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Zusammenfassung

Um eine Vielzahl von Angriffen im Web zu entschärfen, unterstützen moderne
Browser clientseitige Sicherheitsmechanismen, die über sogenannte HTTP Response-
Header übermittelt werden. Um jene Sicherheitsfeatures anzuwenden, setzt der Be-
treiber einer Web site einen solchen Header, welchen der Server dann an den Client
ausliefert.

Wir haben gezeigt, dass das konfigurieren eines dieser Mechanismen, der Content
Security Policy (CSP), einen enormen technischen Aufwand erfordert, um auf nicht triv-
iale Weise umgangen werden zu können. Daher ist jenes feature auf vielen Webseiten,
auch Top Webseiten, falsch konfiguriert.

Aufgrund der Fähigkeit von CSP, auch Framing-basierte Angriffe abzuwehren, über-
schneidet sich seine Funktionalität darüber hinaus mit der des X-Frame-Options Head-
ers. Wir haben gezeigt, dass dies zu inkonsistentem Verhalten von Browsern, aber auch
zu inkonsistentem Einsatz in realen Webanwendungen führt. Nicht nur überladene
Verteidigungsmechanismen sind anfällig für Sicherheitsinkonsistenzen. Wir haben un-
tersucht, dass aufgrund der Struktur des Webs selbst, falsch konfigurierte Ursprungsserver,
oder CDN-Caches, die von der geographischen Lage abhängen, unerwünschte Sicher-
heitsinkonsistenzen verursachen können.

Um die hohe Anzahl an Fehlkonfigurationen von CSP-Headern nicht außer Acht zu
lassen, haben wir uns auch den Erstellungsprozess eines CSP-Headers genauer angese-
hen. Mit Hilfe eines halbstrukturierten Interviews, welches auch eine Programmierauf-
gabe beinhaltete, konnten wir die Motivationen, Strategien und Hindernisse beim Ein-
satz von CSP beleuchten. Aufgrund der weiten Verbreitung von CSP werden drastische
Änderungen allgemein jedoch als unpraktisch angesehen. Daher haben wir ebenfalls un-
tersucht, ob eine der neuesten und daher wenig genutzten, Web-Sicherheitsmechanismen,
namentlich Trusted Types, ebenfalls verbesserungswürdig ist.
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Abstract

To mitigate a myriad of Web attacks, modern browsers support client-side secu-
rity policies shipped through HTTP response headers. To enforce these policies, the
operator can set response headers that the server then communicates to the client.

We have shown that one of those, namely the Content Security Policy (CSP), re-
quires massive engineering effort to be deployed in a non-trivially bypassable way. Thus,
many policies deployed on Web sites are misconfigured.

Due to the capability of CSP to also defend against framing-based attacks, it has a
functionality-wise overlap with the X-Frame-Options header. We have shown that this
overlap leads to inconsistent behavior of browsers, but also inconsistent deployment
on real-world Web applications. Not only overloaded defense mechanisms are prone
to security inconsistencies. We investigated that due to the structure of the Web it-
self, misconfigured origin servers or geolocation-based CDN caches can cause unwanted
security inconsistencies.

To not disregard the high number of misconfigurations of CSP, we also took a closer
look at the deployment process of the mechanism. By conducting a semi-structured
interview, including a coding task, we were able to shed light on motivations, strategies,
and roadblocks of CSP deployment. However, due to the wide usage of CSP, drastic
changes are generally considered impractical. Therefore, we also evaluated if one of the
newest Web security features, namely Trusted Types, can be improved.
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1.1. STATE OF THE ART & MOTIVATION

1.1 State of the Art & Motivation

The Web has improved our ways of communicating, collaborating, teaching, and en-
tertaining us and our fellow human beings. We use it on a daily basis for social media,
health care, bank transactions, and improving the knowledge. This importance for our
everyday life makes the Web one of the primary targets of malicious actors.

As Web sites are delivered via a Web server, the code running on the server side
is a natural target for attacks. SQL Injection (SQLi) attacks smuggle code that can
delete, modify, or extract information from the database system of the server. In the
case of a Remote Code Execution (RCE), attackers have the capability to execute their
own program code on the targeted server, which can lead to a complete takeover of the
server. However, not only the server-side code of a Web application can be attacked
by different kinds of malicious actors, but also the client side of Web applications can
face a plethora of different attacks.

The Website of the airline British Airways faced a Cross-Site Scripting (XSS) vul-
nerability in one of their third-party JavaScript libraries, in 2018: The attackers were
able to redirect the customers with their data to an attacker-controlled server with a
domain name similar to the one of the airline. Thereby, the attackers managed to get
the credit card data of more than 380,000 transactions [15]. Also the multiplayer game
Fortnite lost the data of millions of users due to an XSS in an orphaned and insecure
page in their application [60]. In 2014 the Enterprise Manager in the McAfee Vulnera-
bility Manager faced multiple Cross-Site Request Forgery vulnerabilities, that allowed
attackers to send authenticated requests to the application causing state-changing ac-
tions such as the modification of content.[82] The social network Facebook faced Click-
jacking attacks in 2011. Here, malicious actors used invisible iframes, which contained
the actual Web site of the network as an overlay over malicious content. This way the
victims clicked on like buttons or sent friend requests without even noticing [119]. In
addition to that, the network connection between a Web server and the client can also
be attacked. Here, a Manipulator-in-the-Middle (MITM) attacker can drop, inject, or
modify traffic and thus content ad libitum [92].

To mitigate all those different Web-based attacks, modern Web browsers support
client-side security mechanisms shipped through HTTP response headers. The browser
then enforces these defenses, according to the rules set by the Web sites operator via the
server-side response header. New subtypes of XSS are constantly showing up [109, 106,
67, 58, 111, 50, 51, 59, 49, 75, 123]. Also, XSS has a sheer permanent presence in the
OWASP Top 10 Web Application Security Risks [90]. In theory, a properly configured
Content Security Policy (CSP) header can be used to mitigate the effect of different
kinds of XSS. However, research has shown that the vast majority of policies in the
wild are trivially bypassable [137, 136, 19]. CSP has also replaced the non-standardized
X-Frame-Options (XFO) header to defend against Clickjacking attacks. However, the
adoption of CSP for this purpose, is too low to defend the majority of users [19]. In
order to defend against MITM attacks, the HTTP Strict Transport Security (HSTS)
header can be used to enforce the usage of secure network connections. However, this
header is only deployed by 29% of all Websites [94], although services like Let’s Encrypt
[56] are offering free and easily obtainable TLS certificates for HTTPS connections.

3



CHAPTER 1. INTRODUCTION

Placing the burden of properly configuring (also complex) security mechanisms
on the developers of Web applications opens the floodgates to misconfiguration and
misconceptions. Moreover, the mindset, problems, and strategies that developers face
when deploying client-side security mechanisms lack a proper scientific analysis. Even
if the developer manages to configure a secure policy for a Web application, users
may access the same site in multiple different ways. This unforeseeable user behavior,
might lead to inconsistent protection of users. Also, the fact that multiple security
mechanisms are protecting against the same threat model, but are configured and
supported differently, might cause inconsistent behavior.

In this thesis, we evaluate the security of deployed security mechanisms configura-
tions, the complexity of their deployment process, and the impact of client configura-
tions on their consistency. With the results, we hope to influence the standardization
committees to change their modus operandi to a more developer-centric evaluation of
planned mechanisms. We also aim to guide developers in how to consistently deploy
security mechanisms for their Web applications in order to defend the users of Web
applications against malicious actors.

1.2 Contributions of this Thesis

As explained above, our goal is to elaborate on How can developers consistently deploy
security mechanisms for their Web applications?. Therefore, we split our overarching
question into four sub-problems that need to be solved. First, we present our longi-
tudinal measurement of deployed Content Security Policies, where we want to tackle
the questions How has the quality of the Content Security Policy configurations and
its use-cases changed over the course of time? (RQ1). Second, we deal with the is-
sue If all users of a Web site get the same level of security? (RQ2) by analyzing the
prevalence of inconsistencies in the security policies of top sites across different client
characteristics and by assessing inconsistencies in framing control policies across differ-
ent browsers. To address the problem of What are the root causes for insecure practices
in CSP deployment? (RQ3) we conducted a qualitative study involving 12 real-world
Web developers including a drawing and coding task. Finally, we use the results of
a coding interview with ten security-aware developers to deal with the question: Is
Trusted Types repeating CSP’s mistakes? (RQ4).

RQ1: How has the quality of the Content Security Policy configurations
and its use cases changed over the course of time?

To answer our first research question about CSP usage over the course of time, we
leverage the unique vantage point of the Internet Archive to conduct a historical and
longitudinal analysis of how CSP deployment has evolved for a set of 10,000 highly
ranked domains. In doing so, we document the long-term struggle site operators face,
when trying to roll out CSP for content restriction. Moreover, we shed light on the
usage of CSP for other use cases, in particular, TLS enforcement and framing control.
Here, we find that CSP can be easily deployed to fit these two security scenarios,
but both lack widespread adoption. Specifically, while the underspecified and thus
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inconsistently implemented X-Frame-Options header is increasingly used on the Web,
CSP’s well-specified and secure alternative cannot keep up. To understand the reasons
behind this, we run a notification campaign and subsequent survey, concluding that
operators have often experienced the complexity of CSP (and given up), utterly unaware
of the easy-to-deploy components of CSP. Hence, we find the complexity of secure, yet
functional content restriction gives CSP a bad reputation, resulting in operators not
leveraging its potential to secure a site against the non-original attack vectors.

RQ2: Do all users of a Web site get the same level of security?

Users of the Web may access the same site in variate ways, e.g., using different User-
Agents, network access methods, or language settings. All these usage scenarios should
enforce the same security policies, otherwise, a security lottery would take place: de-
pending on specific client characteristics, different levels of Web application security
would be provided to users (inconsistencies). To investigate if all users get the same
level of security, we formalize security guarantees provided through four popular mech-
anisms. We then apply these formal definitions to measure the prevalence of inconsis-
tencies in the security policies of top sites across different client characteristics. Based
on our insights, we investigate the security implications of both deterministic and non-
deterministic inconsistencies and show how even prominent services are affected by
them. Also, we formally study the problem of inconsistencies in framing control poli-
cies across different browsers and we implement an automated policy analyzer based
on our theory, which we use to assess the state of click-jacking protection on the Web.

RQ3: What are the root causes for insecure practices in CSP deploy-
ment?

Research has shown that the vast majority of all Content Security Policies in the wild are
trivially bypassable. To find the root causes behind this omnipresent misconfiguration
of CSP, we conducted a qualitative study involving 12 real-world Web developers. By
combining a semi-structured interview, a drawing task, and a programming task, we
were able to identify the participant’s misconceptions regarding the attacker model
covered by CSP as well as roadblocks for secure deployment or strategies used to create
a CSP.

RQ4: Is Trusted Types repeating CSP’s mistakes?

To see whether Trusted Types meets the same fate as CSP, we uncover roadblocks
that occur during the deployment of Trusted Types. Moreover, by conducting a semi-
structured interview including a coding task with ten security-aware Web developers we
were able to investigate strategies on how developers can circumvent those problems.
Our work also identifies key weaknesses in the design and documentation of Trusted
Types, which we urge the standardization committee to fix before Trusted Types faces
the destiny of CSP. Also, we hope that this work provides a scientific foundation for
the ongoing discussion regarding the future of Trusted Types [81].
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1.2.1 Commitment to Open Science

Because a transparent and open scientific process increases not only the verifiability
of our results but also the accessibility of our observations, and because I understand
science as a duty for the benefit of society, I am committed to open science. Therefore,
I open-source the dataset, the data-gathering scripts, the tools, and the analysis scripts
whenever possible in all projects.

Thus, the overview of normalized policies [A5], which we gathered for [P1], is pub-
licly available. We open-sourced our analysis library [A2] as well as the server-side
proxy [A3] for [P2]. The crawling and analytics scripts for [P3] are publicly available
[A4]. Also, the Web applications used for [P4] are also available [A1] on GitHub.

1.3 Outline

The rest of this thesis is structured as follows: First, Chapter 2 explains the Web and its
technologies including the aforementioned client-side attacks and security mechanisms.
Furthermore, the chapter presents details about related work in the field of security
headers on the Web. Chapter 3 evaluates how the quality of the Content Security
Policy configurations and its use-cases have changed over the course of time (RQ1).
The small survey regarding framing control conducted throughout the work presented
in Chapter 3 then inspired us to have a closer look into security inconsistencies in
deployed security mechanisms and what caused them (Chapter 4), such that we know
if all users of a Web site get the same level of security (RQ2). Chapter 3 also revealed
that there is (and has always been) a sheer omnipresent misconfiguration of CSPs
in real-world Web applications. To provide a scientific foundation for the educated
guesses of the reasoning behind these misconceptions, we then extended the appraisals
based on empirical data with qualitative data from a developer-centric interview study
(Chapter 5). This way we were able to find the root causes for insecure practices in CSP
deplyoment (RQ3). However, as CSP is too widely deployed to introduce the changes
that Chapter 5 suggests, we then focused on a novel, not yet standardized, and not
widely deployed security mechanism: Trusted Types. With the roadblocks, strategies,
and improvement suggestions that we investigate in the semi-structured interview study
that includes a coding task (Chapter 6) we can then hopefully have a positive impact
on the mechanism before it is too late and Trusted Types faces CSPs legacy (RQ4).
Finally, Chapter 7 summarizes all contributions of this thesis and elaborates on future
work, before concluding this thesis.
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Contributions of the Authors

This chapter explains the technical and methodological background of this work and
gives an overview of the work that relates to this thesis. The content of this chapter
is a mixture and variation of the background and related work sections from the main
papers for this thesis [P1, P2, P3, P4, P5].

2.1 Basic Technologies

All of the papers covered by this dissertation tackle the Web and its technologies. Thus,
this section explains the basic technologies of the Web, such as HTML, JavaScript, or
the Web’s transfer protocol HTTP.

2.1.1 Hypertext Markup Language

The Hypertext Markup Language (HTML) is the semantic representation of the ap-
pearance of a document that a Web browser renders into a multimedia Web page. Some
HTML tags define structure such as body or div tags, others specify how content is
displayed e.g. the table tag, and again others can be used to display media content
like pictures (img tag). In order to produce dynamic and interactive Web applications,
a developer needs to also use Cascading Style Sheets (CSS) to change the visual design
of HTML elements, as well as JavaScript (JS) to enable interactive user experience
via Browser executed programs delivered in HTML script tags. With the release
of HTML 4 [105], the tags support so-called event handlers as attributes. Those can
be used to trigger JavaScript execution on certain events such as clicking an HTML
element, pressing a key, moving the mouse, or changing a value. Thus, HTML script
tags are now no longer the only tag that is capable of executing JavaScript programs.
Also, version 4 added support for the inclusion of frames via the frame, iframe, or
frameset HTML tag. Those frames enable developers to display multiple documents
in a single window. While the current living HTML standard [141] deprecates the
frame and frameset tags, iframes are still present nowadays and used by a plethora
of different attacks, such as Clickjacking, which Section 2.2.1 explains in detail.

2.1.2 JavaScript

To extend the Web platform beyond just displaying static content, JavaScript (also
called ECMA Script [48]) has been introduced. Traditionally an HTML script tag
can be used to execute JavaScript which is either loaded as an external resource us-
ing the src attribute or executed directly as inline JavaScript. However, also other
HTML tags can execute the script via specific event attributes. For example, the
img tag can carry onerror that has JavaScript code as a value. This code is then
executed if an error occurs with the tag, such as network errors during loading the
resources defined in the src value. But also plenty of other HTML tags can carry
a plethora of different event attributes that are capable of executing JavaScript, with
and without requiring user interaction. In order to also enable support for dynamically
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Listing 1 Example for different ways to execute JavaScript.

<script src="https://example.com/external-script.js"></script>

<script>
console.log("This comes from an inline script!");

</script>

<img src="https://example.com/non-existsant-url.jpg"
onerror="console.log('This comes from an attribute!')"/>

<script>
eval("console.log('This code" + " " + "was evaled!')");

</script>

<a href="javascript:console.log('Executed via URL!')">ClickMe</a>

crafting JavaScript during runtime and then execute this code, string-to-code conversa-
ting functions, most prominently eval(’<code>’). But also other JavaScript APIs
e.g, settimeout, setinterval, or the Function constructor. Also, URLs that are
using the javascript: or data: scheme can execute JavaScript if they are loaded
by the browser. Examples of the previously mentioned ways to execute JavaScript
are shown in Listing 1. Notably, those are only examples and not an exhaustive list,
because there are multiple other ways to execute JavaScript code in Browsers.

In this work, we focus on JavaScript’s original use case as a client-side scripting
language executed in Web browsers. However, it is also possible to use JS on the server
side with local interpreters like node.js. Hence the importance of JavaScript and its
security considerations goes beyond the context of client-side Web security, although
this work only focuses on code executed by a Web browser.

2.1.3 Same Origin Policy

Nowadays, Web sites can include other Web sites for example in so-called HTML
iframe tags, or get a handle to other pages programmatically opened in a new tab
or browser window via the window.open() JavaScript API. In order to compart-
mentalize those pages into different scopes the concept of a Web Origin [7] has been
introduced. A Web Origin is an execution scope that is bound to the protocol, host-
name, and port of the loaded document. Alongside with this scoping the RFC 6454
[7] introduces the most basic security mechanism for the Web, the Same Origin Policy
(SOP). This policy ensures that only documents with the same Web Origin can access
each other, such that operators of malicious Web sites can not interfere with benign
Web sites.

Notably, there is an exemption from the SOP. If you load JavaScript, even from
a third party, it is executed in the context of the including Web site. Therefore, the
operator of the application has to trust the external party, as their scripts have the
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Listing 2 Example of a JSONP data exchange across origins

<script>

function processData(data) {
// JS Code that is processing third-party data

}

</script>
<script src="//example.com/data?callback=processData"></script>

same capabilities as scripts that originate from the own site. However, even if the third
party itself is trusted, it can happen that their Web server gets compromised. Thus,
all scripts that are loaded from this infected third party are now possibly malicious
scripts, which are executed in the context of the including Web site.

As mentioned above third-party JavaScript that is loaded into a Web application
is exempt from the SOP. However, data that is loaded from third parties might not be
readable by the application. To still allow this data sharing across origins developers
came up with JSON with Padding (JSONP) to encapsulate the data into callback
functions that are loaded as JavaScript. The example displayed in Listing 2 shows
code that prepares a function to process the third-party data and loads this data from
example.com via a URL that provides a callback parameter. On the server-side of
example.com the value of this is then used to create JavaScript that encapsulates the
data (e.g. processData(raw_data)) as a response.

2.1.4 Hypertext Transfer Protocol

The first version (1.0) of the Hypertext Transfer Protocol (HTTP) was standardized
back in May 1996 [10] by the Internet Engineering Task Force (IETF). The protocol,
operating application layer, is designed to enable distributed and collaborative infor-
mation systems. Because the protocol itself was built in a generic way it allows for a
plethora of different applications, most prominently the transition of HTML documents
(Web sites). One difference between the non-standardized version 0.9 and the first stan-
dardized version which is especially important for this work is the introduction of the
HTTP header field, which can be used to carry meta-information about the request
such as the purpose or the context of the request. The first version of the protocol,
however, still had room for improvement. In version 1.1 [42], improvements like persis-
tent connections and caching [43] of responses have been introduced in order to speed
up loading time and reduce bandwidth consumption. Also, its later versions 2.0 [9]
and 3.0 [11] introduce multiple improvements, however, those are not covered by this
work as they do not interfere with the security mechanisms that are the topic of this
dissertation. Notably, HTTP itself is sent in plain or only encoded, which means that
it does not provide any connection security per default. Therefore, nowadays HTTP
traffic is usually encapsulated in a secure TLS tunnel (HTTPS).
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2.1.4.1 HTTP Headers

HTTP headers [44] are additional pieces of information that are part of an HTTP
request and also of HTTP responses. Request headers, which are sent from the client
to the server, can provide the server with the context of this request, such as the
origin of the request or if the client is authenticated. The headers present in responses
can be used to provide additional information about the content type or the size of the
response. But, as mentioned in Section 2.1.4 the support for HTTP headers is especially
important for this work as we tackle security mechanisms that are communicated via
HTTP headers from the server to the client side in all primary works presented in
this dissertation. Details of each of the HTTP security headers and the mechanisms
that they enforce are described in Section 2.3. Syntax-vise HTTP headers consist of a
case-insensitive name followed by a colon and then followed by the value of the header
and are placed between the HTTP status line and the actual content of the package.

2.1.4.2 Cookies

One of the most essential HTTP headers for modern Web applications is the cookie
header [6], as it is nowadays used to go beyond the stateless construct of HTTP to
store information across multiple HTTP requests, such that sessions, and thus logins
to Web applications, are possible. For example, the Web server (on successful login)
generates a secret session identifier, that is sent via the set-cookie response header.
The browser will save that cookie in its cookie jar. Until the expiry time (defined by
the Expires keyword) has been reached this cookie is now added as cookie header
to each request that matches the configuration of the Domain and the Path rules [6].

Notably, cookies are not only used for session management, but also to personalize
the content of a Web site (e.g. language settings), or they are used for tracking users
to enable personalized advertisements. The usage of cookies for storing user-specific
information and session information of the user are the reason why cookies are con-
sidered a valuable target for attackers. Thus, multiple additional keywords for cookies
have been introduced to harden them against malicious actions. Details of those cookie
security mechanisms are explained in Section 2.3.4.

2.2 Web-based Attacks

This section gives an overview of the different Web-based attacks that this work covers.
In addition to the explanation of the attack or the group of attack, the current state
of science around those mechanisms is described.

2.2.1 Clickjacking

As mentioned in Section 2.1.1, developers can use the HTML iframe tag to integrate
a frame of another Web site in their Web application. This feature is for example
frequently used by advertisements or social media widgets. However, a developer can
freely choose the style of such an iframe, in particular, its opacity. Thus, attackers
can trick their victims into clicking elements in another Web application, and thus
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Figure 2.1: Clickjacking example Web site that shows an image of our family cat.

issuing state-changing actions, without the victim even noticing. Malicious actors can
place opaque iframes that contain like/retweet buttons or also instant-buy buttons over
seemingly benign buttons, such that users, if authenticated to the social network or the
payment provider, buy certain products or follow specific content. Figure 2.1 shows
how seemingly benign content of a Web site that provides access to cat pictures can be
used to trick the user into clicking on an Amazon 1-Click buy button (with opacity set
to 66%) that overlays the ”Yes” button.

2.2.2 Cross-Site Scripting

As mentioned in Section 2.1.3 the SOP protects Web Origins from accessing one an-
other, such that e.g., JavaScript can only interact with the DOM of the Website that
executes it. If now however an attacker manages to execute JavaScript in the origin of
a vulnerable Web site, this script has the same capabilities as a script that is served
legitimately by the page itself. Thus, the attacker’s script can steal sessions or lo-
gin credentials, impersonate user actions, or change the page content to distribute fake
news. Since its initial discovery back in 1999 [109] numerous publications and blog posts
investigated the different types of Cross-Site Scripting (XSS), such as XSS through con-
tent sniffing [106], client-side (sometimes called DOM-based) XSS [67], universal XSS
[58], self XSS [111], scriptless XSS [50], mutation-based XSS [51], expression-based XSS
[59], Same-Origin method execution [49], gadget-based XSS [75], or persistent client-
side XSS [123]. In general, however, XSS can either be persistently stored or only
reflected per request, while the vulnerable code is either located on the server or the
client side. The plethora of different types of XSS as well as their omnipresence in
annually published OWASP Top 10 Web Application Security Risks [90] shows that
XSS is a problem that is still lacking a proper solution.

2.2.2.1 Server-Side XSS

In the dimension of server-side XSS, the vulnerable code is located on the server side.
In this case, parts of the request such as the URL parameters (reflected) or stored
user content such as profile descriptions (persistent) are mixed up with the developer-
specified markup in the response. This way an attacker can inject malicious markup
such as script tags that are then delivered via the server of the vulnerable application,

13



CHAPTER 2. BACKGROUND & RELATED WORK

Listing 3 Example of PHP code vulnerable to a reflected server-side XSS

// Processing of requests to //example.com/welcome?user=<username>
...
echo "<p>Welcome " + $_GET['user']; + "!</p>";
...

which causes the script to run in the context of this Web application. An example of
vulnerable PHP code that has a reflected server-side XSS is displayed in Listing 3.

Notably, server-side XSS can be mitigated or even defended against by enforcing
Type safety on the backend such that a string (or XSS payload) can never end up in a
response [65]. Also many popular frameworks, such as the Python Django Framework,
automatically encode, and thus sanitize, every string that is programmatically passed
to the template rendering engine [35]. Thus, a developer needs to explicitly use the
mark_safe method in order to cause a server-side XSS vulnerability. Also, academic
solutions, such as Kirda et al.’s Noxes [66], can be used to prevent XSS. Noxes uses a
set of rules to detect XSS attempts. For example, it requires user interaction for all
dynamically crafted links to enable the user to take either temporary or permanent
security decisions.

2.2.2.2 Client-Side XSS

Another dimension of XSS attacks is the client side where the vulnerable code is not
reflected by the server but included and executed fully on the client side within the
victim’s browser. As mentioned in Section 2.2.2, an injection can happen either happen
in a reflected fashion, in this case for example by using data from the URL via loca-
tion.href, or it can originate from a persistent client-side storage such as cookies or
the localStorage API. Either way, the vulnerability is that the attacker code from
these locations at some point ends up a JavaScript sink that can execute code such as
innerHTML or eval, which is exemplified by the code in Listing 4.

For reflected client-side XSS multiple works [76, 78, 127] used a modified browsing
engine to taint dangerous flows from a URL into executing sinks, to show that client-

Listing 4 Example of JS code vulnerable to a reflected client-side XSS

window.onload = funciton() {
let url = decodeURI(location.href);
let html_el = document.getElementById('error_msg');
html_el.innerHTML = "Loaded URL (" + url + ") was not found!";

}
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side XSS is a prevalent problem even in the Top most visited Web applications. Steffens
et al. [123] also used taint-tracking to show the prevalence of persistent client-side XSS
vulnerabilities in the Top 5,000 Web sites. They showed that 21% of the sites that make
use of data originating from client-side storages are vulnerable to persistent client-side
XSS.

2.2.3 Cross-Site Request Forgery

In a Cross-Site Request Forgery (CSRF) attack, a malicious actor performs actions on
behalf of a victim. This action can either be a login CSRF where the victim has logged in
at a Web application with the credentials of an attacker-controlled account, also called
session-fixation-attack, or an authenticated CSRF where victims are already logged in
with their account and is thus authenticated to the vulnerable service. This attack
works because browsers may not only add cookies to the requests that are performed
by the user, but also to those that happen programmatically in the background. Thus
in the case of a login CSRF, the victims might get confused to be logged into their own
account and entering sensitive information into the account of the attacker. In the case
of an authenticated CSRF, a malicious Web site starts programmatically issuing state-
changing requests e.g. a bank transaction to a vulnerable banking service, the browser
adds the authentication cookie of victims to this request if they are logged in. Thus,
the attacker can impersonate the user and perform arbitrary actions in the vulnerable
Web application. If the victim is logged in as an administrative account, this can be
even more severe, as a CSRF attack can then compromise the entire Web application.
Pellegrino et al. [100] showed that authenticated CSRFs can be automatically detected
when we have access to the source code of a Web application, while Sudhodanan et al.
[129] provides an extensive overview of login CSRF vulnerabilities.

While there are server-side mechanisms to mitigate the issue such as Anti-CSRF
Tokens [8] or checking of the Fetch Metadata request headers [143], this dissertation is
focusing on client-side security mechanisms. One of them, the Cookie Security Attribute
SameSite, can potentially mitigate CSRF attacks, which Section 2.3.4 explains in
detail.

2.2.4 Network Attacks

A Network attacker extends the capabilities of a Web attacker with full control of the
unencrypted HTTP traffic. Figure 2.2 shows an example of a Machine-in-the-middle
(MITM) attack on a client that visits example.com. By proxying the traffic between
the two parties, the MITM can, for example, read packages to steal credentials, drop
packages to deny service, or modify content in order to create seemingly trustworthy
fake news or distribute malware. There are several methods how an attacker can get
into the middle of a communication, such as ARP spoofing [107], DNS poisoning [118],
fake wireless access points [2], physically tapping into a network line, etc. Those kinds
of attacks are particularly dangerous because they often go undetected, as the two
parties may not be aware someone tampers with their communication.

Although the Web is fast progressing towards full usage of transport layer encryption
through TLS, browsers do not automatically upgrade all connections to HTTPS to avoid
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Figure 2.2: Example for a MITM attack on a client that loads example.com

breakage. This introduces the danger of attackers who force a victim’s browser to make
a request towards the HTTP version of a site, thus allowing the attacker to perform
impersonation attempts, e.g., for phishing or to sniff non-Secure cookies. In order to
harden a Web application against this kind of attack a Web site’s operator can deploy
a Strict-Transport-Security header, which Section 2.3.5 explains in detail.

2.3 Client-side Security Mechanisms

Given that the main papers presented by this dissertation are either measurements of
client-side security mechanisms or qualitative analyses of their real-world deployment
roadblocks, this section explains the different mechanisms as well as the current state
of science around those.

2.3.1 X-Frame-Options

In order to reduce the attack surface for Clickjacking attacks (Section 2.2.1) developers
can deploy the X-Frame-Options (XFO) header [108]. By configuring this header,
developers can control who can load their Web application in an iframe. The header
itself can have three different modes. With SAMEORIGIN the framing is restricted to
the origin of the Web application itself. The ALLOW-FROM value followed by a specific
origin can be used to allow framing from one specific origin. And the DENY value
prevents any framing of the Web site.

However, support and the implementation of the different modes are inconsistent,
as for example, only some browsers support the ALLOW-FROM mode. And even if
supported this mode only enables developers to allow one single origin. Due to these
limits and the inconsistent support, the header should be replaced by the corresponding
CSP directive, which Section 2.3.2.1 explains in detail.

2.3.2 Content Security Policy

The Content Security Policy (CSP), initially proposed by Stamm et al. [121], ought
to mitigate the damage an XSS attacker can cause and be later extended to cover
additional threats. The policies themselves are deployed by the server side, either as
HTML meta tags or via HTTP response headers, and enforced on the client side by the
browser [139]. It contains one or multiple directives that are followed by a list of source
expressions, which can either be keywords or allowed sources for the corresponding
directive.
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Listing 5 Example Content Security Policy Header

content-security-policy:
script-src ’self’ cdn.com *.partner.net;
frame-ancestors ’self’ partner.net;
Upgrade-insecure-requests;

In order to mitigate XSS attacks the site’s operator has to set a script-src (or
alternatively a default-src) directive. By default, these directives forbid the execution of
inline JavaScript such as inline script tags or inline event handlers and also disables the
usage of JS functions that are doing a string-to-code conversion such as eval. However,
even when those dangerous practices are disallowed, a malicious actor can still include
scripts from an attacker-controlled domain. Therefore, a CSP directive such as script-
src is followed by a list of allowed sources that can be used to include JavaScript.

As shown by Steffens et al. [122] the curation of those lists of trusted domains is a
hard task, as a common practice of third-party scripts is to dynamically include other
third-party scripts. To address the problem of ever-changing inclusion trees of third
parties, Weichselbaum et al. [136] proposed the ’strict-dynamic’ source-expression. If
present, the trusted script propagates the trust to scripts that are programmatically
added by them. Also, in the presence of ’strict-dynamic’ in the CSP it is only allowed
to trust scripts via the usage of nonces or their content hashes.

A nonce is a secret that is random for each request, such that an attacker can not
guess it. If present in a CSP allow list, only script tags that carry the same nonce
are allowed to be included and executed. Because nonces are only attached to trusted
scripts, they also mitigate the attacker’s capability to bypass the CSP via side-loading
script-gadgets [75] or abusing open-redirects in one of the allowed domains [S2].

Although there are approaches to automate the generation of a CSP [37, 98], re-
search has shown that the vast majority of policies in the wild remain insecure [137,
136, 19], a work by Steffens et al. [122] investigated potential technical problems of
CSP.

2.3.2.1 CSP frame-ancestors

Given the problems of the underspecified XFO header, framing control has been incor-
porated into CSP as frame-ancestors directive. This solution has a clear advantage
over XFO due to its standardized support and additional expressiveness, which is why
browsers supporting CSP Level 2 must ignore the XFO headers in the presence of a
CSP that includes a frame-ancestors directive. However, XFO is still the only way
for a Web application to control framing in legacy browsers.

In contrast to XFO, CSP frame-ancestors performs the origin check for framing
based on the whole chain of nested frames (ancestors) between the top-level browsing
context and the framed page, which offers the strongest security guarantees by ruling
out double framing. Moreover, CSP is strictly more expressive than XFO, since it can
take advantage of the full CSP syntax, which allows one to allow an arbitrary (possibly
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Listing 6 Trusted Types Example

let TT = trustedTypes.createPolicy('default', {
createHTML: function(rawHTML) {

return sanitizeHTML(rawHTML);
},
createScript: function(rawJS) {

return sanitizeJS(rawJS);
},
createScriptURL: function(scriptURL) {

return sanitizeURL(scriptURL);
}

});

empty) list of origins. For example, the DENY directive of XFO can be simulated
by setting the frame-ancestors directive to ’none’, while the SAMEORIGIN
directive can be simulated by setting it to ’self’. Even better, CSP can be easily
used to allow all subdomains of given domains, e.g., frame-ancestors *.foo.com

*.bar.com, which cannot be expressed through XFO. To mimic this behavior in XFO
a developer would need to implement logic on the server side that checks the HTTP
Referer header sent by the browser (known as Referer Sniffing) and deploy XFO in
DENY or ALLOW-FROM mode depending on the value of the Referer header.

2.3.3 Trusted Types

Although the problem of client-side XSS and its prevalence in Web applications is well
understood, a proper defense or mitigation technique is still missing. As mentioned in
Section 2.2.2.1 Google engineers enforce type safety on the backend such that dangerous
markup can never end up in the body of a response [65]. To transfer this defense idea
to the client side, Google suggested Trusted Types [69] to filter values before they
flow into dangerous JS sinks such as eval or innerHTML. To deploy Trusted Types a
developer needs to first set the corresponding CSP trusted-types directive which
defines the sanitizer policy names that are allowed, then enforce the usage of those
policies via the require-trusted-types-for directive with the ’script’ value,
and finally create the actual Trusted Types policy including the sanitizer functions using
the trustedTypes.createPolicy JavaScript function, as exemplified in Listing 6.

When deployed correctly, Trusted Types enforces that all dangerous JavaScript
APIs that might lead to code execution can only be used with a Trusted Types Object.
To create those objects the developer either needs to explicitly call the corresponding
Trusted Types sanitizer function e.g. TT.createHTML(input) or define the sanitiz-
ers as default policy, such that they are inherently called whenever a dangerous sink
is used. In a 2021 document [68] reported on Google’s success in deploying Trusted
Types on 130 of their services. Furthermore, the report mentions that Google faced no
client-side XSS in their Trusted Types protected applications. The report also men-
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tioned that new tools and better framework support can ease the deployment. In fact,
Wang et al. [134] showed how Trusted Types can be incorporated into Web frameworks
such as AngularJS. So, if Trusted Types works as it ought to, it could potentially be
the solution to effectively mitigate the problem of client-side XSS.

2.3.4 Cookie Security attributes

As explained in Section 2.1.4.2 cookies are quite important for features that many Web
sites are offering nowadays (e.g. login). However, despite their importance for modern
Web applications, cookies suffer from a range of security problems in their default
configuration. A Web site’s operators are thus recommended to improve the level of
protection of their cookies by marking them with appropriate security attributes.

The HttpOnly attribute ensures that cookies are not accessible from JavaScript,
which prevents cookie theft through malicious scripts, e.g., injected through XSS. The
Secure attribute guarantees that cookies are never sent in plain HTTP requests, but
only over encrypted HTTPS connections, which rules out network sniffing attempts.
The combination of both keywords significantly raises the confidentiality guarantees of
cookies, which is particularly important to protect against session hijacking [18, 38].

The latest addition to the set of attributes is called SameSite, which is meant to
protect against CSRF attacks. If the attribute is set to Lax, cookies are only sent on
cross-site requests when the main frame is navigated using a safe method like GET.
If instead the attribute is set to Strict, cookies are never sent across sites. Some
modern browsers like the latest versions of Chrome automatically promote all cookies to
SameSite Lax, hence site operators can opt-out from protection by setting the SameSite
attribute to None for compatibility reasons.

Notably, setting all authentication cookies as SameSite would mitigate the issue of
CSRF (Section 2.2.3), as those cookies are not sent on cross-site sub-requests. However,
setting authentication cookies to SameSite Lax or even Strict is not always possible for
services as their business model might rely on being integrated as a third-party iframe
into other services for example social media integration such as Twitter timelines or
Facebook like buttons.

2.3.5 HTTP Strict Transport Security

In order to prevent the issues explained in Section 2.2.4, HTTP Strict Transport Security
(HSTS) was introduced. Once this mechanism is set for a specific HTTPS host, via
the Strict-Transport-Security header, the browser will only connect to this
application via HTTPS for the duration specified in the max-age attribute (or until
an HSTS header with max-age set to 0 is received). Optionally, HSTS can specify the
includeSubDomains directive, which extends protection to all the subdomains of the
host that deploys the security header. This is important to defend against network
attackers who could otherwise forge cookies from HTTP subdomains and to prevent
the exfiltration of domain cookies lacking the Secure attribute.

Due to its design, HSTS faces a Trust-On-First-Use (TOFU) problem because net-
work attacks can be performed before TLS connections are enforced via the Strict-
Transport-Security header in the first response. In order to get rid of this issue, hosts
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supporting HSTS can also ask for inclusion in the HSTS preload list [29], which is a
public list of known hosts where browsers should activate HSTS by default. To be
accepted into the HSTS preload list, a host must serve a valid HSTS header with max-
age set to at least one year, have enabled includeSubDomains, and include the preload
directive. Since preloading implies a fully functional HTTPS setup for all of a site’s
subdomains, which might cause problems in practice, the preload list offers a feature
for removal. For this removal request to go through, a site has to serve a valid HSTS
header (i.e., at least specifying a max-age value) without the preload directive [30].
After this, the site is removed from the preload list without further notice to the Web
site’s operator.

2.4 Qualitative Methods

Two of the main publications in this thesis explore the origins of behaviors and miscon-
ceptions of a security mechanism [P4, P5]. Here a "bottom-up" approach of a qualita-
tive study design [61] is what we rely upon. In the area of IT Security, the qualitative
analysis of semi-structured interviews was already used to better understand problems,
misconceptions, and mindsets of developers [72], users [57, 64], or administrators [71] of
IT Systems. While this is suitable for exploring a topic, and investigating concepts and
trains of thought of participants on topics which they are already familiar with, some,
especially the investigation of previously unknown scenarios need a more controllable
study setting, namely lab studies. Here the researcher can adjust the settings of the
study to observe if certain changes have possible effects on the investigated scenario.
In order to get qualitative data out of those lab tasks, the participants can be asked to
think aloud such that the process sheds light on, for example, the motivations behind
certain decisions.

In one of the primary works in this dissertation [P4], we used also incorporated a
drawing task. Those tasks can be powerful to visualize participants’ understanding of a
system or concept [12]. If needed, for example, to reduce the drawing effort in an online
setting, the participant is given a template to complete. Participants then explain their
understanding of the system as they draw. In security and privacy research, drawing
tasks have, among other things, already been used to explore user’s understanding of
the internet [64], and end users’ and administrators’ understanding of HTTPS [71].
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3.1. MOTIVATION

Contributions of the Authors

This chapter is based on ”Complex Security Policy? – A Longitudinal Analysis of De-
ployed Content Security Policies” [P1]. Sebastian Roth, Ben Stock, Stefano Calzavara,
and Nick Nikiforakis conceived the study. All authors contributed to the design of the
study. Sebastian Roth conducted a pre-study with a smaller dataset during his mas-
ter’s thesis to get preliminary results. Afterwards, he gathered the large-scale dataset
and analyzed the gathered data. Timothy Barron and Nick Nikiforakis investigated
how allowed domains in a CSP can be abused, therefore the subsection that presents
those results is removed from this thesis. Sebastian Roth and Ben Stock created and
sent out the email notifications as well as the CSP survey. Sebastian Roth created the
public overview of normalized policies [A5]. Ben Stock, Stefano Calzavara, Nick Niki-
forakis supervised the study. All authors commented and contributed text to individual
sections.

3.1 Motivation

Given the complexity of modern Web applications and the number of different attacks
that Web sites and their users can be exposed to, browser vendors have long supported
a wide range of additional opt-in security mechanisms.

The Content Security Policy (CSP) is one such mechanism that was introduced in
2010 and was initially designed to grant Web developers more control over the content
loaded by their Web sites [121]. Unlike other security mechanisms that have a limited
number of configuration options, CSP allows Web developers to author complex, allow-
list-based policies to precisely specify the sources that are trusted for a wide range of
content including JavaScript, images, plugins, and fonts.

Though the (in)effectiveness of CSP has been analyzed and debated in several re-
search papers [137, 19, 136, 21], CSP is still under active development and is routinely
adopted by more and more Web sites. The, at the time of conducting this study, most
recent study [21] observed an increase of one order of magnitude in CSP deployment
in the wild between 2014 and 2016. Notably, though, virtually all papers have focused
on CSP as a means to restrict content and have treated its newly added features (such
as TLS enforcement and framing control) as side notes. To close this research gap and
holistically analyze CSP it is important to take a critical look at how CSP deployment
has evolved over time, so as to understand for which purposes developers use CSP and
how it affects security.

To this end, we leverage the Internet Archive to obtain the historical CSP headers
for 10,000 highly ranked domains from 2012 to 2018. Leveraging this unique vantage
point for a long-term study, we first investigate CSP’s evolution for content restriction
and specifically highlight numerous case studies that document the struggle in rolling
out a CSP. Among the insights, we find that 56% (251/449) of Web sites that test CSP
for content restriction with report-only, presumably due to its complexity, refrain from
ever enforcing any policy. Similarly, we find numerous examples of sites trying to keep
on top of their allow lists for months, before eventually giving up.

Notably, though, our longitudinal lens over seven years allows us to show that CSP’s
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primary use case is gradually shifting away from the original goal of content restriction,
with 58% (720/1,233) of Web sites deploying CSP for other purposes. In particular,
we document the increase in the adoption of TLS enforcement and how the security
mechanism is used in practice for utility purposes. Moreover, we find that while CSP
is well-equipped to rid the Web of the X-Frame-Options (XFO) header, many sites
still rely on this deprecated header incapable of providing CSP’s fine-grained framing
control. To understand the reason behind this lack in CSP adoption, we conduct a no-
tification campaign of sites running XFO. Based on the over 100 responses we received,
we find that CSP’s full potential is scarcely documented and the perceived complexity
of CSP shies operators away from even the easy-to-deploy parts. Furthermore, using
an in-depth analysis of violated policies as well as sites that are either trivially insecure
or are able to sustain a secure policy, we propose CSP extensions to ease adoption and
improve security in practice.

The rest of this chapter is structured as follows:
• We leverage the Internet Archive to conduct the longest study of the CSP mech-

anism to date (2012–2018), and discuss how our insights can generalize (Sec-
tion 3.2).

• We document the evolution of CSP and its use cases over time, showing its gradual
move away from content restriction to other security goals (Section 3.3).

• Based on the collected CSPs for content restriction, we document the long-term
struggles site operators face in the deployment of CSP (Section 3.4).

• We shed light on the previously dismissed CSP use cases of TLS enforcement
(Section 3.5) and framing control (Section 3.6), and highlight their growing im-
portance.

• To untangle the reasons behind CSP’s failed adoption, we conduct an in-depth
analysis of sites that gave up on CSP, ran insecure CSPs, and those that managed
to run a strict CSP. Based on this, we identify characteristics that are blocking
sites from CSP deployment (Section 3.7).

• Given that the adoption of CSP for framing controls lags behind the underspec-
ified XFO header, we conduct a notification of sites at risk and report on the
insights gathered from the field (Section 3.8).

• Based on the insights gained throughout our analysis, we highlight how CSP’s
evolution has affected its prevalence and usage, and propose three actionable steps
to improve the adoption of CSP (Section 3.9).

3.2 Methodology

Contrary to prior work that mostly quantified the insecurity of CSP with respect to
XSS mitigation, our main focus is to investigate how CSP’s changing role affected its
deployment. To this end, the Internet Archive (IA) [55] provides a glimpse into the
past since, starting from 1996, it archives both content and headers of popular Web
sites and makes the information publicly available. Here, we describe how we arrive at
a representative dataset of 10,000 popular sites, followed by how we crawl the IA for
data related to CSP’s evolution.
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3.2.1 Dataset Construction

Since widespread support for CSP landed in browsers in 2012 [25], we focus on analyzing
the deployment and usage of CSP from 2012 to the end of 2018. However, merely using
a current list of highly-ranked domains does not suffice, as many domains may not have
been registered (let alone be popular) during the entire period of our study. Moreover,
the reliability of lists such as Alexa was recently challenged for exhibiting massive
fluctuations on a day-to-day basis [112]. Therefore, we used the following selection
strategy for sites: using Alexa lists collected over time [112], for each month between
January 2012 and December 2018 we extracted the set of sites that were in the top
50,000 on at least a single day within that month. We then calculated the intersection
of these monthly sets, sorting the sites by their average rank (over the entire time).

To limit the overall number of queries to the IA, we opted to study the 10,000 most
prolific sites for the given timeframe. To arrive at this set, for each entry in the sorted
list of sites, we queried the IA to determine if it contained any archived version of the
site. This check is necessary since the IA removes any previously stored content when
a site blocks the IA crawler through robots.txt [124, 77]. To understand potential
biases towards any period within the seven years, for each month we computed the
average top 10,000 sites, and compared them to the list we finally chose. This showed
that at least 4,960 and at most 6,199 entries overlapped for any given month, averaging
at 5,738 domains. Hence, we argue our dataset is well-balanced, allowing us to draw
general conclusions on the evolution of deployed CSPs over time.

Given this set of sites, we queried the IA for their daily snapshots from January
1, 2012, until December 31, 2018. Selecting one snapshot per day (where available),
we followed any HTTP redirection to reach the final landing page for users access-
ing the site at archival time. Note that we only used HEAD requests to reduce
the load on the IA. Once all redirects were followed, we compared the originally
visited site to the final URL. In total, we queried the IA for 10,414,975 snapshots,
out of which 10,316,325 yielded final URLs still on the same site. For each of the
same-site snapshots, we collected all variants of CSP headers historically used (i.e.,
Content-Security-Policy, X-Content-Security-Policy, X-WebKit-CSP,
and Content-Security-Policy-Report-Only), as well as XFO and Strict-
Transport-Security. The IA prefixes archived headers with X- Archive-Orig-
, making them easy to differentiate from other response headers [124]. Note that the
IA removes CSP directives in <meta> elements to avoid interference with the CSP
of the IA itself. The CSP deployment occurred after previous research had identi-
fied the possibility of maliciously tampering with historical results through the use of
externally-hosted scripts [77]. This filtering has a minor effect on our experiments since
few sites deploy CSP through a meta tag (Section 3.2.2).

Naturally, not all sites have daily snapshots in the IA. On average, a site had
snapshots for 1,031 of the 2,557 days in our analysis timeframe. Hence, whenever there
is no snapshot for a given day di, we use di−1 instead as a basis for our analysis, in
a recursive fashion. This means that for every gap in the snapshot data, we use the
last entry before that gap as the data point. This approach suffers from a certain level
of imprecision, as it might be unclear exactly when a change in a CSP has occurred.
This loss of fine-grained information, however, does not significantly affect the class
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of observations pursued in our work. For each collected CSP policy, we normalized
all randomized elements as nonces are meant to used be just once, and the violation
reporting URL may also contain random strings. For those, we removed the random
parts, allowing us to properly analyze actual changes. All normalized policies are made
publicly avaiable [A5].

3.2.2 Threats to Validity

Given that our analysis uses the IA to extract information, it is prone to the following
threats to the validity of the results.

3.2.2.1 Incorrect Archival Data

It is not clear to what extent the data collection process in the IA might influence
our results, since a specific browser version might yield a different server response. To
determine this IA-specific influence, we chose a second archive service to corroborate
the IA’s data. In particular, Common Crawl (CC) [31] has been collecting snapshots of
popular sites since 2013. For each date on which we found a CSP in the IA, we queried
the CC API for a matching snapshot. Overall, we found 38,129 overlapping snapshots
for 940 sites. Out of these, 729 (1.9%) on 127 sites were inconsistent between the two
archives. For 96 cases the difference was the lack of block-all-mixed-content
or upgrade-insecure-requests in the CC data. Further investigation showed
that in the IA, these directives were separated from the remaining CSP with a comma
instead of a semicolon. This likely relates to the IA joining headers with the same
name with a comma. For those pages, we could always only find a single CSP header
in the CC response. Moreover, starting from August 2018, these sites still used the
aforementioned directives in the IA data, but CC returned two CSP headers (one
including only those directives). Hence, we speculate this relates to a bug in CC, which
was fixed around August 2018. 23 cases showed evidence for a difference in crawling
time; e.g., taking the IA policy from the following day matched the CC. Additionally,
29 differences can be attributed to allowing different edge CDNs based on the crawler’s
IP. For the remaining 581 cases, the exact cause of the difference was not detectable.
Notably though, in only 238/38,129 cases (0.6%) did those policies have a different use
case (see Section 2.3.2). Overall, this confirmation from a second source gives us high
confidence in our utilized dataset.

3.2.2.2 CSP Through Meta Tags

As mentioned, CSP can also be deployed via HTML meta tags which are currently
removed by the IA. To understand the potential impact of this drawback, we crawled
the live main page of all 10,000 Web sites from our dataset on June 10, 2019. We
collected CSP headers and also checked the content for CSP meta elements. In this
experiment, a total of 1,206 sites deployed CSP, and, of those, 78 (6.4%) sites set their
policy only through a meta element. Of the 1,147 sites that sent a CSP header, 19 also
set the meta element. Notably though, only 3 with both meta and HTTP header CSPs
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Figure 3.1: Usage of CSP only, CSP-RO only, or both

had policies which differed in their use case (see Section 3.3.2). Hence, we are confident
the archived headers provide a valid dataset for our large-scale historical analysis.

3.3 Historical Evolution of CSP

In this section, we provide an overview of how CSP deployment evolved, studying the
adoption and maintenance of CSPs, and the changing use cases we observed over time.

3.3.1 Adoption and Maintenance of CSP

Figure 3.1 shows the number of Web sites utilizing CSP in enforcement mode, in report-
only mode (CSP-RO), and in both modes in parallel. The figure does not include the
CSP adoption from 2012 to 2014, since only 8 different sites deployed CSP before 2014.
In our dataset, lastpass.com and adblockplus.org were the first Web sites to
adopt CSP in January 2012, while the other six sites joined in 2013. In total, we find
that 1,233 out of the 10,000 sites in our dataset used CSP in enforcement mode for
at least a single day in our analysis period. Notably though, in the last month of our
analysis, only 1,032 domains enforced a CSP.

We draw two main observations based on the plot. First, even though CSP offers the
report-only mode to enable developers to experiment with policies before deployment,
this mode is not nearly as popular as the enforcement mode. This means that most
developers are rolling out policies without having a chance to test them on their user
base. We suspect that this is one of the main reasons why CSPs in the wild are so
relaxed since they have not been appropriately evaluated and the developers eventually
opted for utility over security (see Section 3.4). Second, we observe even fewer Web
sites utilizing CSP in enforcement and report-only mode at the same time, which is
the preferred way of gradually testing and deploying more restrictive policies. These
two observations together suggest that developers are likely confused about the role of
report-only and therefore do not take advantage of it.

The plot also shows that the overall adoption of CSP is consistently increasing over
time. Given that our list of Web sites remains stable, we can attribute the increased
CSP adoption to Web developers deciding to use it, rather than CSP-capable Web
sites suddenly climbing in Alexa popularity. Specifically, in 2017 and 2018 anywhere
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Figure 3.2: Maintenance of CSPs over time

between 18 and 65 Web sites in our dataset were adopting CSP in enforcement mode for
the first time every single month. Considering the ever-increasing complexity of Web
sites and their deployed JavaScript code [124], the rising adoption of CSP seems to be
a positive sign for security. Given the low adoption of report-only, the next sections
focus primarily on enforcement mode.

Since CSP is one of many security mechanisms deployed by servers and enforced by
browsers (like HSTS [91]) one may think that similar to other mechanisms, once a policy
is curated, that policy can be deployed and used for a prolonged period. Unfortunately,
CSP — especially for its original use case of script content restriction — is way more
complicated than other security mechanisms and requires constant maintenance to
ensure that the appropriate sources are allowed so that the site remains operational
and secure. Figure 3.2 quantifies the burden of keeping deployed CSPs up to date. The
dashed red line shows that, in many cases, sites needed to modify their policies tens
of times each month. Even though we see the average number of changes going down
towards a steady state, we later show that this is rather caused by CSP being used for
non-traditional reasons (such as for TLS enforcement) than by stabilized allow-lists.
The blue line shows the fraction of sites with changed policies. We still observe the
need to regularly maintain CSPs since by the end of our analysis, still roughly 10% of
sites changed their policy at least monthly.

3.3.2 Use Cases for CSP

Even though CSP was initially developed as a measure to mitigate the impact of script
injection, the multitude of directives available nowadays allows site operators to con-
trol much more than included content. Specifically, we classify policies in the follow-
ing (overlapping) categories: Script Content Restriction (policies using script-
src or default-src); TLS Enforcement (policies using upgrade-insecure-
requests, block-all-mixed-content, or allow-listing only HTTPS sources); and
Framing Control (policies using frame-ancestors). Figure 3.3 shows the num-
ber of sites applying CSP for the identified use cases over time. When comparing the
numbers to Figure 3.1, we find that the increase in the deployment of CSP starting
from 2015 coincides with the increased usage of framing control. Similarly, the increase
in the overall usage of CSP from 2017 onwards aligns with the increased enforcement
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of TLS connections, mostly through upgrade-insecure-requests. Moreover, the
decrease in maintenance shown in Figure 3.2 is evidence of easily deployable mecha-
nisms like TLS enforcement, rather than reduced effort to keep policies up to date.
This clearly indicates that while CSP was meant as a tool to mitigate script injection,
new additions to the set of the CSP directives have shifted CSP into new use cases. In
the following, we analyze each category separately, discuss its evolution, and highlight
key insights.

3.4 CSP for Script Content Restriction

In this section, we analyze how CSP has evolved with respect to its content restriction
capabilities. This not only allows us to confirm findings of prior work through the
longitudinal lense of the IA, but also to highlight unknown trends in the increasing trust
of operators into lower-ranked domains, to investigate the success of newly introduced
CSP features, and to identify previously unexplored attacks related to hijacking allowed
domains. Finally, given the unique vantage point of an archival analysis, we conduct a
number of case studies which document the long-lasting struggle of Web sites to deploy
an effective policy.

The first observation we make is that, out of the 1,032 sites in the dataset that
enforced a CSP by the end of our analysis period, only 421 sites shipped policies aimed
at restricting script content. This clearly shows that although CSP was initially meant
to mitigate script injections, this is only attempted by about 41% of the deployed
policies. We now present insights gained from the deployed policies.

3.4.1 Insecure Practices Die Hard

Figure 3.4 shows the evolution in the number of sites using CSP for content restric-
tion, and how many of them have been using various unsafe practices therein. The
two most popular unsafe practices are the use of unsafe-inline (without the use of
hashes/nonces) and the use of unsafe-eval. While unsafe-eval must be consid-
ered the lesser evil, given that its presence does not immediately nullify CSP’s security,
we observe almost all the policies deployed in 2014 and 2015 made use of unsafe-
inline. We attribute this to the inflexibility of early versions of CSP. However, it

29



CHAPTER 3. HISTORIC DEPLOYMENT OF SECURITY HEADERS IN-THE-WILD

0

100

200

300

400

500

2014 2016 2018

# 
of

 s
ite

s

Script Content Control
'unsafe−eval'
'unsafe−inline' w/o nonces
http / https / *
data:

Figure 3.4: Overall adoption of content restriction and insecure practices

is noteworthy that even at the end of our analysis period, this trivially insecure di-
rective is contained in almost 90% of the policies. While we can only speculate about
the exact reason for this trend, we opine that it is likely due to event handlers which
cannot be allowed with hashes or nonces. Checking merely the start pages for the 378
sites which deployed unsafe-inline in December 2018, 180 (48%) of them carried
event handlers. The actual number of sites making use of them is likely even higher,
but we could not confirm this without adding a significant load on the IA by crawl-
ing sub-pages. The bottom two lines of Figure 3.4 refer to the allow-listing of entire
schemes. In particular, the first line shows that developers are declaring that any
HTTP/HTTPS origin is permitted, which obviously voids security. The second line
represents the allow-listing of the data scheme, which can be used to add arbitrary
code, e.g., through data:;alert(1) [84].

Our analysis also indicates that the numerous features added to CSP to ease its se-
cure deployment are not successful. Table 3.1 reports on the adoption of hashes, nonces,
and strict-dynamic on a yearly basis. Note that, although strict-dynamic has
recently been shown to be bypassable through Script Gadgets [75], we still treat it as an
improvement since it should ease CSP deployment. The table highlights that while the
usage of CSP to control scripts has constantly grown, neither hashes nor nonces have
gained significant adoption. We also find that in both 2017 and 2018, at most 8 sites
made use of strict-dynamic. While we are only checking start pages and might
therefore miss wider-spread deployment, this still highlights that the new directive is
not widely used. Overall, we can conclude that insecure practices are present in 90% of
policies, whereas secure practices like nonces or hashes, reach less than a 5% adoption

Year Controls script Hashes Nonces strict-dynamic

2014 27 0 (0%) 1 (4%) 0 (0%)
2015 75 1 (1%) 2 (3%) 0 (0%)
2016 135 1 (1%) 3 (2%) 0 (0%)
2017 296 4 (1%) 14 (5%) 7 (2%)
2018 478 6 (1%) 24 (5%) 8 (1%)

Table 3.1: Number of sites per year restricting script content, and using hashes,
nonces, and strict-dynamic.
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rate.

3.4.2 Allowed Sources

We now complement the findings of Weichselbaum et al. [136] regarding the insecurity
of allow-lists by quantifying the evolution of the number of allowed script sources over
time (Figure 3.5). We observe that even though the median remains relatively stable,
the number and magnitude of outliers expand year after year with some Web sites allow-
listing over 200 unique sources for their scripts. The low median must be interpreted
in light of the unsafe practices described earlier. allow-listing an entire scheme (such
as https) and allowing unsafe-inline may result in short policies (in terms of the
number of entries) which are, however, still more vulnerable than explicitly trusting
hundreds of remote third parties.

The ranking of allowed sources is an important dimension of CSPs, since site popu-
larity is often used as a proxy for security. This stems from the reasonable assumption
that, on average, the developers of more popular Web sites have more know-how and
resources to help secure their code. For example, Van Goethem et al. [133] discovered
that more popular Web sites tend to utilize more security mechanisms than less popular
ones. To analyze this, Figure 3.6 shows information about the ranking of Web sites that
are allowed as script sources. In particular, this contains all hosts that were allowed;
i.e., even in the presence of *, we analyzed the remaining contained sites. We argue
that this is useful, given that remote sources contained in the allow-list are explicitly
trusted by the site, and the existence of * often is a byproduct of attempting to curate a
limited allow-list (cf. Section 3.4.3.1). For this analysis, we used the publicly available
historical dataset of Scheitle et al. [112], extracting the rank from each site on the day
when it was allowed. To combat the fluctuation of these lists, we aggregate the results
on a monthly basis. We find that starting from 2017, the average rank of trusted CSP
sources increases, although the average number of elements in allow-lists does not (cf.
Figure 3.5). This means that developers are explicitly trusting less popular Web sites
through their CSPs to host JavaScript code, thereby weakening their security.
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3.4.3 Longitudinal Case Studies

Contrary to other works which focused on analyzing CSP’s adoption and security from
a bird’s eye viewpoint and at most over a period of a few months, our archival analysis
enables us to investigate how sites struggled in their deployment of content-restricting
CSPs over the years. In the following, we present our insights into sites that exemplify
general behavior and issues we identified in our long-term study.

3.4.3.1 Curating Limited allow-lists

To understand how popular Web sites attempt to curate their allow-lists, we use
airbnb.com as a motivating example. The site first deployed a CSP report-only
(CSP-RO) header on November 12, 2014. While initially 17 sites were allowed (and
therefore allowed) to serve script resources, by March 27, 2015, the list of allowed sites
had grown to 21. On the next day, however, a new policy was deployed (still in report-
only mode), allow-listing the full HTTPS scheme; thereby essentially allowing any site
to provide script content to Airbnb. In addition, we observed multiple changes to al-
lowed hashes, indicating that due to changes of inline scripts, these had to be repeatedly
modified. The policy was further modified until May 1, 2015, when the curated policy
was deployed as an enforcement CSP. This policy was modified three more times until
May 9, 2015, when CSP was fully disabled.

The policy was re-enabled on May 22, 2015, and from then up to December 8, 2017,
we observed 222 changes to the deployed CSP, merely adding and removing hashes of
allowed scripts, while still allowing any HTTPS host to serve scripts (i.e., not actually
mitigating the risk of content injection at all). On December 8, 2017, airbnb.com
started experimenting with changing CSP-RO headers, limiting the sites from which
remote scripts could be loaded. The first variant of a blocking CSP with limited sites
was deployed on January 13, 2018. However, on January 16, 2018, the policy regressed
to trusting all HTTPS hosts for scripts. After another 29 modifications to CSP-RO
headers, Airbnb on March 13, 2018, finally deployed a blocking CSP with limited hosts,
and a different report-only policy until the end of our analysis timeframe. By then,
while only two more sites were added to the enforced list, we observed almost daily
changes to the policy, ensuring up-to-date hashes of the used inline scripts.

For both Airbnb and other domains exhibiting the same struggle, we attempted to
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attribute changes in the CSP to changes in the page itself, so as to understand if they
had been caused through the site itself adding new scripts, or third-party code (such as
ads) loading additional dependencies. However, apart from obvious changes in hashes
due to changed inline scripts, we could only attribute a negligible fraction of changes
in the allowed sites to modified content of the start page (10/106 for Airbnb). For
Airbnb, we investigated further, crawling one level of links for each of the changes we
could not attribute. Doing so, we were able to attribute an additional 15 changes, but
at the cost of making 106,090 GET requests to the Internet Archive. Given this small
increase in coverage and our goal of not flooding the IA with requests, we decided to
not follow this path of attribution any further.

Even though Airbnb was an early adopter of CSP and made significant efforts to
secure their site, they had to often effectively disable their policies for long periods of
time. These gaps could have been abused by attackers to launch attacks that would
not normally be possible with Airbnb’s CSP. Moreover, while they finally managed
to curate a allow-list of 33 sites, it took them multiple years from when they started
experimenting with CSP to arrive at this final policy.

3.4.3.2 Eventually Giving Up on CSP

Next to those sites which deploy CSP in an insecure variant by allowing any origin
to provide script code, our dataset also contains numerous sites which tried to deploy
CSP but eventually gave up. Overall, 294 sites used CSP in either mode for at least
one day but not within the last month of our analysis. Of those sites that used CSP
for at least one month, we find that 227 eventually gave up. Lastly, considering only
those sites that made a long-term attempt at CSP (at least one year), we find a total
of 79 sites which ended their deployment before December 1, 2018.

Researchgate.net was a prominent example of a Web site which moved from
CSP to CSP-RO on September 13, 2018, before completely abandoning it on November
27, 2018. Before moving to report-only mode, we observed 29 different attempts at
enforcing a working policy. This indicates that researchgate.net struggled to build
a functional, yet secure policy. In a similar case, zaycev.net had deployed CSP since
September 2015 and stopped deployment on April 11, 2018. Checking snapshots from
March and April, the site itself appeared to be unchanged. Notably though, in the week
before CSP was disabled, we observed 3 changes, seemingly to get the non-functioning
CSP to stop interfering with the Web site. These examples make it clear that even
though sites spend significant effort to deploy CSP, many of them eventually yield to
the complexity of keeping their policies secure and functional, and proceed to entirely
abandon the mechanism.

3.4.3.3 Failing Gracefully Through Report-Only

While prior works have found evidence that CSP report-only is used to test and then
deploy policies, our longitudinal allows us to investigate the usage of report-only in a
more thorough fashion. In particular, we can identify all those sites which attempted
report-only within the five year period for which have extracted CSP data and under-
stand how many of them actually made use of CSP report-only to test and then roll out
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CSP-RO for CSP for CSP for CSP for CSP for
Content Anything Content TLS Framing

449 216 (48%) 130 (29%) 78 (17%) 23 (5%)

Table 3.2: From report-only to enforced policies

policies. Even though report-only mode is meant to allow “developers to piece together
their security policy in an iterative fashion” [139], it can also be used to determine
that the deployment of CSP would cause too much interference with the operation of
the application and should therefore not be rolled out; importantly before breaking the
application due to blocked resources.

In total, our dataset shows that 449 sites experimented with report-only aimed
at restricting content at some point throughout our analysis period. Of those, 233
never actually enforced any type of CSP afterward. This already indicates that CSP’s
complexity in restricting content deters developers to deploy it after seeing the results
in report-only. Next, we analyze to what extent the remaining 216 sites leveraged the
tested content-restricting policy in enforcement mode.

Table 3.2 shows the overview of our results. Of the 216 sites that enforced any type
of CSP after testing a policy aimed at restricting content, only 130 end up deploy-
ing such a policy. The remaining 86 decided to not use CSP for its original purpose,
but rather for TLS enforcement (78) and framing control (23), whereas 15 used it for
both. Of those 86 sites, 79 had also tested report-only for framing or TLS control
before, showing that they merely dropped the content restriction part. Two of the
most prominent examples are aliexpress.com and aarp.org. AliExpress started
experimenting with CSP report-only in September 2015, eventually allowing up to 35
sites as well as the usage of inline scripts and eval. In June 2016, they moved to a
report-only policy permitting any origin to provide content, but later only enforced an
upgrade-insecure-requests policy. aarp.org went further than this, trying to
remove unsafe-inline and unsafe-eval from their policy altogether. They exper-
imented with this for a month in November 2017 but re-enabled the insecure directives
in December 2017. While this policy was still active for report-only in December 2018,
the site instead adopted an enforced CSP merely used for framing control.

Overall, our results indicate that more than half of the sites which experiment with
any sort of report-only policy never actually deploy one in enforcement mode. This
provides clear evidence that the complexity of the mechanism is too high for many
site operators. Notably though, we find that even when sites first deploy report-only
to restrict content and subsequently move to an enforced policy, only 60% (130/216)
keep their content restriction in place, whereas the remaining policies use CSP for the
additional use cases, i.e., TLS enforcement or framing control. This shows that such
sites could fail gracefully, in the sense of understanding that CSP for content restriction
would break their site without causing any outages to an enforced policy. Overall, only
29% of all sites that tried script content policies via report-only ended up enforcing
such a policy, again highlighting CSP’s complexity.

34



3.5. CSP FOR TLS ENFORCEMENT

3.4.3.4 Lasting Success in CSP Deployment

We now turn to sites with a long-standing track record of improving their CSP deploy-
ment. Three prime examples are pinterest.com, github.com, and flickr.com.
Pinterest first deployed a CSP-RO in February 2014 and tested it with an increasing
number of allowed hosts until July 2014. At that point, they deployed a policy with 15
allowed sites but still had to resort to unsafe-inline. The number of allowed sites
went up to 23 sites until May 2017, at which point they deployed nonces and strict-
dynamic (making modern browsers ignore both unsafe-inline and allowed hosts).
Notably, even though nonces and strict-dynamic remained in the policy until the
end of our experiment, the list of allowed hosts still grew over time. This, however, is
because legacy browsers would otherwise block content.

When Github first deployed CSP in November 2013, their allow-list contained 5
sites, including a CDN of their hosting provider Fastly and Google Analytics. In Octo-
ber 2014, however, Github stopped using Google Analytics and moved all their assets
to two of their own subdomains. By October 2015, those two subdomains were ex-
plicitly allowed; but since that time, Github consolidated all scripting resources on
assets-cdn.github.com, which has remained the lone entry in script-src. No-
tably, Github has never used unsafe-inline. This behavior is in line with Github’s
efforts for securing their service [131, 45].

Our last example, Flickr, first used CSP in enforcement mode in October 2015.
While they had a limited host allow-list, they also had to employ unsafe-inline.
The initial policy’s allowed sites grew to 12 by May 2017 at which point Flickr started
experimenting with nonces (in report-only mode). After enabling nonces in their en-
forcement policy in July 2017, they had to go back and forth with nonces three times
until finally, since August 2017, they have always deployed nonces. In March 2018,
Flickr first sent a report-only policy with strict-dynamic. This feature, however,
while still active in CSP-RO had not been ported to their enforced CSP by the end of
our analysis timeframe.

All three sites have shown a long-lasting commitment to improving security with
CSP. These sites, however, are objectively major players on the Web with the ability
to spend considerable time and resources on deploying appropriate policies. Even then,
while Github is an excellent example of how to deploy CSP in a fully secure fashion, the
other two generally positive examples have shown how complicated a deployment can
be, especially with regard to removing the need for unsafe-inline. What’s more, for
legacy compatibility (as, e.g., Safari and Edge don’t support strict-dynamic [80]),
even sites with modern features like strict-dynamic need to constantly update their
host-based allow-list, meaning CSP remains a long-term maintenance burden.

3.5 CSP for TLS Enforcement

The second use case of CSP is to ensure that no content is loaded via HTTP on HTTPS
sites. In this section, we first report on how the different means of achieving that goal
have evolved over the course of time, and then report specifically on how they were
successfully used for TLS migration.
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Figure 3.7: TLS Enforcement Strategies

3.5.1 Evolution of TLS Enforcement

Figure 3.7 reports on the trend of deployed CSPs for TLS enforcement. As we first
saw policies specifically tailored towards TLS enforcement in 2016, we omit the data
before 2016. We observe a steady increase in the usage of CSP for TLS enforcement
from December 2016 onwards. Most notably, the enforcement is not pushed forward by
exclusively allowing HTTPS sites, but rather by the upgrade-insecure-requests
directive. Full support for this CSP feature first landed in browsers around March 2015
(with Chrome 43 [138]), meaning site operators did not deploy the directive until about
1.5 years after it became available. The related directive to block all mixed content
has also increased in usage, but only sees adoption on a fraction of sites compared to
upgrade-insecure-requests. Notably, we found that 51 sites make use of both
directives in December 2018, even though in modern browsers block-all-mixed-
content in the presence of upgrade-insecure-requests is effectively a no-op
because the upgrade to HTTPS happens first. We find the decreasing number of sites
deploying CSP for TLS enforcement in December 2018 is not a downward trend; a brief
check for January 2019 shows that usage keeps increasing.

Figure 3.7 also compares the usage of a policy aimed at ensuring that no content can
be loaded over HTTP with the usage of the HTTP Strict Transport Security (HSTS)
header on those sites. The HSTS header is set to ensure that once a site has been visited
over HTTPS, it cannot be loaded over HTTP until a specified timeout occured [52]. In
contrast, the CSP directives ensure that any resources that are included by the original
site will be loaded over HTTPS. We observe that alongside the increasing deployment of
upgrade-insecure-requests, the fraction of sites using HSTS also rises. Notably,
of the 450 sites that enforced transport security with CSP in December 2018, 267 made
use of HSTS (59%). This uptake in HSTS adoption is a positive trend in line with the
more widespread use of HTTPS on the Web [103].

Considering the 347 of those sites enforcing TLS explicitly via upgrade-insecure-
requests, 194 made use of HSTS. This provides us with an interesting insight: the
upgrade-insecure-requests directive is deployed to ensure that once the con-
nection has been securely established, no resources or other URLs can be accidentally
loaded via HTTP. HSTS, in contrast, is used to ensure that the site cannot be loaded
via HTTP in the first place. While for a secure setup, both mechanisms are desir-
able, deploying HSTS comes with a loss of control for the operator. Once a client has
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observed the HSTS header, it will refuse to connect to the site via HTTP for a set
amount of time controlled by the received HSTS header. Given that activating HSTS
is no more complex than shipping upgrade-insecure-requests we posit that its
absence by half of the sites using the directive has more to do with the developers
being uncomfortable fully giving up HTTP than with issues regarding HSTS setup and
deployment.

3.5.2 Leveraging CSP for TLS Migration

While one of the goals of CSP is to enforce TLS, it also provides a meaningful aid for
developers when migrating to HTTPS. When mixed active content is detected by the
browser while visiting an HTTPS site, it is automatically blocked. However, upgrade-
insecure-requests instructs the browser to gracefully upgrade the connection,
rather than blocking all HTTP resources, which is particularly useful if an HTTPS site
still contains references to HTTP-based active content (like scripts). To understand
which sites leveraged this added benefit of CSP, for each of the 347 sites that deployed
upgrade-insecure-requests within the last month of our analysis, we determined
when each started to use the directive. Subsequently, we downloaded the snapshots for
those site’s main pages from the IA for 31 days after the first upgrade-insecure-
requests deployment.

Based on the snapshots we collected before upgrade-insecure-requests was
deployed, we find that 251 (72.3%) sites deployed the directive as part of a transition
to HTTPS. We base this observation on the archived URL, which indicates if the site
had been loaded via HTTPS by the Archive’s crawlers. For those sites, we parsed the
HTML of all collected snapshots once upgrade-insecure-requests was deployed
and extracted the URLs of external scripts, images, frames, and stylesheets. On 77
sites, we found that within a month from originally deploying upgrade-insecure-
requests, resources were still linked via HTTP. Among these sites, we found high-
profile pages such as wired.com, airasia.com, and aol.com. For those three sites,
we further investigated how much longer they linked to HTTP resources, downloading
all snapshots until December 31, 2018. For Air Asia and AOL, on the last day of our
experiment, there was still one HTTP resource on their main page, even though both
sites moved to HTTPS in 2017. Wired, which started deploying HTTPS in June 2016,
removed the last HTTP resource from the start page only in September 2017.

Overall, these results strongly indicate that upgrade-insecure-requests is a
useful mechanism and therefore widely used when a site migrates to HTTPS, high-
lighted by the fact that more than 70% of sites deploying upgrade-insecure-
requests for the first time did so as part of their move to HTTPS. In addition, 77
sites still made use of HTTP-linked resources after their move to HTTPS: upgrade-
insecure-requests allowed these sites to function correctly due to the graceful
upgrade to HTTPS.
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Figure 3.8: Evolution of X-Frame-Options and frame-ancestors

3.6 CSP for Framing Control

This section presents our historical findings for the third use case of CSP, i.e., framing
control. In particular, we investigate to what extent CSP’s frame-ancestors has
achieved its goal of deprecating the underspecified XFO header, by analyzing sites that
leverage its flexibility, sites that deploy both headers, and highlighting numerous cases
in which frame-ancestors would be required to achieve proper protection.

3.6.1 Evolution of CSP for Framing Control

As discussed in Section 2.3.1, XFO was not standardized before it was put into browsers,
leading to inconsistent enforcement, which in turn enabled double-framing attacks. This
is why CSP removes any ambiguity and checks all of a frame’s ancestors. The high-level
overview of our analysis on the use of CSP for framing control against XFO is shown
in Figure 3.8. We observe a steady increase in the usage of XFO until the end of our
analysis in December 2018. In that month, 3,253 sites made use of XFO, whereas only
409 used frame-ancestors. Moreover, out of the sites that use CSP for framing
control, 270 do so in combination with XFO. In the following, we first analyze to what
extent the flexibility of frame-ancestors is used by sites, i.e., we determine if the
same allow-list could also be expressed with XFO. Second, for those sites that make use
of both CSP and XFO for framing control, we analyze how the goals of the deployed
headers differ. Finally, we report on how many sites would have to move to CSP to
achieve universal protection.

3.6.1.1 Leveraging the Flexibility of CSP

The protection offered by XFO is coarse-grained both because of the small number
of configuration options, but also because of Google Chrome’s decision (shared by
all Chrome-based browsers) to not support the ALLOW-FROM directive. As part of
our analysis, we wanted to determine which sites needed the additional flexibility of-
fered by CSP’s frame-ancestors directive. We aggregate these by year, as this
shows a clearer trend compared to monthly analyses. The result is shown in Table 3.3.
We find that starting from 2015 when a meaningful number of sites adopted frame-
ancestors (shown as CSP-FA), at least 50% of them required the flexibility of CSP.
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Year Used CSP-FA Required CSP-FA

2014 13 3 (23%)
2015 60 32 (53%)
2016 133 92 (69%)
2017 260 182 (70%)
2018 460 321 (70%)

Table 3.3: Number of sites per year that set a frame-ancestors directive, as well as
number and fraction of sites that set policies not expressible by X-Frame-Options

For those, we find that the most common pattern is allowing all origins from the same
site (104 of 321 in 2018). Moreover, manual investigation of the remaining cases showed
that CSP was often used to allow-list sites from the same company (e.g., icloud.com
allows to be framed from *.icloud.com and *.apple.com). Hence, apart from
delivering different XFO headers depending on the Referer or Origin header, these sites
could not run uninhibited without frame-ancestors.

3.6.1.2 Combining XFO and CSP frame-ancestors

When an XFO header and a CSP frame-ancestors directive are both set, CSP-
compatible browsers are supposed to ignore XFO. However, in older browser versions,
XFO was the only mechanism to protect users from clickjacking. Based on this insight,
we compared the semantics of XFO and frame-ancestors (CSP-FA) in cases where
both were present, so as to understand how site operators dealt with different browsers.
Over the whole period of time, 394 Web sites made use of both XFO and frame-
ancestors at least once on the same day. Out of those, 290 did so inconsistently at
least once, i.e., XFO and CSP were not semantically equivalent (e.g., did not combine
SAMEORIGIN and self). On 70 sites, frame-ancestors was used to relax the
security boundary from the same origin to the same site, e.g., https://site.com
https://*.site.com, while the XFO header was set to SAMEORIGIN. 185 sites
used CSP (at least once) to relax the security boundary even further than the same
site, leveraging SAMEORIGIN for older browsers. Notably, these sites made the best of
a bad situation, given that browsers without support for frame-ancestors are at
least more secure than when XFO is absent. Only twice was CSP used to deploy a more
restrictive policy; specifically going from the invalid XFO value ALLOWALL (essentially
disabling XFO) to allowing the site and all of its subdomains. Here, the site operators
opted for an insecure solution for IE users, which is the only current browser that does
not support CSP framing control. Finally, 65 sites deployed an invalid XFO header
alongside CSP at least once, e.g., by using contradicting values like SAMEORIGIN,
DENY, whose semantics on legacy browsers is unclear.

3.6.1.3 Replacing XFO with CSP-FA

It is worth noting that even though the double-framing attack is mitigated in most
browsers since 2017 [86], using directives that are not supported by all browsers (e.g.,
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ALLOW-FROM for Chrome and Safari) can have dangerous consequences. For those,
setting an ALLOW-FROM directive in XFO results in the header being ignored completely
(failing insecurely [73]). We found that in December 2018, 116 sites in our dataset
made use of a non-universally supported directive, meaning the developers would have
to deploy CSP’s frame-ancestors to properly secure their sites. Notably, of the
3,253 sites that use XFO in December 2018, but not frame-ancestors, 362 already
deploy a CSP. Hence, even though these sites would merely have to add a CSP directive
to make use of a more fine-grained and consistent framing control, they still only resort
to the deprecated security header. While one could argue that this might originate
from old, outdated CSP policies, we find that 120 of these sites made use of upgrade-
insecure-requests: a directive that was only added after support for frame-
ancestors was enabled.

3.7 In-Depth Analysis of Deployed CSPs

We now attempt to shed light on the main reasons which may affect a successful
adoption of CSP. First, we focus on sites that gave up CSP and aim to attribute
this choice to its cause. Second, we highlight characteristics of sites which kept running
trivially insecure policies for content restriction, before finally investigating sites which
deployed effective policies.

3.7.1 Reasons for Giving Up on CSP

We start by investigating whether we can attribute changes in the deployed CSPs to
violations of said policies. Specifically, we focus on those sites which tried out CSP
in enforcement mode for at least one month, but gave up. We define “giving up” as
not having had a policy for a specific use case in all of December 2018. This way,
we lower the risk of incorrectly flagging a site for having given up just because it did
not have CSP for the last few days of 2018. For each domain, we investigate the final
policy snapshot for each use case, namely content restriction, TLS enforcement, and
framing control. Out aim is to understand why a given domain stopped using CSP in
a particular capacity.

3.7.1.1 Content Violations

CSP’s initial purpose was to restrict the inclusion of content into a page. Hence, our
first analysis focuses on sites that gave up this use case as per our earlier definition. For
each site, we determined the exact timeframe for which the last policy was deployed.
We then visited the start page on the last day of policy deployment, following all links to
the same site that were archived in the timeframe of the last deployed CSP. While all of
our previous analyses relied on downloading and statically parsing HTML documents,
for this experiment we relied on an instrumented Chrome browser. This allowed us to
not only determine if the resources statically linked in the document caused violations,
but also observe if dynamically-added content interfered with CSP. We limited the
analysis to the first level of links (in total, 3,347 URLs), as this already required us to
make an additional 421,684 requests through loaded scripts, images, fonts, etc.
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Overall, we found 63 domains which attempted content restriction, but eventually
gave up. For 15, we found violations of the deployed CSP through dynamic analysis.
When purely relying on the resources statically linked in the HTML document, only
7 sites indicated a violated CSP, which shows the benefits of the dynamic analysis.
Unfortunately, the Archive does not always manage to correctly rewrite URLs to in-
cluded resources, as shown by Lerner et al. [77]. Hence, it is likely that even the more
accurate dynamic analysis missed at least a few violations, merely due to the fact that
third-party code was not even executed. Of the 15 sites with violations, we analyzed
which party included the violating resources. On 9 pages, the violation was caused by
third-party code, whereas on 8 they were caused by first-party code, with an overlap
of two domains having both first- and third-party-caused violations.

On the remaining 48 sites for which we could not find violations, we performed
two analyses. First, since we cannot reason about violations that are deeply hidden
in the application, we performed a live experiment on September 24, 2019, in which
we crawled the live versions of all websites in our data set. For sites with a CSP on
the start page, we randomly sampled 10 same-site subpages and checked their CSPs.
In doing so, we found that of the 1,202 sites with CSP on the start page, 1,024 (85%)
appear to have a site-wide deployment of the same policy. Hence, assuming a similar
distribution of site-wide policy deployment for the archived versions, the abandoning
of site-wide policies may very well be due to violations on pages other than the ones we
crawled. Eventually, we resorted to manually checking the deployed policies to classify
them, so as to provide an educated guess about the reason for dropping CSP. For 25
sites, we found that their policies showed increasing numbers of third-party entries (e.g.,
milanoo.com and snai.it). For those, it is likely that the overhead of keeping a
allow-list of their dependencies was too burdensome for the operators. For another 9
sites, the policies were trivially insecure (e.g., raspberrypi.org) before they were
dropped. Here, we argue that deploying insecure CSPs can eventually lead to their
removal.

Summing up, though our archival analysis can only provide glimpses of the reasons
why site operators gave up CSP, we find that more than half of the sites for which we
could find violations had these caused by third parties. For the rest, even though we
could not find specific violations, a significant fraction had large allow-lists with tens of
third parties, indicating that reliance on third parties could well be the major reason
behind the sites’ decision to abandon CSP.

3.7.1.2 TLS Violations

To understand whether a TLS enforcement policy was violated, we need to check mul-
tiple angles. Trivially, if a site includes a resource via HTTP and has block-all-
mixed-content or default-src https://* (or equivalent for other resource
types), the CSP is violated. Contrary to this straightforward case, understanding if
upgrade-insecure-requests could have caused incompatibility is more involved,
as the Archive crawler does not honor upgrade-insecure-requests, i.e., would
not automatically archive the HTTPS variant of an upgradable resource. As a first
step, we assume that if a site was delivered over HTTPS, all resources from the same
host would also be available via HTTPS (e.g., the page was https://foo.com and
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the resource http://foo.com/bar.png). We do not look for violations in this case,
to minimize the risk of false positives. We then leverage the observation that widely-
used resources which are available over both protocols would have been loaded and
archived by the crawler at least once over a secure connection, as at least one site
would likely have included it via HTTPS. We exploit this by querying the CDX API
for the HTTPS variant of the URL we want to check for upgradability, limiting the
results to URLs archived within ±30 days of the HTTP resource. If we can find an
HTTPS variant, we mark the resource as upgradable. We then flag all remaining re-
sources, i.e., those with only HTTP snapshots in the IA, as non-upgradable. Though
this approach might not be a perfect solution, it is the best option considering the
Archive limitations. Hence, whenever a resource is non-upgradable, but is included in
a site with upgrade-insecure-requests, we say that the site’s policy is violated.

In total, 46 domains were labeled as having given up TLS enforcement. Similar
to content violations, we used Chrome to crawl the first level of links beginning from
the last snapshot with CSP. For 28 of the sites, we detected a non-upgradable resource
on the crawled pages. In addition, for 4 domains, TLS enforcement seemed to have
been dropped along with all other CSP directives, i.e., was collateral damage. For the
remaining 14 domains, we could not reach a definitive conclusion. However, given the
insights about site-wide deployment we discussed in the previous section, we plausibly
expect that many of these sites may have had at least one non-upgradable resource on
subpages we did not crawl.

3.7.1.3 Framing Control Violations

To understand if a given CSP would have caused a framing violation, we would have to
retroactively investigate which other sites framed a given page. As this is not feasible,
we instead resort to a heuristic to determine if the removal of frame-ancestors was
due to framing control issues. As we have seen before, frame-ancestors is often
used in combination with XFO. Hence, if a given site has encountered an issue related
to framing control, it would likely not only remove frame-ancestors, but also drop
or adjust XFO. Therefore, once a site has stopped using frame-ancestors, we check
its XFO status on that same day, as well as on the next snapshot. If a site has also
stopped using XFO, it is extremely likely that framing control in general proved to be
a problem.

In our dataset, 69 domains used CSP for framing control, but gave up on that use
case. Given our above classification, we found that for 42 sites, restricting framing
in general proved to be problematic, i.e., they dropped both frame-ancestors and
XFO at the same time. In addition, we found 7 sites which moved from explicitly
allowing a hostname through both CSP and XFO to only XFO SAMEORIGIN. These
cases are interesting, as they indicate that developers determined this to be sufficient
to constrain framing (as the flexibility of CSP was not necessary); notably showing the
lack of awareness of the dangers of double-framing attacks. In another 7 cases, frame-
ancestors was removed as collateral damage, i.e., XFO was used before and after
CSP’s removal. Surprisingly, we also observed two sites moving from exclusively using
frame-ancestors to XFO, indicating those operators were also not aware of the
drawbacks of XFO. Overall, we find that sites do not give up on frame-ancestors
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for reasons specific to CSP, but rather because they either find framing control too
cumbersome, or altogether unnecessary.

3.7.2 Investigating Insecure Policies

As our results have indicated, around 90% of sites that tried to restrict content did so
insecurely, e.g., by using unsafe-inline or allowing entire schemes. To understand
the reasons behind this, we specifically looked at the content of all pages which deployed
such insecure policies, and were never able to remove those unsafe keywords. We
discovered 467 websites exhibiting this behavior. For each of the websites, we checked
every snapshot from the Archive (totaling around 118K requests) for the presence of
inline scripts, event handlers, and the number of third parties in the page.

Overall, 455 sites (97%) had inline scripts on the start page at least once while
running an insecure policy. Moreover, 317 used event handlers (68%) and in the median,
each site relied on 3 third parties (with a maximum of 26 third parties for a single site).
It is worth noticing that all these numbers likely represent lower bounds, as we did
not crawl the sites any further. Nevertheless, a staggering 68% of sites relied on event
handlers, meaning they could not deploy a policy without unsafe-inline given
the current CSP specification. The results also highlight the difficulty that operators
face when trying to retrofit CSP; essentially, a policy that is tacked onto an existing
application is virtually always insecure.

3.7.3 Analyzing Secure Sites

To complement our previous analysis, we now focus on sites which managed to deploy
a secure policy, i.e., one without allowing entire schemes or using unsafe-inline.
While prior work [136] has indicated that additional risks may originate from allowing
origins with JSONP endpoints or allowing Flash to be hosted locally, we do not consider
these additional factors. In total, we found that 40 sites were able to deploy a meaning-
fully secure policy and still have that in operation at the end of our analysis timeframe.
Notably, another 7 at some point deployed a strict policy; however, they either added
the unsafe keywords again or entirely disabled CSP after mere days, indicating their
policy caused functionality issues. In particular, for 3 sites we found event handlers
on their start pages, even though their policy did not specify unsafe-inline, hence
definitely causing a CSP violation.

Of the 40 sites which can be counted as successfully having deployed CSP for con-
tent restriction, 2 actually run policies which interfere with scripts on their start pages
as of this writing. When looking at the other 38 cases, we discovered an interesting
trend. First, we found 16 adult websites, most of which deployed a strict policy without
attempting a more relaxed one before. Interestingly, they all had starting days of their
first CSP about 1-2 weeks apart (each). Analyzing the CSPs, we found that they were
all allowing the exact same sources. Looking at the start dates of CSP deployment,
we found that the operators of these sites first experimented on one site with remov-
ing the event handlers on the page, exclusively used to track users through Google
Analytics. Notably, this behavior of using inline event handlers was even advocated
for by Google [47]. Once they had successfully rolled out CSP for one website, they
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proceeded with others. Of the remaining 22 sites, only 3 had any event handlers on the
last snapshot before the deployment of the strict policy.

Overall, we find that of the few sites that were able to deploy a strict policy, virtu-
ally all either did not rely on event handlers (on their start page), or only used event
handlers for a single, easy-to-change use case (such as registering event handlers pro-
grammatically for off-site links). This stands in stark contrast to the results for the
sites which failed to deploy a secure CSP, where over two thirds used event handlers.

3.8 Framing Control Notification

In general, we observed that sites have a clear preference for XFO over frame-
ancestors. Moreover, we found cases where XFO was used even though the site
deployed directives only introduced after frame-ancestors, indicating the CSPs
were updated when framing control was already possible. To understand the reason
behind these findings, we decided to notify site operators running XFO to inform them
about the improved support that CSP’s frame-ancestors offers, and tried to dis-
cover their reasons for preferring XFO. To this end, we checked all live versions of
the sites in our dataset starting from May 31, 2019, for their deployed XFO and CSP
directives. On June 4, we notified all 2,699 sites that used XFO headers which either
had a syntactically incorrect header, used the non-universally-supported ALLOW-FROM
directive, or deployed SAMEORIGIN, making them prone to double-framing attacks in
some browsers. We did not notify the sites that also made use of CSP’s framing con-
trol, since supporting browsers ignore any XFO headers when frame-ancestors is
present. Given the insights from prior work on Web notifications [125], we chose to
send emails to generic aliases on each domain (info, security, webmaster) as well as
to the WHOIS contact (where available). The template of our email can be found in
Section A.1. We sent this email from one of the researchers’ regular email address, en-
suring that recipients could verify our identity. As expected, in line with prior work’s
findings [125], most emails bounced, either due to non-existing addresses or lack of
appropriate MX records.

3.8.1 Insights from Initial Responses

Notably though, we received responses from 117 sites which went beyond automated
confirmation emails, such as out-of-office responders or confirmation of a created ticket.
By categorizing these responses, we discovered that 62 operators claimed that they
would deploy frame-ancestors shortly. For a sample of anonymous answers we
received, please consult Section A.2. Among the responses, we also found 24 answers
which indicated that CSP was too complex to be deployed. In particular, they all
claimed to have attempted to deploy CSP for content restriction, but either deferred
it, or abandoned the attempt altogether. This is in line with the significant number
of sites we discovered in our archival analysis, which either stopped deploying CSP or
never moved from report-only to enforcement mode (see Section 3.4.3).

With all respondents, we exchanged further emails, indicating that CSP’s frame-
ancestors could be used without any of the other CSP functionality. In doing so, we
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received emails from 16 operators stating they were not aware of any issues related to
XFO, and 13 who explicitly noted they had not heard of CSP’s frame-ancestors
before. In contrast, 9 informed us in their initial response that they had already
deployed the CSP directive. From the notification date and onwards, we continued our
daily checks for both XFO and frame-ancestors. Overall, we observed an increase
from 511 sites deploying frame-ancestors before our notifications to 554 sites by
June 12, 2019. In particular, for the domains that answered to our initial message,
14 had taken action. Moreover, for the other sites, 4 belonged to a network of sites
for which we had received one response. For the remaining 25 sites that rolled out
frame-ancestors in the 8 days, we could only find two sites for which all our sent
emails bounced. Hence, we believe that most of the sites deployed frame-ancestors
as a result of our notification, demonstrating the ease of deployment within mere days.

Finally, in conversations with operators, several mentioned that they relied on ex-
ternal resources for security headers. In checking those resources, we found that they
all list XFO as the only defense against framing-based attacks, whereas they advertised
CSP as a means to mitigate XSS attacks [17, 40, 113, 3, 135]. Notably, even widely-used
sites like securityheaders.com consider XFO the only viable option for framing
control. Neither this service nor other resources like MDN [83] indicate that CSP can
be used for this purpose.

3.8.2 Follow-Up Survey

Given the diverse responses we obtained from the notified site operators, we decided to
run a more systematic survey, allowing us to ascertain the number of operators aware of
issues with XFO, CSP, and the fact that frame-ancestors could be used in isolation.
We made the survey as brief as possible and only sent it to operators who had previously
answered our initial email, with the explicit goal of soliciting a high fraction of responses
due to the limited effort necessary to answer the questions. In particular, as prior works
have shown, unsolicited surveys have minuscule response rates [125, 34], which is why
we decided to only reach out to operators to whom we had previously provided helpful
information. The full questionnaire is available in Section A.3. For our survey, until
June 12, 2019, we received a total of 39 answers. Out of those, two thirds (27) indicated
they were not aware of the inconsistencies around XFO. When asked about why they
had deployed XFO in the first place, the majority (20) said they had their own reasons
to restrict framing, indicating the awareness of framing-based attacks. Moreover, 31
(79%) respondents indicated that they had been aware of CSP before our notification;
yet only 12 of those claimed to have been aware of frame-ancestors beforehand. Of
those 12, 9 claimed to know that frame-ancestors can be used in isolation. These
reports suggest that while operators have a general understanding of CSP, they are not
aware of all its directives and their security benefits.

For all respondents that indicated to have known about CSP beforehand, 23 said
that their site would not work with a reasonably secure policy right away (2 claimed
yes, 6 did not know). On the flip side, 29/31 operators believed that CSP could be
a viable option to improve their site’s resilience to XSS attacks. Additionally, when
asked about the use case of TLS enforcement, 22 responded that they knew they could
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operate TLS enforcement in isolation before our notification. Hence, it appears that
while content restriction is clearly known as a goal of CSP, most sites are unable to
deploy it due to its complexity. Operators seemed to be more aware of the fact that TLS
can be enforced through CSP, but were not as knowledgeable about framing control.
This, combined with the insights from resources the respondents indicated (both in
the survey and the email conversations) leads us to conclude that resources on CSP
critically lack details about framing control.

In terms of tool support, 36/39 respondents answered that they had used the
browser console to debug and analyze their site. Hence, if there had been warnings
about inconsistencies (or even lack of support for certain directives), those operators
would likely have taken action. With respect to required tools, the respondents named
better tools to debug CSP errors (locally), improved collection and aggregation of
warnings caused in users’ browsers, and in general tools to suggest appropriate security
headers. As a result of these insights and separate discussions with Google engineers,
we filed a Chrome feature request to issue warnings about XFO; in particular to at least
warn operators about the unsupported ALLOW-FROM directive and suggest to deploy
frame-ancestors instead.

3.8.3 Limitations and Additional Survey

Our notification and subsequent survey cannot be considered an in-depth analysis due
to its unstructured nature (especially of the emails we received). We specifically set
up the survey to be brief, so as to achieve a high response rate. However, it is not
clear whether security-aware operators filled our survey. Even then, our results are
indicative of operators which did not use CSP for framing control, i.e., cannot be
considered experts in CSP. While we cannot account for these facts in our initial survey,
to partially alleviate the identified shortcomings, we ran our survey a second time
after having presented a talk about the evolution of CSP and its different use cases
at an OWASP conference. For this, we are confident that professionals with a Web
security background answered the questions. We received a total of 20 responses with
10/20 claiming prior knowledge of XFO’s shortcomings, and 19/20 being aware of CSP
beforehand. 18 of those believed CSP to be a viable option, of which 9 argued their site
would be able to run a secure policy. Regarding framing control, 13/19 said they already
knew about frame-ancestors, of which only 2 did not know that it was feasible to
deploy in isolation. In contrast, 9/19 were not aware that TLS enforcement could be
deployed in isolation, indicating that this is a little known use-case even among security
experts. Naturally, as for our initial survey, we cannot assess incorrect reporting from
operators. Nevertheless, as we stressed the anonymous nature of our survey, we expect
the results to be characteristic of the participants.

3.9 Discussion

We now summarize the evolution of CSP’s use cases, enabled by the unique vantage
point of the IA, and highlight gathered insights. We then discuss whether CSP is too
complex for site operators, and outline how it can become more useful going forward.
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3.9.1 Summary of CSP’s Use Cases

This section discusses how CSP for script content restriction has evolved, but more
importantly also how CSP is used more frequently for purposes other than its original
goal.

3.9.1.1 CSP for Script Content Restriction

Our work has confirmed a previously investigated fact [136, 137, 19, 21]: CSP is largely
failing as a defense mechanism for script content restriction. Through our longitudinal
analysis, we could show that although nonces and hashes have been available since
2014, they have not gained significant popularity over time. On the flip side, most
policies make use of unsafe-inline, which makes them trivially bypassable by XSS.
We argue that this is due to the complexity of deploying CSP in a secure fashion.
This is evidenced by the fact that more than half of the Web sites (251/449) which
experimented with report-only never switched to enforcement mode. It is also confirmed
by the notification responses, in which operators regularly stated they had experimented
with CSP, but felt it was incompatible with their application. This anecdotal evidence
is supported by our survey, in which only 2/30 respondents familiar with CSP claimed
their site could deploy it right away without breakage.

In terms of deploying limited allow-lists, we saw ample evidence in our case studies
as well as the general uptick in allowed sites that curating such allow-lists is challenging.
Moreover, our analysis of the allowed sites has indicated that operators are prone to add
typo domains, or leave unregistered domains in their allow-list, effectively undermining
the provided security guarantees (on approx. 13% of the sites with content-restricting
CSPs). Of the handful of sites which managed to actually deploy a restricted allow-list,
both the case studies and the feedback from our notification indicated that curating
such a list takes months or even years. Hence, the overall effort of setting up and
maintaining a secure policy seems unbearable to all but the biggest players.

3.9.1.2 CSP for TLS Enforcement

Previous studies mainly focussed on CSP as a means to restrict script content, treating
TLS enforcement and framing control as side notes. In particular, Weichselbaum et al.
[136] reported that only 3% of policies were used to enforce TLS, while Calzavara et al.
[21] reported that around 0.5% of the Top 1M used upgrade-insecure-requests,
without providing further details. Our longitudinal analysis showed that CSP is a very
valuable tool for TLS enforcement, being used by about one third of the Web sites that
deployed CSP. Most prominently, we observe that 347 sites make use of the upgrade-
insecure-requests directive to automatically upgrade HTTP resources to HTTPS.
We find that this feature is not only used for security purposes but when investigating
those sites that deployed upgrade-insecure-requests as part of their migration
to HTTPS, we found that 77 of 251 (31%) sites still link HTTP resources (on their start
page). Here, the added benefit of upgrade-insecure-requests enables browsers
to upgrade URLs before trying to load them, thereby avoiding mixed content warnings
or blockage. Given the increasing adoption of HTTPS [103], we argue that Web sites
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adopting an upgrade-insecure-requests policy would have an easy migration to
HTTPS, while at the same time not having the burden of making their applications
compliant with a strict content-restricting CSP (e.g., by removing event handlers). This
fact, however, according to our survey, is less than well-known.

3.9.1.3 CSP for Framing Control

In contrast to previous studies, our findings indicate that CSP is becoming increasingly
popular for framing control, now on par with content restriction (attempts) and TLS
enforcement. At the same time, the adoption of CSP for framing control is not nearly
as widespread as XFO: CSP with frame-ancestors is used in 409 Web sites, while
XFO is present on 3,253 Web sites as of December 2018. However, we observe that
existing Web sites are taking advantage of the additional flexibility on framing control
offered by CSP. In fact, out of the 460 sites using CSP for framing control in all of
2018, 321 sites (70%) used allow-lists not expressible by XFO, which suggests that
the additional expressiveness of CSP for clickjacking protection is useful in practical
cases. Moreover, our notifications showed that about two thirds of respondents were
not aware of the added benefit of frame-ancestors. While our notifications and
the feedback we have received suggest that this can be easily changed for operators we
could reach, the resources frequently used by the respondents lack crucial information
about this fact. As an example, the Mozilla Developer Network only explicitly mentions
“[..] certain types of attacks, including Cross Site Scripting (XSS) and data injection
attacks” and does not list framing control as a use case [83].

3.9.2 Complex Security Policy?

From both the evidence gathered from our longitudinal study as well as the insights
provided to us through the conversations in our notification, CSP for script content
restriction seems to be a failing mechanism. Even though modifications to CSP should
have made it easier for sites to adopt secure policies (e.g., allowing inline scripts through
nonces), we could not observe any significant uptake over time. Moreover, the responses
indicated that operators still shy away from CSP for content restriction due to its
perceived complexity.

One specific issue that CSP for content restriction has is the moving target it rep-
resents. As an example, google.com stopped using strict-dynamic on July 17th,
2018 even though Google engineers originally proposed the new directive [136]. Given
the insights shared by the Google team in a recent presentation [135], they have since
moved away from using strict-dynamic, favoring the explicit propagation of trust
by having nonced scripts attach the nonce whenever they add additional scripts. The
reasons are seemingly two-fold: first, support for strict-dynamic is not universal
(e.g., Safari does not support it). Second, using strict-dynamic yields any control
over which resources can be included, and opens up the potential for Script Gadget
attacks [75]. The loss of control over included resources cannot be addressed through a
nonce-based policy, given that any nonced script could just use the nonce to add code
from elsewhere. The solution, as also proposed by the Google engineers and at least
partially deployed as of now by Dropbox, is policy composition. There, a site sets two
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CSPs, where one carries a nonce and the other carries a allow-list. Since both have to be
fulfilled, only scripts that carry the nonce and are from explicitly allowed hosts can be
executed. Given these advances and frequent changes in suggested best practices, it is
understandable that operators feel overwhelmed by the complexity of the mechanism.

At the same time, while CSP appears to be failing as a means to mitigate XSS, it
has become a successful mechanism to enforce TLS, evidenced by the uptick of this use
case. Moreover, upgrade-insecure-requests allows sites to seamlessly migrate
to HTTPS by upgrading all URLs in-flight. Notably, out of the 10K sites in our
original dataset, 7,675 were archived via HTTPS. We downloaded the final snapshot
for each domain from the IA and found that of the 7,328 sites without upgrade-
insecure-requests, 435 had a least one HTTP-linked resource (6%). Given the
current implementation of browsers, these sites would at the very least trigger a mixed
content warning. This, in light of the results of our survey, in which 21/30 respondents
claimed to be aware of the isolated usage of TLS enforcement, shows that sites are
clearly not making use of CSP’s full potential.

Despite the growth of CSP for framing control, unfortunately, it still lags behind
the increasing adoption of XFO and more importantly, the complexity of CSP as such
seems to confuse operators. This is evidenced by the fact that in December 2018 we
observed 362 Web sites using CSP without frame-ancestors in combination with
XFO. For these Web sites, it would be trivial to use CSP to enforce the same protection,
but this is not done. Though this might be caused by outdated CSPs written before
framing control support was added, we observed an interesting phenomenon: a third of
the Web sites which deploy CSP without using frame-ancestors are making use of
upgrade-secure-requests, which was introduced to CSP only later. This implies
that CSP is often perceived as a complex mechanism to restrict content inclusion and
not as a meaningful mechanism to control framing, which can even be used without
any restriction on included content.

Overall, we find that CSP has grown from a mechanism aimed at restricting con-
tent to a multi-use measure to improve the security of Web applications. Our work
has highlighted that this shows success with respect to TLS enforcement and framing
control but also indicates that operators tend to shy away from deploying CSP, even
though it could in many cases easily benefit their security. We believe this is caused by
the ever-increasing complexity of the CSP mechanism. Apart from the already existing
directives, new features for content restriction, such as more involved mechanisms for
securing script code in attributes [97], are being added. In addition, with features such
as navigate-to [96] and the signaling for Trusted Types [142], CSP is becoming a
highly complex, generic Security Policy. This perceived complexity was also echoed in
the notification responses, with operators explicitly naming complexity as the hurdle
towards CSP deployment.

3.9.3 Quo Vadis, CSP?

Given our insights regarding CSP’s (in)ability to restrict script content and the reasons
we uncovered through our analysis, we propose three actionable steps which we believe
can help CSP’s adoption and the security of deployed policies.
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3.9.3.1 unsafe-nonced-elements

One major roadblock to CSP adoption is the inability to use event handlers. While
Chrome has recently added support for unsafe-hashed-attributes [95], this only
enables operators to make their hash-based allow-list apply to event handlers. In prac-
tice though, we observed up to 3,344 different event handlers on a single page. While
the median is only at around 5, any update to the event handlers (for all pages!) needs
to be propagated to the CSP header. Instead, we propose that CSP be extended to
allow for nonced elements, i.e., when an element carries a nonce, any event handlers are
permitted on that element but not its children. This would remove the need of always
resorting to unsafe-inline. This proposed changes comes with certain risks, namely
nonce-reuse attacks and injections inside nonced elements. The first is acknowledged
by the CSP standard authors, who proposed a fix as follows [104]: if a script tag is
nonced, it will only be executed if within all of its attributes, no additional opening
script tag can be found. This could be easily extended to check for other elements.
To understand the feasibility of the approach, for all of the 317 sites with unsafe-
inline which used event handlers (see Section 3.7.2) we checked each snapshot to
gauge whether an element with an event handler also contained markup in any of its
attributes. Assuming these were to be nonced, but contain markup, CSP would falsely
block the nonced element from executing the event handlers. This analysis showed
that not a single snapshot had such a case; meaning that our proposal would likely not
cause incompatibilities. Second, an attacker could abuse an injection inside a nonced
element to add additional event handlers. However, this is a significantly lower attack
surface than using unsafe-inline, for which an injection anywhere in the page is
sufficient to allow for an XSS attack. Hence, we argue that this is a viable option to
make CSP more usable, while not fully sacrificing security.

3.9.3.2 Incorporate CSP into Development Cycle

As our analysis has highlighted, many operators attempted to deploy CSP to an existing
application, only to either end up with a trivially bypassable policy or give up on
CSP altogether. With a few exceptions, deploying CSP retroactively to an existing
application does not appear to be a viable strategy. This is aggravated by the use
of third parties, which are known to dynamically add additional content. Hence, we
argue that CSP must be incorporated into the development cycle. In particular, we urge
IDE vendors to add checks for CSP incompatible code at development time by, e.g.,
warning developers to not add inline scripts or event handlers, but instead proposing to
externalize the desired functionality. In addition, as prior work has documented, third
parties often add (script) content dynamically. We could confirm that by attributing
over half the detected content violations to third parties. While prior work, such as
Calzavara et al. [20] and Weichselbaum et al. [136], have proposed means to address this
issue, we instead argue that third parties should be explicit about their dependencies
and their impact on CSP (e.g., if they only add scripts dynamically, thereby enabling
support for strict-dynamic). In this way, during development, a web developer
could decide to incorporate another similar vendor which provides the same service
with less CSP interference. This could also be incorporated into IDEs, which could
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automatically analyze included parties and warn the developers about roadblocks for
CSP.

3.9.3.3 Updated Informational Material for Developers

In light of our findings and survey responses, it appears that the complexity for script
content restriction gives CSP a bad reputation. Given that this is not counteracted by
widely used resources pointing out the easy-to-deploy use cases of TLS enforcement and
framing control, we advocate for clear communication of the individual goals in such
resources. Likewise, we argue that browser vendors are in a unique position to improve
upon this situation, by warning developers through the console about inconsistently
implemented mechanisms like X-Frame-Options, even providing a quick fix for the
issue by deploying CSP. To that end, we have started discussions with both the Chrome
and Firefox team on addressing this issue, with the hope of allowing more sites to
leverage the easy-to-use capabilities that CSP can offer for better security.

3.10 Summary

In this chapter, we conducted a longitudinal analysis of the deployment and evolution
of CSP from its beginning in early 2012 until the end of 2018. By leveraging the
Internet Archive to collect the historical headers for 10,000 highly ranked websites for
seven years, we identified that while CSP was initially meant as a mitigation for script
injection, it has evolved into a mechanism that is equally often used to enforce TLS
connections and control framing. Our longitudinal analysis allowed us to document the
struggles developers face when constructing a secure and functional policy for content
restriction, and highlighted that even secure CSPs are prone to bypasses through typos
and expired domains. Combined with the lack of adoption of new features such as
strict-dynamic, this leads us to conclude that the script-restricting parts of CSP
are unlikely to succeed in the future. Moreover, while CSP is increasingly deployed
for TLS enforcement and framing control, its adoption rate is still unsatisfactory. The
insights gathered from our survey indicate that CSP has earned a bad reputation due
to its complexity in content restriction, resulting in developers shying away from any
part of CSP. Even though the alternative use cases for CSP are easy to deploy, this bad
reputation, unless counteracted by tools, browser vendors, and informational material
alike, significantly hampers CSP’s ability to improve the Web’s security.

This chapter revealed details about CSP’s past and (at the time of conducting the
study) presence. We evaluated real-world policy configurations and their use cases to
confirm that CSPs out there are, and have always been, trivially bypassable (RQ1 ).
Also, our data and the survey indicate that having two different mechanisms that aim
to mitigate the same attack, is a recipe for inconsistent protections against clickjacking
as developers are not aware of the issue. The following chapters evaluate if all users of a
Web site get the same level of protection (RQ2 ) even in case of seemingly sane security
policies, or if inconsistencies are impeding the level of security (Chapter 4). Also, we
aim to find the root causes for the sheer omnipresent misconfiguration of CSPs (RQ3 )
by conducting a qualitative study involving real-world developers (Chapter 5).
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Contributions of the Auhtors

This chapter contains the results of The Security Lottery: Measuring Client-Side Web
Security Inconsistencies [P3] and A Tale of Two Headers: A Formal Analysis of In-
consistent Click-Jacking Protection on the Web [P2].

With the exception of Section 4.5, this chapter explains The Security Lottery [P3].
For this paper, Sebastian Roth, Ben Stock, and Stefano Calzavara conceived and de-
signed the study. Sebastian Roth and Ben Stock implemented the crawler to collect
and analysed the data. Sebastian Roth sent out the disclosure notifications to the af-
fected parties and open-sourced the crawling and analytics scripts [A4]. All authors
commented on the text and contributed to individual sections.

For Tale of Two Headers, explained in Section 4.5, Stefano Calzavara conceived
the study. Sebastian Roth, Ben Stock, and Stefano Calzavara designed the study. All
authors implemented the crawling and analytics scripts. Sebastian Roth implemented
the server-side proxy. Ben Stock, Michael Backes, and Stefano Calzavara supervised
the study. All authors commented on the text and contributed to individual sections.

4.1 Motivation

The results presented in Chapter 3 indicate that the presence of two different mech-
anisms to mitigate the same attack has the potential to cause inconsistencies. Those
inconsistencies between XFO and CSP’s frame-ancestors are (only) the tip of the ice-
berg, which is described in detail in Section 4.5. Unfortunately, the attack surface
against Web applications is very large and Web application security is a complicated
topic that requires actions against several different types of attackers, not only against
framing-based attacks.

The adoption of appropriate browser-side defenses to prevent or mitigate relevant
Web threats [124] has become a frequently used layer of defense. Examples of such
defenses which are quite popular on high-profile Web sites include cookie security at-
tributes, Content Security Policy (CSP), and HTTP Strict Transport Security (HSTS).
Several papers already studied (and criticized) the adoption of different client-side se-
curity mechanisms in the wild. For example, cookie security attributes turned out to
be underused by site operators [130, 18], CSP is most often configured incorrectly [136,
P1] and HSTS had a hard time getting traction even on top sites [79, 115]. However,
these studies were performed in a fixed and often unspecified measurement setting, e.g.,
measuring security using a single crawler running a specific browser on a machine with
a static IP.

In this chapter, we investigate the client-side security of top sites from a new angle.
Our analysis starts from the observation that client-side security inherently depends on
the correct communication of security policies from the server to the client. This seem-
ingly straightforward process might hide subtleties, which can affect Web application
security and its large-scale measurement [62]. In particular, we observe that there is no
guarantee that two clients accessing the same URL receive the same security policies.
For example, clients accessing the same Web application from different geolocations
might be served by different servers, due to the existence of several localized variants
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of the same site. Moreover, the same person might access the same Web application
through different User-Agents, e.g., Chrome on their desktop computer and Safari on
their iOS mobile device, while the same client might access the same Web application
using different forms of network access, e.g., through a VPN. Finally, even the same
HTTP request might receive different HTTP responses when it is sent multiple times
by the same client apparently under the very same conditions, due to the DNS system
resolving the same hostname to different IP addresses and the possible intervention of
load balancers and HTTP middleboxes [54].

Intuitively, we (and Web users) would like all the responses served across these
multiple legitimate scenarios to enforce the same security policies, otherwise, a security
lottery would take place: depending on specific client characteristics, different levels
of Web application security would be provided to users. We refer to this class of
potential security flaws as inconsistencies. Unfortunately, our research shows that
multiple client characteristics might inadvertently affect Web application security in
the wild, thus leaving users of prominent services unprotected against both Web and
network attacks.

In this chapter, we measure the prevalence of inconsistencies in the security poli-
cies of top sites across different client characteristics and we quantify their security
implications:

1. We propose a data collection methodology tailored to our analysis and we build
a dataset of 13,626,145 responses collected from the 10,000 highest-ranking sites
available through HTTPS (based on Tranco [102]), while testing a number of
different client characteristics. Our tests include the use of different User-Agents,
network access methods, and language settings.

2. We introduce general definitions of consistency for client-side security mechanisms
and we instantiate them to a set of popular defenses available in modern browsers.
Our definitions are semantics-based, i.e., they only capture inconsistencies with
a potential security import, rather than superficial syntactic differences or other
types of false positives coming from the different enforcement models of different
security mechanisms.

3. We apply our definitions to the collected data and we report on the key findings.
Our measurement shows that a significant fraction of the analyzed Web sites
suffer from different types of client-side security inconsistencies. Remarkably, the
majority of them can be attributed to specific client characteristics, which identify
weak spots in the security configuration, while the others can be attributed to
non-deterministic factors, which may nevertheless be exploited by attackers.

4. We present a comprehensive analysis of inconsistencies in framing control policies.
We proposed different recommendations against those for Web developers and
browser vendors, as well as a server-side proxy designed to retrofit security to
existing Web applications.
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Factor Set of tests Tests

User-Agent Windows client UA header: Chrome 96, Firefox 95, Edge 96, Opera 82
Linux client UA header: Chrome 96, Firefox 95, Opera 82
macOS client UA header: Chrome 96, Firefox 95, Edge 96, Opera 82, Safari 15.2
Android client UA header: Chrome 96, Firefox 95, Opera 96
iOS client UA header: Chrome 96, Firefox 95, Edge 86, Safari 15.2

Vantage Point VPN service Servers from hidemyass.com - 1 per country (218 countries)
Onion network Standard Onion client - 1 end-node per country (49 countries)

Client Configuration Language Accept-Language header: en, es, cn, ru, de

Table 4.1: Selected client conditions that might influence the received security
headers

4.2 Data Collection Framework

Here, we discuss which types of factors we investigate to understand differences in
client-side Web security guarantees. We then outline which information we use to
collect data for each of the factors and we discuss our key design choices.

4.2.1 Scope of the Study

We assume the use of a modern client implementing all the security mechanisms in
Section 2.3 (except Trusted Types), e.g., the latest versions of Chrome and Firefox as
of January 1, 2022. We thus exclude the use of legacy clients, because it is clear that this
discouraged practice may severely downgrade Web application security, e.g., because
CSP is not supported by the browser. We also assume that modern clients correctly
implement all the security mechanisms according to their official specifications, i.e., if
two different clients receive the same security headers, we assume they enforce the same
intended level of protection. Finding bugs in the implementation of client-side security
mechanisms is an orthogonal issue [114].

We identify three factors which users may legitimately manipulate as part of their
everyday Web browsing experience, without realizing that they can unintendedly affect
Web application security:

1. User-Agent: users have different tastes and might prefer different browsers, e.g.,
due to the privacy policies they implement by default. Moreover, the same user
might use different browsers on different devices, possibly running different oper-
ating systems. As long as users make use of a modern, up-to-date browser, they
likely do not expect Web application security to be affected, yet it is possible
that a site sets up different configurations based on the value of the User-Agent
header of the incoming requests for generic reasons. This practice, known as User-
Agent sniffing, might leave some User-Agents unprotected against specific classes
of attacks. Note that we use the terms browser and User-Agent interchangeably.

2. Vantage Point: users may access a given site from different geographical vantage
points. Users may not expect this practice to affect Web application security, yet
it is possible that the geolocation has an impact on dynamically loaded advertise-
ment, which in turn might require a different server-side configuration of CSP.
Further, the exit nodes of the Onion network are publicly known, hence a con-
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nection through the Onion network might result in a different response, possibly
introducing a difference in security.

3. Client Configuration: some configuration settings might influence the way clients
interact with Web sites. For example, the language of the client is normally
advertised in the Accept-Language header and the site might use this information
to redirect the client to a localized homepage served by a different host, possibly
with a different security configuration. We only focus on this aspect (language)
in our analysis for simplicity.

Table 4.1 identifies for each factor a set of possible tests, which can be easily simu-
lated in a black-box fashion by a Web crawler. We identify the respective User-Agent
strings for the browsers in the table via a public online repository [140].

4.2.2 Challenges and Design Choices

The discussion in the previous section does not directly yield a dataset construction
procedure, due to a couple of problems we have to deal with. The first is related to the
sheer number of requests to send to each Web site, because it is possible that security
policies are influenced by a combination of multiple factors. To mitigate this, we only
cover a subset of all the possible combinations by testing different factors in isolation:

1. User-Agent: when testing different User-Agents, we access the network through a
local machine with a German IP, and we do not set the Accept-Language header.

2. Vantage Point: when testing different vantage points, we set the User-Agent
header to Chrome 96 for Windows and we do not set the Accept-Language header.
We use hidemyass VPN1 to access the sites from 218 countries and additional 49
different countries through for the Onion network.

3. Client Configuration: when testing different language settings, we access the
network through a local machine with a German IP address and we set the User-
Agent header to Chrome 96 for Windows.

This way, we can measure meaningful intra-factor variations in the level of Web
application security, e.g., by estimating the impact of the choice of a specific User-Agent
when the other two factors are fixed.

The second problem is related to non-determinism, because the same request does
not necessarily always receive the same response. For example, DNS might resolve
the same hostname to different IP addresses at different times and load balancers can
forward requests for the same resource to different backend servers to improve perfor-
mance. In either case, there is no guarantee that all the hosts which might process
the request enforce the same security policies. Security inconsistencies introduced by
non-deterministic factors are in the scope of our study, yet they complicate the attri-
bution of security flaws. To exemplify the problem, assume that Chrome appears to
be less protected than Firefox because it did not receive any security headers at all.
In this case, the User-Agent itself may not be the actual cause of insecurity because
non-determinism may have played a role on the received response, e.g., the DNS res-
olution accidentally redirected Chrome to a poorly configured host. To mitigate this
problem, each Web site is visited multiple times (five in our collection) for each test and

1https://www.hidemyass.com/
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all the corresponding responses are stored, which allows us to detect non-deterministic
security inconsistencies.

Our crawler takes as input a set of Factors, a set of Tests associated to each factor,
a set of URLs to access and a number of visits n to perform for each test. For each
factor f ∈ Factors and each associated test t ∈ Tests[f ], each u ∈ URLs is visited n
times setting f to t. For the finally reached URL (after potential redirects), we resolve
its origin o and save the response r in the dataset at the entry D[u, t], enriched with
the origin o. We refer to o as the end origin of the response r.

4.3 Formalizing Inconsistencies

Before presenting the formal details, we present an overview of our analysis methodol-
ogy to explain its design and subtleties. A simple notion of consistent security might
be as follows: all the responses collected from the same URL must enforce the same
security policies. However, this intuitive definition of consistency is too strong to be
useful in practice.

The first point we make is that requiring the same security policies for all the
collected responses is overly restrictive. As a matter of fact, two security policies can
be syntactically different, yet provide an equivalent level of protection. For example,
two syntactically different CSPs may both effectively mitigate the dangers of XSS. As
another example, a host may configure HSTS with tiny fluctuations in the value of
the max-age attribute which do not play any role in terms of practical security. To
abstract from syntactic differences without significant security implications, we define
equivalence relations ∼m for each security mechanism m under study.

A second challenge of our analysis is related to legitimately different policies we
might get for different client characteristics: for example, a Web site which activates
CSP for desktop clients might redirect mobile clients to a static error page which
requires no protection and thus enforces no CSP. We do not want to consider these
cases as security inconsistencies, because the Web pages are different and legitimately
require a different level of protection. To filter out false positives, we define compatibility
relations ▷◁m for each security mechanism m under study: incompatible responses
cannot lead to security inconsistencies, because m protects different objects. For the
sake of generality, our framework supports different compatibility relations for different
security mechanisms, because they may be based on different enforcement models, e.g.,
CSP operates at the page level, while HSTS operates at the host level. In our Web
measurement, however, we use the same compatibility definition ▷◁m for each security
mechanism m, because we want to be conservative in our findings and avoid over-
reporting (see Section 4.3.2).

Finally, we observe that not all inconsistencies are equal in terms of real-world
exploitation. Inconsistencies enabled by non-deterministic factors can be exploited by
attackers who are determined (or lucky) enough to eventually stumble into them, while
inconsistencies enabled by deterministic factors like the adoption of a specific User-
Agent identify weak spots that knowledgeable attackers can more easily take advantage
of. We discriminate these two cases by having two different definitions of consistency,
as detailed below.
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4.3.1 Consistency

For any security mechanism m, we assume a reflexive and transitive relation r ≲m r′

reading as: response r configures m no more securely than response r′. We write
r ∼m r′ if and only if r configures m equivalently to r′, i.e., we have that both r ≲m r′

and r′ ≲m r hold. Finally, we assume reflexive and symmetric relations r ▷◁m r′ reading
as: response r and r′ are compatible with respect to the security mechanism m. We
later instantiate ≲m and ▷◁m to the different security mechanisms considered in our
study to capture specific security properties.

The first definition we introduce is called intra-test consistency. It requires all com-
patible responses collected within the same test to provide an equivalent level of protec-
tion. Violations to this consistency property are likely attributed to non-deterministic
factors, because all the observable client conditions are the same across the received
responses.
Definition 1 (Intra-Test Consistency). The page with URL u satisfies intra-test con-
sistency for the security mechanism m within the test t if and only if for all responses
r ∈ D[u, t] and r′ ∈ D[u, t] such that r ▷◁m r′ we have r ∼m r′.

The second definition of consistency which we introduce is called inter-test con-
sistency. It requires all compatible responses collected within two different tests (de-
fined for the same factor) to provide an equivalent level of protection. We require the
two tests to satisfy intra-test consistency to rule out inconsistencies enabled by non-
deterministic factors, e.g., occasionally missing headers on responses collected within
the same test. This way, inter-test inconsistencies can be realistically attributed to
specific client characteristics.
Definition 2 (Inter-Test Consistency). The page with URL u satisfies inter-test con-
sistency for the security mechanism m across the tests t, t′, defined for the same factor
and satisfying intra-test consistency, if and only if for all responses r ∈ D[u, t] and
r′ ∈ D[u, t′] such that r ▷◁m r′ we have r ∼m r′.

We exemplify the definitions at work on a few toy examples. Let us focus on
just two tests for the User-Agent factor for simplicity: Chrome 96 for Windows and
Firefox 95 for Linux. Assume that pages are visited five times for each test and may
be classified in two security levels: low (L) and high (H) with L ≲m H. Consider now
the example observations in Table 4.2, that we assume to be all pairwise compatible.
The first row models a straightforward scenario where both intra-test consistency and
inter-test consistency are satisfied. The second row models a scenario where intra-
test consistency does not hold, due to the L observation for Chrome, hence inter-test
consistency is undefined: this case captures a non-deterministic security downgrade.
The third row represents a scenario where intra-test consistency is satisfied, but inter-
test consistency is not: this captures a deterministic security downgrade occurring when
the page is visited using Firefox.

4.3.2 Compatibility Relations

Arguably, certain security mechanisms such as CSP are not applicable to an origin per
se, but rather to the content provided under a given URL. However, not every URL
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Chrome 96 Firefox 95
H, H, H, H, H H, H, H, H, H
H, H, H, L, H H, H, H, H, H
H, H, H, H, H L, L, L, L, L

Table 4.2: Example observations upon crawling

returns the same content on each load, in particular in the presence of errors or block
pages. For such pages, which might originate from CDNs like Cloudflare, enforcing
the CSP of the original page might not make sense. Hence, when we encounter an
inconsistency, we need to ensure that this inconsistency is not due to different content
being delivered. We leverage a similarity score on Web pages for this task.

Page Similarity Based on preliminary analyses of the collected data, our page simi-
larity score takes into account four factors: first, we rely on JavaScript as a proxy to
implement the pages’ functionality. Therefore we created sets of the hosts from which
scripts are loaded and computed their Jaccard similarity. By manually investigating
the script data that we got from analyzing our responses, we encountered cases where
the Jaccard similarity of the script hosts was 1, e.g., because the page only used inline
scripts. Notably, the number of inline scripts differed significantly; hence, we also con-
sider the number of scripts for each host as a second factor for our similarity. However,
these first two factors do not work well for pages that only rely on a few scripts or do
not even use JavaScript on their main page. To lower the impact of this, we manually
investigated those pages, and we observed that the title of the page often changes in
case of errors, e.g., showing just domain.com. We, therefore, compute the longest
common substring between the titles of two documents and compute the ratio of this
overlap as our third factor. In addition to that, we observed that the response size
also differed between error/block pages and pages with content. Thus we define the
content size of the response as our fourth factor by assigning a value between 0 and
1 (indicating the relative sizes). We finally combine our factors by computing their
average. The resulting value (between 0 and 1) is then used to determine the similarity
between two pages. We consider two pages as similar if their similarity score is at least
0.8.

To find the page similarity threshold, we computed the similarity score of pages
where we have seen syntactically different security headers after normalization (e.g.,
normalizing CSP nonces or report URLs). Specifically, for each such case, we took the
largest response as the baseline (under the assumption that content pages are larger
than error pages). Then, we computed the similarity to this baseline for each of the
other responses. Figure 4.1 shows the result of this, both as a histogram (bucket size
0.05), as well as the CDF for the entirety of comparisons. We find that the peak of
the histogram is in the right-most bucket, i.e., similarity above 0.95. In the CDF,
we observe that the similarity for most of the cases in that bucket is even beyond
0.98. Moreover, the shallow slope of the CDF around 0.8 leads to taking this value
as a candidate for a threshold to distinguish between content and error/block pages.
Notably, error or block pages are just one instance of a potential difference. Our notion
generally discerns dissimilar pages, which could require differing levels of protection, so

61



CHAPTER 4. INCONSISTENT DEPLOYMENT OF SECURITY HEADERS IN-THE-WILD

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Similarity Score

0

500

1000

1500

2000

2500

# 
Oc

cu
rre

nc
es

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 

of
 a

ll 
Oc

cu
rre

nc
es

Figure 4.1: Histogram and CDF of the similarity values for syntactically different
header values.

as to avoid reasoning about security inconsistencies when these are in fact legitimate.
To assess the effectiveness of the threshold, we performed analyses to identify false

negatives (similar pages marked as dissimilar) and false positives (dissimilar pages
marked as similar). To confirm that pages below our threshold are indeed no content
pages, we spawned Chromium instances to render those pages below the threshold
and take screenshots (after 5s) for further analysis. We then manually looked at those
1,939 cases: for the very vast majority, the pages were clearly error pages or block pages
showing information about robot detection / CAPTCHAs. Among the edge cases that
were close to the threshold, we found one site where the page skeleton looked like the
actual content pages for the domain, but without any content. We confirmed this case
as a true negative, because the page was under the threshold and seemed different in
terms of the content.

Another case that was close to the threshold was a domain that randomly showed
a slightly different page that additionally included items in sale. Therefore their title
changed from Mercado Libre Argentina to Hot Sale 2021, and due to the additional
content, the file size increased, bringing the similarity down to 0.78. Nevertheless, both
pages belonged to the same application and were not empty, error, or block pages, and
hence we consider this case as a false negative. Notably, we only faced this one false
negative in our dataset.

In order to also assess the number of false positives, we investigated the similarity
of pages above the threshold and below 0.95. For the remaining cases beyond 0.95, we
are confident to have no error pages in there, given the significant overlap through all
four metrics. By looking at those positive (similar) pages, we have seen one single false
positive. This case had a similarity score of 0.82, although one HTML file was clearly
an error page. This happened due to the error page also including the scripts from
the content page. In addition, the pages were similar in size, yet different in the title
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(Hosting Platform of Choice vs 404 Error | cPanel). Because this is clearly an error
page, we manually removed this error case from our results. Except for this one case,
we could not spot any false positives in the pages above 0.8.

Our experiments show that the chosen threshold is appropriate to reason about
inconsistencies, because it might suffer from occasional false negatives, but produced
just one false positive and one false negative in our experiments (see Table 4.3). This
means that we might lose some inconsistencies, but we are confident not to incorrectly
report on inconsistencies where there are, in fact, none (because the content to be
protected is different). We now use this page similarity notion, to define the following
compatibility relations:

Compatibility Given two responses r and r′, we let r ▷◁m r′ if and only if the end
origins of r and r′ are the same and, additionally, the page similarity between r and r′

reaches the stipulated threshold. Note that we use the same compatibility relation for
each security mechanism m. This may be overly conservative for host-based security
mechanisms like HSTS, because different pages under the same host may enforce dif-
ferent HSTS policies for the same object (host), hence one may legitimately disregard
page similarity in the compatibility relation for HSTS. However, we empirically noticed
that this weaker compatibility notion leads to over-reporting inconsistencies for HSTS.
In particular, for sites hosted by CDNs, depending on our vantage point or frequency of
requests, we received block or CAPTCHA pages. For Cloudflare, these lacked HSTS.
However, it can be argued that this has no significant security implications. In particu-
lar, if the site normally uses HSTS, the browser will likely be aware that communication
should be performed over HTTPS and the lack of the HSTS header does not deactivate
HSTS. For this reason, we prefer to be conservative in our analysis and reuse the same
compatibility relation (with page similarity) for all the security mechanisms to avoid
potential over-reporting.

4.3.3 Equivalence Relations

We now define the ≲m relations (“no more secure than”) for the different security
mechanisms considered in this chapter, leading to corresponding security equivalence
relations ∼m. These definitions are motivated by the semantics of the security mecha-
nisms under study.

Cookie Security Attributes Defining inconsistencies for cookie security attributes is
straightforward, because the HttpOnly and Secure attributes require no configuration,
while the SameSite attribute has three different configurations with increasing level of
protection: None, Lax, Strict.

False Negatives False Positives

1/1,939 (0.05%) 1/93 (1.08%)

Table 4.3: False positive & false negative rates for similarity
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We identify cookies with the triple including their name, Domain and Path, as
mandated by the corresponding RFC [6]. Formally, we let r ≲ck r′ if and only if all
cookies c occurring in both r and r′ satisfy the following conditions:

1. If c is marked as HttpOnly in r, then c is marked as HttpOnly also in r′.
2. If c is marked as Secure in r, then c is marked as Secure also in r′.
3. If c is marked as SameSite in r, then c is marked as SameSite also in r′ with at

least the same level of protection, e.g., if the SameSite attribute of c is set to Lax
in r, then it must be set to Lax or Strict in r′.

Content Security Policy Defining inconsistencies for CSP is more complicated, since
it is an expressive security mechanism, which supports many use cases and can thus be
analyzed from multiple angles. To address this, we build multiple equivalence relations
for CSP to cover different use cases [P1].

A first use case for CSP is XSS mitigation, which we study by leveraging a definition
of safe CSP for CSP Level 3 [22]. This definition ensures that the CSP puts some
meaningful restrictions against XSS: policies which do not comply with the definition
can be trivially bypassed by an attacker upon any content injection.

Definition 3 (Safe CSP [22]). A CSP is safe if and only if it contains a script-src
directive (or a default-src directive in its absence) bound to a value v satisfying both
the following conditions:

1. v does not contain the ’unsafe-inline’ source-expression, unless nonces or hashes
are also present in v.

2. v does not contain the wildcard * or any full scheme from the following: http:,
https:, data:, unless ’strict-dynamic’ is also present in v.

We let r ≲csp−xss r′ if and only if, whenever r sets a safe CSP, then also r′ sets a
safe CSP.

The second use case for CSP is framing control. To define an equivalence relation
for this use case, we divide responses in four classes based on the enforced framing
restrictions:

1. Framing is allowed on all origins.
2. Cross-origin framing is allowed only on selected origins.
3. Only same-origin framing is allowed.
4. Framing is not allowed on any origin.
We then let r ≲csp−frm r′ if and only if the class of r is less than or equal to the

class of r′.
The last use case for CSP is TLS enforcement. Its equivalence relation is defined

by having r ≲csp−tls r′ if and only if, whenever r activates upgrade-insecure-requests
or block-all-mixed-content, then also r′ does it. In other words, when r forbids the use
of HTTP, then also r′ enforces the same security restriction.

X-Frame-Options We just focus on SAMEORIGIN and DENY as possible values of
XFO, since ALLOW-FROM is unsupported by the modern clients considered in the
present study. This implies that responses can be categorized in just three different
classes:
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1. Framing is allowed on all origins.
2. Only same-origin framing is allowed.
3. Framing is not allowed on any origin.
We then let r ≲xfo r′ if and only if the class of r is less than or equal to the class

of r′.

Strict Transport Security Defining inconsistencies for HSTS requires some care, due
to possible differences in the max-age attribute which arguably have little to no impact
in terms of real-world security. Our choice is discriminating four classes of responses,
as follows:

1. Responses with max-age set to 0, thus forcing HSTS deactivation for their host.
2. Responses without any HSTS header. These responses do not activate HSTS,

but do not forcibly deactivate it.
3. Responses with max-age enforcing protection for less than one year. This prac-

tice can be useful, but does not comply with the minimal required duration for
inclusion in the HSTS preload list.

4. Responses with max-age enforcing protection for at least one year, qualifying the
host for preload list inclusion.

We then let r ≲hsts r′ iff all the following conditions hold:
1. The class of r is less than or equal to the class of r′.
2. If r sets the includeSubDomains directive, so does r′.
3. If r sets the preload directive, then also r′ sets it.

Handling Multiple Headers Careful readers may have noticed that the above def-
initions assume responses to contain at most one header of each type, yet real-world
responses might violate this assumption because headers can be set multiple times.
Our dataset still contains at most a single header of each type, because the Requests
library used in our data collection folds multiple headers into a single header set to a
comma-separated concatenation of their values. For handling of multiple headers, we
follow specifications where possible:

• If the same cookie (identified by name, Domain and Path) is set in multiple
headers, the last one should be prioritized [6]. We thus normalize the collected
headers to reflect this behavior within a single header.

• If a response contains multiple CSP headers, all of them should be enforced at
the same time [139]. We thus normalize the collected headers by replacing them
with a single header enforcing the conjunction of all CSPs.

• If a response contains multiple XFO headers, the correct browser behavior is unde-
fined in the specification. Since prior research showed that different clients handle
multiple XFO headers quite differently [P2], we check for syntactic differences if
multiple values are present.

• If a response contains multiple HSTS headers, the first one should be priori-
tized [53]. We thus clean our data to keep just the first HSTS header.
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4.4 Measuring Inconsistencies

We use the data collection framework in Section 4.2 to collect data from live Web
sites and apply the formalization in Section 4.3 to measure inconsistencies. The fo-
cus of our study is to understand inconsistencies caused by the servers of highly
ranked sites. To ensure that any data we collect could not be tainted through net-
work proxies or firewalls, we decided to only include sites which were served through
HTTPS. Specifically, we visited each of the sites in the Tranco list [102] through
https://site.com and https://www.site.com, disregarding those which were
not accessible through HTTPS. Further, for each final URL, we determined if this was
still under the same eTLD+1 as the originally visited one and not a localized ver-
sion, e.g., https://site.eu, so as to avoid selecting a site which is actually not
highly ranked. As a result, this process yields the list of the 10,000 highest-ranked sites
available over HTTPS.

Based on this methodology, we arrived at the set of top 10,000 HTTPS sites based
on the Tranco list of January 1, 20222. We ran our first crawl, on which we report
in the following, from January 2 through January 4, 2022. To ensure that our mea-
surement was not merely a single measurement which is not repeatable, we ran three
more confirmation crawls (January 6, 10, and 14, 2022). For each crawl, we collected
between 13,626,145 and 13,742,760 responses. While we focus on the results of the first
crawl, the appendix lists the overlap in findings between the first and the respective
follow-up crawls (Section B.2), which highlights that our results can be confirmed over
multiple crawls within 12 days. To ease the confirmation and reproducibility of our
findings we made our crawling and analytics pipeline publicly available [A4].

In the following, we outline the key results supported by the analysis of the collected
data. We first present a high-level overview of the findings and then discuss security
inconsistencies introduced by different factors, as well as the security implications of
the inconsistencies.

4.4.1 Overview of the Findings

Usage Statistics To give an overview of the deployed security mechanisms in the wild,
we computed the number of sites which activated a specific security mechanism at least
once across our data collection. Table 4.4 shows the resulting usage statistics for each of
the selected security mechanisms in the second column. Note that this is an aggregate
over all different tests, i.e., it combines checks for different User-Agents, vantage points
and languages. In total, 8,174 sites made use of any of the security mechanisms. The
most widely used mechanism was X-Frame-Options with 5,692 occurrences. HSTS was
used on 4,562 sites, whereas at least one cookie was configured with any of the security
attributes on 3,876 sites. The vast majority of these cases stem from the usage of
HttpOnly or Secure attributes, with only 788 sites making use of SameSite cookies. The
least widely used header was Content-Security-Policy with 1,998 sites which deployed
it. Notably, the vast majority of sites used CSP for framing control rather than for its
original purpose of XSS mitigation [121]. It is worth noting that for XSS mitigation, we

2Available at https://tranco-list.eu/list/XVWN
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only count those cases which have a policy that is not trivial to bypass (Definition 3).
Since our definition of inconsistency revolves around such policies, any site that did not
have any meaningful XSS mitigation is not counted. Note that the number of sites for
the subclasses of CSP and cookie security do not add to the overall usage, since a site
may, e.g., configure a CSP that both mitigates XSS and enforces TLS.

Detected Inconsistencies In total we detected some inconsistency in 321 sites. Ta-
ble 4.4 further shows three groups of columns: intra-test inconsistent, inter-test incon-
sistent, and only inter-test inconsistent sites. For the final column group, we removed
all those sites for which we found an intra-test inconsistency for the given mechanism.
This is to ensure that a site exhibiting a non-deterministic behavior is not accidentally
flagged as suffering from inter-test inconsistencies, as required by our formal definition.
Hence, the last column is a confident lower bound for the number of sites affected by
inter-test inconsistencies. Overall, our crawl detected 127 sites which have some type
of intra-test inconsistency and from 194 to 267 sites with inter-test inconsistencies. No-
tably, our confirmation crawls exhibited two interesting phenomena, i.e., the instability
of intra-test inconsistencies and the stability of inter-test inconsistencies. Considering
the union of all sites that suffered from intra-test inconsistencies at least once in our
crawls, we found a total of 210 sites (Appendix Table 7.1). This likely means that
the actual dangers of non-deterministic intra-test inconsistencies is more severe than
what we could measure through our five observations. Conversely, the confirmation
crawls showed that the number of sites with inter-test inconsistencies is stable over
time (Appendix Table 7.2).

4.4.2 Intra-Test Inconsistencies

Intra-test inconsistencies come with particular security risks, as an attacker can abuse
these to attack users opportunistically. In the following, we present case studies of
intra-test inconsistencies for every mechanism and explain the corresponding security
implications.

Cookie Security If a cookie may non-deterministically lack the HttpOnly attribute,
an attacker could steal the cookie via malicious JavaScript by performing an XSS at-
tack multiple times until access to the cookie succeeds. One of the three sites where
we encountered this kind of inconsistency sets its authentication cookie named auth-
cookie_loggedIn sometimes with and sometimes without the HttpOnly attribute.

A non-deterministically missing Secure attribute, as it happened on eight sites,
allows a network attacker to steal the corresponding cookie. One site for example non-
deterministically set their csrfToken cookie as Secure or not. Thus, attackers can steal
this cookie and perform CSRF attacks because they know the anti-CSRF token. A
similar issue happens on another site, for which the Secure attribute is inconsistently
set on the session identifier JSESSIONID, thus potentially leading to session hijacking.

In seven sites, we found intra-test inconsistent deployments of the SameSite at-
tribute, which is sometimes set to Lax and sometimes missing. This behavior might
not be a problem for modern browsers, because Chromium-based browsers default to
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Lax in case of a missing SameSite attribute. However, all Safari-based browsers still
face the problem that cross-site attacks such as CSRF are possible due to this mis-
configuration. One site, for example, sometimes set their ASP.NET_SessionId cookie
with SameSite attribute set to Lax, and sometimes the SameSite attribute was not set,
which enables an attacker to perform attacks such as CSRF.

Content Security Policy Overall, we found three sites for which XSS mitigation was
enforced non-deterministically. For example, the responses from one site sometimes
did not have any CSP for clients from Germany or Australia. Thus, an attacker can
succeed by performing the attack multiple times until one of the responses does not
carry a CSP.

For framing control, we found a total of 16 inconsistent sites across our tests. Note
that the majority of inconsistencies were detected in the VPN crawl. This is because,
in the VPN crawl, we test from 218 vantage point (compared to 49 tests for Onion, and
20 and five respectively, for User-Agent and language), which increases the chances of
eventually getting an inconsistent response. For example, a site non-deterministically
deployed frame-ancestors or not, hence an attacker can perform the attack multiple
times (or load the target in multiple iframes) until the attack succeeds.

Finally, TLS was inconsistently enforced on 22 sites. For example, one site in our
dataset deploys a CSP that aims to enforce TLS. However, irrespective of the factors
that we checked, this CSP is not present in some responses. Nowadays, Chromium-
based browsers auto-upgrade mixed content [27], whereas Firefox and Safari merely
block it. Therefore, the security implications of missing TLS enforcement is limited.
However, inconsistencies in this feature can lead to functionality issues. In 2020, Roth
et al. [P1] showed that 77/251 sites which use CSP for TLS enforcement have HTTP re-
sources linked from their front page. Thus, these inconsistencies might lead to essential
resources being blocked in Firefox and Safari.

X-Frame-Options The most common intra-test inconsistency for X-Frame-Options
was alternating between a deployed header and not deploying XFO at all (41 sites). This
behavior enables an attacker to attempt the attack multiple times (or load the target
in multiple iframes) until it succeeds. For the other nine cases, the Web applications
alternate between a valid XFO header and a malformed one (e.g. sometimes prepending
a : to its XFO header) or one using an unsupported feature such as ALLOW-FROM.
As with omitting the header, an attacker can opportunistically exploit this.

Strict Transport Security Of the 38 sites with intra-test inconsistencies on HSTS,
only six are present in the preload list, for which the issue has no implication on
the client’s security. For 23 sites the inconsistency is related to headers which are
sometimes entirely omitted. For those not preloaded, this is problematic since the non-
deterministic absence of the header might prolong the time frame where an attack is
possible due to the trust-on-first-use problem of HSTS.

While inconsistencies for preloaded sites have no direct impact on a client, they
nevertheless pose a threat. In our dataset seven hosts deploy an HSTS header sometimes
with, sometimes without the preload directive. Here an attacker can remove the affected
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site from the HSTS preload list by asking for removal of the site [30]. If the HSTS
preload crawler hits a case without preload being present in the HSTS header, the site
will be removed without the operator even noticing it. According to our tests with an
author-owned preloaded site, there seems to be no rate-limiting in place to stop such
abuse.

An intra-test inconsistent deployment of the HSTS includeSubdomains directive
can also lead to problems, as it happened for four sites. For example, a payment
service provider showed this behavior on several islands (e.g., Falkland Islands, Antigua
and Barbuda, Bahamas, and Bermuda). Here an attacker could, in case of a lacking
includeSubDomains directive, abuse the subdomains to attack the main domain (e.g.,
using subdomains to inject cookies into the top-level domain).

The most critical inconsistency in terms of exploitability is a host that randomly
alternates between enabled and disabled HSTS, or has multiple enabled and disabled
HSTS headers in random order (only the first entry is processed). Three sites have this
kind of intra-test inconsistency. They, for example, alternate between max-age=0,
max-age=15768001 and max-age=15768001. Since the HSTS specification man-
dates adhering to the first observed HSTS header, the first case always deactivates
HSTS. Similarly, one site non-deterministically disabled HSTS in certain (mostly east-
ern Europe) countries such as Lithuania, Moldova, Romania, and Ukraine. In both
cases, an attacker could perform the attack several times until it succeeds because
HSTS has been disabled in the last response. We also identified one site that alternate
between a short max-age (<= 5 min) and a properly configured header. In those cases,
the site allows an attacker to abuse the HSTS TOFU problem at a higher frequency be-
cause if the last HSTS header received was a short one, the next visit after a short time
period (e.g., 5 min) will be vulnerable again, because the browser no longer enforces
TLS.

Reasons for Intra-Test Inconsistencies In order to find the cause behind the intra-
test inconsistencies, we took a closer look into the gathered data from the responses,
such as peer IP addresses or cache headers. Here we noticed that indeed some of the
different response headers were caused by caching, because all misconfigured header
values also had a different cache-control header (18 sites) or a different x-cache
header (five sites). For two sites, our data indicate that depending on the geolocation,
we were redirected to a different end URL (under the same origin), which then causes
the inconsistency. In the case of five sites, we were also able to attribute the incon-
sistency to certain peer IP addresses, which indicates that misconfigured origin servers
might be the underlying problem. This hypothesis is also supported by one answer
from the notification campaign, which indicates that “one of the origin servers seems
to be configured differently”. However, here we observed that this inconsistency does
not depend on the peer IP address, which indicated that what we see as the peer IP
might only be a load balancer, sending our request to different origin servers on a back
channel. Notably, the probability of getting a different origin server is much higher
in the case of different geolocations. This, together with the fact that the number of
crawls for VPN and onion are much higher than in the case of user-agent and language
settings, explains the comparatively higher number of intra-test inconsistencies.
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One inconsistency that is standing out, due to its prevalence in our dataset, was
the inconsistent setting of SameSite for the ASP.NET_SessionId cookie. According to
Microsoft, the framework does not support “.NET versions lower than 4.7.2 for writing
the same-site cookie attribute”[4]. Thus, if some of the origin servers have a new
version of .NET while others still use the old version, the cookie would show exactly
the behavior we observed, which is why we believe this to be a contributing factor.

4.4.3 Inter-Test Inconsistencies

This section sheds light on the inter-test inconsistencies, i.e., for a single deterministic
factor such as the User-Agent, our crawls revealed different security guarantees (see
middle column of Table 4.4).

Cookie Security The vast majority of sites (144/150) that have inter-test inconsis-
tencies for cookie security are those that deterministically gave back cookies without
the Secure attribute to some User-Agents. Notably, the cause of this inconsistency is in
most cases (130), special handling for the User-Agent for Firefox on iOS. For example,
one site set their sid cookie Secure for all clients except Firefox on iOS, leaving those
clients unprotected against network attackers. Other sites gave non-Secure cookies to a
group of User-Agents that visited their page, another site for Safari-based clients, one
for mobile clients, and another one for all iOS clients.

Two sites inconsistently deployed HttpOnly cookies for their clients. In one case, a
site delivered CM_SESSIONID without HttpOnly attribute to clients that use Firefox
on iOS. In another case a site only gave out HttpOnly cookies to non-Safari-based
clients. In both cases, attackers can steal or manipulate cookies via an XSS attack and
eventually perform state-changing actions on behalf of the user.

For inconsistencies of the SameSite attribute, we found 14 cases where sites either
send cookies with the attribute or do not set it at all. One site, for example, only gives
SameSite cookies if the Accept-Language header of the client is not set to English. As
mentioned in the intra-test inconsistencies, this behavior might not be a problem in
Chromium-based browsers, because those browsers default to Lax in case of a miss-
ing SameSite attribute. However, all Safari-based browsers and Firefox still face the
problem that cross-site attacks such as CSRF are possible due to this misconfiguration.

Content Security Policy XSS mitigation as the original use-case of CSP also faced
inter-test inconsistencies in ten cases. In general, if a site’s CSP alternates between
a safe policy and a trivially bypassable one based on some client characteristics, an
attacker can specifically target the affected user population. Due to the (at the time
of writing) porous support for the ’strict-dynamic’ source-expression, some sites had
inter-test inconsistencies that only deployed a CSP with this source-expression to clients
that actually support it. Numerous sites removed ’strict-dynamic’ from their CSP for
all Safari (and thus all iOS) clients. The problem here is that https: is also present in
the policy, i.e., clients without support for ’strict-dynamic’ would allow script inclusion
from any HTTPS host, which is insecure. Removing ’strict-dynamic’ is a bad practice,
because the CSP design is backward compatible and unknown source-expressions are
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just ignored by browsers. Importantly, Safari recently announced support for ’strict-
dynamic’ and already supports it in its technology preview [24], hence dropping ’strict-
dynamic’ may unduly leave Safari users unprotected. Other sites dropped their entire
CSP for XSS mitigation for all Safari clients, while again others did not send a CSP at
all for Android clients. One Web site only deployed XSS mitigation to some countries
(like Russia, Spain, or Sweden), but did not deploy CSP for others (e.g., US, Pakistan,
or South Africa).

CSP for framing control is also used inter-test inconsistently across different clients
(two sites) and geolocations (18 sites). For example, one site did not send a CSP con-
trolling framing via frame-ancestors to all iOS clients, leaving those users unprotected
against framing-based attacks.

Like for the case of intra-test inconsistent deployment of CSP for TLS enforcement,
the inter-test inconsistent deployment of this CSP feature does not have a security
impact but a functionality impact. However, while it is a randomly occurring problem
for the intra-test inconsistencies, the problem deterministically occurs for parts of the
user-base on 17 sites.

X-Frame-Options An inter-test inconsistent deployment of X-Frame-Options exposes
a part of the user base to framing-based attacks. In seven out of 37 cases, this type
of inconsistency occurred due to specific operating systems or browsers are getting
different configurations. Some sites deployed XFO for desktop clients, but mobile
browsers got no protection at all, making them vulnerable to framing-based attacks. In
other cases specific browsers were excluded from the protection: one site did not deploy
XFO for Opera clients, while another excluded Firefox browsers. This behavior was
also present against users of a specific operating system, as some sites only gave XFO
to non-iOS clients. In addition to that, 13 sites (Onion) and 29 sites (VPN) decided to
exclude specific geolocations from the protection against framing based-attacks.

Strict Transport Security In case of inter-test inconsistencies in HSTS it makes no
difference if HSTS is disabled (max-age=0) or not present because the affected clients/-
countries will deterministically get the same insecure configuration. While cross-checking
the inconsistent sites with the HSTS preload list, we observed that only five out of the
35 inter-inconsistent sites are actually preloaded.

There are eight Web sites that handle browsers differently. For example, one site
only gives enabled HSTS to desktop clients but not to mobile clients, another does not
send HSTS to Firefox and Safari-based clients, which exposes parts of the user-base
to possible network attacks. In addition to that, 30 sites deploy HSTS inconsistently
depending on the geolocation. Another site deploys a proper HSTS for all countries
except for clients from India, which do not get an HSTS header. Also, six sites have
the inter-test inconsistent deployment of HSTS with/without the includeSubdomains
directive. One site, for example, deployed an HSTS header with the directive for clients
from some countries such as Hungary or Ireland, but not for others such as Germany
or Japan. Here an attacker could abuse subdomains to attack the main domain (e.g.,
using subdomains to inject cookies into the parent domain).
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Reasons for Inter-Test Inconsistencies Inter-test inconsistencies are naturally at-
tributed to deterministic factors, however a few observations are interesting. In many
cases flawed User-Agent parsing or wrong handling of the parsed browser informa-
tion seem to be a problem. Surprisingly many inter-test inconsistencies happened
specifically for Firefox on iOS. Therefore we tested this User-Agent in different parsing
libraries. All of them showed Firefox with version 40 (released August 11, 2015) as out-
put for our Firefox iOS User-Agent string. In the case of Firefox, the version numbers
for the iOS client are different from other operating systems, possibly due to the fact
Firefox is based on WebKit instead of Gecko on iOS, so the User-Agent is incorrectly
recognized as a legacy client. Notably, the Firefox iOS version number recently jumped
from 40.2 to 96.0 on January 18, 2022 [87].

Not only the version number of Firefox, but also the iOS version number present in
the User-Agent was the reason for some of the inconsistencies. The User-Agent from
an online repository used in our crawler had an old iOS version number (12.1, October
2018). However, with the same Firefox and WebKit version, but a newer iOS version
(15.2, December 2021), these inconsistencies were not present, although they are still
concerning for a specific user population. Indeed, users may not have control of their
OS version due to hardware restrictions.

Also, as mentioned in Section 4.4.3, some sites deliver a CSP without the ’strict-
dynamic’ expression to Safari-based clients. During our notification campaign, a videotele-
phony service confirmed that they are doing this because those clients lack support for
this CSP feature. In either case, none of those special handling for browsers is actually
necessary; unknown cookie attributes and unknown CSP source-expressions are simply
ignored by browsers. Furthermore if certain features are going to be supported in fu-
ture release (like ’strict-dynamic’ in Safari’s current Technology Preview), the special
handling for certain browsers might cause security issues because the browser switches
are not updated or removed. This highlights that having browser switches for security
mechanisms is a dangerous practice, at least if the provided level of security differs.

In case of network related inter-test inconsistencies, possible reasons are similar to
those from the intra-test inconsistencies. If misconfigured origin servers are only used
for requests from specific countries, or if CDNs cache responses for certain countries
longer than for others, we can observe inconsistent deployment of security mechanisms
depending on the geolocation. We detected three sites with different peer IP adresses
that seem to cause the issue, ten sites with different cache-control header, and
two with different x-cache. For example, based on the x-cache header sent by one
site we hypothesize that for certain countries like France they have a cache in place,
because all requests from there produced a cache hit, while other requests for example
from Australia only produces cache errors/misses.

4.4.4 Disclosure

Our findings imply that certain users of the sites under test might be at risk; either
because an attacker can target them based on certain properties (e.g., their User-
Agent) or can opportunistically exploit the non-determinism of the server. To enable
site operators to fix the inconsistencies, but also to gain knowledge about the root cause
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of the inconsistencies, we attempted to disclose the issues to all sites using security@
and webmaster@ aliases. The email that we sent contained information about our
institutions and us, as well as a detailed description of the individual inconsistent
headers and how they were collected. Also, we informed site operators that we are
interested in the reason for the inconsistency such that we can better help others that
face similar issues and offered them our assistance and further information.

In total, we sent out 256 emails (see Appendix B.1 for the template). For 197
domains, we received an email delivery failed message. Notably, we sent the email to
both aliases (security@ and webmaster@), so we might have received a failure message,
although one of the two addresses received our email. Research has shown that scaling
up notifications is a known problem [126, 125], also due to the low availability of
generic aliases [120]. In addition to that, only 25 out of the 256 domains hosted a
security.txt, with 7 of those setting their contact email to security@. Thus, we
only got 21 answers that were more than just an automatic response message. Seven
operators asked us to provide more details, like the IP addresses of the servers that
we connected to. One of those even asked us to provide a demo video that shows the
inconsistency problem. In all cases, we were happy to provide them with more detailed
data in order to ease their search for the reason behind the issue. Additional seven
claimed that they can confirm the issue and will get right back to us, which nearly
none of them have done so far. The other seven answered us that they confirmed and
fixed the issue or explained to us that this is out of their control, e.g., because they are
not self-hosting their sites in some countries.

Many of those that answered instructed us to contact HackerOne to report vulnera-
bilities. Notably, our message did not include the word “vulnerability” or similar words
like “exploit”. Therefore, we answered those emails that we were not interested in any
bug bounty, because we only wanted to help and raise attention for the inconsistent
behavior such that all clients can be secured consistently. Notably, none of the notified
parties answered that this issue is not present in their option, which further strength-
ens our confidence in the results. The previous Reasons for subsections have outlined
some of the answers from our disclosure campaign that we used to reason about the
inconsistencies in some of the case studies. To increase remediation rates, we tested the
problematic sites again in May 2022. Here, we found that 184 still contained the issues
we attempted to disclose before. By manually investigating those sites, we were able
to find 105 email addresses. In this second round, only four of the manually curated
email addresses responded with a failure message.

4.5 Special Case: XFO vs. CSP frame-ancestors

This section explains our work ”A Tale of Two Headers: A Formal Analysis of Incon-
sistent Click-Jacking Protection on the Web” [P2], that evaluates the inconsistencies
between X-Frame-Options and CSPs frame-ancestors.
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4.5.1 Motivation

Clickjacking protection on the modern Web can be enforced via the X-Frame-Options
header or the frame-ancestors directive of the Content Security Policy. Even if each
of those mechanisms individually is deployed consistently according to our definition in
Section 4.3, the delegation of the protection to the client opens room for inconsistencies
in the security guarantees offered to the users of different Web browsers. In particular,
inconsistencies might arise due to the lack of support for the different levels of CSP as
well as the different implementations of the underspecified XFO header. This section
presents our analysis of the problem of inconsistencies in framing control policies across
different browsers. We implement an automated policy analyzer to assess the state of
click-jacking protection on the Web. Based on those results we then propose recom-
mendations for Web developers and browser vendors to mitigate this issue. And we also
designed and implemented a server-side proxy to retrofit security in Web applications
such that every client gets the same level of protection against framing-based attacks.

4.5.2 Analyzing Framing Control Policies

Our colleagues Stefano Calzavara and Alvise Rabitti from Università Ca’Foscari Venezia
created a formal semantics of every framing control policy on top of their CoreCSP
framework, which provides a simple denotational semantics for the content restriction
fragment of CSP [21]. The formal definitions, that check if a framing policy (either via
XFO, via CSP frame-ancestors, or using both), is a Consistent, Security-Oriented, or
Compatibility-Oriented Policy.

In essence, a Consistent Policy is a policy where all browsers have the same behavior.
A Security-Oriented policy is one, where all legacy browsers enforce at least the level
of security that modern browsers, while in a Compatibility-Oriented policy where all
modern browsers enforce at least the level of security of legacy browsers. Thus, a
policy where a site only deploys frame-ancestors https://*.example.com, is
inconsistent, as it restricts framing in modern, but does not in legacy browsers. At
the same time, it is compatibility-oriented as legacy browsers and does not restrict
framing. If, however, at the same time XFO DENY is deployed, it would no longer be
compatibility, but rather a security-oriented policy.

Inconsistent policies which are neither security-oriented nor compatibility-oriented
are generally hard to justify as correct because they fall in one of the following cases: (1)
two legacy browsers interpret the policy differently; (2) two modern browsers interpret
the policy differently; (3) none of the above is true, yet legacy browsers and modern
browsers give two incomparable interpretations of the same policy. We refer to such
policies as unduly inconsistent.

Based on the formal definitions we designed and implemented FrameCheck, an
automated analyzer of framing control policies of real-world Web sites. Given a URL
to analyze, FrameCheck produces a security report on its state of click-jacking pro-
tection. Our implementation supports the 10, at that time, most popular browsers
according to data from Can I Use.3 For each browser, we downloaded the latest avail-

3https://caniuse.com
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Browser Name Type Version Market

Chrome Desktop 76 ∼ 23%
Chrome for Android Mobile 76 ∼ 35%
Edge Desktop 18 ∼ 2%
Firefox Desktop 69 ∼ 4%
Internet Explorer Desktop 11 ∼ 2%
Opera Mini Mobile 44.1 ∼ 1%
Safari Desktop 12.3 ∼ 2%
Safari for iOS Mobile 12.3 ∼ 10%
Samsung Internet Mobile 10.1 ∼ 3%
UC Browser Mobile 12.12 ∼ 3%

Table 4.5: Browsers considered in the present study

able version with at least 1% of market share4 and we reverse-engineered its semantics
through an exhaustive set of test cases (see Section 4.5.2.1). The set of browsers under
study is shown in Table 4.5: only two browsers do not support framing control via
CSP, i.e., Internet Explorer and Opera Mini, which we deem as a legacy. Note that,
according to Can I Use, Opera Mini does not support any mechanism for framing con-
trol. However, we installed the latest available version from the Google Play Store,
and, according to our tests, Opera Mini, in fact, supports XFO.

When given a URL, FrameCheckaccesses this Web site, once for each browser in
our dataset by sending the corresponding User-Agent, and then produces a security
report on policy consistency based on our formal definitions.

4.5.2.1 Test Cases for FRAMECHECK

In total, we developed more than 40 test cases to reconstruct the semantics of the
underspecified XFO header in our set of browsers. We designed the test cases through
a careful analysis of the XFO specification [108] and a preliminary inspection of a large
set of framing control policies collected in the wild by a simple crawler. Hence, the test
cases are not esoteric examples of problems that might possibly arise in theory, but
rather represent classes of potentially ambiguous policies that we observed in practice.
We report below on the most interesting findings.

Support for ALLOW-FROM: Only 3 out of 10 browsers actually support the
XFO ALLOW-FROM directive: Edge, Firefox5, and Internet Explorer. This means
that every Web page that deploys ALLOW-FROM, but not a corresponding CSP,
implements inconsistent protection against click-jacking and leaves (at least) 7 browsers
unprotected. We also tested what happens when the ALLOW-FROM directive is not
followed by a valid serialized origin, as mandated by the XFO specification. In all
the cases we tested, the browser implementations were conservative and denied any
framing. There is one exception to this rule, though: Edge also supports the use of
ALLOW-FROM with a hostname instead of an origin as a value.

4Note that Chrome derivates like Brave also show their UA as Chrome, leading to a slight over-
approximation of Chrome usage.

5During our project, Firefox dropped support in version 70
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Browser CSP Allow-From Multi-Header Parsing Double Framing

Chrome ✓ ✗ ✓ ✓ ✓

Chrome for Android ✓ ✗ ✓ ✓ ✓

Edge ✓ ✓ ✗ ✗ ✗

Firefox ✓ ✓ ✓ ✓ ✓

Internet Explorer ✗ ✓ ✗ ✗ ✗

Opera Mini ✗ ✗ ✗ ✗ ✓

Safari ✓ ✗ ✓ ✓ ✓

Safari for iOS ✓ ✗ ✓ ✓ ✓

Samsung Internet ✓ ✗ ✓ ✓ ✓

UC Browser ✓ ✗ ✓ ✓ ✗

Table 4.6: Framing control semantics of popular browsers

Support for Multiple Headers: When the same Web page sends multiple XFO
headers, 7 out of 10 browsers simultaneously enforce all of them. Unfortunately, we
observed that Edge, Internet Explorer and Opera Mini only enforce the first header
and discard the other ones, which might lead to inconsistencies if the first one is laxer
than the others.

Parsing of Header Values: According to the HTTP specification [44], it must
be possible to replace multiple headers with the same name with a single header that
includes a comma-separated list of the header values. Therefore, the standard implies
that browsers must be able to handle XFO values like SAMEORIGIN, DENY correctly,
and prevent framing. However, we discovered unexpected behaviors in 3 browsers:
Edge, Internet Explorer and Opera Mini, as they do not split the header value on
commas and rather parse the list as a single value, which is interpreted as a non-existing
directive, i.e., not enforcing any framing restriction. This also happens when the same
directive is repeated multiple times, such as in the case of DENY, DENY. This behavior
has a particularly subtle implication on the interpretation of the XFO header that tries
to allow multiple third parties (ALLOW-FROM <orig1>, <orig2>). Firefox parses
this policy as two separate headers, one allowing framing from the first origin and the
other one is an incorrect value that does not enforce any framing restriction: as a result,
framing is only allowed from the first origin. Internet Explorer, instead, blocks every
form of framing, since ALLOW-FROM is not set to a serialized origin. Notably, none
of these two interpretations matches what the Web developer likely had in mind, i.e.,
allowing two different origins.

Double Framing Protection: Finally, we observed that most browsers imple-
ment XFO in a way that is robust against double-framing attacks. This shows that
the current implementation has improved since the original XFO specification when all
browsers used to perform origin checks against the top-level browsing context alone.
However, still 3 browsers are susceptible to double framing attacks: Edge, Internet
Explorer, and UC Browser. Notably, this part of the work does not consider inconsis-
tencies arising from double framing, because otherwise even trivial XFO policies like
SAMEORIGIN would be considered inconsistent and bias our study.
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4.5.2.2 Summary of FRAMECHECK

The summary of our analysis is shown in Table 4.6. Based on our extensive set of test
cases, we identified 6 different semantics across the 10 browsers we considered, without
counting the unexpected support for hostnames in ALLOW-FROM implemented in
Edge: this means that the room for inconsistent click-jacking protection is significant.
Out of the 10 tested browsers, Firefox 69 is the only one that faithfully implements the
specifications we checked, while Opera Mini offers little to no protection against click-
jacking because it does not implement CSP, it does not support ALLOW-FROM, and
even basic XFO directives like SAMEORIGIN and DENY can be incorrectly enforced
due to other quirks in the treatment of HTTP headers.

4.5.3 FRAMECHECK Results

In this section, we report on a large-scale analysis performed in the wild with our policy
analyzer. Our analysis shows that many popular Web sites implement inconsistent
protection against click-jacking and sheds light on the root causes of this potential
security problem.

4.5.3.1 Data Collection

To assess inconsistencies at scale, we decided to analyze the top 10,000 sites from the
Tranco list of October 29, 2019. As we did not only want to check the start pages
in a static manner, we instead used a Chrome-based crawler to visit the start pages,
collect all links on them, and follow those links up to at most 500 items per site. (Here,
“site” refers to the registrable domain name or eTLD+1.) In doing so, we did not only
collect the headers delivered with the pages we visited, but also those of all iframes
on the visited pages. This way, we were able to (partially) account for sites where
only specific pages are protected against framing-based attacks. We then relied on
Python’s Requests library to collect the XFO and CSP headers of those URLs once
for each of the different user-agent strings considered in our study. Notably, Requests
folds multiple response headers with the same name into a comma-separated list, as
specified in RFC 7230 [44]. As discussed in Section 4.5.2.1, browsers do not necessarily
follow this specification, but might rather consume each header separately, meaning that
Requests’ approach to parsing headers would not properly account for that. Therefore,
in case we detect a comma in either the XFO or CSP header, we fall back to curl,
which outputs the headers line-by-line. To further improve resiliency against possible
crawling errors, we filtered out from the dataset all the pages where we observed that
at least one user agent was not receiving the XFO or CSP headers, while other user
agents were. Though this might lose some inconsistencies, e.g., when CSP headers are
not actually sent to legacy browsers, we preferred to be conservative and work on more
reliable data rather than risking to unduly exacerbate the number of inconsistencies
in the wild. In particular, we found that several pages did not consistently deliver the
same XFO and/or CSP headers, even when visited multiple times with the same User-
Agent string. Finally, we performed a de-duplication of the collected framing control
policies by removing all the duplicate combinations of XFO and CSP policies collected
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Defense Number of Policies Inconsistencies

Just XFO 15,415 (88%) 290 (16%)
Just CSP 714 (4%) 705 (39%)

XFO + CSP 1,484 (8%) 805 (45%)

Table 4.7: Defenses used in the collected policies

within the same origin, to avoid biasing the dataset construction towards origins with
hundreds of pages all using the same policy.

At the end of the data collection process, we visited 989,875 URLs overall. Of those,
369,606 URLs (37%) across 5,835 sites carried either an XFO or CSP header aimed at
framing control. After the dataset cleaning and the de-duplication process explained
above, we were left with 17,613 framing control policies. Table 4.7 shows the adoption
of the different security mechanisms in the different policies. We observe that XFO is
still the most widespread defense mechanism against click-jacking in the wild by far,
yet around 12% of the collected policies make use of CSP.

4.5.3.2 Inconsistent Policies

Overall, we identified 1,800 policies from 1,779 origins implementing inconsistent pro-
tection against click-jacking, i.e., where the enforced level of protection is dependent
on the browser. This is 10% of the analyzed policies, which is already a significant
percentage. But this result becomes even more concerning when we take a look at
which click-jacking protection mechanisms are used by such policies.

Table 4.7 provides the breakdown: the relative majority of the inconsistencies (45%)
occur when XFO and CSP are used together, which suggests that having two different
mechanisms for the same purpose is potentially dangerous. Moreover, note that 805 out
of the 1,484 pages (54%) which make use of both XFO and CSP together implement
inconsistent protection against click-jacking, i.e., it is more likely to get the combination
of the two defenses wrong than right.

Another interesting insight from our analysis is that 84% of the inconsistent policies
make use of CSP. Intuitively, this seems related to the fact that the set of browsers
we consider includes some legacy browsers without CSP support: in particular, Opera
Mini provides very limited tools to protect against click-jacking. Hence, one might
think that inconsistencies are motivated by its presence alone, yet this is not the case:
if we removed Opera Mini from the set of browsers, the number of inconsistent policies
would drop from 1,800 to 1,749, which is roughly a 3% reduction. One might then try
to also remove Internet Explorer from the picture, since it also lacks support for CSP.
However, this is a different story than Opera Mini, since Internet Explorer supports
the ALLOW-FROM directive. Hence, inconsistencies could be fixed by simulating
the behavior of CSP through different values of ALLOW-FROM based on the Referer
header.

To understand the prevalence of such practice in the wild, we set up the follow-
ing experiment: for each page in our dataset, we identify the hosts which are al-
lowed framing according to CSP, and we send an HTTP request to the page with
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Inconsistency Reason Number of Policies Fraction

Use of the ALLOW-FROM directive 323 78%
Comma-separated directives in XFO header 94 23%
Incomparable policies in XFO and CSP 53 13%
Use of multiple XFO headers 16 4%
Different policies sent to different browsers 5 1%

Table 4.8: Practices in unduly inconsistent policies (classes might overlap)

the Referer header set to one of such hosts. In the presence of wildcards in CSP,
e.g., *.example.com, we generate a synthetic candidate Referer matching them, e.g.,
https://test.example.com. If we observe that the value of the Referer is reflected
back in the XFO header of the response, it means that we might have false positives in
our set of inconsistencies, because the originally collected XFO headers only provided
a partial picture of the deployed policy. We managed to perform this test on the 2,198
pages with CSP and observed extremely low adoption of Referer sniffing: in particular,
only 11 pages relied on such practice. This gives us confidence in the correctness of the
conclusions we draw.

In the next section, we provide an in-depth analysis of the inconsistent policies we
collected. We do this while considering the full set of browsers in Table 4.5, because
those browsers are actively used, and we want to assess the state of click-jacking pro-
tection on the Web as of now. We elaborate on the impact of the chosen browsers on
our study in Section 4.5.3.8.

4.5.3.3 Analysis of Inconsistent Policies

To have a more in-depth look into the set of inconsistent policies, we performed a
further classification step: in particular, we identified 590 security-oriented policies
(33%) and 795 compatibility-oriented policies (44%), while the other 415 inconsistent
policies (23%) do not belong to any of these two classes, hence are unduly inconsistent.
In the rest of this section, we perform an in-depth analysis of the collected inconsistent
policies and identify dangerous practices therein.

4.5.3.4 Security-Oriented Policies

The existence of security-oriented policies is justified by the fact that XFO is less ex-
pressive than CSP, hence Web developers might be led into shipping XFO headers that
are more restrictive than the corresponding CSP headers. For example, the Web site
https://www.icloud.com deploys an XFO header set to SAMEORIGIN and a CSP
whitelisting every subdomain of icloud.com and apple.com. A similar situation
happens on https://academia.stackexchange.com, which sets XFO to SAME-
ORIGIN and uses CSP to whitelist both itself and https://stackexchange.com.
These policies offer a good level of protection to legacy browsers, but might introduce
compatibility issues therein.

We further categorized the 590 security-oriented policies in two classes. The first
class includes ineffective policies, where CSP is overly liberal compared to XFO: these
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policies allow framing from any host on CSP-enabled browsers, possibly just restricting
its scheme, hence modern browsers are left unprotected. We noticed this problem just
in 13 cases (2%), and we conjecture it might come from the wrong assumption that,
when both XFO and CSP are enabled, they are both enforced, while CSP actually
overrides XFO and voids protection. However, it is positive to see that this class
of policies is highly under-represented. The other policies all take advantage of the
additional expressive power of CSP over XFO for fine-grained whitelisting: specifically,
we observed 99 cases (17%) where CSP was used to whitelist all the subdomains of the
host whitelisted via XFO, while in all other cases CSP whitelisted at least two source
expressions.

To the best of our knowledge, these look like legitimate use cases, where policy
inconsistency is not necessarily dangerous for security. However, this discrepancy raises
concerns, because it implies that either legacy browsers suffer from compatibility issues
due to overly harsh security enforcement, or modern browsers are excessively liberal in
their treatment of framing, i.e., the policies violate principle of least privilege.

4.5.3.5 Compatibility-Oriented Policies

Compatibility-oriented policies might be justified by the need to make Web applications
accessible by legacy browsers, at the cost of (partially) sacrificing security in that case.
For example, the Web site https://www.spotify.com deploys a CSP whitelisting
every subdomain of spotify.com and spotify.net, but does not ship any XFO
header, likely because XFO does not support such expressive whitelists. Another similar
example is https://www.sony.com, which does not deploy XFO, but uses CSP to
allow framing from itself and all the subdomains of three other trusted sites.

Recall that our dataset contains 795 compatibility-oriented policies. The first anal-
ysis we perform aims at understanding how much security legacy browsers sacrifice for
such policies. For the very large majority of compatibility-oriented policies, we ob-
served that XFO does not provide any protection at all, i.e., framing is allowed from
any origin: this happened in 758 cases (95%). In particular, we found 705 pages where
an XFO header is entirely absent (89%) and 99 pages where the XFO headers contain
an incorrect directive or are misinterpreted by some legacy browser (11%). This shows
that most Web developers are not actually concerned about offering security to users
of legacy browsers, or are just entirely unaware of the existence of this problem.

To get a better understanding of the reasons underlying the existence of compatibility-
oriented policies, we analyze the combination of XFO and CSP for the following sce-
nario: if CSP is used to whitelist at most one origin, it is straightforward to write
an XFO header which enforces exactly the same restrictions, hence the adoption of a
compatibility-oriented policy is unjustified. We observe that this was the case for 105
policies (13%), where protection could be improved with minimal effort and expertise
by the Web developers, i.e., without resorting to Referer sniffing. This shows that
the bleak picture given above could be easily improved to some extent, yet this is not
happening in practice.
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Inconsistency Class Vuln. (Any Browser) Vuln. (Modern Browser)

Security-Oriented 13 (2%) 13 (2%)
Compatibility-Oriented 758 (95%) 3 (<1%)
Unduly Inconsistent 380 (92%) 278 (67%)

Aggregate 1,151 (64%) 294 (16%)

Table 4.9: Presence and distribution of vulnerable policies

4.5.3.6 Unduly Inconsistent Policies

Finally, we focus on the 415 inconsistent policies that are neither security-oriented nor
compatibility-oriented. These policies are hard to justify as secure, or even as intended,
as explained in Section 4.5.2. In particular, we observe the following distribution of
(possibly overlapping) classes:

• 315 policies are interpreted differently by at least two legacy browsers (76%);

• 289 policies are interpreted differently by at least two modern browsers (69%);

• 29 policies are given the same interpretation by all legacy browsers and all modern
browsers, yet these two interpretations are incomparable (7%).

What is worse is that 380 of these policies (92%) do not enforce any form of
framing restriction on at least one of the browsers considered in our study, which
confirms that this class of inconsistencies is particularly dangerous for security. For
example, the Web site es.sprint.com sets an XFO header to ALLOW-FROM
https://www.sprint.com, but does not ship a companion CSP, leaving legacy
browsers unprotected. As another example, whois.web.com sends two XFO head-
ers, one set to SAMEORIGIN and one set to DENY, which allows same-origin framing
in some browsers but not others.

It is instructive to have a look at why these undue inconsistencies arise. Table 4.8
provides the breakdown of the main practices leading to policy inconsistency (classes
partially overlap). We observe that the ALLOW-FROM directive is present in most
of the unduly inconsistent policies, which shows that XFO is not properly coupled
with CSP in those cases. Indeed, 322 out of 465 policies that use ALLOW-FROM
do not come with any CSP (69%) and do not offer any protection on most modern
browsers. It is also interesting that we found 53 policies where both XFO and CSP
are syntactically correct, yet express incomparable policies. For example, we noticed
that https://gfp.sd.gov deploys an XFO header set to SAMEORIGIN, while its
CSP allows framing from every subdomain of arcgis.com, soundcloud.com and
flipsnack.com. We do not have definite explanations for this kind of policies, but a
plausible reason could be that XFO was deployed for a legacy version of the Web site
and never updated later.

4.5.3.7 Perspective

We summarize here the security impact of our findings by computing the number of
policies that do not offer any level of protection to at least one browser. We also present
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the same perspective for modern browsers alone. The presence and distribution of
vulnerable policies for these two cases are shown in Table 4.9. These numbers confirm
our claim that not all inconsistencies are necessarily dangerous, yet their majority
actually is (64%). In particular, almost every inconsistent policy that is not security-
oriented is completely ineffective on at least one browser. Luckily, our experiments also
show that users of modern browsers enjoy a significantly higher level of protection than
users of legacy browsers since only 16% of the inconsistencies actually void any form of
security enforcement in a modern browser, where undue inconsistencies are essentially
the only threat.

4.5.3.8 The Role of Browsers

Since we assess inconsistencies over a set of popular browsers, one might wonder to
which extent the chosen browsers bias the results of our study. To understand this
point, we decided to run a second analysis by removing Internet Explorer and Opera
Mini from the set of browsers under test. The rationale of this choice is that these
browsers do not support CSP, and thus, we might get a picture of how much the
current policy deployment would be inconsistent in a world without legacy browsers.
It turns out that the total number of inconsistent policies would drop from 1,800 to
289, which is a major improvement. However, observe that all such policies fall in
the class of unduly inconsistent policies (since we removed legacy browsers), and we
computed that for 278 of them (96%) there is at least one modern browser which does
not enforce any form of restriction. This confirms that the adoption of modern browsers
strongly mitigates the problem of inconsistencies, yet not entirely solved. The main
reasons for inconsistency would still be the use of ALLOW-FROM and the adoption of
a comma-separated list of directives in XFO.

It is also particularly interesting that two of the browsers that we tested have been
undergoing major changes at the time of writing. The first significant change was
implemented in Firefox, which dropped support for the ALLOW-FROM directive in
version 70.6 Moreover, Microsoft announced that Edge will move to the Chromium
architecture in 2020, which likely means that it will drop support for ALLOW-FROM
and fix the problems with XFO headers. These changes go in the direction of reducing
the risk of inconsistencies in modern browsers, which will eventually be uniformed to
Chromium derivates. Unfortunately, we also showed that 322 out of 465 policies that
use ALLOW-FROM do not come with any CSP (69%), which implies that these changes
are weakening the state of click-jacking protection on the Web.

At the end of the day, we believe that the problem of inconsistencies in click-jacking
protection is far from solved. Though legacy browsers not supporting CSP are likely
going to disappear in a few years, it is hard to predict a precise temporal horizon for
this: for example, Internet Explorer 11 was launched in 2013, and it still has ∼ 2% of
the market share based on publicly available data, while Opera Mini is still under active
development and extremely popular with around 15% market share in Africa, where
mobile traffic is still expensive [93]. Also, it should be noted that the versions of Edge
and Firefox considered in the present study might still be around for a while, i.e., the

6https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/70#HTTP
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Web platform will still be accessed by browsers supporting ALLOW-FROM at least in
the near future. Though a full transition from XFO to CSP for click-jacking protection
is the way to go to solve the issue of inconsistencies, the setting is complex and requires
actions at different levels. We discuss recommendations and countermeasures in the
next section.

4.5.3.9 Limitations

Though we strived to quantify the security impact of the detected policy inconsisten-
cies, we cannot show that even policies that do not provide any form of framing control
in some browsers lead to exploitable vulnerabilities in practice. To overcome this limi-
tation, we would need to identify pages that are susceptible to framing-based attacks.
However, identifying these in an automated fashion at a large scale requires accounts
of all tested sites as well as an in-depth understanding of the application’s semantics.
However, we argue that it is fair to assume that site operators are deploying framing
control for a reason. In our opinion, the widespread adoption of framing control poli-
cies (33% of all crawled URLs, spread across 58% of the sites we looked at) motivates
that click-jacking is perceived as an important security threat. Our analysis acts as a
cautionary tale aimed at raising awareness of the potential issues that arise from policy
inconsistencies.

In addition to this, we also remark that our study specifically focuses on the 10,000
most popular sites at the time of writing the paper. Given the diversity of the Web in
general, this does not necessarily enable us to generalize about framing control incon-
sistencies on the entire Web. As prior work has shown [133], though, the popularity of
domains often represents a proxy for security measures, meaning that our results most
likely are a lower bound of the actual problems discoverable in the wild.

4.5.4 Recommendations & Countermeasures

Based on the data gathered in our analysis of both browser implementations and real-
world deployment of framing control, we discuss lessons learned to improve the situ-
ation. In particular, we first present recommendations for both Web developers and
browser vendors, highlighting some room for improvement which we found. We then
discuss our implementation of a server-side proxy capable of retrofitting framing control
policies in existing Web applications for the diverse set of browsers we considered in
our analysis.

4.5.4.1 Recommendations for Web Developers

The first important recommendation we make is that both XFO and CSP must be used
for effective framing control on the current Web. XFO alone is insufficient for security
because sites might be prone to double framing attacks (also in modern browsers like
UC Browser) or even not protected at all (most notably, in the presence of the largely
unsupported ALLOW-FROM directive). On the other hand, just using CSP results in
leaving users of legacy browsers completely unprotected. Unfortunately, we found that
only 8% of the collected policies use both XFO and CSP. Worse, the combination of the

84



4.5. SPECIAL CASE: XFO VS. CSP FRAME-ANCESTORS

Directive 1 Directive 2 Conjunction of Directives

SAMEORIGIN SAMEORIGIN SAMEORIGIN
SAMEORIGIN ALLOW-FROM o′ DENY if o ̸= o′,

SAMEORIGIN otherwise
SAMEORIGIN DENY DENY
ALLOW-FROM o′ ALLOW-FROM o′′ DENY if o′ ̸= o′′,

ALLOW-FROM o′ otherwise
ALLOW-FROM o′ DENY DENY
DENY DENY DENY

Table 4.10: Simplification of multiple XFO directives into a single one (adoption at
origin o)

two mechanisms proved hard to get right for Web developers, as 54% of such policies
are inconsistent.

The other crucial recommendations are about the use of XFO. Web developers
should ensure that at most one XFO header is sent with every Web page because
existing browsers have inconsistent interpretations in the presence of multiple XFO
headers. What is worth noting here is that there is no good practical reason to deploy
more than one XFO header. In the presence of multiple XFO headers, existing browsers
either enforce the first one (thus voiding the others) or simultaneously enforce all of
them. However, even this is useless, because any pair of XFO directives always contains
either redundant or contradictory information, which can be expressed with a single
XFO directive (see Table 4.10). For the same reasons we just discussed, Web developers
should avoid the use of comma-separated values in XFO headers. These headers are
parsed as multiple XFO headers in most browsers, while in other browsers, they are
interpreted as non-existing directives that do not enforce any form of framing control.
This latter observation shows that even the apparently innocuous practice of repeating
the same directive multiple times is actually insecure because it voids protection on
some browsers.

4.5.4.2 Recommendations for Browser Vendors

Though the frame-ancestors directive obsoleted XFO back in 2014, 88% of the
policies we collected are still based on XFO alone. This means that this is not the
right time to drop support for XFO, and one might wonder if this will ever be possible
without leaving a significant fraction of the Web unprotected. An important point we
would like to stress is the need for more informational messages for Web developers,
e.g., in the JavaScript console. A prime example of this issue comes from the recent
removal of support for ALLOW-FROM in Firefox. When visiting a page that sends
an XFO header containing such a directive, Firefox merely notes an invalid header and
points the developer to the generic Mozilla Developer Network page on XFO. This page
does note that ALLOW-FROM is now obsolete and should not be used, but does not
provide an immediately visible and explicit warning that sites using ALLOW-FROM
have suddenly become unprotected. As to Chrome, the JavaScript console only shows
a warning about an unrecognized directive and nothing more.
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We argue that browsers should explicitly warn Web developers about the possibility
of using CSP to achieve the same effect of XFO, which is straightforward considered
that CSP is more expressive than XFO. In particular, XFO policies which do not con-
tain glaring mistakes can be readily transformed into corresponding CSPs. We designed
one such solution as part of our server-side proxy (see Section 4.5.4.3), which might
be inspiring also for browser vendors since the same approach could be applied at the
client. We understand that major browser vendors might consider such transformations
dangerous for backward compatibility, yet even simple transformations might signifi-
cantly increase security in the wild and are worth testing in our opinion. At the very
least, a candidate value for frame-ancestors combined with a clear warning about
the unprotected state of the site should be reported in the JavaScript console.

On more general terms, we think that our paper shows the importance of implement-
ing only client-side security mechanisms that come with a clear and precise specification.
The XFO specification was put together only after major browsers already implemented
support for the XFO header, which led to many different implementations. Though
the auto-update feature of modern browsers certainly helps in mitigating the problem
of inconsistencies, real-world market share data show that legacy browsers are hard to
eradicate. Once a client-side security mechanism has been inconsistently implemented
across browsers, it might be challenging to understand its long-lasting impact in the
wild. For example, without moving away from CSP, the strict-dynamic source
expression has first been implemented in Chrome due to an independent effort from
Google’s engineers and then pushed into the CSP standard. This kind of practice is
dangerous because other browser vendors might be unwilling to pick up: for example,
Safari at the time of teh study still lacked support for strict-dynamic.

4.5.4.3 Retrofitting Security

As Web developers might not be aware of the intricacies of the two mechanisms available
to control the framing of their sites, we developed a server-side proxy designed to
enforce consistency in framing control policies, i.e., to ensure all browsers enforce the
same level of protection. The proxy is a Python script (∼ 800 LoC), which can be run
at the server. It inspects the HTTP traffic to automatically fix the framing control
headers so as to ensure policy consistency. To enable researchers to build on our work
and administrators to benefit from the tool, we made the proxy publicly available [A3].

In particular, for any request r, let r stand for the corresponding HTTP response.
If r contains XFO headers, but no CSP header with a frame-ancestors directive,
the proxy behaves as follows:

1. if multiple XFO headers are present in r, they are first folded into one XFO
header set to a comma-separated list of the specified directives;

2. after step 1, r is guaranteed to contain exactly one XFO header. If the header
contains a comma-separated list of directives, it is replaced by a single directive
enforcing the same security restrictions of the conjunction of the directives. This
is always possible, thanks to the simplification rules in Table 4.10;

86



4.5. SPECIAL CASE: XFO VS. CSP FRAME-ANCESTORS

3. the proxy finally attaches to r a new CSP header enforcing the same framing
control restrictions of the sanitized XFO header. This is straightforward, since
CSP is more expressive than XFO, and does not conflict with other CSP headers
possibly present in r, as all CSPs are enforced.

If r contains CSP headers with a frame-ancestors directive, the proxy instead
behaves as follows:

1. all the XFO headers of r are stripped away;

2. the proxy computes the union of the source expressions whitelisted in all the
frame-ancestors directives contained in the CSP headers of r;

3. if CSP denies framing, r is extended with an XFO header containing the DENY
directive. If instead CSP only allows same-origin framing, r is extended with
an XFO header containing the SAMEORIGIN directive. Otherwise, the proxy
checks if the Referer header of r contains a URL allowed by any of the source
expressions identified at step 2: if this is the case, r is extended with an XFO
header containing an ALLOW-FROM directive set to the origin of the Referer
header; otherwise, the XFO header is set to DENY. If r lacks the Referer header,
the proxy conservatively sets the XFO header to DENY.

Eventually, the proxy ensures the consistency of framing control policies with re-
spect to the set of tested browsers, by equating the security guarantees of XFO and
CSP (up to double framing). Observe that, although Opera Mini supports neither CSP
nor ALLOW-FROM, the proxy still manages to rectify its limitations. In particular, if
the Referer of the request is set to a whitelisted URL, the proxy sets XFO to the corre-
sponding ALLOW-FROM directive, which is just ignored by Opera Mini and framing
is allowed. Otherwise, the proxy sets XFO to DENY, and the page cannot be framed.

In our design, we prioritize CSP headers over XFO headers when both are present
since CSP is the preferred method to enforce framing control in modern browsers. This
means that it is occasionally possible for the proxy to relax security restrictions beyond
least privilege: for example, if a page sets XFO to DENY and CSP allows same-origin
framing, then XFO will be relaxed to SAMEORIGIN. However, this is sensible from
a security perspective, because modern browsers already allow same-origin framing, so
we assume this was intended by the site administrators, as modern browsers are the
primary target in the market and are also easier to test. This is also backed up by our
dataset, where we observed only 13 policies where XFO was tighter than CSP and CSP
was configured in an obviously insecure manner (see Table 4.9).

As a final point, we note that the Referer header may be stripped when controlled
through the Referrer-Policy [85], which would disable the possibility of performing Ref-
erer sniffing in the proxy. However, Referrer-Policy is only supported in browsers that
also support the frame-ancestors directive of CSP. Since the proxy only relies on
Referer sniffing in the presence of frame-ancestors, the DENY directive placed in
the absence of the Referer header would be overridden by CSP in all cases. After imple-
menting our proxy, we tested it out against the full set of test cases of Section 4.5.2.1.
By doing so, we confirmed that the proxy behaves as expected and enforces the same
security restrictions in the entire pool of browsers.
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4.5.5 Summary of Framing Control Inconsistencies

Our analysis of 10,000 Web sites from the Tranco list showed that the problem of
inconsistencies is widespread on the Web since around 10% of the (distinct) framing
control policies in the wild are inconsistent and most often do not provide any form
of protection to at least one browser. Given the insights into the dangers caused by
inconsistencies, we proposed different countermeasures in terms of recommendations
for Web developers and browser vendors, as well as the implementation of a server-side
proxy designed to retrofit security to existing Web applications.

4.6 Discussion

Here, we discuss limitations of the work and summarize the security impact of our
findings.

4.6.1 Limitations

Our analysis already shows that client characteristics play a relevant role for Web
application security, however it could be improved along different directions. One
limitation of our study is the assumption that all the tested browsers implement all
the security mechanisms according to their official specifications, which simplified the
technical development. This assumption is motivated by our focus on modern clients,
yet we are well aware that it is not entirely accurate, e.g., at the time of writing Safari
does not support the ’strict-dynamic’ source-expression of CSP Level 3 and browsers
might suffer from bugs (like all software), especially in corner cases. That said, we
manually vetted most of the detected security inconsistencies and we confirm that
they are not subtle enough to invalidate the general findings of our study due to our
assumption on browser behavior.

Another limitation of our work is the best-effort attribution of the identified security
inconsistencies. Discussing correlation rather than causation is a common and accepted
limitation of Web measurements. We crawled each page multiple times and formalized
different definitions of consistency to mitigate the effects of non-determinism, however
we cannot entirely rule out non-determinism, e.g., due to the presence of server-side
load balancers. It is possible that we collected five times the same response from a Web
page due to non-determinism, rather than due to our testing conditions, however all
the cases explicitly named in Section 4.4 have been manually vetted and confirmed as
vulnerable.

4.6.2 Overall Security Impact

In general, an attacker can abuse the inter-test inconsistent behavior of some sites to
attack a certain part of the user base by specifically targeting the less secured clients like
specific User-Agents or users from certain geolocations. For the intra-test inconsistent
sites, an opportunistic attacker can exploit the non-determinism of the deployed security
mechanism by executing the attack multiple times. The individual advantage of the
attacker in both cases depend on the mechanism that is deployed inconsistently.
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For Cookies, a missing security attribute enables an attacker to access the cookie
via XSS (HttpOnly) or to steal the cookie by downgrading the connection security and
eavesdropping on the traffic (Secure). Also, missing or inconsistently deployed SameSite
Attributes allows attackers to successfully execute cross-site attacks such as CSRF. In
either case, the difference between inter-test and intra-test inconsistencies in the case
of cookies does not change the attack itself but only the way it can be successfully
executed, because the attacker either needs to target a certain group of users (inter),
or perform the attack multiple times (intra). Therefore the user-base (or party of it)
of more than 172 Web sites can be attacked due to inconsistencies.

In case of an inconsistent Content Security Policy header an attacker can per-
form XSS attacks (inconsistent XSS mitigation), framing-based attacks such as Click-
jacking (inconsistent frame-ancestors), or perform network-based attacks (inconsistent
TLS enforcement). While the latter is only relevant for functionality rather than se-
curity, because Chromium-based browsers nowadays auto-upgrade mixed content [27]
and Firefox and Safari block it, the other two cases can indeed be exploited by an
attacker. Thus in case of inconsistent XSS mitigation and/or inconsistent framing con-
trol, the attacker can exploit a certain group of users (inter), or try the attack multiple
times (intra) on 41 different Web sites.

Similar to the exploitability of inconsistent CSP frame-ancestors, inconsistent de-
ployment of the X-Frame-Options header can lead to framing-based attacks such
as Clickjacking. Notably, however, XFO will be ignored by CSP Level 2 supporting
browsers as soon as CSP frame-ancestors is present. Still, only ten sites that showed
inconsistencies in XFO have deployed a CSP that restricts framing. Thus, the users of
43 sites would still be exploitable by performing the attack multiple times (intra), and
a specific group of users would be attackable on 17 sites.

For Strict Transport Security we have cases that lead to different attacks de-
pending on the type of inconsistency. If, for example, the preload directive is deployed
intra-test inconsistently, an attacker can remove this site from the HSTS preload list
by asking for removal of the site multiple times until the HSTS checker encounters the
header without preload. For inconsistencies in the includeSubDomains or inconsistent
max-age duration, an attacker can run network attacks against a certain group of users
(inter), or perform the attack multiple times (intra) on 60 different Web sites. Notably,
those sites are only cases where the page similarity was considered, so the number of
potentially exploitable sites could be higher, as HSTS protects the connection secu-
rity between client and server, and does not care about the actual content of that is
delivered via the server.

4.7 Summary

In this chapter we investigated the inconsistent configuration of client-side security
mechanisms on top sites across different client characteristics (inter-test) or even across
multiple communications of the same HTTP request (intra-test).

Our measurement has highlighted that client-side security mechanisms are not
equally delivered to all clients. Specifically, we found several sites in our dataset that
returned different security policies with different semantics in at least some of our tests.
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Our findings have implications in three dimensions: first, Web users may receive differ-
ent protection based on subtle differences in their browser or vantage point (inter-test
inconsistencies). Second, intra-test inconsistencies may enable an adversary to launch
attacks in an opportunistic fashion, given that the responses for the same request may
non-deterministically enforce different security. Acquiring this knowledge is an easy
task for the attacker, as they can probe for non-deterministic behavior of the server
as we did. Third, our analysis has shown that prior measurements may have inad-
vertently under- or over-reported findings with respect to the deployment of security
mechanisms. Specifically, we identified intra-test security inconsistencies in 127 sites
and inter-test security inconsistencies in 194 sites. Our semantics-based analysis gives
clear evidence of the potential security implications of the detected inconsistencies, by
identifying characteristics that might enable exploitation while being expressive enough
to generalize over previous studies which only focus on missing security headers [110].

To the best of our knowledge, we are the first to systematically study the problem
of intra-test inconsistencies. Luckily, dealing with such inconsistencies in Web security
measurements appears relatively easy: since most of them (80.4%) are due to unexpect-
edly missing headers, it suffices to crawl the same page multiple times to detect and fix
these omissions. Nevertheless, prior Web measurements on the impact of client charac-
teristics on Web security and privacy might have performed an incorrect attribution of
security downgrades, since a single page access does not suffice to assess the impact of
non-determinism. Luckily, the number of sites suffering from intra-test inconsistencies
is not high enough to invalidate the big picture drawn by prior studies.

Inter-test inconsistencies are likely less surprising to researchers working on Web
measurements, due to the publication of papers studying variations of the topic [63,
62]. However, inter-test inconsistencies are particularly concerning to site operators,
because they identify weak spots in their security policies reported by our analysis. We
observe that inter-test inconsistencies across network access methods might arise due
to misconfigured origin server for specific geolocations. Also, User-Agent sniffing leads
to security inconsistencies on 177 sites, which can all be attributed to site operators.
Notably, due to backwards compatibility of the investigated security mechanisms, none
of the individual responses for specific browsers were actually necessary.

In this chapter, we have seen that not all users of a Web site get the same level of
security (RQ2 ). However, even if a developer manages to consistently deploy a security
mechanism, for example, a consistent CSP, chapter 3 showed that the vast majority of
CSPs are trivially bypassable. Thus, consistently deploying a security header is only one
of the problems. We still need to investigate what is the root cause of the omnipresent
misconfiguration of CSP (RQ3 ), such that we can consistently and effectively mitigate
attacks for more of the user of the Web.
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Contributions of the Authors

This Chapter is based on ”12 Angry Developers – A Qualitative Study on Developers’
Struggles with CSP” [P4]. Sebastian Roth conceived the study. Sebastian Roth and
Lea Gröber designed the study. Sebastian Roth and Lea Gröber implemented the Web
application for the screening survey. Sebastian Roth created the Web application for
the main study and conducted all interviews. Sebastian Roth and Lea Gröber coded
all interviews and evaluated the results. Ben Stock, Michael Backes, and Katherina
Krombholz supervised the study. All authors commented on the text and contributed
to individual sections.

5.1 Motivation

In Chapter 3 we have seen that the vast majority of Content Security Policies (CSPs)
that are deployed to defend against Cross-Site Scripting (XSS) are, and have always
been, trivially bypassable. Numerous other works [137, 136, 19, 122] confirm this
omipresent misconfiguration of CSP, but the reasons remained largely hidden.

While Chapter 3, but especially Steffens et al. [122], attributed this to the high
reliance on inline event handlers, which are not trivial to allow by a CSP, those inves-
tigations were only educated guesses based on deployment histories or inclusion trees
of Web applications.

The survey conducted during the work presented in Chapter 3 revealed that de-
velopers are often not knowledgeable about all CSP capabilities and that its complex
content control mechanism is blocking the easy-to-use features of CSP for framing con-
trol and TLS enforcement. Importantly, none of the prior works actively focus on the
developers and their mindset, experience, and problems when deploying a CSP.

To close this gap in research regarding CSP, we conducted a study with 12 developers
who are familiar with the development of a CSP. The study consists of (1) a semi-
structured interview, including a drawing exercise, and (2) a coding task involving
creating a CSP for a small Web application. Our findings suggest that not only the
complexity of the mechanism but also inconsistencies in how the different browsers
and frameworks handle and support CSP and how they report and assist the developer
during CSP deployment cause issues. In addition to that information sources regarding
CSP not only push developers in the wrong direction but nearly emphasize the usage
of insecure practices in the policy.

To sum up, our work provides the following contributions:
1. We present the first qualitative study with 12 real-world Web developers to eval-

uate the usability of the CSP.
2. We investigate the Web developers’ mindset regarding the different attacker mod-

els that CSP covers.
3. We uncover the root cause of insecure CSP deployment in order to improve the

usability of the security mechanisms’ initial deployment.
4. We provide a methodological discussion of conducting an online interview study

along with coding and drawing tasks with developers and share the lessons learned
from that.
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5.2 Methodology

To uncover the underlying problems in the CSP deployment process, we examine de-
velopers’ mental models of CSPs, as well as their real-world experiences with the mech-
anism. We complement the data with insights from a controlled coding task. Hence,
we provide in-depth qualitative results that fill the gaps of previous quantitative stud-
ies [P1]. Our findings can be used to improve the mechanism and ultimately remove
roadblocks to its successful adoption. Accordingly, we answer the following research
questions:

RQ3.1: What are the root causes of insecure practices when deploying a CSP?

RQ3.2: What strategies do developers adopt when creating a CSP?

RQ3.3: How well do developers understand the associated threat models of CSP?

RQ3.4: What are the perceptions and motivations of developers in terms of deploying
a CSP?

We carefully designed our qualitative study to account for the research questions.
Thus, we combined semi-structured interviews with a controlled coding task to cover
both real-world experiences and in-situation programming, which allows us to take a
holistic view of the topic. Our study consists of three parts: (1) a 3min screening survey
that covers basic information about the participants’ demographics and their familiarity
with the technologies involved in CSP. We use this information to ensure that our set
of participants is as diverse as possible; (2) a 45min semi-structured interview covering
perceptions and prior experiences with CSP, as well as a drawing task about associated
threat models of CSP; (3) a 45min coding task in which participants created a CSP for
a small Web app in a programming language of their choice (Python, JS, or PHP). The
total financial cost of this study is 800€, each participant received 50€ compensation
for participation, and the LinkedIn campaign cost 200€. In the following sections we
provide details on each part of our methodology, the methods and choices regarding
study population and recruitment, as well as evaluation and ethical considerations.

5.2.1 Recruitment and Participants

Our target population is real-world developers that actively deployed, try to deploy, or
are testing a CSP. To get in touch with this group, we first tried to find participants
using our national chapter of the Open Web Application Security Project (OWASP)
Foundation. By using this channel, we are not only reaching developers of big Web ap-
plications behind known companies but also small development teams, which increases
the diversity in our study population. In addition to the tweet of the OWASP, re-
searchers of our institution held a talk at an OWASP event and promoted our study to
all attendees. For the invitation via the OWASP, we created a poster with all necessary
information about our study (see Figure 5.1). Those include the goal and the procedure
of the study, as well as the amount of time required for participation and the compen-
sation. In addition to that, we also used targeted advertisements on the business social
network LinkedIn. Similar to the poster for the OWASP recruitment, we designed a
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sponsored content post (see Figure 5.2) that includes the goal, the procedure, the time
required, and compensation. The advertisement was targeted towards Web developers
and associated with the official account of our institution to underline the soundness
of the invitation.

Figure 5.1: Poster that was used by the OWASP to advertise our study.

We also tried other recruitment techniques, which did not lead to any new possible
participant completing our screening survey. We created a recruiting email (see Sec-
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Figure 5.2: Advertisement that was used in our LinkedIn campaign.

tion C.3) that we sent to the set of contact email addresses extracted from the WHOIS
entries of Alexa Top 10,000 sites that are using CSP. These invitation emails were sent
from an institutional email account to ensure that the possible participants see this
as a reliable offer. We also tried direct recruiting people by calling Web development
companies via phone. Here we used an official phone number that is associated with our
institution in order to increase trust. In general, we can confirm that the recruitment
of a specialized population, such as Web developers, who are knowledgeable in CSP, is
very challenging [74].

5.2.2 Screening Survey

Our screening survey is a self-built and self-hosted Web application, including a sane
CSP. The self-hosting under a subdomain of our research institution provides us exclu-
sive and full control over the data entered into the survey. The survey itself consists of
16 questions, with the time required to answer them no more than three minutes. The
landing page of the survey also reminds the participant about the number of questions
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and the time required to answers all questions (see Figure 5.3). In addition to that,
they are informed that all answers are optional (except for the contact email), as well
as the fact that the collected data will be used for scientific purposes only. First, we
ask questions about security decisions within their working environment. Notably, we
also ask for which Web application the participant takes part in the deployment or
maintenance of CSP, asking them to supply a URL if possible (see Section C.1.1). In
case of inviting a participant to our interview, we use this link to the Web application
to customize the semi-structured interview. We either focus on the root cause of cer-
tain insecure expressions used in their CSP, or we ask the participant how they arrived
at their secure policy and what roadblocks occurred during that process. Further, we
ask questions regarding technology perception and security awareness when using Web
applications (see Section C.1.2). Last, we ask for demographics covering age, gender,
profession, education, home country, and the company size [39] (see Section C.1.3).

Figure 5.3: The landing page of our screening questionnaire.

As soon as a candidate completes the questionnaire, assess if they are suitable and
send an invitation email. In doing so, we were able to manually filtered out bots and pay
particular attention to prior experience with CSP. The invitation email (see Section C.4)
contained the following information: (1) a reminder about the study compensation of
50 Euro (as an Amazon gift card) and the fact that the study will be recorded; (2) a
detailed description of the study procedure including a schedule; (3) detailed choices
about the coding task, as well as video conferencing systems. In our study, we pay
special attention to making the participants feel as comfortable as possible and to
replicating their usual programming environment as closely as possible. Therefore, we
offer our participants the greatest possible freedom concerning the configuration of the
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Victim

Attacker vuln.com

evil.com

Figure 5.4: Template for XSS/CSP Drawing Task

coding task, choice of video conferencing software, and choice of the study date 1.

5.2.3 Interview

The interview consists of three blocks: (1) General questions on the participant’s
work in the company and educational background. These easy-to-answer questions
provide an introduction to the interview and also act as a warm-up. However, the
questions are designed in a way such that the participants might also give us valuable
information regarding their mindset about CSP, and how they first got in contact with
the mechanism. (2) Threat Model covered by CSP: This block covers attacker
capabilities, different use cases for CSP, as well as the process of decision-making that
leads to a (secure) CSP. Those questions are supplemented by a drawing task in which
participants draw and explain a XSS attack of their choice in detail. For this purpose,
we provide the participants with a graphic containing four stakeholders: The attacker,
the victim, the vulnerable server, and an attacker-controlled server (see Figure 5.4).
The drawing is done either via Zoom’s Annotate feature or alternatively with enabled
screen sharing and diagrams.net 2. After finishing the drawing, we ask the participants
at which point of this attack a CSP could successfully stop exploitation.

While Roth et al. [P1] already hinted that XSS mitigation is the prominent use-case
for CSP deployment, this block of our interview enables us to get a deeper understand-
ing of the underlying threat model that developers have in mind when dealing with CSP.
Furthermore, it allows us to see which of the different use-cases of CSP (XSS mitigation,
framing control, TLS enforcement) is the most prominent and how knowledgeable each
participant is about CSP’s full capabilities. The third part of the questions regarding
(3) Roadblocks for CSP is customized towards the participant. In the screening
questionnaire, we ask the participants for (a list of) domains for which they took part
in the deployment or maintenance of a CSP. If provided with a URL, we then rely on

1https://calendly.com/
2https://www.diagrams.net/
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the live and Internet Archive version of the said domain to determine if this CSP is
secure, insecure (i.e., trivially bypassable), or the company gave up on CSP by eventu-
ally dropping the header. While the Internet Archive’s crawl, such as crawls in general,
might not fully reliable due to e.g. bot detection, prior work [P1] has shown that the
validity of the Internet Archive regarding CSP headers. Also, during the interview the
CSP that was or is deployed on those pages was lateron confirmed by the participants.
Depending on which of the three groups the study participant falls into, we ask different
questions. In essence, we ask participants that have worked on policies without any
insecure practices, such as the unsafe keywords, how they managed to achieve this and
which roadblocks they faced during this achievement. In contrast, we ask those with a
trivially bypassable policy what caused the usage of certain insecure practices in their
CSP. Finally, for those who gave up on CSP, we ask why they aborted their experiment
of deploying a CSP and what changes would be required before they would consider
attempting CSP deployment again. During this block of questions, we not only want to
hear about their stories of CSP deployment, but we also ask about tools and consulting
that helped them during this process. The complete interview guideline can be found
in Appendix C.2.

5.2.4 Coding Task

In the coding task, we ask each participant to create a CSP that mitigates the effect
of XSS attacks for a small Web application. We inform the participants that they can
use any resources throughout the task to make sure that we are simulating their usual
programming behavior as closely as possible. During the procedure, the participants
are asked to share the screen such that we can observe their coding behavior during
the experiment. Furthermore, we ask them to think aloud during the task, such that
we not only see what they are doing but also understand the decisions made during
development. The task is available in three different Web backend languages. Here
we looked up the most popular programming languages in 2020 and checked if there
is a popular Web framework in that language. As a result, we created the same Web
application in JavaScript (Express), Python (Django), and PHP (Twig). In all cases,
we build the functionality in a very similar way, e.g., by using the Jinja2 templating
language for the HTML files in all three cases. By doing so, we make sure that the choice
of the programming language is not interfering with the complexity of the task. After
choosing their preferred language, the participants download the corresponding source
code (<2MB) and ideally use docker-compose to start the application. However, if
they do not want to use docker, we also provide alternatives like an install script for
Linux-based systems, which also includes the Windows Subsystem for Linux (WSL),
or downloading and importing a preconfigured virtual machine for virtual box. In
addition to that, we offer the opportunity to remote control this VM using Zoom, or
alternatively use TeamViewer 3. The source code changes of the Web application can
then be done in the participant’s favorite IDE, such that they feel as comfortable as
possible.

As laid out by several prior works [19, 136, 137] and more explicitly by Roth et
3https://www.teamviewer.com/
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al. [P1] and Steffens et al. [122], deploying CSP is made harder if certain constructs
are used in a Web application, in particular ever-changing third-party inclusions, in-
line scripts, and inline event handlers. Since we aim to understand how developers
understand these roadblocks and find solutions, we build our application with such
roadblocks in place. The goal is to investigate if, how, and why the participant resolves
these issues. In most cases, multiple solutions are possible, broadening the exploration
space. If the participant, for example, uses nonces to fix the inline JS, it is interesting
to see how the nonces are generated, as well as how they are placed on the script tags.
Overall, the goal of this coding task is to enrich the data we got from the interview
with real hands-on coding experiences with CSP. By conducting this coding task, par-
ticipants can also recall roadblocks and challenges that they forgot to mention during
the interview such that the data that we gather is as complete as possible. In essence
the Web application is a small app to log in and save notes, specifically designed to
carry the CSP-inhibiting patterns mentioned above. All three versions of the Web
application are available at the CISPA GitHub Repository 4.

5.2.5 Pre-Study

We conducted a pre-study to ensure that our interview guideline is appropriate to
provide answers to our research questions, to identify errors and inconsistencies in the
coding task and its setup, and, to give the interviewer the opportunity to practice. The
pre-study consisted of two steps. First, we had the interview and coding task tested
separately, each by a person knowledgeable in the respective area. A researcher created
a persona representative of our study population and took the role of this persona for
the first interview test. Another researcher familiar with CSP tested the coding task.
In the second step, we conducted three complete runs of interviews followed by the
coding task. We recruited two students and one web developer who had experience
with CSP. In doing so, we made sure to cover each programming language once. The
results of the pre-study are not included in the results of the main study. Based on the
pre-study, we slightly changed the order of the questions, among other things, to ensure
a more natural interview flow. We also included code snippets in the coding task that
could be used as templates to programmatically add events. This was to ensure that
the participants had enough time to focus on creating the CSP, as searching for the
right syntax in the pre-study took a lot of time.

5.2.6 Data Analysis

We manually transcribed all collected data, including the coding and drawing task.
Afterward, we unitized [23] the transcript and conducted open coding according to
Strauss and Corbin [128] to analyze the data. For the analysis of the drawing and
coding task, we additionally used the screen recordings to ensure no information is
missed. In total two coders (the core authors) were involved in the coding process
and construction of the codebook. The first coder constructed an initial version of
the codebook, taking into account two interview transcripts. Based on the initial

4https://github.com/cispa/12-angry-developers-web-applications
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codebook, both coders coded all interviews, resolving issues and adjusting the codebook
accordingly after each iteration. We continued with the coding procedure until both
coders agreed that saturation was reached. In our case, this meant no new concepts
emerged from the newest two interviews. We calculated the intercoder reliability of the
different codebook versions before resolving issues. With the saturated version of the
codebook, we re-coded all interviews to ensure that no information was missed during
the initial coding. The final codebook is attached in Section C.7.

Codes are partitioned into high-level primary codes and more detailed secondary
descriptions. For example: if a participant complained during the interview about the
false positives in CSP’s report feature, the corresponding primary code is “Roadblock”
and the secondary code is “False Positive Reports”. Using this way of assigning codes,
we made sure that we can better evaluate which roadblocks occurred, which strategies
were used, and which motivations and perceptions the participant had during working
with CSP. We applied thematic analysis [14] to the coded data to identify emerging
themes and patterns. Then we conducted axial coding [128] to investigate the rela-
tionship between themes. To this end, we investigated co-occurrences of codes. For
example, we analyzed links between strategies and roadblocks and explored the origin
of misconceptions. We then used the combined results to identify strong factors which
lead to success or failure of deploying a sane CSP.

5.2.7 Ethical Considerations

We carefully considered risks and benefits for participants when developing the study
design, especially as some data collection methods may be perceived as invasive. Es-
pecially the installation script in case of the direct deployment of our coding task on
the participant’s machine may be perceived as invasive. However, we wanted to be as
close as possible to the participant’s normal coding behavior, so we decided to offer
the docker file and the direct execution option. Notably, every participant had the free
choice of using the provided VM or remote access. We informed all the study partic-
ipants about the screen and audio recording before and during the online interview.
All participants gave their electronic (pre-questionnaire) and verbal (beginning of the
interview) consent to data collection and processing. This data is processed and stored
in compliance with the General Data Protection Regulation (GDPR). In addition to
that, the study methodology and data collection processes have been approved by our
institution’s ERB.

5.3 Results

In this section, we present participant demographics and results of our thematic anal-
ysis. The inter-coder reliability Krippendorff’s α [70] was between 0.71 and 0.92 for
each version of the codebook. Our results shed light on why people decide to deploy a
CSP and how they perceive the mechanism. Additionally, we examine roadblocks for a
secure deployment of a CSP, as well as the types of strategies used during this proce-
dure. Here, we combine findings from the interview, which give us real-world insights
into the work environment of our participants, with results from the coding task, which
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reveal concrete technical and conceptual problems in creating a CSP. We support our
findings with participant quotes (translated verbatim into English where necessary).

5.3.1 Participant Demographics

Our study population includes both male and female participants. Their age ranges
from 20 to 50 years (survey captures ten-year ranges). The participants’ employers
range from small and medium-sized enterprises (<9 people) to big companies with over
250 employees. While seven participants stated that the Web presence is the main
business of their company, this was not the case for three of them, and one partic-
ipant did not provide an answer to this question. The detailed demographic of the
11 participants that completed the survey is depicted in Section C.5. The majority of
participants (eight) are located in Germany, but we also had participants from Czechia,
Ireland, and the United Kingdom. Their education level was divided into three master’s
degrees, three people with bachelor degrees, two with a software developer apprentice-
ship, one who only specified the education level as secondary degree, one that entered
"degree" into the text field, and one that did not answer this question. For their current
occupation, all of our participants entered different Job titles: Software Security En-
gineer, Freelancer / Developer, Software Development Manager, Analytics & Business
Intelligence, Founder, Ph.D. Student, Software Developer, Student, AppSec Specialist,
Web Developer, and a Student Jobber. Note that all participants had prior experience
with CSP and (have) worked for or founded a Web company. The last involvement in
the maintenance or deployment of CSP was still ongoing for three participants, in the
last week for one participant, within the last month for four, and more than a year ago
for three participants. Throughout the interview, we also asked the participants if they
have an IT security background. While six participants stated that they had courses
that targeted security, or especially Web security, in their free time or during their
studies, the other half of our participants noted that they had no security background
but self-taught knowledge about Web security.

5.3.2 Motivation for CSP

When asked about their motivation to deploy a CSP, participants referred either to
threat models associated with CSP or external factors such as financial implications.
Figure 5.5 provides an overview of the concepts. Most prominently, participants ex-
plicitly mentioned XSS mitigation (five), as well as pen-tests and consulting (four) as
their primary motivation.

Among others, external factors include penetration tests, consulting, or build-
pipeline warnings complaining about a missing CSP. One participant also mentioned
that he attended a security training that suggested deploying a CSP to protect the
application. Also, the effect of a missing CSP on the company’s reputation is one rea-
son why companies decide to use CSP. Concurrent to this, big or known companies see
themselves as role-model for others and therefore should include a CSP. Seven partici-
pants perceived CSP as an additional security layer that kicks in if all other measures,
such as secure coding practices, fail. Notably, seven participants also mentioned posi-
tive side-effects that they discovered during their CSP journey. For example, during the
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Figure 5.5: Categories of Motivations

deployment process, they re-evaluate the resources used by the application and whether
they are still required for the application’s functionality. Also, the re-evaluation of the
application structure was something that the participants mentioned as a benefit during
CSP deployment.

5.3.2.1 Threat Models governed by CSP

In addition to the threat model-based motivations to deploy a CSP, the participants
also mentioned their perceptions of CSP. We also talked with the participants about
the different capabilities of CSP and discovered knowledge gaps regarding CSP.

XSS Mitigation: Five participants explicitly stated that the primary motivation
for using a CSP was to mitigate XSS, making this the most prominent motivation.
Each of them perceived the CSP as an additional security mechanism stating.

”I started learning about XSS, and then I became interested in
the solutions to XSS. And of course, you know, you start on the
road of input sanitization, output in coding and then eventually,

CSP also, you know, becomes a factor.”
– Participant 5

The perception that CSP can mitigate the effect of XSS attacks was present in
ten interviews. Eight participants knew how CSP could mitigate the effect of XSS.
However, three participants had misconceptions on how and where CSP kicks in. For
example, they thought that CSP only forbids the connections to the attacker’s server
or that CSP prevents the attacker from injecting a malicious payload to the server-
side in case of a stored XSS. Closely related to the XSS mitigation use-case of CSP is
the participants’ perception that CSP can be used to control the resources included.
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Also, five participants mentioned that CSP enables the developer to have fine-grained
control about data connections of the Web application. Here, participants specifically
mentioned the connect-src and form-action directives. One participant had the attack
scenario of sensitive data exfiltration in mind. Notably, the fact that one can simply
redirect the browser to exfiltrate data because of missing support for the navigate-to
directive was not mentioned by any participant.
During the drawing task, we identified that one of the participants had the miscon-
ception that CSP is capable of defending against Cross-Site Request Forgery (CSRF)
attacks. Such a misconception might lead to a scenario where certain defense tech-
niques, like CSRF tokens, are not used because the developer thinks of CSP as the
”holy grail” of Web security defends against everything.

Framing Control Another known feature of CSP is the defense against Click-
Jacking attacks [89]. For one participant, this was the main use case of CSP. One
participant admits that he only knew about this capability of CSP because informa-
tion sources for the old and deprecated X-Frame-Options header suggest using CSP’s
frame-ancestors. However, two of our participants argued that they do not use frame-
ancestors, because the X-Frame-Options header is doing the same while having better
support:

”For this, we have something else. The old XFO is, to my
understanding, still well supported, so we thought of using CSP

for that. But the old blunt method is working for us anyway. So,
it did not add extra protection.”

– Participant 3

Notably, XFO and CSPs frame-ancestors are not only different functionality-wise,
but also XFO is no fully supported by every browser, which can lead to inconsisten-
cies [P2]. If, for example, a Web sites operator deploys XFO in the ALLOW-FROM
mode, some browsers are ignoring the entry because this mode is not well supported.
In addition to that, even if this mode works, it is not possible to allow multiple hosts
to frame a page if XFO is used.

TLS Enforcement The capability of CSP to enforce secure network connections
was the least known one. While talking about this use-case of CSP, eight participants
mentioned that they are using the HTTP Strict Transport Security (HSTS) mechanism
to defend against the underlying threat model of a man-in-the-middle. However, five
out of those did not know about CSP’s capabilities to block mixed content or upgrade
insecure requests. Notably, those features of CSP might become less relevant nowadays
because Chrome is disallowing any type of mixed content [28] and Firefox is automat-
ically upgrading HTTP connections [88]. Nevertheless, not all browsers behave the
same way, and thus, the lack of knowledge about this easy-to-use feature of CSP makes
HTTPS adoption harder for the development team because they need to take care of
HTTP URLs that are present in their application.
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Key Takeaways: (1) The motivation to deploy CSP is, in the best case, the
incentive to mitigate XSS; in the worst case, it is only a checkbox that arose from
a penetration test. (2) External factors, like the company’s reputation or serving
as a role model, such that more Web sites use CSP, can be a motivation to deploy
CSP.

5.3.3 Roadblocks of CSP

Throughout the analysis of our dataset, we identified different problems that hindered
the deployment of a sane CSP without using any insecure practices. For the thematic
analysis of those, we combined different codes and clustered them into four different
categories of roadblocks shown in Figure 5.6. Notably, these roadblocks are results
from both the semi-structured interview and the coding task.
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Figure 5.6: Categories of Roadblocks

The technical roadblocks are technological problems that the Web applications oper-
ator has no control of. In contrast, the application-based roadblocks describe problems
that occur due to the choices that the developer made when creating the application.
The Cost-based roadblocks are monetary limitations set by the administrative level
of the company or time constraints of the Web applications operator. Finally, the
category of Knowledge Gaps includes insufficient or bad information sources, lack of
documentation, and knowledge about the concepts and capabilities of CSP.
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5.3.3.1 Technical Roadblocks

One of the technical roadblocks mentioned by eight of our participants is the incon-
sistent browser support for certain CSP features. While, for example, most browsers
support the ’strict-dynamic’ source expression, Safari has not implemented this feature
yet, which means that the CSP is too strict in this case and might block important
features of the Web application. Also, seven participants complained about the in-
consistent way how console messages are designed depending on the browser. The
preinstalled browser of our VM was Firefox, and participants that use a chromium-
based browser in their usual workflow missed helpful information in the console error
messages of Firefox.

”Wait, there is no hash in there.”
– Participant 4

Also, browser extensions on the client-side might cause problems with the CSP.
Some of them tend to inject their own code into the Web Application, which will result
in false-positive CSP errors which might be reported to the development team. But
not only extensions cause those errors, but also browser features, plugins, or other
client-side interactions with the Web application can generate those reports. From the
five participants that denounce those false-positive reports, four also complained about
the level of detail in the reports send by CSP violation events. It was mentioned that
a detailed code location of the violation, as well as a corresponding hash to allow the
code snipped, would ease the deployment and maintenance of a CSP.

5.3.3.2 Application Roadblocks

Some of the application-based roadblocks are those that were hypothesized by previous
work on CSP [P1]. Through the interview and especially in the coding task, partic-
ipants noted the usage of inline JavaScript (8) or inline event handlers (8). Notably,
the participants already mentioned the inline scripts in the interview part, while the
problem with event handlers was mainly identified during the coding task. One critical
point was that the strategy to resolve the issue with inline scripts could not be applied
to the inline event problem.

”I’d like to insist on attaching such a nonce here. But I just
tested. It does not accept a nonce.”

– Participant 12

If, for example, participants use hashes or nonces for inline scripts, they were not
able to apply the same technologies to allow inline events. Adding nonces to non-script
tags is a no-op, and allowing event-handlers through their hashes requires ’unsafe-
hashes’ in Chrome and its derivatives. Another application-based problem is the
usage of third-party code. During the interview, four participants complained that
even if their code is fully CSP-compliant, third-party services like advertisements and

106



5.3. RESULTS

third-party libraries such as Angular require them to use a more lax CSP, which might
be bypassable [122]. A similar limitation is introduced by choice of the framework
which is used to create the Web application. Six participants explained that the choice
of the framework could also block a successful CSP deployment. Either the framework
supports CSP or not, and even if the framework itself is compliant with CSP, its
plugins might not adhere to that. Another problem that one participant mentioned is
the way how WebSockets are handled in CSP. While some browsers allow WebSocket
connections to the domain itself if ’self’ is present, as specified since CSP level 3 [139],
others require to allow the own domain with the WebSocket protocol explicitly. This
issue was already discussed in the CSP GitHub repository [144], leading to a change in
the living standard [139]. According to five of our participants, the presence of legacy
code in a Web application also causes problems during CSP deployment. Usually, the
development teams first build the application and later want to add a CSP to it. Thus,
the application is full of inline codes, inline events, non-CSP compliant libraries, which
makes creating a sane CSP hard and very costly.

5.3.3.3 Knowledge Gaps

During the interview, we also discovered that information sources and online tools
might be counteracting the deployment of a sane CSP. Some online security scanners
only check if a CSP header is deployed, but such tools often do not check if the deployed
policy is trivially bypassable or missing important directives. Moreover, we identified
five cases where the used information source about CSP is misleading for the participant
or gives wrong information about CSP. Those sources are not designed to give people
the most secure solution for allowing sources (e.g., the usage of nonces) but rather
suggest allowing the third-party domain, which is even worse than suggesting to use
full URLs. Also, those sources mislead the reader in case of inline event handler. Instead
of suggesting to add the events programmatically, they first suggest the usage of hashes
which, however, leads to inconsistent behavior among major browsers. One result of
such misguided information available for CSP is that developers have conceptual issues
with CSP. Through the interview part, we probed participants about the different
capabilities of CSP. While the initial use case of CSP is known to most of the developers,
other use-cases like framing control and TLS enforcement are less present in their
mind. Notably, a participant mentioned that usually, security headers are built-in and
deployed per default in some frameworks and are wondering why this is not the case
for CSP.

5.3.3.4 Cost-based Roadblocks

A reason for the lack of a CSP or for the usage of insecure practices is, according to ten
of our participants, not only the lack of knowledge about CSP or its capabilities but, in
many cases, time or monetary reasons. CSP is seen as a rather complex security mech-
anism that requires massive engineering efforts, which makes it costly for a company to
deploy. Also, half of our participants admit that security is often seen as a secondary
goal during the development of a Web application, which is why non-CSP compliant
technologies are used in the development process. Thus, if during the initial deploy-
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ment of a CSP, for example, legacy code is present, the decision to use unsafe-inline
is taken instead of costly actions such as refactoring the application. But not only the
initial deployment of a sane CSP might be costly, but also the maintenance of CSP can
be quite hard, as four participants pointed out. For every new content or feature that
is added to the application, new entries might need to be added to the policy, requiring
constant changes to the allowlist. Another problem that makes the curation of a CSP
harder is related to the false-positive reports mentioned in Section 5.3.3.1. Four par-
ticipants explained that depending on the number of clients that are visiting the Web
application, the reporting endpoint is flooded with both meaningful and false-positive
reports, which requires massive effort to distinguish them from another and might, in
worst-case, result in a denial-of-service for the machine running the reporting endpoint.

”They accidentally DDoSed their endpoint because they had a
policy misconfiguration which generated, like, hundreds of errors

per page.”
– Participant 5

Key Takeaways: (1) Application-based roadblocks such as third-party services
or libraries, inline scripts, and inline events hamper the deployment process. (2)
Also, technological limitations like browser inconsistencies and missing framework
support, knowledge gaps introduced by misleading information sources, or cost-
effectiveness considerations are blocking factors for CSP adaption. (3) The false-
positive reports and the number of reported violation events further complicate
the maintenance of a CSP.

5.3.4 Deployment Strategies

During the interviews, we observed different strategies for the initial deployment of a
CSP, principles of how to deploy and maintain a CSP, as well as strategies to solve
certain problems during deployment. Those problems include inline JavaScript code,
inline events, and the handling of third-party scripts. While the interview mainly
shed light on strategies for the initial deployment and the deployment principles, the
coding task showed detailed strategies into how to solve problems regarding inline code,
events, and third-parties. Figure 5.7 gives an overview about the strategies that the
participants mentioned during the interview or strategies they have taken into account
for the coding task.

5.3.4.1 Initial Deployment

Nine participants claim that they tend to start with a rather restrictive policy to end up
with a sane one. The resulting error messages, e.g., in the browser’s developer console,
can be used to identify the fragments in the code that are blocked by the CSP. Six of the
participants that choose this way used the restrictive policy in the enforcement mode,
while three tend to use the restrictive policy in the report-only mode. The remaining
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three participants are, however, starting with a rather lax CSP and improve this one
until they arrive at a secure policy without insecure practices such as unsafe-inline.
By choosing this path, the participants were not flooded with error messages but were
able to solve one problem after another. Four of the participants used an automatically
generated CSP as starting point for their CSP deployment. To do so, they used tools
like CSPer.io, the Mozilla CSP Laboratory, or the report.URI wizard.

”Yes because I would then really install this Firefox add-on if
that’s okay. That always gives me the fastest baseline where I

can then build on it.”
– Participant 10

Those tools, however, pushed the participants into allowing third parties via their
domain or the full URL rather than using nonces. In addition to that, none of the tools
solved the problems regarding inline codes and events. They either allowed the exe-
cution via the unsafe-inline source-expression, which resulted in a trivially bypassable
policy, or they blocked it, which results in a loss of functionality.
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5.3.4.2 Deployment Principles

Throughout the interview, the participant shed light on different deployment principles
for CSP. As it was initially thought of by the team that is curating the CSP standard,
four developers use the report-only mode to debug the CSP they created in the live
environment, such that they do not destroy any functionality during that experiment.
Not only for the initial deployment but also for general CSP maintenance, the process
in how people managed to get to a sane CSP involved an iterative deployment cycle
where they started with a rather lax CSP and, over the course of time, strengthen their
policy. While the before mentioned principles are finding their use-cases in scenarios
where the developer thought about CSP after creating the Web application, two par-
ticipants mentioned CSP as an integral part of their development, which drastically
reduced the amount of application roadblock occurring during this process. Six of the
developers mentioned using one general CSP for the whole application, while two oth-
ers thought about using separate CSPs for every subpage, and three evaluated both of
those principles. To actually deploy the CSP, our participants not only used HTTP
headers but two of them used HTML meta tags instead to deploy their CSP. Features
like frame-ancestors which defends against clickjacking attacks or the definition of a
report-uri to easier maintain the policy can, for security reasons, not be used in a CSP
defined inside the HTML structure. Thus, a developer should prefer to deploy CSP
via HTTP header rather than a deployment inside the HTML. One essential part of
the deployment procedure is the usage of tools. To ease the maintenance of CSP, two
participants used a CSP Preprocessor. To know if the created CSP is actually secure,
tools for CSP evaluation such as Google’s CSP Evaluator are used by nine of the par-
ticipants. Also, tools for the evaluation of the CSP violation reports were used by six
participants. Three participants claimed that the functionality of the Web service is
usually more important than the security for many companies.

”But it’s very easy to break your site with CSP and the wrong
CSP. You’re forgetting that you load [...] some payment method

on this page and not on every other page. And so many people
have problems when the site goes down.”

– Participant 3

5.3.4.3 Problem Solving Strategies

In order to solve some of the application issues mentioned in Section 5.3.3.2, the par-
ticipants had several different strategies.

Inline JavaScript: to allow JavaScript code to present in inline script tags,
seven of the participants decided to move the inline code to a self-hosted external
script. Therefore, the script then can be added to the allow-list using the ’self’ source-
expression. One participant used hashes of the code in order to allow it, and because
he used a chromium-based browser, the developer console was used to generate the
code hashes. Three participants allowed the execution of inline scripts using nonces,
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while one of them also mentioned the possibility to use unsafe-inline as a fallback for
non-CSP Level 2 compliant browsers.

Inline Event Handlers: another problem, that especially occured during the
programming task, was the presence of inline event handlers. Similar to the inline
code problem, the participants decided to programmatically add those events to the
HTML elements and allow these code snippets using the aforementioned technique.
While four participants thought about using hashes to allow the events, the required
presence of the unsafe-hashes expression discouraged them from doing so. Notably,
one participant tried to use this source expression together with hashes to allow the
inline events. This participant used this inside the script-src-attr expression, which
is one of CSP’s newest features that only apply to JavaScript defined within HTML
attributes. However, because this directive was just added to the standard, it has not
been implemented by all major browsers yet, which results in a loss of functionality or
security depending on the CSP. One of the participants also came to the conclusion
that using the unsafe-inline keyword is the only way to allow events in CSP.

Third Parties: There are several different solutions to allow a third-party resource
in a CSP. Ten participants allowed the whole domain of a third party, mainly due to bad
information sources or due to using an auto-generated CSP as starting point. Only one
participant decided to allow the full URL, so only the specific resource. Notably, four
participants thought about the possibility to self-host the third-Party code such that
it falls under the source-expression self. While this would have been easy for the third-
party resources we have used (Bootstrap & jQuery), it might get more complicated
in case of other third parties that are again loading other assets. One participant
also thought about changing the application such that certain third-party resources
are not necessary anymore, e.g., by migrating to Bootstrap 5, which works without
jQuery. The easiest and most secure solution, to use nonces, was used by none of our
participants. However, this lack of knowledge about the capabilities of nonces might
originate from the used information sources because highly ranked sources such as
content-security-policy.com, advertise nonces as a way to allow inline scripts
and get rid of unsafe-inline, rather than informing people about the fact that they can
be used to allow any source [33]. Notably, the information sources also do not mention
that hashes will only work for third-party scripts if those scripts allow access to their
source code via the Cross-Origin Resource Sharing HTTP header [32]. We have notified
the corresponding information sources about their potential for improvement.

Key Takeaways: (1) Both allowing scripts via their domain and using hashes
or nonces are used to allow scripts, while usage of the latter is focused on inline
code. (2) Developers tend to use one general CSP and tend to start with a strict
policy to get more error messages. (3) The usage of tools for generating an initial
CSP, evaluating the policy, or analyzing the violation reports seems common for
CSP deployment.
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5.4 Discussion

In this section, we investigate the relation between certain roadblocks and strategies
with axial coding. To this end, we investigated co-occurrences of the primary codes
Roadblock and Strategy. In addition to that, we give suggestions to improve CSP as a
mechanism and the deployment process of CSP. We also interpret the outcome of the
drawing task and discuss the limitations of our work.

5.4.1 Relations of Roadblocks and Strategies

The roadblock regarding missing framework support was often mentioned alongside
with the strategy of using nonces for inline scripts (three times), the strategy of us-
ing hashes to allow inline events (two times), as well as using unsafe-inline to (two
times). The participants complained about missing support for hashes or nonces in the
frameworks that they are using in their company. This missing support was one reason
why participants admit to having included unsafe-inline in their policy instead of using
nonces or hashes for their inline scripts.

The strategy to use one general CSP for a Web application, as well as the strategy
to use separate CSPs for each page, were both mentioned two times together with the
roadblock of the CSP maintenance requiring too much effort. The participants argue
that using one general CSP for all pages results in a policy with a lot of entries, which
makes it complicated to maintain all those values. On the other hand, participants
argue that using separate CSP for subpages might result in a vast amount of different
CSPs, resulting in a huge effort to maintain all those small policies. As Some et al. [117]
showed, having multiple CSPs on a single origin can still expose a site to a successful
XSS exploit if one of these policies is bypassable or not even set on certain pages.

In two of our interviews, the participants reasoned about using hashes to allow
event handlers. However, due to the incomplete information on how to actually allow
them in both Chrome and Firefox, those participants backed away from using hashes.
In general, online information sources often lack important information. This not
only applies to hash support but lacked important links, e.g., from the explanation of
’unsafe-inline’ to nonces, such that developers know how to handle inline scripts.

Key Takeaways: The strategy of using nonces to allow inline code gets hard to
complete if the used framework or its plugins are not CSP compliant.

5.4.1.1 Improvement Suggestions

The information sources used by our participants partly pushed them into implemen-
tation paths that caused more work than necessary. Also, the presented information
was incomplete and did, in many cases, not recommend the best practices in terms of
CSP deployment. In particular, the sources proposed to use unsafe-inline to resolve
problems with inline scripts. While at least some sources mentioned that this makes the
policy trivially bypassable, none of them directly linked to the more secure alternative
of using nonces. Similarly, although they all noted events could be added programmat-
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ically, some guides first presented hashes as a way to solve the issue and then provided
the developer with information about the inconsistent support for that method and the
requirement to use unsafe-hashes.

In addition to that overwhelming amount of information to solve specific issues, the
examples presented as the primary example of a CSP always included entire domains
allowed in the policy. This might cause the misconception that nonces cannot be used
for third-party resources and ignores the fact that allowing complete URLs is the more
secure way of creating a policy. Instead of presenting the CSP Level 1 way of allowing
JavaScript in the application, the information sources should emphasize the usage of
nonces in CSP. The best practices for CSP deployment, as they are recommended by
Google with strict CSP [46], are a good and proactive approach to arrive at a secure
CSP. However, the missing support in browsers and frameworks for the recommended
features might prevent developers from choosing strict CSP. Based on the ideas from
strict CSP and the problems and strategies that we identified throughout the interview
and the coding task, we created a decision tree (see Figure 5.8) that can be used by
developers to start with CSP deployment. Notably, this tree does not take into account
edge cases like self hosted script-gadgets [75, S2] or vulnerable JSONP endpoints [136].
Also, the common practice of third parties to programmatically add scripts [122] is
not considered here. However, as a developer, it is possible to check the own resources
and/or self propagate the nonces to all programmatically added scripts by hooking
JavaScript’s createElement API.

As mentioned in Section 5.3.4.1 tools can be used to generate a CSP. However, in
the case of inline code, they are doing an unsatisfying job. Either they include the
’unsafe-inline’ keyword, which makes the policy trivially bypassable, or they are
just blocking inline code, which requires the developer to externalize it. None of the
tools emphasize the usage of nonces in the CSP, but they instead allow URLs or even
entire domains. Also, those tools take an existing page and build a CSP around it,
which is possible, but arguably the wrong way of approaching CSP deployment. A tool
that would help the developers from scratch, like a built-in CSP feature in common
IDEs, would likely be more useful. Such a tool would not only be capable of warning
users as soon as they use inline scripts or events, but it can also help with the compu-
tation of hashes or the propagation of nonces for the JavaScript assets. In addition to
that, known and widely used frameworks should assist the developers in creating and
propagating nonces to all scripts present in the application and should also enforce this
behavior for plugins that are available for their platform. Also, many tools that are
used to check the security of a deployed CSP or header configurations in general, as
mentioned in Section 5.3.4.2, can be built into IDE extensions. However, it would also
be handy for developers if warnings about a misconfigured CSP, or security headers
in general, would be printed in the developer console because every participant of our
study used this browser tool. If the developer would get the help and the information
they need by default, e.g., via the browser, it would ease the deployment and mainte-
nance of CSP. By lowering the engineering effort required to deploy a CSP, problems
like the monetary factor might have a lower impact on the security of real-world policies.
Some browsers already try to give rudimentary help for CSP deployment, like printing
the script hashes in the console error messages. By standardizing those warnings and
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support the use of nonces?
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Figure 5.8: Developer decision tree to create a sane CSP.

the error reporting in general, all developers, independent of the browser, can benefit
from those messages, as long as everyone is adhering to the standard. This standard
compliance, however, seems to be a problem in general. Browser inconsistencies like the
different support for a feature such as ’unsafe-hashes’ and ’strict-dynamic’,
or the inconsistent way of handling nonces or WebSocket connections, cause additional
confusion for developers in deciding if and how to use these features.

5.4.2 Drawing Task

As mentioned in Section 5.2.3, we ask the participants to draw and explain their favorite
XSS vulnerability, so as to better understand the participants’ mindset about XSS and
CSP. All participants freely chose to draw XSS as a server-side issue. Although one
participant at least mentioned ”DOM-based XSS”, this indicates that the client side of
the problem is less prominent in developers’ minds. Eight participants decided to draw
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a stored server-side XSS vulnerability, one drew a reflected server-side XSS, and two
participants explained both variants, which indicates that the stored variant is more
prevalent in the developer’s mind. The prominence of the server-side might be one
reason why two of our participants reveal certain misunderstandings throughout the
drawing task. XSS seems to be a server-side issue in their mindset, so the server is
loading the malicious payload. Similarly, they thought that the server also enforces the
CSP. This focus on the server-side was also reported by one of our participants, who is
working as a consultant:

”The browser decides that in case of CSP and then forbids it
[...] but when I then come to cross-origin resource sharing, that

this is then the server, [...] and teaching that to my customers is
always difficult, too.”

– Participant 9

Another misunderstanding of CSPs capabilities is that three of our participants
only explained that if CSP would be present on the attacked page, it would prohibit
the data exfiltration to an attacker controller server, but not mentioned that the actual
code execution is also forbidden. The full results of our drawing task analysis are
available in Section C.6. Notably, one participant did not draw an XSS attack, but
rather a CSRF attack.

Key Takeaways: The server-side variants of XSS are far more prominent in the
developer’s mindset. Two even had the misconceptions that XSS is a server-side
problem and concluded that CSP is, therefore, enforced on the server.

5.4.3 Reflections on Methodology

Due to the extensive pre-study, we eliminated any application bugs that could have
resulted in problems during the programming task. In general, the coding task achieved
the intended goal. Participants revealed strategies, information sources, and roadblocks
only during the coding task, either because it resulted in additional concepts or shed
light on problems that the participant forgot about during the interview but then
remembered during the coding task. The way how the coding task was performed
revealed different pros and cons. While the remote-control process drastically reduced
the time required for the setup, it seemed to be more exhausting for the participants.
This is because they needed to control a foreign system, not set up to their liking.
Moreover, depending on the network connection, remote control incurred lags. On the
other hand, natively running our application requires significant effort to set up, but
it also resulted in the participants being able to work as they wish. Conducting the
coding task using the provided docker files has shown to be a good tradeoff between
the aforementioned options. The setup was not complicated because the docker image
only required a few minutes (usually less than three) to build. Because the files were on
the participant’s machines, it was possible to use their coding setup for code changes.
However, one drawback of this approach was that changes to the code required a docker
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rebuild, causing a slight delay of few seconds (less than 20). While in theory, we could
have also mounted the directory directly into the docker to allow live updates. However,
this would require additional packages to allow for auto-reload and incurs the risk of
inconsistencies between the developer’s view and the docker-run system. Moreover,
some participants changed the Web server config through nginx, which would have
required a reload in either case.

Similar to the results of the coding task, the drawing task helped us to enrich
our data and get a deeper understanding of the participant’s mindset about XSS and
CSP. Some of the misconceptions regarding CSP and the underlying threat model
would not have been uncovered without the drawing task, which is why we recommend
this addition to a study like ours. Ten participants used Zoom’s annotate feature to
draw, which in some cases were not present in the recordings. Fortunately, we made
screenshots of the drawings during the interview, and therefore we did not lose any
data due to that problem. Using diagrams.net for the drawing task required one or two
minutes of setup, but seems to be easier for the participants and was present in both
recordings.

Only a small fraction of Web sites actually deploys a CSP. Thus, recruiting Web
developers of real-world applications that have dealt with CSP before is even more chal-
lenging than recruiting developers in general. Not only is our targeted group limited
and hard to reach, in addition to that, they are also educated in both Web develop-
ment and IT-Security. This high level of education was the reason why we decided to
compensate the participation with a 50€ voucher for their time. In total 30 possible
participants completed the screening survey. The first recruitment attempt, to send
bulk emails to the top sites that deployed CSP, resulted in zero responses. Thus, we
continued with the attempt to use the OWASP as a trusted third party to advertise our
study. After this campaign 13 potential participants completed our survey. We invited
all of those participants to the online interview, but we only received answers from six
of them even after two additional reminders. The next idea to increase the number of
potential participants was to cold-call Web development companies from our country.
This attempt again resulted in zero responses. Thus, we decided to try out recruitment
via LinkedIn advertisement, which was seemingly successful with eleven new entries in
our database. However, we had indications that ten of those were only bots that en-
tered data in the survey as a result of the LinkedIn advertisement. Those bots not only
entered bogus values in the fields of the survey but also supplied emails of randomly
concatenated words and numbers. Nevertheless, we send an invitation email to three of
those because they entered occupations similar to Web developer but got no response to
that email. We also invited one non-bogus entry, but this potential participant did not
reach back to us even after the reminders. Right before the advertisement campaign,
two colleagues from our research institution gave a talk at an OWASP event. At the
end of their talk, they also advertised our study, which resulted in five new database
entries, from which four actually took part in the interview. Notably, the OWASP
event resulted in one additional participant, who did not take part in the survey but
participated in the interview. In addition to that, one participant that completed both
survey and interview was recruited via word-of-mouth propaganda. Notably, we did
not ask the participants from where they found out about our study. Thus, the num-
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bers above are the results of temporal coherence between the recruitment procedure
and the participant completing the survey. In total 20 (30-10 bots) people finished the
survey, and 12 people participated in our interview, including the drawing and coding
task. While we tried several ways to recruit those, we must admit that using a trusted
third party, in our case the OWASP, for recruitment surpassed all other recruitment
procedures.

5.4.4 Limitations

Our work has three main limitations that are either tied to the recruitment process or
the methods we used to gather our data. First, our sample might be biased towards
security-aware developers, given our main recruiting path through the OWASP. We
invested a lot of time in various recruitment efforts, including contacting web develop-
ment companies, sending emails to websites with CSP, and advertising on LinkedIn.
However, it proved to be very difficult to recruit specialized developers. Yet, as depicted
in Section 5.3.1 only half of our participants reported having a security background.
Second, we acknowledge the limitations that interviews entail. Although we made every
effort to build rapport and ensure that participants freely and willingly recounted their
experiences, we cannot guarantee that no concepts were missing or misstated. This
portion of the data is based on the recollection of the participants, and it is possible
that portions may have been forgotten, intentionally omitted, or misremembered. For
this reason, we decided to supplement the interview with the coding task. Nevertheless,
we do not claim the completeness of the interview results. Third, the coding task was
likely biased due to its artificial setting. To mitigate this, we tried to make the coding
task as pleasant as possible for the participants by offering three popular programming
languages and various setup options. To avoid that participants feel pressured, we clar-
ified that we do not rate any of their solutions regarding their correctness but are only
interested in the process of how they approached the problem and developed the CSP.

5.5 Summary

In this chapter, we present the first qualitative study involving 12 real-world Web de-
velopers to evaluate the usability of the CSP. Throughout our interview which involved
a drawing and coding task, we investigate the participant’s mindset regarding XSS
and uncover the reason behind the usage of some insecure CSP practices as well as
strategies and motivations that interact with the deployment procedure of a CSP. The
motivation to deploy CSP is, in the best case, the incentive to mitigate XSS; in the
worst case, it is only a checkbox that arose from a penetration test. We shed light on
different kinds of roadblocks for CSP deployment. For the roadblocks based on knowl-
edge gaps and conceptual issues, we argue that better information sources can mitigate
this problem. However, the technical roadblocks require that the browser vendors fi-
nally need to agree upon how CSP should be implemented, how error messages should
look like, and introduce warnings and information for poorly configured CSP in the
developer console. Those steps would reduce the uncertainty of many developers and
reduce the impact of lousy information sources on the deployment procedure to ease
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the deployment procedure. Our participants tend to use the old way of allowing scripts
via their hostname, but some also use hashes or nonces to allow scripts, while usage of
the latter is focused on inline code. Also, tools for generating an initial CSP, evaluating
the policy, or analyzing the violation reports seem common for CSP deployment. In
addition to that, we also discuss our methodological choices and share the lessons we
learned from those, such as the success or failure of certain recruitment techniques. We
believe the insights highlight that secure-but-complex technology on the Web leads to
confusion and lacking deployment.

CSP is arguably one the most complex mechanisms in Web security, but we hope
our insights influence the design process of new mechanisms to avoid such problems.
However, introducing possibly breaking changes to an already in-the-wild used mech-
anism is hard, if not impossible. Also, interviewing developers that are familiar with
the mechanism is not working for the design process of new ones. Therefore, chapter 6
takes a look at a new, not widely used mitigation mechanism for client-side XSS called
Trusted Types, to see if it is repeating the design mistakes made for CSP (RQ4 ).
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Contributions of the Authors

This Chapter is based on ”Trust Me If You Can – How Usable Is Trusted Types In
Practice? [P5], which is currently under submission. Sebastian Roth conceived the
study. Sebastian Roth and Lea Gröber designed the study. Sebastian Roth created
the Web applications for the main study. Sebastian Roth and Lea Gröber the Web
application for the screening survey. Sebastian Roth and Philipp Baus conducted all
interviews (5 P.B.; 7 S.R.). Sebastian Roth coded all interviews and evaluated the
results. Philipp Baus and Lea Gröber coded two interviews again to compute the
Inter-Coder Agreement. Ben Stock and Katharina Krombholz supervised the study.
All authors commented on the text and contributed to individual sections.

6.1 Motivation

Chapter 5 hinted that many developers do not know the differences between client-
and server-side XSS, which could lead to problems in the deployment process of client-
side mitigation techniques as for example CSP work differently that for example auto-
encoding or type safety on the server-side. To transfer the from the server-side known
concept of type safety to the client side, Google proposed the Trusted Types API [69].
With this mechanism, it is not possible to invoke dangerous JavaScript APIs without
passing the input through sanitization functions that the developers need to specify
themselves. However, at the point where the World Wide Web Consortium (W3C) has
discussed shipping Trusted Types as First Public Working Draft (FPWD) [81], browser
vendors raised concerns that the complexity of self-creating sanitization functions is too
difficult for the majority of developers, which is in line with the results from chapter 5
about the (un-)usability of the related CSP mechanism. Wang et al. [134] have exem-
plified how Trusted Types could be incorporated into a Web framework. However, the
claim of the browser vendors lacks a scientific foundation, because the actual usability
of Trusted types deployment has not been evaluated yet.

To close this research gap and provide a scientific foundation for decisions of the
W3C, the objective of our work is to get insights into each step of the deployment pro-
cess of Trusted Types and investigate the developer’s knowledge about the underlying
issue, namely client-side XSS. Therefore we designed a qualitative interview study in
a ”bottom-up” approach [61] that includes a coding task where the participants de-
ploy Trusted Types for a small Web application. Throughout our study, we evaluate
the participant’s knowledge of the different dimensions of XSS and their knowledge of
existing mitigation techniques. In addition, our iterative study process, allowed us to
get fine-grained insights into all deployment steps allowing us to evaluate the entire
deployment process of Trusted Types.

Our work first presents a comprehensive qualitative interview study methodology to
evaluate the usability of Trusted Types (Section 6.2). With ten participants, we were
able to uncover important roadblocks of Trusted Types deployment, such as miscon-
ceptions introduced by information sources or problems caused by same-origin iframes
(Section 6.3). Based on our findings, we discuss and propose strategies on how to suc-
cessfully deploy Trusted Types, such as the usage of third-party sanitization libraries.
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Also, we present general improvement suggestions for the Trusted Types standard, like
the inheritance of Trusted Types sanitizers for same-origin iframes (Section 6.4).

With the improvement suggestions, we want to ease the deployment process of
Trusted Types, and influence the W3C decision process. Also, we suggest that the
W3C sees this work as a role model to test their working drafts with real-world Web
developers before releasing them and before browser vendors start implementing them
in their products.

6.2 Methodology

A GitHub discussion [81] of the World Wide Web Consortium (W3C) showed that
some browser vendors block the deployment of Trusted Types because they claim it
is too complicated for the long tail of Web sites. Therefore, Trusted Types, as a new
mechanism, is currently only supported by Chromium-based browsers (since version 83,
May 2020) [26]. The goal of this work is to uncover problems with the current version
of the mechanism and evaluate how hard or easy it is to deploy, such that the W3C can
use our results to improve the mechanism to enable developers to mitigate client-side
XSS attacks.

Due to the youth of the mechanism and its limited support in modern browsers,
the adoption rate of the mechanism is negligible. Therefore the target for our study is
not Web developers with experience with the mechanism, as it is nearly not existent,
but rather the average Web developer, that potentially will be using Trusted Types in
the future. Together with them, we want to get detailed insights into the deployment
process of Trusted Types from a controlled coding task. Such that we can uncover
roadblocks, and develop deployment strategies for the mechanism.

Thus, we answer the following research questions:

RQ4.1: Do developers understand client-side XSS and how Trusted Types can mitigate
damage?

RQ4.2: What roadblocks do developer face when deploying Trusted Types?

RQ4.3: What strategies do developers follow in case of problems?

6.2.1 Recruitment and Participants

To maximize the ecological validity of our results the target population for our study
is real-world Web developers that have experience with the development and deploy-
ment of Web sites. Given that we want to study the deployability of Trusted Types
for all sorts of Web applications and given that Trusted Types is not widely used by
Web sites anyways, we not only considered professional Web developers but also non-
professional Web developers, for example, students, as long as they mention prior Web
development experience during the screening-survey. Since Web developers are a hard-
to-recruit population [P4], we relied on a combination of different recruitment strategies
to optimize outreach. First, we posted a recruitment flyer on the social media channel
(Twitter) of our institution. This flyer contained details and timelines of the study
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Figure 6.1: Recruitment Flyer posted on Twitter

procedure as well as information about us and the compensation for the study (see
Figure 6.1). In addition to that multiple researchers from our team presented talks
about Web security at multiple industry-focused developer conferences. Those talks
included a call for participants for this study, such that we can have direct contact,
and immediately answer questions from the Web developers that showed interest. Also,
we used contacts of researchers of our institution to industry and ask those people to
forward our recruitment Web site to their internal team chat or in their Web devel-
opment communities. In general, irrespective of the recruitment procedure, we always
mentioned that in addition to the monetary compensation of 50€, the participants can
learn something about client-side XSS vulnerabilities and how they can mitigate this
issue for their Web applications.
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6.2.2 Screening Survey

To ensure a homogeneous set of participants that are all security aware and professional
real-world Web developers, we conducted a screening questionnaire before inviting se-
lected participants to the actual interview study. This survey included 12 input fields,
where ten were actual questions about the demographics of the participant plus a field
for the contact email address as well as a feedback/issue field for the survey. Notably,
the Web application is self-written and self-hosted under a subdomain of our institution
such that we have full and exclusive control over the data entered into the survey.

The landing page of the survey informs the participants about the approximate time
required for the survey (1-2 minutes) and the number of questions. Furthermore, they
are informed that all data will be treated confidentially and that we at no point will we
disclose their identities of them or the sites they operate. The page also includes infor-
mation on who we are and the terms and conditions of participating in the survey. In
the survey itself, the participants are asked to (optionally) provide age, gender, current
occupation, highest education, country of living, and the size of the company that they
are working at. In addition to that, we also ask questions about their experience in
deploying or maintaining Web security mechanisms, their IT security background, the
Web presence of their company, and questions regarding the development team. With
that information, we are then able to better assess the participant’s eligibility for the
study. Notably, all of the input fields, except for the contact email, are optional.

After the survey, we manually check the eligibility of the participants, and in case
of a positive evaluation invite them to the actual interview via email. The eligibility
of the participants is based on their occupation being related to Web development or
other answers showing that they have experience as a Web site’s operator. The email
consists of a short reminder regarding the schedule for the interview process, a link to
the interview scheduling system of the Nextcloud instance hosted by our institution,
and information about the interview setup. To give the participants a comfortable
environment we offer them to use any video conference software that they want to use,
as long as it allows for screen sharing for the coding task. We also offer them different
ways of setting up the Web application for the coding task. They can either use a
docker image provided by us, can directly execute the python Django code, or can
remote control the interviewer’s machine (e.g. via Zoom or TeamViewer) to conduct
the coding task.

6.2.3 Interview

In the first few minutes of our interview, the researcher gives the participant an in-
troduction to the timeline of our interview session. The interview is partitioned into
questions regarding the participant’s working environment, some questions about Web
Security, the coding task, and a debriefing. The question set about the working envi-
ronment is to check the Security and Web development background of the participant,
but also to get the chat between researcher and participant rolling.

After the general questions, we bring the conversation to XSS to answer our research
question regarding the understanding of this vulnerability and the differences between
client- and server-side XSS. Therefore we explicitly ask our participants if they could
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explain to us how the vulnerability happens, and about the differences between client-
and server-side XSS. Here, we also try to find out if the participant knows client-side
execution sinks for XSS attacks. Next, we chat about Web security mechanisms that
come into the mind of the participants when they want to defend against XSS, which
then transitions into questions regarding Trusted Types and its method of operation.
The question block is topped off with questions about the impression of Trusted Types
and if they would use it in one of their Web applications.

Then, the coding task is performed which will in detail be explained in Section 6.2.4.
After the coding task, a set of debriefing questions will follow. Based on the recent
interactions with the deployment of Trusted Types the impression of the mechanism
might have changed, which is why we ask about the feasibility of Trusted Types as a
defense mechanism against XSS. The last question that we ask is about improvement
suggestions for Trusted Types, to assess which is the biggest problem that currently
hinders the successful deployment of Trusted Types. Finally, the participant needs to
fill out a System Usability Scale (SUS) [16] to assess the usability of deploying Trusted
Types.

6.2.4 Coding Task

In our coding task, we ask the participants to deploy Trusted Types for a small Web
application, while the main work in the case of the deployment process is the imple-
mentation of the sanitizer functions. The Web application itself uses features, libraries,
and frameworks that are frequently used by real-world Web applications, to increase
the ecological validity of the data we gathered throughout the coding task. Details of
how we chose those, are explained in Section 6.2.4.1. Notably, throughout the cod-
ing interviews, the functionality of the Web application has been changed, to ease the
initial deployment process such that we get more fine-grained insights into the later
deployment steps, but also to lower the level of frustration of the participants because
they could get nowhere near enough a proper solution. Due to our usage of real-world
third parties for a better ecological validity of our results, we also had changes in the
functionality of the application that were not driven by us, but by third parties that
change the way their libraries operate during our study. We explain the exact changes
of this iterative interview process in detail in Section 6.3.2.

6.2.4.1 Web Application

The Web application’s backend is written in Python 3.10 using the Django Framework.
For Trusted Types the actual backend language is less important, because of the main
work, so the Trusted Types sanitizer is being written in JavaScript anyways. Also as
Trusted Types is enforced on the client-side, client-side technologies used by Web sites
are more important for our Demo application that the server-side technologies.

To get fresh data about the usage statistics of third-party JavaScript we crawled
the Tranco Top 5k sites1 with a chromium browser instrumented by puppeteer2. Our
crawl also collected the URLs present on the loaded page and visited those up to two

1https://tranco-list.eu/list/JX83Y
2https://github.com/puppeteer/puppeteer
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Third-Party Site (eTLD+1) Inclusions (# Sites)

google-analytics.com 2,626
googletagmanager.com 2,329
gstatic.com 2,311
doubleclick.net 2,162
google.com 2,132
facebook.net 1,632
youtube.com 1,571
googleadservices.com 1,359
googleapis.com 1,233
twitter.com 988

Table 6.1: Top 10 third parties by inclusions

levels of links from the start page. To not put too much load onto the servers, and
to speed up the crawling process, we also limited the number of total URLs crawled
per site to a maximum of 500 URLs. During a page load, we waited a maximum of 20
seconds for the load event to be fired and then additional 5 seconds before we continue.
During this time we capture all script URLs that are loaded.

In Table 6.1 we show the Top 10 sites, by the number of including sites, that were
loaded during our crawl. The most requested site by far was google-analytics.com,
with 2,626 sites that included scripts from it. As the name suggests, the vast majority
of those sites (2,541) are inclusions of the scripts to run the Google analytics services
on a Web site. Due to this prevalence of the service in real-world Web applications,
our demo application also uses Google Analytics.

Advertisements, specifically those from doubleclick.net, were also used fre-
quently (on 2,162 sites). However, showing real advertisements to our participants
would put costs without benefits on those who ordered the advertisement. These costs
would not only be problematic from an ethical point of view but could also make us
accountable for ad fraud. Therefore, instead of just ignoring the prevalence of advertise-
ments in real-world applications, we decided to create a custom advertisement service
for the Web application.

The biggest player in terms of social media integration was facebook.net. The
majority of those page loads (742/1,632) were inclusions of the script that includes the
Facebook widget. This is why we also included this feature in our application. Notably
336 of the sites that used the Facebook integration also used the Twitter widget at the
same time. Due to this intersection, we also incorporated the Twitter widget in our
Web application.

Another common third-party service used in Web sites is the integration of Maps.
Because the most widely used service here (Google Maps), needed a domain name to
properly use all features, but we only used a local setup for our study, we had to use a
different service that supported our use case. Therfore, we used openstreetmap.org
as Maps integration. In addition to that, we also had a page that showed a News blog.
To enable users to comment on that news we included the third-party comment system
disqus.com in our application.
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Framework Usage (# Sites)

jQuery 1,005
Bootstrap 358
Dojo Toolkit 79
Vue.js 75
Angular 68
Backbone.js 19
Ember.js 1

Table 6.2: Usage of JS frameworks

Notably, both openstreetmap.org and disqus.com have been removed from
the application throughout our study such that it takes less time for the participants
to deploy Trusted Types. With this decision, we reduced the level of frustration of our
participants such that our study is not causing them to refrain from using it in the
future. We have chosen those two services to be removed, as they were the least widely
used third parties that were included in our application.

To assess which of the client-side frameworks is the most used one we not only
checked the script’s origin, but also the actual script that is loaded. Table 6.2 shows that
jQuery is by far the most used framework with over 1k sites that use it. Notably, the
intersection of those sites with those from the second most used framework (Bootstrap)
shows that 62.8% (225/358) of the sites that are using Bootstrap are also using jQuery.
Thus, we used a combination of Bootstrap and jQuery to build our Web application.

6.2.5 Pre-Study

To ensure that our coding task and its setup do not contain errors and can be solved,
such that no participant is frustrated after the interview, we conducted a pre-study
involving two participants (P1 & P2). Both worked for an IT company, one as a
developer, and the other one as the security incident response team. Notably, both
took Web-related courses at university. By selecting participants that are presumably
less trained in deploying features for real-world Web sites we want to find a lower bound
for the scope of our coding task. Given that none of the participants of the pre-study
was close to sufficiently deploying Trusted Types for the Web application we decided to
remove some features from the Web site to ease the deployment. We based the decision
of which of the third parties to drop on the results presented in Table 6.1. Thus, we
removed the subpages that are incorporating third parties for Maps integration as well
as the one that added a comment section below our News page. In addition to that, we
also added code snippets in the coding task to speed up the deployment. The pre-study
showed that participants copy-paste the CSP header that enables Trusted Types and
the skeleton for the sanitizer functions (see Section 2.3.3) from online resources. Thus,
by adding them to the source code files, we do not ease the creation of the sanitizer
functions, we only reduce the setup time for the actual task. The pre-study has also
shown that our interview guideline is sufficient to answer our research questions. From
the transcribed interviews we were able to learn more about the developer’s mental
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model of XSS, especially client-side XSS, and uncover roadblocks as well as strategies
for Trusted Types deployment. In addition to that, the interviews also shed light on
the participant’s perceptions of Trusted Types and motivations and disincentives to
deploy Trusted Types.

6.2.6 Data Analysis

For the analysis of the collected data, we used the GDPR-compliant online transcription
service amberscript.com. Here we used the Human-made mode which ensures that
the transcriptions are created by professional transcribers and captioners. One of the
authors created a codebook using an open coding approach [128]. To better analyze
the results of the coding task, and not miss important information, the recordings
of the shared screen during the coding task were also considered during the analysis.
We continued conducting interviews and analyzing them until no new concepts were
added to the codebook from the newest two interviews. After reaching our criteria
for saturation of our dataset, the main author handed over three interviews with the
saturated version of the codebook (see Section D.1) to two other authors to calculate the
inter-coder reliability of our results. Those three interviews were the three interviews
with the most different variety of codes, such that we cover as many possible codes as
possible with the inter-coder reliability calculation.

To better evaluate the mindset of our participants and to get a better understand-
ing of the occurring roadblocks, and the strategies that the developer chooses, our
Codes are segmented into high-level categories and more detailed low-level informa-
tion. If for example, a participant struggled with Trusted Types deployment due to
a programmatically added sourceless iframe, we assigned the code ”Roadblock: Same-
Origin Iframe”, where Roadblock is our high-level category and Same-Origin Iframe the
low-level description. Following the methodology of previous research [99, P4, 116] to
identify emerging concepts, patterns, and themes, we analyzed our data using thematic
analysis [14]. We then used axial coding [128] to find relations between those concepts
and patterns. For example, we analyzed the connection between roadblocks and the
applied strategy to explore which factors in the deployment process can lead to success
or failure of the deployment of Trusted Types.

6.2.7 Ethical Considerations

To the best of our knowledge, we designed our interview, the coding task, and the data
collection process always with the risks and benefits for the participant in mind. The
participants had the freedom of choice to use their own machine for the coding task or
to remote control the interviewer’s machine. While using the own device is closer to the
participant’s normal and familiar coding behavior, the direct installation of python and
Django might be perceived as invasive. However, they could have used the Dockerfiles
to create an easy-to-remove docker image that runs our code.

In case the participants used a browser on their own device to access the Web
application, the current IP address of the user is leaked to third parties, as the App
performs requests to Google Analytics, Twitter, and Facebook. We decided to still use
those real-world third parties to maximize the ecological validity of our results.
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Also, our participants, especially those from the pre-study, might have felt heavy
frustration when they after 90 minutes were not even close to a proper solution. This
was one of the main reasons why we cut down some of the features of our application,
such that we do not leave behind a long-lasting bad feeling of working with Trusted
Types or deploying security features.

We used the online service amberscript.com to transcribe the audio of our in-
terview sessions. Notably, we uploaded the audio (not the video) track to only reveal
the necessary minimum to the service. Also, Amberscript 3 is fully compliant with
GDPR and advertises their service by guaranteeing full confidentiality, transparency,
and Non-Disclosure Agreement (NDA) of all the transcribers. In addition to that, all
participants gave their electronic consent in the pre-survey and again verbal consent at
the beginning of the interview to our data collection and processing methods. Notably,
all data (on our side and one Amberscript) is processed and stored in compliance with
the General Data Protection Regulation (GDPR) and the entire methodology of our
study and data collection processes have been approved by our Ethical Review Board
(ERB).

6.3 Results

In this section, we present the results of our analysis, starting with the demographics
of our participants. We then elaborate on the participant’s mindset regarding the
difference between client- and server-side XSS, highlight the different roadblocks that we
investigated for Trusted Types deployment, and we shed light on different deployment
strategies and their success.

Notably, our additional coding of the three interviews with the most diverse set of
codes resulted in an inter-coder reliability Krippendorff α [70] of 0.987 for the three in-
terviews coded with the saturated codebook. Given that our codes are mainly based on
technical concepts, which does not leave much room for interpretation, the Krippendorff
alpha is close the perfect, even without the discussion of the codings.

6.3.1 Participant Demographics & Background

In total, we had ten participants in our study population. All of them are male and
their age ranged from 20 to 50 years. Notably, our survey asked the age in slices of ten,
e.g, 30-40, to not be too privacy-invasive.

Four participants are working in an IT Security field, e.g., an Incident Response
Team, while two of them also considered themselves as casual Web Developers because
they created small Web applications for example for personal use. Six are working as
Web Developers, where one of them also mentioned IT Security as one of his work
areas. Also, one of the Web Developers is at the same time working in DevOps, which
was also mentioned as a working area by another participant.

Regarding security education, five participants mentioned that they took security-
related courses during their studies. The other five participants have taken courses
or certificates for IT security but reported to have self-taught knowledge about the

3https://www.amberscript.com/en/data-security-and-privacy/
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topic via videos and blog posts. Thus, we reached our target to conduct this study
with a homogeneous set of participants that are security aware and familiar with Web
development.

During the chat about Trusted Types, five participants stated that they have never
heard about the mechanism before, while the others did not explicitly mention knowing
(or not knowing) Trusted Types before participating in our study. We also asked the
participants about their knowledge of XSS mitigation techniques. Here, seven partic-
ipants mentioned CSP, eight mentioned proper sanitization and/or filtering of user-
controlled input, and one considered Web Application Firewalls (WAF) a mitigation
for XSS. Notably, many of the participants mentioned multiple mitigation techniques
here, so our participants are knowledgeable when it comes to the mitigation of XSS
attacks.
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Figure 6.2: Diagram of the deployment workflow based on our participants.

6.3.2 Roadblocks for Trusted Types and Where to Find Them

Based on the approaches that we have seen throughout the coding task, created a
workflow diagram Figure 6.2 that we use in this section to shed light on the different
roadblocks that we investigated in the different deployment stages. We also explain
in detail the changes in the Web application and the reasons for those changes. In
addition to that, we will explain the implications of the decisions and strategies on the
success of the deployment process.
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Stage 1: Enforcement and Initial Deployment

Participants P3 & P4 deployed CSP very late, after writing at least one sanitizer
such that they were overwhelmed by the number of errors that are caused. Also,
participants P5 & P6 did not manage to deploy a CSP. To get deeper insights into
the deployment process we tried to ease this part of the deployment process. Thus,
we added commented-out boilerplate code to set a CSP header that enabled Trusted
Types for scripts and enforced a default policy.

Also, the participants were confused to use named policies, because one of the
information sources recommended their usage.

”Is this the default policy? Because they had something written
here, you should not always take the default, but tinker with the

specific one.”
– Participant 12

However, this is not possible as third-party code cannot be adjusted to use the
named policy. Therefore, we added boilerplate code for the creation of a default Trusted
Types policy that is using the id function for all sanitizers after participant P5.

With the new changes, Participant P7 managed to deploy the CSP that enforces
the default policy with the ineffective id function sanitizers. The enforcement of this
default policy resulted in errors caused by Twitter’s usage of source-less same-origin
iframes for their timeline widget. Those kinds of iframes inherit the CSP policy that
mandates the usage of Trusted Types, but they do not inherit the sanitizer functions.
Requiring the usage of those functions without them being present then results in
multiple errors occurring in the App. Notably, Twitter’s behavior regarding how the
widget is built has changed throughout the process of this study. Upon request at
the Twitter Community Hub [132], they acknowledged that this change is more of a
usability/accessibility-driven change because the server-side rendering of the timeline
is reducing the loading time of the widget, rather than a change to ease the deployment
of Trusted Types.

Stage 2: HTML Sanitizer

All participants started with implementing the createHTML sanitizer. Participants P4,
P7, P8, P11, and P12 used a third-party HTML sanitizer (DOMPurify4) to implement
the createHTML function. Because none of the third parties that we used required the
usage of adding JavaScript in any form into the DOM, this path lead to a successful
deployment of the createHTML sanitizer.

4https://github.com/cure53/DOMPurify
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”There was also a library recommended here. If OWASP
recommends DOMPurify, then I’ll take it!”

– Participant 11

The other participants (P3, P5, P6, P9, P10) implemented the sanitizers themselves,
which in all cases led to an easily bypassable filter. Most participants started by
copy-pasting the example sanitizer from one of the information sources. This sanitizer
however replaces all < with their HTML equivalent (&lt;), thus all inserted tags are
destroyed, which causes Twitter and Facebook to not work anymore. Some of them (P6,
P10) then changed this code to only removed <script. In either case, the injection
of inline event JavaScript event handlers, such as the onload handler of an HTML
image tag, would still result in code execution. Thus, in total, all custom sanitizers
were trivially bypassable, so only five out of 10 participants managed to implement a
secure HTML sanitizer function for Trusted Types.

Stage 3: JS Sanitizer

Five of our participants (P4, P7 & P10-12) first reused their createHTML sanitizer
to also sanitize JavaScript. Both, the participant’s custom HTML sanitizers as well as
DOMPurify replaces an opening HTML tag (<) with its encoded equivalent (&lt;) or
the empty string. The evaluated code from the third-party Mensa widget contains the
following JS code snippet:

for (let i = 1; i <= 5; i++) { ... }

With the HTML sanitizer function, this code was therefore changed to, for example:

for (let i = 1; i &lt;= 5; i++) { ... }

Thus, the change causes a syntax error during the eval call. The participants that
took this path needed quite a bit to notice this, as Chromium only pointed to the call
of the eval for the syntax error. To find the root cause of the error the developers
were required to investigate how this functionality works in detail and investigate the
source of the evaluated source code and compare it with the result of the sanitizer.

Those participants that did not re-use their createHTML and those who afterward
changed their sanitizer due to the errors mentioned above, mentioned diverse ways how
to implement the createScript sanitizer. Participants 6 & 8 mentioned that Regular
Expressions could be used to differentiate between benign and attacker-controlled code.
The possibility to base the createScript sanitizer on cryptographic signatures to
only evaluate benign code was mentioned by participant 11. Others (P7 & P11),
however, tried to circumvent the problem by moving the code that required the usage
of eval into Cross-Origin iframes such that their execution content differs and Trusted
Types are not inherited into the iframe. The feasibility of those sanitization abroaches
will be discussed later in Section 6.4.3.
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Stage 4: URL Sanitizer

Also here participants re-used the HTML sanitizer, but because the URLs in our ap-
plication did not contain any HTML characters, like <, they did not recognize that
this might be an issue. Those that noticed or directly created a sanitizer themself used
an allow-list-based approach. Throughout that process, some participants noticed that
the dynamically added URLs contained a random string that might change.

”It is a hash here. I could well imagine that it changes with
every refresh or so.”

– Participant 8

In those cases, the participants changed their implementation to an allow-list based
on hostnames rather than URLs or used the startsWith function to check for the
URL without considering the seemingly random string. As using hostnames might lead
to JSONP-based script executions [136] being possible, the startsWith allow-list is
the solution that we would consider as secure.

Edgecase:

We mentioned during the introduction of the coding task that the participants can
freely choose their information sources and that they can use anything during the
coding task that they consider helpful. One participant used the AI-based GitHub
Copilot5 to write the Trusted Types sanitizer functions.

”I could actually be quite bold here once and say:
’// Generate Trusted Types using DOMPurify’,

then I’ll see what it does. Ah, look there.”
– Participant 12

The generated code for the createHTML sanitizer was correct because it simply
used DOMPurify (without actually importing it though). However, the generated code
for the other two sanitizers also used DOMPurify, which not only resulted in trivially
bypassable sanitizers as the library is not designed to sanitize JavaScript code or URLs,
but it also caused the Mensa feature of the application to not work anymore due to the
reasons explained in Section 6.3.2. See Listing 7 for the entire output of the GitHub
Copilot.

6.3.3 Client- vs. Server-side XSS

While nine participants properly explained the concept of server-side XSS, only seven
of those managed to describe client-side XSS and the difference between them. Notably,
none of the participants were able to create a proper sanitizer as they tried to write a
customized sanitization function (e.g. based on Regular Expressions).

5https://github.com/features/copilot
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Listing 7 GitHub Copilot output
// generate trusted types using dompurify
var trustedHTML = DOMPurify.sanitze(dirtyHTML, {RETURN_TRUSTED_TYPE:

true});↪→

var trustedScript = DOMPurify.sanitze(dirtyScript,
{RETURN_TRUSTED_TYPE: true});↪→

var trustedScriptURL = DOMPurify.sanitze(dirtyScriptURL,
{RETURN_TRUSTED_TYPE: true});↪→

// assign trusted types to DOM elements
document.getElementById('trustedHTML') .innerHTML = trustedHTML;
document.getElementById('trustedScript') .innerHTML = trustedScript;
document.getElementById('trustedScriptURL') .innerHTML =

trustedScriptURL;↪→

// assign trusted types to attributes
document.getElementById('trustedScriptURL') .src = trustedScriptURL;
document.getElementById('trustedScriptURL') .href =

trustedScriptURL;↪→

document.getElementById('trustedScriptURL') .onclick =
trustedScriptURL;↪→

”In the real world, if I wanted to protect against XSS attacks, I
wouldn’t just use JavaScript, I would use PHP, which has much

more functions!”
– Participant 6

Those custom HTML sanitizers also ignored the fact that JS cannot only be ex-
ecuted by script tags but also via event handlers or URLs, as they only removed
script tags but left nothing else though. Therefore JavaScript URLs (URLs using the
javascript: schemata), or onload/onerror JavaScript handlers of for example
HTML image tags, can be used to execute malicious code. Also, those participants
spend quite some time creating those trivially bypassable filters and therefore did not
manage to work on sanitizing JavaScript code or script URLs.

6.3.4 Perceptions on XSS and Trusted Types

From the five participants that used third-party sanitization libraries for the implemen-
tation of the createHTML sanitizer, four explained that they are doing this because
self-created sanitization functions or custom security solutions, in general, are prone to
be bypassable.
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”Looks like a lot of manual work and gives the user many
possibilities to do things wrong with this API”

– Participant 10

While this perception of sanitization seemingly pushed the participants into using
proper sanitization libraries instead of creating a sanitizer themself, others might cause
them to incautiously write dangerous code, as three participants mentioned that if you
use common frameworks, XSS attacks cannot happen anymore.

”I don’t know how all these frameworks, like React or something
do that, that they don’t have XSS.”

– Participant 4

However, although React automatically escapes string variables in views if added
to the DOM, there are still XSS vectors that are not secured per default. Despite the
trivial exploitability if functions like dangerouslySetInnerHTML are present, it is
still, for example, possible to execute JavaScript by setting href or src attributes of
HTML tags to javascript: or data: URIs [101]. Even if frameworks would secure
all first-party code, the common practice in the Web to include third-party code, which
might contain client-side XSS vulnerabilities, can still cause harm to the users of the
Web application.

6.4 Discussion

This section explains in detail some of the problems that our participants have faced
and discusses ways how those issues can be fixed or mitigated. Additionally, we discuss
improvement suggestions that our participants mentioned after the coding task. Also,
we discuss the possible limitations of this work at the end of this section.

6.4.1 Sourceless iframe Problem

Up until participant 7 Twitter’s timeline widget was loaded via a script that created a
sourceless iframe (see Listing 8) that contains the requested timeline. Because iframes
without a source attribute are considered same-origin iframes, the CSP deployed by
the including page is inherited, because otherwise, it would be trivial to bypass the
protection offered by the CSP. If an attacker abuses a markup injection to inject an

Listing 8 Sourceless iframe Example
<iframe id='twitter-widget'>
<!-- Content to show the timeline -->

</iframe>
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Listing 9 Example Hook for appendChild.
let TTCode = `(${addTrustedTypesFunc.toString()})();`;

let ogFunc = Node.prototype['appendChild'];
Node.prototype['appendChild'] = function () {

let el = ogFunc.apply(this, arguments);
if (el.tagName && el.tagName.toLowerCase() === "iframe" &&

el.contentWindow) {↪→

let trusted = window.defaultPolicy .createScript(TTCode);
el.contentWindow.eval(trusted);

}
return el;

};

iframe tag without a source, but content or a srcdoc attribute, and the parent’s CSP
would not be inherited, JavaScript code within the iframe would be executed within the
execution context of the page’s origin and thus be able to successfully execute arbitrary
JavaScript code.

One problem that at least one of our participants identified before Twitter changed
this behavior is that in the case of Trusted Types deployment the CSP that enforces
the usage of Trusted Types is inherited by the sourceless iframe twitter creates, but the
actual sanitizer policies are not as they are handled as every other included JavaScript
function is. As a result of this, the iframe enforces the usage of a Trusted Types policy
for which no named sanitizer exists, which therefore will result in errors and malfunction
of the Twitter timeline widget.

One way for developers to fix this issue themself is to hook calls to all of the
functions that can be used to append elements to the DOM (e.g., insertBefore or
appendChild) and in case of an iframe being added directly inject the Trusted Types
sanitizer into this frame (see Listing 9). We cannot hook the element creation of the
iframe here as we can only script into iframes that are already added to the DOM. If
now, however, code in these iframes again creates sourceless iframes the problem will
reoccur such that the JavaScript snippets that inject the sanitizers into added iframes
need to be aware of their source code and inject themselves into the iframe such that
all iframes will be covered.

However, we argue that it would be easier for the developer if not only the CSP
but also the registered sanitizers are inherited into same-origin iframes. Given that
the allowed names of the sanitizers are mentioned in the corresponding CSP direc-
tive, and given that the sanitizers are created with this name using the trusted-
Types.createPolicy API, we hope that the W3C will change the standard accord-
ingly. Notably, it might happen that a developer explicitly wants to have a different
sanitizer in the iframe. In this case, the standard should allow the developer to explic-
itly mention which sanitizer should be the default sanitizer for iframes.
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6.4.2 Standardized & Customizable Sanitazation

Third-Party sanitization libraries such as DOMPurify were used by five of our par-
ticipants. Notably, all five then used this sanitizer of HTML content to sanitize also
JavaScript code and URLs, but three of them later noticed that this will not work.
Thus, the initial misconception that DOMPurify is a sanitizer for everything was prob-
lematic in those cases.

One problem of using a client-side third party is that depending on how it is de-
ployed, the version needs to be maintained as new variants of XSS keep popping up.

”XSS attacks, they are always evolving. I’m not sure if Trusted
Types can also keep up.”

– Participant 6

Notably, the planned Web Sanitizer API [13] would fix those issues, or at least
shift the responsibility from the operators to the browser vendors’ side. However, the
Web Sanitizer API can only be used for createHTML, but not for createScript,
as it can also only sanitize HTML content. Also at the time of writing, the Web
Sanitizer API cannot exempt certain code snippets from being sanitized, such that
specific functionalities of third-party code can be preserved. Thus, the capability of
deploying a secure HTML sanitizer using the Web Sanitizer API currently depends on
the coding behavior of third parties, which is beyond the control of the Web developer.

6.4.3 Sanitizing JavaScript

As mentioned earlier, but also pointed out by our participants, the createScript
sanitizer is the hardest part as it cannot properly be solved by an allow-list nor does
there exist a sanitization library or API.

”createScript is another beast, because it checks the created
JavaScript strings. Of course, it is difficult to ensure that this is

valid at all, whether it is secure or not.”
– Participant 8

Nevertheless, our participants mentioned or even implemented some ways how we
might be able to sanitize or distinguish attacker code from benign code (see Sec-
tion 6.3.2).

During the implementation of the createScript sanitizer, participant 10 thought
about an allow-list based on the Abstract Syntax Tree (AST). However, as shown by
Fass et al. [41] attacker could then still create malicious JavaScript with the same AST
as the benign and allowed JavaScript snippet.

Participant 11 mentioned that one way to allow specific scripts to be executed is
signatures to ensure that the origin of that script is trusted. However, while this works
for external resources under the control of the operator, it will only work for third-party
scripts if the developer convinces this party to change their functionality to also sign
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the code that they deliver to the application.
Participants 6 & 8 had the idea to use Regular Expressions to only allow code with

a certain pattern. Besides this only being maintainable at a small scale, it might be
bypassable as attackers could be able to write their attacker code in the benign and
allowed pattern.

”We can not insert a general-purpose sanitizer here now. Maybe
Regex, but how efficient is that then? And if-else stories about

plain text comparisons of any script content is also kind of
difficult.”

– Participant 8

Notably, our sample solution (see Listing 10) for the coding task uses an implemen-
tation for createScript that used the call stack to allow JavaScript execution from
specific functions or parties. However, this only shifts the trust to the third party that
delivers the script which invokes the string-to-code function, because they could also
be prone to an XSS attack.

Participants 7 & 11 mentioned that instead of somehow implementing the sanitizer
they would rather move the content that requires the usage of string-to-code conversion
into an iframe that runs under a different origin. While this works for the third parties
that we used, others will not work properly anymore as some advertisements require
access to the Web page (including its DOM) to work properly [36]. Also, this solution
is more of a compartmentalization than an actual sanitization, which is why we would
only consider this solution if none of the others are applicable.

6.4.4 Impact of Information Sources

The Information Sources at the time of conducting the study focused on named policies
rather than default policies, and partially even advised to not use the default policy
sparingly. For four of our participants (P5, P5, P8 & P9) this suggestion caused
problems as they first tried to use named policies and then later on noticed that they
need to implement a default policy anyway because they cannot change the JS code
provided by third parties.

Listing 10 Sample solution for createScript sanitizer.
let trustedCallers = [/* allow-list */]

let createScript = function (rawJS) {
let trustedCaller = arguments.callee.caller.toString();
if (trustedCallers.indexOf(trustedCaller) === -1) {

return null;
}
return rawJS;

}
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”I found it difficult in the explanations how to handle own
policies or how to set default policies.”

– Participant 8

While the usage of named policies enables the developer to create sanitizer functions
that are customized towards the data that flows into the respective sink, creating the
policies and refactoring the code is work that should be done after having the default
policy as a fallback, such that the developer is not overwhelmed by the number of errors.
Thus, we argue that Information Sources should advertise the usage of a default policy
as a first step and then the usage of named policies for certain parts of the application
to harden the protection offered by Trusted Types.

”I could imagine, for example, would be to somehow outsource
that into an IFrame or something. So to sandbox that, if I

already have such a case. But that would be a completely
different topic.”

– Participant 11

The participants P3, P6, P8 & P9 also complained about insufficient examples,
especially for the usage of a default policy and the createScript and create-
ScriptURL sanitizer functions. The examples on the information sources only contain
explicit examples where strings are sanitized but only superficial examples of the sani-
tizers.

”In the examples here there are just the strings that can be
escaped and then appended, but I don’t have any strings here to

work with”
– Participant 3

The missing examples for the non-HTML sanitizer might be one of the reasons why
five participants initially used the examples for the createHTML sanitizer for all three
sanitizers. Using the HTML sanitizer for JavaScript and URLs is not only insecure
as it does not really sanitize anything for those strings but also leads to a loss of
functionality depending on the third-party JavaScript code, as we have pointed out in
Section 6.3.2. To ease the debugging process for code that is evaluated through string-
to-code conversation, browser vendors might consider changing their error output for
those functions to point to the evaluated string.

In general, our participants (P3, P5) mentioned that the information sources for
Trusted Types only provide superficial information on the use case for Trusted Types
and the deployment process.
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Step 1: Enforce
Trusted Types via

CSP
START

Step 2: Deploy a
default policy

Step 3.1: Sanitize
HTML

Step 3.2: Sanitize
JavaScript

Step 3.3: Sanitize
URLs

Figure 6.3: Starting point of the interactive roadmap for successful Trusted Types
deployment.

”Just with the half-hour now I understood it much better than
just in the article and it makes complete sense to me now why I

would use those.”
– Participant 5

To improve the situation, we are currently in the process of using the results of this
work to create an information source including an interactive roadmap (see Figure 6.3
as examples) for successful Trusted Types deployment. By clicking on the parts of the
roadmap, a modal opens with explanations and code examples for ach of the individual
deployment steps. We also plan to incorporate examples for edgecases like the hook
for appending iframes to the DOM or a HTML parser that preserves specific event
handlers.

6.4.5 Limitations

Our work has two main limitations. First, we only conducted this study with ten
participants. Another problem is the time constraint of the coding task, as the interview
was restricted to 90 minutes. However, we argue that if a security mechanism needs
massive engineering effort even for a small Web application, the deployment for a big
Web application in a company will hardly happen in practice due to monetary and
time interests.

Nevertheless, although we reached saturation of our results with ten participants,
we do not claim the completeness of the interview results. Half of the participants took
courses that involved IT Security during their studies, so they might be more educated
than the average Web developer. Thus, we rather see our results as a lower bound for
problems that occur during the deployment of Trusted Types.
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6.5 Summary

Our work presents the first qualitative study involving ten security-aware Web devel-
opers to evaluate the usability of Trusted Types deployment. With our qualitative
interview study, and especially the coding task, we were able to uncover important
roadblocks of Trusted Types deployment and the strategies that lead to successful san-
itizers. Based on those we elaborate on improvement suggestions for the mechanism
such that we can ease the deployment of Trusted Types for developers. As the quality
of the available information sources was one of the major problems that developers
faced or mentioned during the study, we are currently in the process of creating an
interactive information source for Trusted Types deployment based on the insights of
this work. Also, we hope that our results and the improvements influence the W3C
decision process if Trusted Types (maybe together with the Web Sanitizer API) has a
future. In general, we encourage the W3C to scientifically evaluate the usability of its
drafts with real-world Web developers, such that security mechanisms are protecting
all users of the Web platform.
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7.1. SUMMARY OF CONTRIBUTIONS

In the last chapter, we summarize our contributions, answer our initial research
question, and discuss future work before concluding this thesis.

7.1 Summary of Contributions

Our overall research question was How can developers consistently deploy security mech-
anisms for their Web applications?. In order to answer this general question, we divided
the problem into four main research questions that we tackled in the respective chapters
of this dissertation.

In chapter 3 we analyzed How the quality of the Content Security Policy configura-
tions and its use-cases has changed over the course of time (RQ1). By analyzing the
deployed CSPs of the 10,000 high-ranking sites from January 2012 through December
2018, we were able to confirm that the vast majority of CSPs in the wild are, and have
always been, trivially bypassable. Moreover, we discovered that the use-case of CSP has
changed from a mitigation tool against XSS to a multitool for Web security purposes.
At the end of our experiment (December 2018), we spotted nearly equal usage of CSP
for XSS mitigation, framing control, and TLS enforcement. Also, our longitudinal lens
enabled us to quantitatively assess the struggles of deploying a CSP.

Chapter 4 answers the question: Do all users of a Web site get the same level of
security? (RQ2). Here we tested if factors like the client’s geolocations, user agent, or
language setting influence the security headers that a client receives. By requesting the
top 10,000 most visited sites, with different tests for each of our factors, we were not only
able to spot deterministic inconsistencies depending on the factor on 429 sites, but we
also discovered 765 sites that non-deterministically delivered different levels of security.
This seemingly random behavior of Web sites might not only introduce their customers
to security risks, but it has potentially impacted the results of Web measurements on
security headers. Furthermore, we discovered that around 10% of the framing control
policies in the wild are inconsistently deployed across different browsers.

The question of What are the root causes for insecure practices in CSP deployment?
(RQ3) is elaborated in chapter 5. After encountering the omnipresent misconfiguration
of CSPs in chapter 3, we qualitatively assess the reasons why developers struggle with
CSP deployment. By conducting a semi-structured interview that included a drawing
and a coding task, we were able to shed light on several roadblocks that are caused by
different stakeholders of the Web ecosystem. Moreover, we also investigated motivations
to deploy a CSP, strategies for the successful deployment of a CSP, and misconceptions
regarding the underlying thread model of CSP.

And finally chapter 6 checks if Trusted Types is repeating CSP’s mistakes. (RQ4).
Trusted Types as a mechanism to mitigate client-side XSS attacks, is a new and not yet
standardized security mechanism, which is not widely used. Thus, breaking changes to
eliminate roadblocks in the mechanism would not cause issues in real-world Web sites.
Notably, the reason why it is not standardized is that the W3C, especially Mozilla,
rejected the proposal claiming that it is to complex, without having scientic evidence.
Therefore, we conducted a semi-structured interview including a coding task to build
a scientific foundation for discussions on the standardization of Trusted Types. By
carefully designing the coding task as close as possible to the real world, we were able
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to not only investigate similar issues to the one of CSP but also shed light on technical
problems of the current approach, e.g., the handling of same-origin iframes.

Overall, we showed that deploying properly configured security headers for Web
applications in a consistent manner is a non-trivial task. However, instead of blaming
developers for this situation, we showed that other stakeholders are to blame. We
discovered technical and design issues of the mechanism, and uncovered the impact
of poor information sources. Also, we found rather political issues like the impact of
third-party services that are hindering the deployment of security mechanisms without
being affected themselves. Thus, to Deploy Security Mechanisms Online (Consistently)
is currently only possible with high enthusiasm, engineering effort, and willingness to
refactor applications or remove dependencies of hindering third-party services.

7.2 Future Work

In this thesis, we have seen that deploying security mechanisms consistently seems to be
a non-trivial task, especially when the application is hosted using multiple origin servers.
Thus, a developer-centric approach to evaluate the deployment in a multiple-origin
server infrastructure can uncover the problems that are causing security inconsistencies.
Also, one should create and evaluate tools for detecting inconsistencies and reporting
them to the operator of a Web application e.g. from the browser or CDN side. Instead
of just open-sourcing research prototypes, those tools should be developed together with
Web developers in a participatory design process, in order to increase their acceptance
in the Web development community.

Web frameworks provide developers with a set of tools and libraries for building
and deploying Web applications and are used by many real-world Web developers.
Therefore, research on the interaction between security headers and Web frameworks
should be conducted in order to understand how we can ease the creation of secure Web
applications. This could involve exploring how different web frameworks handle the
implementation of security headers, as well as examining the trade-offs and limitations
of using security headers within different web frameworks. Additionally, research in
this area could also involve studying the impact of security headers on the performance
and scalability of Web applications.

The importance of security in software development extends beyond just web de-
velopment. It is crucial to consider the security of other systems, which everyone uses
on a daily basis as well, e.g., embedded systems. Embedded systems are found in a
wide range of devices, including medical equipment, industrial control systems, and
automobiles. Vulnerabilities in those areas can have severe and sometimes even deadly
consequences. [1, 5]. Thus, it is important to also conduct developer-centric research,
that reveals roadblocks and success strategies, in those areas of software development
in order to better support the development of secure software.
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7.3 Concluding Thoughts

Every developer needs to deploy security mechanisms for their Web site because they
help to protect against a wide range of security threats. However, as we pointed out in
this thesis, deploying security mechanisms properly configured and consistently is not
a trivial task.

A simple remedy for us would be to blame this on the Web developers, but many
of the problems that we have seen are caused by the available information sources, the
design of the security mechanism, or impeding third-parties behavior. Thus, we as a
security community must work together with real-world developers on better informa-
tion sources. The boards responsible for the design of security mechanisms need to
rethink their design process, to be more developer-centric. And we need to encourage
third parties to not impede the deployment of security mechanisms, e.g. via changes
in browsers in order to ease the deployment of security mechanisms for a Web site’s
operator. By facilitating the deployment process of security mechanisms for developers,
we want to ensure that more Web sites protect their users and data in the best way
possible. Thus, Web developers not only protect their reputation and build trust with
users, but they also help to make the internet a more secure place for everyone.
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A Appendix: Complex Security Policy

This section is the appendix of our work ”Complex Security Policy? – A Longitudinal
Analysis of Deployed Content Security Policies.” [P1].

A.1 Email notification template

Dear $domain team,
We are a team of academic researchers from $institutions investigating the usage of
security headers on the Web.
As part of our analysis, we are investigating the usage of the X-Frame-Options
header (XFO) to control framing on the Web. Based on our analysis, your site is
attempting to control framing with the following XFO directive: SAMEORIGIN.
We noticed that this directive potentially allows for double-framing attacks with certain
browsers, such as Internet Explorer and Edge (see https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/X-Frame-Options#Browser_compatibility)
The currently proposed way to ensure that all modern browsers properly protect against
framing attacks is to use the Content Security Policy directive frame-ancestors.
In particular, for your value of XFO, the corresponding CSP is: frame-ancestors
’self’.
Note that in order to protect older browsers, keeping XFO in place is recommended.
As CSP takes precedence over XFO, securing legacy clients without interfering with
modern browsers is possible through the usage of the DENY directive in XFO.
For more information on CSP’s frame-ancestors, please see https://developer.
mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/
frame-ancestors
As this email is part of a research project in which we are trying to understand the
lack of adoption of CSP in the wild, it would be immensely helpful if you could provide
us with feedback regarding the lack of CSP’s frame-ancestors to protect against
framing attacks on your Web site (i.e., were you not aware of the CSP mechanism, that
specific CSP directive, or, were you not adopting it for some other reason?)
Please note that this email is only part of an academic research project and not meant
to sell any products or services.

Best regards,
$researchers

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
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A.2 Quotes from Responses

This appendix sections contains quotes from the responses to our framing control no-
tification campaign.

A.2.1 Complexity of CSP

“Reading the experience of people that tried to do a full CSP implementation is just
scary”. “In previous discussions about CSP, we’ve been worried that the risk of acci-
dentally breaking some interaction we have with other [sitename] systems (or the few
third party tools we integrate with) outweighs the benefit of implementing these sorts
of changes.” “We are pretty certain that there are a lot of pitfalls with implementation
of these headers, that might break sections or uses of our site.”

A.2.2 XFO Dangers

“We were vaguely aware of the frame-ancestors option, but our understanding was that
XFO was sufficient for securing all clients”. “While we were aware of CSP itself, we were
unaware of the fact, that X-Frame-Options allows for attacks under certain conditions,
which can be mitigated by using the frame-ancestors directive of CSP.”

A.2.3 frame-ancestors

“In my opinion the only advantage of CSP is to protect against XSS [...]”. “As we were
not that aware of CSP framing control, we were also not aware of its implementation
(no side effects)”

A.3 Survey Questionnaire

1. Did you know about the inconsistent understanding of browsers of the XFO
header before our notification (such as the lack of support for ALLOW-FROM in
Chrome and Safari as well as the potential threat of double-framing in Edge/IE)?
(Yes/No)

2. Why have you implemented the XFO header on your site? (Penetration test
or consultant suggested it/Tools we used suggested it/Own decision to restrict
framing/Other (free text))

3. Did you know about CSP before our notification? (Yes/No)

4. (only if Q3 was yes) Would your site work out of the box if you deployed a script-
content restricting CSP today (disallow eval, inline scripts, and event handlers)?
(Yes/No/Don’t know)

5. (only if Q3 was yes) Do you believe CSP is a viable option to improve your site’s
resilience against XSS attacks? (Yes/No/Don’t know)

6. (only if Q5 was no) Why do you think CSP is not viable for your site? (free text)
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7. (only if Q3 was yes) Did you know about the frame-ancestors directive of CSP
and its improved protection capabilities compared to XFO before our notification?
(Yes/No)

8. (only if Q7 was yes) Did you know that frame-ancestors can be deployed
independently of any other part of CSP before our notification? (Yes/No)

9. (only if Q3 was yes) Did you know that CSP can be used (in isolation) to ensure
no HTTP resources can accidentally be loaded (through block-all-mixed-
content) and to enforce TLS for all resources (through upgrade-insecure-
requests)? (Yes/No)

10. Do you ever use the developer tools to debug or analyze your site? (Yes/No)

11. What kind of tool support would be useful to you to secure your application?
(free text)
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B Appendix: The Security Lottery

This section is the appendix of our work ”The Security Lottery: Measuring Client-Side
Web Security Inconsistencies” [P3].

B.1 Disclosure Email

Hello,

We are a team of security researchers from the CISPA Helmholtz Center for Information
Security located in Saarland, Germany and Università Ca' Foscari Venezia, Italy.
In our current research project, we investigate inconsistent behavior in the
deployment of security headers for Web applications.

↪→
↪→
↪→

For that, we have visited your site through different vantage points (VPN and Tor) as
well as with different configurations (User-Agents and Accept-Language request
headers).

↪→
↪→

In our automated tests, we detected both non-deterministic differences (e.g., we
received different levels of security even with the same user agent) or those
differences which seemed related to the vantage point or configuration.

↪→
↪→

We would like to raise your attention to one of those inconsistencies that occurred
on <DOMAIN>:↪→

<DETAILS_ABOUT_INCONSISTENCY>

We would appreciate if you can check the reason for the issue, address it to ensure
consistent security, and also let us know about what such a reason might have
been, since this will allow us to better help others in the future.

↪→
↪→

If you have any questions or need further information, please do not hesitate to
contact us by answering this email.↪→

B.2 Overview of Additional Crawls

Our confirmation crawls offer two additional insights: on the stability of inter-test
inconsistent sites and on the instability of the intra-test inconsistent cases. The data,
which is shown in the following tables, highlights that even 12 days after our original
crawl, we could still detect 194 inter-test inconsistent sites (see Table 7.2). Intersecting
the sites with intra-test inconsistencies, however, shows that the numbers seemingly
decline (through 100 sites down to 96). This is to be expected, as we are measuring
non-deterministic behavior. However, if we take the union of all sites which had at least
one intra-test inconsistency across any of our crawls, this sums up to 210 (see Table 7.1)
sites instead of only 127. This likely means that the actual dangers of non-deterministic
header deployment is more severe than what we are able to measure through our limited
number of observations.
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Mechanism Usage # Sites w/ intra-test inconsistencies
UA Lang. VPN Tor Any

Content Security Policy 2,029 20 16 42 32 50
- for XSS mitigation 364 1 - 3 1 4
- for framing control 1,313 11 10 23 17 28
- for TLS enforcement 673 12 10 23 16 25

X-Frame-Options 5,751 30 30 64 39 74

Strict-Transport-Security 4,607 27 22 49 50 80
w/o page similarity* 4,607 80 57 365 947 1,152

Cookie Security 3,975 22 16 26 28 33
- Secure attribute 3,009 9 8 13 13 17
- SameSite attribute 812 13 8 13 17 18
- HttpOnly attribute 3,196 2 - 2 2 3

Any 8,237 90 73 163 135 210

Table 7.1: Union of all intra-test inconsistencies snapshots.

C Appendix: 12 Angry Developers

This section is the appendix of our work ”12 Angry Developers – A Qualitative Study
on Developers’ Struggles with CSP” [P4].

C.1 Screening Questionnaire:

The screening questionnaire was conducted using a Django based survey instance hosted
by our institution.

C.1.1 Specific Questions:

• For which Web application did you take part in the deployment or maintenance
of CSP? Please provide a URL, if possible.

• To what extent were you involved in the maintenance or deployment of CSP for
the Web applications you mentioned above?

• When confronted with security-critical decisions, do you make them mostly alone
or mostly in a team? Note: Likert Scale 1–7, 1=strongly agree, 7=strongly dis-
agree

• Security is my main focus when writing Web Apps. Note: Likert Scale 1–7,
1=strongly agree, 7=strongly disagree

• Security plays an important role in my everyday work. Note: Likert Scale 1–7,
1=strongly agree, 7=strongly disagree

• How many people are working in your team? And how many of those are specif-
ically dealing with security?
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C.1.2 Attacker Model:

• Which of the following technologies and services below have you used in the past
year? (Check all that apply.)

□ Social Networks (Facebook, Twitter, etc.)

□ Online Audio and Video Conferencing (Skype, FaceTime, Google Hangout,
etc.)

□ Office Software (Google Docs, Office Online, etc.)

□ Mobile Messaging (Signal, Whatsapp, etc.)

□ Online Banking / Payment (PayPal, etc.)

□ Online Shopping (Amazon, Zalando, etc.)

• Are you aware of Web attacks when using those services? If yes, name some
attacks you consider ...

C.1.3 Demographics:

• Age / Gender / Home Country / Highest (completed) Education Level / Current
Occupation / Recent Professional Status

• How big is the company that you are working for? Note: Buckets according to
the EU Commission Recommendation (2003/361/EC) [39]

• Is the Web presence your company’s main business?

• Email address Note: Mandatory for contact reasons.

C.2 Interview Protocol:

The interview was an online video conference where we capture screen and audio of us
and the participants. General:

• In your company, what is the specific area that you cover with your work? What
is your specific task in this team?

• Are you considering yourself a Web developer? If yes, since: ...

• Do you have an IT-Security background? If yes, please specify: ...

• Was Web Security and CSP part of your education? If yes, where did you learn
about it? If possible, briefly outline the basic content and topics where covered.
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C.2.1 Threat Model covered by CSP:

• What was your (or your company’s) motivation to deploy CSP?

– What are the Use-Cases of CSP? (XSS-Mitigation, Framing Control, TLS
Enforcement)

– What are the Attacker capabilities?
∗ Why is XSS/Framing/Network attack bad / What bad things might

happen?
∗ How does CSP defend your Web application against those attacks?

• Do you use other HTTP headers to prevent those attack scenarios? (XFO / HSTS
/ ...)

• Drawing Task for XSS attack (on a drawing sheet with prefilled icons of the
stakeholders.)

C.2.2 Roadblocks for CSP:

Personalized to individual developer group:

1. How did you manage to create a sane CSP?

• What challenges did you encounter and how did you resolve them?

2. In your CSP, you used $InsecurePractice, what caused the deployment of this
source-expression?

• Do you see any problems regarding this choice?
• How could you resolve this issue / fix your CSP?
• Would it be feasible to do this for your Web application?

3. Between $startCSP and $endCSP you experimented with CSP for your Web
application. What challenges did you encounter?

• Why did you abort your experiment of deploying a CSP?
– Technical issues or bad cost-effectiveness consideration?
– If technical, what exactly, and do you know how to resolve this issue?

• What changes would be required that you consider retrying CSP deploy-
ment?

Ask all Groups: Have you used any tools / consulting that helped you to create the
Policy? If yes, which ones: ...

Validation: Think aloud while deploying a CSP that defends against XSS for the fol-
lowing Web application.
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C.3 Recruiting Mail:

Subject : Study I n v i t a t i o n to Improve CSP
−−−
Dear $DOMAIN.TLD team ,
We are s e c u r i t y r e s e a r c h e r s from $RESEARCH_ORANIZATION. In our

research , we have been ana lyz ing s e v e r a l web a p p l i c a t i o n s to
eva luate the e f f e c t i v e n e s s o f the deployed s e c u r i t y mechanisms
. Currently , we are i n v e s t i g a t i n g the Content Secu r i ty Pol icy ,
and we not i c ed that . . .

Option 1 . your Web s i t e i s one o f the very few e xc ep t i o na l
ca s e s that a c t u a l l y deployed a sane CSP. In order to
understand how you managed to a r r i v e the re and to he lp other
Web s i t e s to emulate your succes s , we would l i k e to i n v i t e you

to p a r t i c i p a t e in our study .

Option 2 . l i k e a p l e thora o f other Web s i t e s your CSP i n c l u d e s
i n s e c u r e e n t r i e s . With us ing $INSECURE_PRACTICE an at tacke r

can e a s i l y bypass the XSS mi t i ga t i on o f f e r e d by CSP. We would
l i k e to i n v i t e you to p a r t i c i p a t e in our study in order to
he lp us b e t t e r understand the i s s u e s and c h a l l e n g e s with
regard to CSP.

The study w i l l c o n s i s t o f two par t s : F i r s t , a shor t ( < 5 min
) s c r e en ing ques t i onna i r e , and afterward , we might i n v i t e you
to an o n l i n e v ideo in t e rv i ew which w i l l l a s t f o r approximately

one hour . Of course , we w i l l g ive you an appropr ia t e
compensation o f 50 Euro ( as Amazon g i f t card ) a f t e r f i n i s h i n g
the in t e rv i ew .

I f you or one o f your c o l l e a g u e s who i s f a m i l i a r with CSP
wants to p a r t i c i p a t e , p l e a s e f i l l out our shor t s c r e en ing
q u e s t i o n n a i r e at $LINK . Note that you should have dea l t with
CSP at l e a s t once . I f not , p l e a s e forward t h i s emai l to your
c o l l e a g u e s that are r e s p o n s i b l e f o r CSP in your company .
Should you need f u r t h e r in fo rmat ion or have any other
quest ions , p l e a s e do not h e s i t a t e to contact us by answering
t h i s emai l .

Best Regards ,
$NAME
−−−
Footer with f u l l name , exact address , phone number , and emai l .
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C.4 Invitation Mail:

Subject : I n v i t a t i o n to CSP Inte rv i ew
−−−
Hi ,

thanks again f o r p a r t i c i p a t i n g in our study and he lp ing us to
improve CSP. Your i n s i g h t s and f i r s t −hand expe r i ence with CSP
w i l l he lp us to i d e n t i f y roadb locks to a s ecure CSP deployment
.

We would l i k e to i n v i t e you to our 90−minute study . I t
c o n s i s t s o f (1 ) a ~ 30 min in t e rv i ew about your expe r i en c e s
with CSP and (2) a ~ 30 min programming task (+ 30 min b u f f e r
e . g . , f o r setup ) where you modify a smal l Web app in a
programming language o f your cho i c e (PHP, Python , or JS ) .
P lease ente r your a v a i l a b i l i t i e s here to f i n d a s u i t a b l e date
f o r your p a r t i c i p a t i o n in the study : $CALENDLY_LINK

The in t e rv i ew takes p lace o n l i n e and can be conducted with any
so f tware that supports audio and sc r e en r eco rd ing ( e . g . zoom)

.
We want to make the programming task as comfortab le as
p o s s i b l e f o r you . There fore you have the cho i c e between three
programming languages (PHP, Python , or JS ) and can f r e e l y
choose between the f o l l o w i n g setup opt ions :

1 . Docker :
We' l l prov ide you with the code as we l l as D o c k e r f i l e s to
bu i ld and run the WebApp in a docker conta ine r .
Requirements : docker docker−compose

2 . V i r tua l Machine :
We' l l prov ide you with a VirtualBox VM ( . ova ) that conta in s
the code and can bu i ld and run the WebApp.
Requirements : VirtualBox ( and VM Image $OVA_LINK)

3 . TeamViewer :
We' l l prov ide you remote a c c e s s to a VM that conta in s the code

and can bu i ld and run the WebApp.
Requirements : l a t e s t TeamViewer C l i en t

4 . D i rec t Code Execution :
We' l l prov ide you with the source code and a s h e l l s c r i p t that

i n s t a l l s a l l dependenc ies on your dev i c e .
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Requirements : Linux or Windows with i n s t a l l e d Windows−
Subsystem f o r Linux

I t would be awesome i f you can s e t up the dependenc ies f o r
your p r e f e r r e d vers ion , e . g . , i n s t a l l VirtualBox and check i f
i t i s working . At the beg inning o f the inte rv i ew , we ' l l ask
you which o f the opt ions you p r e f e r and prov ide you with the
source code o f the WebApp.
Should you need f u r t h e r in format ion , a s s i s t a n c e , or have any
other quest ions , p l e a s e do not h e s i t a t e to contact us by
answering t h i s emai l .

Best Regards ,
$NAME
−−−
Footer with f u l l name , exact address , phone number , and emai l .

C.5 Demographics of Participants

Gender: male 10
female 1

Age: 20-30 6
30-40 3
40-50 2

Company Size: < 9 2
10-49 2
50-249 1
> 250 6

Is the Web Presence Yes 7
Main Business: No 3

No Answer 1

Table 7.3: Demographics of the 11 participants that completed the survey. (One
participant only took part in the interview.)

C.6 Data from the Drawing Task
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XSS Type? Stored Server-Side 8
Reflected Server-Side 1
Both Server-Side 2

Inline or external payload? Inline 8
External 3

Who executes payload? Browser 9
Server 2

What can happen? Leak from Browser to evil.com 8
Leak from Server to evil.com 1
Impersonate victim 1
Cryptomining 1

Who enforces CSP? Browser 8
Server 2
Not mentioned 1

What is mitigated? Script execution 4
Script loading 3
Only exfiltration 3
Not mentioned 1

Table 7.4: Drawing task results with concepts and number of participants. (One
participant did not draw an XSS attack.)

C.7 Final Codebook:

Demography

Motivation : Pentest / Consult ing
Motivation : Role Model
Motivation : Reputation
Motivation : Addi t iona l Secu r i ty Layer
Motivation : XSS Mit iga t i on
Motivation : Framing Control
Motivation : Secu r i ty Train ing
Motivation : Bui ld P i p e l i n e Warning
Motivation : F inanc i a l I m p l i c a t i o n s

D i s i n c e n t i v e : Se cu r i ty Secondary Goal
D i s i n c e n t i v e : Bui ld in Secu r i ty Features −> Frameworks , APIs ,
L i b r a r i e s
D i s i n c e n t i v e : F inanc i a l Consequences

Bene f i t : Re−eva luate Resources
Bene f i t : Re−eva luate Appl i ca t ion St ructure

Perception_CSP : Addi t iona l Secu r i ty Layer
Perception_CSP : Secondary Secur i ty Factor
Perception_CSP : XSS Mit igat i on
Perception_CSP : Resource Control
Perception_CSP : Framing Control
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Perception_CSP : TLS Enforcement
Perception_CSP : Data Connection Control −> connect−src , form−ac t i on
Perception_CSP : CSRF Defense

Knowledge_Gap : TLS Enforcement
Knowledge_Gap : XSS
Knowledge_Gap : Framing Control
Knowledge_Gap : CSP Enforcement
Knowledge_Gap : CSP Concept

Attack_Vector : Cl ick−Jacking −> deployed XFO
Attack_Vector : Se s s i on Hi jack ing
Attack_Vector : XSS
Attack_Vector : MitM −> deployed HSTS
Attack_Vector : Data E x f i l t r a t i o n −> Magecart

Drawing_Task : Stored Server−s i d e XSS
Drawing_Task : Stored Cl ient −s i d e XSS
Drawing_Task : Re f l e c t ed Server−s i d e XSS
Drawing_Task : Re f l e c t ed Cl ient −s i d e XSS

Strategy : In−the− f i e l d Test ing
Strategy : R e s t r i c t i v e RO−Pol i cy
Strategy : R e s t r i c t i v e Enforcement Po l i cy
Strategy : I t e r a t i v e Deployment
Strategy : S ta r t with generated CSP
Strategy : Ex t e rna l i z e I n l i n e Code
Strategy : Ex t e rna l i z e Events −> Have Events added programmatica l ly
Strategy : Code Hashing
Strategy : Event Hashing
Strategy : Nonces f o r i n l i n e S c r i p t s
Strategy : Nonces f o r e x t e r n a l S c r i p t s
Strategy : Lax CSP
Strategy : CSP I n t e g r a l Part o f Development
Strategy : Se l f −host 3rd−Party Code
Strategy : One gene ra l CSP
Strategy : Separate CSP f o r Subpages
Strategy : Remove Dependencies
Strategy : Use s c r i p t −src−a t t r
Strategy : Use unsafe− i n l i n e as Fal lback
Strategy : Changing Func t i ona l i t y
Strategy : Func t i ona l i t y > Secur i ty
Strategy : Use Meta Tag CSP
Strategy : Use unsafe− i n l i n e

Tool : CSP Evaluat ion −> Google CSP Evaluator , s e cu r i t y −headers . i o
Tool : I n i t i a l Deployment −> CSPer . io , Moz i l l a CSP Laboratory , r epor t
. u r i wizard
Tool : Report Evaluat ion −> sent ry . io , report −u r i . com , DIY
Tool : Developer Tools o f Browser
Tool : CSP Preproce s so r
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Tool : Code Hashing

Roadblock : I n l i n e S c r i p t s
Roadblock : I n l i n e Events
Roadblock : 3rd−Party L i b r a r i e s −> Angular
Roadblock : Websocket
Roadblock : 3rd−Party S e r v i c e s −> Google/ Youtube
Roadblock : Legacy Code
Roadblock : D i f f e r e n t Development Teams −> Res t r i c t ed Code Access
Roadblock : Browser Console In con s i s t en cy
Roadblock : Browser In con s i s t en cy
Roadblock : Browser Extension
Roadblock : Fa l se P o s i t i v e Reports −> hacked browser , extens ions ,
browser f e a t u r e s
Roadblock : Amount o f Reports
Roadblock : CSP Maintenance −> new content , long header
Roadblock : Engineer ing E f f o r t
Roadblock : Complexity o f CSP
Roadblock : Framework Support −> DIY
Roadblock : I n s u f f i c i e n t Error Reports
Roadblock : In format ion Source

Language : JavaScr ipt
Language : PHP

Bias : Framework F a m i l i a r i t y
Bias : In te rv i ew Preparat ion
Bias : Nervousness

Information_Source : Moz i l l a Development Network
Information_Source : Blogs −> Scott Helme
Information_Source : Stack Overflow
Information_Source : W3C S p e c i f i c a t i o n
Information_Source : content−s e cu r i t y −p o l i c y . com
Information_Source : Conferences −> OWASPday
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D Appendix: Trust me If you Can

This section is the appendix of our work ”Trust Me If You Can – How Usable Is Trusted
Types In Practice?” [P5], which is currently under submission.

D.1 Final Codebook

{
" Background " : [

"Hobby−Webdeveloper " ,
" Working in IT Secur i ty " ,
" Se cur i ty Education " ,
" Server−Side−XSS Knowledge " ,
" Cl ient −Side XSS Knowledge " ,
"XSS−Defense S a n i t i z a t i o n / F i l t e r i n g " ,
"XSS−Defense CSP" ,
" Not knwon TT be fo r e " ,
" Not understood Defau l t Po l i cy " ,
" Usual ly no p l a i n JS " ,
" Working in DevOps " ,
" Understands Defau l t Po l i cy " ,
" Working as WebDev" ,
"XSS−Defense WAF" ,
" Not know c l i e n t vs . s e rver −s i d e "

] ,
" In format ion Source " : [

" Only S u p e r f i c i a l In format ion " ,
" Focused on named P o l i c i e s " ,
" I n s u f f i c i e n t Exmaples "

] ,
" Percept ions " : [

" I n i t i a l Po l i cy In s e cu r e " ,
"XSS i s f i x e d in Frameworks " ,
" Manual S a n i t i z e r are bypassable " ,
"XSS Mi t i ga t i on s needs to be done on Server−Side " ,
"New XSS type −> New S a n i t i z e r " ,
"TT complements CSP" ,
"TT i s as compl icated as CSP" ,
"Dyn . added s c r i p t have changing URLs" ,
" c r e a t e S c r i p t has no proper s o l u t i o n "

] ,
" Roadblocks " : [

"CSP Setup " ,
" Not u n i v e r s a l l y Supported " ,
"Named P o l i c i e s do not Work" ,
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"TT needs HTTPS" ,
" Understanding o f the s a n i t i z e r s " ,
" Engeen ier ing E f f o r t " ,
" Developer Education " ,
"Same−Orig in i f rame " ,
"3 rd−Party behaviour "

] ,
" S t r a t e g i e s " : [

"3 rd−Party S a n i t i z e r " ,
" Debug with Browserconso le " ,
" S e t t i ng a CSP" ,
"Same S a n i t i z e r 4 Al l " ,
" Use Regular Expres s ions " ,
"Move f e a t u r e s to i f r ames " ,
"URL allow− l i s t " ,
" Use d e f a u l t as f a l l b a c k " ,
" Only Eval s igned−Code " ,
"AST based Allow− l i s t "

] ,
" Improvement " : [

" Frameworksupport " ,
" In format ion / Documentation " ,
" Handle i f r ames d i f f e r e n t l y " ,
" Standardized S a n i t i z e r "

]
}

164



Bibliography

Author’s Papers for this Thesis

[P1] Roth, S., Barron, T., Calzavara, S., Nikiforakis, N., and Stock, B. Complex Se-
curity Policy? – A Longitudinal Analysis of Deployed Content Security Policies.
In: Network and Distributed System Security Symposium (NDSS). 2020.

[P2] Calzavara, S., Roth, S., Rabitti, A., Backes, M., and Stock, B. A Tale of Two
Headers: A Formal Analysis of Inconsistent Click-Jacking Protection on the
Web. In: USENIX Security Symposium (USENIX Security). 2020.

[P3] Roth, S., Calzavara, S., Wilhelm, M., Rabitti, A., and Stock, B. The Security
Lottery: Measuring Client-Side Web Security Inconsistencies. In: USENIX Se-
curity Symposium (USENIX Security). 2022.

[P4] Roth, S., Gröber, L., Backes, M., Krombholz, K., and Stock, B. 12 Angry De-
velopers – A Qualitative Study on Developers’ Struggles with CSP. In: ACM
SIGSAC Conference on Computer and Communications Security (CCS). 2021.

[P5] Roth, S., Gröber, L., Baus, P., Krombholz, K., and Stock, B. Trust Me If You
Can – How Usable Is Trusted Types In Practice? In: Currently under Submission.
2023.

Other Papers of the Author

[S1] Musch, M., Steffens, M., Roth, S., Stock, B., and Johns, M. ScriptProtect: Mit-
igating Unsafe Third-Party JavaScript Practices. In: ACM SIGSAC Asia Con-
ference on Computer and Communications Security (AsiaCCS). 2019.

[S2] Roth, S., Backes, M., and Stock, B. Assessing the Impact of Script Gadgets on
CSP at Scale. In: ACM SIGSAC Asia Conference on Computer and Communi-
cations Security (AsiaCCS). 2020.

[S3] Stolz, P., Roth, S., and Stock, B. To hash or not to hash: A security assessment
of CSP’s unsafe-hashes expression. In: SecWeb Workshop co-located with IEEE
Security and Privacy 2022 (SecWeb). 2022.

165



BIBLIOGRAPHY

Open-Sourced Artifacts of the Author

[A1] Roth, S. CISPA GitHub - 12 Angry Developers - Web Applications. Online at
https://github.com/cispa/12-angry-developers-web-applications.

[A2] Roth, S. CISPA GitHub - Framing Control Analysis. Online at https://
github.com/cispa/framing-control-analytics.

[A3] Roth, S. CISPA GitHub - Framing Control Proxy. Online at https://github.
com/cispa/framing-control-proxy.

[A4] Sebastian Roth. CISPA GitHub - The Security Lottery. Online at https://
github.com/cispa/the-security-lottery.

[A5] Sebastian Roth. GitHub - Archived Dataset for Complex Security Policy. Online
at https://archive-csp.github.io.

Other references

[1] Alex Hern. Hacking risk leads to recall of 500,000 pacemakers due to patient
death fears. Online at https://www.theguardian.com/technology/
2017/aug/31/hacking-risk-recall-pacemakers-patient-death-
fears-fda-firmware-update. 2015.

[2] Alotaibi, B. and Elleithy, K. Rogue access point detection: taxonomy, challenges,
and future directions. Wireless Personal Communications (2016).

[3] Ambroise Maupate. Nginx CSP example. https://gist.github.com/
ambroisemaupate/bce4b760405558f358ae. 2019.

[4] Anderson, R. Work with SameSite cookies in ASP.NET. https://docs.
microsoft.com/en-us/aspnet/samesite/system-web-samesite.

[5] Andy Greenberg. Hackers Remotely Kill a Jeep on the Highway—With Me in
It. Online at https://www.wired.com/2015/07/hackers-remotely-
kill-jeep-highway/. 2015.

[6] Barth, A. RFC 6265: HTTP State Management Mechanism. Oneline a https:
//tools.ietf.org/html/rfc6265 (2011).

[7] Barth, A. RFC 6454: The Web Origin Concept. Online at https://www.
ietf.org/rfc/rfc6454.txt (2011).

[8] Barth, A., Jackson, C., and Mitchell, J. C. Robust Defenses for Cross-Site Re-
quest Forgery. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2008.

[9] Belshe, M., Peon, R., and Thomson, M. Hypertext Transfer Protocol Version 2
(HTTP/2). Online at https://www.ietf.org/rfc/rfc7540.txt (2015).

[10] Berners-Lee, T., Fielding, R., and Frystyk, H. RFC 1945: Hypertext Transfer
Protocol–HTTP/1.0. Online at https://www.ietf.org/rfc/rfc6454.
txt (1996).

166

https://github.com/cispa/12-angry-developers-web-applications
https://github.com/cispa/framing-control-analytics
https://github.com/cispa/framing-control-analytics
https://github.com/cispa/framing-control-proxy
https://github.com/cispa/framing-control-proxy
https://github.com/cispa/the-security-lottery
https://github.com/cispa/the-security-lottery
https://archive-csp.github.io
https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update
https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update
https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update
https://gist.github.com/ambroisemaupate/bce4b760405558f358ae
https://gist.github.com/ambroisemaupate/bce4b760405558f358ae
https://docs.microsoft.com/en-us/aspnet/samesite/system-web-samesite
https://docs.microsoft.com/en-us/aspnet/samesite/system-web-samesite
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://www.ietf.org/rfc/rfc6454.txt
https://www.ietf.org/rfc/rfc6454.txt
https://www.ietf.org/rfc/rfc7540.txt
https://www.ietf.org/rfc/rfc6454.txt
https://www.ietf.org/rfc/rfc6454.txt


OTHER REFERENCES

[11] Bishop, M. HTTP/3. Online at https://www.ietf.org/rfc/rfc9114.
txt (2022).

[12] Blandford, A., Furniss, D., and Makri, S. Introduction: behind the scenes. In:
Morgan and Claypool Publishers, 2016.

[13] Braun, F., Heiderich, M., and Vogelheim, D. The Web Sanitizer API. W3C
Draft. Online at https://wicg.github.io/sanitizer-api/ (2022).

[14] Braun, V. and Clarke, V. Using thematic analysis in psychology. Qualitative
research in psychology (2006).

[15] British Broadcasting Corporation (BBC). British Airways boss apologises for
’malicious’ data breach. Online at https://www.bbc.co.uk/news/uk-
england-london-45440850. 2018.

[16] Brooke, J. et al. SUS: A ’Quick and Dirty’ Usability Scale. Usability Evaluation
in Industry (1996).

[17] Bruno Scheufler. Using security-related headers to secure your application against
common attacks. https://tinyurl.com/y68c4lpp. 2019.

[18] Bugliesi, M., Calzavara, S., Focardi, R., and Khan, W. Cookiext: patching the
browser against session hijacking attacks. Journal of Computer Security (IOS
Press) (2015).

[19] Calzavara, S., Rabitti, A., and Bugliesi, M. Content Security Problems?: Evalu-
ating the effectiveness of Content Security Policy in the Wild. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2016.

[20] Calzavara, S., Rabitti, A., and Bugliesi, M. CCSP: controlled relaxation of con-
tent security policies by runtime policy composition. In: USENIX Security Sym-
posium (USENIX Security). 2017.

[21] Calzavara, S., Rabitti, A., and Bugliesi, M. Semantics-based analysis of content
security policy deployment. ACM Transactions on the Web (TWEB) (2018).

[22] Calzavara, S., Urban, T., Tatang, D., Steffens, M., and Stock, B. Reining in
the web’s inconsistencies with site policy. In: Network and Distributed System
Security Symposium (NDSS). 2021.

[23] Campbell, J. L., Quincy, C., Osserman, J., and Pedersen, O. K. Coding in-depth
semistructured interviews: problems of unitization and intercoder reliability and
agreement. Sociological Methods & Research (2013).

[24] CanIUse.com. Can I use Content-Security-Policy: strict-dynamic. https://
caniuse.com/mdn-http_headers_csp_content-security-policy_
strict-dynamic.

[25] CanIuse.com. Can I use Content Security Policy 1.0. https://caniuse.
com/#feat=contentsecuritypolicy. 2019.

[26] CanIuse.com. Can I use trustedTypes API? Online at https://caniuse.
com/mdn-api_trustedtypes. 2022.

167

https://www.ietf.org/rfc/rfc9114.txt
https://www.ietf.org/rfc/rfc9114.txt
https://wicg.github.io/sanitizer-api/
https://www.bbc.co.uk/news/uk-england-london-45440850
https://www.bbc.co.uk/news/uk-england-london-45440850
https://tinyurl.com/y68c4lpp
https://caniuse.com/mdn-http_headers_csp_content-security-policy_strict-dynamic
https://caniuse.com/mdn-http_headers_csp_content-security-policy_strict-dynamic
https://caniuse.com/mdn-http_headers_csp_content-security-policy_strict-dynamic
https://caniuse.com/#feat=contentsecuritypolicy
https://caniuse.com/#feat=contentsecuritypolicy
https://caniuse.com/mdn-api_trustedtypes
https://caniuse.com/mdn-api_trustedtypes


BIBLIOGRAPHY

[27] Chromium Blog. No More Mixed Messages About HTTPS. https://blog.
chromium.org/2019/10/no-more-mixed-messages-about-https.
html.

[28] Chromium Blog. Protecting users from insecure downloads in Google Chrome.
https://blog.chromium.org/2020/02/protecting-users-from-
insecure.html.

[29] Chromium Project. HSTS preload list. https://hstspreload.org/.
[30] Chromium Project. HSTS preload list removal. https://hstspreload.org/

removal.
[31] Common Crawl. So you are ready to get started. http://commoncrawl.org/

the-data/get-started/. 2019.
[32] content-security-policy.com. CSP: Hashing. https://content-security-

policy.com/hash/.
[33] content-security-policy.com. CSP: Nonces. https://content-security-

policy.com/nonce/.
[34] Derr, E., Bugiel, S., Fahl, S., Acar, Y., and Backes, M. Keep me updated: an

empirical study of third-party library updatability on android. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2017.

[35] Django Software Foundation. Security in Django. Online at https://docs.
djangoproject.com/en/4.0/topics/security/. 2017.

[36] Dong, X., Tran, M., Liang, Z., and Jiang, X. Adsentry: comprehensive and flex-
ible confinement of javascript-based advertisements. In: Annual Computer Se-
curity Applications Conference (ACSAC). 2011.

[37] Doupé, A., Cui, W., Jakubowski, M. H., Peinado, M., Kruegel, C., and Vigna,
G. deDacota: Toward Preventing server-side XSS via automatic Code and Data
Separation. In: ACM SIGSAC Conference on Computer and Communications
Cecurity (CCS). 2013.

[38] Drakonakis, K., Ioannidis, S., and Polakis, J. The cookie hunter: automated
black-box auditing for web authentication and authorization flaws. In: ACM
SIGSAC Conference on Computer and Communications Security (CCS). 2020.

[39] European Union. EU Commission Recommendation (2003/361/EC). Online at
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=
CELEX:32003H0361 (2003).

[40] Experiments with Google. Content Security Policy. https://csp.withgoogle.
com/docs/strict-csp.html. 2019.

[41] Fass, A., Backes, M., and Stock, B. Hidenoseek: camouflaging malicious javascript
in benign asts. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2019.

[42] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and
Berners-Lee, T. RFC 2616: Hypertext Transfer Protocol–HTTP/1.1. Online at
https://www.ietf.org/rfc/rfc2616.txt (1999).

168

https://blog.chromium.org/2019/10/no-more-mixed-messages-about-https.html
https://blog.chromium.org/2019/10/no-more-mixed-messages-about-https.html
https://blog.chromium.org/2019/10/no-more-mixed-messages-about-https.html
https://blog.chromium.org/2020/02/protecting-users-from-insecure.html
https://blog.chromium.org/2020/02/protecting-users-from-insecure.html
https://hstspreload.org/
https://hstspreload.org/removal
https://hstspreload.org/removal
http://commoncrawl.org/the-data/get-started/
http://commoncrawl.org/the-data/get-started/
https://content-security-policy.com/hash/
https://content-security-policy.com/hash/
https://content-security-policy.com/nonce/
https://content-security-policy.com/nonce/
https://docs.djangoproject.com/en/4.0/topics/security/
https://docs.djangoproject.com/en/4.0/topics/security/
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003H0361
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003H0361
https://csp.withgoogle.com/docs/strict-csp.html
https://csp.withgoogle.com/docs/strict-csp.html
https://www.ietf.org/rfc/rfc2616.txt


OTHER REFERENCES

[43] Fielding, R., Nottingham, M., and Reschke, J. Hypertext Transfer Protocol
(HTTP/1.1): Caching. Online at https://www.ietf.org/rfc/rfc7234.
txt (2014).

[44] Fielding, R. and Reschke, J. RFC 7230: Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. Online at https://www.ietf.org/rfc/
rfc7230.txt (2014).

[45] GitHub Blog. GitHub CSP Blog Post. https://blog.github.com/2013-
04-19-content-security-policy/. 2013.

[46] Google. WithGoogle: Content Security Policy. https://csp.withgoogle.
com/docs/strict-csp.html.

[47] Google Analytics Legacy Documentation. https://developers.google.
com/analytics/devguides/collection/gajs.

[48] Guo, S.-y., Ficarra, M., and Gibbons, K. ECMAScript® 2023 Language Specifi-
cation. Online at https://tc39.es/ecma262/ (2022).

[49] Hayak, B. Same Origin Method Execution (SOME). Online at http://www.
benhayak.com/2015/06/same-origin-method-execution-some.
html (2015).

[50] Heiderich, M., Niemietz, M., Schuster, F., Holz, T., and Schwenk, J. Scriptless
Attacks: Stealing the Pie Without Touching the Sill. In: ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS). 2012.

[51] Heiderich, M., Schwenk, J., Frosch, T., Magazinius, J., and Yang, E. Z. mXSS
Attacks: Attacking well-secured Web-Applications by using innerHTML Muta-
tions. In: ACM SIGSAC Conference on Computer and Communications Security
(CCS). 2013.

[52] Hodges, J., Jackson, C., and Barth, A. RFC 6797: HTTP Strict Transport Se-
curity (HSTS). https://tools.ietf.org/html/rfc6797. 2012.

[53] Hodges, J., Jackson, C., and Barth, A. RFC 6797: Strict-Transport-Security
Response Header Field Processing (2012).

[54] Huang, S., Cuadrado, F., and Uhlig, S. Middleboxes in the internet: a http
perspective. In: Network Traffic Measurement and Analysis Conference (TMA).
2017.

[55] Internet Archive. About the Internet Archive. https://archive.org. 2019.
[56] Internet Security Research Group (ISRG). Let’s Encrypt. https://letsencrypt.

org/.
[57] Ion, I., Sachdeva, N., Kumaraguru, P., and Čapkun, S. Home is safer than the

cloud! privacy concerns for consumer cloud storage. In: Symposium on Usable
Privacy and Security (SOUPS). 2011.

[58] Jakobsson, M., Ramzan, Z., and Stamm, S. JavaScript Breaks Free. http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.
3195&rep=rep1&type=pdf ().

169

https://www.ietf.org/rfc/rfc7234.txt
https://www.ietf.org/rfc/rfc7234.txt
https://www.ietf.org/rfc/rfc7230.txt
https://www.ietf.org/rfc/rfc7230.txt
https://blog.github.com/2013-04-19-content-security-policy/
https://blog.github.com/2013-04-19-content-security-policy/
https://csp.withgoogle.com/docs/strict-csp.html
https://csp.withgoogle.com/docs/strict-csp.html
https://developers.google.com/analytics/devguides/collection/gajs
https://developers.google.com/analytics/devguides/collection/gajs
https://tc39.es/ecma262/
http://www.benhayak.com/2015/06/same-origin-method-execution-some.html
http://www.benhayak.com/2015/06/same-origin-method-execution-some.html
http://www.benhayak.com/2015/06/same-origin-method-execution-some.html
https://tools.ietf.org/html/rfc6797
https://archive.org
https://letsencrypt.org/
https://letsencrypt.org/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.3195&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.3195&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.3195&rep=rep1&type=pdf


BIBLIOGRAPHY

[59] Javed, A. and Schwenk, J. Towards Elimination of Cross-Site Scripting on Mo-
bile Versions of Web Applications. In: International Workshop on Information
Security Applications (WISA). 2013.

[60] John Leyden. XSS slip-up exposed Fortnite gamers to account hijack. Online at
https://portswigger.net/daily-swig/xss-slip-up-exposed-
fortnite-gamers-to-account-hijack. 2019.

[61] Johnson, R. B. and Christensen, L. Educational research: Quantitative, qualita-
tive, and mixed approaches. Sage publications, 2019.

[62] Jueckstock, J., Sarker, S., Snyder, P., Beggs, A., Papadopoulos, P., Varvello, M.,
Livshits, B., and Kapravelos, A. Towards realistic and reproducible web crawl
measurements. In: The Web Conference (WWW). 2021.

[63] Jueckstock, J., Sarker, S., Snyder, P., Papadopoulos, P., Varvello, M., Livshits,
B., and Kapravelos, A. The blind men and the internet: multi-vantage point web
measurements. arXiv preprint arXiv:1905.08767 (2019).

[64] Kang, R., Dabbish, L., Fruchter, N., and Kiesler, S. “my data just goes every-
where:” user mental models of the internet and implications for privacy and
security. In: Symposium On Usable Privacy and Security (SOUPS). 2015.

[65] Kern, C. Preventing Security Bugs through Software Design. OWASP AppSec
California. 2016.

[66] Kirda, E., Kruegel, C., Vigna, G., and Jovanovic, N. Noxes: A Client-Side Solu-
tion for Mitigating Cross-Site Scripting Attacks. In: ACM Symposium on Applied
Computing (SAC). 2006.

[67] Klein, A. DOM Based Cross Site Scripting or XSS of the Third Kind. http:
//www.webappsec.org/projects/articles/071105.shtml (2005).

[68] Kotowicz, K. Trusted Types - mid 2021 report. Online at https://research.
google/pubs/pub50512.pdf (2021).

[69] Kotowicz, K. and West, M. Trusted Types. W3C Standard. Online at https:
//w3c.github.io/webappsec-trusted-types/dist/spec/ (2021).

[70] Krippendorff, K. Content Analysis: An Introduction to Its Methodology. Sage,
London, 2004.

[71] Krombholz, K., Busse, K., Pfeffer, K., Smith, M., and Zezschwitz, E. von. "If
HTTPS Were Secure, I Wouldn’t Need 2FA"-End User and Administrator Men-
tal Models of HTTPS. In: IEEE Symposium on Security and Privacy (S&P).
2019.

[72] LaToza, T. D., Venolia, G., and DeLine, R. Maintaining mental models: a study
of developer work habits. In: International Conference on Software Engineering
(ICSE). 2006.

[73] Lawrence, E. This page frames a victim page in myriad ways. http://www.
enhanceie.com/test/clickjack. 2019.

[74] Lazar, J., Feng, J. H., and Hochheiser, H. Research methods in human-computer
interaction. Morgan Kaufmann, 2017.

170

https://portswigger.net/daily-swig/xss-slip-up-exposed-fortnite-gamers-to-account-hijack
https://portswigger.net/daily-swig/xss-slip-up-exposed-fortnite-gamers-to-account-hijack
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
https://research.google/pubs/pub50512.pdf
https://research.google/pubs/pub50512.pdf
https://w3c.github.io/webappsec-trusted-types/dist/spec/
https://w3c.github.io/webappsec-trusted-types/dist/spec/
http://www.enhanceie.com/test/clickjack
http://www.enhanceie.com/test/clickjack


OTHER REFERENCES

[75] Lekies, S., Kotowicz, K., Groß, S., Vela Nava, E. A., and Johns, M. Code-reuse
attacks for the web: breaking cross-site scripting mitigations via script gad-
gets. In: ACM SIGSAC Conference on Computer and Communications Security
(CCS). 2017.

[76] Lekies, S., Stock, B., and Johns, M. 25 Million Flows Later - Large-scale De-
tection of DOM-based XSS. In: ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2013.

[77] Lerner, A., Kohno, T., and Roesner, F. Rewriting history: changing the archived
web from the present. In: ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS). 2017.

[78] Melicher, W., Das, A., Sharif, M., Bauer, L., and Jia, L. Riding out DOMsday:
Toward Detecting and Preventing DOM Cross-Site Scripting. In: Network and
Distributed System Security Symposium (NDSS). 2018.

[79] Michael, K. and Joseph, B. Upgrading https in mid-air: an empirical study of
strict transport security and key pinning. In: Network and Distributed System
Security Symposium (NDSS). 2015.

[80] Microsoft. CSP Level 3 strict-dynamic source expression. https://tinyurl.
com/y3d6ljjk. 2019.

[81] Mike West et al. CfC to publish as an FPWD. Issue No. 342. GitHub.com.
Online at https://github.com/w3c/trusted-types/issues/342-
is-still-hard-d2b5c7ad9412 (2018).

[82] MITRE Common Vulnerabilities and Exposures. Vulnerability Details: CVE-
2014-1473. Online at https://www.cvedetails.com/cve/CVE-2014-
1473/. 2014.

[83] Mozilla Developer Network (MDN). Content Security Policy (CSP). https:
//developer.mozilla.org/en-US/docs/Web/HTTP/CSP. 2019.

[84] Mozilla Developer Network (MDN). Data URIs. https://developer.mozilla.
org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs. 2019.

[85] Mozilla Developer Network (MDN). Referrer-Policy. https://developer.
mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy.
2019.

[86] Mozilla Developer Network (MDN). X-Frame-Options. https://developer.
mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options.
2019.

[87] Mozilla Mobile Applications. Releases of Firefox-iOS. https://github.com/
mozilla-mobile/firefox-ios/releases.

[88] Mozilla Security Blog. Firefox 83 introduces HTTPS-Only Mode. https://
blog.mozilla.org/security/2020/11/17/firefox-83-introduces-
https-only-mode/.

171

https://tinyurl.com/y3d6ljjk
https://tinyurl.com/y3d6ljjk
https://github.com/w3c/trusted-types/issues/342-is-still-hard-d2b5c7ad9412
https://github.com/w3c/trusted-types/issues/342-is-still-hard-d2b5c7ad9412
https://www.cvedetails.com/cve/CVE-2014-1473/
https://www.cvedetails.com/cve/CVE-2014-1473/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://github.com/mozilla-mobile/firefox-ios/releases
https://github.com/mozilla-mobile/firefox-ios/releases
https://blog.mozilla.org/security/2020/11/17/firefox-83-introduces-https-only-mode/
https://blog.mozilla.org/security/2020/11/17/firefox-83-introduces-https-only-mode/
https://blog.mozilla.org/security/2020/11/17/firefox-83-introduces-https-only-mode/


BIBLIOGRAPHY

[89] Network, M. D. CSP: frame-ancestors. https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/
frame-ancestors.

[90] Open Web Application Security Project (OWASP). OWASP Top 10 Web Appli-
cation Security Risks. Online at https://owasp.org/www-project-top-
ten/2017/A7_2017-Cross-Site_Scripting_(XSS). 2017.

[91] Open Web Application Security Project (OWASP). HTTP Strict Transport
Security Cheat Sheet. https://www.owasp.org/index.php/HTTP_
Strict_Transport_Security_Cheat_Sheet. 2018.

[92] Open Web Application Security Project (OWASP). Manipulator-in-the-middle
attack. Online at https://nakedsecurity.sophos.com/2011/11/15/
facebook-hardcore-porn-violence-and-animal-abuse-images/.
2022.

[93] Opera. Opera is leading the digital revolution in Africa with nearly 120 million
users. https://blogs.opera.com/mobile/2019/08/opera- is-
leading-the-digital-revolution-in-africa/. 2019.

[94] OWASP Security Header Project Statistics. Global usage of header ’strict-transport-
security’. Online at https://github.com/oshp/oshp-stats/blob/
80c05796ba0983bb920b34cd48b956ab2592d1c4/stats.md#global-
usage-of-header-strict-transport-security. 2022.

[95] Paicu, A. CSP3: unsafe-hashed-attributes. https://www.chromestatus.
com/features/5867082285580288. 2017.

[96] Paicu, A. CSP ’navigate-to’ directive. https://www.chromestatus.com/
feature/6457580339593216. 2018.

[97] Paicu, A. CSP: ‘script-src-attr‘, ‘script-src-elem‘, ‘style-src-attr‘, ‘style-src-elem‘
directives. https://www.chromestatus.com/features/5141352765456384.
2018.

[98] Pan, X., Cao, Y., Liu, S., Zhou, Y., Chen, Y., and Zhou, T. CSPAutoGen: Black-
box Enforcement of Content Security Policy upon real-world Websites. In: ACM
SIGSAC Conference on Computer and Communications Security (CCS). 2016.

[99] Patnaik, N., Hallett, J., and Rashid, A. Usability smells: an analysis of develop-
ers’ struggle with crypto libraries. In: Symposium on Usable Privacy and Security
(SOUPS). 2019.

[100] Pellegrino, G., Johns, M., Koch, S., Backes, M., and Rossow, C. Deemon: De-
tecting CSRF with dynamic analysis and property graphs. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2017.

[101] Perris, R. Avoiding XSS in React is Still Hard. Medium.com. Online at https:
//medium.com/javascript-security/avoiding-xss-in-react-
is-still-hard-d2b5c7ad9412 (2018).

[102] Pochat, V. L., Van Goethem, T., Tajalizadehkhoob, S., Korczyński, M., and
Joosen, W. Tranco: a research-oriented top sites ranking hardened against ma-
nipulation. Network and Distributed System Security Symposium (NDSS) (2019).

172

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS)
https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://nakedsecurity.sophos.com/2011/11/15/facebook-hardcore-porn-violence-and-animal-abuse-images/
https://nakedsecurity.sophos.com/2011/11/15/facebook-hardcore-porn-violence-and-animal-abuse-images/
https://blogs.opera.com/mobile/2019/08/opera-is-leading-the-digital-revolution-in-africa/
https://blogs.opera.com/mobile/2019/08/opera-is-leading-the-digital-revolution-in-africa/
https://github.com/oshp/oshp-stats/blob/80c05796ba0983bb920b34cd48b956ab2592d1c4/stats.md#global-usage-of-header-strict-transport-security
https://github.com/oshp/oshp-stats/blob/80c05796ba0983bb920b34cd48b956ab2592d1c4/stats.md#global-usage-of-header-strict-transport-security
https://github.com/oshp/oshp-stats/blob/80c05796ba0983bb920b34cd48b956ab2592d1c4/stats.md#global-usage-of-header-strict-transport-security
https://www.chromestatus.com/features/5867082285580288
https://www.chromestatus.com/features/5867082285580288
https://www.chromestatus.com/feature/6457580339593216
https://www.chromestatus.com/feature/6457580339593216
https://www.chromestatus.com/features/5141352765456384
https://medium.com/javascript-security/avoiding-xss-in-react-is-still-hard-d2b5c7ad9412
https://medium.com/javascript-security/avoiding-xss-in-react-is-still-hard-d2b5c7ad9412
https://medium.com/javascript-security/avoiding-xss-in-react-is-still-hard-d2b5c7ad9412


OTHER REFERENCES

[103] Porter Felt, A., Barnes, R., King, A., Palmer, C., Bentzel, C., and Tabriz, P. Mea-
suring https adoption on the web. In: USENIX Security Symposium (USENIX
Security). 2017.

[104] Prevent nonce stealing by looking for "<script" in attributes of nonced scripts.
https://github.com/w3c/webappsec-csp/issues/98.

[105] Raggett, D., Le Hors, A., and Jacobs, I. HTML 4.01 Specification. Online at
https://www.w3.org/TR/html401/ (1999).

[106] Ringnalda, P. Getting around IE’s MIME type mangling. http://weblog.
philringnalda.com/2004/04/06/getting- around- ies- mime-
type-mangling.

[107] Ristic, I. Bulletproof SSL and TLS: Understanding and Deploying SSL/TLS and
PKI to Secure Servers and Web Applications. Feisty Duck, 2013.

[108] Ross, D., Gondrom, T., and Stanley, T. RFC 7034: HTTP Header Field X-
Frame-Options. Online at https://www.ietf.org/rfc/rfc7034.txt
(2013).

[109] Ross, D. Happy 10th Birthday Cross-Site Scripting. Online at https : / /
blogs.msdn.microsoft.com/dross/2009/12/15/happy- 10th-
birthday-cross-site-scripting/ (2009).

[110] Salem Alashwali, E., Szalachowski, P., and Martin, A. Exploring https security
inconsistencies: a cross-regional perspective. arXiv e-prints (2020).

[111] Saxena, P., Hanna, S., Poosankam, P., and Song, D. FLAX: Systematic Dis-
covery of Client-side Validation Vulnerabilities in Rich Web Applications. In:
Network and Distributed Systems Symposium (NDSS). 2010.

[112] Scheitle, Q., Hohlfeld, O., Gamba, J., Jelten, J., Zimmermann, T., Strowes,
S. D., and Vallina-Rodriguez, N. A long way to the top: significance, structure,
and stability of internet top lists. In: ACM Internet Measurement Conference
(IMC). 2018.

[113] Scott Helme. Security Headers. https://securityheaders.com. 2019.
[114] Singh, K., Moshchuk, A., Wang, H. J., and Lee, W. On the incoherencies in web

browser access control policies. In: IEEE Symposium on Security and Privacy
(S&P). 2010.

[115] Sivakorn, S., Keromytis, A. D., and Polakis, J. That’s the way the cookie crum-
bles: evaluating https enforcing mechanisms. In: ACM Workshop on Privacy in
the Electronic Society (WPES). 2016.

[116] Smith, J., Do, L. N. Q., and Murphy-Hill, E. Why can’t johnny fix vulnerabil-
ities: a usability evaluation of static analysis tools for security. In: Symposium
on Usable Privacy and Security (SOUPS). 2020.

[117] Some, D. F., Bielova, N., and Rezk, T. On the content security policy violations
due to the same-origin policy. In: The Web Conference (WWW). 2017.

173

https://github.com/w3c/webappsec-csp/issues/98
https://www.w3.org/TR/html401/
http://weblog.philringnalda.com/2004/04/06/getting-around-ies-mime-type-mangling
http://weblog.philringnalda.com/2004/04/06/getting-around-ies-mime-type-mangling
http://weblog.philringnalda.com/2004/04/06/getting-around-ies-mime-type-mangling
https://www.ietf.org/rfc/rfc7034.txt
https://blogs.msdn.microsoft.com/dross/2009/12/15/happy-10th-birthday-cross-site-scripting/
https://blogs.msdn.microsoft.com/dross/2009/12/15/happy-10th-birthday-cross-site-scripting/
https://blogs.msdn.microsoft.com/dross/2009/12/15/happy-10th-birthday-cross-site-scripting/
https://securityheaders.com


BIBLIOGRAPHY

[118] Son, S. and Shmatikov, V. The Hitchhiker’s Guide to DNS Cache Poisoning. In:
International Conference on Security and Privacy in Communication Systems
(SecureComm). 2010.

[119] SOPHOS nacked security. Facebook users hit by hardcore porn, violence and
animal abuse images. Online at https://nakedsecurity.sophos.com/
2011/11/15/facebook-hardcore-porn-violence-and-animal-
abuse-images/. 2011.

[120] Soussi, W., Korczynski, M., Maroofi, S., and Duda, A. Feasibility of large-scale
vulnerability notifications after gdpr. In: IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW). 2020.

[121] Stamm, S., Sterne, B., and Markham, G. Reining in the web with content secu-
rity policy. In: The Web Conference (WWW). 2010.

[122] Steffens, M., Musch, M., Johns, M., and Stock, B. Who’s Hosting the Block
Party? Studying Third-Party Blockage of CSP and SRI. In: Network and Dis-
tributed Systems Security (NDSS). 2021.

[123] Steffens, M., Rossow, C., Johns, M., and Stock, B. Don’t Trust The Locals:
Investigating the Prevalence of Persistent Client-Side Cross-Site Scripting in
the Wild. In: Network and Distributed Systems Symposium (NDSS). 2019.

[124] Stock, B., Johns, M., Steffens, M., and Backes, M. How the web tangled itself:
uncovering the history of client-side web (in) security. In: USENIX Security
Symposium (USENIX Security). 2017.

[125] Stock, B., Pellegrino, G., Li, F., Backes, M., and Rossow, C. Didn’t You Hear
Me? - Towards More Successful Web Vulnerability Notifications. In: Network
and Distributed System Security Symposium (NDSS). 2018.

[126] Stock, B., Pellegrino, G., Rossow, C., Johns, M., and Backes, M. Hey, you have
a problem: on the feasibility of {large-scale} web vulnerability notification. In:
USENIX Security Symposium (USENIX Security). 2016.

[127] Stock, B., Pfistner, S., Kaiser, B., Lekies, S., and Johns, M. From Facepalm
to Brain Bender: Exploring Client-Side Cross-Site Scripting. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2015.

[128] Strauss, A. and Corbin, J. M. Grounded theory in practice. Sage, London, 1997.
[129] Sudhodanan, A., Carbone, R., Compagna, L., Dolgin, N., Armando, A., and

Morelli, U. Large-scale analysis & detection of authentication cross-site request
forgeries. In: IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE. 2017.

[130] Tang, S., Dautenhahn, N., and King, S. T. Fortifying web-based applications
automatically. In: ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2011.

[131] Toomey, P. GitHub’s CSP Journey. https://githubengineering.com/
githubs-csp-journey/. 2016.

174

https://nakedsecurity.sophos.com/2011/11/15/facebook-hardcore-porn-violence-and-animal-abuse-images/
https://nakedsecurity.sophos.com/2011/11/15/facebook-hardcore-porn-violence-and-animal-abuse-images/
https://nakedsecurity.sophos.com/2011/11/15/facebook-hardcore-porn-violence-and-animal-abuse-images/
https://githubengineering.com/githubs-csp-journey/
https://githubengineering.com/githubs-csp-journey/


OTHER REFERENCES

[132] Twitter Community. Reasons to move from same-origin iframes to third-party
iframes? Online @ https://twittercommunity.com/t/reasons-to-
move- from- same- origin- iframes- to- third- party- iframes/
179321. 2022.

[133] Van Goethem, T., Chen, P., Nikiforakis, N., Desmet, L., and Joosen, W. Large-
scale security analysis of the web: challenges and findings. In: International Con-
ference on Trust and Trustworthy Computing (TRUST). 2014.

[134] Wang, P., Gudmundsson, B. A., and Kotowicz, K. Adopting Trusted Types
in Production Web Frameworks to Prevent DOM-Based Cross-Site Scripting: A
Case Study. In: IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). 2021.

[135] Weichselbaum, L. and Spagnuolo, M. CSP - A Successful Mess Between Hard-
ening and Mitigation. LocomocoSec, Online at https://locomocosec2019.
sched.com/event/Ixt3/content-security-policy-a-successful-
mess-between-hardening-and-mitigation. 2020.

[136] Weichselbaum, L., Spagnuolo, M., Lekies, S., and Janc, A. CSP is dead, long live
CSP! On the insecurity of whitelists and the future of content security policy. In:
ACM SIGSAC Conference on Computer and Communications Security (CCS).
2016.

[137] Weissbacher, M., Lauinger, T., and Robertson, W. Why is CSP failing? Trends
and challenges in CSP adoption. In: Recent Advances in Intrusion Detection
(RAID). 2014.

[138] West, M. Upgrade Insecure Requests. https://www.chromestatus.com/
feature/6534575509471232. 2018.

[139] West, M. CSP Level 3. W3C Standard. Online at https://www.w3.org/
TR/CSP3/ (2021).

[140] WhatIsMyBrowser.com. Latest user agents for Web Browsers & Operating Sys-
tems. https://www.whatismybrowser.com/guides/the-latest-
user-agent/whatismybrowser.com.

[141] WHATWG community. HTML Living Standard. Online at https://html.
spec.whatwg.org/multipage/ (2022).

[142] WICG. Explainer: Trusted Types for DOM Manipulation. https://github.
com/WICG/trusted-types#limiting-policies. 2018.

[143] World Wide Web Consortium. Fetch Metadata Request Headers. W3C Working
Draft, Online at https://www.w3.org/TR/fetch-metadata/. 2021.

[144] World Wide Web Consortium - GitHub - webappsec-csp. Issue 7: CSP: connect-
src ’self’ and websockets. https://github.com/w3c/webappsec-csp/
issues/7.

175

https://twittercommunity.com/t/reasons-to-move-from-same-origin-iframes-to-third-party-iframes/179321
https://twittercommunity.com/t/reasons-to-move-from-same-origin-iframes-to-third-party-iframes/179321
https://twittercommunity.com/t/reasons-to-move-from-same-origin-iframes-to-third-party-iframes/179321
https://locomocosec2019.sched.com/event/Ixt3/content-security-policy-a-successful-mess-between-hardening-and-mitigation
https://locomocosec2019.sched.com/event/Ixt3/content-security-policy-a-successful-mess-between-hardening-and-mitigation
https://locomocosec2019.sched.com/event/Ixt3/content-security-policy-a-successful-mess-between-hardening-and-mitigation
https://www.chromestatus.com/feature/6534575509471232
https://www.chromestatus.com/feature/6534575509471232
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/CSP3/
https://www.whatismybrowser.com/guides/the-latest-user-agent/
https://www.whatismybrowser.com/guides/the-latest-user-agent/
https://html.spec.whatwg.org/multipage/
https://html.spec.whatwg.org/multipage/
https://github.com/WICG/trusted-types#limiting-policies
https://github.com/WICG/trusted-types#limiting-policies
https://www.w3.org/TR/fetch-metadata/
https://github.com/w3c/webappsec-csp/issues/7
https://github.com/w3c/webappsec-csp/issues/7




OTHER REFERENCES

177



BIBLIOGRAPHY

178


	Introduction
	State of the Art & Motivation
	Contributions of this Thesis
	Outline

	Background & Related Work
	Basic Technologies
	Web-based Attacks
	Client-side Security Mechanisms
	Qualitative Methods

	Historic Deployment of Security Headers In-The-Wild
	Motivation
	Methodology
	Historical Evolution of CSP
	CSP for Script Content Restriction
	CSP for TLS Enforcement
	CSP for Framing Control
	In-Depth Analysis of Deployed CSPs
	Framing Control Notification
	Discussion
	Summary

	Inconsistent Deployment of Security Headers In-The-Wild
	Motivation
	Data Collection Framework
	Formalizing Inconsistencies
	Measuring Inconsistencies
	Special Case: XFO vs. CSP frame-ancestors
	Discussion
	Summary

	The Developers’ Struggle with CSP Deployment
	Motivation
	Methodology
	Results
	Discussion
	Summary

	Is Trusted Types repeating the mistakes made for CSP?
	Motivation
	Methodology
	Results
	Discussion
	Summary

	Conclusion
	Summary of Contributions
	Future Work
	Concluding Thoughts

	Appendix
	Appendix: Complex Security Policy
	Appendix: The Security Lottery
	Appendix: 12 Angry Developers
	Appendix: Trust me If you Can


