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Abstract

Most computer generated proofs are stated in abstract representations not normally

used by mathematicians. We describe a procedure to transform proofs represented as

abstract refutation graph-s into natural deduction proofs. The emphasis of this

investigation is more on stylistic aspects rather than theoretical issues. In particular the

topological preperties of refutation graphs can be sucCessfully exploited in order to

obtain snucturedpreofs.
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1. Introduction

Automated Deduction Systems have become more and more efficient in recent years, but the

proofs they find are also increasing in length and complexity. To add to their incomprehensibility,

almost every research group uses its own format and style of stating a proof. It may be given as a

pure Resolution Proof, but when the proof is not actually found in distinct single steps, the result

may be as complex as an abstract graph or a matrix with some additional conditions imposed on it

such as acyclity or the “spanning” property.

. This has led to a state where only, specialists, and. sometimes only specialists in the very

method of automated reasoning, are capable to understand and check a proof found by an

automated deduction system. Therefore it seems necessary to be able to represent proofs in a more

comprehensible way. |

Proof Transformation. is an old problem of logic, but it has been neglected in a quest for

automatically finding proofs in juSt any representation. Its main aspects used to be theoretical in

nature, but now stylistic aspects begin to play a more important role. Peter Andrews was the first to

take up these issues again, when he proposed a method to transform matrix proofs into natural

deduction proofs [AnSO].



We aim to simplify and transform proofs that are found automatically into that subset of natural

language a mathematician might use. This shall be done in several Steps:

(refutation graph)

natural deduction
proof

Gependency graph)

linearized natural
deduction proof

natural language of
a mathematician

In a first Step the automatically constructed proof is transformed into a natural deduction proof,

which is still formal but more human-oriented than most other formats. Then the proof lines are

structured in a graph representing their mutual dependencies, which allows grouping of the single

lines and a gradual linearization of the natural deduction proof. Finally this natural deduction proof

is transformed into an intermediate representation, upon which simplification, structural, and

stylistic procedures operate in order to find a “human like" proof style. This representation is  then

transformed into mathematical natural language.



Definitions

2. General Definitions

This chapter contains the basic definitions of the logic used. Furthermore literals, clauses, and

the notion of unifiability are defined. There are no important differences to the usual way of

defining these concepts; similar definitions can for instance be found in [L078].

2.1 Terms and Substitutions

2.1-1 Definition:

We define a signature 1? as the union of the sets of constant symbols F0, and the sets .Fn of

n-ary fmqtion symbols ( n = 1, 2, . . .  ); K and all the 1% are finite. Let V be a denumerable set

of varjable symbols. Then the te_;_m set T is the least set with '

(oe) V, K (_: T

(ß) if f e  ]?n and t1,t2, . . . ,  the T, then ftltz...tne T.

A term containing no variables is called a ground term. Tgr is the set of all ground terms. We) is

an abbreviation for the set of variables occurring in an arbitrary object o ,  and the same

convention is similarly used for Pu, IF, T, and Tgr.

2.1-2 Definition:

A substitution is a mapping 0': V—> T with finite mg; V={v I o(v)¢v}; 0(V) is called the

codomain of o. A substitution 6 with domain {x1,x2,...,xn} and codomain {t1,t2,...,tn} is

represented as {XII-9 t1,...,xnt—> tn}. A substitution is extended to a mapping T —> T by the

usual homomorphism on terms. The application of a substitution to any other object containing

terms .is defined analogously.
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A substitution G is idempotent, if 606:6. This is. equivalent to the requirement that none of the

variables of its domain occurs in any of the terms of its codomain. In this report all substitutions

will be idempotent. If a substitution maps into T , it is called a W.

2.1-3 Definition:

Let s,t e T. A matcher from s to t  is a substitution [1 with |.Ls=t. A unifier of s and tie a

substitution 0‘ with os=6t. If a unifier for s and t exists, then the two terms are said to be

unifiable.

2.2 First Order Predicate Logic and Clauses

2.2-1 Definition:

We introduce the set P=U 051.1 ]Pn consisting of finite set-s of may predicate symbols.

(11:0, 1 ,. . .). There are two Special zero-place predicate symbols, TRUE (written T )  and FALSE

(written J.). The objects of the form Ptltz. . .tn with P5 IP and t1,t2,. . .,tn-e T constitute the set of

"atoms A. If A is an atom, then +A and —-A are (complementary) literals. The set of all literals is

L .

A finite set of literals is called a clause, C is the set of all clauses. A clause with literals L1,... . ‚.Lrl

is written as [L1 Ln].

2.2-2 Definition:

Two literals are unifiable, if their signs are eqUal and their atoms are unifiable. They are called

resolvable, wheneVer their signs are different and their atoms unifiable.



Definitions

2.2-3 Definition:

To construct the formulas of First Order Predicate Logic, we use the following additional signs:

(a) Una! cennective — negation sign

(b) Bing); connectives A conjunction sign

v disjunction sign

M12.lication sign

universal quantifier

existential quantifier

(e) Elm
L

l.
l<

[u

The Set ' «ll» of formulas of Fii'St' Order ‘Prédi‘oat‘e Logic is now defined as usual: ' '

(oz) L c_: @

(ß) If A,Be «11», then AAB, AvB, and AäB are all in o.
(7) If Aeallb, then Ve  all» and 5|e all».

(5) All members of «1159 can be described in this way.

A<=>B is used as an abbreviation for (A=>B)A(B=>A). Furthermore we write Vx1,x2, . . .,xn'A

as an abbreviation for Vx  1Vx2 . .  . V a and similarly for the existential quantor. If

2M={M1,M2,.. . ,Mn} is a finite. set of formulas, we write /\ M or /\ ISiSnMi instead of

MIANIZA. . . AMI) and likewise VM or VlsisnMi instead of Mlsv. . .. a .

Parentheses are used to indicate the range of the connectives, as in ((—A)A(BVC)). The

outermost parentheses will be omitted moSt of the time, and we adopt the usual convention to define

a binding order of the connectives. We assume that — binds more strongly than A and v, these in

turn bind more strongly than => and @, and the quantors V and 3 are the weakest. Parentheses

may be omitted according to this binding hierarchy, so that the above formula could be written

' —AA(BvC).
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3. Proof Representations

The Kaiserslautern Theorem Prover works on a connection graph of clauses and uses many

different deduction rules, not only simple resolution steps, for a deduction of the empty clause,

see [MKRP84]. Some of the deduction rules, such as replacement resolution, cf.[Prä85], can

easily be translated into simple resolution steps, while others directly rely upon graph properties,

and it would be rather complicated to transform these into resolution steps. The output of this

theorem prover is therefore not a resolution style proof but a graph representing the proof. One of

the advantages of the graphrepresentation is that it is possible to apply macro steps to the graph

during the search for a proof without having to go through an equivalent sequence of single

resolution steps.

The resulting graph, that finally represents a proof, is called a refutation graph; a detailed

definition can be found in [Ei87]. In the next paragraph refutation graphs are defined, omitting any

details not needed here, for in this report refutation graphs are only seen as abstract representations

of proofs.



. Proof Representations

3 .1 Refutation Graphs

3 .1 -1  Definition:

(a)

(b)

(C)

(d)

A glause graph is a quadruple G = (N,[N],£, H), where

N is a finite set. Its members are called the literal nodes of G.

[N] c: 2 N is a partition of the set of literal nodes. The members of [N], which are classes of

literal nodes are called the clause nodes of G. Contrary to the standard definition of a partition,

fie [N] is allowed The clause node of a literal node L is denoted by [L].

£: N—ä-L is a mapping, which labels the literal nodes with literals, such that if .L,Ke N belong _ ..

to different clause nodes, then V(£L)nV(£K)=Q5.

The set of po‘lylinks ll'll is a partition of a subset of N, such that for all Ae H the following

polylink condition holds:

(at 1)  All the literal nodes in one polylink are labelled with literals whose atoms are unifiable.

(11:2) There must be at least one positive and one negative literal in a polylink.

Literal nodes belonging to no polylink at all are called lm, NP is the set of all pure literal

nodes. Each polylink A has two opposite shores, a positive shore S+(A), and a negative shore

S'(A), constituted by the literal nodes with positive and negative literals, respectively.

These clause graphs, developed in [Ei87] are a generalization of Kowalski’s connection graph-s,

[K075], and R. Shostak’s refutation graphs, [Sh79].

3.1-2 Example:

-E  E-
L1 L2 L3 L4

+0 +8 +P +PT+S|+R - la
L5 L6 L7 L8 L9 L10 |_“

L12 «P
L13 +s fi -
L14N -Q L15 L16

-9 -



Proof Representations

Here is an example of a clause graph. Literal nodes are drawn as boxes with the appropriate
literals inside. It can be seen that the same literal may belong to several literal nodes. Therefore

literal nodes cannot be identified by their literals and the labelling outside of the boxes is for
their identification. The example contains seven clause nodes, built up by bordering literal
nodes. There are four polylinks, {L4, L10, L16, L11}, {L2, L3, L6, L9}, {L7, LS, L12},

and {L13 ,  L15}. Polylinks are drawn as lines with a little dot, which branch on each side to

connect the different literal nodes of the opposite shores. The literal nodes L1, L5, and L14 are
pure.

It is often necessary to change a given clause graph G by adding or removing any parts. Since this

involves several sets of nodes, one has to define carefully what the resulting graph will be. Adding

a polylink A to a clause graph G means to change H by adding to it a new set of literal nodes of the

previously pure literal nodes; the polylink conditions El and 1:2 (cf. 3.1-1) must of course be

obeyed.

Adding a literal node, means to add a new pure literal node to one of the existing clause nodes. And

to add a clause node is to insert a new set of pure literal nodes to G making up a new clause node.

Since there is normally no ambiguity, all these operations are written using the same + sign.

Similarly, to remove a polylink A from a clause graph G means to make its literal nodes pure, i.e. to

add them to Np. Removing a literal node L from G is to remove it from its clause node and to

change its polylink, unless it is pure. L is simply removed from its shore and, if the shore becomes

empty, the whole polylink is removed. Note that, if L was the only literal node in a clause node,

then the empty clause remains in the graph. .

A clause node is removed by removing it from [N] and all of its literal nodes from'N. Removal, of

any part of a clause graph is written using the — sign. We will now give a rigorous definition.

-10 -
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3.1-3 Definition: 

Let G=(N,[N],£, n), and let Ac Np fulfil the polylink conditions 1C I and 1C2'
 

Let LEN, DE [N], and CnN=0.
 

Then G+A = (N,[N],£, []Iu{A}),
 
,
 

G,D+L = (Nu{L}, [N]\{D} u {D u{L}},£, n),
 
, ,
 

where £ is an extension of £ with £ LE IL.
 

G+C = (Nu C, [N"]u{C},r', n), 
, , 

where £ is an extension of £ with £ LiE IL for all LiE C. 

Let G = (N,[N],£, n) with LE CE [N] and LE AE n. Then
 

G - A = (N,[N],£, ffi{A})
 

G,C -L = (N\{L}, [N]\{C} u {C\{L}}, £ IN\(L}' n')
 

, {n, if L was pure 
with []I = ffi{A}, if S+(A) ={L} or S-(A) ={L} 

ffi{A} u {A\{L}}, else 

G - C = (N\C, [N]\{C}, £ IN\(Cl' n\ 
where nil is constructed similar to n' by removing all literal nodes of C. 

d is a subgraph of a clause graph G, ifit can be obtained from G by removing any number of 

clause nodes and polylinks. 

3.1-4 Definition: 

A walk in a clause graph G is an alternating sequence COIIOC1... Cn_IIInC (n;:::l) of clausen 

nodes and polylinks such that for every pair of clauses Cj ' Cj +1 one contains a literal node of 

the positive shore of the connecting polylink IIj and the other contains a literal node of its 

negative shore. Seeing clauses and polylinks as sets of literal nodes this means for all neither 

A set of links or a link A is separating G, if there exist two clause nodes C and D connected by 

a walk in G, that are no longer connected in G-A. 

- 1 1 ­
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313  Definition :.

Let G:(N[N] £ H) and let A; ND fulffl the polyhnk condemns 11:1 211111112

LetLEN, DE [N], and CAN :12).

Then G=+A ==. (N‚_[N],£, HU{A})‚-
GD+L = 1Nu1L }, 1N1\1D} u 1D 111L111: 1111.,

where £ is an extension of £ w1th fLeL

G+C = (Nu C [N111 C} ‚£; n),
where £, is an extensmn of £ Wlth {LF 1L for all Lie C

.1[N]1£1 H) with LE CE [N] and LE AEH Then

GC _— L = {L}, [N]\{C} U {01L} 1, £ | MLP“ HJ)
_ ., ' H, if L was pure

wuh H:  «[ DN A.}, _ __ if SKA) ={L} er S ( A) ={ L}
111.111.} u. {ML} } else

= c [N]\{C}1 f i lme},  n"),
where H is constructed Similar to 111 by r emvm all hteral nodes af" C

G is a sub. _ a. _ h: of a clause graph G If it can be obtained from G by remvmg  any number af

Claus-e. nodes and pelylink-S.

3 1—4 D eff'i'nition :

A m in a clause graph G is an alternating seuence CDI—[OC1 . CnlflnCJR (1121 ) Of. Clause

nodes and p-o-lylinks such that for every pair of clau ses Ci" Cj+1 one. contains a literal node of

the positive Shore of the connecting polylink Hj. and the. other Contains  a literal node of 11:3

negative shore. Seeing ClausCs and pol'ylinks as Sets of literal nodes this means. to: all 11 either

cn 1ms+ajn)1121 and Chas-(111111113 or Cn_1m—'S-'(Hn);é® and Cnn-S’+(Hh)¢(3.
A set of links or a. link A is se aratin G, if there exist two Clause nodes: C and D connected. by

a. walkm G1 that are no.“ longer connected in G—A

-— 11' —
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3.1-5 Example: 

C1 A 
~ 

This is an example of a clause graph, where any two clause nodes are connected by a walk. 

Both A and IT are separating polylinks, but 8 is not. 

3.1-6 Definition: 

A poly-trail in a clause graph G is a walk, where all the poly-links used are distinct. A
 

poly-trail joins its start and end clause nodes Co and Cn'
 

A poly-cycle is a poly-trail joining a clause node to itself. If a clause graph G contains such a
 

cycle it is called poly-cyclic, otherwise poly-acyclic. It is called poly-connected, if each pair of
 

clause nodes is joined by a poly-trail.
 

A poly-component of a clause graph G is a maximal poly-connected subgraph of G.
 

3.1-7 Example: 

This is the same example graph G as in 3.1-2 with the emphasis on clause nodes and
 

polylinks. Two examples of poly-trails are C28C4QC6 and CsAC7ITC6QC38Cl' There i~
 

no poly-cycle and since there exists no poly-trail between Cl and C2' the graph is not
 

poly-connected, although any two clauses are connected by a walk.
 

G contains four poly-components, namely G-{Cl , C31, G-{C l , C4 }, G-{C2, C3} and
 

G-{C2,C4 }·
 

With the insertion of a further poly-link <D, consisting of the three pure literal nodes, the
 

graph becomes poly-cyclic; one poly-cycle is for instance C6QC38Cl <DC6.
 

- 12 ­
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3.1-5 Example:

This is an example of a clause graph, where any two clause nodes are connected by a Walk.
Both A and H are separating polylinks, but ® is  not.

3.1-6 Definition:

A poly-trail in a clause graph G is a walk. where all the poly—links- used are distinct. A

poly—trail jms its start and end clause nodes C0 and CH.

A poly-cycle is a poly—trail joining a clause node to itself. If a clause graph. G contains such a

cycle it is called poly-cyclic, otherwise 12'oly‘--acyc1ic. It is called poly-connected, if each pair of

clause nodes is joined by a poly-trail.

A W of a clause graph G is amaximal poly-connected .subgraph of G.

3.1-7 Example:

+P |+S I+R\é

This is the same example graph G as in 3.1-2 with the emphasis. on clause nodes and
polylinks. Two examples of poly—trails are C2®C4§2C6 and CSA.C7HC6QC3®C1. There is

no poly—cycle and since there exists no poly—trail between C1 and C2, the graph is not
poly—connected, although any two clauses are connected by a walk.
G contains four poly-components, namely G—{C1, C3}, G~{C1, C4}. G—{C2, C3} and
G- { C2, C4} .
With the insertion of a further poly-link (1), consisting of the three pure literal nodes, the
graph becomes poly—cyclic; one poly—cycle is for instance. C69C3®C1<IJC6.

_ 1 2.
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3.1-8 Definition:

Let A and H be polylinks in a clause graph. A is less nested than. H, Aifl, if there exist

clause nodes C and D, containing literal nodes of the same shore of A, and joined by .a

poly-trail using H.

For example see 3.1-10 below, where A is less nested than H.

3.1-9 Definition:

A deduction graph is a non-empty, ground, and poly-acyclic clause graph. A refutation grap'h

is a deduction graph without pure literal nodes. We sometimes speak of deduction or refutation

graphs even if they are not ground, but then the existence of a substitution is required that

transforms them into ground graphs.

A minimal deduction (refugtion) g;ap_h is one containing no proper subgraph, which is itself a

deduction (refutation) graph.

3.1-10 Example: (refutation graph)

' (1)

-Sa I -Sa I - Paiae ÜSeI
H

' o
I -Se I -Sa I- Peiaia|+SiaI—O—-

Q

Later on we will often drop the distinction between clause nodes and literal nodes and the

clauses and literals themselves. Furthermore we will sometimes omit the. prefix “poly-

because we never use the simple objects analogously defined in [Ei87].

-13 -
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' 3 .2  Natural Deduction Proofs

In 1933, Gerhard Gentzen developed a formal system for mathematical proofs with the

intention to describe as closely as possible the actual logical inferences used in mathematical proofs

(,,der möglichst genau das richtige logische SchlieBen bei mathematischen Beweisen wiedergibt“

[Ge35]).' The main difference between these natural deduction proofs (NDPs) and proofs. in the

earlier axiomatic systems by Frege, Russell, and Hilbert is that inferences are drawn from

assumptions rather than from axioms.

Prawitz describes such systems of natural deduction in [Pr65]: “The inference rules of the

systems of natural deduction correspond closely to procedures common in intuitive reasoning, and

when informal proofs — such as are encountered in mathematics for example — are formalized Within

these systems, the main structure of the informal proofs can often be preserved”.

We use a linearized form of Gentzen’s calculus NK; where the dependencies between

formulas are explicitely included as justifications, and where for every formula we give the set of

assumption formulas it depends on. The actual. form of the sequent rules is taken from Andrews

[An80].

3.2-1 Definition:

A pimf line of natural deduction consists of

. (a) a finite, possibly empty set of formulas, called the W

(b) a single formula, called mm

(C) amsofioatioo

A proof line with assumptions )4, conclusion F and justification Rule X is written

fit I— F Rule X. Sometimes comments are given to make the proof easier to read, these

- 14 . .
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comments are then written as if they were proof lines.

A finite sequence S of proof lines is a Natural Deduction Prggf (NDP) of a formula F, if

(on) F is the conclusion of the last line of S '

(ß) The set of premises of this last line is empty

(7) Every line in S is justified by one of the rules below.

Hypothesis Rule. (Hyp ): Infer fl, F |-— F,
this rule introduces a new assumption.

Deduction Rule (12(11): from fil, F |—— ‘G infer fll |—_ F => G

Rule of Pro ositional Calculus , . . __ :

from fill |—— F1 , . . .  , and fin I— F3l1

infer fill , , an I— G,

provided that F1 A A Fn = G is tautologous

Negation Rule (Neg ):

from ‚91|— F infer fl |— G,

where F equals —(Vx H), —(E|x H), Vx —H, or Elx —H;

and G equals Elx -—H‚ Vx —H, —(E|x H), or -(Vx H), respectively.

R '  fI‘  ' “ Proof P" from ‚ä.-F }— _L infer fill— F

ßule of gases (gas 1' ; from ‚91 |—' F v G
and AF]— Hand  ‚ ‘ZLGI—H

infer % }— H ‘

niv r ueralization ' from 21 |— G v F v H,
infer fit }— G v (VxF)  v H,
provided that x is not free in it, G, or H.

_15_
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Existential Generalization GG):	 Let F(x) be a formula, and let t be a term 

from .9l. f- G v F(t) v H, 

infer .9l. f- G v 3xA(x) v H, 

provided that x is not free in F(t). 

Universal Instantiation (VI):	 from .9l. f- Vx F(x) infer.9l. f- F(t)
 
for arbitrary terms t.
 

Rule of Choice (Se}):	 from .9l. f- 3x Fx and J'l., Fc f- G 

infer .9l. f- G, when CE F is not free in .~ or G.o 

Rule of alphabetic Change of bound Variables Ca,B): 

This rule allows to change the names of bound variables. 

3.2-2 Example: 

As an example let us prove that if Vx (Px => Qx) and Pa for a constant a, then 3y Qy : 

(1) 1 f- Vx (Px => Qx)	 Hyp 

(2) 2 f- Pa	 Hyp 

(3) 1 f- Pa => Qa	 Vr(1) 

(4) 1,2 f- Qa	 Tau(2,3) 

(5) 1,2 f- 3yQy	 3G(4) 

(6) 1 f- Pa => 3y Qy	 Ded(5) 

(7) f- (Vx Px => Qx) => (Pa => 3y Qy) Ded(6) 

(8) f- (Vx Px => Qx) /\ Pa => 3y Qy)	 Tau(7) 

The proof lines have numbers, which are used for two purposes: 

(a) in the justification, to indicate which other lines a given line depends on, and 

(b)	 to abbreviate an assumption formula; a number in the place of an assumption formula 

stands for the formula introduced by the hypothesis rule in the line with this number. 

Note that the reasoning is done exclusively with the conclusion formulae, while the 

assumptions are only carried along to emphasize the interdependencies between the formulae. 

This is characteristic of Gentzen's natural deduction system NK, whereas the calculi of 

sequents, as for example Gentzen's LK also change the formulae of the antecedent. 

- 16 ­
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Rule of Choice (Siem
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.LetF(x) be a formula, and let t be a term
from Ä |— G v F(t) v H,
infer fit }— G \! 3xA(x) v H,

provided that x is not free in F(t).

from fit }— Vx F(X)
for arbitrary terms L

from El |— Elx FX

infer Ä |_ F0)

and fl t -Fc l—G
infer fit |— G, whence F0 is not free in ,9! or G.

3.5;2-2 Example:

This rule allows to change the names of bound variables.

As  an exampleletus prove that if VX (PX 2 (23%) and Pa for a constant a, then Ely Qy :

(1)
(2);

(3)
(4)?
(5)
(6)
(7)
(8)

The proof lines have numbers, which are used for two purposes:

M
N

T
T

T
T

T
T

T
T

VX (PK 2 QX‘)
Pa

Pa 2 Qa
Qa
Hy Qy
Pa 2 Ey Qy
(Vx PK 2 Qx) 2 (Pa 2- Ely Qy)
(VX Px 2 Qx) A Pa 2 Ely Qy)

Hyp

Hyp

VI(1)

Tau(2,3)
EIG(4)‘
Ded(S)
Ded(6)
Tau(7)

(a) in the justification, to indicate which other lines a given line depends on, and
(b) to abbreviate an assumption formula; a number in the place of an assumption formula

stands for the formula introduced by the hypothesis rule in the line with this number,

Note that the reasoning i s  done exclusively with the conclusion formulae, while the
assumptions are only carried along to emphasize the interdependencies between the fonnulae,
This i s  characteristic of Gentzen’s natural deduction system NK, whereas the calculi of
sequents, as for example Gentzen’s LK also. change the formulae of  the antecedent.

- 15 . .
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4. Proof Transformation 

4.1 Generalized Natural Deduction Proofs 

The construction of natural deduction proofs (NDPs), by humans and computers alike, is 

conducted in single steps. To prove any valid formula F one always starts with a line f- F. 

Such a line is obviously no proof, because it is not correctly justified. Now the proof is constructed 

by deriving subgoals until the proof is completed. In the intermediate states, called proof outlines by 

Andrews in [An80], one may find completed subproofs, but also others that are not yet done. To 

formalize this procedure we introduce generalized Natural Deduction Proofs. 

4.1-1 Definition: 

A finite sequence S of proof lines is called a Generalized Natural Deduction Proof (GNDP) of a 

formula F, if 

(a) F is the conclusion of the last line of S 

(b) the last line of S has no assumption 

(c) every line is either justified by a rule of the calculus (see above), or it is justified by a 

proof (possibly in a different calculus) of its conclusion from its premises. 

This allows lines not correctly justified within the calculus, but it is assumed that these lines are 

"correct", in the sense that a proof for (Apremises ~ conclusion) exists. Such lines are called 

external lines, lines justified within the calculus are called internal. When no external lines are 

present in a GNDP, it is a normal NDP. 

A GNDP consisting of just one line, which is an external line without premises and with 

conclusion F, is called the trivial GNDP for F. 
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4 .  Proof Transformation

4.1  Generalized Natural Deduction Proofs

The construction of natural deduction proofs (NDPs), by humans and computers alike, is

conducted in single steps. To prove any valid formula F one always starts with a line -|—— F ,

Such a line is obviously no proof, because it. is not  correctly justified. Now the proof is constructed

by deriving subgoals until the proof is completed. In the intermediate states, called proof outlines by

Andrews in [An80], one may find completed subproofs, but also others that are not yet done. To

formalize this procedure we introduce generalized Natural Deduction Proofs.

4.1-1 Definition:

A finite sequence S of proof line-s is called a Generalized Natural Deduction Proof (GNDP) f a

formula F, if

(a) F is the conclusion of the last line of S

(b) the last line of 'S has no assumption

(c) every line is either justified by a rule of the calculus (see above), or it is justified by a

proof (possibly in a different calculus) of its conclusion frOrn its premise-s.

This allows lines not correctly justified within the calculus, but i t  is  assumed that these lines are

“correct”, in the sense that a proof for (Aprernises => conclusion) exists. Such lines are called

external lines, lines justified within the calculus are called internal. When no external lines are

”presentin a GNDP, it is a normal NDP.

A GNDP consis t ing o f  jus t  one line, which i s  an external l ine without premises and with

conclusion F, is  called the trivial GNDP- for F.
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4.1-2 Example:

' In this example we give one possible generalized NDP for theformula

F := (VuPuiue)A(VwPeww)A(nz SKA Sy A Pxiyz => Sz) => (VX Sx => Six).

This is a formulation of part of the subgroup criterion: ' _.

Let G be a group, SgG; if for all x,y in S ,  y ' lex is also in S ,  then for every x. in S its inverse is

also in S.

(1  ) 1 l— (VuPuiue) A (VwPeww) A (nz SKA Sy A Pxiyz =?» .Sz) Hyp-

Let a be an arbitrary cons-taut

( 2 ) 2 I— _ Sa.. Hyp

( 3 ) 1, 2 |— Sia at

(4 )  1 !— Sa  => Sia- Ded(3)

(5  ) 1 k— vx Sx => Six PVG(4)

( 6 ) l— (VuPuiue)A(VwPeww)A(nz SKA Sy A Pxiyz => Sz)

=> (Vs: Sx => Six) Ded(5)

As a proof it see the refutation graph in example 3.1-10.

In order to find a natural deductibn proof for a formula F, for which a proof . 11: has been found, a

finite sequence of generalized NDPs can be constructed, whose first element is the trivial GNDP,

and whose last element is an NDP for F. The transition between consecutive GNDP-s is governed

by the set of rulesdescribed in the next chapter.
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4.2 Transformation Rules for Generalized N DPs

In order to generate a sequence of GNDPs ending in a natural deduction proof for a valid

formula F, it is necessary to describe the rules by which a GNDP is constructed from its .

predecessor in the sequence. In the following example such a sequence is shown for the NDP‘ of

example 3.2-2. This example should throw some light on the nature of the transition rules.

4.2-1 Example:

We start with the trivial GNDP for the formula to be shown. During this examPle it is assumed that
the proofs ‘n'-i are always known. '

GNDPI: (7) |— (Vx Px => Qx). A Pa => Ely Qy 1:71

To. prove this implication, we may additionally assume its left hand side. The proof of the right
hand side together with the deduction rule will then complete the proof.

GNDPz': (1) 1 }— (VX Px => Qx) A Pa Hyp
(@ 1 |— 3Y QY n2
(7) |— (Vx Px => Qx) A Pa => Ely Qy _ Ded(6)

To show the existence of Qy, a. representative must be found.

GNDP3: (1) 1 I— (Vx Pic. => Qx) A Pa Hyp

(5) 1 |— Qa 12:3
(6) 1 |— Ely QY ' EIG(5)

(7) |— (V): Px. => Qx) A Pa => Ely Qy Ded(6)

Now a subformula containing Q is isolated from an internal formula by applying propositional
rules.

GNDP4: (1) 1 l— (Vx Px => Qx) A Pa Hyp
(2) 1 l— (Vx Px => Qx) Tau(1)
(5) 1 I— Qa 1:4

(6) 1 I— ayQy 36(5)

(7) }— (Vx Px v Qx) APa => Ely Qy Ded(6)
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The: next step is to instantiate the-universally quanified formula, such that Qa appears in it.

GNDPS: (1) 1 |—' (W Px => Qx) A Pa- Hyp
(2) 1 |-— (Vx Px => Qx) Tau(1)
(3) 1 l— Pa => Qa VI('_2).
(5) 1 }— Qa 11:5
(6) 1 !— 3Y Qy 3G(5)

(7) _I— (Vx Px => Qx). A. Pa => 3y Qy Ded(6)

Now Qa holds, if Pa can be shown.

GNDPS: (1) 1 |— (Vx Px => Qx) A Pa Hyp
(2) 1 |— (VX PX => QX) Tana)
(3) 1 }'—“ Pa => Qa‘ ' VI(2)
(4) 1 }— Pa 11:6
(51) 1 |— Qa Tau(3‚4)

(@ 1 l— 3y Qy 3G-(5)

(7) |— (Vx Px => Qx) A Pa => Ely Qy Ded(6)

_ And Pa follows from 1 in propositional logic, which leads to the desired natural deduction proof.

GNDP7 (NDP): (1) 1 |— (VxPx => Qx) A Pa Hyp
(2) 1 l— (Vx Px => Qx) . Tau(1)
(3) 1 |— Pa => Qa VI(2_)
(4) 1 |— Pa Tau('1)
(5) 1 |— Qa Tau(3‚4)
(5) 1 |— 3)? Qy 3G(5)

(7) I— (VX Px => QX') A Pa => 3y Qy Ded(6)

There are three largely different groups of rules. Rules of the first group", external rules, insert a

juStification within the calculus for a previously external line, and insert other external lines. It is in

fact a form of backward reasoning. Examples for this type are the transitions between GNDP1 and

GNDP2 or between GNDP2 and GNDP3.

For the second type, mixed rules, both internal and external lines are used to change the GNDP,

which type has been used in the construction of GNDP5 from GNDPG.
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Rules of the third group, internal rules, only apply rules of the calculus to internal lines,

deducing further internal lines, but do not affect any external line. This last type of rules uses

previously proved formulas or axioms to derive new ones by means of forward reasoning. With the

rules of this type reasoning can be done in pr0positional logic, but also instances of universally

quantified formulae can be built.

In the following sections we shall give a formal account of these transition rules. In their

description, fit is a list of assumption formulas, capital letters indicate single formulae, small greek

letters are used as labels for the lines, the justification Rule ER stands for an arbitrary rule of the

natural deduction calculus, and the justifications n, 119ml, and 11:2 represent proofs of the respective

lines. For all these rules one must make sure that the proofs 16,1151, or 1:2 can be constructed from at

or are otherwise known.

4.2.1 External Rule s:

The lines on the left hand side of the arrow (—> ) are replaced by those on the right hand side

in the next generalized NDP of the sequence.

1.3.22; (a) a. F |.— F Hyp
(y) ‚q +— F=>G n —-.> (B) 54,1: |— G n'

('y) Ä l— F=>G Ded([3)

EA: . . (a) a I—— F 11:1
('y) fi [— FAG n» ———> '»(B) fit l— G arg

(r) a l— FAG Taucmß)

Evl :  (a) fll,—F +— —1= Hyp
(ß) fil,—F |— G ‘n'

(8) 51 |— FvG 11: ——>
(g) ‚q +— -—F=>G Ded(ß_)
( )  a I— FvG Taucy)
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Ev2: “(a) ‚q,—G 1— —G Hyp
(ß) 91, G l— F 'n'

(5) 541 -|-— FvG 11: ——>
(g) fll |— —G=>_.F Ded(ß)
( )  Fl |— FvG T au(y)

Ev3: „ — (on) |— F“ 11:‘
(ß) 2 |— FvG at ——> '

' (B) 541 l— FVG Tau(0c)

Ev4: _ ' (oz) a +— G n"
([3) fl "l— FvG ‘E -—>

(13) ‚91 }— .FVG Tau(on)

E—I . (06) 2 |— G n '
(B) fit l— —F n ——+ ' — »

(ß) fl l— —F Rule-SK

provided that F and G are one of the pairs (—A, A), (AAB , —-Av—-B),
(AVB, —AA—B)‚ (A=>B, AA—B), (VxA, EIx—A), (EIXA, Vx—A),
and Rule SR is the appropriate rule of inference.

EV' . Let (: be an arbitrary object
, (ß) % | -—Vx 1t —9 (or.) fit }— Fc 113'

. (B) 14 |— Vx VG(oc)

E3: . (on) ‚q I— Ft n'
(ß) 2 |— Sx 76 ——a

(ß) It! }— 3x EIG(OL)

E-D1V1de: ' ’ (a) a +— G v—G Tau
We consider separately the cases of (on)
Case 1: '
(ß) a, G F— G Hyp

(oar—F n ——> wwam—F nl
Easel
(5) Fi,—G }— —G Hyp
(8) Fi,—G ]— F 1:2
End of cases (1, 2) of (OL)

. (C) 2 I— F Cas(oc,r,e)

E_L: _ (on) it,—F |— —-F Hyp
0054 i— F at ——> (B) Fi,—FF— .L n‘

(7) Ä |— F IP03)
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All these external rules fall into one of two categories. E=>, EA, E—‚ and EV are called

automatic, because no further information is needed for their application. The four variations of

the rule Ev, as well as ES, and EJ. may only be applied with the permission of the user or with

additional information, for example if the term t in the case of El is explicitely given. These

external rules are therefore called user- guided.

4.2.2 Mixed Rules

M-Cases: ”(cc) ‚@ +— FvG RuleSK
We consider separately the cases of (a)
Case 1:
(ß) a. F k— F Hyp

(0L) ‚q l— FvG RuleSR} (y) AF  I— H 71:1
—-—> < Case 2:

( 0 :21  }— H 15 (8) 2 ,6  I— G Hyp
(e) 541, G |— H - ng
End of cases (1, 2) of (0t)

. (C) 54 t- H Gamma)

M-Unless:
_ (a) 521 |— F v G Rule SR

(oz) fit I— FVG RuleSi (ß) fll, F |— F Hyp
' ' —-> (7) a, F |— G _ at'

(t) a +— G a: (e) a !— F=>G Dede)

(C) Ä |— G TaU(0t,8)

M-Qhoose: -
(OC) 54 |— 3x Rule SK

(Ob) 2 |— Elx Rulegi} (ß) I‘LFC !— Fc Hyp
—-——>

(8) A |— G n: (g) AFC |— G n '  __
( )  fl t- G Sel(oc‚'y)

c may not occur free in fit , F, or G.
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M-Inf: __
(0c) fl ]— F=>G Rule‘iR} { (a )  ‚91 ' |— F=>G Rule-SR

. _ )  '. (ß) 2 |— F 11:
('Y) 2 I— G ‚.; (Y) fl l— G Tau(oc‚ß)

4.2.3 Internal Rules

All of these deducing rules use internal lines and. add a new internal line to the generalized proof.
Here the new lines are marked with an arrow, “—>", and written below their parent lines.

I—:. _ '_”  (on) a I— —F Rule 91
—> (ß) a I— G Neg(oc)

provided that F and G are one of the pairs (VxA, Ex—A)
and (EIxA, Vx—A).

IV:
(or.) fll |— Vx Rule SK

—> (ß) fll }— Ft ‘V‘I(0L)

for‘ an arbitrary term t, that can be inserted for x.

(0‘2) .912 I— F2 Rule X2

(06,1) fin I— F1,1 Rule Xn

—> (ß) U21 I— F Tau(a1,...,ocn)
provided that F is a consequence of F1 through F]n in
propositional logic.

For practical purposes this rule must be further divided into smaller rules. Three types are

possible, namely analytic rules, breaking up formulas, synthetic rules, constructing formulas

from others, and finally W that change a formula to an equivalent form.
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(a) _
—> ([3)

(on)
-'> (ß)

(a)
—+ (B)

Is—:_

(0°) 541

(B) 542

(on) ‚q
-'> (ß) 2

(a)
—-—> (B ) .

(on) '
—> (l3)

(oe) _-

—> (B)

.

T
T

TTTT

"1
1 > ca

TTT
T

TTT
T

TT
T

o
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Rule SR
Tau(ot)

Rule 5K
Tau (oe)

Rule 93
Tau(oc)

Rule X1

Rule X2
Tau(oc, ß)

Rule SR
Tau (on)

Rule SR
Tau(0t;)

Rule SR
Tau (oz)

Rule SR
TauCOE.)
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IC—A (a) |— --(1= A. G). Rule St
(ß) I— —Fv —G Tau(oc)‘

IC—V (a) |— _ (F v G) RuleER
- (ß) . +— —F A —G Tau(oc)

Ic—=> :. (-00 |— — (F => G) Rule SR.
(B) F- F A —G Tau(o!‚)

Ic=>: (a) . I— F :> G Rule SR
(B) |“— -'F v G TauCoc)

Icv l :  (a) ' +- F v (3 Rule 91
(B) +— ——F =>G Tauca)

ICV2. (a) }— F v G Rule SR
- (ß) |— —G => F Tau(oc)

ICVA: (0L) :— EV(FAG) Rule SR
—'> (ß) fl }— (EVF)A(EVG) Tau(0c)

Ic-Av: (0c) ‚q +— EA(FVG) Rule SR
_ —-> (5) ‚q I— (EAF)V(EAG) Tauca)
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\;

4.3 A Semiautomatic Proof System

The set of transformation rules defined in the previous section constitutes a proof system for

natural deduction proofs. This means that for any valid formula F, there is a finite sequence of

GNDPs starting with I— F and ending with an NDP for F. Every element in this sequence

follows from its predecessor by application of one of the transition rules (Completeness of the set of

transition rules).

This system could be used as a proof checker, the user choosing from a menu of applicable

rules, and the system correctly applying them. But the system can actually do a lot more by

preselecting the trafo rules and giving the user a much smaller choice of rules.

Starting from the trivial GNDP, external rules are applied — if necessary with the help of the

user - until all of the conclusion formulae of external lines are either literals or suitable

subformulas of internal conclusions. In this way it is avoided, always to break down the formula to

prove into its literals and build it up again later. If a complex formula is contained as a whole in

some axiom, then it can be heped, that a shorter proof is available. This is detected by using the

notion of axiomatic formulae defined below.

Then mixed rules are used, and only if no more external or mixed rule can be applied, the

system starts using internal rules.

4.3-1 Definition:

In the context of (generalized) natural deduction proofs, axiomatic formulas are defined as

follows, where we distinguish between strongly axiomatic and weakly axiomatic:

(a) Any conclusion F of an internal line is a strongly axiomatic formula.

(b) Any strongly axiomatic formula is also weakly axiomatic.

(c) If F is a strongly (weakly) axiomatic formula, then with

F = A A B A and B are strongly (weakly) axiomatic,

F =. A v B A and B are weakly axiomatic,
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F = A => B B is weakly axiomatic, strongly , if a proof for A is known and F is

strongly axiomatic,

F = -(-A) A is strongly (weakly) axiomatic, '
F = Vx Ax At becomes strongly (weakly) axiomatic, if it is known, that t must

be inserted for x during the proof.

F = 31x Fc becomes strongly (weakly) axiomatic, if it is known, that c is

inserted for x during the proof.

F = -—(AAB), —(AvB)‚ —(A=>B), or —E|xAx, then —Av—B, —AA—B‚ AA—B, or

Vx—Ax are strongly (weakly) axiomatic, respectively.

In the following, for each of the external lines in a GNDP there are sets of strongly and weakly

axiomatic formulas. E-Rules must not be applied, if the conclusion of the external line is among

its strongly axiomatic formulas.

The strategy for a semiautomatic proof system is the following:

4.3-2 Algorithm:

1 .  StartwithGNDP = @ |— F .
Initialize strongly and weakly axiomatic formulas for this external line as empty sets.

2-. Apply automatic E—Rules as long as possible, until all of the external lines conclude in weakly
axiomatic formulas. Whenever new internal lines are added, their conclusions become strongly

axiomatic formulas for the external line in case. As always the complete sets of axiomatic
formulas are computed. '

3 .  If possible, ask the user, whether one of the other user-guided external rules Ev,  E3, or
E—Divide should be applied. If so, do it and go to 2.

4.  Now apply mixed rules at the user’s discretion until no longer possible. After every application
the sets of axiomatic formulas have to be updated. If M-Inf was applied, go to 2.
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5. Check, whether the proof is already completed. Then return GNDP as final proof.

6.. Reluctantly apply E_L , if the user really insists, then update the sets of axiomatic formulas.

7 .  Let the user choose, which of the internal rules shall be applied. Then go to 5.

Of Course in our actual implementation, “the user” may be the computer itself selecting according to

appropriate heuristics by making use of the information in a refutation graph which was previously

computed.

4.4 Using a Refutation Graph to construct an NDP

In this chapter we show, how a proof represented as a refutation graph can guide the “Search”

for a natural deduction proof. In this context, search does not mean to find an original proof, but

to transform the given, graph represented proof into the natural deduction calculus.

To that end, we use the above rule system and gradually change generalized NDPs in order to

complete the natural deduction proof. To achieve this, all the tasks formerly done by the user have

to be taken over. This includes the choice between several applicable transformation rules and the

update of the deduction graph during the whole process. The information about the automatically

generated proof consists of a refutation graph, a ground substitution for all the formulae needed,

which includes the information about skolemization and duplication of clauses, and a relation A

between the literal nodes of the refutation graph and the atom occurrences of the input formulae,

indicating where the literal nodes stem from.
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In this seetion, external rules will only be considered applicable, if their Conclusions are not

axiomatic.The first point of choice in algorithm 4.3-2 comes up, when rule Ev is applicable. In

this case one of its four versions can always be used, so the graph is needed to decide which one.

Whenever Ev3 or Ev4 is necessary, that is when one part of the disjunction is directly provable,

then the other part does not appear in the refutation graph, which is a property easy to check. The

choice between Evl and Ev2 is only a stylistic one; in this case there are always tWo clause. nodes

in the graph representing the two parts of the disjunction, so the problem appears to be symmetric.

In fact both of Evland EVZ always work. But the structure of the refutation graph may help to

make a good choice as can be seen in the following example:

34.4-1  Example Graph:

A good heuristic is to choose the one with the smaller number of literal nodes in its shore, —F

in this example, as an additional assumption. In this way the rest of the proof can be divided into

two independent parts, while choosing —G would lead to a subsequent application of the Rule of

Cases. This heuristic can also be generalized to cases where the formulae F and G are not literals.

When EEI can be applied, one has to consult the total unifier of the refutation graph. If the

variable has only been instantiated once, that is no copy of the formula has been needed, then the

rule can immediately be set to work. If c0pies have been made, one way to continue is always to

construct a proof by contradiction starting with an application of BL But there are certain cases,

when this is not necessary.

4.4-2 Example Graphs: . .

In the upper graph the proof can be done in two cases with Pa and Pb as assumptions, while-in

the lower one E-Divide can be applied for G and —G and so the refutation graph is cut in two
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* parts. Another possibility in the second case is to derive Fav first, and continue as in case one.

More complex situations arise, when a decision about mixed rules has to made. After all, it is

certainly not useful to divide the proof into cases, whenever a disjunction has been derived. And

we have seen earlier, that some of these rules may lead into dead ends when applied incautiously.

On the other hand none of these rules is indispensable, for one can always fall back on a proof by

contradiction. This is not desired, however, and large classes of graphs have to be found where

an application of such rules is safe and leads to nice proofs.

In the following section we use the rule M-Inf as an example to show how certain structural

properties of the refutation graph can be sufficient to guarantee the safety of the application of

such rules. The rule M—Inf is repeated below as a reminder:

M-Inf:
_—

(a) A |—— F=G Rule X } {(d) Ä |— F=>G Rule X
_} , - I(ß) fll |— F ‘n:

(’Y) 2 l— G „; (7) fl l— G Tau(oc‚ß)

Let as assume for the moment, that we have to decide about the application of M-Inf. The

danger is to apply it, when F is not provable. So  we have to make sure that F is valid, and this can

be seen from the graph, provided the automatically found proof has used the formula F=>G. The

simplest case is, when the formulae F and G involved are both literals.

4 .4-3 Example Graphs:

E 'E-m. . .

Whenever the graph has the first structure, the rule may be applied. Should the clause [—F G]

not appear in the graph, the rule can obviously not be applied, but there are also situations, where

[—F G] is part of the graph, but F is still not derivable, as in the second example graph. In this

case one could for instance break up the proof into cases with asSumptions L1 and LZ.
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4.4-4 Example Graphs:

The two refutation graphs. above cover the cases, where F is a conjunction or disjunction. In

the first case there must not be a trail between ——F1 and —F2, since then the graph would be cyclic,

and therefore no refutation graph. If in the second case there were no such a trail, then the

refutation graph would not be minimal, since any one of the branches could be omitted. This leads-

to a situation, where either F1 or F2 can be derived independently as in Ev3 or Ev4. If, on the

other hand, there is such a trail, then Evl or Ev2 can be applied after M—Inf.

When G=G1vG2 is a disjunction and F either literal, conjunction, or disjunction, then the

fellowing refutation graphs allow an application of M-Inf:

4.4-5 Example Graphs:

Pi”
_F1_ . .o_ .

. . F2—o—

-G G2

As in the first case above there must be no trail between —F1 and —F2 in the refutation graph in

the middle here; and the last graph is only minimal, if there is such a trail.

The set of examples is completed with the case where G is a conjunction. Again F may be

either literal, conj unction, or disjunction.
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4.4-6 Example Graphs: ' I 'F1 l i l ' F - z l

-e, - _ _ _' «a _
«az - 1:2

" I 'F1IG2I-F2I

' subgraph3 .

subgraph4-

When F is a conjunction, there are two essentially different possible graphs. They correspond

to the case-s _ of the subsequent applications of different versions of rule Ev .  The first one

-— subsequent application of Ev3 or Ev4 — is of course isomorphic to the case, where F is a

literal. The second case is illustrated above; for this graph to become a refutation graph, trails must

exist both between subgraphl, subgraphz and subgraph3, subgraph4. Otherwise the graph would

be either cyclic or not minimal.

The cases where F or G are implications can always be seen as one of the disjunction cases

above . And also when F or G are quantified formulae, there is no essential difference.

So  rule M—Inf can be applied with advantage when the graph has the form described above, it

must not be used, when the clause [—F G] does not appear in the graph at all. The remaining

negative cases can be summed up by the condition, that G may not be present in the refutation

graph in several copies. The negative example above is really only a Special case of this, because

the graph could be rewritten using two cepies of G. But not all is lost in this case; most of the time

the rule M-Inf can then be used to prove one part after division of the proof into cases.

Similarly graph situations can be given for the application of the rules M-Cases, E-Divide, and

M—Unless. The cases below cover only the case, where F, G ,  and H are literals, but they can be

generalized just as those for rule M—Inf.

\
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M—Cases: '

The clause [F G] must be the only connection between the two branches of —H. If there is

another one, as in the graph on the right, then the rule can only be applied after duplication of the

corresponding subgraph. This will of course only be advantageous, if this subgraph is very small.

Otherwise it may be a good idea to work an the subgraph first in order to derive a lemma.

E—Divide: .

The link between G and —G must separate the two branches leading to —F. This rule is actually

only a variation of the rule M-Cases, it is not usually applied unless especially called for by a

heuristic.

M-Unless:

This is also a special case of M—Cases, where one of the cases is trivial. Here a cut through F

and G in [F G] leads to the desired linearization of the proof.

In the rest of this chapter, the process of updating the refutation graph after each application of

a rule is described. There are essentially four tasks to be done:

1. Updating the total substitution after using an instantiation.

2. Updating the sets of axiomatic formulae for the external line currently worked with.

3. Updating the sets of negatively polarized literals in the graph, i.e. those literals that were

constructed from the falsified parts of the theorem to prove.

4. Removing parts of the graph or dividing the graph into parts.

For all these tasks we will give examples.
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The substitution has to be altered, whenever one of its components has been used. This

happens for instance in the case of rule BEI, when the component x:—>t can be removed from the

substitution.

The rule E=> is an example, where the set of axiomatic formulae is changed. The formula F

and its axiomatic closure is added to the set of axiomatic formulas.

When Evl is applied, then the formerly negated literal —-—F is considered an axiom now, which

means that it may be positively used in deduction steps.

The most difficult part of the updating process is the division of the graph, when the proof can

be done in two independent parts. This is the case after application of EA, E-Divide, or M—Cases.

With literals F and G a graph might‘havethe‘followin'g form before application of EA:

4.4—7 Example Graph:

subgraph3

The refutation graph must now be Split into two parts. This is done by dividing the clause

[-—F —G] into two clauses [—F] and [-G]. The remaining graph is obviously still a refutation

graph, since no literal becomes pure and no cycle can be introduced, but the graph is no longer

minimal. It can be seen, that its two components are independent refutation graphs for F and G. If

these. components have a non-empty intersection (subgraph3), then this subgraph must be

duplicated. This is not desirable, however, when it is too large. In this case the subgraph has to be

worked with first in order to generate a lemma, which can later be used in both the proofs of F

and G.
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4.4-8 Example Graph:

The structure of the graph becomes more complex, when F and G are disjunction-s (see

aborie). The out must now be fourfold, separating —F from —G in four different clauses. In this

case one has a choice whether to adopt subgraphl or subgraphZ. Again any two subgraphs may

intersect. I . .

The structures of the refutation graphs for the rule M-Cases is „dual“ to those for EA. This can.

be seen in the graph below, where F, G and H are assumed to be literals.

4.4-9 Example. Graph:

Again it is cut through [F G], and the resulting two graph components are both proofs for H,

assuming F or G as an additional assumption.

4.4-10 Example Graph:

subgraphl '
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In this case the cut must be through the two clauses containing G and —G. These literals are.

therfore duplicated in the process. Actually this rule corresponds to an application of a resolution

step with G and —G as complementary literals and a subsequent division of the proof into cases. by

breaking up the resolvent.

The. problem of selecting the correct internal rules remains to be dealt with. When all the

external formulae are axiomatic and none of the mixed rules can be applied, then the task is. either

to derive the eXternal formulae by forward reasoning, using internal rules, or to derive new

internallines in order to apply mixed rule's later. '

In case of strongly axiomatic formulae one only has to apply I—, IV, or analytic propositional

rules. in order to derive the desired formula. When a weakly axiomatic formula is to be proved,

then one starts just as for strongly axiomatic formulae, but stops, when the subformula is reached,

where further subformulae become only weakly axiomatic. This must be a disjunction, an

implication, or an existentially quantified formula, containing the original formula as a

subformula. Now the appropriate mixed rule must be applied and the process repeated.
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5 . Outlook

The system described in the previous chapter represents a first step towards proofs in natural

language. But on this basis alone it is  not possible to perform an immediate translation of the

resulting natural deduction proof into natural language. For one thing the proof has no internal

structure, all the single proof steps, whether trivial or important, seem to have the same weight in

the. proof. Moreover, there is no easy way to determine which of the steps depend on one another

and can therefore only be executed in a certain order, and which ones are totally independent. To

solve the second problem one must construct a linearized version of the natural deduction proof,

that is one where an exact order of the single steps is given- And the natural way to solve the first

problem is to formulate subgoals or lemmas within the proof, that can be derived seperately and

will then later be used in the proof. In the rest of this chapter we will describe some ideas that might

leadto better answers to these two questions of proof transformation.

There are three main reasons for a mathematician to formulate subgoals or lemmas in a proof.

A lemma is generated, whenever a certain formula, that must be derived in a number of proof steps

from the axioms, is later used several times. A lemma is also useful, when more than one derived

formula is used in a single proof step, in this case all but one of these formulae are derived as

lemmas before the. main chain of reasoning is followed. The last case comes up in relatively long

proofs, that can be divided into several independent non-trivial parts. These parts will then be

considered as subgoals, esPecially when the formulae in case formulate interesting propositions.

It seems to be possible to detect. some of these situations by using the information hidden in the

refutation graph and the natural deduction proof. A schematic graph for the case, where a lemma is

used more than once is given on the next page.
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Example 5-1:.

" subgraphZ

_ ' _ subgmphl
- subgraph3

Of course this can only work, if subgraph 1 contains no part of the negated theorem; and it

makes only sense, if the lemma rcpresents a sufficiently small formula compared to subgraph 1.

The way to find similar situations is by searching for (sets of) links separating the refutation graph

such that one part is free of negated theorem parts. This subgraph will then be a deduction graph

for the lemma formula.

The case of .subgoals, that is lemmas which are only used once, differs only slightly from the

above case. Again a separating link or a set of separating links have to be found, such that all the

negated theorem parts are contained in the same subgraph. But now, to make the formulation ofa

subgoal worthwile, it is important that the lemma should represent an important step in the proof.

As a rule, both partial proofs should be “easier” than the original theorem. In fact, mathematicians

often use “interesting propositions” as lemmas in such cases, but it seems hard to find those using

purely syntactic information. In [Da81] Martin Davis proposes that complicated inferences require

multiple substitutions in the same clause. In this sense one might argue that a subgoal make-s the

proof more obvious, when the different parts of the refuatation graph contain different copies of the

same clause. This idea is illustrated in the example below.

Example 5-2:

~Sa I ~Sa I- Paiae I +SEI

A

I-Se I -Sa I-PeiaiaI+SiaI—O—-
+Sa . _ .
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This is the refutation graph of examples 3.1-—10 and 4.1-2 (subgroup criterion), with the unit
clause [+Sa] duplicated in order to make A a separating link. In both subgraphs the clause
{-8}: -Sy -Pxiyz +Sz] is present in different instances, and only the lower subgraph contains
negated theorem parts. If the proof is structured in the way described above, then in a first step it is
derived that S contains the unit element e of the group, and subsequently that fer every element x in
S, its inverse is‘also in S.

For the linearization of natural deduction proofs Daniel Chester has fermulated a procedure in

[Ch76]. He uses dependency graphs, where the nodes correspond to (sets of) proof lines of the

natural deduction proof and the edges represent the interdependencies between these lines. In this

representation i t  is easier to group sets of proof lines belonging to one another, and it is also

possible to formulate lemmas, whenever a derived formula depends on too many different formulae

previous-1y derived.

All these considerations are only very briefly stated in this outlook, and the following example

shall now show the complete process from a formulation of a theorem in mathematical language to

a proof also readable by a mathematician.

Example 5-3: (subgroup criterion)

1. Informal (mathematical) rcpresentation of ' the theorem:

Let G be a. group, SgG; if for all x‚y in S, xoy'l is also in S,
then for every x in S its inverse is also in. S.

2. FormulatiOn in first order logic (of part of the theorem):
nz means Xoy=z, Sx means xe S, and ix means rl ,  the inverse of x.

Vu Puiue A Vw Peww A ( nz Sx A Sy A Pxiyz :} Sz)
=> ( Vx Sx => Six)
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3. Proof of the theorem as a refutation graph:

-Sa I -SaI- Paiae I +S_ej„J
| -Se I -Sa I- PeiaiaI+SiaI—O—-

4.- Natural deduction proof:

( 1) I l”— ( VuPuiue) A ( VwPeww) _A (nz SxA. Sy A Pxiyz => Sz)

Let a be an arbitrary constant
(2  ) 2 l— Sa
(3 )  1 [— nsASyAPxiyz=>Sz
(4 )  I )— Se ASaAPeiaia :Sia

( . 5 )  1 [— SaASaAPaiae=Se

( 6 )“ I l— Vu Puiue
( 7 ) I f— Paiae
(8 )  1 ,2  )— SaASaAPaiae
( 9 ) ] ]“— VwPeww
(10) I l— Peiaia

(1U 1 l— Se
(12 ) I [-— Se A Sa A Peiaia
(13) I ,  2 l— Sia
(14) 1 }— Sa =:>Sia
(15) 1 [— Vx Sx ze-Sz'x

(116)- [- ( VuPuiue)A( VwP-eww)A( nz Sx A Sfy A Pxiyz = Sz)
=> ( Vx Sx => Six)

- 41 . .

Outlook

Hm

HW“

Tana) .
WB )
WB)
Tau(1)
W(6)
Tau(2‚7)
Tau(1)
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Tau(2,10,11)
Tau(4,12)
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5 Dependency graph: .
This graph represents the dependency relation between lines of the natural

deduction proof. A connection between two lines indicates that the line further to
the right depends on the one on the left hand side. In line 2 a new constant is
introduced, so all the lines using it actually depend on line 2.

6. Linearized proof schema:

(1,6,2,7,8‚3,5,11)—'—(9‚1o,12,4,13)—_

7. Natural language:

For this formulation, the proof lines were ”literally translated“ into natural

language. The numbers in brackets indicate, where the preposition comes from.

Trivial lines, only building up conjunctions from previously shown facts, were

omitted, and the fact ee S was used as a subgoal.

In a group uou'1=e holds for all u [6]. Let a be an arbitrary
element of SgG [2], then a oa'1=e [7] . Since it is given, thatfor
all x‚yeS, also Xoy'IE'S [3], this also holds for x=y=a [5],
hence aoa‘1=eeS [II].
Now eow=w for all w [9], therefore eoa'1=a'l [10]. With x=e
and y=a [4}, both elements ofS, also'eoe-I =a-1e-s [13 ].
Now a'IeS, if aeS  [ 14 ] . Since a was arbitrarily chosen, this
holdsfor all xeS [15], which proves the theorem [16]. ;
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