
Un
ive

rs
itä

t
Ka

is
er

sl
au

te
rn

0
—

6
7

5
0

K
a

i s
e

rs
l a

u
te

rn
1 ,

W
.

G
e

rm
a

n
y

Fa
ch

be
re

ich

In
fo

rm
at

ik
P

o
s t

f a
ch

3
0

4
9

A
r t

i f
i c

ia
l

i n
te

l l
ig

en
ce

L
ab

o
ra

to
r i

es

E
H

| °
H

E
P

IP
IT

A..-"
62f?

""“ (‚==
v

”Kati? V
\\ " \"l \\ '4'
060
000

On imple-entat ions of loose
abs t rac t da ta type spec i f i ca t ions

and the i r ve r t i ca l co -pos i t ion

Chr is toph Be ie r le , Ange l i ka Voß

August 1986 SEKI—REPORT SR—86—1M

On implementations of loose abstract data type specifications
and their vertical composition

ChristoPh Be ier l e , Angelika Voß

Fachbereich Informatik, Universität Kaiserslautern

Postfach 3049, 6750 Kaisers lautern, West Germany
UUCP: . . !mcvax!un idoIuk l i rbEbe ier l e

Abst rac t

In an approach for the implementa t ion o f l oose abs trac t da ta type

spec i f i ca t ions Hun:comple te ly d i s t ingu i shes be tween the syntac t i ca l

level o f speci f icat ions and the semantical level o f mode l s , vert ica l

implementa t ion compos i t i on i s de f ined compat ib ly on bo th l eve l s .

Implementations have signatures, mode l s , and sentences where the l a t t er

a l so inc lude h idden components , wh ich a l lows for use fu l normal form

resu l t s . We i l lus trate the s t epwise development o f implementat ions as

we l l a s the i r compos i t i on by some examples and descr ibe the

incorporat ion o f the concept in to an integrated software development

and veri f icat ion sys tem.

Contents

1 . Introduction

2 . Implementation spec i f i ca t ions : Bas ic idea and requirements for their composition

3 . Implementation specif icat ions without hidden components

4 . Implementation spec i f icat ions wi th hidden components

5 . Normal forms

6 . Composition

7 . Implementation specifications in the ISDV system

8 . Conclusions

1 . _ Introduction

In the early days of abstract data types merely fixed ADP specifications with only isomorphic

models were studied. Later on, so-called loose approaches were suggested where one considers

not only the initial or terminal model of a specification but all models. As one of its main

advantages a loose approach is better suited to capture the process of software development:

One can start with a small and s t i l l vague specification with many different models, and then

refine such a specification gradually by adding new axioms, sorts, and operations, thereby

restricting the class of admissible models. During this process, lower level constructive

defini t ion techniques may be used to refine the higher level axiomatic definitions so that

one finally arrives at a concrete problem solution, which could be a program or a functions].

prototype.

An imp lemen ta t ion re la t ion be tween loose specifications should reflect this refinement

scenario: among the many different models of the source and target specification one should

be able to choose those of interest by gradually refining the implementation so that the set

of mode l s i s res t r i c ted accordingly. Our implementation concept introduced in [BV 85a]

generalizes the concept for implementations of loose specifications proposed by Sannella and

Wirsing in [SW 82], which in turn generalizes the fixed case (e.g. [GW 78], [Ehe 82], [EXP
7s], [EKMP 82], [Ga 83]). By using the notion of institution ([GB 83]) our approach abstracts
from the types of sentences used in the underlying ADT specification method.

One of the central problems when dealing with implementations i s their composability. In this

paper we show how our concept o f implementa t ion spec i f ica t ions a l l ows for a two level

approach: The composition of implementations is defined both on the syntactical level of

specifications and on the semantical level of models. Both levels are closed under their

composition operations which are associative. In particular, by using a strong normal result

we show that syntactical and semantical compositions are compatible with each other.

In Section 2 we summarize the basic idea of our implementation concept as given in [BV 85a],

elaborate the requirements a composition operation should fulfill, and briefly state the

asSMptions about the underlying loose ADT specifications. In Section 3 we introduce the

institution of implementation specifications without hidden components, and in Section 4‘ we

extend this institution by introducing hidden parts. Section 5 contains our normal form

theorem, and in Section 6 we develop syntactical and semantical composition operations and

show their compatibi l i ty. Section 7 describes the incorporation of our concept into an

integrated software deve10pment and verification system, and Sect. 8 contains a summary and a

comparison.

2 . Implementation specifications: Basic idea and requirements for their composition

As compared to fixed specif icat ions , in the l oose case we s t i l l have spec i f ica t ions ,

signatures, signature morphisms, etc, the essential difference lying in the number of models

being considered. Therefore, an implementation for loose specifications should. at least

consist of an abstract specification, a concrete specification, and a signature morphism

translating the abstract signature to the (possibly extended) concrete signature. Since a
concrete specification can always be extended before giving the implementation, we will

choose the technically simpler approach and omit any extension of the concrete specification

as part of the implementation. .
In [SW 82 | Sannella and Wirsing require that for every concrete model there should be some

abstract model and an abstraction function connecting them. If such a complete se t of triples

exists, the concrete specification is said to implement the abstract one, otherwise i t does

not. This is an implicit, non—constructive approach which gives no room for a notion of

refinement between implementations since there is no way to characterize and restrict the set

of triples — e.g. by constraints on the concrete or abstract models - any further.

As already pointed out above, since the idea of loose specifications is to consider at first

1

an arbitrarily large set of models and to res tr i c t this set stepwise by refining the

specification, we think the adequate idea of implementations betwee
n loose

specifications is to accept all meaningful combinations o
f an abstract model, a

concrete model, and an abstraction function and to restrict them s
tepwise by refining

the implementation.

To realize these ideas we introduce the notion of implementa
tion models:

A simple implementation <SPa,o,SPc> consisting of an abstract specification SPa,

a concrete one SPc, and a signature translation 0 between them denotes the set of

all triples consisting o f an abstract model Aa, a concrete one Ac, and a n

abstraction.function a from the concreteeto the abstrac
t model.Such a tripel

<Ac,a,Aa> is called an implementation model. As in the fixed case, the

abstraction function may be partially defined and it mus
t be surjective and

homomorphic.

(Note that in both cases the first component contains the sour
ce and the third

component the target of the function in the middle component.)

Now we extend these simple implementations to a .concept incorporating a notion of

refinement between implementations. Such a refinement shou
ld restrict the set o f

implementation models which can.be done componentwise by

_ restricting the set of abstract models,

— restricting the set of concrete models,

— restricting the set of abstraction functions.

In the framework of loose specifications the set of models - like the abstract and

t h e concrete ones - i s r e s t r i c t e d by a d d i n g s e n t e n c e s t o t h e r e s p e c t i v
e

specification.

Since the abstraction functions Operate on both concrete and abstract carriers we

pr0pose to view them as algebra operations from concrete t
o abstract sorts. These

'0perations can be restricted as usually by adding sentences over both the concrete

and the abstract signatures extended by the abstraction ope
ration names. Thus in a

first approach we admit arbitrary sentences over the abs
tract and the concrete

signatures extended by the abstraction operation names, and
later on we will extend

this vocabulary by arbitrary hidden sorts and operations.
 These sentences will be

called implementation sentences.

Summarizing we prepose an implementation specification ISP
 = <IE , IE> to be

- a simple implementation I2 = <SPa,o,SPc>

- together with a set of implementation sentences IE an
d

— denoting all implementation models of the simple implementation which satisfy

the implementation sentences.. '

Analogously to specifications which consist of a signature in the simplest case, a

simple implementation like IE will also be called an implementation signature.

W e already claimed that an implementation should be refinable by adding m
ore

implementation sentences to it and thus reducing the class of implementation models.

This idea is extended analogously to loose ADT specifications by admittin
g a change

of signature: There, a specification morphism is a signature
 morphism such that the

translated sentences of the refined specification hold in th
e refining specification.

Thus an implementation morphism or a refinement between two implementations is an

implementation signature morphism such that the translated sentences of the refined

implementation hold in the refining one.

“Since an implementation signature I23 = <SPaj,oj,Sc> contains two specifications an

2.

implementation—morphism isEIpair

T = <pa‚pc>: 121 + 122. .

consisting of an abs t r ac t specification morphism pa: SPa1 + SPa2 and a conc re t e

specification morphism pc: SPc1 + SPcz.

However , ano the r r e q u i r e m e n t should a l s o be satisfhmh Assume w e have an

implementation from sets over arbitrary elements to e
xtended lists over arbitrary

elements, and another i-signature from sets over natural numbers to e
xtended lists

over natural numbers. Then it should not matter whether
 we first represent sets over

arbitrary elements by lists over arbitrary elements a
nd then refine to lists over

natural numbers, or if we first refine the sets over arbit
rary elements to sets over

natural numbers and then represent them as lists over
 natural numbers. I n general

this means that the diagram
ÜF1

SP31 - - - - - - - - - - - - - - + _SPc1

l I
Pa I | pc

+ o2 +

SP-a2 ______________ + SPO?-

should commute viewing pa and pc as signature morphisms.

When implementing an abstract specification by a more con
crete one which in turn is

implemented by a third specification it is desirable to get automatically an

implementation of the first by the third specification by composing the two

individual implementations. Moreover, the sequence o
f compositions should be

irrelevant, i.e. one would like to have an associative implementation composition

operator. "

In the mos t elabOrated implementation concept fer the fixed case gi
ven in.]flKMP 82],

proof theoretical and semantical conditions are given tha
t guarantee composability.

In the loose approach of [SW 82], full composability is given by the very definition

of implementation: every concrete algebra must be associ
ated to an abstract algebra.

Further approaches studying such compositions of implementations are the approaches

of [Hap 81 J, [GM 82], [Ga 83], [Li 83], and [sw 83].

In our concept of implementation specifications as outlined above the question of

composability arises on different levels. Simple implementations, impleme
ntation

specifications, and implementation models should all be composable and
closed under

composition.

When composing simple implementations it is natural to require that the concrete

specification of the first implementation is identical t
o the abstract one of the

second implementation. In this case the composed implemen
tation is obtained by taking

the abstract specification of the first implementation and
the concrete specification

of the second one together with the composition of the two
 signature translations.

A similar argument holds for the composition of implementa
tion models. In particular

one must ensure that the abstraction functions are c
omposable and closed under

composition.

Having defined the composition of simple implementations
and implementation models,

the composition of implementation specifications containin
g implementation sentences

can be constrained by the following compatibility condition
 which arises naturally:

O The set of models of a composed implementation specificatio
n should be

identical to the set of models obtained by composing the sets of
 models of the

3

individual implementation specifications.

If this condition is fulfilled we say t ha t the composition of implementation

specifications is compatible with the composition of their implementation models.

Summarizing we require our implementation concept to offer the following features

w.r.t. composition:

. definition of composition for

- simple implementations (i.e. implementation signatures),

— implementation specifications, and
- implementation models

Such that all of them are
. closed under composi t ion,

and such that composition is

O associative, and
0 compatible w.r.t. implementation specifications and implementation models.

W.rdh the underlying institution of loose specifications we only assume that the

loose specifications have equational signatures with error constants, denote strict

algebras, and are formally defined as the theories of an institution ([GB 83]). In

particular, we do not make any assumptions about the types of sentences:

Assumption: SPEC-institution := (SIG, EAlg, ESen, 5 >

is an institution where

- SIG i s a category of equational signatures with an error constant error-s:-

for'each.sort s.

- EAlg is a coproduct preserving model functor mapping a signature 8 to all

strict Z—algebras, which have flat cpos as carriers, strict operations, and

the error constants denoting the bottom element.

- ESen is a sentence functor mapping a signature £ to a set o f £—sentences.

_ IQ is the strict satisfaction relation.

SPEC denotes the category of theories in the SPEC-institution which will be

called (loose) specifications, and Sig: SPEC + SIG is the functor forgetting
specifications to their signatures.

3. Implementation specifications without hidden components

3.1 Implementation signatures

The notions of implementation signatures and morphisms as sketched.in Section 2

constitute a category. In fact, it is the comma category induced by the functor Sig

forgetting specifications to their signatures.

Definition 3.1 [ISIG, i-signature]

Given the forgetful functor Sig: SPEC + Sig, the comma category

ISIG = (Sig+Sig)
is the category of implementation signatures (i-signatures).

“Since the category SIG is cocomplete and the functor Sig preserves all colimits, ISIG

4

is.cocomplete, too, by a general property of comma categories .

Fact 3.2 [colimits] ISIG is cocomplete.

3.2 Implementation models

Accord ing to Section 2 we want to introduce abstraction operations as ordinary

operations which are interpreted by abstraction functions and which can be restricted

by ordinary sentences. Since in the framework of the SPEC—institution the algebra

operations must be totally defined, we will also require that the abstraction

operations are totally defined. This is no limitation because the algebras are cpos

and there is an error constant for each sort denoting the minimum element. Thus ati)

is mapped to error whenever aKx) is meant to be undefined. Doing so we must only

suitably restrict the homomorphism requirement
a(a(op)(X)) = 0 p (a (X))

Which under these circumstances needs to hold‘only'if’cdx) is non—error.

Definition 3.3 [Z-p—homomorphism]

Let A, B e E-Alg(z) with z = <s,0p=> a SIG. An S—sorted family of'func-tions
h = {hS:AS+Bs | s e s }

is a partially-homomorphic Z-homomorphism (or just Z-p—homomorphism) if’f
V 0p: s1...sn + s e Z .

U X1 6 A81 V xn e Asn .
hs1(x1) # error-s1B & ... & hs (xn) # error—s

=> hs(opA(x1.--..xn)) = opB hs1(r1).---.h3n xn))

Fact 3J1 [p—homomorphisms are closed under composition]

Let Z = <S,Op> e SIG and f} A + B, g : IB '+ (!be -Z—p-homombrph i sms . Then their

composition
g O f g = { g s o f s l s s S } : A - > C

is a Z—p—homomorphism.

Definition 3.5 LPEAn

The functor
PEAlg: SIG + CATOP

maps a signature 2 to the category of strict Z—algebras with 2—p-homomorphisms,

and it maps a signature morphism c to the forgetful functor PEAlg(c) which is
defined analogously to EAlg(0‘).

Fact 3.6 [Partial]

The family of inclusion functors
Partialz: EA1g(Z) + PEA1g(Z)

with X e SIG defines a natural transformation

Partial: EAlg ==> PEAlg.

With PEAlg formalizing the property "partially homomorphic" w e are now ready to

define a preliminary model functor mapping an i~signature IE to the category of all

tripels TA.= <Ac ,a„Aa> Where a.is p-homomorphic but not necessarily surjective.

Analogously to i—signaturelnorphisms the morphisms in this category are pairs of

homomorphisms
<hc,ha> : <Ac,a,Aa> + <Bc,B,Ba>

5'

that a re compatible wi th the abstract ion functions, fine. i t does not ma t t e r whether

we f i r s t abs t rac t Ac—elements w i th c t o Aa-elements and then map them wi th hc t o Be -

e l emen t s , o r whe the r we f i r s t map the Ac-e l emen t s w i th hc t o Bc -e l emen t s and then

abs t r ac t them wi th B t o Ba. As in the f ixed ca se , the fo rge t fu l f unc to r EA1g(o) i s
app l i ed t o t he sou rce o f the abs t r ac t i on func t ions so t ha t t he compa tab i l i t y
cond i t i on for the mode l morphisms is the commuta t iv i ty o f the diagram

a
EA1g(c)(Ac) ——————————————— + AT

EAlg(o)(hc) l | ha
+ B +

EAlg(c)(Bc) —————————————— —+ Ba
in PEA1g(Ea).

Simi l a r to i—signatures, this si tuation can be -exp reased neatly a s . a comma category.

Definition 3 .7 [Tripe1(Iz)]

Le t I): = <SPa ,o ,SPc> be an i - s ign‘a ture w i th S ig(SPa’) = 2a and S ig (SPc) = t o . The

comma category
TriPGJ-(IE) == (Partialxa ° EA13(0) I]§§Alg(SPc) +IPartiaIZalEAlgGPafi

i s c a l l ed the category o f , IZ—tr ipe l s .

Simi l a r t o o rd ina ry s igna tu re s , every i - s igna tu re morph i sm induces a f o rge t fu l

func to r ;be tween the r e spec t ive mode l ca t ego r i e s i n . t he r eve r se d i r ec t i on . I t i s

def ined componentwise.

Fact 3 .8 [Tripe1(r)]

Le t 1' = (pa , pc) : IE1 + 122 a ISIG.
Tr ipe1 (t) : T r ipe l (122) + Tr ipe l (IE1)

def ined on ob j ec t s by
Tripel(r)(<Ac‚a‚Aa>) := (EAlg(pc)(Ac),PEAlg(pa)(a),EAlg(pa)(Aa)>

and on morphisms by
Tr ipe l (r) (<hc ,ha>) .= <EA1g(pc)(hc),EAlg(pa)(ha)>

i s a func tor .

The observations above yield a prelimininary model functor Tripel: ISIG + CAT°P. We
still have to r e s t r i c t t h i s func to r t o cons ide r on ly t r i pe l s w i th su r j ec t i ve

abs t r ac t i on functions.

Definition 3.9 [IMOd(I£)]

For eve ry 12 e ISIG t he ca t ego ry o f IE—implemen ta t i on mode l s (o r j u s t IX—i-

models)
IMod(IZ)

i s the full subcategory of Tr ipe l (IE) generated by a l l tripels with sur ject ive
abs t r ac t i on func t ion .

Fact 3 .10 [IMod(r) ‚ IMod]

For every t : 121 + 122 the r e s t r i c t i on and co re s t r i c t i on o f T r ipe l (r) t o
IMod(IEz) and IMod(I£) exists. I t is denoted by

IMod(T): Inad(1223 + IMOd(IZ1)
and

IMod: ISIG + CATOP

i s cal led the modelling functor for implementation signatures.

3 .5 Rela t ing implementation signatures t o spec i f ica t ions

According to Sec t ion 2 , implementa t ion sentences over an i-signature IE shall be -ex -
pressed over the abs t rac t s ignature Ea , the concre te signature 2c , and so -ca l l ed ab—
st rac t i on opera t ions to be in te rp re ted as abs t r ac t i on functions. In a f i r s t approach ,
imp lemen ta t i on s en t ences w i l l be a l l o rd ina ry s en t ences ove r t h i s vocabu la ry . Fo r
reasons o f convenience we wi l l u se standard names fo r the abs t rac t ion operat ions:

Definit ion 3.11 [abs-opera t ions]

For II: = <<Za‚Ea>,o‚<Zc‚Ec>> e ISIG and 1: = <pa,pc>: IE + IE” e /ISIG/ we define:
abs -ope ra t ions (IE) := {abs—SIE: a(s) + s [s a Ea}
abs-operat ions(t) := { (abs - s , abs-paCs)Ize) I s e za}.

Fact 5.12 [w]

w: ISIG + S IG
def ined on ob j ec t s by

¢(IE) := Ea n So u abs -ope ra t i onsCIZ)
and on morphisms by

¢(1) := pa a pc u abs-Operat ions(t)
is a co l imi t preserving func tor .

De f in ing an I I I - imp lemen ta t i on s en t ence t o be an o rd ina ry MID-sen tence p we mus t
de t e rmine whe the r an IZ—i-mode l MA = <Ac ,a ,Aa> sa t i s f i e s pm S ince t he abs t r ac t

symbo l s i n ¢ (IZ) sha l l be i n t e rp re t ed by the abs t r ac t a lgeb ra Aa , t he conc re t e
symbols by the concre te algebra Ac , and the abs t rac t ion operations by the abs t rac t ion
function a , we can . t ake the d i s jo in t union of Aa, Ac , and a t o obtain a .¢ (IE) - a lgeb ra
interpret ing ¢ (IZ) .

Definition 3.13 [joinIE(NA)]

For an i -s ignature IE = <SPa ,o ,SPc> and an IE~- i -mode l MA. = <Ac,a ,Aa>
joinIE(MA) := Aa u Ac u c

i s the ¢ (IZ) - a lgeb ra A defined by
- fo r s e S ig (SPa) : As := Ass
— for s a S ig (SPc) : As := AcB
_ for 0p 3 Sig(SPa): opA := OPAa

- for op s Sig(SPc): opA := OPAc

- for abs—s a abs-opera t ions(IZ) : abs—3A := a s .

The-join operator can be extended to a functor from IE-i-models to ¢(I£)-algebras.

Fact 3.14 [jointx, join]

Def in ing jo in IZ on IZ - i -mode l morphisms g = <hc ,ha> by
j o in IZ(g) := {has | s a S ig (SPa)} & {hcS | s e S ig (SPc)}

y ie ld s a functor
joinIz: IMod(Iz) + EA1g(¢(Iz))

and general izing over a l l i -s ignatures yields a natural transformation
jo in : IMod ==> EAlg 0 $

3 .4 Implementation sentences without hidden components

Accord ing to the preceding sec t ion we define the se t of IZ- implementa t ion sentences

wi thout h idden components or jus t IX- i - s en tences to be the s e t o f a l l ord inary dKIX)-

sentences . Such an IE—i- sentence p i s sa t i s f i ed by an IX—i-—mode1 MA exac t ly i f MA

viewed as the dKIZ)—algebra joinIZ(MA) sa t i s f i e s p.

Definition 3.15 [ISen1]

The implementation sentence functor without hidden components i s given by

ISen1 := Sen 0 w: ISIG + SET.

Definition 3.16 [I i]

Let IE e_ISIG, MA e IMcd(Iz) and p e ISen1(IE). MA satisfies p, written

i f f joinI£(MA) l §¢ (12)
p .

Fact 3 .17 [sat isfaction condit ion]

U 1: I21 + 122 a ISIG .
v MA c IMod(122) .

u p e ISen1(IZ1) . ~ _
HA [$122 ISen1(t)(p) <=> IMbd(r)(MA) I;IE1 p .

3 .5 The ins t i tu t ion

S ince the sa t i s fac t ion cond i t ion ho lds the no t ions de f ined above cons t i tu te an

ins t i tu t ion . Like speci f icat ions are defined as the theories of the SPEC~inst i tut ion,

implementa t ion spec i f i ca t ions w i l l be de f ined as the theor i e s o f th i s new

ins t i tu t ion .

Definition 3.18 [IMP1—institution]

IMP1-institution := <ISIG, ISen1, Inca, l i >
i s the inst itution of implementation specifications without hidden components .

IMP1 i s i t s category of theories and it i s ca l led the . ca tegory of implementat ion

spec i f icat ions without hidden components.

S ince ISIG i s cocomple te , genera l in s t i tu t ion proper t i e s t e l l u s tha t IMP1 i s

cocomple te as wel l .

Fact 3.19 [colimits] IMP1 i s cocomplete.

3 .6 Examples: Implementing se t s by l i s ts and l i s t s by array—pointer pairs

In our examples we wil l assume that the error constants are impl i c i t ly dec lared . As

sentences we wi l l u se f i r s t order formulas where the bound var iab le s are no t

in terpre ted as bot tom elements. Bes ides we need some constraint mechanism to exclude

unreachable elements (can initial.[HKR so] , data.[BG so] , hierarchy [sw 82] , or
algorithmic constraints [BV 85bl).

We wi l l show how several we l l known implementations o f s e t s by l i s t s can .be developed

s tepwise and hand in hand with the implementing speci f icat ion.
8

On the abs t r ac t s i de we have t he specification SET o f s e t s w i th t he empty s e t a s

cons t an t , and ope ra t i ons t o i n se r t an e l emen t , t o de t e rmine o r r emove the minimum

element in a s e t , and to t e s t fo r the empty s e t o r fo r the membership of an e l emen t .

Beside s tandard s e t s , there may be bags o r unreachable e l emen t s o f so r t s e t . The s e t

e l emen t s a r e desc r ibed in the spec i f i ca t i on LIN-OED which int roduces a so r t e l em wi th

an equa l i t y ope ra t i on and an a rb i t r a ry r e f l ex ive l i nea r o rde r ing . The

subspec i f i ca t i on BOOL of LIN-0RD spec i f i e s the booleans w i th the usual operat ions

t rue , f a l s e , no t , and , o r .

On the concre te s ide the spec i f i ca t ion LIST extends LIN-0RD t o s tandard l i s t s w i th

the cons t an t n i l , t he ope ra t i ons cons , c a r , and cd r , and a t e s t n i l ? fo r t he empty

l i s tn A l l l i s t s mus t be generated from the e lements by n i l and cons . LIST i s ex tended

to LIST-S by in t roduc ing names fo r t he s e t s imu la t i ng ope ra t i ons , bu t w i thou t

r e s t r i c t i ng these opera t ions in order t o ob t a in a var ie ty o f d i f f e r en t mode l s .

P re sen t a t i ons o f t he spec i f i ca t i ons men t ioned so f a r a r e g iven in Figure BémKa) . The
t s en t ences pa r t s are no t e l abo ra t ed s ince t he neces sa ry f i r s t o rde r fo rmu la s a r e

s tandard and s ince we d id no t wan t t o go i n to the de t a i l s o f t he cons t r a in t mechan i sm

to be u sed , because ou r imp lemen ta t i on concep t abs t r ac t s f rom these de t a i l s

comple te ly .

We can give a f i r s t s imple i -specif icat ion.I :SET/LIST-S from SET to LIST-S:

i spec I:SET/LIST-S =

with the signature morphism

oS/LS: Sig(SET) + Sig(LIST—S)
se t + l i s t
empty + nil
empty? + n i l ?
in se r t + l - inser t
in? + l—in?
min + 1—min
remove-min + l—remove—min
x + x for x e Sig(LIN—0RD)

I t mere ly de f ines t he s igna tu re morph i sm O S / L S t r ans l a t i ng so r t s e t t o l i s t and

trans la t ing the s e t operat ions t o the i r s imulat ing l i s t Opera t ions wi thout r enaming .

the s ignatures of the common subspec i f ica t ions LIN-0RD and BOOL. S ince I:SET/LIST—S

con ta ins no i—sen tences , i t s i -mode l s compr i se a l l poss ib le representat ions o f s e t s

by l i s t s .

I:SET/LIST-S can be r e f ined in va r ious ways by add ing i - s en t ences r e s t r i c t i ng t he

abs t r ac t ion Opera t ions o f so r t s e t , such that en;

- all l i s t s represent se t s (IA:SET/LIST-S),
— only l i s t s w i th .un ique en t r i e s may represent s e t s (IUfiSET/LIST-S) ,

only sorted l i s t s may represent se ts (IS:SET/LIST-S), o r
only sorted l i s t s with unique entries may represent sets (ISUtSET/LIST-S).

The l a s t i - - spec i f i ca t i on r e f ine s no t on ly I:SET/LIST—S, but also IU:SET/LIST-S and
IS :SET/LIST-S . The i -Spec i f i ca t i ons a r e g iven in F igu re 3 .21 whe re we use abs - s :

°S/LS(S) + s as the abs t r ac t ion opera t ion name o f so r t s .

Cor re spond ing to t he fou r a l t e rna t ive r e f inemen t s o f I:SET/LIST-S we cou ld now

q

spec i fy alternative r e f inemen t s o f t he conc re t e LIST—S spec i f i ca t i on by add ing

sen tences f i x ing t he s e t s imu la t i ng ope ra t i ons . The r e su l t i ng LIST-S r e f inemen t s

cou ld i n turn be used to refine the respective i - spec i f i ca t ions by replacing LIST-S

by the corresponding LIST-S ref inement.

He re , howeve r , we wan t t o ca r ry ou t t he development i n . ano the r d i r ec t i on by

implement ing the l i s t s by array-pointer pairs. For this purpose we cons ide r the three

specif ica t ions l i s t ed in Figure 3 .20(b) : PAIR introduces standard arrays and pairs o f

an array wi th a natural number. PAIR-L f ixes the new LIST s imula t ing operat ions such

tha t p-ni l y ie lds the new array w i th poin ter ze ro , panil? checks whe the r the po in t e r

i s ze ro , p-cons puts an e l emen t in the f ield ind ica ted by the po in te r and increments

the po in t e r by one , p—car ge t s t he e l emen t i n t he f i e ld i nd i ca t ed .by the po in t e r

minus one , and p—cdr decrements the poin ter by one. In con t ras t , the new opera t ions

in PAIR-LS are un res t r i c t ed i n o rde r t o a l low for a var ie ty o f i -mode l s d i f f e r ing i n

the i r SET s imu la t i ng ope ra t i ons .

In t he i - spec i f i ca t i on implementing LIST by PAIR-L given by

i—spec I:LIST/PAIR-L =
i s i g (IL/LP: LIST + PAIR-L

isentences
V p : pairs .

(p-ni l?(p) = true => abs-1is t (p) = ni l) -&
(p-ni l?(p) = false =>

abs- l i s t (p) = cons(abs—elem(p—car(p))‚abs-list(p—cdr(p))))

with the signature morphism
oL/PL : Sig(LIST) + Sig(PAIR—L)

l i s t + pairs
op + p-op for op a {ni l , n i l ? , cons , car , cd r}
x + x otherwise

the abst ract ion operation abs- l i s t is fixed. This i -specif icat ion can be extended to

an i -speci f ica t ion implementing LIST-S by PAIR-LS:

ispec I:LIST-S/PAIR—LS = I:LIST/PAIR-L u
isig ”LS/PLS‘ LIST-S + PAIR-LS

with the signature morphism
”LS/PLS‘ Sig(LIST-S) + Sig(PAIR-LS) .

1-op + p-op for Op 6 {insert , in? ‚min - ‚ r emove -min}

x + UL/PL(X) otherwise

comprising a l l i -models wi th fixed LIST simulating operations but wi th varying SET

simula t ing operations. Figure 3.22 shows the relations between the specifications and

i - spec i f i ca t i ons developed so far.

4 . Implementation specif icat ions with hidden components

The inc lu s ion o f h idden spec i f i ca t i on pa r t s i n to an ADT spec i f i ca t i on t echn ique

usually extends i t s expressive power ([TWW 82] , [BBTW 81]) , and when describing the

compos i t i on o f a lgeb ra i c imp lemen ta t i ons h idden componen t s a r e needed fo r t he

intermediate specification part ([EKMP 82]) .
'We wi l l now extend the IMP1- ins t i t u t i on by so—cal led h idden speci f ica t ion sentences

which a r e comparable to an a lgebra ic spec i f i ca t ion mechanism ca l l ed func to r image

r e s t r i c t ion in [Ehg 81] , reflections in [EWT 82] and derive „ . from . „ bw-construct

' ‘D

sorts elem spec PAIR = LINFORD u NAT u

ops eq, le: elem elem + bool sorts array, pairs
sentences ... < spec i fy ing e’q as pg new: + array
'""‘E§EEIEty and le as an arbitrary put: array nat elem + array

reflexive linear ordering > get: array nat * elem
pair: array nat + pairs

spec SET = LIN40RD u pa: pairs + array
sorts set pn: pairs + net
ops empty: + set sentences ...<specifying standard

___ insert: elem set + set anrays and pairs of an array
min: set + elem with.a natural number)

remove-min: set + set
empty?: set + bool spec PAIR-L = PAIR u
in?: elem set + bool ggg_p-nilz + pairs

sentences .m. < specifying the set p-ni1?: pairs + bool
operations with their usual p-cons: elem pairs + pairs
meaning, but not necessarily p-car: pairs + elem
excluding non-standard sets > p—cdr: pairs + pairs

sentences uu<specifying the

spec LIST = LIN-0RD u LIST—simulating such that

sorts list p—cons puts an elementinto

ops nil: + list the array and increments the

.__. cons: elem list + list _ pointer by one, p-cdr
car: list + elem decrements the pointer by one,
cdr: list + list etc.)

nil?: list + bool
sentences .„ —< specifying standard spec-PAIRyLS = PAIR-L

lists over elem generated by gp§_p-finsert: elem pairs + pairs
nil and cons > p-in?: elem pairs + bool

p-min: pairs + elem
spec LIST-S = LIST u p-remove—min: pairs + pairs

ops l-insert: elem list + list
'_—_ l—min: list + list

l-remove-min: list + list
l—in?: elem list + bool

Figure 3.20 The ADT specifications in the implementations of sets by lists (a)
and of lists by array-pointer pairs (b)

ispec IA:SET/LIST-S = I:SET/LIST-S u
isentences

(H x: list . V e: elem.
abs-set(cons(e,x)) = insert(abs-elem(e),abs-set(x)))

ispec IS:SET/LIST—S = I:SET/LIST—S u
isentences

(V e, e1, e2:elem . V x: list .
abs-set(cons(e,nil)) = insert(abs-elem(e),empty) &
1e(e1‚e2) = true & eq(e1‚e2) = false =>

abs—set(cons(e1,cons(e2,x))) =
insert(abs-elem(e1),abs-set(cons(e2,x))) &

1e (e2 , e1) = true & eq(e1,e2) = false =>
abs-set(cons(e1,cons(e2,x))) = error-set)

ispec IU35ET/LIST—S = I:SET/LIST—S u

isentences
(V e, e1, e2: elem . u x: list .

abs—set(cons(e,nil)) = insert(abs—elem(e),empty) &
(in?(e,abs—set(x)) = true =>

abs-set(cons(e,x)) = error-set))

ispec ISU:SET/LIST-S = IU:SET/LIST—S u IS:SET/LIST—S

Figure 3 .21 Some i-specifications implementing sets by lists

11

ISU:SET/LIST—S

}” R
/ \;
IS:SET/LIST-S

'7
I

IU:SET/LIST—S . ' V I:LIST—S/PAIR-LS .

" 7“°x«\„_H_5\J „wJ’flflp Ir AHMHEu

SET“; I _ I PAIR-LS

M at
IA:SET/LIST-S - ' I

R. I / I
\\; b &

I:SET/LIST—S L

J ‚„‚„„„afI=LIST/PAIR-L _ L
LIST

(khxflq“1>PAIR-L

> PAIR

LIN—0RD ..

IBOOL

Figure 3.22: -The relation between the specifications and i-specifications

_ EAlg
A e EAlg(SPh)' +_ _______ sph

' +
EAlg(6) | EAlg(6) | l 5

+ I l
EAlg(6)(A) . + EAlg |

= 8 EA13(¢(IE1)) +------ $(IZ1)
joinIz1(IMOd(T)(MA2)) + +

+ I I
joinIz1 ! jOinIg1 | I Ü

. ' . IMod |
IMOd(t)(MA2) e IMOd(IZ1) +—--——--- 121

+ + |
IMod(t) IHOd(t) | | r

| IMbd +
MA2 & IMod(132) +. 122

Figure 4.2 Satisfaction of a hidden specification sentence

<SPh, 5: ¢(IZ1) + SPh, T: 121 + 122>

l2

i n [SW 83]. W h e r a s s o f a r an i m p l e m e n t a t i o n s e n t e n c e o v e r a n i - s i g n a t u r e I E i s an

ordinary sentence over the vocabulary w(IZ), we now extend.¢(IZ) by arbitrary hidden

sorts and operation symbo l s from an ordinary ADT specification SPh via some

signature morphism &: MIZ) + Sig(SP_'h).

Definition 4.1 [hidden specification sentence, HSenJ

Let SPh s SPEC, ö e /SIG/ and T a /ISIG/. An Izg-hidden specification sentence.is

a triple
sh = <SPh, ö: w(Iz1) + Sig(SPh), r: IE1 + I22>

and HSen(IZ2) denotes the set of all IZZ—hidden specificatipn sente
nces. The

translation of sh by 1?: 122 + IZ’ is the IXf—hidden specification sentence given

by HSen(t’)(sh) := <SPh, ö, I’Ot>

Note that the third component '1' of a hidden specification sentence allows for the

translation of such sentences by arbitrary (i-signature) morphisms, thus surving the

same function as the second component of the data constraints in.[
GB 83].

Writing sh for an IE2—i~specification we are interested only in those IEZ
-i-models MA

that can be ‘extended' to SPh models: MA satisfies sh iff MA forgott
en along T and

viewed as a ¢(I£)—algebra'is identical to some SPh—algebra A where the hidden p a r t of

A is forgotten along 5. This situation is illustrated in Figure 4.2 and made precise

as follows:

Definition 4.3 [satisfaction I; of a hidden specification sentence]

v MA 8 IMod(I£2) . .
MA2 |; <sph‚5‚r> <=> 4 A e EAlg(SPh) . EAlg(6)(A) = joinIE1(IMod(t)(MA))

Example 4.4 [implementing sets via lists by array-pointer pairs]

An i—sPecification describing the composition of ISU:SET/LIST~S an
d I:LIST—

S/PAIR-LS is '

ispec ISU:SET/PAIR-LS

hidden—spec-sentences <S-LS-PLS, &, id>

with the hidden specification

§p§g_S—LS-PLS = SET u LIST—S u PAIR—LS u

22s abs-setS/LS: list + set
abs-listLS/PLS: pairs + list
abs-setS/PLS: pairs + set

sentences

i-sentences(ISU:SET/LIST—S) u

i—sentences(I:LIST-S/PAIR—LS) u

(V p: pairs .
abs-setS/PLS(p) = abs-setS/Ls(abs—list/PLS(p)))

where the abstraction Operations of the individual implementat
ions are indexed

correspondingly and where & maps abs-set to abs-sets PLS' Note that for every

denoted ifmodel
(APAIR-LS’Q’ ASET> there must exist a LIST-S model

ALIST-S and

abstraction functions a1 and a2 such that
<ALIST-S’a1 ’ASE > is an i-model of

ISU:SET/LIST—S, <APAIR—LS‚02‚ALIST_3> is an i-model of I:LIST-S/PAIR—LS, and a is

the composition of a1 and

13

Fact 4.5 [satisfaction condition for hidden specification sentences]

V 1’: I£2 + IX’ 8 ISIG .
v MA e IMod(IZ’)

V sh e HSen(I£2) _

MA [$12, HSen(T’)(sh) <=> IMod(T')(MA)
[3129 sh.

Definition 4.6 [IMP—institution, IMP]

IMP—institution := <ISIG, ISen, IMod, |i>
is the institution extending the IMP1—institution by ISen(Iz):= ISen1(IE) u

HSen(IZ). IMP is the category of theories of this instituti
on and called the

category of implementation specifications (with hidden
 components).

5 . Normal forms

The introduction of hidden specification sentences allows u
s to derive a very useful

normal form result:

Fact 5.1 [normal form]

Any i-specifioation ISP e IMP can be transformed into a n equivalent i—

specification ISP’ in normal form having exactly one hidden specification sentence.

Proof: (idea) Given two hidden)specification sentences

shj = <SP , j : ¢(IE.) +Sig(SP), Tj : 123+ I£>

we can merge S L 1 Jand sh2
;Ly taking the coproduct SmP of SP1 and SP2 , taking the

coproduct 1300p of 121 and 182 , and the uniquely de te rmined morphisms p' and I'

as given in

sh = <SPcop,p w¢(12p) + Sig(Spcop), r’: IECOP + Iz>
To show that

IMod(I£, {sh1,sh2}) = IMod(Iz, {sh})
and the generalization of this statement to (possib

ly infinite) sets of sentences

relies on the fact that the model functor EAlg of
the underlying SPEC-institution

respects coproducts.

The i—specification ISU:SET/PAIR—LS of Example 4.4 is in normal form.

6. Composition

6.1 Composition of'implementation signatures

-The composition of i-signatures is given by
the composition o f their signature

translations.

Definition 6.1

For 123. = <SPaJ-‚ dj, Sc> with j e {1.2} and SPc2 = SPa1 the composition of 121

and 122 is given by

1:31 . I 2 2 == <SP81 , 02 0 O 1 , 'SPC2>

Obviously, this composition operation is associ
ative.

6.2 Composition of implementation models

Having already defined the composition of i—signatures the composition of an
1 2 2 — 1 -

l?

model MA2 = <A02,u2,Aa2> with a n IX1-i— —mode1 MA1 = <Ac1,a1,Aa1> where Aa? - Ac,

should yield an 121 o IEZ-i-model resulting from the composition of their abstraction

fulctions. However, in order to be able to compose the abstraction functions we m
ust

first apply the forgetful functor PEAlg(01) to c2:

Fact 6.2 [composition of implementation models]

(1) The composition of MA? and MA, as given by
MA2 o MA1 := <A02, a, o PEAlg(p1)(02), Aa1>

is an 121 O IZZ-i—model

(2) The composition operation on i-models is associative.

Given two i-specifications ISP1 and ISP2 with composable i-signatures, we can now

compose all their respective i-models and obtain a subcategory of IMod(I£1 I 122).

Definition 6.3 [composition of i—specification model categories]

IMod(ISP2)O IMod(ISP)
is the full subcategory of IMod(IZ o 122) generated by all M12 0 MA, with t e

IMod(ISPj).

Fac t 6.4 The composition operat ion on i-model categories is associative.

6.3 Composition of implementation specifications

In Section 2 we already motivated our requirement that the compositions of i—

specifications and their i-model categories should be compatible. With the notions

introduced above me can formalize this compatibility condition by requirin
g

IMod(ISP1 . ISP2) = IMod(ISP2) . IMOd(ISP1)

At least two questions arise immediately: Does there exists an i-specification ISP =

ISP1 O ISP2 describing the composition of ISP1 and ISP2 such that the compatibility

condition is satisfied? And secondly, is there a constructive way to generate ISP for

given ISP1 and ISP2? The following fact answers both questions in the affirmative.

Fact 6.5 [composition of i-specificationsj

Far any two i—specifications ISP1 and IS‘P2 with composable i—signatures there

exists an i—specification

ISP1 O ISP2
such that the compatibility condition is satisfied.

Inoof} (idea) In order to generalize the construction carried out in Example 4„4
 we

construct normal form presentations ISPn1 and ISPn2 which exist according to Fact

5.1, and perform the following steps:

(1) Combine the hidden specifications SPh1 and SPh2 of ISPn1 such that the

middle specification SPa2 = SPc1 is identified in this combination.

(2) Add the abstraction Operations of 121, I22, and I21 0 122, and add the
corresponding composition axioms.

Steps (1) and (2) yield a hidden specification SPh describing a normal form

representation of ISP, ° ISP2.

As an illustration of Fact 6c5 consider again the composed i-specification

ISU13ET/PAIR-LS from ExamplezLA.which was constructed correspondingly yie
lding

IEMESET/LIST-S O I:LIST—S/PAIR-LS: The intermediate LIST-S specification is contained

:5-

in the hidden spec i f i ca t ion , and the i—models denoted by the composed imp lemen ta t ion

are exac t ly those mode l s that can be composed from the mode l s o f the two ind iv idua l

imp lemen ta t i ons . S imi l a r ly , we cou ld compose IzLIST—S/PAIR-LS wi th any o f the o the r

fou r s e t—by- l i s t imp lemen ta t i ons (c . f . F igure 3 .22) , y i e ld ing four d i f f e r en t

imp lemen ta t i ons o f s e t s by array-pointer pai rs .

Fact 6 .6 The compos i t ion operat ion on i—specif icat ions is a s soc ia t ive .

Proof : By Fac t 6 .4 since the compatability condit ion ho lds .

7 . Implementat ion specif icat ions in the ISDV system

As already poin ted ou t in Sec t ions 1 and 2 , there i s a c lo se correspondence be tween

loose spec i f i ca t ions and i—spec i f i ca t i ons w. r . t . t he i r r o l e i n so f tware deve lopmen t .

Loose spec i f i ca t i ons provide a means fo r a fo rmal ized s t epwise ref inement s cena r io

and the s ame i s true for ou r imp lemen ta t i on concept . The add i t i on o f new cons t r a in t s

to a l oose spec i f i ca t i on corresponds to making fur ther des ign dec i s ions ; l i kewi se ,

t he add i t i on o f i - s en t ences t o an i—spec i f i ca t i on co r r e sponds t o fu r the r de s ign

dec i s ions influencing e.g. the ef f ic iency o f ce r t a in opera t ions (c . f . the s e t -by - l i s t

example i n Sec t ion 3 .6) . Ca re mus t be t aken because t he p roces s o f r e f inemen t may

y ie ld an i ncons i s t en t spec i f i ca t i on hav ing no mode l s any more , and the s ame may

happen to i - spec i f ica t ions . Fo r bo th si tuations the s ame techniques can be u sed to

cope wi th this p rob lem, e.g. su i tably restr ic t ing the class of admiss ib le sentences

o r providing a constructively def ined mode l . Such a mode l may be the program obta ined

gradual ly during the development p rocess .

The l a t t e r app roach i s suppor t ed i n t he spec i f i ca t i on deve lopmen t l anguage ASPIK

wi th in the In tegra ted Sof tware Development and Ver i f i ca t ion (ISDV) sys tem (|_BV85bJ,

[BOV 86]) . ASPIK p rov ides a un i fo rm in t eg ra t i on o f h igh l eve l ax ioma t i c and lower

l eve l cons t ruc t ive spec i f i ca t i on t edhn iques . An e s sen t i a l pa r t o f spec i f i ca t i on

develoPment in ASPIK is the gradual ref inement o f ax iomat i c pa r t s by cons t ruc t ive ly

de f ined mode l s . Tha t means an i n i t i a l l y comple t e ly ax ioma t i c spec i f i ca t i on i s

gua ran t eed to be cons i s t en t i f i t s r e f inemen t p roces s can be ca r r i ed t h rough to a

comple t e ly cons t ruc t ive spec i f i ca t i on . Th i s app roach p rov ides a l so a means fo r

cop ing wi th t he cons i s t ency p rob lem o f composed i - spec i f i ca t i ons : I n gene ra l a

composed i -specif icat ion may have no models although i t s component pal-specifications

have mode l s . Th i s canno t happen i f t he i n t e rmed ia t e spec i f i ca t i on i s r e f ined to a

mode l that l i e s i n bo th c l a s se s o f i -mode l s .

Bes ide cons i s t ency , t he SW-proPe r ty o f i—spec i f i ca t i ons i s ano the r mode l

theo re t i ca l l y def ined no t ion : Accord ing to the approach o f Sanne l la and Wi r s ing in

[sw 821 we call an i—speci f ica t ion ISP = <IE, IE> with I): = <SPa, o, SPc> an sv—

imp lemen ta t i on i f IE i s emp ty and i f f o r eve ry SPc -mode l Ac the re ex i s t s an 12 -1 -

mode l <Ac , a , Aa> . Th i s de f in i t i on shows tha t i n t he app roach o f [SW 82] syn t ax and

semant ics o f implementat ions are not clearly dist inguished. Based on the work o f [SW

82] , Urbassek [Urb 85] has developed syntact ic c r i t e r i a for i - spec i f i ca t i ons in ASPIK

that guarantee the SW-proPerty. While these c r i t e r ia can a l so be used to guarantee

the cons i s t ency o f composed i - spec i f i ca t i ons , l e s s res t r ic t ive syntact ic c r i t e r i a

should be developed that re lax the SW-property so that not every concre te mode l must

implement an abs t rac t one .

8 . Conclusions

Our imp lemen ta t i on concep t fo r l oose abs t r ac t da ta type spec i f i ca t i ons comple t e ly

d i s t i ngu i shes be tween the syn t ac t i ca l l eve l o f spec i f i ca t i ons and the s eman t i ca l

level of models by introducing the notions o f implementa t ion s ignatures , - mode l s ,

l 6

and - specifications. It provides the notion of implementation refinement which is

not present in other approaches. An implementation i n the approach for Clear-like

specifications proposed in [SW 82] is - in our terminology — an i-signature with the

semantic condition that for every abstract algebra there is a concrete one with an

abstraction function in between. Concepts like those of [GM 8 2]
 and [Sch 8 2] are

based on behavioural abstraction and have been prOposed for modules, and [Hup 80]

considers implementations between canon specifications. The implementation concept

for the kernel language ASL o f [SW 8 3] merely requires that the abstract

specification i s included in the concrete one. This simple notion is based on the

fact that, a s a semantical language, ASL has very powerful specification building

operations which however may not be present in a language for ADT specifications.

In e.g. [GM 82], [sw 82], [sw 83] and in the initial approach of [mm 82]

implementation composition i s defined and i s eXplicitly shown to be associative.

Whereas in the former composition is a totally defined operation this is true in

[EKMP 82] for so—called weak implementations and for a particular class of strong

implementations. 0f the cited approaches only [EKMP 8 2] distinguishes completely

between syntactical and semantical levels which is a prerequisite for studying the

compatability problem o f a composition operation. However, this problem i s not

addressed explicitly since every specification denotes a
unique algebra and no

explicit definition of a semantical composition operation is given.

Whereas the composition discussed in this paper is usually called vertical there is

also a horizontal composition arising in the context of parameterized specifications

(see em; [EK 82], [CM 82], [SW 82]). For the implementation concept proposed
here we

showzhaLBV 85b] that horizontal composition and instantiation o
f parameterized

implementations are compatible with vertical composition
, allowing to combine

implementation specifications interchangeably in different directions with the same

result.

References

[BBTW 8 1] Bar stra, J.A., Broy, H., Tucker, J .V . ‚ Wirsing, H.: On the power of
al e raic s ecifications. Proc. 10th MFCS St b . -
LN S Vol. 1 8, PP- 193_204’ 1981. ._ , r ske Pleso, Czechoslovakia.

[BG 80] Burstall, RJL, Go uen , J .A . : The semantics o f Clear, a specification
language. Proc. of dvanced Course on Ab t - .
COpenhagen. LNCS Vol.86, pp. 292—332. s ract Software Specifications,

[130v 86] Beierle c. Olthoff w. Voß A.: Towards a formali t‘
development process.’Pro’c. Software Engineering ’86, ZSaoultgämopfizääf E51°gßtgare

[BV 853] feifirle, C., VOßä A.: Im lementation specifications. In: H.—J. Kreowski
ed Recent Tren s in Da a e s ec'f' ' _ . _
16, Springer Verlag, 1985??? p 1 ications Informatlk Fachberichte

[EV 85b] Beierle, C., Voß A.: Algebraic specifications and im 1 m t t‘ '
in tegrated software development and verfication systelrri.eliteelmofil Sglgf-niéu
FB Informatik, Univ. Kaiserslautern joint SEKI-Memo containi the Ph.D:
thesis by Ch. Beierle and the Ph.D. thesis by A. Voß), Dec. 198

[Ehc 82] Ehrich, H.—D.: On the theory of specification, Implementation and
Parametrization o f Abstra t D t .pp. 206-227. c a a Types JACM Vol. 29, No. 1, Jan. 1982,

[Ehg 81] Ehrig, H.: Algebraic Theory of Parameterized Specifications with
Re uirements. Proc. 6th 0110 uium on Trees in Al b '
As esiano, C. Böhm, eds. ’ LN S 112’ pp. 1_24 ’ 19gina and Programming (F:.

[EKMP 82] Ehrig, H. Kreowski H.-J. Mahr, B. Pada ‘t P - '-
$31 2lenfigntzaggio2n'5ff Abstract Data Types. Theor. Comwpttyer Scienfuel 3.15.236?

[EKP 7s] Ehrig, H.,Kreowski, H.J.,Padawitz, P.: Ste wise s ecification and
' i m lementation of abstract data t . P _

1938, pp, 2 0 3 —
2 0 6 . YPeS roc th ICA P, LNCS Vol. 62,

[EWT 82] E h r i g , H., W a g n e r E. T h a t c h e r J.: A 1 e b r a i c Const '
sagggifications and canonical form res’ults. Dragt version, TU gearJlrilrE? Jazz

1;

[Ga 8-3]

[GB 83]

[GH 82]

[GW 78]

[mp so]

[HKR so]

[Li 83]

[Sch 82]

[sw 82]

[sw 83]

[TW 82]

[Urb 85]

Ganzinger, H.: Parameterized S ecifications: Parame te r Passing and

I m lamentation with r e spec t t o bservability. ACM TOPLAS Vol. 5, No.3,

Ju y 1983 . pp- 318-354.

Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory f o r

Program Specification. Draft version. SRI International and University of

Edinburgh, January 1983.

G o g u e n , J.A., M e s e g u e r , J.: U n i v e r s a l Realization, P e r s i s t e n t
Interconnection and Im lementation of Abstract Modules. Proc. 9th ICALP,

LNCS 140 , 1982 , pp. 26 ‚ -281 .

Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra aproach to

the specification correctness, and implementation of abstract ata types,

' n: Cur ren t T ren s in Programming Methodology, Vol.4, Data Structuring

ed. R. Yeh), Prentice-Hall, 1978, pp. 80-144.

Hu bach, U.L.: Abstract implementation o f abstract data types. Proc. 9th
M F S, Rydzyna, Poland. LNCS, Vol. 88, pp. 291-304, 1980.

H u p b a c h , U.L., K a p hengst, H., Reiche l , H.: Initial a l g e b r a i c

s ecifications of data types, parameterized data types, and. algorithms.
V B Robotron, Zentrum für Forschung und Technik, Dresden, 1980.

Lipeck U.: Ein algebraischer Kalkiil für einen strukturierten Entwurf von
Da enabstraktionen. Dissertation. Forschungsbericht Nr. 148 , Universität
Dortmund, 1983 .

Schoett, 0.: A theory of program modules, their specification and
implementation. Draft report, Univ. of Edinburgh.

S a n n e l l a , D.'I‘., W i r s i n g M.: I m l emen ta t i on o f a r a m e t e r i z e d
specifications, Proc. 9th I ÄLP 1982, CS Vol. 140, PP 47? — 4

Sannella, D., Wirsin , .: A kernel language for algebraic specification
and implementation. roe. FCT, LNCS Vol. 15 , 19 .

Thatcher, J .W. , Wagner , E.G. , Wrigh t , J .B . : Data Type Specification:
Parameterization and the Power of Specification Techniques. ACM TOPLAS
Vol. 4 , No. 4 , Oct. 1982, pp. 711-732.

Urbassek, C.: Ein Implementierun skonze t für’ ASPIK-Spezifikationen und

Korrektheitskriterien. Diploma t esis, niv. Kaiserslautern, 1985

