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Abstract

Hierarchical structuring and parameterization concepts are

investigated. It is argued that such concepts can be studied

independently o f  a particular d o m a i n  o f  application and

orthogonally to the design of the ‘ f l a t ’  objects. A dynamic

parameterization concept w h i c h  disposes of the static

declaration of formal parameters is proposed and realized in

a hierarchy definition language. T h e  methods suggested are

illustrated by applying them to algebraic specifications, and

it is s h o w n  tun: the approach.extends the notion o f  an

institution by a general structuring and parameterization

concept.
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O .  Introduction

The advantages o f  a structured and parameterizable design are

undoubted ever since the invention of structured programming: It

is perspicicuous, reusable, economic, flexible» easy to modify

and maintain. H i e r a r c h i c a l  s t r u c t u r e s  a r e  the most g e n e r a l

acyclic structures and therefore can be interpreted without any

fixpoint s e m a n t i c s  and i n  unordered domains. Hierarchical

structures are w i d e  spread. They arise wherever s o m e  kind of

subpart relation prevails: in modules and submodules, in types

and subtypes, i n  objects and components, in specifications and

subspecifications, in problems and subproblems, etc.. '

S i n c e  a h i e r a r c h i c a l  s t r u c t u r e  n a t u r a l l y  i d e n t i f i e s  its

subhierarchies, it suggests aa particulary highly flexible

parameterization concept where every subhierarchy may be regarded

as a: f o r m a l  p a r a m e t e r  t o  b e  i d e n t i f i e d  d y n a m i c a l l y  a t

instantiation t i m e .  It may be called dynamic parameterization,

because the static declaration of fermal parameters is disposed

of.

The—idea of dynamic parameterization also occurs in the algebraic

specification language Look [ZLT 82], where it is called adap—
tion. In the specification language Ordinary [Go 81], the concept
i s  implicitly available by the "combine .„ euml... over . „ "

constructn The h i g h — l e v e l  l o g i c  b a s e d  programming language OBJ

[GMP 82] provides a limited form of dynamic parameterization but
without a formal semantics.

In this paper it is argued that structuring and parameterizatiOn

mechanisms can be studied orthogonally to the ‘flat' object
domain they a r e  applied to. We investigate these concepts

i n d e p e n d e n t l y  o f  a p a r t i c u l a r  d o m a i n  a n d  d e m o n s t r a t e  i t s

applicability' to «different. areas. Since ill particulai' all

institutions in the semse of [GB 83] define suitable ‘flat'
domains we show that our approach extends the notion o f  an

institution by a structuring and parameterization concept. P y

using emp the methods of [ST 8 4 ]  structured and parameterized
specification over arbitrary institutions may be built.

I n  o u r  e x a m p l e s  w e  u s e  a n  i n s t i t u t i o n  o f  l o o s e  a l g e b r a i c

specifications which is briefly sketched in Section 1. In Section
2 we introduce our dynamic parameterization concept which renders
s u p e r f l u o u s  aunt s t a t i c  distinction. between. p a r a m e t e r ,

parameterized, and non-parameterized objects. In Section 3 we

describe the concept of hierarchical structures as documentation

of construction processes. In Section 4 we show how hierarchical

structures and dynamic parameterization can be neatly combined.

It is demonstrated that the resulting parameterization—by—use

c o n c e p t  f o r  h i e r a r c h i c a l  s t r u c t u r e s  a v o i d s  s o m e  p r o b l e m s
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encountered otherwise i n  structured specification languages.

S e c t i o n  5 s u m m a r i z e s  the e s s e n t i a l  i d e a s  o f  the f o r m a l

development which is carried out in detail in.[BV'85]. In Section

6 we describe a general hierardhy definition language supporting

dynamic parameterization, and draw some conclusions.

1 .  Institutions

The concept o f  an institution was first introduced by Burstali

and Goguen in [BG 80] as a "language" and was studied in detail

in their paper [GB 83];-a brief introduction is given in emp [ST
.84].

I n  the e x a m p l e s  of this paper we w i l l  a s s u m e  an institution

defining  a category o f  theories denoted by SPEC.  The objects o f

SPEC are (loose) algebraic specifications whidh are connected by

specifications morphisms. The signature o f  SPEC objects are usual

equational signatures (pairs of sorts and operation symbols), but

mma<k3 not make any specific assumptions about the types o f

sentences. However, since we have loose specificationsthere will

be s o m e  kind o f  constraint mechanism to exclude unreachable

elements (eng. initial [HKR 80] ,  data [BG 80], hierarchy [SW 82] ,
or algorithmic constraints [BV 85]). W e  assume t o  have

specifications BOOL and NAT for the booleans and the natural

numbers, a loose specification ELEM denoting arbitrary carriers,

and specifications LIST and LIMITED—STACK for standard lists and

s t a c k s  over E L E M ,  the s i z e  o f  the s t a c k s  b e i n g  l i m i t e d  by s o m e

c o n s t a n t  b u t  a r b i t r a r y  n a t u r a l  n u m b e r  i n t r o d u c e d  i n  t h e

specification LIMIT.

2. Dynamic parameterization

I n  programmdxmylanguages as well.as in specification languages

the parameterization concepts usually involve two basic steps:

o Declaring formal parameters when defining a parameterized

Object.
c i v i n g  a c o r r e s p o n d e n c e  b e t w e e n  f o r m a l  a n d  a c t u a l

parameters When instantiating a parameterized object. '

I n  general, the following points must be observed and may be

regarded as drawbaCks in some applications:

1. When defining a parameterized object P one has to determine

the c o m p l e t e  s e t  F o f  P's f o r m a l  p a r a m e t e r s .  I f  one r e a l i z e s

later on that some additional parts of P could be regarded as

f o r m a l  parameters and one w a n t s  to s u b s t i t u t e  t h e m  by other

objects this is impossible without rewriting P and extending

its parameter declaration.



2 .  To instantiate P an actual parameter must be supplied for each

f e F. Even i f  one actually wants a partial instantiation of P
w h e r e  s o m e  f o r m a l  p a r a m e t e r s  E" c F a r e  kept u n c h a n g e d  one

still has to give a dummy actual parameter for every f' e F ’ .

3 .  The distinction between non-parameterized, parameterized, and

parameter objects s o m e t i m e s  appears to be artificial, eqm

regarding Ei parameterized object as non—parameterized object

or vice versa is not possible.

I n  l o o s e  s p e c i f i c a t i o n s  t h e r e  i s  i n  p r i n c i p l e  n o  n e e d  t o

distinguish formal parameters from Ordinary specifications since

both are interpreted loosely denoting all their models. Hence, in

a loose specification language the conventional parameterization

concept sketched above consists of
— declaring a specification SP as parameterized by

- i d e n t i f y i n g  s o m e  s u b s p e c i f i c a t i o n ( s )  S P f  a s  formal.

parameter(s), and
- giving some specification(s) SPa as actual parameter(s) by

— supplying specification morphism(s)
p :  SPf + S P a ,

usually called fitting morphisms o r  views, in order to

describe the replacements.
— The resulting instance i s  usually defined by a pushout

construction (e.g. [Ehc 82]) of the diagram

SP
+

SPf -—  —————————— + SPa

However, the replacement  o f  S P f  may take place  i n  the s a m e  way i f

SP had not been declared as parameterized specification and SPf

a s  i t s  f o r m a l  p a r a m e t e r .  T h i s  i s  t h e  e s s e n t i a l  i d e a  o f

d y n a m i c  parameterization which solves the problems described

above:

Instead of statically declaring any objects as parameterized

or a s  formal parameters, the object  to be instantiated (SP)
and the subobjects to be replaced (SPf) are dynamically

identified at instantiation time together with the replacing

objects (SPa) and the replacement prescription (p).

This concept i s  realized in the loose specification language Look

in a non-hierarchical framework ([ZLT 82]) and in ASPIK ([BV 83 ] ,
[BV 85 ]) which supports the definition of hierarchical objects.
Other specification languages like Clear ([BG 80 ] ) ,  Ordinary ([Go
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. 81 ] ) ,  CIP-L ( [CIP  85 ] ) ,  and ASL ([sw 83 ] )  p r o v i d e  conventional
parameterization concepts i n  the sense  that parameterized
specifications and formal parameters must be declared statically.

The p o s s i b l e  identification o f  parameter and non—parameter
Specifications i n  a loose approach was suggested for Clear in [RC
80]. This identification lead to a subtle error as pointed out in
[Sa 81]: an actual parameter still had to contain its formal
parameter. But the solution suggested i n  [Sa 8 1 ]  introduces again
a distinction between the two types of specifications such that a
;parameter ( m e t a  theoryfi differs from,anlordinary specification
(theory) only in the keyword 'metafi

Note that the idea of dynamic parameterization is not applicable
in fixed specification 1anguages-like.ACT—ONE (Ufl%183])'where
formal p a r a m e t e r s  m u s t  be interpreted loosely i n  contrast t o
parameterized and non-parameterized specifications which a r e
interpreted in a fixed way.

Example 2.1 [instances of LIMITED—STACK]

L I M I T E D - S T A C K  d e n o t e s  a l l  a l g e b r a s  o f  s t a c k s  o v e r  a n
arbitrary element carrier where the depth of the stacks does
n o t  e x c e e d  a f i x e d  b u t  a r b i t r a r y  l i m i t .  L i k e  a l l
specifications we indicated in Section 1, LIMITED-STACK has
n o  p a r t s  d e c l a r e d  a s  f o r m a l  p a r a m e t e r s .  H o w e v e r ,  t h e
subspecification ELEM could be dynamically replaced e.g. by
the specification LIST via the specification morphism

p F / L ‘  ELEM + LIST ‘
mapping sort elem to sort list. The result is a specification
o f  l i m i t e d  stacks over lists over arbitrary'elements.lkzis
denoted by

LIMITED—STACK{ELEM —pE/L+-LIST}
and defined by the '
pushout diagram:

LIMITED—STACK - -  - — - - + LIMITED—STACK

| p.o. +
l IJ

ELEM _______________________ + LIST

Alternative instances o f  LIMITED—STACK c a n  be obtained by
replacing the l i m i t  constant in L I M I T  eqp by the natural
number 100, or by refining the subspecification MAT by a more
elaborate version providing e.g. additional Operations.



3 .  Hierarchies

”Hierarchical structures a r i s e  in programming languages ( e m y
s t r u c t u r e d  p r o g r a m m i n g ) ,  s p e c i f i c a t i o n  l a n g u a g e s  (e.g.
h i e r a r c h i c a l  s p e c i f i c a t i o n s ) ,  a n d  m a n y  o t h e r  a r e a s  ( e . g .

c l a s s i f i c a t i o n  s c h e m e s ,  d e v i s i o n s  i n  a c o m p a n y ) .  I n  s u c h
hierarchical structures two aspects may be distinguished: the
objects to be structured and the structurerto be imposed on the
objects.

The objects to be structured are usually provided with some kind
o f  subpart relationship such that there i s  at most one subpart

relation between any two Objects, although the two Objects may be
connected in various other ways.

S u c h  a s i t u a t i o n  i s  c h a r a c t e r i z e d  i n  g e n e r a l  t e r m s  by a n
a p p r o p r i a t e  c a t e g o r y ’ ( C [ fi ) :  C i s  a n  a r b i t r a r y  category w i t h  a

subcatgory fifwhere C and'a have the same objects but there is at
m o s t  one m o r p h i s m  b e t w e e n  a n y  t w o  o b j e c t s  i n  Ü. T h u s ,  t h e

m o r p h i s m s  ix: 6 r e p r e s e n t  in) a b s t r a c t  f o r m  13F s u b p a r t

relationship, and the morphisms in C describe arbitrary other
relationships.

Usually, such objects can be constructed stepwise by starting
“with s o m e  initial object and adding finitely many subparts i n
each step. The structure resulting from such a construction
process is described by an appropriate order A0 = (0,<,_|_): (0,0
i s  a well-founded, irreflexive, partially ordered set of  nodes
w i t h  m i n i m u m  1 s u c h  t h a t  e v e r y  n o d e  h a s  f i n i t e l y  m a n y
predecessors.

AO expresses the structure o f  a hierarchical object in (C,-5) a s
follows: the minimum node is labelled with the initial subobject
and the other nodes are labelled with the remaining subobjects
such that the subpart relationship agrees with the ordering o f
the nodes. Since AO may be viewed a s  a category, namely the
induced order cate ory, we obtain a concise definition of a
hierarChy H over (C, ) as a functor

H :  A0 +
over some appropriate order A0. Thus, a hierarchy describes a
structured environment where the elements  o f  A0 serve as names
For o bjects i n c h

Example 3.1 [ a SPEC hierarchy]

The constructrmn of the specifications LIMITED-STACK, LJST,
and an extension NATlOO o f  NAT by the constant number 1 0 0  c a n
be documented by a hierarchy

H: A0 + SPEC
where SfiEC i s  the subcategory o f  SPEC with inclusions a s

5



morphisms. A0 i s  defined by the following graph:

LIMITED—STACK
LIST "

LIMIT NATlOO

/
ELEM ' NAT

\ /
BOOL

H labels this graph by associating every node n with the
-specification denoted by n ,  e.g.

H ( B O O L )  = <<{bool}, {true, f a l s e ,  . . . } > ‚
{not(true) = false, ...}>

4. Parameterization—by—use in hierarchical structures

The c o n c e p t s  o f  h i e r a r c h i c a l  s t r u c t u r i n g  a n d  d y n a m i c
p a r a m e t e r i z a t i o n  can be smoothely c o m b i n e d  a c c o r d i n g  to the
fellowing principles:

0 When defining hierarchical.objects no distinction.islnade
between formal parameters, parameterized objects, and non—
parameterized objects. '

o Every subobject o f  a hierarchical object is a potential
formal parameter.

o Actual parameters are also hierarchical objects.

o The structure of the formal parameters must be respected by
their actual parameters.

o The result o f  the instantiation i s  aqain a hierarchical
object reflecting the structures of the instantiated object
and of the actual parameters.

W e  s a y  that a hierarchical o b j e c t  X uses a l l  i t s  subobjects.
Parameters of X are identified onLy when some other object uses
an instantiation o f l h  For this reason we c a l l  the concept de—
signed according to the principles above parameterization-by—use.

S i n c e  hierarchies introduce o b j e c t  names, the objects to be
i n s t a n t i a t e d  a s  w e l l  a s  f o r m a l  a n d  a c t u a l  p a r a m e t e r s  a r e
identified by their names. Let n g A0 be the name o f  an object i n

6



a h i e rarchy PH zu) + ' 3 .  The parameterization—by—use concept
requires the following data for every instance of n :

( l )  A set M g_AO of nodes used by n that are to be replaced.

(2) A mapping f: M + A0 associating every formal parameter
node by its actual parameter node.

(3) A mapping h:bd+-/C/ associating every formal parameter
*with a fitting morphism to its actual parameter} ide. for
m s M we have:

h(m): H(m) + H(f(m)) e /C/-

The data in (l) — (3) are supplied in an application term

n{m —h(m)+ f(m) I m e M}

which must satisy two requirements: f must respect the ordering
of AO and h must be compatible with f, i.e. for every m ( m’

h(m' )
H(m' )  __________________  + H(f(m'))

+ . +
| |
! lJ _ h(m) J

H U “ )  ____ - -——-—_-—- . -— —————— + H ( f ( m )  )

must commute in C .

The hierarchical object denoted by an application term still uses
all subobjects that were not affected by the actualization.
M o r e o v e r ,  t h e r e  a r e  a l s o  subpart r e l a t i o n s  b e t w e e n  t h e  a c t u a l
p a r a m e t e r  objects and the new object, which is defined by a
c o l o m i t  construction generalizing the pushouts o f 1 fl m a d y n a m i c
parameterization concept.

Egample 4.1 [SPEC hierarchies with instantiations]

C o n s i d e r  the S P E C  h i e r a r c h y  f r o m  E x a m p l e  3.1 and t h e
Specification morphism pE/L from Example 2.1. Taking M =
{ E L E M }  a s  formal paramter for the node n = LIMITED—STACK,
f(ELEM) = LIST as actual parameter, and h(ELEM) = pE/L as
fitting morphism we get the application term

(1) LIMITED-STACK{ELEM —pE/L+ LIST}.

‘Viewed as  a flat specification.the object denoted by ( l )  is
identical to the pushout object from Example 2J„ HOwever‚ a s
a structured object it determines the hierarchy



LIMITED-”STACK

LIMITED-STACKJ//f

LIMIT NAT100

ELEM 4

which results from the hierarchy in Example 3.1 by adding the

application term (1) as a new node. This structure expresses

f o r  i n s t a n c e  t h a t  t h e r e  i s  o n l y  o n e  c o p y  o f  t h e

specifications L I M I T  and NAT which are subparts o f  both

LIMITED-STACK and LIMITED-STACK{ELEM -pE/L+ LIST} (C.f. the

"based objects” used to express shared substructures in Clear

[BG 80]).

Similarly we could take M = (ELEM. L I M I T }  as formal parameter
.set for LIMITED-STACK, obtaining eng. the application term

(2) LIMITED-STACK{ELEM —pE/L+ LIST, LIMIT -pL/N+ NATlOO}

where pL/N replaces the constant l i m i t  in L I M I T  by the

natural number 100 .

An application term defining lists of natural numbers is

(3) LIST{ELEM -pE/N+ NAT}

where pE/N maps sort elem to sort nat.

The instances denoted by (1) and (3) suggest to generate also

a specification o f  limited stacks over lists o f  natural

numbers, which can be achieved in two ways: Either by taking

the stacks over lists in.(l) and replacing the elements of

the lists by the natural numbers

( 4  ) LIMITED-STACK {ELEM - p E / L +  LI S T }  {ELEM - pE/N+  NAT}

or by replacing the elements o f  the stacks by the lists o f

natural numbers in (3)



(5) LIMITED—STACK{ELEM -pE/LN+ LIST{ELEM -pE/N+ NAT}}

where p F / L N  maps sort elem to sort list of the specification
denoted by ( 3 ) .

Obviously, the different replacement sequences in (4) and (5)

should not m a t t e r  and both application terms should denote
the s a m e  flat specification. Moreover, (4) and (5) should
also denote the same hierarchical object which should use the
intermediate instantiation denoted by (3). This situation is
depicted in the further extended hierarchy

LIMITED—STACK LIMITED-STACK
{ELEM -pE/L+ LIST} {ELEM —pE/L+ LIST}

{ELEM —pE/N+ NAT}

LIMITED-STACK

\
LIMIT

LIST LIST{ELEM - p E / N +  NAT}

NATIOO

ELEM

BOOL

S i n c e  the node L I S T  l i e s  b e t w e e n  the node L I M I T E D - S T A C K { E L E M  —
pE/L+ LIST} to be instantiated and the formal parameter ELEM, the

application term (4) is called an indirect application term.

F r o m  the cmmervations i n  E x a m p l e  441 we c a n  d e s c r i b e  s o m e

problems encountered in the context of structured parameterized
.specifications: When writing the equivalents of application terms
like

( 6 )  LIMITED—STACKIELEM —pE/N+ NAT}

( 7 )  LIMITED-STACK{ELEM — p E / B +  BOOL}

in ACT-ONE ([EFH 83]) or ASL ([sw 83 ] )  in the context of the same
specification, one gets the probably undesired effect of having
o n e  stack with both booleans and natural numbers as elements
instead of two different stadk types.

9



I n  c o n t r a s t ,  the approach taken i n  C l e a r  ( [ B G  8 0 ] )  g e n e r a t e s  a

n e w  i n s t a n c e  every t i m e  a t e r m  like ( 6 )  or ( 7 )  i s  used. T h i s ,

however, leads to what has been termed Clear’s proliferation
problem ([BG 81], [Sa 81]): Although a term like (6) should
a l w a y s  denote the s a m e  structured.specificationcfifstacks over

natural numbers, the semantics of Clear generates a s  many copies

as there are occurrences of the term.

— The solution to Clear’s proliferation problem suggested in [Sa
81] is based on a set—theoretic semantics of Clear: Different
occurrences o f  a term like ( 6 )  w i l l  always yield the s a m e

specification and still a different one than (7 ) .  But terms like

(8) LIMITED—STACK{FLEM -pE/N+ NAT}{LIMIT —pL/N+ NATlOO}

(9) LIMITED-STACK{LIMIT -pL/N+ NAT100}{ELEM —pF/N+ NAT}

(10) LIMITED—STACK{ELEM —pE/N+ NAT, LIMIT -pL/N+ NATIOO}

w o u l d  y i e l d  t h r e e  d i f f e r e n t  c o p i e s  o f  a c t u a l l y  t h e  s a m e

instantiation object.

Another remark concerns m u l t i p l e  instantiations a s  in the

application t e r m s  ( 4 )  and ( 5 )  which m u s t  denote the s a m e
specification if instantiation is associative. Associativity
results are given in e.g. [Ehc 82], [EKTWW 80 ] ,  and [Ga 83] in a
non—hierarchical framework, but so far there s e e m s  to be no

approach providing a hierarChical semantics where (4) and (5)

denote the same hierarchical object which i s  based on (3).

5 .  Closed.hierarchies

The evaluation of ap_lication terms to hierarchical objects in a

hierarchy H: A0 + as outlined in the pmevious section i s

described by an evaluation function

evalH: {t I t is application term in H} + A0

taking application t e r m s  to nodes i n  AO. I f snufl l an  evaluation

function exists and i s  totally defined we say that H i s  closed
under applications. Moreover, all the problems mentioned at the

end o f  the  previous  section  c an  then be expressed i n  t e r m s  o f  t h e

evaluation function: Obviously, the same application term T will

always yield the same node evalH(T), and two application terms T ,

T' with evalH(T) = evalH(T’).represent not only the same flat
object but also the same hierarchical object.

For the s t e p w i s e  construction o f  a hierarchy we introduce an

10



inductively defined canonical closure construction which turns a
hierarchy into a closed hierarchy and supplies an evaluation
function for it each t i m e  a new node h a s  b e e n  added eXplicitly.
The idea is to determine a normal form for application terms such
that all n o r m a l  form t e r m s  represent different objectsanfiiall
o t h e r  t e r m s  c a n  be t r a n s f o r m e d  i n t o  t h e i r  n o r m a l  f o r m s .  T h e
n o r m a l  f o r m  t e r m s  a r e  a d d e d  i m p l i c i t l y  to the h i e r a r c h y  a s  n e w
nodes and are labelled by the respective instantiation objects.
Roughly speaking, a normal form term does not contain any
sequential parameter replacements but only parallel ones.

Looking at the examples in Section 4 ,  we observe for instance
that (10 )  i s  the normal form for both ( 8 )  and ( 9 ) ,  and that (5)
is the n o r m a l  form for U H .  I n  particular, the normalization
process t r a n s f o r m s  any indirect a p p l i c a t i o n t e r m  like (4) to a
direct one by implicitly supplying a derived actual parameter for
every node between an eXplicit formal parameter and the node to
be instantiated. For instance, (4) is transformed into

(11) LIMITED—STACK{ELEM -pE/L+ LIST}
{ELEM -pE/N+ NAT,
LIST -+ LIST{ELEM —pE/N+ NAT}}

where - +  denotes the obvious morphism from LIST to the instance
of LIST. (11 )  in turn is normalized to (5) by composing the
parameter replacements.

The instantiation objects labelling normal form nodes are
particular c o l i m i t  objects with a subpart relation to all used.
objects. Two general conditions guarantee the existence of such
colimits in our closure construction:

~9 . .— (C ,C)  m u s t  h a v e  m i x e d  p u s h o u t s ,  1.e. t h e  p u s h o u t  o f  a 8—

morphism with an arbitrary C—morphism can always be chosen
such that one of the pushout injections is a ELmorphism, too:

. ———————————————— > .
+ p . o .  +

l I
J J
o ———————————————— > 0

- There m u s t  b e  a so-called prefix function for (C ,? )  that
guarantees that for any finite hierarchy with prefixed_
objects there is a colimit in C that is a colimit in 6; too.

In our example, (SPEC,  SPfiC) Obviously has mixed pushouts since a
morphism in SPEC is the component-wise (on sorts, operations, and
sentences) set—theoretic inclusion. A prefix function is obtained
by implicitly prefixing all sorts and operation names by the node

ll



name where they are introduced, eép LIST.list and LIST{ELEM —
pR/N+ NAT}.list distinguish arbitrary lists from.lists of natural
numbers.

Thus, the closure construction is defined in such a way that the
resulting evaluation function avoids the problems sketched in
Section 4: It avoids Clear’s proliferation problem and guarantees
associativity of hierarchical instantiation.

6 .  A hierarchy definition language

With the notions introduced in the previous sections we can now
devise a general hierarchy definition language suitable for the
s t e p w i s e  definition o f  hierarchies in an arbitrary appropriate
category (Gig) with mixed puShouts and a prefix function. All we
n e e d  to k n o w  a b o u t  the u n d e r l y i n g  c a t e g o r y  a r e  t h e  f o l l o w i n g

basic notions:

- A syntactic domain 'something’ describing the construction of
a new object.

— A corresponding object ToTstructinq function
build-object: 2 C x something + ICI

that takes a set B of objects and a syntactic description sth
and composes them to a new object which has all objects in R
a s  subobjects,iue. _?

v b s B . b + build—object(B,sth) e /c/.

Based on these notions a hierarchy definition consists of a list
of object definitions, one for the initial object with an empty
u s e  c l a u s e , e u m i t h e  others for b a s e d  o b j e c t s  with non-empty u s e

c l a u s e s :

hierarchy—definition === initial—object based—object ...

initial-object ::= object node
' sth

endobject

based-object ::= object node
use (application term | node) ...
sth

endobject

The semantics of this language yields a hierarchy where each node

explicitly defined by an object definition is labelled with the
o b j e c t  o b t a i n e d  by the b u i l d — o b j e c t  f u n c t i o n .  The s e t  o f

subobjects needed as argument for that function is determined by
the nodes and application t e r m s  in the u s e  clause, which can

1 "



a l w a y s  be evaluated in the hierarchy since it is implicitly
closed after every explicit object definition.

F o r  t h e  a p p r o p r i a t e  c a t e g o r y  ( S P E C ,  S§§C)  t h e  s y n t a c t i c
d e s c r i p t i o n  s t h  s o m e t h i n g  w i l l  c o n t a i n  t h e  n e w  s o r t s .
O p e r a t i o n s ,  a n d  s e n t e n c e s  to be added to the union o f  the u s e d

specifications. Assuming sorts, ops, and axioms clauses a s
syntactic descriptions of these parts we obtain:

sth : : =  sorts . . .

ops . . .

axioms . . .

The Function
build-- o b j e c t :  ZISPFC|  x something + ISPFCI

now takes a set of flat subspecifications.and the sorts, ops, a n d

axioms clauses and combines them into a new flat specification:

build-object({SP1, ...,SPn}‚
sorts S. cps OP. axioms E )

S P l u - o o u s p n u

<<s,0p>‚ B)

We have used an instance of this hierarchy definition language in
the formal semantics of the algebraic specification development
ASPIK which has been implemented in Interlisp as a central part
o f  a n  integrated s o f t w a r e  development and verification system
([BV 85]). The system maintains a database for specification
objects and relations between them anni fully supports the
p a r a m e t e r i z a t i o n - b y - u s e  c o n c e p t s  s o  t h a t  eng. a r b i t r a r y

application terms are available to the user.

As another example we elaborate in.[BV 8 3 ]  a hierarchy definition
language for equational signatures with (SIG, SEC) as appropriate

category. We show explicitly why the preconditions o f  mixed
pushouts and a prefix function are satisfied and point out how
these preconditions easily carry over to the appropriate category
(sPEC, spfib) of specifications with signatures in SIG.

This observation can be generalized to an arbitrary institution

I with signature category SIGI  and theory category Th1:

1. The notion o f  subpart relationship only  has to be defined
for the signatures SIGI. The resulting appropriate category

(5161, 8161) immediately gives rise to an apprOpriate
category (Th1, ThI) since every theory morphism is in
particular a signature morphism.

2 .  I t  suffices to ensure that (SIGI, éfGI) has mixed pushouts

13



and a prefix function: Since mixed pushouts and colimits o f
t h e o r i e s  c a n  be computed from the m i x e d  pushouts a n d

colimits of their signatures (because the forgetful functor
taking theories to their signatures reflects colimits [CR
8 3 ] )  we conclude that (Th1, ThI) has mixed and colimits as
well.

This connection confirms that the concept of institution for the
definition of flat objects on the one hand and our complementary
structuring and parameterization concepts on the other hand are
compatible and orthogonal to each other.
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