
Jon 3‘3,

0 0 0

SEKl-fiEPORT SR-87-07

Basic Narrowing Revisited

July 19837

ak0mS.“eGdna‚w
..

‚9Dum‚m
m

D
..

„n...
UN‚r‚enr.m

>
5

n

„>
>

_
_

‚

zö
E

m
_

m
._

m
m

_
m

v_
B

E
A

...
3

:0
3

.3
3

m
vo

m
zu

m
tw

o
m

8
5

9
: .2

5
0

5
2

3
2

9
3

3
!

ä
.?

?
E

D
_

E
o

E
td

.
g

a
p

—
„P

E
.

£
2

9
3

5
3

”.

SEKI Report SR-87-07, Universitat Kaiserslautern, West Germany, July 1987

Basic Narrowing Revisited

Werner Nutt

Universitiit Kaiserslau tern

Pierre Rety

Centre de Recherche en Informatique de Nancy

Gert Smolka

Universitiit Kaiserslautern

Abstract

In thiS paper we studY-basic riarrowirigasa method fcir solvirig equations iri the iriitial
algebra specified by a ground confluent and terrninatirig term rewritirig system. Sirice we
are iriterested iri equation solvirig, we don't study basic narrowirig as a reduction relation
on terms but consider immediately its reformulation as an equation solving rule. This
reformulation leads to a technically simpler presentation and reveals that the essence of
basic narrowing can be captured without recourse to term unification.

We present an equation solvirig calculus that features three classes of rules. Resolution
rules, whose application is don't care nondetermiriistic, are the basic rules and suffice for
a complete solution procedure. Failure rules detect iriconsistent parts of the search space.
Simplification rules, whose application is don't care nondetermiriistic, enhance the power of
the failure rules and reduce the number of necessary don't know steps.

Three of the presented simplification rules are new. The rewritirig rule allows for don't
care nondetermiriistic rewriting and thus yields a marriage of basic and normalizing nar
rowing. The safe blocking rule is specific to basic narrowirig and is particulary useful in
conjunction with the rewriting rule. Firially, the unfoldirig rule allows for a variety of search
strategies that reduce the number of don't know alternatives that need to be explored.

Keywords: Equation Solving, Universal Unification, Narrowing, Basic Narrowing,
Normalizing Narrowirig, Rewritirig.

Acknowledgments: Nutt and Smolka are funded by the BundesmiriiSter fur Forschung
und Technologie under grant ITR8501A.

Addresses of Authors: Werner Nutt, Gert Smolka, FB Informatik, Univer
sitiit Kaiserslautern, 6750 Kaiserslautern, West Germany. Pierre R6ty, CRIN, Campus
Scientifique, BP 239, 54506 Vandceuvre les Nancy Cedex, France. UUCP: nutt@uklirb,
rety@crin, smolka@uklirb.

SEKI Report SR—87-07, Universität Kaiserslautern, West Germany, July 1987

Basic Narrowing Revisited

Werner Nu t t
Universität Kaiserslautern

Pierre Réty
Centre de Recherche en Informatique de Nancy

Gert Smolka
Universität Kaiserslautern

Abstract

algebra specified by a ground confluent and terminating term rewriting system. Since we
are interested in equation solving, we don’t study basic narrowing as a reduction relation
on terms but consider immediately its reformulation as an equation solving rule. This
reformulation leads to a. technically simpler presentation and reveals that the essence of
basic narrowing can be captured without recourse to term unification.

We present an equation solving calculus that features three classes of rules. Resolution
rules, whose application is don’t care nondeterministic, are the basic rules and suffice for
a complete solution procedure. Failure rules detect inconsistent parts of the search space.
Simplification rules, whose application is don’t care nondeterministic, enhance the power of
the failure rules and reduce the number of necessary don’t know steps.

Three of the presented simplification rules are new. The rewriting rule allows for don’t
care nondeterministic rewriting and thus yields a. marriage of basic and normalizing nar—
rowing. The safe blocking rule is specific to basic narrowing and is particulary useful in
conjunction with the rewriting rule. Finally, the unfolding rule allows for a variety of search
strategies that reduce the number of don’t know alternatives that need to be explored.

Keywords: Equation Solving, Universal Unification, Narrowing, Basic Narrowing,
Normalizing Narrowing, Rewriting.

Acknowledgments: Nutt and Smolka are funded by the Bundesminister für Forschung
und Technologie under grafit ITR8501A.

Addresses. of Authors: Werner Nutt, Gert Smolka, FB Informatik, Univer-
sität Kaiserslautern, 6750 Kaiserslautern, West Germany. Pierre Réty, CRIN, Campus
Scientifique, BP 239, 54506 Vandoeuvre les Nancy Cedex, France. UUCP: nutt©uklirb‚
rety©crin, smolka@uklirb.

1 Introduction

Narrowing first appeared in the context of resolution based theorem proving as an adaption
of the paramodulation rule [Robinson/Wos 69] to canonical term rewriting systems [Slagle
74, Lankford 75]. Fay [78] realized that narrowing can be employed as a universal unification
procedure that solves equations in the theory defined by a canonical rewriting system. Bullot
[80] continued Fay's [78] work and devised a new narrowing strategy called basic narrowing.
Kirchner [85] extended narrowing to rewritingmodulo equations. Kaplan [84] and Bu£mann
[85] investigated narrowing for conditional term rewriting systems. The recent interest in
logic programming with equations [Dershowitz/Plaisted 85, Goguen/Meseguer 86] has gen
erated much work on universal unification (often called E-unification) [Gallier/Snyder 87,
Bolldobler 87, Martelli et al. 86] and narrowing [Bosco et al. 87, Fribourg 85, Joseph
son/Dershowitz 86, Rety et al. 85, You/Subrahmanyam 86] in particular.

Technically, narrowing combines term unification and rewriting. To perform a narrow
ing step on a term t means to replace t by B(t[1r +- vD, where t/1r is a nonvariable subterm of
t, u -+ v is a variable disjoint copy of a rule, and B is the most general unifier of the subterm
t/1r and the left hand side u ofthe rule. The thus obtained narrowing relation extends the
rewriting relation since every rewriting step is also a narrowing step.

Fay's [78] unification procedure employs a normalizing narrowing strategy, where a
proper narrowing step is only performed If no rewritmg -stePl;; p-osslble. In other words,
after every proper narrowing step the obtained term is rewritten to normal form. While
the application of a rewriting step is don't care nondeterministic (that is, it doesn't matter
which rewriting step is applied next), the application of a narrowing step is don't know
nondeterministic (that is, it matters which narrowing step is applied next). The advantage
of normalizing narrowing over pure narrowing is that it yields a unification procedure with
a smaller search space.

Bullot's [80] basic narrowing strategy obtains a search space reduction by restricting
narrowing steps to subterms that were not introduced by instantiation. The drawback of
this stragtegy is that the application of a narrowing step that is actually a rewriting step
is no longer don't care nondeterministic. Recently, the authors [Rety 87, Smolka/Nutt 87]
devised special rewriting rules that are compatible with the basic narrowing strategy and
whose application is still don't care nondeterministic. This present paper combines and
simplifies our results.

We study basic narrowing and its optimizations as a method for solving equations in
the initial algebra specified by a ground confluent and terminating term rewriting system.
Since we are interested in equation solving, we don't study basic narrowing as a reduction
relation on terms but consider immediately its reformulation as an equation solving rule.
This reformulation leads to a technically simpler presentation and reveals that the essence
of basic narrowing can be captured without recourse to term unification.

There are several advantages gained from weakening the usual confluence requirement
to ground confluence. Applications in algebraic specification and logic programming usu
ally employ initial algebra semantics, which means that ground confluence rather than full
confluence is the natural requirement. A typical example is the specification of the integers
shown in Figure 1. This specification is a terminating and ground confluent rewriting sys
tem, which is not confluent since, for instance, x *y and ((x *y) + y) +(-y) are two distinct
normal forms of p(s(x)) * y. An automatic completion of this system seems to be difficult if
not impossible. Rety et al. [85] give a confluent extension of this system by adding thirteen

2

1 Introduction

Narrowing first appeared in the context of resolution based theorem proving as an adaption
of the paramodulation rule [Robinson/Wos 69] to canonical term rewriting systems [Slagle
74, Lankford 75]. Fay [78] realized that narrowing can be employed as a universal unification
procedure that solves equations in the theory defined by a canonical rewriting system. Hullot
[80] continued Fay’s [78] work and devised a new narrowing strategy called basic narrowing.
Kirchner [85] extended narrowing to rewriting'modulo equations. Kaplan [84] and Hußmann
[85] investigated narrowing for conditional term rewriting systems. The recent interest in
logic programming with equations [Dershowitz/Plaisted 85, Goguen/Meseguer 86] has gen-
erated much work on universal unification (often called E-unification) [Gallier/Snyder 87,
Hölldobler 87, Martelli et al. 86] and narrowing [Bosco et al. 87, Fribourg 85, Joseph-
son/Dershowitz 86, Réty et al. 85, You/Subrahmanyam 86] in particular.

Technically, narrowing combines term unification and rewriting. To perform a narrow-
ing step on a term t means to replace t by 6(t[7r <— v]), where t/7r is a nonvariable subterm of
t , u —-> v is a variable disjoint copy of a rule, and 6 is the most general unifier of the subterm
t/7r and the left hand side u of the rule. The thus obtained narrowing relation extends the
rewriting relation since every rewriting step is also a narrowing step.

Fay’s [78] unification procedure employs a normalizing narrowing "strategy,“where a
pfofiéf“ fiarrowing step is 0513?“5333fBi—xi'iéä"“if""no féäfii‘i‘iigétép is possible. In other words,
after every proper narrowing step the obtained term is rewritten to normal form. While
the application of a rewriting step is don’t care nondeterministic (that is, it doesn’t matter
Which rewriting step is applied next), the application of a narrowing step is don’t know
nondeterministic (that is, it matters which narrowing step is applied next). The advantage
of normalizing narrowing over pure narrowing is that it yields a unification procedure with
asmaller search space.

Hullot’s [80] basic narrowing strategy obtains a search space reduction by restricting
narrowing steps to subterms that were not introduced by instantiation. The drawback of
this stragtegy is that the application of a narrowing step that is actually a rewriting step
is no longer don’t care nondeterministic. Recently, the authors [Réty 87, Smolka/Nutt 87]
devised special rewriting rules that are compatible with the basic narrowing strategy and
whose application is still don’t care nondeterministic. This present paper combines and
simplifies our results.

We study basic narrowing and its optimizations as a method for solving equations in
the initial algebra specified by a ground confiuent and terminating term rewriting system.
Since we are interested in equation solving, we don’t study basic narrowing as a reduction
relation on terms but consider immediately its reformulation as an equation solving rule.
This reformulation leads to a technically simpler presentation and reveals that the essence
of basic narrowing can be captured without recourse to term unification.

There are several advantages gained from weakening the usual confluence requirement
to ground confluence. Applications in algebraic specification and logic programming usu—
ally employ initial algebra semantics, which means that ground confluence rather than full
confluence is the natural requirement. A typical example is the specification of the integers
shown in Figure 1. This specification is a terminating and ground confiuent rewriting sys-
tem, Which is not confiuent since, for instance, a: * y and ((a: * y) + y) + (—y) are two distinct
normal forms of p(s(x)) * y. An automatic completion of this system seems to be difficult if
not impossible. Réty et al. [85] give a confluent extension of this system by adding thirteen

(1) p(s(x)) -+ x

(2) s(p(x)) -+ x

(3) 0 + y -+ Y

(4) sex) + y -+ sex + y)

(5) p(x) + y -+ p(x + y)

(6) -0 -+ 0 (9) 0 * y -+ 0

(7) -s(x)-+p(-x) (10) s(x)*y-+(x*y)+y

(8) -p(x) -+ s(-x) (11) p(x)*y-+(x*y)+(-y)

Figure 1.1. A specification of the integers as a ground confluent and terminating
rewriting system.

inductive consequences. This more than doubles the original rules and thus increases the
search space of a narrowing based unification procedure. To be able to weaken the usual
confluence requirement to ground confluence, completeness must be defined· with respect to
solutions, which map variables into irreducible ground terms, rather than unifiers, which
map variables to terms possibly containing variables.

Our equation solving calculus employs three classes of rules: resolution rules whose
application is don't know nondeterministic, simplification rules whose application is don't
care nondeterministic, and failure rules allowing to prune inconsistent parts of a search tree.
The resolution rules are the basic rules and suffice for a complete solution procedure. The
purpose of the simplification rules is to reduce the search space. In some cases, the use of
simplification rules can cut down an infinite search space to a finite one.

Three of the presented simplification rules are new. The rewriting rule allows for don't
care nondeterministic rewriting and thus yields a marriage of basic and normalizing nar
rowing that enjoys the advantages of both approaches. The safe blocking rule is specific to
basic narrowing and is particulary useful in conjunction with the rewriting rule. Finally, the
unfolding rule allows for a variety of search strategies that reduce the number of don't know
alternatives that need to be explored.

Our equation solving calculus is the basis for a class of solution procedures, where the
don't know application of a resolution step is followed by the don't care application offinitely
many simplification steps. The completeness of these procedures is shown with a new proof
technique yielding a scheme that is easily applied to additional or alternative rules. As
an application of our proof scheme, we show the completeness of an innermost constructor
strategy similar to the one proposed by Fribourg [85].

The paper is organized as follows. In Section 2 we fix our notation for equations and
rewriting systems. In Section 3 we present two resolution rules that yield a complete but
very inefficient solution procedure. In Section 4, which is the heart of the paper, we extend
the equation solving calculus with failure and simplification rules, thus obtaining a far more
efficient solution procedure. In Section 5 we show the completeness of a solution procedure
that uses inductive consequences for rewriting and prove the completeness of an innermost
constructor strategy.

3

(1) 118(3)) -> $
(2) 809(3)) —+ =6
(3) 0 + y -> y
(4) 3(3) + 31 —> 806 + y)

(5) 1908) + y —+ p(3 + y)

(6) --0—>0 (9) Gang—+0
(7) —s(:c) —-> p(—:c) (10) s(a:) a: y --+ (a: * y) + y

(8) —p‘(=v) -+ 8(”33) (11) 23(93) * 3! —> (3 * y) + (-y)

Figure 1 .1 . A specification of the integers as a ground confluent and' terminating
rewriting system.

inductive consequences. This more than doubles the original rules and thus increases the
search space of a narrowing based unification procedure. To be able to weaken the usual
confluence-«requirement to ground eon-fluence,»completeness must-«be defined-4 with respect to
solutions, which map variables into irreducible ground terms, rather than unifiers , which
map variables to terms possibly containing variables.

Our equation solving calculus employs three classes of rules: resolution rules whose
application is don’t know nondeterministic, simplification rules whose application is don’t
care nondeterministic, and failure rules allowing to prune inconsistent parts of a search tree.
The resolution rules are the basic rules and suffice for a complete solution procedure. The
purpose of the simplification rules is to reduce the search space. In some cases, the use of
simplification rules can cut down an infinite search space to a finite one.

Three of the presented simplification rules are new. The rewriting rule allows for don’t
care nondeterministic rewriting and thus yields a marriage of basic and normalizing nar-
rowing that enjoys the advantages of both approaches. The safe blocking rule is specific to
basic narrowing and is particulary useful in conjunction with the rewriting rule. Finally, the
unfolding rule allows for a variety of search strategies that reduce the number of don’t know
alternatives that need to be explored.

Our equation solving calculus is the basis for a class of solution procedures, where the
don’t know application of a resolution step is followed by the don’t care application of finitely
many simplification steps. The completeness of these procedures is shown with a new proof
technique yielding a scheme that is easily applied to additional or alternative rules. As
an application of our proof scheme, we show the completeness of an innermost constructor
strategy similar to the one proposed by Fribourg [85].

The paper is organized as follows. In Section 2 we fix our notation for equations and
rewriting systems. In Section 3 we present two resolution rules that yield a complete but
very inefficient solution procedure. In Section 4, which is the heart of the paper, we extend
the equation solving calculus. with failure and simplification rules, thus obtaining a far more
efficient solution procedure. In Section 5 we show the completeness of a solution procedure
that uses inductive consequences for rewriting and prove the completeness of an innermost
constructor strategy.

For most applications the use of many-sorted or even order-sorted (many-sorted with
subsorts) equationallogic is essential. Nevertheless, in this paper we consider only unsorted
logic since it suffices to demonstrate our ideas. The generalization of our results to the many
sorted case without subsorts is straightforward. The generalization to the order-sorted case
is also not difficult if sort-decreasing rewriting systems [Smolka et al. 87] are employed.

2 Equations and Rewriting Systems

In this section we review the necessary notations for equations and rewriting systems.
The reader not familiar with the theory of term rewriting systems may consult [Huet 80,
Huet/Oppen 80].

We assume that a set of function symbols (ranged over by f, g, and h) and an infinite
set of variables (ranged over by x, y, z) are given. Every function symbol comes with an
arity, which is a nonnegative integer.

Terms (ranged over by s, t, u, and v) and occurrences ofterms (ranged over by 1T) are
defined as usual. We use S/1T to denote the subterm of S at occurrence 1T and S[1T f- t]
to denote the term obtainable from S by replacing the subterm at occurrence 1T with t. An
equation S ==t is an ordered pair consisting oftwo terms sand t. The letter P will always
range over equations. An equation system is a bag P1 & ... & Pn of equations; we use
oto denote the empty equation system. The letter E will always range over equation
systems. An equation is called trivial if it has the form s == s; an equation system is called
trivial if each of its equations is trivial.

A syntactical object is either a term, an equation, or an equation system. A syntac
ticalobject is called ground if it does not contain variables. We use V(0) to denote the set
of variables occurring in a syntactical object O.

A signature is a set of function symbols. The letter :E will always range over signatures.
A syntactical object is called a :E-object if every function symbol occurring in it is in :E.

Let :E be a signature. A :E-substitution is a function from :E-terms into :E-terms such
that Of(sll" .,sn) = f(OSl, ... ,Osn) and 'DO:= {x IOx f. x} is finite. In abuse of notation,
1)0 is called the domain of 0 and CO := {Ox I x E 'DO} is called the codomain of O.
Furthermore, IO := V(CO) is called the set of variables introduced by O. The letters 0, 'Ij;,
and <p will always range over substitutions. The composition of :E-substitutions is again a :E
substitution. ~-substitutionsare extended to syntactical ~-objects as usual. A substitution
ois ground if Ox is a ground term for all x E 'DO. A substitution 0 is idempotent if 00 = O.
Note that 0 is idempotent if and only if 'DO and IO are disjoint.

The equational representation [0] of a substitution 0 is the equation system

where {Xl,"" Xn} = 'DO. Two substitutions are equal if and only if their equational rep
resentations are equal. Conversely, every ~-equation system Xl == Sl & ... & xn == Sn such
that Xl, ... , xn are distinct variables is the equational representation of some ~-substitution,

which we denote with (Xl == Sl & ... & Xn == sn). Note that 0 = ([O]) for every substitution
O.

4

For most applications the use of many-sorted or even order-sorted (many—sorted with
subsorts) equational logic is essential. Nevertheless, in this paper we consider only unsorted
logic since it suffices to demonstrate our ideas. The generaliz ation of our results to the many-
sorted case without su-bsorts is straightforward. The generalization to the order-sorted case
is also not difficult if sort—decreasing rewriting systems [Smolka et al. 87] are employed.

2 Equations and Rewriting Systems

In this section we review the necessary notations for equations and rewriting systems.
The reader not familiar with the theory of term rewriting systems may consult [Huet 80,
Huet/Oppen 80].

We assume that a set of function symbols (ranged over by f , 9 , and h) and an infinite
set of variables (ranged over by :c, y , z) are given. Every function symbol comes With an
arity, which is a nonnegative integer.

Terms (ranged over by s , t , u , and v) and occurrences of terms (ranged over by 7r) are
defined as usual. We use s/1r to denote the subterm of 3 at occurrence vr and sh" +— t]
to denote the term obtainable from s by replacing the subterm at occurrence 11- with t . An
equation s _—'_“t is “"an""ordered pair consisting “of two terms" s "ä.“fi'd t . The letter P will always
range over equations. An equatiozn system is a bag P1 & . « - & R, of equations; we use
@ to denote the empty equation system. The letter E will always range over equation
systems. An equation is called trivial if it has the form 3 =': s ; an equation system is called
trivial if each of its equations is trivial.

A syntactical object is either a term, an equation, or an equation system. A syntac—
tical object is called ground if it does not contain variables. We use V(0) to denote the set
of variables occurring in a syntactical object 0 .

A signature is a. set of function symbols. The letter 2 will always range over signatures.
A syntactical object is called a E—object if every function symbol occurring in it is in E .

Let 2 be a signature. A E—substitution is a function from E—terms into E—terms such
that 9 f (s l , . . . , S„) = f (981 , . . . ‚ ö s„) and 'Dä := {x | 0:1: # a:} is finite. In abuse of notation,
136 is called the domain of 6 and Cd :: {0:6 | a: 6 DE} is called the codomain of 6.
Furthermore, 16 := V(C€) is called the set of variables introduced by €. The letters 9 , gb,
and 45 will always range over substitutions. The composition of E—substitutions is again a E-
substitution. E—substitutions are extended to syntactical E—objects as usual. A substitution
9 is ground if 63: is a ground term for all 1: E 'Dß . A substitution 9 is idempotent if 99 = 6.
Note that 9 is idempotent if and only if Di? and 16 are disjoint.

The equational representation [6] of a substitution 6 is the equation system

3:1:‘9931& -~_ &xnéßmn

where {931, . . . , {cn} : 1319. Two substitutions are equal if and only if their equational rep-
resentations are equal. Conversely, every E—equation system x l & 51 & - - - & x„ & sn such
that 1:1 , . . . , aan are distinct variables is the equational representation of some E—substitution,
which we denote with (931 =' 81 & - - - & mn & Sn). Note that € = ([6]) for every substitution
9.

Let 0 be a substitution and V be a set of variables. The restriction Olv of 0 to V is
defined by: Olv(x) := Ox if x E V, otherwise Olv(x) := x. Furthermore, the update O[y <- s]
of 0 at y with S is defined by: O[y <- s](x) := s if x = y, otherwise O[y <- s](x) := Ox.

A syntactical object 0 is called an instance of a syntactical object 0' if there is a
substitution 0 such that 0 = 00'. A syntactical object 0 is called a variant of a syntactical
object 0' if 0 is obtainable from 0' by consistent variable renaming, that is, there exist
substitutions 0 and 'I/; such that 0' = 00 and 0 = '1/;0'.

Let -+ be a binary relation on a set M. Then we use -+* to denote the reflexive and
transitive closure of -+. The relation -+ is called confluent if for all a, b, and c in M such
that a -+* b and a -+* c there exists a d in M such that b -+* d and c -+* d. Furthermore,
-+ is called terminating if there is no infinite chain al -+ a2 -+ as -+ .. '.

A ~-rewriting rule s -+ t is an equation s == t such that s isn't a variable and every
variable occurring in the right hand side t occurs in the left hand side s. A rewriting
system n = (~, &) consists of a signature ~ and a set & of }>rewriting rules. A rewriting
system n = (~, &) defines a binary relation ~ called the rewriting relation of n on the
set of all ~>terms as follows: s ~ t if and only if there exists an occurrence 7r of s and an
instance u -+ v of a rule ofn such that s/7r = u and t = s[7r <- v]. A term s is n-normal if
there is no term t such that s ~t. A term t is an n-normal form of a term s if s ~*t and
t is R-IloJ:m~l.An 'R.-Yl}Jll~ il;~rJ 'R.-:r:101"IIl~gI'oUJ;ldterm. Al'ewritingsYstemn::;::(~,&) is
ground confluent if the restriction of ~ to the set of all ground ~-terms is confluent.

The initial algebra Zen) specified by a ground confluent and terminating rewriting
system n = (~, &) can be defined as follows:

•	 The carrier of Zen) is the set of all n-values.

•	 The denotation IIcn) of a function symbol in ~ is given by fIcn)(Sl' .. , ,sn) = s, where
S is the n-normal form of f(s1>"" sn).

A ground ~-equation S == t is valid in (the initial algebra of) n if sand t have the same
n-normal form. We write n F s == t or s =n t if s == t is valid in n. A ground ~-equation

system is valid in (the initial algebra of) n if each of its equations is valid in n. We write
n 1= E if E is valid in n. A ~-equation s == t is an inductive consequence of n if every
ground instance of s == t is valid in n. Two ground ~-substitutions 0 and 'I/; are equal in
n (write 0 =n '1/;) if VO =V'I/; and Ox =n 'l/;x for every x E VO.

Let n = (~, £) be a ground confluent and terminating rewriting system. Then we have:

•	 "s =n t" is a congruence on the set of all ground ~-terms, that is, "s =n t" is an
equivalence relation satisfying

S1 =n tl /\ .. , /\ Sn =n tn =} f(S1,"" sn) =n f(tl"'" tn).

•	 "0 =n '1/;" is an equivalence relation on the set of all ground ~-substitutions.

•	 If B=n '1/;, then Os =n 'l/;s for every term s such that V(s) ~ VB = V'Ij;.

3 The Basic Resolution Rules
In this section we develop a simple equation solving calculus that captures the essence

5

Let 9 be a substitution and V be a set of variables. The restriction HIV of 9 to V is
defined by: 0|V(:c) :: 9a: if a: E V, otherwise HIV (a:) := m. Furthermore, the update 9[y <— 5]
of 6 at y with 5 is defined by: 3[y +— s](:c) :: 3 if a: = 3;, otherwise 0[y +— s](a:) := 9:8.

A syntactical object O is called an instance of a syntactical object 0’ if there is a
substitution 6 such that 0 = 90’. A syntactical object 0 is called a variant of a syntactical
object 0’ if 0 is obtainable from 0’ by consistent variable renaming, that is, there exist
substitutions t9 and gb such that 0’ = 90 and 0 = 100'.

Let -——> be a binary relation on a set M. Then we use -->* to denote the reflexive and
transitive closure of —>. The relation —-> is called confluent if for all (1, 6, and c in M such
that a —->* 1) and a —>* c there exists a d in M such that b -—>* d and (: -—>"‘ d. Furthermore,
-—> is called terminating if there is no infinite chain a l —-> a2 —-> as —-+ . - -.

A E-rewriting rule 5 --> t is an equation s i t such that s isn’t a variable and every
variable occurring in the right hand side t occurs in the left hand side 3. A rewriting
system R =: (2, 8) consists of a signature Z and a set 8 of E—rewriting rules. A rewriting
system R = (E, 8) defines a binary relation & called the rewriting relation of R on the
set of all E—terms as follows: 3 A t if and only if there exists an occurrence 7r of s and an
instance n —> 2) of a rule of R such that s/1r : u and t : s[7r +— v]. A term 3 is R-normal if
there is no term t such that s Lt . A term t is an R-normal form of a term 8 if 3 13% and
11$ Rangrmnl- ‚„An 313%a is ...ein. R:.ngrrnal-.ground term. A.renriting.-system-1£.E...._(E,.£„)„is
ground confluent if the restriction of & to the set of all ground E—terms is confluent.

The initial algebra I(R) specified by a ground confluent and terminating rewriting
system R = (E, 8) can be defined as follows:

. The carrier of 1 (R) is the set of all R—values.

. The denotation fan) of a function symbol in E is given by fIUz) (31, . . . , an) : s , where
3 is the R-normal form of f (s l , . . . , 33).

A ground E—equation s é t is valid in (the initial algebra of) R if 3 and t have the same
R—normal form. We write R I: s i t or s :1; t if s i 13 is valid in R . A ground E-equation
system is valid in (the initial algebra of) R if each of its equations is valid in R. We write
R |: E if E is valid in R. A E—equation s i t is an inductive consequence of R if every
ground instance of 3 =—'. t is valid in R. Two ground E—substitutions 6 and zb are equal in
R (write € =7; tb) if ’Dß = 916! and 6m :7; «be: for every a: e 96.

Let R = (E, 8) be a ground confluent and terminating rewriting system. Then we have:

. “s zn t” is a congruence on the set of all ground E-terms, that is, “s :7; t” is an
equivalence relation satisfying

51 :72, t l A "“ A Sn =R tn => f (S l , . . . , Sn) ___-R f (t1 , . . . , tn) .

. “6 zn 1.5” is an equivalence relation on the set of all ground E—substitutions.

. If 6 zn «p, then 63 zn tbs for every term s such that V(s) ; D6 : Dub.

3 The Basic Resolution Rules

In this section we develop a simple equation solving calculus that captures the essence

of Bullot's [80] basic narrowing method. This calculus is the basis for a simple solution
procedure whose soundness and completeness we will prove. In the next section we will
present several extensions for this calculus, thus obtaining a refined solution procedure with
a much smaller search space. In particular, the basic calculus to be presented in this section
does not yet incorporate term unification, which will only be added in the next section.

General Assumption. In the rest of this paper we assume that n = CE, &) is a ground
confluent and terminating rewriting system; furthermore, we assume that. there is at least
one ground E-term.

We start by defining the solutions of an equation system in the initial algebra of n. A
substitution 0 is an n-assignment if Ox is an n-value for all x E VO. We use ASSn to
denote the set of all n-assignments. With that we define the set of all n-solutions of an
equation system E as

SOLn(E) := {O E ASSn IVo = V(E) A n F= OE}.

An equation solving procedure for n is a procedure that enumerates SOLn(E).

For technical reasons that will become apparent soon, we need to relativize the solutions
QfaneqJlationsystem with respect to a set of "primary variables" . The n.,solutions of a
E-equation system E with respect to a set V of variables are defined as follows:

SOL~(E) := {Olv 10 E ASSn A VO = VU V(E) A n F= OE}.

Note that SOLn(E) = SOL~(E)(E). For convenience, we write SOL~(E) for SOLr~,0)(E),
where (E, 0) is the rewriting system with signature E and no rules. Note that SOL~(E) can
be represented rather explicitly by the most general unifier of E, which can be computed
using term unification. This will be discussed in Subsection 4.2.

In the literature, narrowing is usually presented for confluent rewriting systems and
completeness is shown with respect to all unifiers, which include nonground substitutions.
Since we have weakened the confluence requirement to ground confluence, we have to re
strict our attention to ground substitutions. Nevertheless, the ground confluence approach
subsumes the conventional approach. To see this, assume a confluent rewriting system is
given. We can extend this system by adding infinitely many constants to its signature, one
for each variable. Then the solutions with respect to the extended system, which is still
ground confluent, exactly correspond to the unifiers with respect to the original system.

The rules of our equation solving calculus, which are given in Figure 3.1, apply to pairs
C. E consisting of two equation systems C and E; C is called the constraint part and
E is called the unsolved part. The division of C&E into two parts is needed to express
the basic narrowing strategy. The calculus will allow us to reduce an initial pair 0. E to
solved pairs Cl. 0, C2 .0, ... such that

• (Soundness) V i. SOL~(Ci) ~ SOL~(Ci) ~ SOL~(E)

• (Completeness) V 0 E SOL~(0. E) 3 i. 0 E SOL~(Ci).

Thus, our calculus "solves" by reducing n-solutions to E-solutions. The two rules given in
Figure 3.1 are called resolution rules because they are the primary rules for solving equation

6

of Hullot’s [80] basic narrowing method. This calculus is the basis for a. simple solution
procedure whose soundness and completeness we Will prove. In the next section we will
present several extensions for this calculus, thus obtaining a refined solution procedure with
a much smaller search space. In particular, the basic calculus to be presented in this section
does not yet incorporate term unification, which will only be added in the next section.

General Assumption. In the rest of this paper we assume that R = (2 ,8) is a ground
confluent and terminating rewriting system; furthermore, we assume that .there is at least
one ground E-term.

We start by defining the solutions of an equation system in the initial algebra of R. A
substitution & is an R—assignment if 6a: is an R-value for all m E 96. We use ASSR to
denote the set of all R—assignments. With that we define the set of all 'R-solutions of an
equation system E as

SOLR(E) :: {9 6 ASq IDE : V(E) A R I: 3E}.

An equation solving procedure for 7?, is a procedure that enumerates SOLR(E).

For technical'reasons that will become apparent soon, we need to relativize the solutions
of an equation system with respect to a set of “primaryvariables”. The_„„’)?.=‚solutions _o_f a
E—equation system E With respect to a set V of variables are defined as follows:

SOL},§(E) := {Ely | a e ASSR A 139 = V u V(E) A 1?, |: 6E}.

Note that SOL—R (E) :: SOLIÄERE). For convenience, we write SOLg(E) for SOLYE‚O)(E),
where ()3, @) is the rewriting system with signature 2 and no rules. Note that SOLg(E) can
be represented rather explicitly by the most general unifier of E , which can be computed
using term unification. This will be discussed in Subsection 4.2.

In the literature, narrowing is usually presented for confluent rewriting systems and
completeness is shown with respect to all unifiers, which include nonground substitutions.
Since we have weakened the confluence requirement to ground confluence, we have to re-
strict our attention to ground substitutions. Nevertheless, the ground confluence approach
subsumes the conventional approach. To see this, assume a confluent rewriting system is
given. We can extend this system by adding infinitely many constants to its signature, one
for each variable. Then the solutions with respect to the extended system, which is still
ground confluent, exactly correspond to the unifiers with respect to the original system.

The rules of our equation solving calculus, Which are given in Figure 3.1, apply to pairs
C. E consisting of two equation systems C and E ; C is called the constraint part and
E is called the unsolved part. The division of C&E into two parts is needed to express
the basic narrowing strategy. The calculus will allow us to reduce an initial pair @. E to
solved pairs 01. 0), Cg. @, such that

. (soundness) v i. sogar.-) g sowas.) g 501.343)

0 (Completeness) V € E SOL¥;([0. E) 3 i. 6 € SOL; (Ci).

Thus, our calculus “solves” by reducing R—solutions to E—solutions. The two rules given in
Figure 3.1 are called resolution rules because they are the primary rules for solving equation

Blocking

r(B)	 C. P & E ~n..v C & P. E

Application

r(A)	 C. P & E ---+n.,v C & (PI7r =. u). P[1I" +- v] & E

if P/1I" isn't a variable and u -+ v is a variant of a rule of R
having no variables in common with C. P & E or V

Figure 3.1. The basic resolution rules.

systems and because we want to distinguish them from the failure and simplification rules
to be presented in the next section. With Robinson's [65] resolution rule our resolution rules
h.ave only in common that they resolve something-in our case equations.

The application rule in Figure 3.1 has to introduce new variables to obtain a renamed
variant of the employed rewriting rule. The following assumption makes sure that there are
always enough new variables left.

General Assumption. In the rest of this paper we assume that V is a finite set ofvariables.

Example. Let n be the system in Figure 1.1, V = {V}, and consider the equation
0+ y =. 0, which has the unique solution (y =. 0). Then:

0.0+y=.0
O+y='O+y'.y'='O by a resolution step using rule (3)
0+y='0+y'&y'='0.0 by a blocking step.

Theorem 3.1. (Soundness) IfC. E ~n.,v C'. E' by a blocking or an application step,
then SOL~(C' & E') ~ SOL~(C & E).

Proof. Let C. E ~n.. v C'. E' and let 0 be an assignment such that VUV(C'. E') =DO
and O(C' & E') is valid in n. It suffices to show that O(C & E) is valid in n.

If C' & E' has been obtained from C. E by a blocking step, then the claim is trivial. If
an application step has been performed, then C. E = (C. P & El), C'. E' =(C & PI1I" =. u.
P[1I" +- v] & El), and u --+ v is a rule of n. It suffices to show that OP is valid in R. Since
O(P/1I") =n. Ou and u --+ v is a rule of R, we have 0(P/1I") =n. Ov. Since 0(P[1I" +- vD =
(OP)[1I" +- Bv] is valid in n, we know that (OP)[1I" +- 0(P/1I")] = OP is valid in n. 0

The nondeterministic solution procedure in Figure 3.2 is an operational formulation
of the equation solving calculus in Figure 3.1. The procedure can be explained as a two
person game played by a don't care player who makes the don't care choices and a don't
know player who makes the don't know choices. Given R, a pair 0. E, V := V(E), and

7

B10 cking

(B) C.P&E _};n C&P.E

Application

(A) C’.P&E —">R‚V C&(P/ari—u).P[7r<——v]&E

if P/7r isn’t a variable and u —-—> 1; is a variant of a rule of R
having no variables in common with G. P & E or V

Figure 3.1. The basic resolution rules.

systems and because we want to distinguish them from the failure and simplification rules
‘30 be Hesentéd inähe next Sssiéion- With E9hin§99’s [65.1ress>1utienrulqsur reSQIHtion rules
have only in common that they resolve something—in our case equations.

The application rule in Figure 3.1 has to introduce new variables to obtain a. renamed
variant of the employed rewriting rule. The following assumption makes sure that there are
always enough new variables left.

General Assumption. In the rest of this paper we assume that V is a finite set of variables.

Example. Let R be the system in Figure 1.1, V = {y} , and consider the equation
0 + y =-—'- 0 , which has the unique solution (y i 0) . Then:

0) . 0 + y a 0
—r*72‚v 0 + y r"— 0 + y’ . y’ & 0 by a resolution step using rule (3)
“—t'my 0+y-—'—0+y’ &y’é0 .@ byablocking step.

Theorem 3.1. (Soundness) If C . E —">«R‚V C’ . E’ by a blocking or an application step,
then 501,3;(0' & E’) g 301%“: & E).

Proof: Let C. E —-—"-+71‚v C' . E’ and let 3 be an assignment such that VUV(C’ . E’) = DH
and 9(C’ & E’) is valid in R . It suffices to show that 9(0 & E) is valid in R.

If C’ & E’ has been obtained from C . E by a blocking step, then the claim is trivial. If
an application step has been performed, then C'. E = (0. P & E1), C’ . E’ = (C & P/7r =’ u .
P[7r <— v] & E1), and u —> '0 is a rule of R. It suffices to show that 6P is valid in R. Since
6(P/7r) IR 6n and u —> v is a rule of R, we have 9(P/7r) :7; 92). Since 6(P[7r <— v]) =
(6P)[7r <— 60] is valid in R, we know that (6P)[7r <— 6(P/1r)] = HP is valid in R. D

The nondeterministic solution procedure in Figure 3 .2 is an operational formulation
of the equation solving calculus in Figure 3.1. The procedure can be explained as a two
person game played by a don’t care player who makes the don’t care choices and a don’t
know player who makes the don’t know choices. Given R, a pair @. E, V := V(E), and

solve(C. E) is

1. if E is empty, then return C;

2. choose don't care an equation P in Ej

3. choose don't know C'. E' such that C. E ~n, v C'. E' by a step on P;

4. solve(C'. E')

Figure 3.2. The basic solution procedure.

a solution e E SOLn(E), the don't care player wins if the procedure terminates with an
equation system C such that e rf. SOL~(C); the don't know player wins if the procedure
terminates with an equation system C such that eE SOL~(C). We say that the procedure
is complete if the don't know player can always win if he makes the right choices. In the
following we will show the completeness of the procedure.

An implementation of the basic solution procedure has to explore all alternatives of a
don't kriowchoice. In fact, theprocedll're generatesanllge number ofdon't know a.ltEmia.tives
in step 3. One alternative is to block P; the other alternatives are obtained by applying a
rule to P, where every nonvariable occurrence of P and every rule of1?- have to be considered.
To be efficient, it is crucial to eliminate redundant or inconsistent don't know alternatives
as early as possible. This will be the theme of the next section.

The application rule needs to introduce new variables to obtain a renamed variant of
a rewriting rule. The choice of the new variables is obviously a don't care nondeterminism,
but making this fact explicit is technically very tedious. For this reason the choice of new
variables appears as a don't know nondeterminism in the procedure in Figure 3.2. This
probiem will be solved in the next section by the introduction of a simplification rule that
can be used to re:name variables not occurring in V.

The basic idea behind the completeness proof is a lifting argument. If e E SOLn(E),
then this fact can be verified by rewriting eE into a trivial equation system. Now the
idea is that a blocking step corresponds to the deletion of a trivial equation in eE and an
application step corresponds to an innermost rewriting step on eE.

We start by setting up a calculus for verifying that a ground equation system is valid in
1?-. The two rules of the verification calculus correspond to the blocking and the application
rule of the equation solving calculus:

• (VB) P & E ~n E if P is a trivial equation

• (VA) P & E ~n P[1r +- v] & E if P/1r -+ v is an instance of a rule of 1?-.

The rule (VB) deletes a trivial equation and the rule (VA) applies a rewriting step.

Proposition 3.2.

• (Invariance) H E ~n E', then E is valid in 1?- if and only if E' is valid in 1?-.

8

solve(C'. E) is

1. if E is empty, then return C;

2 . choose don’t care an equation P in E ;

3. choose don’t know C'. E’ such that C. E —r*7a‚v C’. E’ by a step on P ;

4. solve(C’ . E’)

Figure 3.2. The basic solution procedure.

a solution € € SOLR(E) , the don’t care player wins if the procedure terminates with an
equation system C such that 9 ¢ SOLg(C); the don’t know player Wins if the procedure
terminates with an equation system C such that € € SOLE/(C). We say that the procedure
is complete if the don’t know player can always win if he makes the right choices. In the
following we will show the completeness of the procedure.

An implementation of the basic solution procedure has to explore all alternatives of a.
don’tläfiöwchoicié. Iii fact", the'piö'cé'düie g'éiiéfäteämä'li—üge‘ ‘fiambe'r of don’t know alternatives
in step 3. One alternative is to block P ; the other alternatives are obtained by applying a
rule to P , where every nonvariable occurrence of P and every rule of ’R. have to be considered.
To be efficient, it is crucial to eliminate redundant or inconsistent don’t know alternatives
as early as possible. This will be the theme of the next section.

The application rule needs to introduce new variables to obtain a renamed variant of
a rewriting rule. The choice of the new variables is obviously a don’t care nondeterminisrn,
but making this fact explicit is technically very tedious. For this reason the choice of new
variables appears as a don’t know nondeterminism in the procedure in Figure 3.2. This
problem will be solved in the next section by the introduction of a simplification rule that
can be used to rename variables not occurring in V.

The basic idea behind the completeness proof is a lifiing argument. If € E SOL1;(E),
then this fact can be verified by rewriting 6E into a. trivial equation system. Now the
idea is that a. blocking step corresponds to the deletion of a trivial equation in BE and an
application step corresponds to an innermost rewriting step on 9E.

We start by setting up a. calculus for verifying that a ground equation system is valid in
R. The two rules of the verification calculus correspond to the blocking and the application
rule of the equation solving calculus:

. (VB) P & E 4'51; E if P is a. trivial equation

0 (VA) P & ELRPM <— a] & E if P/1r —-+ '0 is an instance o fa rule o fR .

The rule (VB) deletes a. trivial equation and the rule (VA) applies a rewriting step.

Proposition 3.2.

o (Invariance) I fE 3137; E’, then E is valid in 72. Hand only if E’ is valid in R.

• (Termination) The relation "E ~n E'" is terminating.

• (Completeness) E is valid in 'R. if and only if E ~R. 0.

An'R.-triple B. C. E consists of an 'R.-assignment B and two equation systems C and
E such that V(C. E) ~ 'VB, BC is trivial, and BE is valid in n. The assignment B should be
thought of as the solution one wants to find by applying resolution steps to the pair C. E.

Proposition 3.3. If() E SOLn(E), then (). 0. E is an n-triple. Furthermore, if(). C. 0 is
an'R-triple and V ~ V(C), then ()Iv E SOL~(C).

We now define a reduction relation on n-triples that links resolution steps with their cor
responding verification steps. We write (). C. E ~n, v ()'. C'. E' if (). C. E and ()'. C'. E'
are both n-triples and

• B and B' agree on V

• C. E ~n,v C'. E' by a resolution rule u

• 8E ~n (J' E' by the verification rule corresponding to u.

Proposition 3.4. (Termination) The triple relation "B. C. E ~n,v (J'. C'. E'" is ter
minating.

A term is called n-innermost if each of its proper subterms is n-normal. The proof
of the following theorem rests on the idea that for a triple B. C. E a verification step that
rewrites an innermost term of BE can be "pushed up" to an application step on C. E.

Theorem 3.5. (Push Up) If(J. C. E is an n-triple and P is an equation in E, then there
exists a triple B'. C'. E' such that B. C. E ~n,v B'. C'. E' by a resolution step on P.

Proof. Let B. C. P&E be an n-triple. Then BP is valid in n. Thus ()P is either trivial
or can be rewritten.

1. Suppose BP is a trivial equation. Then C. P & E ~n,v C & P. E by the blocking
rule and B(P & E) ~n BE by the verification rule VB. Since B. C&P. E is an n-triple,
this yields the claim.

2. Suppose BP can be rewritten. Then there exist a nonvariable occurrence 7r of P such
that «(JP) / 7r is n-innermost, a variant u -+ v of a rule of'R, and a substitution </> such that
</>u = (BP)/7r. Without loss of generality we can assume that V</> = V(u -+ v) and u -+ v
has no variables in common with V, C. P&E, and VB. Define C' := (C & P/7r == u) and
E' := (P[7r +- v] & E). Since BP & (JEl ~n (BP)[7r +- </>v] & BEl by the verification rule
VA and C. P&E ~n,v C'. E' by the resolution rule A, it suffices to show that there exists
an n-assignment B' such that VB' =VB U V(u -+ v), B' agrees with B on VB, (J'(P/7r) = (J'u,
and B'(P[7r +- vD is valid in n.

To show this, define B' as follows: if x E V4> then B'x := </>x, otherwise B'x := (Jx. To
show that B' is an n-assignment, it suffices to show that </> is an 'R.-assignment, which holds
since V</> = V(u -+ v) = V(u), </>u = B(P/7r) is n-innermost and ground, and u isn't a
variable.

9

o (Termination) The relation “E £7; E’ ” is terminating.

o (Completeness) E is valid in 7?, if and only if E 3432 (2L

An R—triple 9. C. E consists of an R—assignment 9 and two equation systems C and
E such that V(C. E) ; ’D9, 90 is trivial, and 95) is valid in ’R.. The assignment 9 should be
thought of as the solution one wants to find by applying resolution steps to the pair C. E .

Proposition 3 .3 . If 9 € SOLR(E), then 9 . @. E is an R—triple. Furthermore, if 9 . C . @ is
an ’R-triple and V _c_ 12(0), then eh, e sorge).

We now define a reduction relation on R—triples that links resolution steps with their cor-
responding verification steps. We write 9. C. E —r>7z‚v 9'. C’. E’ if 9 . C. E and 9’ . C' . E’
are both R—triples and

0 9 and 9’ agree 011 V

o C. E _L’R,V C’ . E’ by a resolution rule o

. 9E Ja.->13 9’E’ by the verification rule corresponding to a .

Proposition 3 .4 . (Termination) The triple relation “9. C. E Lazy 9' . C'. E" ” is ter-
minating.

A term is called ’R-innermost if each of its proper subterms is R—normal. The proof
of the following theorem rests on the idea that for a triple 9 . C . E a verification step that
rewrites an innermost term of 9E can be “pushed up” to an application step on C. E.

Theorem 3.5. (Push Up) If 9. C. E is an R-triple and P is an equation in E, then there
exists a triple 9' . C' . E’ such that 9. C. E —L+7z,v 9' . C' . E’ by a resolution step on P .

Proof Let 9. C. F&E be an R—triple. Then 9P is valid in 72. Thus 9}? is either trivial
or can be rewritten.

1. Suppose 9P is a trivial equation. Then C. P &: E Any C &; P. E by the blocking
rule and 9(P & E) Jim 9E by the verification rule VB. Since 9. C &P. E is an R—triple,
this yields the claim.

2. Suppose 9P can be rewritten. Then there exist a nonvariable occurrence 71' of P such
that (9P)/1r is R—innermost, a variant u -—> v of a rule of R , and a substitution gt such that
.;tu : (9P)/7r. Without loss of generality we can assume that n : V(u —-> n) and u -+ 1)
has no variables in common with V , C . F&E, and 239. Define C' := (C & P/ 1r & n) and
E’ :: (P[7r +— 12] & E). Since 9P & 9E1 «31m (9P)[7r +— qfiv] & 9131 by the verification rule
VA and C . F&E -—"—>73'‚V C’ . E" by the resolution rule A , it suffices to show that there exists
an 'R—assignment 9’ such that ’D9’ : D9 U V(u -—+ v), 9' agrees with 9 on DH, 9’(P/ar) : 9'u,
and 9’(P[1r <——- v]) is valid in 72.

To show this, define 9’ as follows: if a: 6 Dei then 9’9: := 45:8, otherwise 9’:c :: 93. To
show that 9' is an R-assignment, it suffices to show that gb is an 'R—assignment, which holds
since 79¢ :: V(u —> v) : Wu), dim : 9(P/1r) is R-innermost and ground, and 1: isn’t a
variable.

Since 7J<jJ = V(U -l- v), we have 1JB' = 1JB U1J<jJ ::: 1JB UV(u -l- v) as required. Since 1JB
and 1J<jJ = V(u -l- v) are disjoint, B' and B agree on 1JB. Furthermore, B'(P/7r) = Btu since
B(P/7r) = <jJu.

Finally, B'(P[7r +- vD::: (BP)[7r +- <jJv] is valid in n since <jJv =n <jJu, <jJu = B(P/7r), and
BP = (BP)[7r +- B(P/7r)] is valid in n. 0

Corollary 3.6. For every n-triple B. C. E there exist B' and C' such that
B. C. E ~n ,v B'. C'. 0.

Proof. Suppose that B. C. E is an n-triple. If E is empty, then the claim is trivial.
Otherwise, the push up theorem applies and yields B. C. E ~n, v B'. C'. E' for some triple
B'. C'. E'. Thus, using the termination property of the triple reduction relation, the claim
follows by induction. 0

Corollary 3.7. (Completeness) Let BE SOLn(E). Then there exists an equation system

C such that 0. E ~n,V(E) C. 0 and 8 E SOL~(E)(C).

Proof. Let 8 E SOLn(E). Then 8. 0. E is an n-triple. By the preceding corollary we
know that there exist B' and C' such that 8. 0. E ~n,v(E) B'. C'. 0. Thus, we know that

8 = 8'lv(E) E SOL~(E)(C). D

4 Failure and Simplification Rules

In this section we present several optimizations for the basic solution procedure that was
discussed in the last section. An implementation of this procedure must explore all alterna
tives of a don't know choice in step 3, which generates a huge search space. To reduce this
search space, it is crucial to detect as early as possible whether a pair C. E is consistent, that
is, whether there is an assignment that extends it to an n-triple. This is accomplished by
so-called failure rules, which are decidable sufficient criteria for the inconsistency of a pair.
The second method for cutting down the search space is the addition of so-called simplifica
·tion rules whose application, in contrast to the application of resolution rules, is don't care
nondeterministic. By simplifying a pair with the simplification rules before the application
of a resolution step it is often possible to reduce the number of don't know resolution steps
needed to reach a solved pair. Furthermore, often a failure rule applies to an inconsistent
pair only after it has been simplified. Figure 4.1 shows the extension of the basic solution
procedure to failure and simplification rules.

4.1 The Failure Rules

The following definitions are needed to formulate the failure rules.

An equation system E is ~-consistent if there is a substitution 8 such that 8E is trivial.
The ~>consistency of an equation system can be decided by a term unification algorithm.

A pair C. E is consistent in n if there exists a substitution 8 such that 8. C. E is an
n-triple.

A function symbol is called generating in n if it occurs in at least one n-value. A
function symbol is called completely defined in n if it is not generating in n. In the

10

Since ’Dq5 =]}(u —-+ v), we have ’D9' : 'Dß U Do :: 139 U V('u —+ v) as required. Since D6
and Dqß = V(u —> 0) are disjoint, 6’ and 6 agree on 96 . Furthermore, 6’(P/7r) : 9’u since
€(P/7r) = (tu.

Finally, 6’(P[7r <— v]) : (9P)[7r <— qt'v] is valid in 72 since 45?) =7; qßu, ou : 9(P/7r), and
9P : (€P)[7r <— €(P/7r)] is valid in ’R.. E!

Corollary 3 .6 . For every R-triple 9 . C. E there exist 9’ and C" such that
90 C . E—r)*R’V 9’ . C, . ma

Proof. Suppose that 9 . C. E is an R—triple. If E is empty, then the claim is trivial.
Otherwise, the push up theorem applies and yields 6 . C. E —r>7z‚v 9 ' . C" . E’ for some triple
6’. C' . E’. Thus, using the termination property of the triple reduction relation, the claim
follows by induction. Ü

Corollary 3 .7 . (Completeness) Let 9 E SOLR (E) Then there exists an equation system
C such that @. E —">;z,v(E) C. (D and 6 € SOL;(E)(C).

Proof Let 9 e SOLR (E). Then 6. (b. E is an R-triple. By the preceding corollary we
know that there exist 6’ and C’ such that 6. (D. E “Liawm 6’. C’. ß. Thus, we know that
9 = 91W) 6 so-L‘§(E)(-c').

4 Failure and Simplification Rules
In this section we present several optimizations for the basic solution procedure that was
discussed in the last section. An implementation of this procedure must explore all alterna—
tives of a don’t know choice in step 3, which generates a huge search space. To reduce this
search space, it is crucial to detect as early as possible whether a pair C. E is consistent, that
is, whether there is an assignment that extends it to an R—triple. This is accomplished by
so—called failure rules, which are decidable sufficient criteria for the inconsistency of a pair.
The second method for cutting down the search space is the addition of so—called simplifica—
'tion rules whose application, in contrast to the application of resolution rules, is don’t care
nondeterministic. By simplifying a pair with the simplification rules before the application
of a resolution step it is oflen possible to reduce the number of don’t know resolution steps
needed to reach a solved pair. Furthermore, often a failure rule applies to an inconsistent
pair only after it has been Simplified. Figure 4.1 shows the extension of the basic solution
procedure to failure and simplification rules.

4.1 The Failure Rules
The following definitions are needed to formulate the failure rules.

An equation system E is E-consistent if there is a substitution 9 such that 6E is trivial.
The E-consistency of an equation system can be decided by a term unification algorithm.

A pair C. E is consistent in R if there exists a substitution 6 such that 9. C. E is an
R—triple.

A function symbol is called generating in ’R, if it occurs in at least one ’R—value. A
function symbol is called completely defined in ’R. if it is not generating in 'R‚. In the

10

rewriting system in Figure 1.1 the functions 0, sand p are generating and the functions +,
- and * are completely defined.

Two function symbols f and 9 are disjoint in n if no ground equation of the form
f(Sl,"" sn) == g(tl, ... , tm) is valid in n.

A function symbol f is called reducible in n if there is a rule p in n such that f is
the top symbol of the left hand side of p. A function symbol is called irreducible in n if it
isn't reducible in n. The constant °is the only irreducible function symbol in the rewriting
system in Figure 1.1.

Proposition 4.1. H a function symbol is irreducible in n, then it is generating in n.
Furthermore, if f and 9 are distinct function symbols that are both irreducible in n, then
f and 9 are disjoint in n.

Proposition 4.2. (Failure Rules) A pair C. E is inconsistent in n ifone of the following
conditions holds:

1. C is not ~-consistent.

2. C contains an equation x == t such that t is not n-normal.

3.	 C contains an equation x == t suciliJiat t contains a complet~ly defined function symbol.

4. C	 = [~] for some substitution ~ and ~E contains an equation f(Sl, ... , sn) ==
g(t1"'" t m) such that f and 9 are disjoint.

The requirement that the constraint part of a pair is the equational representation of a
substitution is not a real restriction since we will introduce a simplification rule that replaces
the constraint part by its most general unifier.

The concept of a completely. defined function symbol is of little use for unsorted rewrit
ing systems. For instance, if we add to the system in Figure 1.1 the constants true and
false, the functions +, - and * are no longer completely defined. This problem can be
avoided by working with many-sorted rewriting systems. Since the power of the failure rule
(3) increases with the number of completely defined functions, the presence of sorts, even
without subsorts, can lead to smaller search spaces.

4.2 Term Unification and Solved Equation Systems

Term unification will be an important part of our optimized solution procedure. After
every resolution step the computation of the most general unifier of the constraint part of
the obtained pair is attempted. If this attempt fails, we know by the failure rule (1) that
the obtained pair is inconsistent. Otherwise, the constraint part can be replaced with the
equational representation of its most general unifier, an optimization that will be expressed
by a simplification rule. If no other failure and simplicatioIi rules are employed, the thereby
obtained solution procedure performs essentially basic narrowing as described in [Hullot 80].

In this subsection we review the necessary notations and results for term unification.

An equation system S is called solved if it has the form Xl == Sl & ... & Xn == Sn

where the variables Xl, ••• , X n occur only once. Note that an equation system is solved if
and only if it is the equational representation of an idempotent substitution. The letter S
will always range over solved systems.

11

rewriting system in Figure 1.1 the functions 0, s and 19 are generating and the functions + ,
—- and * are completely defined.

Two function symbols f and 9 are disjoint in R if no ground equation of the form
f (s l , . . . ‚sn) & g(t1, . . . , tm) is valid in ’R.

A function symbol f is called reducible in R if there is a rule ;) in R such that f is
the top symbol of the left hand side of p. A function symbol is called irreducible in 'R. if it
isn’t reducible in 72. The constant 0 is the only irreducible function symbol in the rewriting
system in Figure 1.1.

Proposition 4 .1 . If a function symbol is irreducible in R, then i t is generating in R.
Furthermore, if f and g are distinct function symbols that are both irreducible in R, then
f and g are disjoint in R.

Proposition 4.2 . (Failure Rules) A pair C. E is inconsistent in 72 if one of the following
conditions holds:

1 . C is not E-consistent.

2. C contains an equation .1: -_'- t such that t is not R—normal.

3. C contains an equation a: i t suchl'mth‘at t contains a completely defined function symbol.

4 . C = [1p] for some substitution #1 and «pE contains an equation f (s l , . . . , sn) &
g(t1, . . . , tm) such that f and g are disjoint.

The requirement that the constraint part of a pair is the equational representation of a
substitution is not a real restriction since we will introduce a simplification rule that replaces
the constraint part by its most general unifier.

The concept of a completelydefined fimction symbol is of little use for unsorted rewrit-
ing systems. For instance, if we add to the system in Figure 1.1 the constants true and
false, the functions + , — and * are no longer completely defined. This problem can be
avoided by working with many—sorted rewriting systems. Since the power of the failure rule
(3) increases with the number of completely defined functions, the presence of sorts, even
without subsorts, can lead to smaller search spaces.

4.2 Term Unification and Solved Equation Systems
Term unification will be an important part of our optimized solution procedure. After
every resolution step the computation of the most general unifier of the constraint part of
the obtained pair is attempted. If this attempt fails, we know by the failure rule (1) that
the obtained pair is inconsistent. Otherwise, the constraint part can be replaced with the
equational representation of its most general unifier, an Optimization that will be expressed
by a simplification rule. If no other failure and simplication‘ rules are employed, the thereby
obtained solution procedure performs essentially basic narrowing as described in [Hullot 80].

In this subsection we review the necessary notations and results for term unification.

An equation system 5 is called solved if it has the form 1:1 ='= 31 & . . . & :cn —-'_ sn
where the variables x1, .,:nn occur only once. Note that an equation system is solved if
and only if it is the equational representation of an idempotent substitution. The letter S
will always range over solved systems.

11

solve(C. E) is

1. choose don't care C'. E' such that C. E ~n,v C'. E'

by simplification steps;

2. if a failure rule applies to C'. E', then fail;

3. if E' is empty, then return C';

4. choose don't care an equation P in E';

5. choose don't know C". E" such that C'. E' ~n,v C". E"
by a resolution step on P;

6. solve(C" • E")

Figure 4.1. The extended solution procedure.

The next theorem is the adaption of Robinson's [65] unification theorem to our frame
work.

Theorem 4.3. A E-equation system E is E-consistent if and only if there exists a. solved
E-equation system S such that V(S) ~ V and SOL~(E) = SOL~(S).

For an example, consider SOL~x}(x + 8(0) == 8(0) + y) = SOL~x}(x == 8(0)). The next
proposition says that the solved system S is a fairly explicit representation of the solution
set SOL~(S).

Proposition 4.4. IfV(S) S; V, then SOL~(S) = {(8(S))lv I \Ix E v: 8(S)x is ground}.

4.3 The Simplification Rules
Figure 4.2 and 4.3 show the simplification rules we will discuss in this paper. Three of these
rules-the rewriting rule, the unfolding rule and the safe blocking rule SB1---did not appear
in the literature so far. In conjunction with the don't care selection of the equation to be
resolved upon next, the unfolding rule can drastically reduce the don't know alternatives our
solution procedure has to explore. The rewriting rule, if used together with the unfolding
rule and the safe blocking rule SB1, results in a marriage of basic and normalizing narrowing
that enjoys the advantages of both approaches.

The key property of the simplification rules is that their application preserves the reach
able solutions, that is, if C. E ~n,v C'. E' by a simplification step, then every solution
that can be reached from C. E can also be reached from C'. E'. We postpone the proof
of this claim to the next subsection. As a consequence of this preservation property, a
pair C. E is inconsistent if it is inconsistent after it has been simplified. This fact greatly
enhances the power of the failure rules.

The following definition is needed for the decomposition rule. A function symbol j is
decomposable in 'R, if for every ground equation j(81)'''' 8n) == j(t1,"" t n) that is valid
in 'R, the equations 81 == t1, ... , 8n == t n are valid in 'R,. In the rewriting system in Figure
1.1 the function symbols 8 and p are decomposable.

12

solve(C. E) is

1. choose don’t care C' . E’ such that C. E 45325; C’ . E’
by simplification steps;

if a failure rule applies to C". E’, then fail;

if E' is empty, then return 0’;

choose don’t care an equation P in E’;

. choose don’t know C” . E” such that C’ . E’ —r>7z,v C”. E”
by a resolution step on P ;

6. solve(C” . E”)

m
es

se

Figure 4.1. The extended solution procedure.

The next theorem is the adaption of Robinson’s [65] unification theorem to our frame—
work.

Theorem 4 .3 . A E-equation system E is E—consistent if and only if there exists a, solved
E-equation system S such that D(S) g V and SOLgUE’) = SOL‘Z’XS).

For an example, consider SOLE” (a: + 5(0) & s(0) + y) :: SOLg}(m —_'—- s(0)). The next
proposition says that the solved system S is a fairly explicit representation of the solution
set 50L§(S).
Proposition 4.4. IfD(.5') _C_ V, then SOLg(S) = {(6(S))IV I Va: 6 V. 3(3):: is ground}.

4.3 The Simplification Rules
Figure 4.2 and 4.3 show the simplification rules we will discuss in this paper. Three of these
rules—the rewriting rule, the unfolding rule and the safe blocking rule SBl—did not appear
in the literature so far. In conjunction with the don’t care selection of the equation to be
resolved upon next, the unfolding rule can drastically reduce the don’t know alternatives our
solution procedure has to explore. The rewriting rule, if used together with the unfolding
rule and the safe blocking rule SB], results in a marriage of basic and normalizing narrowing
that enjoys the advantages of both approaches.

The key property of the simplification rules is that their application preserves the reach—
able solutions, that is, if C. E —8)R,V C’ . E’ by a simplification step, then every solution
that can be reached from 0 . E can also be reached from C" . E ' . We postpone the proof
of this claim to the next subsection. As a consequence of this preservation property, a
pair C. E is inconsistent if it is inconsistent after it has been Simplified. This fact greatly
enhances the power of the failure rules.

The following definition is needed for the decomposition rule. A function symbol f is
decomposable in 721 if for every ground equation f (s1, . . . , s ") & f (t 1 , . . . , tn) that is valid
in R the equations 81 =' t 1 , . . . , s„ i t„ are valid in R. In the rewriting system in Figure
1.1 the function symbols 3 and p are decomposable.

12

Subsumption

8(S)	 S. P & Q & E -n,v s. Q & E

if (S}P = (S}Q

Permutation

8(PI)	 C. s == t & E -n,v C. t == s & E

(P2) S. x == s & t == u & E ---4n ,v S. x == s & x == u & E

if (S}s = (S}t

(P3)	 C. E -4n ,v C'. E'

if C'. E' is obtainable from C. E by replacing all occurrences
of x with y, where x ~ V and y ~ VU V(C. E)

Figure 4.3. The simplification rules, part 2.

list) and '.' (the cons operator) are irreducible and thus generating, decomposable and
disjoint. The function symbol app (list concatenation) is completely defined.

Example 4.6. (Rewriting) We want to solve the equation app(app(x, y), z) == nil in RI
with respect to the variable z. This problem has an infinite search space if only unification
is employed for simplification, but it has a finite search space if both the unification and
rewriting rule can be used. To see this, consider the derivation

0. app(app(x,y), z) == nil
r

-rnl,{z} app(x, y) == app(x'.y', z') • app(x' .app(y', z'), z) == nil by A
8 0. app(x'.app(y', z'), z) == nil	 by Uni,---+nl,{z}

which can be continued infinitely often by applying rule (2) to the inner occurrence of app.
However, if the rewriting rule is available for simplification, we can prune this infinite and
inconsistent part of the search space by rewriting the above pair to

-4n1 ,{z} 0. x'.app(app(y',z'), z) == nil	 by R.

This pair can now be recognized as inconsistent by the failure rule (4) since the function
symbols '.' and nil are disjoint in RI.

The following derivation shows how the solution of the system can be computed:

14

Subsumption

(S) S .P&Q&E "L’Ry S .Q&E

i f<5>P=(S)Q

Permutation

(P l) 638523861? —£—>1a‚v C . t é s&E

(P2) S...":isäztz—luäcE —s—r7z‚v S . : cé säcxéuäzE

i f (S) s=(S) t

(P3) C .E 43—s C,.E'

if ..C' . E’ is obtainable from C. E by replacing all occurrences
ofa: with y, where a: € V and y € V U V(C. E)

Figure 4 .3 . The simplification rules, part 2 .

list) and ‘.’ (the cons operator) are irreducible and thus generating, decomposable and
disjoint. The function symbol app (list concatenation) is completely defined.

Example 4.6 . (Rewriting) We want to solve the equation app(app(a:, y), z) i nil in 72.1
with respect to the variable z . This problem has an infinite search Space if only unification
is employed for simplification, but it has a finite search space if both the unification and
rewriting rule can be used. To see this, consider the derivation

‚. @ . app(apg°(x‚y)‚ z) i m3! _ _
'—"R1,{z} app(=v‚ y) = app(=v ' .y ' ‚ z ’) . app(93’-app(y’,2’) , Z) = ml by A
ARIÄz} (Ö . app(a:’.app(y’‚z'), z) & m'l by Uni,

which can be continued infinitely often by applying rule (2) to the inner occurrence of app.
However, if the rewriting rule is available for simplification, we can prune this infinite and
inconsistent part of the search space by rewriting the above pair to

*g*n1‚{z} ß . m'.aPP(GPP(3/ '‚Z')‚ 3) i ”27 by R.

This pair can now be recognized as inconsistent by the failure rule (4) since the fimction
symbols ‘.’ and m'l are disjoint in 721.

The following derivation shows how the solution of the system can be computed:

14

first. This idea can be exploited by unfolding the right inner occurrence of ap
the equations

z' == app(x',y') & app(app(x,y),z') == z

and thus eliminates the alternatives (2) and (3) if the left equation is consid(

In conjunction with the don't care selection of the next equation to be
the unfolding rule can be used to obtain a variety of strategies that reduce t
alternatives a solution procedure has to consider. Two examples are the tl
basic narrowing strategy in (Herold 86] and the selection narrowing strategy j
87]. Another example is the innermost constructor strategy in [Fribourg 85],
discuss in the next section.

Bosco et al. [87] present a translation of basic narrowing into SLD-resolu1
which gives them implicitly the effect we would obtain by using the unfoldin
as possible. Complete unfolding, however, has the disadvantage of reducinl
the rewriting rule. Nevertheless, Bosco et al.'s [87] paper gave us the idea fOI
rule.

The application conditions of the unfolding rule ensure that it can't pro(
of the form x == y, a restriction that is needed to preserve the completeness 0

soluti()n pro<:ed,llre.

EXaIIlple 4.8. (Safe Blocking) As we have seen in Example 3.1, using the
for simplification may cut down an infinite search space to a finite one. A d
the rewriting rule is, however, that it transfers terms from the constraint par1
unsolved part, thus increasing the search space again. To see this, let 1l be
system in Figure 1.1 and consider the rewriting step

y == s(s(s(z») • x + p(y) == 0
~n,{y} Y == s(s(s(z») • x + s(s(z» == 0 by E

which carries the term s(s(z» from the constraint part into the unsolved p
advantage can be completely avoided by using the unfolding and the safe bl
transfer terms carried over by the rewriting rule back into the constraint par"

~n,{y} Y == s(s(s(z))) • x' == s(s(z» & x + x' == 0 by L
~n,{y} y == s(s(s(z») & x' == s(s(z» • x + x' == 0 by S

Example 4.9. (Naive Rewriting) The following restriction of the applicati
we will refer to as the naive rewriting rule, seems to be a better alternative tc
rule in Figure 4.2 since it doesn't transfer terms from the constraint part tc
part:

S. P & E --+n,v S & (P/7r == u). P[7r +- v] & E

if Pj7r isn't a variable,

u ---+ v is a variant of a rule of 1l containing only new variables,
and (S}(Pj7r) is an instance of u.

However, this rule cannot be used as a simplification rule since, in general, i
is not don't care nondeterministic. To see this, consider the rewriting system
and the initial pair

o•s(p(x + 0» == 0,

16

first. This idea can be exploited by unfolding the right inner occurrence of ap
the equations

z’ é amw’, y’) & app(app(a=‚ y), 2’) é- z
and thus eliminates the alternatives (2) and (3) if the left equation is considc

In conjunction with the don’t care selection of the next equation to be
the unfolding rule can be used to obtain a variety of strategies that reduce t
alternatives a solution procedure has to consider. Two examples are the tl
basic narrowing strategy in [Herold 86] and the selection narrowing strategy i
87]. Another example is the innermost constructor strategy in [Fribourg 85],
discuss in the next section.

Bosco et al. [87] present a translation of basic narrowing into SLD—resolui
which gives them implicitly the effect we would obtain by using the unfoldin
as possible. Complete unfolding, however, has the disadvantage of reducing
the rewriting rule. Nevertheless, Bosco et al.’s [87] paper gave us the idea for
rule.

The application conditions of the unfolding rule ensure that it can’t pro<
of the form m & y, a restriction that is needed to preserve the completeness o
solutign prgggdgre-

Example 4.8. (Safe Blocking) As we have seen in Example 3.1, using the
for simplification may cut down an infinite search space to a finite one. A d
the rewriting rule is, however, that it transfers terms from the constraint part
unsolved part, thus increasing the search space again. To see this, let ?. be
system in Figure 1.1 and consider the rewriting step

y —‘-= s(s(8_(z))) - m + 19(9) i 0
—’m,{y} y & S(S(S(z))) - x + 8(S(z)) i 0 by 5

Which carries the term s(s(z)) from the constraint part into the unsolved p
advantage can be completely avoided by using the unfolding and the safe bl
transfer terms carried over by the rewriting rule back into the constraint par"

—’>1a‚{y} y i s(s(s(z))) . m' i s(s(z)) & .. + x' i 0 by !?—S*'R‚{y} y é s(s(s(z))) & :c’ 2' s(s(z)) . a: + :c’ i 0 by 5'.

Example 4.9. (Naive Rewriting) The following restriction of the applicati
we will refer to as the naive rewriting rule, seems to be a better alternative tc
rule in Figure 4.2 since it doesn’t transfer terms from the constraint part tc
part:

S .P&E —*R,V S&(P/7réu) .P [7r<—v]&E

if P/1r isn’t a variable,
a ——> v is a variant of a rule of 72 containing only new variables,
and (S)(P/1r) is an instance of u .

However, this rule cannot be used as a simplification rule since, in general, i
is not don’t care nondeterministic. To see this, consider the rewriting system
and the initial pair

@ . s(p(x + 0)) :1. 0,

16

which has the unique solution (x == 0). By applying the naive rewriting rule to s with rule
(2) we obtain the pair

s(p(x + 0» == s(p(x')) • x' == 0,

which, after a unification step, becomes

x' == x + 0 • x' == O.

The only resolution step that applies to the unsolved equation of this pair is blocking, which
yields

x' == x + 0 & x' == 0 • 0,

a pair whose constraint part is E-inconsistent. This shows that the application of the naive
rewriting rule IS not don't care nondeterministic.

Example 4.10. (Decomposition) Let n be the rewriting system in Figure 1.1 and con
sider the equation sex) == s(y). Since s is decomposable in n (note that s is not irreducible
in 1l), we know by the decomposition rule that the equation x ==y, which is in solved
form, has the same solutions in ii as the equatIon sex) ~ s(y). Without the decomposition
rule, however, our solution procedure cannot avoid to compute a second solved form that is
redundant:

0. sex) == s(y)
r

----+n,{y} sex) == s(p(x'» • x' == s(y) by A
s

----+n,{y} 0. x' == s(y) by Uni
r

----+n,{y} s(y) == s(p(y'» • x' == y' byA
~* n,{y} y == p(y') .0 by SB2, Uni.

With the permutation rule P3 it is possible to rename auxiliary variables, that is,
variables that don't occur in V. We have included this rule to show that the introduction of
new variables by the application rule (Figure 3.1) is actually a don't care nondeterminism.

4.4 Soundness and Completeness Proofs

Theorem 4.11. (Soundness) IfC. E ~n,v Cl. E' by a simplification step,
then SOL~(G' & E') ~ SOL~(C & E).

Proof. Let C. E ~n, v C'. E' by a simplification step and let 0 be an assignment such
that 1)0 = Vu V(C'. E') and O(C' & E') is valid in n. We have to show that there exists
an assignment 0' such that Vu V(C & E) ~ 1)0', 0' and 0 agree on V, and O'(G & E) is
valid in 1l. Let the simplification rule employed in C. E ~n,v C' • E' be:

Uni. Then Cl. E' = S. E, where S is solved, SOL~ (C) = SOL~ (S) and 1)(S) ~
W = Vu V(E). It suffices to show that there exists a ground substitution 0 such that
VU V(G & E) ~ VO, Olv =n 0lv, and O(G & E) is valid in 1l, since then defining O'x as
the normal form of Ox for every x E 1)0 yields the claim.

Since S is solved, we know that (S)S is a trivial equation system, which implies that
O(S)S is a trivial system. This implies (O(S))Iw E SOL~ (S) = SOL~ (C). Therefore, there

17

which has the unique solution (a: i 0). By applying the naive rewriting rule to 3 with rule
(2) we obtain the pair

soon + 0)) & sooo) . .! i o.

which, after a unification step, becomes

w'ix+0.a:'-—'-0.

The only resolution step that applies to the unsolved equation of this pair is blocking, which
yields

x ' . - ' : 22+0&a: ’ é0 . (0 ,

a pair whose constraint part is E-inconsistent. This shows that the application of the naive
rewriting rule is not don’t care nondeterministic.

Example 4.10. (Decomposition) Let 72 be the rewriting system in Figure 1.1 and con-
sider the equation s(:c) .3. s(y) Since 3 is decomposable in 72 (note that 3 is not irreducible
in 72), we know by the decomposmon rule that the equatlon a: _; _y, which is in solved
form, has the same solutions 111 72 as the equat1on s (a :)_- s(y) Without the decomposmon
rule, however, our solution procedure cannot avoid to compute a second solved form that is
redundant:

@ - 808) =“ 3(9)

—'>vz,{y} 3(3) * 6(P(m’)) . x’ i 8(19!) by A
—’>n‚{,} @ . 3’ i 3(y) by Um’

—">7z‚{y} 5(21) i S(p(y’)) - :v’ %— y’ by A
—’>3‘z,{,} @: ——'- pCt./') - @ by SB2, Uni.

With the permutation rule P3 it is possible to rename auxiliary variables, that 15,
variables that don’t occur in V. We have included this rule to show that the introduction of
new variables by the application rule (Figure 3.1) is actually a don’t care nondeterminisrn.

4.4 Soundness and Completeness Proofs

Theorem 4.11. (Soundness) If C. E -——"—+R‚v C”. E’ by a simplification step,
then SOL};(C' & E") g song“: & E).

Proof Let C . E Any C’ . E’ by a simplification step and let 9 be an assignment such
that DG : V U V(C' . E’) and 9(C" & E’) is valid in 72. We have to show that there exists
an assignment 6’ such that V U V(C & E) g DG' , 9’ and 9 agree 011 V, and 6" (C & E) is
valid in 72. Let the simplification rule employed in C. E ——‘—>R V C". E’ be:

Uni. Then C’. E’——'- S. E , where S rs solved, SOLE (C)—_- SOLE (S) and ’D(S)C
W: V U V(E). It suffices to show that there exists a ground substitution 6 such that
V U V(C' & E) C 739, Blv =7; älv, and 9(C & E) 1s valid m 72, since then defining B’x as
the normal form of 9:1: for every a: E 739 yields the claim.

Since 5' IS solved, we know that (S)S IS a trivial equation system, which implies that
9°(S)SIS a trivial system. This implies (6(5))Iw € SOLW (5 ') : SOLE (C). Therefore, there

17

exists aground substitution e such that VB =WUV(C) =VUV(E)UV(C), elw = (B(S)lw,
and BC is trivial. In particular, ec is valid in 1l.

Since BS is valid in R, we have B=n B(S), which yields Blw =n (B(S)lw = Olw. Since
W = VU V(E), this yields that OE is valid in Rand Blv =n Olv.

R. Then C. E = (S. P & El) and C'. E' = (S. P[1T +- v] & El), where (S)(P/1T) -+ v
is an instance of a rule ofR. It suffices to show that BP = (BP)[1T +- O(P/1T)] is valid in R,
which in turn follows from O(P/1T) =n Ov, since (BP)[1T +- Bv] = O(P[1T +- v]) is valid in R.
Since BS is valid in R, we know that 0 =n O(S). Hence, B(P/1T) =n B(S)(P/1T) =n Bv as
required.

Un£. Then C. E = (C. P & El) and C'. E' = (C. x == P/1T & P[1T +- x] & Ed, where
x is a new variable. It suffices to show that BP = (BP)[1T +- B(P/1T)] is valid in R, which
holds since Bx =n B(P/1T) and (OP)[1T +- Bx] = B(P[1T +- x]) is valid in R.

SBl or SB2. Then the claim is trivial.

D. Then the claim follows from the congruence property of the relation "s =n t".

S. Then C. E = (S. P & Q & El) and C'. E' = (S. Q & El), where (S)P = (S)Q. It
suffices to show that BP is valid in R. Since OS is valid in R, we have () =n B(S), and since
OQ is valid in R, we know that O(S)Q is valid in R. This yields that BP is valid in R since
(S)Q={S)P.

PI. Then the claim is trivial.

P2. Then C. E = (S. x == s & t == u & Ed and C'. E' = (S. x == s & x == u & El),
where (S)s = (S)t. It suffices to show that Ot =n Ou. Since OS is valid in R, we know that
B=n B(S), which yields that Bt =n O(S)t = B(S)s =n Os =n Ox =n Bu.

P3. Then C'. E' has been obtained from C. E by replacing all occurrences of x with
y, where x rt. V and y rt. VU V(C. E). Thus 0' := B[x +- By] yields the claim. 0

Our next goal is to prove the completeness of the extended solution procedure in Figure
4.1. As before, the proof will be based on the notion of a triple reduction relation, which
links steps on the resolution level with steps on the verification level. We start by giving
the corresponding verification rule for every simplification rule:

• (VUni), (VP3) E ~n E

• (VR) P & E ~n P[1T +- v] & E if P/1T -+ v is an instance of a rule ofR

• (VUnf) P & E ~n s == P/1T & P[1T +- s] & E if s is the 1l-normal form of P/1T

• (VSBl), (VSB2) P & E ~n E if P is a trivial equation

• (VD) f(Sl, ... ,Sn) == f(t1, ... ,tn) & E~nS1 == t1 & ... & Sn == tn & E if f is
decomposable

• (VS) P & P & E ~n P & E

• (VPl) s == t & E ~n t == s & E

• (VP2) v == s & s == u & E ~n v == s & v == u & E if v is R-normal.

18

exists a ground substitution € such that 96—_. WUV(C)= VUV(E)UV(C), 6 |W= (3(S'))|W,
and 90 IS trivial. In particular, 90 IS valid 111 72.

Since 65 IS valid 111 72, we have 9 21a 9(8), which yields 9|_W =7a (9(.S'))|W—_- HIW. Since
W: V U V(E), this yields that 91:7} IS valid m 72 and HIV :7; HIV.

R. Then C. E : (S. P & El) and C". E ’ : (S.P[1r <— 11] & El), where (S)(P/1r) ——> v
is an instance of a rule of 72. It suffices to show that GP—_ (6P)[7r <— 9(P/7r)] IS valid 111 72,
which in turn follows from 9(P/7r) =7; av, since (6P)[7r <— 6'0] : 9(P[7r +— v]) is valid in 72.
Since 63 is valid in 72, we know that 6 :7; 6(5). Hence, €(P/fl') =1; 6(S)(P/7r) =7; 61) as
required.

Uni Then C. E =: (G. P & E1) and C’. E’ = (C. zu é P/7r & P[7r +— n:] & E1), where
a: is a new variable. It suffices to show that 6P : (9P)[7r 4—— 9(P/7r)] is valid in 72, which
holds since 9.1: =7z 6(P/7r) and (9P)[1r +— 93] = €(P[7r <— :v]) is valid in 72.

SBl or SB2. Then the claim is trivial.

D. Then the claim follows fiom the congruence property of the relation “s =7; t ” .

S. Then C. E = (S. P & Q & El) and C’. E’ = (S. Q & El), where (S)P : (S)Q. It
suffices to show that GP is valid in 72. Since 98 is valid in 72, we have 6 :72, 9(8), and since
6Q IS valid m 72, we know that €(S)Q is valid 1n 72. This yields that 6P IS valid In 72 since
(5)62 (3)?

P1. Then the claim is trivial.

P2. Then C .E=(S .m_—Ls&t iu&E1) andC ' .E '= (S .xés&miu&E1) ,
where (S)s : (S)t. It suffices to show that 6t :12 611. Since 63 is valid in 72, we know that
6 :72 6(8), which yields that 6t :7; 6(S)t : 0(S)s =7; 93 =7z 6x :7; 915.

P3. Then C’. E’ has been obtained from C. E by replacing all occurrences of a: with
y, where a: € V and 3; € V U V(C. E). Thus 9' :: €[m +— By] yields the claim. El

Our next goal is to prove the completeness of the extended solution procedure in Figure
4.1. As before, the proof will be based on the notion of a triple reduction relation, which
links steps on the resolution level with steps on the verification level. We start by giving
the corresponding verification rule for every simplification rule:

. (VUm'), (VP3) E 373 E

. (VR) P & Elf—>72, P[fl’ <— v] & E if P/7r —+ v is an instance o fa rule of72

. (VUnf) P & E—"im s é P/vr & P[7r <— 3] & E if s i s the 72—nor111al form of P/7r

. (VSBI) (VSB2) P & E—”—+—-+7z E if P 13 a trivial equation

. (VD) f (s l , . . . , s „) & f (t 1 , . . . , t „) & E—fiwygsl & t1 & & s„ :.'- t„ & E i f f is
decomposable

. (VS) P&P&EÄRP&E
o(VP1) s i t&E—”3+Rt : ' s&E

. (VP2) v i s&séu&Efimfv i s&viu&Ei fv i s72 -no rma l .

18

Proposition 4.12. (Invariance) Let E ...!!.!.+n E'. Then E is valid in n if and only if E' is
valid in n.

The n-complexity IIElln of an equation system E is defined as the maximal length
of an n-rewriting derivation issuing from E.

Proposition 4.13. (Compatibility) IfE...!!.!.+n E', then IIElln ~ IIE' lln.

Next we extend the simplification steps to n-triples. We write (J. C. E ~n.v (JI. C'. E'
if both (J. C. E and (JI. C'. E' are n-triples and

• (J and (J' agree on V

• C. E ~n.v C'. E' by some simplification rule (T

• (JE...!!.!.+n (J'E' by the verification rule corresponding to (T.

The next theorem is the counterpart to the push up theorem for the resolution rules.
Since the application of the simplification rules is supposed to be don't care nondeterministic,
we must be able to push down a simplification step from the resolution level to the verification
level.

Theorem 4.14. (Push Down) IfC. E ~n.v C'. E' by a simplification step and (J. C. E
is an n-triple, then there exists an assignment (J' such that (J. C. E ~n,v (J'. C'. E'.

Proof. Let (J. C. E be an n-triple. Then V(C. E) ~ V(J, (JC is trivial, and (JE is
valid in n. We will show that for every simplification step C. E ~n,v C'. E' there exists
an assignment (JI such that V(C'. E') ~ V(J', (J and (J' agree on V, (JIC' is trivial, and
(JE...!!.!.+n (J'E' by the corresponding verification step. Let the simplification rule employed
in C. E ~n,v C'. E' be:

Uni. Then C'. E' = S. E, where S is solved, SOL~ (C) = SOL~ (S), V{S) ~ W, and
W = VU V(E). Since (JC is trivial and W U V(C) ~ V(J, we have (J Iw E SOL~ (C) =
SOL~ (S). Therefore, there exists a ground substitution (J' such that (J' agrees with (J on
W, (JI S is trivial, and V(J' =W U V(S). Since V(E) ~ W, we know that (J' E = (JE is valid
in n. Thus, it suffices to show that (J' X is n-normal for every x E W U V(S) =W U I(S).

If x E W, then B'x is n-normal, since B'x =Bx and Bx is n-normal. If x E I{S), then
there is an equation y == sinS such that x occurs in s and yE V{S) ~ W. Hence, B'x is a
subterm of the term B's, which is n-normal since B's = B' y = By. Thus B' x is n-normal.

R. Then C. E = (S. P & Ed and C'. E' = (S. P[1T +- v] & El), where (S)(P/1T) -> v
is an instance ofa rule ofn. It suffices to prove that (JP"'!!'!'+n B(P[1T +- vD by the verification
rule VR, since then we can define B' := B.

Since B. S. E is an n-triple, BS is trivial. Hence B = B{S), which implies that
(BP)/1T = B(P/1T) = B(S)(P/1T). Thus BP...!!.!.+n (BP)[1T +- Bv] by the verification rule VR,
since (S)(P/'lr) -> v is an instance of a rule ofn.

Unf. Then C. E = (C. P & El) and C'. E' = (C. x == P/1T & P[1T +- x] & El), where
x is a new variable. Defining B := B[x +- s], where s is the n-normal form of B(P/1T), yields'
the claim.

19

Proposition 4 .12 . (Invariance) Let E 3-37; E’. Then E is valid in ’R, if and only if E’ is
valid in R .

The R—complexity ”EH-R of an equation system E is defined as the maximal length
of an R—rewriting derivation issuing from E.

Proposition 4.13. (Compatibility) If EAR E' , then ”EH1; Z HE’HR.

Next we extend the simplification steps to R—triples. We write 6 . C. E —°->1.z‚v 9' . C’ . E’
if both 9. C. E and 6". C' . E" are ’R—triples and

. 9 and 6' agree on V

o C. E —8>7z‚v C’ . E’ by some simplification rule a-

o 6E 3,72 B’E’ by the verification rule corresponding to a .

The next theorem is the counterpart to the push up theorem for the resolution rules.
Since the application of the simplification rules is supposed to be don’t care nondeterministic ,
we must be able to push down a simplification step from the resolution level to the verification
level. ' """

Theorem 4.14. (Push Down) If C. E —’>7g‚v C’ . E' by a simplification step and 9 . C. E
is an R—triple, then there exists an assignment 9’ such that 9 . C. E ——"'—>«R‚V 9' . C’ . E’.

Proofi Let 6. C. E be an R—triple. Then V(C. E) 9 D6, ÖC is trivial, and HE is
valid in R . We will show that for every simplification step C. E —s>7z,v C'. E’ there exists
an assignment 0’ such that V(C' . E’) ; ’Dü’ , 9 and 9 ' agree 011 V , 6’ C’ is trivial, and
9E Jim H'E' by the corresponding verification step. Let the simplification rule employed
in C. E—8>R‚V C". E" be:

Uni. Then C'. E’ = S. E , where S is solved, SOLE? (C) = SOLg(S), D(S) g W, and
W = V u vw). Since 90 is trivial and W u vw) 9 Da, we have a|W e SOLQ’XC) :
SOL? (S). Therefore, there exists a. ground substitution 0’ such that 6’ agrees with 0 on
W, 9'5 is trivial, and DÖ' == .WU V(S). Since V(E) g W, we know that G'E = GE is valid
in 72. Thus, it suffices to show that 6’2: is R—normal for every 2: E W U V(S) = W U 1(5).

If a: E W, then 6’s: is ’R—normal, since 9’9: : 0a: and 9:1: is R—normal. If a: 6 1(5), then
there is an equation y & s in S such that a: occurs in 3 and y 6 9(5) g W. Hence, 6’11: is a
subterm of the term 9’s, which is R—normal since 6 's = 9’ y = 63;. Thus 9’11: is R—normal.

R. Then C. E = (S. P & E1) and C’. E' =: (S. P[7r <— v] & El), where (S)(P/7r) —+ v
is an instance of a rule of 72. It suffices to prove that 6P 33—1»); 9(P[7r <— v]) by the verification
rule VR, since then we can define &” := 9.

Since €. S. E is an R—triple, 65' is trivial. Hence € = 6(8), which implies that
(€P)/7r : 9(P/7r) : 6(S)(P/7r). Thus GP fing (6P)[7r <— 9’0] by the verification rule VR,
since (S)(P/7r) —+ v is an instance of a rule of 72.

Un£ Then C . E = (C. P & E1) and C' . E’ = (C. a: & P/7r & P[7r e— m] & E1), where
a: is a new variable. Defining 6’ := 9[:c +— s], where 3 is the R-normal form of 6(P/1r), yields
the claim.

19

BB1. Then C. E = (B. x == t & Et) and C'. E' = (B & x == t. El), where B contains
an equation y == s such that (B}t is a subterm of s. It suffices to show that Ox == Ot is a
trivial equation, since then we can define 0' := O.

Since O. C. E is an n-triple, we have that 0 = O(B), Oy = Os, and Ox =n Ot. Since
Ot = O{B}t and {B}t is a subterm of s, we know that Ot is a subterm of Os. Since Os = Oy
is an n-value, Ot is an n-value. Since Ox is an n-value and Ox =n Ot, we conclude that
Ox =Ot.

BB2. Then C. E = (C. P & Er) and C'. E' = (C & P. Er), where every function
symbol occurring in P is irreducible. It suffices to prove that OP is trivial, since then we can
define 0' := O. Since 0 is normal and every function symbol occurring in P is irreducible,
OP cannot be rewritten. Since OP is valid in n, this yields the claim.

D, B, PI or P2. For these rules 0' := 0 does the job.

P3. Then C'. E' has been obtained from C. E by replacing all occurrences of x with
y, where x fJ. V and y fJ. VU V(C. E). Defining 0' := O[y .- Ox] yields the claim. 0

We write O. C. E ~n v 0' • C'. E' if O. C. E ~n v 0". C". E" ~n v 0'. C'. E' for
some n-triple 0". C". E". By the push down and the push up theorem w~ know that the '
extended solution procedure builds a derivation

O. C. E ~n>v 0'. C'. E' ~n,v Oil. C". E" ~n,v

provided the right don't know choices are made. Thus, we know that the procedure is
complete if we can show that the triple reduction relation "0. C. E ~n, v 0'. C'. E'" is
terminating. To do this, we will define a complexity measure on triples that is decr"eased
by resolution steps and not increased by simplification steps. A first attempt to define the
complexity of a triple O. C. E could be to use IIElln. However, this doesn't work since the
resolution step B (blocking) doesn't necessarily decrease IIE\ln.

To define a complexity measure that works, we need a few auxiliary definitions. For a
term s, let Isl be the number of function symbols occurring in s. For an equation s == t,
define Is == tl := 0 if s and t are variables and Is == tl := Isl + It I - 1 otherwise. For an
equation system E, let IEI := EPEE IPI and #E be the number of equations occurring in
E. With that we define the complexity of an n-triple asa triple of nonnegative integers:

10. C. El := (1IOElln, IEI,#E).

On these complexities we obtain a well founded ordering "10. C. El 2:: WC'. E'I" byextend
ing the usual ordering on integers lexicographically.

Theorem 4.15. (Compatibility)

1. HO. C. E ~n,v 0'. C'. E' by a resolution step, then 10. C. El> IO'C'. E'I.

2. IfO. C. E ~n,v 0'. C'. E' by a simplification step, then 10. C. El 2:: 10'C'. E'I.

Proof. 1. Since application steps decrease 1I0Elln, and since blocking steps increase
neither \IBE\ln nor IEI, but decrease #E, resolution steps decrease the complexity of a triple.

2. Let O. C. E~n,v B'. C'. E' by a simplification step. By proposition 4.13, we
know that no simplification step increases IIBElln. Therefore, it suffices to show that if

20

SB]. Then C.E =(S . ae—_ t & E1) and C'. E’ : (S & m—_ t . E1), where S contains
an equation y—__ s such that (S)t 13 a subterm of 3. It sufi'ices to show that 6:1: = 6t IS a
trivial equation, since then we can define 9’ .‘: 9 .

Since 9 . C . E is an ’R—triple, we have that 9 = €(S'), 9y = 63, and 9a: =1z 9t. Since
fit = 9(S)t and (S)t is a. subterm of 3, we know that fit is a subterm of 9.9. Since Hs = fly
is an R—value, fi t is an 'R—value. Since 6:1: is an ’R—value and 9m :7; 6t, we conclude that
9:8 = 9t .

SB2. Then C. E = (C. P & E1) and C'. E’ = (C & P. E1), where every function
symbol occurring in P is irreducible. It suffices to prove that 6P is trivial, since then we can
define 9' := €. Since 6 is normal and every fimction symbol occurring in P is irreducible,
GP cannot be rewritten. Since BP is valid in 72, this yields the claim.

D, S, Pl or P2. For these rules 6’ := 6 does the job.

P3. Then C’ . E’ has been obtained from C. E by replacing all occurrences of a: with
y, where 3: € V and y € V U V(C. E). Defining 6’ :: 6[y +— 93] yields the claim. Ü

We write 9 . C . E—"—->Jan vß ' . C”. E’ if 9 . C . E—‘räz V9” . C”. E” —-->7z‚ v 6’. C’. E’ for
some R—triple 3”. C”. E”. By the push down and theRpush up theorem we know that the ‘
extended solution procedure builds a derivation

a . C E_+ ___r_}’RV a f . C I . ‚ E ,—") 81“ RV 9” . C” . E” _SLRJI ___ ’

provided the right don’t know choices are made. Thus, we know that the procedure is
complete if we can show that the triple reduction relation “9. C. E Lay 6”. C' . B"” is
terminating. To do this, we will define a complexity measure on triples that is decreased
by resolution steps and not increased by simplification steps. A first attempt to define the
complexity of a triple 9. C. E could be to use „EUR. However, this doesn’t work since the
resolution step B (blocking) doesn’t necessarily decrease „EMR-

To define a complexity measure that works, we need a few auxiliary- definitions. For a
term s , let Isl be the number of function symbols occurring in s . For an equation s = 75,
define |s = tl := 0 if 3 and t are variables and ls = t | := Isl + | t | — 1 otherwise. For an
equation system E , let IE | := ZPGE |P | and fiE be the number of equations occurring in
E. With that we define the complexity of an R—triple as 'a triple of nonnegative integers:

Ia. 0. El == (naEnR, IEIAiE).
C".- E' |” by extend-

ing the usual ordering on integers lexicographically.

Theorem 4.15. (Compatibility)
1. If 9 . C. E lazy 6’. C' . E’ by a resolution step, then IÖ'C'. E'I.

2. H9 . C . E —°>R‚V 6’. C’. E’ by a simplification step, then I9. C. EI 2 |9'C'. E’I.

Proofi 1. Since application steps decrease MEHR, and since blocking steps increase
neither “HEIIR nor |E | , but decrease fiE, resolution steps decrease the complexity of a triple.

2. Let 9. C. E—s—my 9’ . C’ . E' by a simplification step. By proposition 4.13, we
know that no simplification step increases “BEHR. Therefore, it suffices to show that if

20

0

a simplification step increases IEI, then i~ decreases IIBElln, and if a simplification step
increases #E, then it decreases IEI. The only rule that can increase IEI is the rewriting rule,
which does decrease IIOElln. The only rules that can increase #E are the unfolding and the
decomposition rule, which do decrease IEI.

Corollary 4.16. The relation "B. C. E ~n,v B'. C'. E'" is terminating.

Corollary 4.17. The solution procedure in Figure 4.1 is complete.

The proof method we have developped in this and the last section can be used to show
the completeness of alternative sets of resolution and simplification rules. Given such an
alternative set of rules, the first step is to devise for every rule a suitable verification rule.
The verification rules are applied to ground equation systems and must leave their validity
invariant. The combination of the given rules with their corresponding verification rules
then yields a reduction relation on triples. Next one defines a complexity measure on triples
that is decreased by resolution steps and not increased by simplification steps. Then one
shows with a push up theorem that every unsolved triple can be reduced by a resolution
step on any given equation. Finally, one shows with a push down theorem that every triple
can be reduced with any given simplification step.

If OI~e uses an alternative set ofresoltlti()J1Jull:lsl>tlttlle saIIle c()IIlPI~~tYlIle_'!S_l1rew:e

used here, the simplification rules discussed here can be used without reproving anything.
If the complexity measure is changed, it is still possible to reuse the push down theorem.

5 Refinements

In this section we discuss two refinements for the extended solution procedure. Both of them
depend on additional knowledge about the underlying rewriting system.

5.1 Rewriting with Inductive Consequences
Let n. be the rewriting system in Figure 1.1 and consider the equation x + 0 =O. Although
this equation has the unique solution (x == O) in n, which is easily found, the extended
solution procedure nevertheless has an infinite search space for this equation. To see this,
consider the derivation steps

0.x+0=0
r

--+n,{x} x + 0 == s(x') + y' • s(x' + y') == 0 byA
• x =s(x') & y' == 0 • s(x' + y') =0 by Uni,--+n,{x}

which can be continued infinitely often by applying rule (4) to the occurrence of +. The
obtained pair is actually inconsistent, but our simplification and failure rules are too weak
to detect this inconsistency.

We can get rid of this annoyjng problem if we add the rule x + 0 -+ x to the rewriting
system. Then the extended solution procedure can find the solution of x + 0 =0 by using
simplification steps only. Since the equation x +0 =x is an inductive consequence of nand
the extended rewriting system still terminates, adding this rule doesn't change the solutions
of an equation. We will show that the solution procedure stays complete if the new rule
is used for simplification with the rewriting rule but is not used for resolution with the
application rule.

21

a simplification step increases IE | , then it decreases ||6E||7;, and if a simplification step
increases fiE, then it decreases |E | The only rule that can increase |E | is the rewriting rule,
which does decrease ”BEHR. The only rules that can increase flE are the unfolding and the
decomposition rule, which do decrease IE | E]

Corollary 4.16. The relation “6. C. E len,—ey 9' . C’ . E’” is terminating.

Corollary 4.17. The solution procedure in Figure 4.1 is complete.

The proof method we have developped in this and the last section can be used to show
the completeness of alternative sets of resolution and simplification rules. Given such an
alternative set of rules, the first step is to devise for every rule a suitable verification rule.
The verification rules are applied to ground equation systems and must leave their validity
invariant. The combination of the given rules With their corresponding verification rules
then yields a reduction relation on triples. Next one defines a complexity measure on triples
that is decreased by resolution steps and not increased by simplification steps. Then one
shows with a push up theorem that every unsolved triple can be reduced by a resolution
step on any given equation. Finally, one shows with a push down theorem that every triple
can be reduced with any given simplification step.

. „If 0.13.6. uses ap- _eliaeaiive. set of resolutionrules but the same complemtymeasurewe
used here, the simplification rules discussed here can be used without reproving anything.
If the complexity measure is changed, it is still possible to reuse the push down theorem.

5 Refinements

In this section we discuss two refinements for the extended solution procedure. Both of them
depend on additional knowledge about the underlying rewriting system.

5.1 Rewriting with Inductive Consequences
Let 72, be the rewriting system in Figure 1.1 and consider the equation a: + O £: 0. Although
this equation has the unique solution (m & 0) in ’R„ which is easily found, the extended
solution procedure nevertheless has an infinite search space for this equation. To see this,
consider the derivation steps

@ . a: + 0 =' 0
—"—+7z‚{s} 93 + 0 & s($") + y’ . s(a:' + y’) -—'* 0 by A
—’>7a‚{a.-} iv =" S(-'B') & y’ ="— 0 . S(:r:' + y’) ~.—'. 0 by Um‘,

which can be continued infinitely often by applying rule (4) to the occurrence of + . The
obtained pair is actually inconsistent, but our simplification and failure rules are too weak
to detect this inconsistency.

We can get rid of this annoying problem if we add the rule m + 0 —> a: to the rewriting
system. Then the extended solution procedure can find the solution of a: + 0 =—°_ 0 by using
simplification steps only. Since the equation a: + 0 i a: is an inductive consequence of 7?. and
the extended rewriting system still terminates, adding this rule doesn’t change the solutions
of an equation. We will show that the solution procedure stays complete if the new rule
is used for simplification with the rewriting rule but is not used for resolution with the
application rule.

21

Two ground confluent and terminating rewriting systems are equivalent if they have
the same signature and every ground term has the same normal form in both systems.
Equivalent rewriting systems define, up to isomorphism, the same initial algebra.

Proposition 5.1. Let nandn' be two equivalent ground confluent and terminating rewrit
ing systems. Then a ground equation is valid in n if and only if it is valid in n'.

n

Proposition 5.2. Let n = (E, &) be a ground confluent and terminating rewriting system
and s -+ t be a rewriting rule that is an inductive consequence ofn. Then n' := (E, &U{s --+

t}) is a ground confluent rewriting system. Furthermore, if RI is terminating, then nand
l are equivalent.

Theorem 5.3. Let R = (E, &) and n l = (E, &UEl) be two equivalent ground confluent
and terminating rewriting systems. Then the extended solution procedure in Figure 4.1
is complete if the rules in & are employed for resolution steps and the rules in & U &' are
employed for simplification steps.

Proof. It suffices to show that the Push Up Theorem still holds if only the rules in
& are available for application steps. This is the case since every ground term that can be
rewritten with a rule in & U &' can also be rewritten with a rule in &. 0

The idea to use inductive consequences for rewriting also appears in Fribourg [85].

5.2 Free Rewriting Systems

A ground confluent and terminating rewriting system n is called free if every function
symbol that is reducible in n is completely defined in n. Recall that a function symbol f
is reducible in n if I is the top symbol of the left hand side of at least one rule of n, and
that I is completely defined in R if I occurs in no R-value. The rewriting system RI in
Subsection 4.3 is an example for a free rewriting system. The irreducible function symbols
of a free rewriting system are often called constructors. Furthermore, a term is called
canonical in n if it doesn't contain a function symbol that is reducible in n.

Proposition 5.4. Let R be a free rewriting system. Then a ground term is an R-value if
and only if it is canonical.

The reason we discuss free rewriting systems here is that for these systems the number
of don't know alternatives our solution procedure has to explore can be significantly reduced.
Given a free rewriting system n, we call a term l(s1>"" sn) simple in n if its top symbol I
is reducible in n and its arguments Sl, ... , Sn are canonical in n. The solution procedure in
Figure 5.1 restricts resolution steps to rule applications to don't care chosen simple subterms.
To prove that this procedure is complete for free rewriting systems, we have to show two
things. First, it must always be possible to simplify a pair C. E such that the unsolved
part contains only equations that contain at least one simple term. This is the case since an
equation that doesn't contain a simple term contains only irreducible function symbols .and
can thus be blocked with the simplification rule SB2. Second, we need a stronger push up
theorem:

Theorem 5.5. (Push Up for Free Rewriting Systems) Let n be a free rewriting
system. Then, if 8. C. E is an R-triple, P is an equation in E, and P /1r is a simple subterm

22

Two ground confluent and terminating rewriting systems are equivalent if they have
the same signature and every ground term has the same normal form in both systems.
Equivalent rewriting systems define, up to isomorphism, the same initial algebra.

Proposition 5 .1 . Let R and R' be two equivalent ground confluent and terminating rewrit-
ing systems. Then a ground equation is valid in R if and only if it is valid in R'.

Proposition 5.2. Let R = (E, 8) be a ground confluent and terminating rewriting system
and 3 —> t be a rewriting rule that is an inductive consequence of R. Then R' := (E, £U{s ——>
t}) is a ground cönfluent rewriting system. Furthermore, if R' is terminating, then R and
R' are equivalent.

Theorem 5.3. Let R = (2 ,8) and R' = (2 ,8 U 8') be two equivalent ground confluent
and terminating rewriting systems. Then the extended solution procedure in Figure 4.1
is complete if the rules in 8 are employed for resolution steps and the rules in 8 U 8' are
employed for simplification steps.

Proof It sufiices to show that the Push Up Theorem still holds if only the rules in
8 are available for application steps. This is the case since every ground term that can be
rewritten with a rule in 8 U &" can also be rewritten with a rule in 8 . El

The idea to use inductive consequences for rewriting also appears in Fribourg [85].

5.2 Free Rewriting Systems
A ground confiuent and terminating rewriting system R is called free if every function
symbol that is reducible in R is completely defined in R. Recall that a fimction symbol f
is reducible in R if f is the top symbol of the left hand side of at least one rule of R , and
that f is completely defined in R if f occurs in no R—value. The rewriting system R1 in
Subsection 4 .3 is an example for a free rewriting system. The irreducible function symbols
of a. free rewriting system are often called constructors. Furthermore, a term is called
canonical in R if it doesn’t contain a function symbol that is reducible in R.

Proposition 5.4. Let R be a ‚free rewriting system. Then &. ground term is an R—Value if
and only if it is canonical.

The reason we discuss free rewriting systems here is that for these systems the number
of don’t know alternatives our solution procedure has to explore can be significantly reduced.
Given a free rewriting system R , we call a term f (s l , . . . , 3“) simple in R if its top symbol f
is reducible in R and its arguments s l , . . . ‚ s „ are canonical in R . The solution procedure in
Figure 5.1 restricts resolution steps to rule applications to don’t care chosen simple subterms.
To prove that this procedure is complete for free rewriting systems, we have to show two
things. First, it must always be possible to simplify a pair C. E such that the unsolved
part contains only equations that contain at least one simple term. This is the case since an
equation that doesn’t contain a simple term contains only irreducible function symbols .and
can thus be blocked with the simplification rule SB2. Second, we need a strenger push up
theorem:

Theorem 5.5. (Push Up for Free Rewriting Systems) Let R be a free rewriting
system. Then, if 9. C. E is an R—triple, P is an equation in E, and P/ar is a simple subterm

22

solve(C. E) is

1.	 choose don't care C'. E' such that C. E ~n vC'. E' by simplification
steps and every equation in E' contains at least one simple term;

2.	 if a failure rule applies to C'. E', then fail;

3.	 if El is empty, then return C';

4.	 choose don't care an equation P in E' and a simple subterm P/tr in P;

5.	 choose don't know C". E" such that C'. E' ~n.v C". E"

by an application step on P at tr;

6.	 solve(C" • E")

Figure 5.1. A solution procedure for free rewriting system.

of P, there exists a triple B'. C'. E' such that B. C. E ~n. v B'. C'. E' by an application
step on P at tr.

Proof. Let B. C. P&E be an 'R.-triple and P/tr be a simple subterm of P. Then B(P/tr)
is an innermost ground term. Thus there exist a variant u -+ v of a rule of 'R. and a
substitution 1; such that cPu = (BP)/tr. From here on the proof is identical with the proof
of the push up theorem in Section 3. 0

Corollary 5.6. The solution procedure in Figure 5.1 is complete for free rewriting systems.

Fribourg [85] discusses a similar solution procedure for free conditional rewriting sys
tems. He has the additional requirement that the left hand sides of all rules be simple
terms.

There is actually no need for reproving a stronger version ofthe push up theorem, since
our simplification rules are already strong enough to justify the solution procedure for free
rewriting systems. In fact, the solution procedure in Figure 5.1 just realizes one of the many
strategies that one can obtain by using the unfolding rule in conjunction with the don't
care selection of the next equation to be resolved upon. To see this, first notice that every
equation that doesn't contain a simple term can be safely blocked with the simplification
rule SB2. Secondly, any simple term s contained in an equation can be unfolded into an
equation x == s, which then can be chosen to be the next equation to be resolved upon.
Blocking such an equation immediately yields an inconsistent pair, as we know by failure
rule (3) since the top symbol of s is completely defined. Furthermore, any application step
to a proper subterm s/tr of s yields an inconsistent pair, as we know by failure rule (1) since
the top symbol of s/tr is irreducible, that is, is different from the top symbol ofthe left hand
side of any rewriting rule. Thus we are left with exactly the don't know alternatives that
are considered by the solution procedure for free rewriting systems.

The left-to-right basic narrowing strategy in [Herold 86] and the selection narrowing
strategy in [Bosco et al. 87] are two further examples for the strategies that can be obtained
by using the unfolding rule.

23

solve(C'. E) is

1. choose don’t care C’ . E’ such that C. E 4+3“,- C’. E’ by simplification
steps and every equation in E’ contains at least one simple term;

. if a. failure rule applies to C" . E’, then fail;

. if E’ is empty, then return C’ ;

. choose don’t care an equation P in E’ and a simple subterm P/ar in P ;

. choose don’t know C" . E” such that C’ . E’ —"—+R‚V C”. E"
by an application step on P at 7r;

6. solve(C”. E”)

m
us

—
co

m

Figure 5.1. A solution procedure for free rewriting system.

of P , there exists a triple 6’. C'. E’ such that 9. C. E—"—>7g‚v 9’. C". E" by an application
step on P at 7r. -

Proof. Let 9. C. P&E be an R—triple and P/1r be a. simple subterm of P . Then €(P/7r)
is an innermöst ground term. Thus there exist a. variant u —-> v of a rule of 7?. and a
substitution 433 such that $1; : (HP)/ar. From here on the proof is identical with the proof
of the push up theorem in Section 3. El

Corollary 5 .6 . The solution procedure in Figure 5.1 is complete for free rewriting systems.

Fribourg [85] discusses a similar solution procedure for free conditional rewriting sys-
tems. He has the additional requirement that the left hand sides of all rules be simple
terms. '

There is actually no need for reproving a stronger version of the push up theorem, since
our simplification rules are already strong enough to justify the solution procedure for free
rewriting systems. In fact, the solution procedure in Figure 5.1 just realizes one of the many
strategies that one can obtain by using the unfolding rule in conjunction with the don’t
care selection of the next equation to be resolved upon. To see this, first notice that every
equation that doesn’t contain a simple term can be safely blocked with the simplification
rule 3132. Secondly, any simple term s contained in an equation can be unfolded into an
equation a: i 5, which then can be chosen to be the next equation to be resolved upon.
Blocking such an equation immediately yields an inconsistent pair, as we know by failure
rule (3) since the top symbol of 3 is completely defined. Further-more, any application step
to a proper subterm s/ar of .9 yields an inconsistent pair, as we know by failure rule (1) since
the top symbol of 3/ 1r is irreducible, that is, is different from the top symbol of the left hand
side of any rewriting rule. Thus we are lefl'. With exactly the don’t know alternatives that
are considered by the solution procedure for free rewriting systems.

The left-to—right basic narrowing strategy in [Herold 86] and the selection narrowing
strategy in [Bosco et al. 87] are two further examples for the strategies that can be obtained
by using the unfolding rule.

23

References

P.G. Bosco, E. Giovannetti, and C. Moiso, Refined Strategies for Semantic Unification. Proc.
ofthe International Joint Conference on Theory and Practice ofSoftware Development, Pisa,
Italy, March 1987, Springer LNCS 250, 276-290.

N. Dershowitz and D. Plaisted, Logic Programming cum Applicative Programming. Proc.
ofthe 1985 Symposium on Logic Programming, Boston, July 1985,54-67.

M. Fay, First Order Unification in an Equational Theory. Proc. of the 4th Workshop on
Automated Deduction, University of Texas, Austin 1979, 161-167.

L. Fribourg, SLOG: A Logic Programming Language Inerpreter Based on Clausal Superpo
sition and Rewriting. Proc. of the 1985 Symposium on Logic Programming, Boston, July
1985, 172-184.

J. Gallier and W. Snyder, A General Complete E-Unification Procedure. Proc. of the 2nd
International Conference on Rewriting Techniques and Applications, Bordeaux, France, May
1987, Springer LNCS 256, 216-227.

J.A. Goguen and J. Meseguer, Eqlog: Equality, Types, and Generic Modules for Logic Pro
gramming. In D. DeGroot and G. Lindstrom (ed.), Logic Programming, Functions, Rela
tions, and Equations; Prentice Hall 1986; 179-210.

A. Herold, Narrowing Techniques Applied to Idempotent Unification. Seki Report SR-86-16,
Universitiit Kaiserslautern, West Germany, 1986.

S. Holldobler, A Unification Algorithm for Confluent Theories. Proc. of the 14th Interna
tional Conference on Automata, Languages, and Programming, Karlsruhe, Germany, 1987,
Springer LNCS 267,31-41.

G. Huet, Confluent Reductions: Abstract Properties and Applications to Term Rewriting
Systems. Journal of the and Associativity. Journal of the ACM 27,4 (1980), 797-821.

G. Huet and D.C. Oppen, Equations and Rewrite Rules: A Survey. In R. Book (ed.), Formal
Languagues: Perspectives and Open Problems, Academic Press 1980, 349-405.

J.-M. Hullot, Canonical Forms and Unification. Proc. of the 5th Conference on Automated
Deduction, 1980, Les Arcs, France, Springer LNCS 87, 318-334.

H. HuBmann, Unification in Conditional Equational Theories. Proc. of the EUROCAL '85,
Springer LNCS 204,543-553.

A. Josephson and N. Dershowitz, An Implementation of Narrowing: The RITE Way. Proc.
of the 1986 Symposium on Logic Programming, Salt Lake City, 187-197.

S. Kaplan, Fair Conditional Term Rewriting Systems: Unification, Termination, and Con
fluence. Technical Report no. 194, Universite de Paris-Sud, Centre d'Orsay, Laboratoire de
Recherche en Informatique, 1984.

C. Kirchner, Methodes et outils de conception systematique d'algorithmes d'unification dans
les theories equationelles, These d'etat de l'Universite de Nancy I, 1985.

D.S. Lankford, Canonical Inference, Technical Report ATP-32, Department of Mathematics
and Computer Science, University of Texas at Austin, December 1975.

J .W. Lloyd, Foundations of Logic Programming. Springer Verlag, 1984.

24

References

P.G. Bosco, E . Giovannetti, and C . Moiso, Refined Strategies for Semantic Unification. Proc.
of the International Joint Conference on Theory and Practice of Software Development, Pisa,
Italy, March 1987, Springer LNCS 250, 276—290.

N. Dershowitz and D. Plaisted, Logic Programming cum Applicative Programming. Proc.
of the 1985 Symposium on Logic Programming, Boston, July 1985, 54—67.

M. Fay, First Order Unification in an Equational Theory. Proc. of the 4th Workshop on
Automated Deduction, University of Texas, Austin 1979, 161—167.

L. Fribourg, SLOG: A Logic Programming Language Inerpreter Based on Clausal Superpo-
sition and Rewriting. Proc. of the 1985 Symposium on Logic Programming, Boston, July
1985, 172—184.

J . Gallier and W. Snyder, A General Complete E—Unification Procedure. Proc. of the 2nd
International Conference on Rewriting Techniques and Applications, Bordeaux, France, May
1987, Springer LNCS 256, 216—227.

J . A . Goguen and J . Meseguer, qog: Equality, Types, and Generic Modules for Logic Pro—
gramming. In D. DeGroot and G. Lindstrom (ed.) , Logic Programming, Functions, Rela-
tions—,— and--Equations Prentice Hall 1986,179—210.

A. Herold, Narrowing Techniques Applied to Idempotent Unification. Seki Report SR—86—16,
Universität Kaiserslautern, West Germany, 1986.

S. Hölldobler, A Unification Algorithm for Confluent Theories. Proc. of the 14th Interna-
tional Conference on Automata, Languages, and Programming, Karlsruhe, Germany, 1987,
Springer LNCS 267, 31—41.

G. Huet, Confluent Reductions: Abstract Properties and Applications to Term Rewriting
Systems. Journal of the and Associativity. Journal of the ACM 27,4 (1980), 797—821.

G. Huet and D.C. Oppen, Equations and Rewrite Rules: A Survey. In R. Book (ed.), Formal
Languagues: Perspectives and Open Problems, Academic Press 1980, 349—405.

J..-M. Hullot, Canonical Forms and Unification. Proc. of the 5th Conference on Automated
Deduction, 1980,. Les Arcs, France, Springer LNCS 87, 318—334.

H. Hußmann, Unification in Conditional Equational Theories. Proc. of the EUROCAL ’85,
Springer LNCS 204, 543—553.

A. Josephson and N . Dershowitz, An Implementation of Narrowing: The RITE Way. Proc.
of the 1986 Symposium on Logic Programming, Salt Lake City, 187—197.

S. Kaplan, Fair Conditional Term Rewriting Systems: Unification, Termination, and Con—
fiuence. Technical Report no. 194, Université de Paris-Sud, Centre d’Orsay, Laboratoire de
Recherche en Informatique, 1984.

C. Kirchner, Méthodes et outils de conception systématique d’algorithmes d’unification dans
les théories équationelles, These d’état de l’Université de Nancy I , 1985.

D.S. Lankford, Canonical Inference, Technical Report ATP—32, Department of Mathematics
and Computer Science, University of Texas at Austin, December 1975.

J ‚W. Lloyd, Foundations of Logic Programming. Springer Verlag, 1984.

24

A. Martelli, C. Moiso, and G.F. Rossi, An Algorithm for Unification in Equational Theories.
Proc. of the 1986 Symposium on Logic Programming, Salt Lake City, 180-186.

P. Rety, C. Kirchner, H. Kirchner, and P. Lescanne, Narrower: A New Algorithm for Unifi
cation and its Application to Logic Programming. Proc. of the 1st International Conference
on Term Rewriting Techniques and Applications, Dijon, France, May 1985, Springer LNCS
202,141-157.

P. Rety, Improving Basic Narrowing Techniques. Proc. of the 2nd International Conference
on Rewriting Techniques and Applications, Bordeaux, France, May 1987, Springer LNCS
256,228-241. Also presented at the 1st Workshop on Unification, Val d'Ajol, France, March
1987.

G.A. Robinson and L. Wos, Paramodulation and Theorem-Proving in First-Order Theories
with Equality. Machine Intelligence 4, Edinburgh University Press, 1969, 135-150.

J .A. Robinson, A Machine-Oriented Logic Based on the Resolution Principle. Journal of the
ACM 12, 1965, 23-41.

J .R. Slagle, Automated Theorem Proving for Theories with Simplifiers, Commutativity, and
Associativity. Journal of the ACM, VoL 21, No. 4, October 1974, 622-642.

G. Smolka and W. Nutt, Lazy Basic Order-Sorted Narrowing. Presented at the 1st Workshop
on Unification, Val d'Ajol, France, March 1987.

G. Smolka, W. Nutt, J. Goguen, and J. Meseguer, Order-Sorted Equational Computation.
Presented at the Colloquium on the Resolution of Equations in Algebraic Structures, Lake
way, Texas, May 1987.

J .-H. You and P.A. Subrahmanyam, A Class of Confluent Term Rewriting Systems and
Unification. Journal of Automated Reasoning 2, 1986,391-418.

25

A. Martelli, C . Moiso, and G.F. Rossi, An Algorithm for Unification in Equational Theories.
Proc. of the 1986 Symposium on Logic Programming, Salt Lake City, 180—186.

P. Réty, C . Kirchner, H. Kirchner, and P. Lescanne, Narrower: A New Algorithm for Unifi-
cation and its Application to Logic Programming. Proc. of the Ist International Conference
on Term Rewriting Techniques and Applications, Dijon, France, May 1985, Springer LNCS
202, 141—157.

P. Réty, Improving Basic Narrowing Techniques. Proc. of the 2nd International Conference
on Rewriting Techniques and Applications, Bordeaux, France, May 1987, Springer LNCS
256, 228—241. Also presented at the 1st Workshop on Unification, Val d’Ajol, France, March
1987.

G.A. Robinson and L. Wos, Paramodulation and Theorem-Proving in First—Order Theories
with Equality. Machine Intelligence 4, Edinburgh University Press, 1969, 135—150.

J .A. Robinson, A Machine-Oriented Logic Based on the Resolution Principle. Journal of the
ACM 12, 1965, 23—41.

J .R. Slagle, Automated Theorem Proving for Theories with Simplifiers, Connnutativity, and
Associativity. Journal of the ACM, Vol. 21, No. 4, October 1974, 622—642.

G. Smolka and W. Nutt, Lazy Basic Order-Sorted Narrowing. Presented at the lst Workshop
on-Unifi-cation, Val d’A—jol, France,---—-March 1987.

G. Smolka, W. Nutt, J . Goguen, and J . Meseguer, Order-Sorted Equational Computation.
Presented at the Colloquium on the Resolution of Equations in Algebraic Structures, Lake-
way, Texas, May 1987.

J .—H. You and P.A. Subrahmanyam, A Class of Confluent Term Rewriting Systems and
Unification. Journal of Automated Reasoning 2, 1986, 391—418.

25

	SR-1987-07.pdf
	SR-1981-07 -1

