>
c
©
£
—
©
O]
5 =
c R
x O L
= c
T = 5
Eo 3
Lo &
R 7]
fTot
cxX & 4
.Qﬁgm
9_"(:5'654
Iy

5583
L S5 &~
Q= W
@ £ O I
woOao
w
o o
0 o

_ c
T 0 2
5 o0
L= 5
= ® 0
= o
< £ 3

achi-REPDRT

@ &,
$ 2 [
=2

SN Y7ANT P

& e e

(CE

i

=

A

On implementations of loose
abstract data type specifications
and theilr vertical composition

(—

/

Christoph Beierle, Angelika VoR

August 1986 SEKI-REPORT SR-86-14

dgbe oo

On implementations of loose abstract data type specifications
and their vertical composition

Christoph Beierle, Angelika Vo83
Fachbereich Informatik, Universitdt Kaiserslautern
Postfach 3049, 6750 Kaiserslautern, West Germany
UUCP: ..!mcvax!unidoluklirb!beierle

Abstract

In an approach for the implementation of loose abstract data type
specifications that completely distinguishes between the syntactical
level of specifications and the semantical level of models, vertical
implementation compositioh is defined compatibly on both levels.
Implementations have signatures, models, and sentences where the latter
also include hidden components, which allows for useful normal form
results. We illustrate the stepwise development of implementations as
well as their composition by some examples and describe the

incorporation of the concept into an integrated software development
and verification system.

Contents

1. Introduction

2. Implementation specifications: Basic idea and requirements for their composition
3, Implementation specifications without hidden components

4. Implementation specifications with hidden components

5. Normal forms

6. Composition

7. Implementation specifications in the ISDV system

8. Conclusions

1. Introduction

In the early days of abstract data types merely fixed ADT gpecifications with only isomorphic
models were studied. Iater on, so-called loose approaches were suggested where one considers
not only the initial or terminal model of a specification but all models. As one of its main
advantages a loose approach is better suited to capture the process of software development:
One can start with a small and still vague specification with many different models, and then
refine such a specification gradually by adding new axioms, sorts, and operations, thereby
restricting the class of admissible models. During this process, lower level constructive
definition techniques may be used to refine the higher level axiomatic definitions so that
one finally arrives at a concrete problem solution, which could be a program or a functional
prototype.

An implementation relation between loose specifications should reflect this refinement
scenario: among the many different models of the source and target specification one should
be able to choose those of interest by gradually refining the implementation so that the set
of models is restricted accordingly. Our implementation concept introduced in [BV 85a]
generalizes the concept for implementations of loose gpecifications proposed by Sannella and
Wirsing in [SW 82], which in turn generalizes the fixed case (e.z. [ctw 78}, [Ehc 82}, [mP
78], [mMP 82], [Ga 83]). By using the notion of institution ([GB 83]) our approach abstracts
from the types of sentences used in the underlying ADT specification method.

One of the central problems when dealing with implementations is their composability. In this
paper we show how our concept of implementation gpecifications allows for a two level
approach: The composition of implementations ig defined both on the syntactical level of
specifications and on the semantical level of models. Both levels are closed under their
composition operations which are associative. In particular, by using a strong normal result
we show that syntactical and semantical compositions are compatible with each other.

In Section 2 we summarize the basic idea of our implementation concept as given in [BV 85&],
elaborate the requirements a composition operation should fulfill, and briefly state the
assumptions about the underlying loose ADT specifications. In Section 3 we introduce the
institution of implementation specifications without hidden components, and in Section 4 we
extend this institution by introducing hidden parts. Section 5 contains our normal form
theorem, and in Section 6 we develop syntactical and gemantical composition operations and
ghow their compatibility. Section 7 describes the incorporation of our concept into an
integrated software development and verification system, and Sect. 8 contains a summary and a
comparison.

2. Implementation specifications: Basic idea and requirements for their composition

As compared to fixed specifications, in the loose case we gtill have specifications,
signatures, signature morphisms, etc, the esgential difference lying in the number of models
being considered. Therefore, an implementation for loose specifications should at least
consist of an abstract specification, a concrete specification, and a signature morphism
translating the abstract signature to the (possibly extended) concrete signature. Since a
concrete specification can always be extended before giving the implementation, we will
choose the technically simpler approach and omit any extension of the concrete specification
as part of the implementation.

In [sw 82 | Sannella and Wirsing require that for every concrete model there should be some
abatract model and an abstraction function connecting them. If such a complete set of triplea
exists, the concrete specification is said to implement the abstract one, otherwise it does
not. This is an implicit, non-constructive approach which gives no room for a notion of
refinement between implementations since there is no way to characterize and restrict the set
of triples - e.g. by constraints on the concrete or abstract models - any further.

As already pointed out above, since the idea of loose specifications is to consider at first

1

an arbitrarily large set of models and to restrict this set stepwise by refining the
specification, we think the adequate idea of implementations between loose
specifications is to accept all meaningful combinations of an abstract model, a

concrete model, and an abstraction function and to restrict them stepwise by refining
the implementation.

To realize these ideas we introduce the notion of implementation models:
A simple implementation <SPa,c,5Pc> consisting of an abstract specification SPa,
a concrete one SPe, and a signature translation o between them denotes the set of
all triples consisting of an abstract model Aa, a concrete one Ac, and an
abstraction function a from the concrete to the abstract model. Such a tripel
<Ac,0,Aa> is called an implementation model. As in the fixed case, the

abstraction function may be partially defined and it must be surjective and
homomorphic.

(Note that in both cases the first component contains the source and the third
component the target of the function in the middle component.)

Now we extend these simple implementations to a concept incorﬁorating a notion of
refinement between implementations. Such a refinement should restrict the set of
implementation models which can be done componentwise by

- restricting the set of abstract models,

- restricting the set of concrete models,

- restricting the set of abstraction functions.

In the framework of loose specifications the set of models - like the abstract and

the concrete ones - is restricted by adding sentences to the respective
gpecification.

Since the abstraction functions operate on both concrete and abstract carriers we
propose to view them as algebra operations from concrete to abstract sorts. These
operations can be restricted as usually by adding sentences over both the concrete
and the abstract signatures extended by the abstraction operation names. Thus in a
first approach we admit arbitrary sentences over the abstract and the concrete
signatures extended by the abstraction operation names, and later on we will extend

this vocabulary by arbitrary hidden gorts and operations. These sentences will be
called implementation sentences.

Summarizing we propose an implementation specification ISP = <II, IE> to be
- a simple implementation IE = <SPa, o, SPc>
- together with a set of implementation sentences IE and

- denoting all implementation models of the simple implementation which satisfy
the implementation sentences.

Analogously to specifications which consist of a signature in the simplest case, a
simple implementation like T1% will also be called an implementation signature.

We already claimed that an implementation should be refinable by adding more
implementation sentences to it and thus reducing the class of implementation models.
This idea is extended analogously to loose ADT specifications by admitting a change
of signature: There, a specification morphism is a signature morphism such that the
translated sentences of the refined specification hold in the refining specification.
Thus an implementation morphism or a refinement between two implementations is an
implementation signature morphism such that the translated sentences of the refined
implementation hold in the refining one.

Since an implementation signature IZj = <SPaj,0j,5Pcj> contains two specifications an

2

implementation-morphism is a pair

T = <pa,pc>: 121 % 122
consisting of an abstract gspecification morphism pa: Sbay * SPas and a concrete
gpecification morphism pe: SPcy = SPey.

However, another requirement should also be satisfied: Assume we have an
implementation from sets over arbitrary elements to extended lists over arbitrary
elements, and another i-gignature from sets over natural numbers to extended lists
over natural numbers. Then it should not matter whether we first represent sets over
arbitrary elements by lists over arbitrary elements and then refine to 1lists over
natural numbers, or if we first refiune the sets over arbitrary elements to sets over

natural numbers and then represent them as l1ists over natural numbers. In general
this means that the diagram

%
SPa1 —————————————— > SPc1
| |
oa | | ec
¥ Op 4
SPHy srsemmmmsta * SPc,

should commute viewing pa and pc as signature morphisms.

When implementing an abstract specification by a more concrete one which in turn is
implemented by a third specification it is desirable to get automatically aa
implementation of the first by the third specification by composing the two
individual implementations. Moreover, the sequence of compositions should be

irrelevant, i.e. one would like to have an associative implementation composition
operator.)

TIn the most elaborated implementation concept for the fixed case given in [EKMP 82],
proof theoretical and semantical conditions are given that guarantee composability.
In the loose approach of [SW 82], full composability is given by the very definition
of implementation: every concrete algebra must be associated to an abstract algehra.
Further approaches studying such compositions of implementations are the approaches
of |Hup 81|, leM 82|, |6a 83], [Li 8% |, and |[SW 83 |.

In our concept of implementation specifications as outlined above the question of
composability arises on different levels. Simple implementations, implementation
specifications, and implementation models should 511 be composable and closed under
composition.

When composing simple implementations it is natural to require that the concrete
specification of the first implementation is identical to the abstract one of the
gecond implementation. In this case the composed implementation is obtained by taking
the abatract specification of the first implementation and the concrete specification
of the second one together with the composition of the two gignature translations.

A similar argument holds for the composition of implementation models. In particular

one must ensure that the abstraction functions are composable and closed under
composition.

Having defined the composition of simple implementations and implementation models,
the composition of implementation specifications containing implementation sentences
can be constrained by the following compatibility condition which arises naturally:

® The set of models of a composed implementation specification should be
identical to the set of models obtained by composing the sets of models of ftae

3

individual implementation specifications.

If this condition is fulfilled we say that the composition of implementation
specifications is compatible with the composition of their implementation models.

Summarizing we require our implementation concept to offer the following features
w.r.t. composition:

o definition of composition for
- simple implementations (i.e. implementation signatures),
- implementation specifications, and
- implementation models
such that all of them are
@ closed under composition,
and such that composition is
® asgociative, and

@ compatible w.r.t. implementation specifications and implementation models.

W.r.t. the underlying institution of loose specifications we only assume that the
loose specifications have equational signatures with error constants, denote strict
algebras, and are formally defined as the theories of an institution ([6B 83]). In
particular, we do not make any assumptions about the types of sentences:

Assumption: SPEC-institution := <SIG, EAlg, ESen, |% >

is an institution where

- SIG is a category of equational signatures with an error constant error-s
for each sort s.

- FAlg is a coproduct preserving model functor mapping a signature [to all
strict I-algebras, which have flat cpos as carriers, strict operations, and
the error consitants denoting the bottom element.

— FSen is a sentence functor mapping a signature I to a set of Z-sentences.

- |8 is the strict satisfaction relation.

SPEC denotes the category of theories in the SPEC-institution which will be
called (loose) specifications, and Sig: SPEC + SIG is the functor forgetting
specifications to their signatures.

3. Implementation specifications without hidden components

3.1 Implementation signatures

The notions of implementation signatures and morphisms as sketched in Section 2
constitute a category. In fact, it is the comma category induced by the functor Sig
forgetting specifications to their signatures.

Definition 3.1 [ISIG, i-signature]

Given the forgetful functor Sig: SPEC + Sig, the comma category
ISIG = (SigtSig)
ig the category of implementation signatures (i-signatures).

Since the category SIG is cocomplete and the functor Sig preserves all colimits, ISIG
4

is cocomplete, too, by a general property of comma categories.

Fact 3.2 [colimitsj ISIG is cocomplete.

3.2 Implementation models

According to Section 2 we want to introduce abstraction operations as ordinary
operations which are interpreted by abstraction functions and which can be restricted
by ordinary sentences. Since in the framework of the SPEC-institution the algebra
operations must be totally defined, we will also require that the abstraction
operations are totally defined. This is no limitation because the algebras are cpos
and there is an error constant for each sort denoting the minimum element. Thus a(x)
is mapped to error whenever a(x) is meant to be undefined. Doing so we must only
suitably restrict the homomorphism requirement
a(o(op) (x)) = op(alx))

which under these circumstances needs to hold only if o(x) is non-error.

Definition 3.3 |I-p-homomorphism |

Let A, B € EAlg(®) with I = <3,0p> e SIG. An S-sorted family of functions
k=t d +8 |aes}
is a partially-homomorphic I-homomorphism (or just I-p-homomorphism) iff
¥ op: Byeee8, T 8 € E s
¥ x, € As1 .« os. ¥ X, € Asn
hs1(x1) # error-s;g & ... & hy ¥ error-s

(%) »
->' 0 0By (21 + o eEg)) = OBalhigs (gD eeerbignE,))

Fact 3.4 {p—homomorphisms are closed under composition]

Let I = <S,0p> € SIG and f: A » B, g: B » C be L-p-homomorphisms. Then their
composition

gofi:={ggofy |ses}:ia~cC
is a I-p-homomorphism.

Definition 3.5 |PEAlg]

The functor

PEAlg: SIG » CATOP
maps a signature I to the category of strict Z-algebras with Z-p-homomorphisms,
and it maps a signature morphism o to the forgetful functor PEAlg(o) which is
defined analogously to EAlg(o).

Fact 3.6 |Partial |

The family of inclusion functors
Partial,: EAlg(Z) » PRAlg(E)

with % € SIG defines a natural transformation
Partial: FAlg ==> PEAlg.

With PEAlg formalizing the property "partially homomorphic" we are now ready to
define a preliminary model functor mapping an i-signature II to the category of all
tripels TA = <Ac,a,Aa> where o is p-homomorphic but not necessarily surjective.

Analogously to i-siguature morphisms the morphisms in this category are pairs of
homomorphisms

<he,ha> : <Ac,a,Aa> + <Bc, 8,Ba>

5

that are compatible with the abstraction functions, i.e. it does not matter whether
we first abstract Ac-elements with o to Aa-elements and then map them with he to Be-
elements, or whether we first map the Ac-elements with hc to Be-elements and then
abstract them with B to Ba. As in the fixed case, the forgetful functor EAlg(o) is
applied to the source of the abstraction functions so that the compatability
condition for the model morphisms is the commutativity of the diagram

EAlg(o) (Ac) ——=——mmmmmmmmmm » A
| I
FAlg(o)(he) | | na
¥ B +
FAlg(o)(Be) —==m=m—m———mmu- + Ba

in PEAlg(Za).

Similar to i-signatures, this situation can be expressed neatly as a comma category.

Definition 3.7 [Tripel(lz)]

Let IZ = <SPa,0,SPc> be an i-signature with Sig(SPa) = La and Sig(SPc) = Zc. The
comma category

Tripel(IL) := (Partialy, o FAlg(o)|ma1g(spe) ¥ PartlalzalpAlg(Spa))
is called the category of II-tripels.

Similar to ordinary signatures, every i-signature morphism induces a forgetful
functor between the respective model categories in the reverse direction. Tt is
defined componentwise.

Fact 3.8 [Tripel(t)]

Let 1 = <{pa,pc>: IEy + IZs € ISIG.
Tripel(t): Tripel(IZ,) » Tripel(IZXy)
defined on objects by
Tripel(t)(<Ac,a,ha>) := <EAle(pc) (Ac),PEALg(pa)(a),FAlg(pa) (Aa)>
and on morphisms by
Tripel(t)(<he,ha>) := <EAlg(pc)(hc),FAlg(pa)(ha)>
is a functor.

The observations above yield a prelimininary model functor Tripel: ISIG ~+ CATOP, We
still have to restrict this functor to consider only tripels with gsurjective
abstraction functions.

Definition 3.9 [IMod(IZ))

For every IZ € ISIG the category of IZ-implementation models (or just In-i-
models)
TMod(IL)

is the full subcategory of Tripel(IL) generated by all tripels with surjective
abstraction function.

Fact 3.10 [IMod(t), IMod]

For every t: IIy = I, the restriction and corestriction of Tripel(t) to
IMod(IZ,) and IMod(IZ,) exists. It is denoted by

IMod(T) IMod(IEz) + IMod(I%4)
and

IMod: ISIG + CATOP

is called the modelling functor for implementation signatures.

3.% Relating implementation signatures to specifications

According to Section 2, implementation sentences over an i-signature II shall be ex-
pressed over the abstract signature Ta, the concrete signature Zc, and so-called ab-
straction operations to be interpreted as abstraction functions. In a first approach,
implementation sentences will be all ordinary sentences over this vocabulary. For
reasons of convenience we will use standard names for the abstraction operations:

Definition 3.11 [abs-operations]

For II = <<Ia,Ra>,0,{Ic,Ec>> ¢ ISIG and 1 = <{pa,pc>: IL + IIZ" ¢ /I81G/ we define:
abs-operations(IL) := {abs-syy: o(s) + s | s € za}
abs-operations(t) := {(abs-syy, abs-pa(s)yy-) | s € za}.

Fact 3.12 [v]

P: ISIG + SIG
defined on objecta by
p(IL) := fa a %c u abs-operations(IL)
and on morphisms by
Y(1) := pa u pc a abs-operations(t)
is a colimit preserving functor.

Defining an IZ-implementation sentence to be an ordinary v(IZ)-sentence p we must
determine whether an IZ-i-model MA = <Ac,o0,Aa> satisfies p. Since the abstract
symbols in $(I%) shall be interpreted by the abstract algebra Aa, the concrete
symbols by the concrete algebra Ac, and the abstraction operations by the abstraction
function &, we can take the disjoint union of Aa, Ac, and a to obtain a Y(IX)-algebra
interpreting P(IZ).

Definition 3.13 [joiny;(MA)]

For an i~éignature IL = <3Pa,0,3Pc> and an IL-i-model MA = <Ac,o,Aa>
joinIE(MA) := Aa 8 Ac 1 a
is the ¢(IE)-algebra A defined by

- for s € Sig(SPa): Ry B Aas
- for s e Sig(SPe): Ay = Acg
- for op e Sig(SPa): Opp = 0Py

- for op € Sig(SPc): opp = OPp,
- for abs-s ¢ abs-operations(IL}: abs-s := a

3

The join operator can be extended to a functor from IX-i-models to y(IZ)-algebras.
Fact 3.14 [joingy, join]

Defining Joinyy on IZ-i-model morphisms g = <he,ha> by
joingyy(g) := {hag | s e Sig(sSPa)} n {he 4 | & ¢ 8ig(sSPe)}
yields a functor
joinry: IMod(II) » FAlg(9(IX))
and generalizing over all i-signatures yields a natural transformation
join: IMod ==> EAlg o ¢

3,4 Implementation sentences without hidden components

According to the preceding section we define the set of Ii-implementation sentences
without hidden components or juast Th-i-sentencea to be the met of all ordinary (Iy)-
aentences. Such an [f-i-sentence p i8 satisfied by an Tr-i-model MA exactly if MA
viewed as the P(IL)-algebra joinIE(MA) satisfies p.

Definition 3.15 [ISen1]

The implementation sentence functor without hidden components is given by
ISen! := Sen o y: ISIG » SET.

Definition 3.16 [|*]

Let IZ e ISIG, MA e IMod(IZ) and p e ISent(IZ). MA satisfies p, written
MA |15 P

iff joinro(MA) |E "
Jeinyy p(Iz) P

Fact 3.17 [satisfaction condition]
¥ t: IIy » IZ, € ISIG .
¥ MA e IMod(IZ,) .

¥ p e ISen1(IZy) . .
MA |i;;, ISent(t)(p) <=> IMod(t)(MA) [*ryy P-

%.5 The institution

Since the satisfaction condition holds the notions defined above constitute an
institution. Like specifications are defined as the theories of the SPRC-institution,
implementation specifications will be defined as the theories of this new
institution.

Definition 3.18 [IMP1-institution]

IMP1-institution := <ISIG, ISen!, IMod, | >
is the institution of implementation specifications without hidden components.

IMP1 is its category of theories and it is called the category of implementation
specifications without hidden components.

3ince ISIG is cocomplete, general institution properties tell us that IMP1 is
cocomplete as well.

Fact 3.19 [colimits] IMP1 is cocomplete.

3,6 Examples: Implementing sets by lists and lists by array-pointer pairs

In our examples we will assume that the error constants are implicitly declared. As
sentences we will use first order formulas where the bound variables are not
interpreted as bottom elements. Besides we need some constraint mechanism to exclude
unreachable elements (e.z. initial [HKR BOj, data [BG 80}, hierarchy [SW 82], or
algorithmic constraints [BV 85b|).

We will show how several well known implementations of sets by lists can be developed
stepwise and hand in hand with the implementing gpecification.

8

On the abstract side we have the specification SET of gets with the empty set as
constant, and operations to insert an element, to determine or remove the minimum
element in a set, and to test for the empty set or for the membership of an element.
Beside standard sets, there may be bags or unreachable elements of sort set. The set
elements are described in the specification LIN-ORD which introduces a sort elem with
an equality operation and an arbitrary reflexive linear ordering. The
subspecification BOOL of LIN-ORD specifies the booleans with the usual operations
true, false, not, and, or.

On the concrete side the specification LIST extends LIN-ORD to standard lists with
the constant nil, the operations cons, car, and cdr, and a test nil? for the empty
1list. A1l lists must be generated from the elements by nil and cons. LIST is extended
to LIST-S by introducing names for the set simulating operations, but without
reatricting these operations in order to obtain a variety of different models.

Presentations of the specifications mentioned so far are given in Figure %.20(a). The
sentences parts are not elaborated since the necessary first order formulas Aare
atandard and since we did not want to go into the details of the constraint mechanisn
to be used, because our implementation concept abstracts from these details
completely.

We can give a first simple i-specification I:SET/LIST-S from SET to LIST-S:

ispec I:SET/LIST-S =
isig 95/1s" SET + LIST-3

with the signature morphism
05/Ls" Sig(SET) + Sig(LIST-S)

set + list

empty + nil

empty? + nil?

insert + l-insert

in? + 1-in?

min + l-min

remove-min > l-remove-min

x > X for x € Sig(LIN-ORD)

It merely defines the signature morphism 95 /1,8 translating sort set to list and
translating the set operations to their simulating list operations without renaming.
the signatures of the common subspecifications LIN-ORD and BOOL. Since I:SET/LIST-3

contains no i-sentences, its i-models comprise all possible representations of sets
by lists.

I:SET/LIST-S can be refined in various ways by adding i-sentences restricting the
abstraction operations of sort set, such that e.g.
- all lists represent sets (IA:SET/LIST-S),

- only lists with unique entries may represent sets (IU:SET/LIST-S),
- only sorted lists may represent sets (1S:SET/LIST-S), or
- only sorted lists with unique entries may represent sets (ISU:SET/LIST-3).

The last i-specification refines not only I:5ET/LIST-S, but also IU:SET/LIST-S and
IS:SET/LIST-S. The i-specifications are given in Figure 3,21 where we use abs-3:

05/15(s) + s as the abstraction operation name of gort s.

Corresponding to the four alternative refinements of I:SET/LIST-S we could now

9

specify alternative refinements of the concrete LIST-S specification by adding
sentences fixing the set simulating operations. The resulting LIST-S refinements
could in turn be used to refine the respective i-specifications by replacing LIST-S5
by the corresponding LIST-S refinement.

Here, however, we want to carry out the development in another direction by
implementing the lists by array-pointer pairs. For this purpose we consider the three
specifications listed in Figure 3.20(b): PAIR introduces standard arrays and pairs of
an array with a natural number. PAIR-L fixes the new LIST simulating operations such
that p-nil yields the new array with pointer zero, p-nil? checks whether the pointer
ig zero, p-cons puts an element in the field indicated by the pointer and increments
the pointer by one, p-car gets the element in the field indicated by the pointer
minus one, and p-cdr decrements the pointer by one. In contrast, the new operations
in PAIR-1S are unrestricted in order to allow for a variety of i-models differing in
their SET simulating operations.

In the i-specification implementing LIST by PATR-I, given by

j-spec I:LIST/PAIR-L =
isig oy pp: LIST > PAIR-L
isentences
¥ p: pairs .
(p-nil?(p) = true => abs-list(p) = nil) &
(p-nil?(p) = false =>
abs-1list(p) = cons(abs-elem(p-car(p)),abs-list(p-cdr(p))))

with the signature morphism
o1,/PI, Sig(LIST) + Sig(PAIR-L)

list * pairs
op * p-op for op £ {nil, nil?, cons, car, cdr}
p ¢ > X otherwise

the abstraction operation abs-list is fixed. This i-specification can be extended to
an i-specification implementing LIST-S by PAIR-LS:

ispec I:LIST-S/PAIR-LS = I:LIST/PAIR-L u

with the signature morphism
LS /PLS" Sig(LIST-S) + Sig(PAIR-LS)
l-op > p-0op for op ¢ {insert ,in? ,min ,remove-min}
p 4 > GL/PL(X) otherwise

comprising all i-models with fixed LIST simulating operations but with varying SET

simulating operations. Figure 3.22 shows the relations between the specifications and
i-specifications developed so far.

4, TImplementation specifications with hidden components

The inclusion of hidden specification parts into an ADT specification technique
usually extends its expressive power ([TWW 82], [BBTW 81]), and when describing the
composition of algebraic implementations hidden components are needed for the
intermediate specification part ([EKMP 82]).

We will now extend the IMP1-institution by so-called hidden specification sentences
which are comparable to an algebraic gpecification mechanism called functor image
restriction in [Ehg 81], reflections in [EWT 82] and derive ... from ... by-construct

' 10

gorta elem spec PAIR = LIN-ORD u NAT u

ops eq, le: elem elem + bool gsorts array, pairs
sentences ... < specifying eq as ops new: * array
" equality and le as an arbitrary put: array nat elem » array
reflexive linear ordering > get: array nat + elen
pair: array nat + pairs
spec SET = LIN-ORD u pa: pairs + array
sorts set pn: pairs + nat
ops empty: » set sentences ...{specifying standard
insert: elem set + set arrays and pairs of an array
min: set + elem with a natural number>
remove-min: set » set
empty?: set * bool spec PAIR-L = PAIR u
in?: elem set + bool ops p-nil: + pairs
sentences ... < gpecifying the set mﬂn-p—nil?: pairs + bool
operationa with their usual p-cong: elem pairs * pairas
meaning, but not necessarily p-car: pairs + elem
excluding non-standard sets > p-cdr: pairs » pairs
sentences ...{specifying the
gpec LIST = LIN-ORD u LIST-simulating such that
sorts list p-cons puts an elementinto
ops nil: + list the array and increments the
T cons: elem list > list pointer by one, p-cdr
car: list + elem decrements the pointer by one,
cdr: list » list etc.>
nil?: list + bool
sentences ... < specifying standard spec PAIR-LS = PAIR-L
lists over elem generated by ggg_p-insert: elem pairs + pairs
nil and cons > p-in?: elem pairs + bool
p-min: pairs + elem
spec LIST-S = LIST u p-remove-min: pairs + pairs

ops l-insert: elem list + list

T l-min: list » list
l-remove-min: list + list
1-in?: elem list + bool

Figure %.20 The ADT specifications in the implementations of sets by lists (a)
and of lists by array-pointer pairs (b)

jspec TA:SET/LIST-S = I:SET/LIST-S u
isentences
' ¥ x: list . ¥ e: elem.
abs-set(cons(e,x)) = insert(abs-elem(e),abs-set(x)))

ispec IS:SET/LIST-S = I:SET/LIST-S u
igsentences
(¥ e, el, e2:elem . ¥ x: list .
abs-set(cons(e,nil)) = insert(abs-elem(e),empty) &
le(e1,e2) = true & eq(el,e2) = false =>
abs-set(cons(el,cons(e2,x))) =
insert(abs-elem(el),abs-get(cons(e2,x))) &
le(e2,e1) = true & eq(el,e2) = false =>
abs-set(cons(el,cons(e2,x))) = error-set)

ispec IU:SET/LIST-S = I:SET/LIST-S u
isentences
¥ e, el, e2: elem . ¥ x: 1list .
abs-set(cons(e,nil)) = insert(abs-elem(e),empty) &
(in?(e,abs-set(x)) = true =>
abs-set(cons(e,x)) = error-set))

ispec ISU:SET/LIST-S = IU:SET/LIST-S u IS:SET/LIST-S

Figure 3.21 Some i-gspecifications implementing sets by lists

11

ISU:SET/LIST-S

f’ R
/ b
IS:8RET/LIST-S
/ 7

A
IU:SET/LI

/
S7-8 I:LIST-S/PAIR-LS
SED / / LIST-S PAIR-LS
3 Aigui~ﬁﬁgu~ﬁ/'ﬁjiy A l
IA:SET/LIST-S

|
Y I/

|
o b 1 :
I:SET/LIST-S

L
psrreens T:LIST/PAIR-L U
LIST T

PAIR-L

L

PATIR

-

LIN-ORD

F;\\\\\\\\&‘\\\Q — NAT

BOOL

Figure %.22: The relation between the specifications and i-specifications

EAlg
A £ EAlg(SPh) «-—-e—mmm SPh
| l ' p
EAlg(6) | FAlg(s) | | s
v | |
EAlg(8)(A) + FAlg |
= € EALg(9(IZy)) --mmmm- w(Izy)
joinyyq (IMod (1) (MA)) + +
* I
jOinIz1 joinlm l 1]
: . TMod I
IMod (t)(MA,) £ IMod(ILy) <¢~--—---- Iz,
4 4 |
IMod () IMod (1) |«
IMod ¥
MA, € IMod(IIy) ¢=====--m Iz,

Figure 4.2 Satisfaction of a hidden specification sentence
<SPh, &: ¢(121) + SPh, t: IEy » IIy>

in,{SW 83]. Wheras so far an implementation sentence over an i-signature I is an
ordinary sentence over the vocabulary W(1L), we now extend y(II) by arbitrary hidden
sorts and operation symbols from an ordinary ADT specification SPh via some
signature morphism 8: Y(IZ) Sig(sPh).

Definition 4.1 |hidden specification sentence, HSenJ

Let SPh € SPEC, & ¢ /SIG/ and t € /ISIG/. An II,-hidden specification sentence is
a triple

sh = <SPh, &: y(IEy) » Sig(SPh), t: IZy > ILy>
and HSen(IZZ) denotes the set of all Iiz—hidden specification sentences. The
translation of sh by t7: II, > 1L’ is the IL’-hidden specification sentence given
by HSen(t”)(sh) := <SPh, §, t’oT>

Note that the third component T of a hidden specification sentence allows for the
translation of such sentences by arbitrary (i-signature) morphisms, thus surving the
gsame function as the second component of the data constraints in |GB 83 |.

Writing sh for an Iiz-i—specificahion we are interested only in those Il,-i-models MA
that can be “extended” to SPh models: MA satisfies sh iff MA forgotten along 1 and
viewed as a y(IZ)-algebra is identical to some SPh-algebra A where the hidden part of
A is forgotten along 6. This situation ig illustrated in Figure 4.2 and made precis~
ag follows:

Definition 4.3 |satisfaction |t of a hidden specification sentence |

¥ MA e IMod(IZL,) . :
MA, |2 <sPh,8, 7> <=> 4 A e BAlg(SPh) . EAlg(8)(A) = joinpgpq(IMod(t)(MA))

Bxample 4.4 [implementing sets via lists by array-pointer pairs]

An i-specification describing the composition of ISU:SET/LIST-S and 1:LIST=-
S/PAIR-LS is '

ispec ISU:3ET/PAIR-LS
isig o15/pLS o ZS/LS‘ SET + PAIR-LS
hidden-spec-sentences <S-LS-PLS, §, id>

with the hidden specification
spec S-LS-PLS = SET u LIST-S5 u PAIR-LS u
ops abs—sets/LS: list + set
abs-listLS/PLS: pairs + list
abs-setS/PLS: pairs + set

gggggpces
j-pentences(ISU:SET/LIST-S) u
i—gentences(I:LIST-3/PAIR-LS) u
(¥ p: pairs .

abs-setS/PLS(p) = abs—setS/LS(abS—liStLS/PLS(P)))

where the abstraction operations of the individual implementations are indexed
correspondingly and where & maps abs-set to abs-setS/PLS.Note that for every
denoted ifmodel <AEAIR-LS’Q' Agpp> there must exist a LIST-S model A;yqm_g and
abstraction functions oy and a, such that <ALIST—S'“1’ASET> is an i-model of

ISU:SET/LIST-S, <APAIR-LS,02,ALIST-S> is an i-model of I:LIST-S/PAIR-LS, and a is
the composition of o1 and o2.

13

Fact 4.5 |satisfaction condition for hidden specification sentences

Vot I, + IZ” e ISIG .
¥ MA e IMod(IL") .
¥ sh e HSen(IZQ) : :
MA |f ;- HSen(t”)(sh) <=> IMod(t")(MA) |%rg, sh.

Definition 4.6 |IMP-institution, IMP]

IMP-institution := <ISIG, ISen, IMod, |%>
is the institution extending the IMP1-institution by ISen(IZ) := ISen1(II) u
HSen(IZ). IMP is the category of theories of this institution and called the
category of implementation gpecifications (with hidden components%

5. Normal forms

The introduction of hidden specification sentences allows us to derive a very useful
normal form result:

Fact 5.1 |normal form |

Any i-specification ISP € IMP can be transformed into an equivalent i-
specification ISP’ in normal form having exactly one hidden specification sentence.

Proof: (idea) Given two hidden specification sentences
shj = <SP, ps: O(IE;) + Sig(SP;), t,: IL. » IL>

J J
Wwe can merge 5%1 and sh?;%y taking the coproduct Spcop of SPy and SPy, taking the

coproduct Izcop of IZ, and II,, and the uniquely determined morphisms p” and T’
as given in
Bl = CBP 0 p”: w(zzcop) > Sig(Spcop), 7t T2 sep ™ 1>
To show that
IMod(IL, {sh1,sh2}) = IMod(IZ, {sh})
and the generalization of this statement to (possibly infinite) sets of sentences

relies on the fact that the model functor EAlg of the underlying SPEC-institution
regpects coproducts.

The i-specification ISU:SET/PAIR-LS of Fxample 4.4 is in normal form.

6. Composition

6.1 Composition of implementation signatures

The composition of i-signatures is given by the composition of their signature
translations.

Definition 6.1

For 1L; = <SPaj, o4, SPcy> with j € {1,2} and SPcp = SPay the compoaition of IZ,

and 1L, is given by
I'Zn' L IE2 & <SPB.1, 02 O 01, SP(:Z)

Obviously, this composition operation is associative.

6.2 Composition of implementation models

Having already defined the composition of i-signatures the composition of an Tin_4-

4

model MA, = <Ac2,u2,Aae> witbth an TE1—i~model MA, = <Acy,oq,Aay> where Aa, = Acy
should yield an Iz, @ IEz—i—model resulting from the composition of their abstraction
fu.ctions. However, in order to be able to compose the abstraction functions we must
first apply the forgetful functor PEAlg(oy) to ay:

Fact 6.2 |composition of implementation models |
(1) The composition of MA, and MA, as given by
MA, ® MA, := <Acy, o4 © PEAlg(p1)(a2), Aaq>
is an 121 @ Iiz—i—model

(2) The composition operation on i-models is associative.

Given two i-specifications ISP1 and ISP2 with composable i-signatures, we can now
compose all their respective i-models and obtain a subcategory of IMod(IE1 ® 122).

Definition 6.3 [composition of i-specification model categories]

IMod(ISP,) ® IMod(ISP,)
ig the full subcategory of IMod(IE1 L] 122) generated by all MA, ® MA, with MAi £
IMod (ISP). L

Fact 6.4 The composition operation on i-model categories is associative.

6.3 Composition of implementation specifications

In Section 2 we already motivated our requirement that the compositions of i-
specifications and their i-model categories should be compatible. With the notions
introduced above we can formalize this compatibility condition by requiring

IMod (ISP, @ ISP,) = IMod(ISPg) ® IMod(ISP1)

At least two questions arise immediately: Does there exists an i-specification ISP =
ISp, e ISP, describing the composition of ISPy and ISP, such that the compatibility
condition is satisfied? And secondly, is there a constructive way to generate ISP for
given ISP, and ISPZ? The following fact answers both questions in the affirmative.

Fact 6.5 |composition of i-specifications |

For any two i-specifications ISP1 and ISP, with composable i-signatures there
exists an i-specification

ISP, o I8P,
such that the compatibility condition is satisfied.

Proof: (idea) In order to generalize the construction carried out in FExample 4.4 we
construct normal form presentations ISPny and ISPn, which exist according to Fact
5.1, and perform the following steps:

(1) Combine the hidden specifications SPh, and SPh, of ISPn, such that the
middle specification SPa2 = SPc, is identified in this combination.

(2) Add the abstraction operations of IZ,, I22, and 1%, @ IZ,, and add the
corresponding composition axioms.

Steps (1) and (2) yield a hidden specification 3Ph describing a normal form
representation of ISPy @ ISP,.

As an illustration of Fact 6.5 consider again the composed i-specification

ISU:SET/PAIR-LS from Example 4.4 which was constructed correspondingly yielding
ISU:SET/LIST-S @ I:LIST-S/PAIR-LS: The intermediate LIST-3 specification is contain<«d

|15

in the hidden specification, and the i-models denoted by the composed implementation
are exactly those models that can be composed from the nodels of the two individual
implementations. Similarly, we could compose 1:LIST-S/PAIR-LS with any of the other
four set-by-list implementations (c.f. Figure 3.,22), yielding four different
implementations of sets by array-pointer pairs.

Fact 6.6 The composition operation on i-gpecifications is associative.
Proof: By Fact 6.4 since the compatability condition holds.

7. Implementation specifications in the ISDV system

As already pointed out in Sections 1 and 2, there is a close correspondence between
loose specifications and i-specifications w.r.t. their role in software development.
Loose specifications provide a means for a formalized stepwise refinement scenario
and the same is true for our implementation concept. The addition of new constraints
to a loose specification corresponds to making further design decisions; likewise,
the addition of i-sentences to an i-specification corresponds to further design
decisions influencing e.g. the efficiency of certain operations (c.f. the set-by-list
example in Section 3.6). Care must be taken because the process of refinement may
yield an inconsistent specification having no models any more, and the same may
happen to i-specifications. For both situations the same techniques can be used to
cope with this problem, e.g. suitably restricting the class of admissible sentences
or providing a constructively defined model. Such a model may be the program obtained
gradually during the development process.

The latter approach is supported in the specification development language ASPIK
within the Integrated Software Development and Verification (ISDV) system (|BvasSb,
|BOV 86 |). ASPIK provides a uniform integration of high level axiomatic and lower
level constructive specification techniques. An essential part of specification
development in ASPIK is the gradual refinement of axiomatic parts by constructively
defined models. That means an initially completely axiomatic specification is
guaranteed to be consistent if its refinement process can be carried through to a
completely constructive specification. This approach provides also a means for
coping with the consistency problem of composed j-gpecifications: In general a
composed i-gpecification may have no models although its component i-specifications
have models. This cannot happen if the intermediate specification is refined to a
model that lies in both classes of i-models.

Beaside consistency, the SW-property of j-specifications is another model
theoretically defined notion: According to the approach of gannella and Wiraing in
|sw 82| we call an i-specification ISP = <IL, IE> with IT = <SPa, o, SPc> an SW-
implementation if IE is empty and if for every SPe-model Ac there exists an IZ-i-
model <Ac, a, Aa>. This definition shows that in the approach of LSW 82] syntax and
semantics of implementations are not clearly distinguished. Baged on the work of [SW
82J, Urbassek [Urb 85] has developed syntactic criteria for i-specifications in ASPIK
that guarantee the SW-property. While these eriteria can also be used to guarantee
the consistency of composed j-specifications, less restrictive syntactic criteria
should be developed that relax the SW-property so that not every concrete model must
implement an abstract one.

8. Conclusions

Our implementation concept for loose abstract data type specifications completely

distinguishes between the gyntactical level of gpecifications and the semantical
level of models by introducing the notions of implementation signatures, - models,

16

and - specifications. It provides the notion of implementation refinement which is
not present in other approaches.An,implementation,in the approach for Clear-like
specifications proposed in,[SW 82j is - in our terminology - an i-signature with the
semantic condition that for every abstract algebra there is a concrete one with an
abstraction function in between. Concepts like those of (oM 82 | and [Sch 82 | are
based on behavioural abstraction and have been proposed for modules, and [Hup BOJ
considers implementations between canon specifications. The implementation concept
for the kernel language ASL of [Sw 83] merely requires that the abstract
specification is included in the concerete one. This simple notion is based on the
fact that, as a semantical language, ASL has very powerful specification building
operations which however may not be present in a language for ADT gpecifications.

In e.g. |GM 82, [sw 82], [sW 83| and in the initial approach of |EKMP 82|
implementation composition is defined and is explicitly shown to be associative.
Whereas in the former composition is a totally defined operation this is true in
[EKMP 82] for so-called weak implementations and for a particular class of strong
implementations. Of the cited approaches only'[EKMP 82j distinguishes completely
between syntactical and semantical levels which is a prerequisite for studying the
compatability problem of a composition operation. However, this problem is not
addressed explicitly since every gspecification denotes a unique algebra and no
explicit definition of a semantical composition operation is given.

Whereas the composition discussed in this paper is usually called vertical ther. is
also a horizontal composition arising in the context of parameterized specifications
(see e.g. |EK 82|, |eM 82|, |sw 82 |). For the implementation concept proposed here we
show in |BV 85b | that horizontal composition and instantiation of parameterized
implementations are compatible with vertical composition, allowing to combine
implementation specifications interchangeably in different directions with the same
result.

References

[BBTW 81] Bergstra, J.A., Broy, M., Tucker, J.V., Wirsing, M.: On the power of

algebraic specifications. Proc. 10th MFC i
e oTale RS o8 50 a1 | 3, Strbske Pleso, Czechoslovakia.

[BG 80] Burstall, R.M., Goguen, J.A.: The semantics of Clear, a specification

language. Proc. of Advanced Course on Abstract Soft ifi i
Copenhagen. LNCS Vol.86, pp. 292-332. olRATe S ltiestons,

[BOV 86| Beierle,C., Olthoff, W., VoB, A.: Towards a formalizati
, W., A : on of th
developmen% process. Proc. Software Fngineering 86, South&gatonfsg§ﬂyare

[BV 8&1] ?e'erle, C., VoB, A.: Implementation specifications. In: H.-J. Kreowski

ed): Recent Trends in Data e specificati o : p
e, Dovbnser Yenlaw, 1985pr p ications. Informatik Fachberichte

[BV 85b] Beierle, C., VoB, A.: Algebraic specifications and implementati i
E - o atio
integrated software development and yerfication systeg. Memo §Eé¥15221%n
FB Informatik, Univ. Kaiserslautern (joint SEKI-Memo containin the Ph.D.
thesis by Ch. Beierle and the Ph.D. thesis by A. VoB), Dec. 198

Hmc 82] Ehrich, H.-D.: On the theory of apecification, Implementation and

Parametrization of Abstract Data T 5
e 555" c ata Types. JACM Vol. 29, No. 1, Jan. 1982,

ng 81] Bhrig, H.: Algebraic Theory of Parameterized S ifi i i
2, y pecifications with
Requirements. Proc. 6th Colloquium on Trees in Algedb d i 2
Aotanianor G. Bohm, eds.). TNGS 112, pp. 1-24, 1981, = ESng I L.

[EKMP 82' E}llig,]l-, 5(160“31(1, I{-—J-, Mahr, B-, Padawi tZ, P-. Alpeblaic
]l!l lellelltatlon Of AbStIaCt Da ta TY[}eS- IheOI‘. Colﬂpute‘[SCle]ice V(}]. (),
!9 2. ppo 209—‘2 54. ?

[Exp 78] Ehrig, H.,Kreowski, H.J.,Padawitz, P.: Stepwise specification and

implementation of abstract data t « P "
R L ypes roc. 5th ICALP, LNCS Vol. 62,

[Ewr 82] Ehrig, H., Wagner, E., Thatcher, J.: Al i i
8, » . " il gebraic Constr t
?ggglflcatlons and canonical form results. Draft version, TU Bé;ign? ji%:

[#

[6a 83]
(o8 83
[or 82)
[emw 78]

[Hup 80]

[HKR 80|
[Li 83]

[sch 82}
[sw 82]
[sw 83

[Tww 82]

[urb 85

Ganzinger, H.: Parameterized Specifications: Parameter Passing and
Implementation with respect to bservability. ACM TOPLAS Vol. 5, No.3,
July 1983, pp. 318-354.

Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for

Program Specification. Draft version. SRI International and University of
Edinburgh, January 1983.

Goguen, J.A., Meseguer, J.: Universal Realization, Persistent
Interconnection and Implementation of Abstract Modules. Proc. 9th ICALP,
LNCS 140, 1982, pp. 265-281.

Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to
the specification, correctness, and implementation of abstract data types,
in: Current Trends in Programming Methodology, Vol.4, Data Structuring
ed. R. Yeh), Prentice-Hall, 1978, pp. 80-144.

Hupbach, U.L.: Abstract implementation of abstract data types. Proc. 9th
MFLS, Rydzyna, Poland. LNCS, Vol. 88, pp. 291-304, 1980.

Hupbach, U.L., Kaphengst, H., Reichel, H.: Initial algebraic
sEecifications of data types, parameterized data types, and algorithms.
VEB Robotron, Zentrum fiir Forschung und Technik, Dresden, 1980.

Li}fzed{ U.: Ein algebraischer Kalkiil fiir einen strukturierten Entwurf von
Datenabstraktionen. Dissertation. Forschungsbericht Nr. 148, Universitadt
Dortmund, 1983.

Schoett, O0.: A theory of program modules, their specification and
implementation. Draft report, Univ. of Edinburgh.

Sannella, D.T., Wirsin

3 : g M.: Imﬁlementation of arameterized
specifications, Proc. 9th T ALp 1982,

CS Vol. 140, pp 473 - 488.

Sannella, D., Wirsing, M.: A kernel language for algebraic gpecification
and implementation. Proc. FCT, LNCS Vol. 158, 1983.

Thatcher, J.W., Wagner, BE.G., Wright, J.B.: Data Type Specification:
Parameterization and the Power of Specification Techniques. ACM TOPLAS
Vol. 4, No. 4, Oct. 1982, pp. T11-732,

Urbassek, C.: Kin Implementierun%lskonze t fiir ASPIK-Spezifikationen und
Korrektheitskriterien. Diploma thesis, Univ. Kaiserslautern, 1985.

