which contains ∼6.2k vertices and ∼11k triangles in the hand area on
average. By design, the proposed hand texture model is built for the right
hand. For model creation, the left hand meshes are mirrored, so that a
total of 102 “right” hands are used for modeling. Note that by mirroring,
the texture model of “right” hand can also be used for the left hand. In
the following, this technical detail will be abstracted away and the texture
modeling approach is described for a single hand.

7.2.2 Data Canonicalization

To learn the texture variations in a data-driven manner it is crucial that
the acquired 3D scans are brought into a common representation. Due to
the popularity and the wide use of the MANO model of hand geometry,
the hand texture is built in MANO space. This has the advantage that
existing hand reconstruction and tracking frameworks that are based
on MANO, such as Boukhayma et al. (2019), Hasson et al. (2019), and
Mueller et al. (2019), can be directly extended to also incorporate hand
texture. It should be noted that the proposed texture model can also be
used with other hand meshes by defining the respective UV mapping. The
data canonicalization process comprises of several consecutive stages, i. e.
background removal, MANO model fitting, texture mapping, shading removal,
and seamless stitching, which are described next.

Background Removal: For each hand two textured meshes are recon-
structed, one that shows the hand palm-down on a flat surface, and one
that shows the hand palm-up on a flat surface (cf. Section. 7.2.1). In both
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cases, the background, i. e. the flat surface that the hand is resting on,
is also reconstructed as part of the mesh. Hence, in order to remove
the background, a robust plane fitting based on RANSAC (Fischler and
Bolles, 1981) is performed, where a plane is fitted to the flat background
surface. To this end, 100 random configurations of three vertices are
sampled so that a plane can be fitted. Any point that has a distance
to the fitted plane that is smaller than the median edge length of the
scanned mesh is considered as an inlier, and their number is then counted.
Eventually, the plane that leads to the largest inlier count is considered
the background plane. This approach is found to be robust empirically
and is able to reliably identify the flat surface in all cases. Eventually, a
combination of distance-based and color-based thresholding is used to
discard background vertices in the scanned mesh. In particular, a vertex
is discarded if its distance from the background plane is less than 1cm
and the difference between the red and green channel of the vertex color
is smaller than 30 (RGB ∈ [0, 255]3). This yields better preservation of
hand vertices that are close to the background plane.

MANO Model Fitting: Subsequently, the MANO hand model is fitted to
each of the front and back filtered hand scan mesh (i.e., the one without
background). To this end, the MANO shape and pose parameters are
fitted based on the hand tracking approach of Mueller et al. (2019). The
approach uses a Gauss-Newton optimization scheme that makes use of
additional information based on trained machine learning predictors (e.g.,
for correspondence estimation). Since their method was developed for
3D reconstruction and tracking of hands in depth images, synthetic depth
images are rendered from the partial hand scan meshes. Note that the
approach of Mueller et al. (2019) was partially trained on synthetic depth
images and thus it is able to produce sufficiently good fits of the MANO
geometry to the rendered data.

However, since the MANO model is relatively coarse (778 vertices),
and more importantly, it has a limited expressivity of hand shape (it only
spans the variations of their training set of 31 subjects), some misalign-
ments still remained. To also allow for deformations outside the shape
space of the MANO model, a complementary non-rigid refinement of
the previously fitted MANO mesh is used to the hand scan. To this end,
a variant of non-rigid iterative closet points (ICP) (Besl and McKay, 1992)
is used that optimizes for individual vertex displacements that further
refine the template, which in this case is the fitted MANO model. As
the objective function, 3D point-to-point and point-to-plane distances are
used together with a spatial smoothness regularizer (Habermann et al.,
2019). An accurate alignment is especially important at salient points,
like fingertips, to ensure high perceptual quality. Hence, prior correspon-
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a) b)

replace

Figure 7.4: Shading removal. (a) Original texture and its Laplacian pyramid
decomposition. (b) Shading is removed by modifying the deepest level.

dences for the fingertips and the wrist are added to the non-rigid ICP
fitting. These correspondences are automatically obtained in the input
scanned mesh using OpenPose (Simon et al., 2017). The influence of the
prior correspondences is shown in the evaluation (see Section 7.4.1).

Texture Mapping: After having obtained an accurate alignment of the
hand template, i. e. the fitted MANO model plus non-rigid deformation
for refinement, to the textured high-resolution hand scan, the scan texture
is transferred to a texture map. To this end, UV coordinates are manually
defined for the MANO model template by unwrapping the mesh to a
plane (see texture mapping step in Figure 7.2). Each vertex is projected
in the high-resolution hand scan to the closest point on the surface of
the fitted MANO hand template. Using the barycentric coordinates of
this projected point together with the UV coordinates of the template
mesh, the color is transferred to the texture map. After performing this
procedure for all vertices of the high-resolution hand scan, there can still
be some texels (pixels in the texture map) that are not set (this is found
to be about 6.5% of the hand interior). To deal with that, holes are filled
based on inpainting with neighboring texels.

Shading Removal: The scans have only low-frequency shading since
the environment lighting is carefully controlled during scanning. Thus,
the assumptions of having a mostly Lambertian surface and no casted
shadows can be made. Since the smooth shading effects have low fre-
quency (see Figure 7.4a), they can be separated and removed using a
frequency-based method like the Laplacian image pyramid. To this end,
a Laplacian pyramid is built with five levels from the texture map that
was obtained in the previous step. It was observed that the deepest level
separates the (almost) constant skin color as well as the smooth shading
from the texture details that are kept on earlier levels of the pyramid.
This deepest level is replaced with a constant skin color for palm and
back side, respectively, effectively removing the smooth shading. This
constant skin color is obtained by averaging in the well-lit area (see blue
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rectangles in Figure 7.4). Note how the texture details from higher levels
are preserved in the modified texture map (see Figure 7.4b).

Seamless Texture Stitching: Since so far this texture mapping is per-
formed both for the palm-up and palm-down facing meshes, the partial
texture maps are blended in this step to obtain a complete texture map
of the hand. To this end, a recent gradient-domain texture stitching ap-
proach is used that directly operates in the texture atlas domain while
preserving continuity induced by the 3D mesh topology across atlas chart
boundaries (Prada et al., 2018).

7.2.3 Texture Model Creation

Let {Ti}n
i=1 be the collection of 2D texture maps that is obtained after

data canonicalization as described in Section 7.2.2. In order to create
a parametric texture model PCA is employed. Each Ti is vectorized to
obtain ti ∈ R618,990 that stacks the red, green and blue channels of all
hand texels. PCA first computes the data covariance matrix

C =
1

n− 1

n

∑
i=1

(ti − t̄) (ti − t̄)⊤ , (7.1)

for t̄ = 1
n ∑n

i=1 ti being the average texture. Subsequently, eigenvalue
decomposition of C = ΦΛΦT is used to obtain the principal components
Φ and the diagonal matrix of eigenvalues Λ. With that the parametric
texture model is obtained for the parameter vector α ∈ Rk, k = 101 as

t(α) = t̄ + Φ α . (7.2)

7.3 applications

To demonstrate possible use cases of the proposed parametric hand
appearance model, two applications are presented. The model is first
used in an optimization framework for 3D hand personalization from
single monocular RGB image. Subsequently, the model is used as a neural
network layer to enable a self-supervised photometric loss.

7.3.1 3D Hand Personalization from a Single Image

Given a single monocular RGB image of a hand, the aim is to reconstruct
a 3D hand mesh that is personalized to the user’s shape and appearance.
This application consists of four steps: (1) initialization of shape and pose
parameters of the MANO model, (2) non-rigid shape and pose refinement,
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Figure 7.5: 3D hand personalization from a single image. Starting from a
single RGB input image (left), the mesh is first initialized using the method
by Boukhayma et al. (2019). Next, the fit is refined non-rigidly and the partial
hand texture is extracted. By fitting the proposed parametric texture model to
the input texture, a complete texture is obtained (right).

(3) partial texture extraction, and (4) estimation of appearance parameters
of the model.

Shape and Pose Initialization: The method of Boukhayma et al. (2019) is
used to obtain an initial pose and shape estimate of the MANO template
mesh from a single RGB image. As discussed before, the MANO shape
space is not always expressive enough to perfectly fit the user’s hand
shape. In addition, the results from the method by Boukhayma et al.
(2019) do not yield sufficiently accurate reprojection of the mesh onto the
image plane as shown in Figure 7.5 (second from the left). Hence, this
initial mesh is further refined.

Non-Rigid Refinement of the Initial Mesh: The initial mesh estimate
is non-rigidly refined to better fit the hand silhouette in the image.
Therefore, the 3D displacement of each vertex is optimized using ICP
constraints on the boundary vertices. The set of boundary vertices of the
hand mesh is defined as V̄ ⊂ V , i. e. the set of vertices on the silhouette.
Let Π : R3 → Ω be the camera projection converting from 3D world
coordinates to 2D pixel locations. For each boundary vertex v̄i, the closest
hand silhouette pixel p̄i in the image domain Ω is found with

p̄i = argmin
p∈Ω

||Π(v̄i)− p||2 s.t. n(p)⊤Π(n(v̄i)) > η . (7.3)

Here, n(p) is the 2D boundary normal at pixel p (calculated by Sobel
filtering), and Π(n(v̄i)) is the 2D image-plane projection of the 3D vertex
normal at v̄i. The threshold η = 0.8 discards unsuitable pixels based
on normal dissimilarity. This closest hand silhouette pixel p̄i is used as
correspondence for boundary vertex v̄i if it is closer than δ (= 4% of the
image size):

c̄i =

p̄i, if ||Π(v̄i)−p̄i||2 < δ

∅, otherwise
. (7.4)
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The refined 3D vertex positions is then found using the computed corre-
spondences in the following objective function:

E(V) = 1
|V̄ | ∑

v̄i∈V̄
||Π(v̄i)−p̄i||22 + ∑

vj∈V
∑

vk∈Nj

1
|Nj|
||(vj−vk)−(v0

j−v0
k )||22,

(7.5)
where Nj is the set of neighboring vertices of vj, and V0 = {v0

•} are the
vertex positions from the previous ICP iteration. In total, 20 ICP iterations
are used and the shape and pose initialization step as described above is
used to initialize V ,V0.

Partial Texture Extraction: For each fully visible triangle, i. e. when all its
3 vertices are visible, the color is first extracted from the input image and
is then copied to the texture map. This yields a partial texture map where
usually at most half the texels have a value assigned and all other texels
are set to ∅. The vectorized target texture map ttrgt is then obtained with
the same procedure as in model creation (see Section 7.2.3).

Estimation of Appearance Parameters: Subsequently, the appearance
parameters of the model that best fit the user’s hand are found by solving
the least-squares problem with Tikhonov regularization:

argmin
α∈Rk

∑
ttrgt
i ̸=∅

(ttrgt
i − t(α)i)

2 + wreg||α||22 . (7.6)

Note that the proposed parametric appearance model enables the recov-
ery of a complete texture. In contrast to the extracted partial texture, the
result is free of lighting effects and artifacts caused by small misalign-
ments of the hand model.

7.3.2 Self-Supervised Photometric Loss

Previous works have trained neural networks to regress joint positions
or MANO model parameters from RGB images (Hasson et al., 2019;
Zimmermann and Brox, 2017). The most common loss is the Euclidean
distance between the regressed and ground truth joint positions. Some
works have also explored a silhouette loss between the mesh and the
hand region in the image (Boukhayma et al., 2019). The proposed HTML
enables the use of a self-supervised photometric loss, which complements
the existing fully supervised losses. With that, when training a network to
predict shape and pose with such an approach, a hand texture estimate is
additionally obtained. To this end, a textured hand model layer is introduced,
which is explained now.

Textured Hand Model Layer: Given a pair of MANO shape and pose
parameters (β, θ), as well as the texture parameters α, the proposed model
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layer computes the textured 3D hand meshM(β, θ, α). An image of this
mesh is then rendered using a scaled orthographic projection. As such,
this rendered image can directly be compared to the input image I using
a photometric loss in an analysis-by-synthesis manner. The photometric
loss is formulated as

Lphoto(β, θ, α) =
1
|Γ| ∑

(u,v)∈Γ
||render(M(β, θ, α))(u, v)− I(u, v)||2 , (7.7)

where Γ is the set of pixels which the estimated hand mesh projects to.
The use of a differentiable renderer makes the photometric loss Lphoto
fully differentiable and enables backpropagation for training.

Network Training: A residual network is trained with the architecture
of ResNet-34 (He et al., 2016) to regress the shape β, pose θ, and tex-
ture parameters α from a given input image. In addition to the self-
supervised photometric loss, losses are applied on 2D joint positions,
3D joint positions, and L2-regularizers are applied on the magnitude
of the shape, pose, and texture parameters. The network is trained in
PyTorch (Paszke et al., 2019b), using the differentiable renderer provided
in PyTorch3D (Ravi et al., 2020). For training, illumination from a single
fixed point source is assumed. The joint estimation of additional lighting
and material properties is left for future work.

7.4 experiments

In this section, the proposed parametric hand texture model is evaluated
to explore the effects of different design choices in the texture acquisition
pipeline, and to present results of two example applications.

7.4.1 Texture Model Evaluation

Compactness: Figure 7.6 (left) shows the compactness of the proposed
texture model. The plot describes how much the explained variance
in the training dataset increases with the number of used principal
components. The first few components already explain a significant
amount of variation since they account for more global changes in the
texture, e. g. skin tone. However, adding more components continuously
increases the explained variance.

Generalization: For evaluating generalization, a leave-one-subject-out
protocol is used. The data of one subject is removed, i. e. the two texture
samples from left and right hand, and the PCA model is rebuilt. Then,
the left-out textures are reconstructed using the built model and the
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Figure 7.6: Evaluation of compactness, generalization and specificity. Using
shading removal (“w/ sr”) is substantially better than not using it (“w/o sr”).

reconstruction error is measured as the mean absolute distance (MAD)
between the vectorized textures. As shown in Figure 7.6 (middle), the
reconstruction error decreases monotonically for an increasing number
of components for both of the two models.

Specificity: The specificity is also reported, which quantifies the similarity
between random samples from the model and the training data. To this
end, a texture instance is first sampled from the proposed model using
a multivariate standard Normal distribution. Then, the nearest texture
in the training dataset is found in terms of the MAD. This procedure is
repeated 200 times, and the statistics of the MAD is reported in Figure 7.6.

Influence of Shading Removal: Figure 7.6 also shows compactness, gen-
eralization, and specificity for a version of the texture model that was
built without shading removal (“w/o sr”). It can be seen that the version
without shading removal performs worse compared to the one with shad-
ing removal (“w/ sr”) in all metrics. When the lighting effects are not
removed, they increase the variance in the training dataset. Hence, more
principal components are necessary to explain variation and the recon-
struction of unseen test samples has a higher error. In the Appendix A.14,
it is shown visually that the principal components for the model without
shading removal have to account for strong lighting variation.

Influence of Prior Correspondences: To ensure a good alignment of the
hand template mesh and the scanned mesh, as explained in Section 7.2.2,

w/ Prior Corrs.w/o Prior Corrs.

Figure 7.7: Using non-rigid ICP-based refinement with prior correspondences
for fingertips and the wrist improves the alignment of the hand template mesh
to the scanned mesh, yielding better textures (right). (Textures shown before
shading removal.)
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Input Image Model Fit Input Image Model Fit3D Mesh 3D Mesh

Figure 7.8: Hand personlization from a single RGB image for different subjects.

for the non-rigid ICP-based refinement step in the the model building
stage the prior correspondences for the fingertips and the wrist is used.
Figure 7.7 compares the textures obtained by running the non-rigid ICP
fitting with and without them. Especially for the thumb, the tip is often
not well-aligned, resulting in a missing finger nail in the texture. Using
explicit prior correspondences alleviates this issue.

7.4.2 Application Results: 3D Hand Personalization

Here, the results for obtaining a personalized 3D hand model from
a single RGB image are shown (see Section 7.3.1). As previously dis-
cussed, since the output meshes of state-of-the-art regression approaches
(Boukhayma et al., 2019) do not have a low reprojection error, non-rigid
refinement based on silhouettes is used. To simplify segmentation for the
example application, the images of the users are captured in front of a
green screen. In future work, this could be replaced by a dedicated hand
segmentation method. Figure 7.8 shows hand model fits and complete
recovered textures from a single RGB image for several subjects. Since
a low-dimensional PCA space is used to model hand texture variation,
a plausible and complete texture is robustly estimated from noisy or
partially corrupted input (see Figure 7.9). In contrast, a texture that is
directly obtained by projecting the input image onto a mesh obtained
by the method of Boukhayma et al. (2019) contains large misalignments
and a significant amount of background pixels, and thus is severely
corrupted.
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Input Image Estimated Complete TextureExtracted Texture using Boukhayma et al.

Figure 7.9: Fitting to noisy or corrupted input textures is robust and yields a
realistic and complete texture estimate due to the low-dimensional PCA space
of the proposed model.

7.4.3 Application Results: Photometric Neural Network Loss

The proposed self-supervised photometric loss (see Section 7.3.2) enables
to not only obtain shape and pose estimates as in previous work, but
in addition to also estimate hand appearance. To demonstrate this a
network is trained on the recently proposed FreiHAND dataset (Zim-
mermann et al., 2019). For details of the experimental setup, please see
Appendix A.13. In Figure 7.10, hand model fits predicted by a neural
network trained is shown with and without the proposed photometric
loss (cf. Section 7.3.2). It should be noted that that the pose and shape
prediction with the photometric loss are quantitatively similar to the
predictions without (the mean aligned vertex errors (MAVE) are 1.10 cm
vs 1.14 cm respectively, and mean aligned keypoint errors (MAKE) are
1.11 cm vs 1.14 cm respectively). In addition, these results are comparable
to the current state of the art (Zimmermann et al., 2019) with a MAVE of
1.09 cm and MAKE of 1.10 cm. It should be stressed that the proposed
method with the photometric loss additionally infers a high resolution,
detailed texture of the full hand, which the other methods do not.

7.5 limitations and discussion

The experiments have shown that HTML can be used to recover person-
alized 3D hand shape and appearance. Although the proposed model
provides detailed texture, the underlying geometry of the MANO mesh is
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Predicted Texture With L𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Input Image Without L𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Figure 7.10: Examples of pose and texture predictions from a neural network
trained using the proposed photometric loss Lphoto enabled by the parametric
hand texture model.

coarse (778 vertices). This could be improved by using a higher-resolution
mesh and extending the MANO shape space with more detailed geom-
etry. Non-linear models, e.g., an autoencoder neural network, can be
explored for capturing variations that a linear PCA model cannot. As
hand appearance varies during articulation, modeling pose-dependent
texture changes can increase the realism. This would need a more compli-
cated capture and registration setup and a significantly larger dataset to
capture the whole pose space and diverse users. In terms of applications,
estimating lighting in addition to or jointly with the texture parameters
can better reconstruct input observations. Correctly modeling lighting
for hands, where shadow casting often occurs, is a challenge that would
need to be addressed. Other applications of the proposed model, such as
exploring how self-supervision can alleviate the need for annotations or
improve estimation of pose, can be directions for future research.

7.6 conclusion

This chapter introduced HTML — the first parametric texture model
of hands. The model is based on data that captures 102 hands of peo-
ple with varying gender, age and ethnicity. For model creation, a data
canonicalization pipeline is presented that entails background removal,
geometric model fitting, texture mapping, and shading removal. More-
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over, the experiments demonstrated that the proposed model enables two
highly relevant applications: 3D hand personalization from a single RGB
image, and learning texture estimation using a self-supervised loss.





8
C O N C L U S I O N

This thesis demonstrated a variety of strategies to integrate model-based
priors for 3D hand reconstruction from monocular input.

Starting with the setting of single hand reconstruction using input from
depth cameras, Chapter 4 made use of a volumetric prior based on a
Sum-of-Gaussians hand model for self-supervision during training. This
was shown to reduce annotation requirements and to increase robustness
to data biases. Then in the next two chapters, the thesis tackled the even
more challenging task of reconstructing two hands during interaction
using only monocular RGB input. Chapter 5 developed the first method
to deal with this severely under-constrained problem. By relying on
a model-fitting step for incorporating additional pose, temporal, and
physics-based priors to disambiguate the task, the method reconstructs
two physically correct hand meshes that match the image-level hand
features extracted by a neural network. The training was enabled by
using a novel mix of physically consistent synthetic data and noisy
real data bootstrapped from depth-based reconstructions. Chapter 6

further addressed the challenging ambiguities by explicitly modeling the
distribution of all image-consistent physically plausible poses. As the
first work to systematically quantify pose ambiguity in this setting, it
was shown that established metrics defined on point estimates do not
reflect the quality of reconstruction, and a distribution metric, supported
by a novel dataset with multiple annotations per image, was proposed
instead.

Finally, in addition to the pose and geometry reconstruction seen thus
far, Chapter 7 presented the first parametric hand appearance model in
the literature. This re-parameterized space is shown to regularize hand
texture for appearance reconstruction in learning and model-fitting frame-
works. This enabled the recovery of detailed texture of the full hand from
partial, low resolution, RGB input for hand appearance personalization.

8.1 insights

Beyond the main contributions presented in each chapter, several broader
insights are drawn from the common themes present in the challenges
and how they are tackled.
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Resolving Ambiguity of Different Types. As 3D reconstruction from
monocular input is severely under-constrained, all chapters proposed
ways to deal with the missing information that arises from various
ambiguities. The main assumption used for disambiguation is that the
object of interest is a hand. The ambiguities that can be constrained by
this assumption are considered explainable ambiguities, and the remaining
unconstrained ambiguities are considered residual ambiguities.

As demonstrated in the thesis, model-based priors, such as the Sum-
of-Gaussians, MANO, and HTML hand models and their associated
statistical regularizers, can narrow down the explainable ambiguities to
achieve more accurate reconstruction despite the missing information.
However, the residual ambiguities remaining impose a limit on the
reconstruction quality. For example, Chapter 6 has shown that the relative
position between two hands and the articulation of the occluded hand
can drastically vary while projecting to form the same image. In absence
of additional assumptions such as user intent, temporal information, or
additional view points, disambiguation is fundamentally impossible. In
such a case, the recoverable information can be summarized by finding
the entire range of valid solutions.

It is important to distinguish between these two ambiguities during
modeling, as the type determines whether it should be minimized (ex-
plainable) or quantified (residual). If the residual ambiguity is too high
for a given application, additional assumptions or observations need to
be incorporated into the problem.

Learn to Not Only Answer but to Explain. Most existing learning-based
hand pose estimation methods are trained only to reproduce the paired
annotation when given an image. As discussed in Chapter 4, this leads
to the network learning a direct image-to-pose mapping that overfits to
annotation biases.

Instead of simply penalizing the wrong answers, overfitting to such
bias can be prevented by ensuring the reconstructions explain the inputs.
The self-supervised loss in Chapter 4 imposes this constraint as a loss,
which regularizes against annotation bias. Another approach, used in
Chapter 5, is to learn to regress image-level features instead. This can be
seen as forcing the network to present explicit reasoning, which is then
robustly integrated along with additional heuristics and priors to infer a
plausible pose through model-fitting. Similarly, Chapter 6 emphasized
that direct pose regression is an ambiguous one-to-many mapping that
cannot be supervised or evaluated with a single given annotation as
answer. Instead, a probabilistic network should be used where samples
from the estimated distribution are supervised to explain the input. The
resulting estimates can be quantitatively evaluated using the suggested



8.2 outlook 97

maximum mean discrepancy metric. Together, these allow for a more
complete characterization of the pose information available in the image.

In summary, this thesis demonstrated that it is often not enough to su-
pervise a network by just providing it the answer in ambiguous scenarios.
The innovative strategies used in the chapters to explain the input image
instead allow the developed methods to be more robust to annotation
bias and network prediction errors, while also enable it to quantify image
ambiguity.

8.2 outlook

This thesis presented several novel methods that advanced the state of
the art by addressing the extreme ambiguities in monocular 3D recon-
struction of hands. However, many challenges still need to be addressed
before vision-based hand reconstruction can be relied upon as a natural
interface of human-computer interactions. Some of these exciting open
research questions are discussed in more details below.

Intent-based Prior. Given the large amount of residual ambiguity re-
maining in monocular 3D reconstruction, as shown in in Chapter 6, new
assumptions must be introduced to resolve it. One interesting method is
to use the context of user intent to restrict the reconstruction to a smaller
application-dependent pose space. For example, if the AR/VR simulation
equips the user’s palm with interactive buttons, the intent to press the
buttons can be exploited by imposing additional contact constraints to
reduce depth ambiguity. Such intent driven priors could be extended to
sign language capturing or other communicative gesturing where the
application limits the poses of interest. This interplay between a well-
defined downstream task and the 3D reconstruction could enable more
accurate results at vital points of interaction, and default back to plausible
reconstructions when minor discrepancies would not be noticed.

In such a scenario, temporal information can also be better exploited
for learning-based modeling. As the hand is no longer tasked to make
arbitrary motion or to transition between unrelated peak poses as in cur-
rent datasets (e.g Moon et al. (2020)), stronger temporal correlation would
exist in underlying data which can then be exploited for disambiguation.

Two-Hand Interaction with Object. Extending the two-hand interaction
scenario addressed by this thesis, jointly reconstructing two hands while
they interact with an unknown object would have additional applications.
Although there exists one work (Kwon et al., 2021) tackling a similar
problem, it assumes a known object mesh rather than reconstructing both
jointly. Not only is there more occlusion and appearance variations for
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hand reconstruction in this challenging setting, reconstruction of general
object geometry is under-constrained since the object class is not known
in advance. This is further aggravated when the object can also deform
non-rigidly.

However, tackling the reconstruction of both object and hands jointly
has its advantages. Unlike hands, objects under interaction are usually
free-standing so that its forces can be analyzed. The sum of forces must
be able to counteract gravity if the configuration is assumed to be stable.
Analogous to the single hand-object interaction work by Hasson et al.
(2019), this stability assumption can reduce depth ambiguity by neces-
sitating contact points at fixed locations. The challenge with two hands
then is to model the inter-dependencies between the contact points of
both hands in terms of stability criteria as more stable configurations
exist.

Similarly, how a user holds an object and how it reacts to being ma-
nipulated provides cues about its physical attributes, e.g. its weight
and Yong’s modulus, which in turn provides hints about forces exerted
by the hand. Recovering these physical quantities from images alone
would be difficult, but similar efforts using physics-based constraints to
jointly estimate physical constants and human pose shows promising
results in recovering plausible solutions (Bieler et al., 2019; Dabral et al.,
2021). Correctly capturing not just geometry, but also the forces involved
and material properties of the object would be vital for interacting with
AR/VR applications driven by physics simulations.
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a.1 energy term weights (chapter 4)

To find the weights λ for use as a leaning objective, a implementation of
the losses as a traditional model-based tracker on single images was used
as a proxy. The weights are tuned so that the different terms evaluates to
similar values in this setting, and it was observed that these weights work
for training as well. The following weights were used for all experiments:
λdissim = λcollision = 0.6, λbone = 10−4, λlim = 0.5, λjoint = 8 · 10−6.

a.2 details on handid dataset (chapter 4)

Figure A.1: HandID Dataset: Two examples
of the depth images captured for the Han-
dID dataset are shown. The colored images
are included for better visualization.

The proposed HandID Dataset
contains a total of 3,601 frames
from 7 subjects that were ac-
quired with the Intel SR300

sensor. The subjects were in-
structed to perform simple ab-
duction, adduction, and flex-
ion gestures while the cam-
era recorded in a third-person
view. The annotators were told
to select 6 pixels for each depth
image that correspond to the
fingertip and wrist keypoints.
In case the keypoints are oc-
cluded, the annotators were
asked to estimate plausible 2D locations based on previous and fu-
ture frames in the image sequence and to mark them as occluded. With
that, for visible keypoints 3D annotations were obtained using the depth
values of the pixels, and for occluded keypoints 2D annotations were
obtained. See Figure A.1 for examples.

a.3 annotation transfer from depth to rgb (chapter 5)

Here, the procedure to transfer annotations from the depth image to
the RGB image, where both were acquired with a calibrated RGB-D
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camera (cf. Section 5.5) are described. To this end, based on camera
calibration parameters of the depth and RGB cameras, 3D points are
first recovered from the depth image and then reprojected onto the RGB
image. However, holes exist in the reprojected image due to an offset
between the sensors (baseline), and due to object boundary artifacts of
the structured-light depth sensor. To prevent the neural network from
learning this, a foreground mask is employed in the respective loss.
The final foreground mask is based on computing the intersection of
two masks; a foreground mask obtained from the depth image, and a
foreground mask that is obtained from the RGB image. For obtaining the
former, the depth image is first thresholded, and subsequently processed
by a morphological closing operation to correct for boundary artifacts.
The foreground mask of the RGB image is obtained by color thresholding,
which is straightforward due to the green-screen setup. By using such
a mask, only those regions that can be trusted are used for training the
multi-task CNN, while regions with potentially missing annotations are
not penalized.

a.4 data augmentation (chapter 5)

The real dataset contains sequences of single-hand tracking scenarios
with a green-screen to allow background augmentation. Additionally, a
color-based segmentation is performed to separate hand and body. For
compositing two-hand scenes, two masked hand images from the same
person are chosen at random, and flipped accordingly to obtain a pair of
left and right hands. The hands are then independently translated from
their initial location. Whenever the two hands are overlapping, the depth
channel is taken into account to ensure a plausible occlusion when the
hands project onto the same location in the image.

a.5 energy term weights (chapter 5)

In the following, the weights of energy terms used in Equation 5.3 are
provided: λd = 0.003, λsil = 0.0045, λkey = 0.005, λintra = 0.3, λinter = 0.1,
λβ = 0.025, λθ = 0.0375, λτ = 0.3, λsym = 0.5, λN = 4.6 · 105, λs = 103,
tθ = 0.1, tr = 2.3, tc = 0.04, th = 0.7, µ = 1.

a.6 automatic error recovery (chapter 5)

Due to the severe ambiguities in monocular RGB data, like the concave-
convex ambiguity, the optimization of the parameters ν does not always
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yield a correct result. Instead, fingers might get bent in the wrong direc-
tion to fit the projection in the input. These poses are difficult to escape
using a local optimizer. Hence these unnatural poses are detected by ob-
serving the magnitude of θh, h ∈ {left, right}. If this magnitude exceeds
the threshold tr, the pose parameters are reset to the closest pose that is
still within the threshold.

a.7 handflow training settings (chapter 6)

The PyTorch framework (v1.9) (Paszke et al., 2019a) is used for imple-
mentation. The ResNet-50 (He et al., 2016) backbone used is pre-trained
on the InterHand2.6M dataset using the weights from Moon et al. (2020).
This ensures that the feature vector to the subsequent normalizing flow
network contains relevant features for 3D hand pose estimation when
starting to train the complete HandFlowNet.

AdamW, a version of Adam (Kingma and Ba, 2015) with Decoupled
Weight Decay Regularization (Loshchilov and Hutter, 2019), is used for
optimization. Default parameters are used except for a learning rate of
10−4 and a weight decay of 10−4.

For loss weights, the following are used: λJ3D = 102, λJ2D = 10−1,
λDetMag = 10−3, λψ = 1.25× 10−3, λnll = 10−3, λθ = 10−1.

a.8 multihands dataset (chapter 6)

In this section, additional details of the algorithm used to generate plausi-
ble annotations for the MultiHands dataset is provided (see Algorithm 1

for an overview.).
Overall, the method perturb the ground-truth pose and checks for the

four plausibility criteria to generate new annotation. However, doing
so naively (e.g. adding Gaussian noise to the pose space annotations)
would result mostly in samples that do not fit the plausibility criteria.
The proposed method uses several heuristics to speed up the discovery
of plausible poses, which are explained in the following sections.

a.8.1 Translation Sampling:

First, translation perturbations to the initial ground truth provided in
InterHands2.6M are sampled. The goal is to constrain the range of plau-
sible translation samples so that visible joints are image consistent, and
the resulting pose is collision free.
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Data: Initial MANO Pose ψ0

Result: Additional annotations ψi

// Ensure: sampled t← {tright, tle f t}
// 1. ∆P2D(ψi(t)) < T
// 2. ¬collision(ψi(t))

t← sample_translation(ψ0);
ψi ← update_translation(ψ0, t);

for N iterations do

// Get finger with occluded joints:

// ∀P3D
j ∈ {P3D}

// child(P3D
j ) are occluded

{P3D} ← select_finger(ψi);
ψ′i ← ψi

for P3D
j in {P3D} do

// Ensure: sampled Q3D

// 1. bone(Q3D) = bone(P3D
j )

// 2. Q3D is occluded

Q3D ← sample_joint(P3D
j );

ψ′i = update_pose(ψ′i , Q3D);
{P3D} = update_child({P3D}, ψ′i);

end

// likelihood from pose PCA

if is_plausible(ψ′i) then
ψi ← ψ′i

end
end
Algorithm 1: Pseudocode for sampling additional annotations
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For this, binary search was used to find the image consistent range of
each hand; the range of depth offsets that limits 2D position change to
under 3.5 pixels for visible joints.

The collision free range is then calculated. This is the range of valid left
hand depth translations that avoid collision with the right hand. Collision
is detected using sphere proxies obtained from the volumetric Gaussian
approximation of the MANO model (Mueller et al., 2019; Wang et al.,
2020a).

Given these ranges, the final translation change is obtained by first
sampling a global depth offset from the overlapping image consistent
ranges of both hands. The left hand is then offset from the right by
sampling from the overlap between the collision free range and image
consistent range of the left hand.

a.8.2 Articulation Sampling:

To find a plausible articulation, note that only occluded joints can change
their position and the resulting position must also project on to an
occluded pixel. Thus occluded joints are iteratively selected and new
occluded positions proposed to cut down on the search space. As artic-
ulations are propagated down a kinematic chain, all joints on the same
finger are considered together.

Select_finger(ψi): For each iteration, a finger to perturb is selected for
the pose ψi. A finger can be selected if there exists an occluded joint
whose child joints are all occluded.

For the selected finger, its joint locations {P3D
j } are updated from the

base to the tip starting with the first occluded joint.

Sample_joint(P3D
j ): Given the current joint location, a new 3D position

needs to be found that both preserves the bone length and results in
occlusion. To maintain the bone length, points on a 3D sphere centered
at the parent joint with radius equal to the bone length are defined as
bone length consistent points.

Then points that would allow the joint to become visible are eliminate.
This is done by first projecting the sphere on to the image plane to obtain a
set of pixels that lie within the projection, and then checking the occlusion
status of each pixel based on a depth rendering. The occluded pixels
locations are unprojected to form rays, and the intersections between the
pixel rays and the sphere becomes the preliminary joint proposals Q3D.

Update_pose(ψ′i , Q3D): For each preliminary joint proposal, the rotation
needed to transform the current joint from the original position to the
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Figure A.2: More visualizations of the MultiHands dataset. Note the diversity of
3D poses that can be seen in the novel view.

proposed location is calculated. This rotation update is used to update
the current pose parameter ψ′i .

Update_child({P3D}, ψ′i): The remaining finger joints {P3D
j } are updated

using the pose parameter ψ′i .

is_plausible(ψ′i): After all child joints in a finger have been updated,
the resulting current pose parameter ψ′i is checked for anatomically
plausibility. This is done by converting the pose rotation parameters to
the MANO pose PCA parameters, which enables likelihood estimation
under Gaussian assumptions. Hand proposals with low log likelihood
(less than -60) are rejected.

To generate a single accepted new plausible annotation, pose per-
turbation is run for 100 iterations. For MultiHands, 100 new plausible
annotations were obtained per image. See Figure A.2 for examples of
annotations.

a.9 evaluation metrics (chapter 6)

In this section, additional details of the metrics used to evaluate the
proposed method are provided.
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a.9.1 Pose Alignments

Considering P̂3D = J (ψ) as the 3D joint positions calculated from the
estimated hand parameters ψ, the Global MPJPE (Global) metric is
defined as

MPJPEGlobal =
1
N

N

∑
i=1
||P̂3D

i − P3D
i ||2 , (A.1)

where N is the total number of annotated joints and P3D are the ground-
truth 3D joint positions. Note that this metric is computed without any
alignment.

For right root alignment, the joints of both hands are aligned to the right
hand root joint before computing the error. Let

Rr(P3D
i ) = P3D

i − P3D
right_root , (A.2)

be the function that calculates the joint position relative to the right hand
root. Then the Right-Root-Relative MPJPE (RRR) metric is defined by

MPJPERRR =
1
N

N

∑
i=1
||Rr(P̂3D

i )−Rr(P3D
i )||2 . (A.3)

The error for each hand is also evaluated individually. For this, the
joint position relative to the corresponding hand root joint is represented
by

R(P3D
i ) = P3D

i − root(P3D
i ) , (A.4)

where root(·) is a function the returns the right/left root joint position if
P3D

i belongs to the right/left hand. Then, the Root-Relative MPJPE (RR)
is defined by:

MPJPERR =
1
N

N

∑
i=1
||R(P̂3D

i )−R(P3D
i )||2 . (A.5)

a.9.2 Maximum Mean Discrepancy (MMD)

Given the set of all joint positions of predicted pose samples P̂3D =

{P̂3D
i }n

i=1, and the set of ground truth joint positions P3D = {P3D
i }m

i=1,
the Maximum Mean Discrepancy (MMD) with kernel κ can be estimated
with:
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MMD2(P̂3D,P3D) =
1

n(n− 1)

n

∑
i ̸=j

κ
(
P̂3D

i , P̂3D
j

)
+

1
m(m− 1)

m

∑
i ̸=j

κ
(
P3D

i ,P3D
j

)
− 2

nm

m

∑
j=1

n

∑
i=1

κ
(
P̂3D

i ,P3D
j

)
(A.6)

A Gaussian kernel is used for κ and the resulting MMD is averaged
across Gaussians kernels with standard deviations ranging between
[1–100mm] and sampled at 1mm intervals.

MMD2
RR and MMD2

RRR, are defined analogously to R(P3D
i ), R(P̂3D

i )

or with Rr(P3D
i ), Rr(P̂3D

i ) respectively.

a.10 results : baseline details (chapter 6)

For implementing the baselines, HandFlowNet components are reused as
much as possible to ensure fair comparison in terms of network capacity.
When using the normalizing flow network as a feed forward network in
the baseline, z = 0 was used.

To implement MC-dropout, the existing dropout layers were used
(with dropout probability of 0.5) in normalizing flow network during
inference time to obtain samples. For the Gaussian baseline, the pose
distribution was modeled as Gaussian aleatoric uncertainty N (µ, Σ)
inspired by Kendall and Gal (2017). The normalizing flow network is
trained to estimate µ and Σ directly from the extracted image feature
v. To implement the VAE baseline, a fully connected layer was added
to the image feature extractor to act as the encoder for the image. The
normalizing flow network then acts as the decoder to recover the hand
pose. Empirically, it was found that latent code size of 256 and KL
divergence weight of 4× 10−4 work best as hyper-parameters.

For the MC-dropout and VAE baselines, Lnll and LDetMag cannot be
used in their formulation and are thus omitted. Otherwise, all loss terms
are used during training.

a.11 results : deterministic comparisons (chapter 6)

In Section 6.4.3, it is shown that the commonly used MPJPE on a single
annotation is not suitable for capturing the uncertainty present in the
highly ambiguous task of monocular two-hands reconstruction. However,
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Method Global MPJPE ↓ RRR MPJPE ↓ RR MPJPE ↓
HandFlow 22.8 21.0 16.1

HandFlow (Mode) 51.4 30.7 18.2

InterNet 83.3 29.1 19.4

Fan et al. 81.7 32.1 17.2

InterShape - 33.7 18.7

Table A.1: The proposed method produces samples that are on-par or better
than the state-of-the-art methods. All results are in mm.

a comparison to the current state-of-the-art two-hand pose estimation
methods is still performed for reference.

The proposed method is compared to InterNet (Moon et al., 2020),
InterShape (Zhang et al., 2021), and Fan et al. (2021). Notice that InterNet
and Fan et al. both require an additional network to explicitly estimate
the global hand position, and InterShape only estimates relative hand
position. In contrast, the proposed method directly outputs global hand
position. Additionally, InterShape requires the ground-truth bone lengths
to scale their results while the proposed method does not.

Evaluation of Samples. Table A.1 show the comparison on InterHand2.6M
using MPJPE in mm. To evaluate whether the predicted distribution well
captures the ground truth, the established convention (Wehrbein et al.,
2021; Ye and Kim, 2018) to sample 100 poses is followed and the values
of the best sample according to each metric is reported.

The metrics on just the mode sample is additionally reported to provide
a baseline of the proposed method as a traditional deterministic pose
estimator. It can be seen that HandFlowNet produces samples that are
significantly closer to the ground truth, while still being competitive even
as a single pose estimator. As such, the proposed method better captures
the recoverable 3D information from the input.

a.12 more qualitative results (chapter 6)

In Figure A.3, more renderings of the individual samples of the predicted
distribution are shown. In Figure A.4, the skeleton visualization is used
to show the spread of the predicted distribution.
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Ground Truth Samples Ground Truth Samples
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Figure A.3: More individual mesh samples are shown from the camera view
and from a novel view. Note that not all joints are annotated in the ground truth.
This shows up as missing segments in the skeleton.



A.12 handflow qualitative results 109

Input Camera View Side View Input Camera View Side View

Figure A.4: 30 samples from the estimated distribution are shown, rendered as
semi-transparent skeletons, superimposed on a single image. These samples
are aligned to the root joint of one hand and the mode of the distribution
is made opaque for ease of visualization. Results are shown from both the
InterHand2.6M (left) and the Tzionas datasets (right).



110 appendix

KP Error KP AUC Mesh Error Mesh AUC F@5mm F@15mm

Zimmermann et al. (2019) 1.10 0.783 1.09 0.783 0.516 0.934

Boukhayma et al. (2019) 3.50 0.351 1.32 0.738 0.427 0.895

Hasson et al. (2019) 1.33 0.737 1.33 0.736 0.429 0.907

w/o Photometric 1.14 0.774 1.14 0.774 0.499 0.925

Proposed 1.11 0.781 1.10 0.781 0.508 0.930

Table A.2: Evaluation of the proposed method on the FreiHand dataset (Zim-
mermann et al., 2019). Keypoint (KP) and Mesh errors are measured in cm.

a.13 html experimental details (chapter 7)

The photometric loss experiments are conducted on the FreiHAND
dataset. The provided training dataset contains a total of 130,240 im-
ages: 32,560 unique images of hands with foreground masks, times four
methods of background composition. However, three of the composi-
tion methods attempt to blend the hand into the background, which
introduces severe artifacts in the hand appearance (see Figure. A.5).

Only unaltered 32,560 unique images are used for training to avoid
learning these artifacts for texture estimation. The provided foreground
masks were used to perform background augmentation without addi-
tional image harmonization or image coloration. ResNet-34 (He et al.,
2016) is trained using Adam, with a learning rate of 0.001, and for 200
epochs in all of the experiments.

A full comparison of the pose and shape performance is provided
in Table A.2. Following the evaluation procedure of Zimmermann et al.
(2019), the meshes were aligned using Procrustes alignment as a rigid
body transformation. Errors are measured in Euclidean distance (cm)
between corresponding vertex points (Mesh) or keypoints (KP). Area
under the percentage-of-correct-keypoints curve (AUC) and F-scores at
two thresholds (F@5mm and F@15mm) are additionally provided. The
proposed method achieves slightly better pose and shape performance
with the photometric loss (Proposed) than without (w/o Photometric),
and it achieves similar accuracy to the current state-of-the-art methods.

Figure A.5: The provided composed FreiHand data contains noticeable texture
artifacts. These images were not used for training.
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a.14 impact of shading removal (chapter 7)

It is desirable for the parametric texture model to not include lighting
effects. Although lighting conditions are made as uniform as possible
while acquiring the scans, there are still smooth shading effects, especially
at the boundary to the flat background surface. Without the shading
removal step in the pipeline, the lighting effects contribute a large portion
of the variation in the dataset. Hence, lighting variations are present
in some of the first principal components of the PCA space. Refer to
Figure A.6.

component 0 component 1 component 2

-3σ

+3σ

Figure A.6: When the texture PCA model is built without shading removal, the
principal components contain a significant amount of lighting variation.
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nis, Zdeněk Krňoul, Qingfu Wan, Shile Li, Linlin Yang, Dongheui Lee,
Angela Yao, Weiguo Zhou, Sijia Mei, Yunhui Liu, Adrian Spurr, Umar
Iqbal, Pavlo Molchanov, Philippe Weinzaepfel, Romain Brégier, Gre-
gory Rogez, Vincent Lepetit, and Tae-Kyun Kim (2020). “Measuring
Generalisation to Unseen Viewpoints, Articulations, Shapes and Ob-
jects for 3D Hand Pose Estimation under Hand-Object Interaction.” In:
European Conference on Computer Vision (ECCV). Glasgow, Scotland.

Baek, Seungryul, Kwang In Kim, and Tae-Kyun Kim (2018). “Augmented
Skeleton Space Transfer for Depth-Based Hand Pose Estimation.” In:
Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 8330–8339.

Bailer, Christian, Manuel Finckh, and Hendrik P. A. Lensch (2012). “Scale
Robust Multi View Stereo.” In: European Conference for Computer Vision
(ECCV).

Ballan, Luca, Aparna Taneja, Jürgen Gall, Luc Van Gool, and Marc Polle-
feys (2012). “Motion capture of hands in action using discriminative
salient points.” In: European Conference on Computer Vision (ECCV).
Springer, pp. 640–653.

Belhumeur, Peter N, David J Kriegman, and Alan L Yuille (1999). “The
bas-relief ambiguity.” In: International Journal of Computer Vision (IJCV)
35.1, pp. 33–44.

Berry, Donald A and Bert Fristedt (1985). “Bandit problems: sequen-
tial allocation of experiments (Monographs on statistics and applied
probability).” In: London: Chapman and Hall 5.71-87, pp. 7–7.

Besl, Paul J. and Neil D. McKay (1992). “A method for registration of
3-D shapes.” In: Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 14.2, pp. 239–256.

Bieler, Didier, Semih Gunel, Pascal Fua, and Helge Rhodin (2019). “Grav-
ity as a reference for estimating a person’s height from video.” In:
International Conference on Computer Vision (ICCV).

Boukhayma, Adnane, Rodrigo de Bem, and Philip H.S. Torr (2019). “3D
Hand Shape and Pose From Images in the Wild.” In: Computer Vision
and Pattern Recognition (CVPR). IEEE, pp. 10843–10852.

113



114 bibliography

Bronstein, Michael M, Alexander M Bronstein, Ron Kimmel, and Irad
Yavneh (2006). “Multigrid multidimensional scaling.” In: Numerical
linear algebra with applications 13.2-3, pp. 149–171.

Cao, Z., G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh (2019).
“OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affin-
ity Fields.” In: Transactions on Pattern Analysis and Machine Intelligence
(TPAMI).

Chen, Yujin, Zhigang Tu, Di Kang, Linchao Bao, Ying Zhang, Xuefei
Zhe, Ruizhi Chen, and Junsong Yuan (2021). “Model-based 3d hand
reconstruction via self-supervised learning.” In: Computer Vision and
Pattern Recognition (CVPR), pp. 10451–10460.

Dabral, Rishabh, Soshi Shimada, Arjun Jain, Christian Theobalt, and
Vladislav Golyanik (2021). “Gravity-aware monocular 3d human-object
reconstruction.” In: International Conference on Computer Vision (ICCV).

Dibra, Endri, Thomas Wolf, Cengiz Oztireli, and Markus Gross (2017).
“How to refine 3d hand pose estimation from unlabelled depth data?”
In: 2017 International Conference on 3D Vision (3DV). IEEE, pp. 135–144.

Doosti, Bardia, Shujon Naha, Majid Mirbagheri, and David J Crandall
(2020). “Hope-net: A graph-based model for hand-object pose estima-
tion.” In: Computer Vision and Pattern Recognition (CVPR), pp. 6608–
6617.

Fan, Zicong, Adrian Spurr, Muhammed Kocabas, Siyu Tang, Michael
Black, and Otmar Hilliges (2021). “Learning to Disambiguate Strongly
Interacting Hands via Probabilistic Per-pixel Part Segmentation.” In:
International Conference on 3D Vision (3DV).

Fischler, Martin A and Robert C Bolles (1981). “Random sample consen-
sus: a paradigm for model fitting with applications to image analy-
sis and automated cartography.” In: Communications of the ACM 24.6,
pp. 381–395.

Gal, Yarin and Zoubin Ghahramani (2016). “Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep learning.” In:
International Conference on Machine Learning (ICML). PMLR, pp. 1050–
1059.

Ge, Liuhao, Hui Liang, Junsong Yuan, and Daniel Thalmann (2016).
“Robust 3D Hand Pose Estimation in Single Depth Images: from Single-
View CNN to Multi-View CNNs.” In: Computer Vision and Pattern
Recognition (CVPR). IEEE.

Ge, Liuhao et al. (2017). “3D Convolutional Neural Networks for Efficient
and Robust Hand Pose Estimation from Single Depth Images.” In:
Computer Vision and Pattern Recognition (CVPR), pp. 5679–5688.

Grady, Patrick, Chengcheng Tang, Christopher D Twigg, Minh Vo,
Samarth Brahmbhatt, and Charles C Kemp (2021). “ContactOpt: Op-



bibliography 115

timizing Contact to Improve Grasps.” In: Computer Vision and Pattern
Recognition (CVPR), pp. 1471–1481.

Gretton, Arthur, Karsten M. Borgwardt, Malte J. Rasch, Bernhard
Schölkopf, and Alexander Smola (2012). “A Kernel Two-Sample Test.”
In: Journal of Machine Learning Research 13.25, pp. 723–773.

Habermann, Marc, Weipeng Xu, Michael Zollhöfer, Gerard Pons-Moll,
and Christian Theobalt (Mar. 2019). “LiveCap: Real-Time Human Per-
formance Capture From Monocular Video.” In: ACM Trans. Graph. 38.2,
14:1–14:17. issn: 0730-0301.

Hampali, Shreyas, Mahdi Rad, Markus Oberweger, and Vincent Lepetit
(2020). “Honnotate: A method for 3d annotation of hand and object
poses.” In: Computer Vision and Pattern Recognition (CVPR), pp. 3196–
3206.

Han, Shangchen, Beibei Liu, Robert Wang, Yuting Ye, Christopher D
Twigg, and Kenrick Kin (2018). “Online optical marker-based hand
tracking with deep labels.” In: ACM Transactions on Graphics (TOG) 37.4,
p. 166.

Hasson, Yana, Bugra Tekin, Federica Bogo, Ivan Laptev, Marc Pollefeys,
and Cordelia Schmid (June 2020). “Leveraging Photometric Consistency
Over Time for Sparsely Supervised Hand-Object Reconstruction.” In:
Computer Vision and Pattern Recognition (CVPR).

Hasson, Yana, Gül Varol, Dimitrios Tzionas, Igor Kalevatykh, Michael
J. Black, Ivan Laptev, and Cordelia Schmid (2019). “Learning joint
reconstruction of hands and manipulated objects.” In: Computer Vision
and Pattern Recognition (CVPR).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep
residual learning for image recognition.” In: Computer Vision and Pattern
Recognition (CVPR), pp. 770–778.

Jia, Yangqing, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell (2014).
“Caffe: Convolutional architecture for fast feature embedding.” In:
International Conference on Multimedia, pp. 675–678.

Joo, Hanbyul, Tomas Simon, Xulong Li, Hao Liu, Lei Tan, Lin Gui, Sean
Banerjee, Timothy Scott Godisart, Bart Nabbe, Iain Matthews, Takeo
Kanade, Shohei Nobuhara, and Yaser Sheikh (2017). “Panoptic Studio:
A Massively Multiview System for Social Interaction Capture.” In:
Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

Jung, Sungchul and Charles Hughes (Oct. 2016). “Body Ownership in
Virtual Reality.” In: Collaboration Technologies and Systems (CTS), pp. 597–
600.

Karunratanakul, Korrawe, Jinlong Yang, Yan Zhang, Michael J Black,
Krikamol Muandet, and Siyu Tang (2020). “Grasping field: Learning



116 bibliography

implicit representations for human grasps.” In: International Conference
on 3D Vision (3DV). IEEE, pp. 333–344.

Kendall, Alex and Yarin Gal (2017). “What Uncertainties Do We Need in
Bayesian Deep Learning for Computer Vision?” In: Advances in Neural
Information Processing Systems (NeurIPS). Vol. 30.

Keskin, Cem, Furkan Kıraç, Yunus Emre Kara, and Lale Akarun (2012).
“Hand Pose Estimation and Hand Shape Classification using Multi-
Layered Randomized Decision Forests.” In: European Conference on
Computer Vision (ECCV). Springer, pp. 852–863.

Khamis, Sameh, Jonathan Taylor, Jamie Shotton, Cem Keskin, Shahram
Izadi, and Andrew Fitzgibbon (2015). “Learning an Efficient Model of
Hand Shape Variation From Depth Images.” In: Computer Vision and
Pattern Recognition (CVPR).

Kim, Dong Uk, Kwang In Kim, and Seungryul Baek (Oct. 2021). “End-
to-End Detection and Pose Estimation of Two Interacting Hands.” In:
International Conference on Computer Vision (ICCV), pp. 11189–11198.

Kingma, D. and J. Ba. (2015). “Adam: A method for stochastic optimiza-
tion.” In: International Conference on Learning Representations (ICLR).

Kingma, Diederik P and Jimmy Ba (2015). “Adam: A method for stochas-
tic optimization.” In.

Kingma, Diederik P. and Max Welling (2014). “Auto-Encoding Variational
Bayes.” In: International Conference on Learning Representations (ICLR).
Ed. by Yoshua Bengio and Yann LeCun.

Klein, Georg and David Murray (2007). “Parallel Tracking and Mapping
for Small AR Workspaces.” In: International Symposium on Mixed and
Augmented Reality (ISMAR).

Kobyzev, Ivan, Simon JD Prince, and Marcus A Brubaker (2020). “Nor-
malizing flows: An introduction and review of current methods.” In:
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 43.11,
pp. 3964–3979.

Kolotouros, Nikos, Georgios Pavlakos, Dinesh Jayaraman, and Kostas
Daniilidis (Oct. 2021). “Probabilistic Modeling for Human Mesh Recov-
ery.” In: ICCV, pp. 11605–11614.

Kortylewski, Adam, Mario Wieser, Andreas Morel-Forster, Aleksander
Wieczorek, Sonali Parbhoo, Volker Roth, and Thomas Vetter (2018).
“Informed MCMC with Bayesian neural networks for facial image
analysis.” In: Bayesian Deep Learning Workshop (NeurIPS).

Kwon, Taein, Bugra Tekin, Jan Stühmer, Federica Bogo, and Marc Polle-
feys (2021). “H2o: Two hands manipulating objects for first person
interaction recognition.” In: International Conference on Computer Vision
(ICCV).



bibliography 117

Kyriazis, Nikolaos and Antonis Argyros (2014). “Scalable 3d tracking of
multiple interacting objects.” In: Computer Vision and Pattern Recognition
(CVPR), pp. 3430–3437.

La Gorce, Martin de, David J Fleet, and Nikos Paragios (2011). “Model-
based 3d hand pose estimation from monocular video.” In: Transactions
on Pattern Analysis and Machine Intelligence (PAMI) 33.9, pp. 1793–1805.

La Gorce, Martin de, Nikos Paragios, and David J Fleet (2008). “Model-
based hand tracking with texture, shading and self-occlusions.” In:
Computer Vision and Pattern Recognition (CVPR).

Lewis, John P, Matt Cordner, and Nickson Fong (2000). “Pose Space
Deformation: A Unified Approach to Shape Interpolation and Skeleton-
Driven Deformation.” In: Computer Graphics and Interactive Techniques.
ACM, pp. 165–172.

Li, Mengcheng, Liang An, Hongwen Zhang, Lianpeng Wu, Feng Chen,
Tao Yu, and Yebin Liu (June 2022a). “Interacting Attention Graph
for Single Image Two-Hand Reconstruction.” In: Computer Vision and
Pattern Recognition (CVPR).

Li, Yuwei, Minye Wu, Yuyao Zhang, Lan Xu, and Jingyi Yu (Aug. 2021).
“PIANO: A Parametric Hand Bone Model from Magnetic Resonance
Imaging.” In: International Joint Conference on Artificial Intelligence, IJCAI-
21, pp. 816–822.

Li, Yuwei, Longwen Zhang, Zesong Qiu, Yingwenqi Jiang, Yuyao Zhang,
Nianyi Li, Yuexin Ma, Lan Xu, and Jingyi Yu (2022b). NIMBLE: A Non-
rigid Hand Model with Bones and Muscles. arXiv: 2202.04533 [cs.CV].

Lin, John, Ying Wu, and T.S. Huang (2000). “Modeling the constraints
of human hand motion.” In: Proceedings Workshop on Human Motion,
pp. 121–126.

Liu, Shaowei, Hanwen Jiang, Jiarui Xu, Sifei Liu, and Xiaolong Wang
(2021). “Semi-supervised 3d hand-object poses estimation with inter-
actions in time.” In: Computer Vision and Pattern Recognition (CVPR),
pp. 14687–14697.

Loshchilov, Ilya and Frank Hutter (2019). “Decoupled Weight Decay
Regularization.” In: International Conference on Learning Representations
(ICLR).

Malik, Jameel, Ibrahim Abdelaziz, Ahmed Elhayek, Soshi Shimada, Sk
Aziz Ali, Vladislav Golyanik, Christian Theobalt, and Didier Stricker
(2020). “HandVoxNet: Deep Voxel-Based Network for 3D Hand Shape
and Pose Estimation from a Single Depth Map.” In: Computer Vision
and Pattern Recognition (CVPR).

Malik, Jameel et al. (Oct. 2017). “Simultaneous Hand Pose and Skeleton
Bone-Lengths Estimation from a Single Depth Image.” In: International
Conference on 3D Vision (3DV), pp. 557–565.

https://arxiv.org/abs/2202.04533


118 bibliography

Moon, Gyeongsik, Juyong Chang, and Kyoung Mu Lee (2019). “Camera
Distance-aware Top-down Approach for 3D Multi-person Pose Estima-
tion from a Single RGB Image.” In: International Conference on Computer
Vision (ICCV).

Moon, Gyeongsik, Shoou-I Yu, He Wen, Takaaki Shiratori, and Kyoung
Mu Lee (2020). “InterHand2.6M: A dataset and baseline for 3D inter-
acting hand pose estimation from a single RGB image.” In: European
Conference on Computer Vision (ECCV). Springer, pp. 548–564.

Mueller, Franziska, Florian Bernard, Oleksandr Sotnychenko, Dushyant
Mehta, Srinath Sridhar, Dan Casas, and Christian Theobalt (June 2018).
“GANerated Hands for Real-Time 3D Hand Tracking from Monocular
RGB.” In: Proceedings of Computer Vision and Pattern Recognition (CVPR).

Mueller, Franziska, Micah Davis, Florian Bernard, Oleksandr Sotny-
chenko, Mickeal Verschoor, Miguel A Otaduy, Dan Casas, and Chris-
tian Theobalt (2019). “Real-time Pose and Shape Reconstruction of Two
Interacting Hands With a Single Depth Camera.” In: ACM Transactions
on Graphics (TOG) 38.4, p. 49.

Mueller, Franziska, Dushyant Mehta, Oleksandr Sotnychenko, Srinath
Sridhar, Dan Casas, and Christian Theobalt (2017). “Real-time Hand
Tracking under Occlusion from an Egocentric RGB-D Sensor.” In:
International Conference on Computer Vision (ICCV).

Oberweger, M. et al. (2017). “DeepPrior++: Improving Fast and Accurate
3D Hand Pose Estimation.” In: International Conference on Computer
Vision Workshop (ICCVW), pp. 585–594.

Oberweger, Markus, Paul Wohlhart, and Vincent Lepetit (2015). “Training
a Feedback Loop for Hand Pose Estimation.” In: International Conference
on Computer Vision (ICCV). IEEE, pp. 3316–3324.

Oikonomidis, Iason, Nikolaos Kyriazis, and Antonis A Argyros (2011).
“Efficient Model-Based 3D Tracking of Hand Articulations using
Kinect.” In: British Machine Vision Conference (BMVC). Vol. 1. 2.

Oikonomidis, Iasonas, Nikolaos Kyriazis, and Antonis A Argyros (2012).
“Tracking the articulated motion of two strongly interacting hands.” In:
Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 1862–1869.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala (2019a). “PyTorch:
An Imperative Style, High-Performance Deep Learning Library.” In:
Advances in Neural Information Processing Systems 32. Ed. by H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett.
Curran Associates, Inc., pp. 8024–8035.



bibliography 119

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. (2019b). “PyTorch: An imperative style, high-performance
deep learning library.” In: Advances in Neural Information Processing
Systems (NeurIPS), pp. 8024–8035.

Pavlakos, Georgios, Vasileios Choutas, Nima Ghorbani, Timo Bolkart,
Ahmed A. A. Osman, Dimitrios Tzionas, and Michael J. Black (2019).
“Expressive Body Capture: 3D Hands, Face, and Body from a Single
Image.” In: Computer Vision and Pattern Recognition (CVPR), pp. 10975–
10985.

Prada, Fabián, Misha Kazhdan, Ming Chuang, and Hugues Hoppe (2018).
“Gradient-domain processing within a texture atlas.” In: ACM Transac-
tions on Graphics (TOG) 37.4.

Qian, Chen, Xiao Sun, Yichen Wei, Xiaoou Tang, and Jian Sun (2014).
“Realtime and Robust Hand Tracking from Depth.” In: Computer Vision
and Pattern Recognition (CVPR). IEEE, pp. 1106–1113.

Qian, Neng, Jiayi Wang, Franziska Mueller, Florian Bernard, Vladislav
Golyanik, and Christian Theobalt (2020). “HTML: A Parametric Hand
Texture Model for 3D Hand Reconstruction and Personalization.” In:
European Conference on Computer Vision (ECCV). Springer.

Ravi, Nikhila, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-
Yen Lo, Justin Johnson, and Georgia Gkioxari (2020). PyTorch3D. https:
//github.com/facebookresearch/pytorch3d.

Rehg, James M and Takeo Kanade (1994). “Visual tracking of high dof
articulated structures: an application to human hand tracking.” In:
European Conference on Computer Vision (ECCV). Springer, pp. 35–46.

Rezende, Danilo and Shakir Mohamed (2015). “Variational inference with
normalizing flows.” In: International Conference on Machine Learning
(ICML), pp. 1530–1538.
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