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Abst rac t

In  an  approach  for  the  implementa t ion  o f  l oose  abs trac t  da ta  type

spec i f i ca t ions  Hun:comple te ly  d i s t ingu i shes  be tween  the  syntac t i ca l

level  o f  speci f icat ions  and the semantical  level o f  mode l s ,  vert ica l

implementa t ion  compos i t i on  i s  de f ined  compat ib ly  on  bo th  l eve l s .

Implementations have signatures,  mode l s ,  and sentences where  the l a t t er

a l so  inc lude  h idden  components ,  wh ich  a l lows  for  use fu l  normal  form

resu l t s .  We i l lus trate  the s t epwise  development o f  implementat ions  as

we l l  a s  the i r  compos i t i on  by  some  examples  and  descr ibe  the

incorporat ion  o f  the  concept  in to  an integrated software development

and veri f icat ion sys tem.
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1 . _ Introduction

In the early days of abstract data types merely fixed ADP specifications with only isomorphic

models were studied. Later on, so-called loose approaches were suggested where one considers

not only the initial or terminal model of a specification but all models. As one of its main

advantages a loose approach is better suited to capture the process of software development:

One can start with a small and s t i l l  vague specification with many different models, and then

refine such a specification gradually by adding new axioms, sorts, and operations, thereby

restricting the class of admissible models. During this process, lower level constructive

defini t ion techniques may be used to refine the higher level axiomatic definitions so that

one finally arrives at a concrete problem solution, which could be a program or a functions].

prototype.

An imp lemen ta t ion  re la t ion  be tween  loose  specifications should reflect this refinement

scenario: among the many different models of the source and target specification one should

be able to choose those of interest by gradually refining the implementation so that the set

of  mode l s  i s  res t r i c ted  accordingly. Our implementation concept  introduced in  [BV 85a ]

generalizes the concept for implementations of  loose specifications proposed by Sannella and

Wirsing in [SW 82], which in turn generalizes the fixed case (e.g. [GW 78], [Ehe 82], [EXP
7s], [EKMP 82], [Ga 83]). By using the notion of institution ([GB 83]) our approach abstracts
from the types of  sentences used in the underlying ADT specification method.

One of the central problems when dealing with  implementations i s  their composability. In this

paper we  show how our concept  o f  implementa t ion  spec i f ica t ions  a l l ows  for a two  level

approach: The composition of implementations is defined both on the syntactical level of

specifications and on the semantical level of models. Both levels are closed under their

composition operations which are associative. In particular, by using a strong normal result

we show that syntactical and semantical compositions are compatible with each other.

In Section 2 we summarize the basic idea of our implementation concept as given in [BV 85a],

elaborate the requirements a composition operation should fulfill, and briefly state the

asSMptions about the underlying loose ADT specifications. In Section 3 we introduce the

institution of implementation specifications without hidden components, and in Section 4‘ we

extend this institution by introducing hidden parts. Section 5 contains our normal form

theorem, and in Section 6 we develop syntactical and semantical composition operations and

show their  compatibi l i ty.  Section 7 describes the incorporation of our concept into an

integrated software deve10pment and verification system, and Sect. 8 contains a summary and a

comparison.

2 .  Implementation specifications: Basic idea and requirements for their composition

As compared to  fixed specif icat ions ,  in the l oose  case  we  s t i l l  have spec i f ica t ions ,

signatures, signature morphisms, etc, the essential difference lying in the number of models

being considered. Therefore, an implementation for loose specifications should. at least

consist of an abstract specification, a concrete specification, and a signature morphism

translating the abstract signature to the (possibly extended) concrete signature. Since a
concrete specification can always be extended before giving the implementation, we will

choose the technically simpler approach and omit any extension of the concrete specification

as part of the implementation. .
In [SW 82 |  Sannella and Wirsing require that for every concrete model there should be some

abstract model  and an abstraction function connecting them. If  such a complete se t  of  triples

exists, the concrete specification is  said to implement the abstract one, otherwise i t  does

not. This is an implicit, non—constructive approach which gives no room for a notion of

refinement between implementations since there is  no way to characterize and restrict the set

of triples — e.g. by constraints on the concrete or  abstract models - any further.

As already pointed out above, since the idea of loose specifications is to consider at first
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an arbitrarily large set of models and to res tr i c t  this set stepwise by refining the

specification, we think the adequate idea of implementations betwee
n loose

specifications is to accept all meaningful combinations o
f an abstract model, a

concrete model, and an abstraction function and to restrict them s
tepwise by refining

the implementation.

To realize these ideas we introduce the notion of implementa
tion models:

A simple implementation <SPa,o,SPc> consisting of an abstract specification SPa,

a concrete one SPc, and a signature translation 0 between them denotes the set of

all triples consisting o f  an abstract model Aa, a concrete one Ac, and a n

abstraction.function a from the concreteeto the abstrac
t model.Such a tripel

<Ac,a,Aa> is called an implementation model. As in the fixed case, the

abstraction function may be partially defined and it mus
t be surjective and

homomorphic.

(Note that in both cases the first component contains the sour
ce and the third

component the target of the function in the middle component.)

Now we extend these simple implementations to a .concept incorporating a notion of

refinement between implementations. Such a refinement shou
ld restrict the set o f

implementation models which can.be done componentwise by

_ restricting the set of abstract models,

— restricting the set of concrete models,

— restricting the set of abstraction functions.

In the framework of loose specifications the set of models - like the abstract and

t h e  concrete ones - i s  r e s t r i c t e d  by a d d i n g  s e n t e n c e s  t o  t h e  r e s p e c t i v
e

specification.

Since the abstraction functions Operate on  both concrete and abstract carriers we

pr0pose to view them as algebra operations from concrete t
o abstract sorts. These

'0perations can be restricted as usually by adding sentences over both the concrete

and the abstract signatures extended by the abstraction ope
ration names. Thus in a

first approach we admit arbitrary sentences over the abs
tract and the concrete

signatures extended by the abstraction operation names, and 
later on we will extend

this vocabulary by arbitrary hidden sorts and operations.
 These sentences will be

called implementation sentences.

Summarizing we prepose an implementation specification ISP
 = <IE ,  IE> to be

- a simple implementation I2 = <SPa,o,SPc>

- together with a set of implementation sentences IE an
d

— denoting all implementation models of the simple implementation which satisfy

the implementation sentences.. '

Analogously to specifications which consist of a signature in the simplest case, a

simple implementation like IE will also be called an implementation signature.

W e  already claimed that an implementation should be refinable by adding m
ore

implementation sentences to it and thus reducing the class of implementation models.

This idea is extended analogously to loose ADT specifications by admittin
g a change

of signature: There, a specification morphism is a signature
 morphism such that the

translated sentences of the refined specification hold in th
e refining specification.

Thus an implementation morphism or a refinement between two implementations is an

implementation signature morphism such that the translated sentences of the refined

implementation hold in the refining one.

“Since an implementation signature I23 = <SPaj,oj,Sc> contains two specifications an

2.



implementation—morphism isEIpair

T = <pa‚pc>:  121 + 122. .

consisting of an abs t r ac t  specification morphism pa: SPa1 + SPa2 and a conc re t e

specification morphism pc: SPc1 + SPcz.

However ,  ano the r  r e q u i r e m e n t  should a l s o  be satisfhmh Assume w e  have an

implementation from sets over arbitrary elements to e
xtended lists over arbitrary

elements, and another i-signature from sets over natural numbers to e
xtended lists

over natural numbers. Then it should not matter whether
 we first represent sets over

arbitrary elements by lists over arbitrary elements a
nd then refine to lists over

natural numbers, or if we first refine the sets over arbit
rary elements to sets over

natural numbers and then represent them as lists over
 natural numbers. I n  general

this means that the diagram
ÜF1

SP31  - - - - - - - - - - - - - -  + _SPc1

l I
Pa I | pc

+ o2 +

SP-a2  ______________  + SPO?-

should commute viewing pa and pc as signature morphisms.

When implementing an abstract specification by a more con
crete one which in turn is

implemented by a third specification it is desirable to get automatically an

implementation of the first by the third specification by composing the two

individual implementations. Moreover, the sequence o
f compositions should be

irrelevant, i.e. one would like to have an  associative implementation composition

operator. "

In the mos t  elabOrated implementation concept fer the fixed case gi
ven in.]flKMP 82],

proof theoretical and semantical conditions are given tha
t guarantee composability.

In the loose approach of [SW 82], full composability is given by the very definition

of implementation: every concrete algebra must be associ
ated to an abstract algebra.

Further approaches studying such compositions of implementations are the approaches

of [Hap 81 J, [GM 82], [Ga 83], [Li 83], and [sw 83].

In our concept of implementation specifications as  outlined above the question of

composability arises on different levels. Simple implementations, impleme
ntation

specifications, and implementation models should all be composable and 
closed under

composition.

When composing simple implementations it is  natural to require that the concrete

specification of the first implementation is identical t
o the abstract one of the

second implementation. In this case the composed implemen
tation is obtained by taking

the abstract specification of the first implementation and 
the concrete specification

of the second one together with the composition of the two
 signature translations.

A similar argument holds for the composition of implementa
tion models. In particular

one must ensure that the abstraction functions are c
omposable and closed under

composition.

Having defined the composition of simple implementations 
and implementation models,

the composition of implementation specifications containin
g implementation sentences

can be constrained by the following compatibility condition
 which arises naturally:

O The set of models of a composed implementation specificatio
n should be

identical to the set of models obtained by composing the sets of
 models of the

3



individual implementation specifications.

If this condition is fulfilled we say t ha t  the composition of implementation

specifications is compatible with the composition of their implementation models.

Summarizing we require our implementation concept to offer the following features

w.r.t. composition:

. definition of composition for

- simple implementations (i.e. implementation signatures),

— implementation specifications, and
- implementation models

Such that all of them are
. closed under composi t ion,

and such that composition is

O associative, and
0 compatible w.r.t. implementation specifications and implementation models.

W.rdh the underlying institution of loose specifications we only assume that the

loose specifications have equational signatures with error constants, denote strict

algebras, and are formally defined as the theories of an institution ( [GB 83]). In

particular, we do not make any assumptions about the types of sentences:

Assumption: SPEC-institution := (SIG, EAlg, ESen, 5 >

is an institution where

- SIG i s  a category of equational signatures with an error constant error-s:-

for'each.sort s.

- EAlg is a coproduct preserving model functor mapping a signature 8 to all

strict Z—algebras, which have flat cpos as carriers, strict operations, and

the error constants denoting the bottom element.

- ESen is a sentence functor mapping a signature £ to a set o f  £—sentences.

_ IQ is the strict satisfaction relation.

SPEC denotes the category of theories in  the SPEC-institution which will be

called (loose) specifications, and Sig: SPEC + SIG is the functor forgetting
specifications to their signatures.

3. Implementation specifications without hidden components

3.1 Implementation signatures

The notions of implementation signatures and morphisms as sketched.in Section 2

constitute a category. In fact, it is the comma category induced by the functor Sig

forgetting specifications to their signatures.

Definition 3.1 [ISIG, i-signature]

Given the forgetful functor Sig: SPEC + Sig, the comma category

ISIG = (Sig+Sig)
is the category of implementation signatures (i-signatures).

“Since the category SIG is cocomplete and the functor Sig preserves all colimits, ISIG
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is.cocomplete, too, by a general property of comma categories .

Fact 3.2 [colimits] ISIG is cocomplete.

3.2 Implementation models

Accord ing  to Section 2 we want to introduce abstraction operations as ordinary

operations which are interpreted by abstraction functions and which can be restricted

by ordinary sentences. Since in the framework of the SPEC—institution the algebra

operations must be totally defined, we will also require that the abstraction

operations are totally defined. This is no limitation because the algebras are cpos

and there is an error constant for each sort denoting the minimum element. Thus ati)

is mapped to error whenever aKx) is meant to be undefined. Doing so we must only

suitably restrict the homomorphism requirement
a(a(op)(X)) = 0 p ( a ( X ) )

Which under these circumstances needs to hold‘only'if’cdx) is non—error.

Definition 3.3 [Z-p—homomorphism]

Let A, B e E-Alg(z) with z = <s,0p=> a SIG. An S—sorted family of'func-tions
h =  {hS:AS+Bs | s e s }

is a partially-homomorphic Z-homomorphism (or just Z-p—homomorphism) if’f
V 0p: s1...sn + s e Z .

U X1 6 A81 . ... V xn e Asn .
hs1(x1) # error-s1B & ... & hs (xn)  # error—s

=> hs(opA(x1.--..xn)) = opB hs1(r1).---.h3n xn) )

Fact 3J1 [p—homomorphisms are closed under composition]

Let Z = <S,Op> e SIG and f} A + B, g : IB '+ ( !be -Z—p-homombrph i sms .  Then  their

composition
g O f g =  { g s o f s l s s S } : A - > C

is a Z—p—homomorphism.

Definition 3.5 LPEAn

The functor
PEAlg: SIG + CATOP

maps a signature 2 to the category of strict Z—algebras with 2—p-homomorphisms,

and it maps a signature morphism c to the forgetful functor PEAlg(c) which is
defined analogously to EAlg( 0‘).

Fact 3.6 [Partial]

The family of inclusion functors
Partialz: EA1g(Z) + PEA1g(Z)

with X e SIG defines a natural transformation

Partial: EAlg ==> PEAlg.

With PEAlg formalizing the property "partially homomorphic" w e  are now ready to

define a preliminary model functor mapping an i~signature IE to the category of all

tripels TA.=  <Ac ,a„Aa>  Where a.is p-homomorphic but not necessarily surjective.

Analogously to i—signaturelnorphisms the morphisms in this category are pairs of

homomorphisms
<hc,ha> : <Ac,a,Aa> + <Bc,B,Ba>

5'



that a re  compatible wi th  the abstract ion functions, fine. i t  does  not  ma t t e r  whether

we f i r s t  abs t rac t  Ac—elements  w i th  c t o  Aa-elements  and then map them wi th  hc  t o  Be -

e l emen t s ,  o r  whe the r  we  f i r s t  map  the  Ac-e l emen t s  w i th  hc  t o  Bc -e l emen t s  and  then

abs t r ac t  them wi th  B t o  Ba. As in  the  f ixed  ca se ,  the  fo rge t fu l  f unc to r  EA1g(o) i s
app l i ed  t o  t he  sou rce  o f  the  abs t r ac t i on  func t ions  so  t ha t  t he  compa tab i l i t y
cond i t i on  for the mode l  morphisms  is  the commuta t iv i ty  o f  the  diagram

a
EA1g(c)(Ac) ——————————————— + AT

EAlg(o)(hc) l | ha
+ B +

EAlg(c)(Bc) —————————————— —+ Ba
in PEA1g(Ea).

Simi l a r  to i—signatures, this si tuation can be -exp reased  neatly a s . a  comma category.

Definition 3 .7  [Tripe1(Iz)]

Le t  I): = <SPa ,o ,SPc>  be  an  i - s ign‘a ture  w i th  S ig(SPa’)  = 2a  and S ig (SPc )  = t o .  The

comma category
TriPGJ-(IE) == (Partialxa ° EA13(0) I ]§§Alg(SPc)  +IPartiaIZalEAlgGPafi

i s  c a l l ed  the category o f  , IZ—tr ipe l s .

Simi l a r  t o  o rd ina ry  s igna tu re s ,  every  i - s igna tu re  morph i sm induces  a f o rge t fu l

func to r ;be tween  the  r e spec t ive  mode l  ca t ego r i e s  i n . t he  r eve r se  d i r ec t i on .  I t  i s

def ined  componentwise.

Fact 3 .8  [Tripe1(r)]

Le t  1' = (pa ,  pc ) :  IE1  + 122  a ISIG.
Tr ipe1 ( t ) :  T r ipe l (122 )  + Tr ipe l ( IE1)

def ined on ob j ec t s  by
Tripel(r)(<Ac‚a‚Aa>) :=  (EAlg(pc)(Ac),PEAlg(pa)(a),EAlg(pa)(Aa)>

and on morphisms by
Tr ipe l ( r ) (<hc ,ha>)  .=  <EA1g(pc)(hc),EAlg(pa)(ha)>

i s  a func tor .

The observations above yield a prelimininary model functor Tripel:  ISIG + CAT°P. We
still have  to  r e s t r i c t  t h i s  func to r  t o  cons ide r  on ly  t r i pe l s  w i th  su r j ec t i ve

abs t r ac t i on  functions.

Definition 3.9 [IMOd(I£)]

For  eve ry  12  e ISIG t he  ca t ego ry  o f  IE—implemen ta t i on  mode l s  (o r  j u s t  IX—i-

models)
IMod(IZ)

i s  the full  subcategory of Tr ipe l ( IE)  generated by a l l  tripels with sur ject ive
abs t r ac t i on  func t ion .

Fact  3 .10  [ IMod( r ) ‚  IMod]

For  every  t :  121 + 122  the  r e s t r i c t i on  and co re s t r i c t i on  o f  T r ipe l ( r )  t o
IMod(IEz) and IMod(I£ ) exists.  I t  is denoted by

IMod(T): Inad(1223 + IMOd(IZ1)
and

IMod: ISIG + CATOP



i s  cal led the modelling functor for implementation signatures.

3 .5  Rela t ing  implementation signatures t o  spec i f ica t ions

According to Sec t ion  2 ,  implementa t ion  sentences over  an i-signature IE  shall be -ex -
pressed over  the abs t rac t  s ignature Ea ,  the concre te  signature 2c ,  and so -ca l l ed  ab—
st rac t i on  opera t ions  to be in te rp re ted  as  abs t r ac t i on  functions.  In a f i r s t  approach ,
imp lemen ta t i on  s en t ences  w i l l  be a l l  o rd ina ry  s en t ences  ove r  t h i s  vocabu la ry .  Fo r
reasons  o f  convenience we  wi l l  u se  standard names fo r  the abs t rac t ion  operat ions:

Definit ion 3.11  [abs-opera t ions]

For II: = <<Za‚Ea>,o‚<Zc‚Ec>> e ISIG and 1: = <pa,pc>: IE + IE” e /ISIG/ we define:
abs -ope ra t ions ( IE)  :=  {abs—SIE: a( s )  + s [ s a Ea}
abs-operat ions( t )  := { (abs - s ,  abs-paCs)Ize)  I s e za}.

Fact 5.12 [w]

w: ISIG + S IG
def ined  on  ob j ec t s  by

¢( IE)  :=  Ea n So u abs -ope ra t i onsCIZ)
and on  morphisms by

¢(1 )  :=  pa a pc u abs-Operat ions( t )
is  a co l imi t  preserving func tor .

De f in ing  an  I I I - imp lemen ta t i on  s en t ence  t o  be  an  o rd ina ry  MID-sen tence  p we  mus t
de t e rmine  whe the r  an IZ—i-mode l  MA = <Ac ,a ,Aa>  sa t i s f i e s  pm S ince  t he  abs t r ac t

symbo l s  i n  ¢ ( IZ )  sha l l  be  i n t e rp re t ed  by the  abs t r ac t  a lgeb ra  Aa ,  t he  conc re t e
symbols by the concre te  algebra Ac ,  and the abs t rac t ion  operations by the  abs t rac t ion
function a ,  we can . t ake  the d i s jo in t  union of  Aa, Ac ,  and a t o  obtain a .¢ ( IE ) - a lgeb ra
interpret ing ¢ ( IZ ) .

Definition 3.13 [joinIE(NA)]

For an  i -s ignature  IE  = <SPa ,o ,SPc>  and an IE~- i -mode l  MA. = <Ac,a ,Aa>
joinIE(MA) :=  Aa u Ac u c

i s  the ¢ ( IZ ) - a lgeb ra  A defined by
- fo r  s e S ig (SPa ) :  As  :=  Ass
— for  s a S ig (SPc ) :  As :=  AcB
_ for 0p  3 Sig(SPa):  opA :=  OPAa

- for  op s Sig(SPc):  opA :=  OPAc

- for abs—s a abs-opera t ions(IZ) :  abs—3A := a s .

The-join operator can be extended to a functor from IE-i-models to ¢(I£)-algebras.

Fact 3.14 [jointx, join]

Def in ing  jo in IZ  on IZ - i -mode l  morphisms g = <hc ,ha>  by
j o in IZ(g )  :=  {has  | s a S ig (SPa )}  & {hcS | s e S ig (SPc )}

y ie ld s  a functor
joinIz:  IMod(Iz) + EA1g(¢(Iz))

and  general izing over a l l  i -s ignatures  yields a natural transformation
jo in :  IMod ==> EAlg 0 $



3 .4  Implementation sentences without hidden components

Accord ing  to  the  preceding sec t ion  we  define the  se t  of  IZ- implementa t ion  sentences

wi thout  h idden  components  or  jus t  IX- i - s en tences  to  be the  s e t  o f  a l l  ord inary  dKIX)-

sentences .  Such  an  IE—i- sentence  p i s  sa t i s f i ed  by an  IX—i-—mode1 MA exac t ly  i f  MA

viewed as the  dKIZ)—algebra joinIZ(MA) sa t i s f i e s  p.

Definition 3.15 [ISen1]

The implementation sentence functor without  hidden components i s  given by

ISen1 :=  Sen 0 w: ISIG + SET.

Definition 3.16 [ I i  ]

Let IE e_ISIG, MA e IMcd(Iz) and p e ISen1(IE). MA satisfies p, written

i f f  joinI£(MA) l §¢ (12 )  
p .

Fact 3 .17  [sat isfaction condit ion]

U 1:  I21  + 122  a ISIG .
v MA c IMod(122) .

u p e ISen1(IZ1) . ~ _
HA [$122 ISen1(t)(p) <=> IMbd(r)(MA) I;IE1 p .

3 .5  The ins t i tu t ion

S ince  the  sa t i s fac t ion  cond i t ion  ho lds  the  no t ions  de f ined  above  cons t i tu te  an

ins t i tu t ion .  Like speci f icat ions  are defined as the theories  of  the SPEC~inst i tut ion,

implementa t ion  spec i f i ca t ions  w i l l  be  de f ined  as  the  theor i e s  o f  th i s  new

ins t i tu t ion .

Definition 3.18 [IMP1—institution]

IMP1-institution := <ISIG, ISen1, Inca, l i  >
i s  the inst itution of  implementation specifications without hidden components .

IMP1 i s  i t s  category of  theories  and it  i s  ca l led  the . ca tegory  of implementat ion

spec i f icat ions  without  hidden components.

S ince  ISIG i s  cocomple te ,  genera l  in s t i tu t ion  proper t i e s  t e l l  u s  tha t  IMP1 i s

cocomple te  as wel l .

Fact 3.19 [colimits] IMP1 i s  cocomplete.

3 .6  Examples:  Implementing se t s  by l i s ts  and l i s t s  by array—pointer pairs

In our examples we  wil l  assume that the error constants are impl i c i t ly  dec lared .  As

sentences  we  wi l l  u se  f i r s t  order  formulas  where  the  bound  var iab le s  are  no t

in terpre ted  as  bot tom elements.  Bes ides  we need some constraint mechanism to  exclude

unreachable elements (can initial.[HKR so] ,  data.[BG so] ,  hierarchy [sw 82] ,  or
algorithmic constraints [BV 85bl).

We wi l l  show how several  we l l  known implementations o f  s e t s  by l i s t s  can .be  developed

s tepwise  and hand in hand with  the implementing speci f icat ion.
8



On the  abs t r ac t  s i de  we  have  t he  specification SET o f  s e t s  w i th  t he  empty  s e t  a s

cons t an t ,  and  ope ra t i ons  t o  i n se r t  an  e l emen t ,  t o  de t e rmine  o r  r emove  the  minimum

element in  a s e t ,  and to  t e s t  fo r  the empty  s e t  o r  fo r  the membership of  an  e l emen t .

Beside s tandard  s e t s ,  there may be  bags o r  unreachable e l emen t s  o f  so r t  s e t .  The  s e t

e l emen t s  a r e  desc r ibed  in  the  spec i f i ca t i on  LIN-OED which  int roduces  a so r t  e l em wi th

an  equa l i t y  ope ra t i on  and  an  a rb i t r a ry  r e f l ex ive  l i nea r  o rde r ing .  The

subspec i f i ca t i on  BOOL of  LIN-0RD spec i f i e s  the  booleans  w i th  the usual operat ions

t rue ,  f a l s e ,  no t ,  and ,  o r .

On the concre te  s ide  the spec i f i ca t ion  LIST extends LIN-0RD t o  s tandard l i s t s  w i th

the  cons t an t  n i l ,  t he  ope ra t i ons  cons ,  c a r ,  and  cd r ,  and  a t e s t  n i l ?  fo r  t he  empty

l i s tn  A l l  l i s t s  mus t  be  generated from the e lements  by n i l  and cons .  LIST i s  ex tended

to  LIST-S by in t roduc ing  names  fo r  t he  s e t  s imu la t i ng  ope ra t i ons ,  bu t  w i thou t

r e s t r i c t i ng  these  opera t ions  in  order  t o  ob t a in  a var ie ty  o f  d i f f e r en t  mode l s .

P re sen t a t i ons  o f  t he  spec i f i ca t i ons  men t ioned  so  f a r  a r e  g iven  in  Figure  BémKa) .  The
t s en t ences  pa r t s  are  no t  e l abo ra t ed  s ince  t he  neces sa ry  f i r s t  o rde r  fo rmu la s  a r e

s tandard  and s ince  we d id  no t  wan t  t o  go i n to  the  de t a i l s  o f  t he  cons t r a in t  mechan i sm

to  be  u sed ,  because  ou r  imp lemen ta t i on  concep t  abs t r ac t s  f rom these  de t a i l s

comple te ly .

We can give a f i r s t  s imple i -specif icat ion.I :SET/LIST-S from SET to LIST-S:

i spec  I:SET/LIST-S =

with  the signature morphism

oS/LS: Sig(SET) + Sig(LIST—S)
se t  + l i s t
empty + nil
empty? + n i l ?
in se r t  + l - inser t
in? + l—in?
min + 1—min
remove-min + l—remove—min
x + x for x e Sig(LIN—0RD)

I t  mere ly  de f ines  t he  s igna tu re  morph i sm O S / L S  t r ans l a t i ng  so r t  s e t  t o  l i s t  and

trans la t ing  the  s e t  operat ions t o  the i r  s imulat ing l i s t  Opera t ions  wi thout  r enaming .

the s ignatures  of  the common subspec i f ica t ions  LIN-0RD and BOOL. S ince  I:SET/LIST—S

con ta ins  no i—sen tences ,  i t s  i -mode l s  compr i se  a l l  poss ib le  representat ions  o f  s e t s

by l i s t s .

I:SET/LIST-S can  be  r e f ined  in  va r ious  ways  by add ing  i - s en t ences  r e s t r i c t i ng  t he

abs t r ac t ion  Opera t ions  o f  so r t  s e t ,  such that en;

- all l i s t s  represent se t s  (IA:SET/LIST-S),
— only l i s t s  w i th .un ique  en t r i e s  may represent  s e t s  ( IUfiSET/LIST-S) ,

only sorted l i s t s  may represent se ts  (IS:SET/LIST-S), o r
only sorted l i s t s  with unique entries may represent sets  (ISUtSET/LIST-S).

The l a s t  i - - spec i f i ca t i on  r e f ine s  no t  on ly  I:SET/LIST—S, but also IU:SET/LIST-S and
IS :SET/LIST-S .  The  i -Spec i f i ca t i ons  a r e  g iven  in  F igu re  3 .21  whe re  we  use  abs - s :

°S/LS(S) + s as the abs t r ac t ion  opera t ion  name o f  so r t  s .

Cor re spond ing  to  t he  fou r  a l t e rna t ive  r e f inemen t s  o f  I:SET/LIST-S we cou ld  now
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spec i fy  alternative r e f inemen t s  o f  t he  conc re t e  LIST—S spec i f i ca t i on  by add ing

sen tences  f i x ing  t he  s e t  s imu la t i ng  ope ra t i ons .  The  r e su l t i ng  LIST-S r e f inemen t s

cou ld  i n  turn be used to refine the respective i - spec i f i ca t ions  by replacing LIST-S

by the corresponding LIST-S ref inement.

He re ,  howeve r ,  we  wan t  t o  ca r ry  ou t  t he  development i n . ano the r  d i r ec t i on  by

implement ing the l i s t s  by array-pointer  pairs.  For this  purpose we  cons ide r  the three

specif ica t ions  l i s t ed  in Figure 3 .20(b) :  PAIR introduces standard arrays and pairs o f

an array wi th  a natural number. PAIR-L f ixes the new LIST s imula t ing  operat ions such

tha t  p-ni l  y ie lds  the new array w i th  poin ter  ze ro ,  panil? checks whe the r  the po in t e r

i s  ze ro ,  p-cons  puts an e l emen t  in the f ield ind ica ted  by the po in te r  and increments

the  po in t e r  by one ,  p—car  ge t s  t he  e l emen t  i n  t he  f i e ld  i nd i ca t ed .by  the  po in t e r

minus  one ,  and p—cdr decrements  the  poin ter  by one. In  con t ras t ,  the  new opera t ions

in  PAIR-LS are  un res t r i c t ed  i n  o rde r  t o  a l low for  a var ie ty  o f  i -mode l s  d i f f e r ing  i n

the i r  SET s imu la t i ng  ope ra t i ons .

In  t he  i - spec i f i ca t i on  implementing LIST by PAIR-L given by

i—spec I:LIST/PAIR-L =
i s i g  (IL/LP: LIST + PAIR-L

isentences
V p :  pairs .

(p-ni l?(p)  = true => abs-1is t (p)  = ni l )  -&
(p-ni l?(p)  = false =>

abs- l i s t (p )  = cons(abs—elem(p—car(p))‚abs-list(p—cdr(p))) )

with the signature morphism
oL/PL : Sig(LIST) + Sig(PAIR—L)

l i s t  + pairs
op + p-op for  op a {ni l ,  n i l ? ,  cons ,  car ,  cd r}
x + x otherwise

the abst ract ion operation abs- l i s t  is fixed. This  i -specif icat ion can be extended to

an i -speci f ica t ion  implementing LIST-S by PAIR-LS:

ispec I:LIST-S/PAIR—LS = I:LIST/PAIR-L u
isig ”LS/PLS‘ LIST-S + PAIR-LS

with  the signature morphism
”LS/PLS‘ Sig(LIST-S) + Sig(PAIR-LS) .

1-op + p-op for Op 6 {insert  , in?  ‚min - ‚ r emove -min}

x + UL/PL(X)  otherwise

comprising a l l  i -models wi th  fixed LIST simulating operations but wi th  varying SET

simula t ing  operations. Figure 3.22 shows the relations between the specifications and

i - spec i f i ca t i ons  developed so  far.

4 .  Implementation specif icat ions with hidden components

The  inc lu s ion  o f  h idden  spec i f i ca t i on  pa r t s  i n to  an  ADT spec i f i ca t i on  t echn ique

usually extends i t s  expressive power  ([TWW 82 ] ,  [BBTW 81 ] ) ,  and when describing the

compos i t i on  o f  a lgeb ra i c  imp lemen ta t i ons  h idden  componen t s  a r e  needed  fo r  t he

intermediate specification part ([EKMP 82 ] ) .
'We wi l l  now extend the IMP1- ins t i t u t i on  by so—cal led h idden  speci f ica t ion  sentences

which  a r e  comparable  to  an a lgebra ic  spec i f i ca t ion  mechanism ca l l ed  func to r  image

r e s t r i c t ion  in  [Ehg 81 ] ,  reflections in  [EWT 82]  and derive „ .  from . „  bw-construct
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sorts elem spec PAIR = LINFORD u NAT u

ops eq, le: elem elem + bool sorts array, pairs
sentences ... < spec i fy ing  e’q as pg new: + array
'""‘E§EEIEty and le as an arbitrary put: array nat elem + array

reflexive linear ordering > get: array nat * elem
pair: array nat + pairs

spec SET = LIN40RD u pa: pairs + array
sorts set pn: pairs + net
ops empty: + set sentences ...<specifying standard

___ insert: elem set + set anrays and pairs of an array
min: set + elem with.a natural number)

remove-min: set + set
empty?: set + bool spec PAIR-L = PAIR u
in?: elem set + bool ggg_p-nilz  + pairs

sentences .m. < specifying the set p-ni1?: pairs + bool
operations with their usual p-cons: elem pairs + pairs
meaning, but not necessarily p-car: pairs + elem
excluding non-standard sets > p—cdr: pairs + pairs

sentences uu<specifying the

spec LIST = LIN-0RD u LIST—simulating such that

sorts list p—cons puts an elementinto

ops nil: + list the array and increments the

.__. cons: elem list + list _ pointer by one, p-cdr
car: list + elem decrements the pointer by one,
cdr: list + list etc.)

nil?: list + bool
sentences .„ —< specifying standard spec-PAIRyLS = PAIR-L

lists over elem generated by gp§_p-finsert: elem pairs + pairs
nil and cons > p-in?: elem pairs + bool

p-min: pairs + elem
spec LIST-S = LIST u p-remove—min: pairs + pairs

ops l-insert: elem list + list
'_—_ l—min: list + list

l-remove-min: list + list
l—in?: elem list + bool

Figure 3.20 The ADT specifications in the implementations of sets by lists (a)
and of lists by array-pointer pairs (b)

ispec IA:SET/LIST-S = I:SET/LIST-S u
isentences

( H  x: list . V e: elem.
abs-set(cons(e,x)) = insert(abs-elem(e),abs-set(x)))

ispec IS:SET/LIST—S = I:SET/LIST—S u
isentences

(V e, e1, e2:elem . V x: list .
abs-set(cons(e,nil)) = insert(abs-elem(e),empty) &
1e(e1‚e2)  = true & eq(e1‚e2) = false =>

abs—set(cons(e1,cons(e2,x))) =
insert(abs-elem(e1),abs-set(cons(e2,x))) &

1e (e2 , e1 )  = true & eq(e1,e2) = false =>
abs-set(cons(e1,cons(e2,x))) = error-set )

ispec IU35ET/LIST—S = I:SET/LIST—S u

isentences
(V e, e1, e2: elem . u x: list .

abs—set(cons(e,nil)) = insert(abs—elem(e),empty) &
(in?(e,abs—set(x)) = true =>

abs-set(cons(e,x)) = error-set) )

ispec ISU:SET/LIST-S = IU:SET/LIST—S u IS:SET/LIST—S

Figure 3 .21  Some i-specifications implementing sets by lists
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Figure 3.22: -The relation between the specifications and i-specifications
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Figure 4.2 Satisfaction of a hidden specification sentence

<SPh, 5: ¢(IZ1) + SPh, T: 121 + 122>
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i n  [SW 83]. W h e r a s  s o  f a r  an i m p l e m e n t a t i o n  s e n t e n c e  o v e r  a n  i - s i g n a t u r e  I E  i s  an

ordinary sentence over the vocabulary w(IZ), we now extend.¢(IZ) by arbitrary hidden

sorts and operation symbo l s  from an ordinary ADT specification SPh via some

signature morphism &: MIZ) + Sig(SP_'h).

Definition 4.1 [hidden specification sentence, HSenJ

Let SPh s SPEC, ö e /SIG/ and T a /ISIG/. An Izg-hidden specification sentence.is

a triple
sh = <SPh, ö: w(Iz1) + Sig(SPh), r: IE1 + I22>

and HSen(IZ2) denotes the set of all IZZ—hidden specificatipn sente
nces. The

translation of sh by 1?: 122 + IZ’ is the IXf—hidden specification sentence given

by HSen(t’)(sh) := <SPh, ö, I’Ot>

Note that the third component '1' of a hidden specification sentence allows for the

translation of such sentences by arbitrary (i-signature) morphisms, thus surving the

same function as the second component of the data constraints in.[
GB 83].

Writing sh for an IE2—i~specification we are interested only in those IEZ
-i-models MA

that can be ‘extended' to SPh models: MA satisfies sh iff MA forgott
en along T and

viewed as a ¢(I£)—algebra'is identical to some SPh—algebra A where the hidden p a r t  of

A is forgotten along 5. This situation is illustrated in Figure 4.2 and made precise

as follows:

Definition 4.3 [satisfaction I; of a hidden specification sentence]

v MA 8 IMod(I£2) . .
MA2 |; <sph‚5‚r> <=> 4 A e EAlg(SPh) . EAlg(6)(A) = joinIE1(IMod(t)(MA))

Example 4.4 [implementing sets via lists by array-pointer pairs]

An i—sPecification describing the composition of ISU:SET/LIST~S an
d I:LIST—

S/PAIR-LS is '

ispec ISU:SET/PAIR-LS

hidden—spec-sentences <S-LS-PLS, &, id>

with the hidden specification

§p§g_S—LS-PLS = SET u LIST—S u PAIR—LS u

22s abs-setS/LS: list + set
abs-listLS/PLS: pairs + list
abs-setS/PLS: pairs + set

sentences

i-sentences(ISU:SET/LIST—S) u

i—sentences(I:LIST-S/PAIR—LS) u

(V p: pairs .
abs-setS/PLS(p) = abs-setS/Ls(abs—list/PLS(p)))

where the abstraction Operations of the individual implementat
ions are indexed

correspondingly and where & maps  abs-set to abs-sets PLS' Note that for  every

denoted ifmodel 
(APAIR-LS’Q’  ASET> there must exist a LIST-S model 

ALIST-S and

abstraction functions a1 and a2 such that 
<ALIST-S’a1 ’ASE > is an i-model of

ISU:SET/LIST—S, <APAIR—LS‚02‚ALIST_3> is an i-model of I:LIST-S/PAIR—LS, and a is

the composition of a1 and
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Fact 4.5 [satisfaction condition for hidden specification sentences]

V 1’: I£2 + IX’ 8 ISIG .
v MA e IMod(IZ’)

V sh e HSen(I£2) _

MA [$12, HSen(T’)(sh) <=> IMod(T')(MA) 
[3129 sh.

Definition 4.6 [IMP—institution, IMP]

IMP—institution := <ISIG, ISen, IMod, |i>
is the institution extending the IMP1—institution by ISen(Iz):= ISen1(IE) u

HSen(IZ). IMP is the category of theories of this instituti
on and called the

category of implementation specifications (with hidden
 components).

5 .  Normal forms

The introduction of hidden specification sentences allows u
s to derive a very useful

normal form result:

Fact 5.1 [normal form]

Any i-specifioation ISP e IMP can be transformed into a n  equivalent i—

specification ISP’ in normal form having exactly one hidden specification sentence.

Proof: (idea) Given two hidden )specification sentences

shj = <SP , j :  ¢(IE.) +Sig(SP ), Tj : 123+ I£>

we can merge S L 1 Jand sh2 
;Ly taking the coproduct  SmP of SP1 and SP2 ,  taking the

coproduct 1300p of 121 and 182 ,  and the uniquely de te rmined  morphisms p' and I'

as given in

sh = <SPcop,p w¢(12p) + Sig(Spcop), r’: IECOP + Iz>
To show that

IMod(I£, {sh1,sh2}) = IMod(Iz, {sh})
and the generalization of this statement to (possib

ly infinite) sets of sentences

relies on the fact that the model functor EAlg of 
the underlying SPEC-institution

respects coproducts.

The i—specification ISU:SET/PAIR—LS of Example 4.4 is in normal form.

6. Composition

6.1 Composition of'implementation signatures

-The composition of  i-signatures is given by 
the composition o f  their signature

translations.

Definition 6.1

For 123. = <SPaJ-‚ dj, Sc> with j e {1.2} and SPc2 = SPa1 the composition of 121

and 122 is given by

1:31 . I 2 2  == <SP81 ,  02 0 O 1 ,  'SPC2>

Obviously, this composition operation is associ
ative.

6.2 Composition of implementation models

Having already defined the composition of i—signatures the composition of an 
1 2 2 — 1 -
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model MA2 = <A02,u2,Aa2> with a n IX1-i— —mode1 MA1 = <Ac1,a1,Aa1> where Aa? - Ac,

should yield an 121 o IEZ-i-model resulting from the composition of their abstraction

fulctions. However, in order to be able to compose the abstraction functions we m
ust

first apply the forgetful functor PEAlg(01) to c2:

Fact 6.2 [composition of implementation models]

(1) The composition of MA? and MA, as given by
MA2 o MA1 := <A02, a, o PEAlg(p1)(02), Aa1>

is an 121 O IZZ-i—model

(2) The composition operation on i-models is associative.

Given two i-specifications ISP1 and ISP2 with composable i-signatures, we can now

compose all their respective i-models and obtain a subcategory of IMod(I£1 I 122).

Definition 6.3 [composition of i—specification model categories]

IMod(ISP2)O IMod(ISP )
is the full subcategory of IMod(IZ o 122) generated by all M12 0 MA, with t e

IMod(ISPj ).

Fac t  6.4 The composition operat ion on i-model categories is associative.

6.3 Composition of implementation specifications

In Section 2 we already motivated our requirement that the compositions of i—

specifications and their i-model categories should be compatible. With the notions

introduced above me can formalize this compatibility condition by requirin
g

IMod(ISP1 . ISP2) = IMod(ISP2) . IMOd(ISP1)

At least two questions arise immediately: Does there exists an i-specification ISP =

ISP1 O ISP2 describing the composition of ISP1 and ISP2 such that the compatibility

condition is satisfied? And secondly, is there a constructive way to generate ISP for

given ISP1 and ISP2? The following fact answers both questions in the affirmative.

Fact 6.5 [composition of i-specificationsj

Far any two i—specifications ISP1 and IS‘P2 with composable i—signatures there

exists an i—specification

ISP1 O ISP2
such that the compatibility condition is satisfied.

Inoof} (idea) In order to generalize the construction carried out in Example 4„4
 we

construct normal form presentations ISPn1 and ISPn2 which exist according to Fact

5.1, and perform the following steps:

(1) Combine the hidden specifications SPh1 and SPh2 of ISPn1 such that the

middle specification SPa2 = SPc1 is identified in this combination.

(2) Add the abstraction Operations of 121, I22, and I21 0 122, and add the
corresponding composition axioms.

Steps (1) and (2) yield a hidden specification SPh describing a normal form

representation of ISP, ° ISP2.

As an illustration of Fact 6c5 consider again the composed i-specification

ISU13ET/PAIR-LS from ExamplezLA.which was constructed correspondingly yie
lding

IEMESET/LIST-S O I:LIST—S/PAIR-LS: The intermediate LIST-S specification is contained

:5-



in the hidden spec i f i ca t ion ,  and the  i—models denoted  by the composed  imp lemen ta t ion

are exac t ly  those  mode l s  that  can  be  composed  from the mode l s  o f  the  two  ind iv idua l

imp lemen ta t i ons .  S imi l a r ly ,  we  cou ld  compose  IzLIST—S/PAIR-LS wi th  any o f  the o the r

fou r  s e t—by- l i s t  imp lemen ta t i ons  ( c . f .  F igure  3 .22 ) ,  y i e ld ing  four  d i f f e r en t

imp lemen ta t i ons  o f  s e t s  by array-pointer pai rs .

Fact  6 .6  The compos i t ion  operat ion on i—specif icat ions is a s soc ia t ive .

Proof :  By Fac t  6 .4  since the compatability condit ion ho lds .

7 .  Implementat ion specif icat ions in the ISDV system

As already poin ted  ou t  in Sec t ions  1 and 2 ,  there  i s  a c lo se  correspondence  be tween

loose  spec i f i ca t ions  and i—spec i f i ca t i ons  w. r . t .  t he i r  r o l e  i n  so f tware  deve lopmen t .

Loose  spec i f i ca t i ons  provide a means fo r  a fo rmal ized  s t epwise  ref inement  s cena r io

and the  s ame  i s  true for  ou r  imp lemen ta t i on  concept .  The add i t i on  o f  new cons t r a in t s

to  a l oose  spec i f i ca t i on  corresponds to  making fur ther  des ign  dec i s ions ;  l i kewi se ,

t he  add i t i on  o f  i - s en t ences  t o  an  i—spec i f i ca t i on  co r r e sponds  t o  fu r the r  de s ign

dec i s ions  influencing e.g. the ef f ic iency o f  ce r t a in  opera t ions  (c . f .  the s e t -by - l i s t

example  i n  Sec t ion  3 .6 ) .  Ca re  mus t  be  t aken  because  t he  p roces s  o f  r e f inemen t  may

y ie ld  an  i ncons i s t en t  spec i f i ca t i on  hav ing  no  mode l s  any more ,  and  the  s ame  may

happen to  i - spec i f ica t ions .  Fo r  bo th  si tuations the s ame  techniques can be  u sed  to

cope  wi th  this  p rob lem,  e.g. su i tably  restr ic t ing the class  of  admiss ib le  sentences

o r  providing a constructively def ined mode l .  Such a mode l  may be the program obta ined

gradual ly  during the  development  p rocess .

The  l a t t e r  app roach  i s  suppor t ed  i n  t he  spec i f i ca t i on  deve lopmen t  l anguage  ASPIK

wi th in  the In tegra ted  Sof tware  Development  and Ver i f i ca t ion  ( ISDV) sys tem (|_BV85bJ,

[BOV 86] ) .  ASPIK p rov ides  a un i fo rm in t eg ra t i on  o f  h igh  l eve l  ax ioma t i c  and  lower

l eve l  cons t ruc t ive  spec i f i ca t i on  t edhn iques .  An e s sen t i a l  pa r t  o f  spec i f i ca t i on

develoPment in  ASPIK is  the gradual ref inement o f  ax iomat i c  pa r t s  by cons t ruc t ive ly

de f ined  mode l s .  Tha t  means  an  i n i t i a l l y  comple t e ly  ax ioma t i c  spec i f i ca t i on  i s

gua ran t eed  to  be  cons i s t en t  i f  i t s  r e f inemen t  p roces s  can  be  ca r r i ed  t h rough  to  a

comple t e ly  cons t ruc t ive  spec i f i ca t i on .  Th i s  app roach  p rov ides  a l so  a means  fo r

cop ing  wi th  t he  cons i s t ency  p rob lem o f  composed  i - spec i f i ca t i ons :  I n  gene ra l  a

composed i -specif icat ion may have no models  although i t s  component pal-specifications

have  mode l s .  Th i s  canno t  happen  i f  t he  i n t e rmed ia t e  spec i f i ca t i on  i s  r e f ined  to  a

mode l  that  l i e s  i n  bo th  c l a s se s  o f  i -mode l s .

Bes ide  cons i s t ency ,  t he  SW-proPe r ty  o f  i—spec i f i ca t i ons  i s  ano the r  mode l

theo re t i ca l l y  def ined no t ion :  Accord ing  to  the  approach o f  Sanne l la  and Wi r s ing  in

[sw 821 we call an i—speci f ica t ion  ISP = <IE, IE> with I): = <SPa, o, SPc> an sv—

imp lemen ta t i on  i f  IE  i s  emp ty  and  i f  f o r  eve ry  SPc -mode l  Ac  the re  ex i s t s  an  12 -1 -

mode l  <Ac ,  a ,  Aa> .  Th i s  de f in i t i on  shows  tha t  i n  t he  app roach  o f  [SW 82]  syn t ax  and

semant ics  o f  implementat ions are not  clearly dist inguished.  Based on the work o f  [SW

82] ,  Urbassek [Urb 85 ]  has developed syntact ic  c r i t e r i a  for  i - spec i f i ca t i ons  in  ASPIK

that  guarantee the SW-proPerty.  While these  c r i t e r ia  can a l so  be  used  to  guarantee

the  cons i s t ency  o f  composed  i - spec i f i ca t i ons ,  l e s s  res t r ic t ive  syntact ic  c r i t e r i a

should  be developed that  re lax the SW-property so  that not  every concre te  mode l  must

implement an abs t rac t  one .

8 . Conclusions

Our  imp lemen ta t i on  concep t  fo r  l oose  abs t r ac t  da ta  type spec i f i ca t i ons  comple t e ly

d i s t i ngu i shes  be tween  the  syn t ac t i ca l  l eve l  o f  spec i f i ca t i ons  and  the s eman t i ca l

level  of  models  by introducing the notions o f  implementa t ion  s ignatures ,  - mode l s ,

l 6



and - specifications. It provides the notion of implementation refinement which is

not present in  other  approaches. An implementation i n  the approach for Clear-like

specifications proposed in [SW 82] is - in our terminology — an i-signature with the

semantic condition that for every abstract algebra there is a concrete one with an

abstraction function in between. Concepts like those of [GM 8 2 ]
 and [Sch 8 2 ]  are

based on behavioural abstraction and have been  prOposed for modules, and [Hup 80]

considers implementations between canon specifications. The implementation concept

for the kernel language ASL o f  [SW 8 3 ]  merely requires that the abstract

specification i s  included in the concrete one. This simple notion is based on the

fact that, a s  a semantical language, ASL has  very powerful specification building

operations which however may not be present in a language for ADT specifications.

In e.g. [GM 82], [sw 82], [sw 83] and in the initial approach of [mm 82]

implementation composition i s  defined and i s  eXplicitly shown  to be associative.

Whereas in the former  composition is a totally defined operation this is true in

[EKMP 82] for so—called weak implementations and for a particular class of strong

implementations. 0f the cited approaches only [EKMP 8 2 ]  distinguishes completely

between syntactical and semantical levels which is a prerequisite for studying the

compatability problem o f  a composition operation. However, this problem i s  not

addressed explicitly since every specification denotes a 
unique algebra and no

explicit definition of a semantical composition operation is given.

Whereas the composition discussed in this paper is usually called vertical there is

also a horizontal composition arising in the context of parameterized specifications

(see em; [EK 82], [CM 82], [SW 82]). For the implementation concept proposed 
here we

showzhaLBV 85b] that horizontal composition and instantiation o
f parameterized

implementations are compatible with vertical composition
, allowing to combine

implementation specifications interchangeably in different directions with the same

result.
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