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Abstract 

Problem setting: Stochastic dynamical systems in which local interactions give rise 
to complex emerging phenomena are ubiquitous in nature and society. This work 
explores the problem of inferring the unknown interaction structure (represented as 
a graph) of such a system from measurements of its constituent agents or individual 
components (represented as nodes). We consider a setting where the underlying 
dynamical model is unknown and where different measurements (i.e., snapshots) may 
be independent (e.g., may stem from different experiments).

Method: Our method is based on the observation that the temporal stochastic evolu-
tion manifests itself in local patterns. We show that we can exploit these patterns to 
infer the underlying graph by formulating a masked reconstruction task. Therefore, we 
propose GINA (Graph Inference Network Architecture), a machine learning approach 
to simultaneously learn the latent interaction graph and, conditioned on the interac-
tion graph, the prediction of the (masked) state of a node based only on adjacent 
vertices. Our method is based on the hypothesis that the ground truth interaction 
graph—among all other potential graphs—allows us to predict the state of a node, 
given the states of its neighbors, with the highest accuracy.

Results: We test this hypothesis and demonstrate GINA’s effectiveness on a wide 
range of interaction graphs and dynamical processes. We find that our paradigm allows 
to reconstruct the ground truth interaction graph in many cases and that GINA out-
performs statistical and machine learning baseline on independent snapshots as well 
as on time series data.

Keywords: Network reconstruction, Interaction learning, Masking, Link prediction, 
Multi-agent system

Introduction
Stochastic dynamical systems in which local interactions give rise to complex emerg-
ing phenomena are ubiquitous in nature and society. However, their analysis remains 
challenging. Traditionally, the analysis of complex systems is based on models of indi-
vidual components. This reductionist perspective reaches its limitations when the 
interactions of the individual components—not the components themselves—become 
the dominant force behind a system’s dynamical evolution. Inferring the functional 
organization of a complex system from measurements is relevant for their analysis 
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(Fornito et  al. 2015; Prakash et  al. 2012; Amini et  al. 2016; Finn et al. 2019), design 
(Zitnik et al. 2018; Hagberg and Schult 2008; Memmesheimer and Timme 2006), con-
trol (Gu et al. 2015; Großmann et al. 2020), and prediction (Kipf et al. 2018; Zhang 
et al. 2019).

In this work, we focus on the internal interaction structure (i.e., graph or network) 
of a complex system. We propose a machine learning approach to infer this structure 
based on observational data of the nodes (i.e., components or constituent agents). We 
refer to these observations as snapshots and assume that the observable states of all 
components are measured simultaneously (see Fig. 1 for an overview). However, we 
make no prior assumption about the relationship between snapshots. Specifically, 
snapshots are not labelled with time stamps. They may be taken from different experi-
ments with varying initial conditions.

Most recent work on graph inference focuses on time series data, where observations 
are time-correlated and the interaction graph is inferred from the joint time evolution of 
the node-states (Zhang et al. 2019; Kipf et al. 2018). Naturally, time series data contains 
more information on the system’s internal interactions than snapshot data. However, in 
many cases, such data is not available: In some cases, one has to destroy a system to 
access its components (e.g., slice a brain (Rossini et al. 2019), observe a quantum system 
(Martínez et al. 2019), or terminate a cell (Chan et al. 2017)). Sometimes, the relevant 
time scale of the system is too small (e.g., in particle physics) or too large (e.g., in evolu-
tionary dynamics) to be observed. Often, there is a trade-off between spatial and tempo-
ral resolution of a measurement (Sarraf and Sun 2016). And finally, measurements may 
be temporally decoupled due to large observation intervals and thus become unsuitable 
for methods that exploit correlations in time. Yet, machine learning techniques for graph 
inference from independent data remain underexplored in the literature.

In contrast to many state-of-the-art approaches, our method makes no prior 
assumptions about the dynamical laws. Conceptually, our analysis is founded on iden-
tifying patterns within the snapshots. These patterns are spatial manifestations of the 
temporal co-evolution of neighboring nodes. Thus, they carry information about the 
underlying connectivity.

We propose an approach based on ideas recently popularized for time series-based 
network inference (Zhang et  al. 2018; Kipf et  al. 2018). It provides an elegant way 
of formalizing the graph inference problem with minimal parametric assumptions on 
the underlying dynamical model. The core assumption is that the interaction graph 
“best describing” the observed data is the ground truth. In the time series setting, this 
means that it enables time series forecasting.

Fig. 1 Schematic illustration the problem setting. We are interested in inferring the latent (unweighted and 
undirected) interaction graph from observational data of the process
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Here, we assume that time series data is not available. Hence, we aim at finding the 
graph that best enables us to predict a node’s state based on its direct neighborhood 
within a snapshot (not at future times). This technique is commonly referred to as mask-
ing (Mishra et al. 2020). That is, we mask (i.e., erase) the state of a node and then try to 
recover it by looking at its neighbors. To this end, we use a prediction model to learn a 
node’s observable state (i.e., the node-state) given the joint state of all adjacent nodes. 
Then we maximize the prediction accuracy by jointly optimizing the interaction graph 
and the prediction model. In essence, we assume that the information shared between a 
node and its complete neighborhood is higher in the ground truth graph than in other 
potential graphs.

However, in a trivial implementation, the network that enables the best node-state 
prediction is the complete graph because it provides all information available in a given 
snapshot. This necessitates a form of regularization in which edges that are present but 
not necessary reduce prediction quality. We do this using a counting neighborhood 
aggregation scheme that acts as a bottleneck of information flow.

For an efficient solution to the graph inference problem, we propose GINA. GINA is 
inspired by graph neural network architectures and combines a simple neighborhood 
aggregation and an efficient weight-sharing mechanism between nodes with a differenti-
able graph representation. This enables the application of our methods to systems with 
hundreds of nodes. GINA is both, model-free, (apart from the inductive biases from the 
constituent neural networks, it can learn arbitrary patterns in snapshots) and thresh-
old-free (implicit thresholding is done during training, no arbitrary edge binarization is 
needed afterwards). However, the way the dynamics is encodes is inspired by the theory 
of multi-state processes. These provide a powerful description for many relevant dynam-
ical models of interacting systems (Gleeson 2011; Fennell and Gleeson 2019) (a simi-
lar model-class is studied under the name Stochastic Automata Networks (Langville and 
Stewart 2004; Plateau and Stewart 2000)).

In summary, we conceptualize and test the hypothesis that network reconstruction 
can be formulated as a prediction task. In this contribution (i) we propose a masking 
technique to formalize the prediction problem, (ii) propose a suitable neighborhood 
aggregation mechanism that automatically acts as a regularization mechanism, (iii) 
develop the neural architecture GINA to efficiently solve the prediction and reconstruc-
tion task, and (iv) we test our hypothesis using synthetically generated snapshots using 
various combinations of graphs and diffusion models.

Foundations and problem formulation

Notation

The goal is to find the latent interaction graph of a complex system with n agents/
nodes. A graph is represented as a binary adjacency matrix A of size n× n (with node 
set {vi | 1 ≤ i ≤ n} ). An entry aij ∈ {0, 1} indicates the presence ( aij = 1 ) or absence 
( aij = 0 ) of an edge between node vi and vj . We assume that A is symmetric (the graph is 
undirected) and the diagonal entries are all zero (the graph has no self-loops). We use A∗ 
to denote the ground truth matrix.
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Each snapshot assigns a node-state to each node. The finite set of possible node-
states is denoted S . For convenience, we assume that the node-states are represented 
using one-hot encoding. For instance, in an epidemic model a node might be sus-
ceptible or infected. Since there are two node-states, we use S = {(0, 1), (1, 0)} . Each 
snapshot X ∈ {0, 1}n×|S| can then conveniently be represented as a matrix with n rows, 
each row describing the corresponding one-hot encoded node-state (cf.  Fig.  2 left). 
We use X  to denote the set of independent snapshots. We make no specific assump-
tion about the underlying distribution or process behind the snapshots or their rela-
tionship to another.

For a node vi (and fixed snapshot), we use mi ∈ Z
|S|
≥0 to denote the (element-wise) 

sum of all neighboring node-states, referred to as neighborhood counting vector. Let’s 
return to our previous example, where S = {(1, 0), (0, 1)} . The state mi = (10, 13) tells 
us that node vi has 10 susceptible ((1,  0)) and 13 infected ((0,  1)) neighbors. Note 
that the sum over mi is the degree (i.e., number of neighbors) of that node (here, 
10+ 13 = 23 ). The set of all possible neighborhood counting vectors is denoted 
by M ⊂ Z

|S|
≥0 . We can compute neighborhood counting vectors of all nodes using 

M = AX , where the matrix M is such that its i-th row equals mi (cf. Fig. 2 center).

Idea

We feed each counting vector mi into a machine learning model that predicts (resp. 
recovers) the original (masked) state of vi in that snapshot. Specifically, for each node vi , 
we learn a function Fi : M → Cat(S) , where Cat(S) denotes the set of all probability 
distributions over S (in the sequel, we make the mapping to a probability distribution 
explicit by adding a Softmax(·) function). To evaluate Fi(·) , we use some loss function 
to quantify how well the distribution predicts the true state and minimize this predic-
tion loss. Practically, we assume that Fi(·) is implemented using a neural network. Hence, 
we assume that Fi(·) is fully parameterized by node-dependent parameters θi (e.g., in a 
NN, θi contains the weights and biases of all layers). For simplicity, we still write Fi(·) 
instead of Fθi(·) . We also simply use θ = {θ1, . . . , θn} to denote the weights for all nodes. 
We define Fθ (·) as a node-wise application of Fi(·) , that is,

Fig. 2 Schematic architecture using 4-node graph with S = {(0, 1), (1, 0)} . Nodes are color-coded, 
node-states are indicated by the shape (filled: I, blank: S). First, we compute mi for each node vi (stored as M ), 
then we feed each mi into a predictor that predicts the original state
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The hypothesis is that the ground truth adjacency matrix A∗ provides the best foun-
dation for Fi(·) , ultimately leading to the smallest prediction loss. Under this hypoth-
esis, we can use the loss as a surrogate for the accuracy of candidate A (compared to 
the ground truth graph). The number of possible adjacency matrices of a system with n 
nodes (assuming no self-loops and symmetries) is 2n(n−1)/2 . Thus, it is hopeless to simply 
try all possible adjacency matrices. Hence, we additionally assume that smaller distances 
between A and A∗ (we call this graph loss) lead to smaller prediction losses. This way, the 
optimization becomes feasible and we can follow the surrogate loss in order to arrive at 
A
∗.

Masked reconstruction

Next, we formulate the graph inference problem using a simple neural network, denoted 
ψ(·) , which loosely resembles an autoencoder architecture: For each snapshot X , we pre-
dict the node-state of each node using only the neighborhood of that node. Then, we 
compare the prediction with the actual (known) node-state. The model ψ(·) can be seen 
as a elementary graph neural network (as discussed in the next section).

For a given adjacency matrix (graph) A ∈ {0, 1}n×n and MLP parameters θ , we define 
ψ(·) , applied to a snapshot X ∈ {0, 1}n×|S| as:

where Softmax(·) and Fθ (·) are applied row-wise. Thus, ψθ ,A(X) results in a matrix 
where each row corresponds to a node and models a distribution over node-states. Simi-
lar to the auto-encoder paradigm, input and output are of the same form and the net-
work learns to minimize the difference. The absence of self-loops in A is critical as it 
means that the actual node-state of a node is not part of its own neighborhood aggrega-
tion (i.e., it is masked). As we want to predict a node’s state, the state itself cannot be 
part of the input.

We will refer to the matrix multiplication AX as graph layer and to the application of 
Softmax(Fθ (·)) as prediction layer.

Relationship to GNN architectures

The function ψ(·) can be seen as a single-layer graph neural network (GNN). GNNs are 
the de-facto standard machine learning method to process graph-structured data. A 
GNN can take graphs of arbitrary size as input. The output typically fulfills some form 
of invariance to the node-ordering of the input (e.g., two isomorphic graphs might be 
guaranteed to produce the same output). Seminal work in their development was done 
by Duvenaud et al. (2015) who proposed an elementary GNN architecture to learn rep-
resentations of molecular graphs and by Kipf and Welling (2016) who provide additional 
theoretical insights and an efficient solution of the graph convolution operator to learn 
node representations.

(1)Fθ (m1,m2, . . . ,mn) = F1(m1), F2(m2), . . . , Fn(mn) .

(2)
ψθ ,A : {0, 1}n×|S| → R

n×|S|

ψθ ,A : X �→ Softmax
(

Fθ (AX)
)

,
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Most modern GNN architectures follow the message-passing scheme developed by 
Gilmer et  al. (2017). Each layer performs an aggregate(·) and a combine(·) step. The 
aggregate(·) step computes a neighborhood embedding based on a permutation-invar-
iant function of all neighboring nodes. The combine(·) step combines this embedding 
with the actual node-state. In our architecture, the aggregation-step is the element-
wise sum (given by the multiplication of the adjacency matrix and the neighborhood 
counting matrix). In principle, other permutation-invariant aggregation functions like 
the element-wise mean or maximum/minimum would also be possible. We choose a 
sum because it corresponds to the multi-state paradigm (Gleeson 2011; Fennell and 
Gleeson 2019), empirically works well, and is also more informative than compara-
ble aggregators. Importantly, the combine(·) step needs to purposely ignore the node-
state (in order for the prediction task to make sense).

We also only perform a single application of the graph layer on purpose, which 
means that only information from the immediate neighborhood can be used to pre-
dict a node-state. Recall that we define the ground truth network such that interac-
tions only happen along edges. While using n-hop neighborhoods would increase the 
network’s predictive power, it would be detrimental to graph reconstruction. Another 
possibility to increase the accuracy of the prediction is by learning attention weights 
for each individual neighbor of a node (instead of simply using a sum-aggregation). 
The problem with that is that a variable interaction strength necessities an (arbitrary) 
thresholding to get a binarized adjacency matrix. Using a simple sum enforces that 
edges that are present, but not necessary, hurt the prediction performance because 
the network cannot learn to ignore these.

It is also worth noticing that Fi(·) is specific to node vi (hurting the permutation-
equivariance that is typically guaranteed by GNNs). This is possible because the snap-
shots identify each node unambiguously. However, the aggregation function needs to 
be permutation-invariant following our premise that a node’s neighbors are only dis-
tinguishable by their respective node-states.

Prediction loss

We assume a loss function L(·) that is applied independently to each snapshot:

The prediction loss L compares the input (actual node-states) and output (predicted 
node-states) of ψθ ,A(·) . We define the loss on a set of independent snapshots X  as the 
sum over all constituent snapshots:

In our experiments, we use row-wise MSE-loss.
Note that, in the above sum, all snapshots are treated equally independent of their 

corresponding initial conditions or time points at which they were made. Formally, 
this is reflected in the fact that the loss function is invariant to the order of the 
snapshots.

(3)L : {0, 1}n×|S| × R
n×|S| → R

(4)L
(

X ,ψθ ,A(X )
)

:=
∑

X∈X

L
(

X,ψθ ,A(X)
)

.
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Graph inference problem

We define the graph inference problem as follows: For given set of m snapshots 
X = {X1, . . . ,Xm} (corresponding to n nodes), find an adjacency matrix A′ ∈ {0, 1}n×n 
and MLP parameters θ ′ minimizing the prediction loss:

Thus, solving the graph inference problem requires simultaneously optimizing over a 
discrete space (graphs) and a continuous space (weights). In the next section, we explain 
how to achieve this by relaxing the discrete space.

Note that, in general, we cannot guarantee that A′ is equal to the ground truth matrix 
A
∗ . Regarding the computational complexity, it is known that network reconstruction 

for epidemic models based on time series data is NP-hard when formulated as a deci-
sion problem (Prasse and Van Mieghem 2018). We believe that this carries over to our 
setting but leave a proof for future work.

Our method: GINA
As explained in the previous section, it is not possible to solve the graph inference prob-
lem by iterating over all possible graphs/weights. Hence, we propose GINA (Graph Infer-
ence Network Architecture). GINA efficiently approximates the graph inference problem 
by jointly optimizing the graph A and the prediction layer weights θ using stochastic 
gradient descent.

Therefore, we adopt two tricks: Firstly, we impose a relaxation on the graph adjacency 
matrix representing its entries as real-valued numbers. Secondly, we use shared weights 
in the weight matrices belonging to different nodes. Specifically, each node vi gets its 
custom MLP, but weights of all layers, except the last one, are shared among nodes. This 
allows us to simultaneously optimize the graph and the weights using back-propagation. 
Note that traditional GNN architectures need to have shared weights to achieve per-
mutation invariant. Here, we can freely combine shared and note-specific weights to 
achieve to balance predictive power and generalizability/efficiency. Apart from that, 
we still follow the architecture from the previous section. That is, a graph layer maps a 
snapshot to neighborhood counting vectors, and each neighborhood counting vector is 
pushed through a node-wise MLP.

Graph layer

Internally, we store the interaction graph as a real-valued upper triangular matrix C that 
can contain arbitrary values. During each forward pass, we deterministically translate C 
into an adjacency matrix representing the interaction graph. Specifically, in each step, 
we (i) compute B = C+ C

⊤ to enforce symmetry, (ii) compute A′ = µ(B) to enforce a 
reasonable range, and (iii) set all diagonal entries of A′ to zero, yielding Â = mask(A′) . 
Setting the diagonal entries to zero using mask(·) is important to ensure that no informa-
tion leaks from the node itself to the prediction of its state.

Here, µ(·) is a differential function that is applied element-wise and maps real-val-
ued entries to the interval [0, 1]. It ensures that Â approximately behaves like a binary 

(5)(θ ′,A′):= arg min
θ ,A

L
(

X ,ψθ ,A(X )
)

.
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adjacency matrix. Thus, it can be seen as a differentiable edge binarization (the hat-nota-
tion indicates relaxation). Specifically, we use a nested Sigmoid-type function f (·) that is 
parametrized by a sharpness parameter v:

where we choose f (x) = 1/(1+ exp(−x)) and increase the sharpness v over the course 
of the training. Increasing the sharpness means that the entries of Â move closer and 
closer to 0 or 1 during the training. Note that the masking is done implicitly if we ensure 
that diagonal entries in C are zero and µ(0) = 0.

Finally, Â is multiplied with the snapshot which yields a relaxed version of the neigh-
borhood counting abstraction. The output M̂ = ÂX is a relaxed version of the neighbor-
hood counting matrix M.

In summary, for a snapshot X , the graph layer computes:

where C is optimized during training. Note that the process is differentiable and the 
overall loss can be back-propagated to C (cf. Fig. 3).

For the final results (and comparison with the ground truth), we threshold the adja-
cency matrix A at 0.5. That is, we complete the differentiable thresholding of µ(·) with a 
final hard cut of.

Prediction layer

We use MLPs to implement the prediction layer Fθ (·) that transforms the output of the 
graph layer ( M̂ ) into a predictions of node-states. In M̂ , each row corresponds to one 
node. Thus, we apply the MLPs independently to each row. We use m̂i to denote the row 

(6)
µ : R → [0, 1]

µ : x �→ f
(

(

f (x)− 0.5
)

· v
)

,

(7)M̂ = ÂX = mask(µ(C+ C
⊤))X,

Fig. 3 Illustration of GINA. Snapshots are processed independently. Each input/snapshot associates each 
node with a node state (blue, pink). The output is a distribution over states for each node. During training, 
this distribution is optimized w.r.t the input. The output is computed based on a multiplication with the 
current adjacency matrix candidate (stored as C) and the application of a node-wise MLP. Ultimately, we are 
interested in a binarized version of the adjacency matrix. Color/filling indicates the state, shape identifies 
nodes
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corresponding to node vi (i.e., the neighborhood counting relaxation of vi ). Let FCi,o(·) 
denote a fully-connected (i.e., linear) layer with input (resp. output) dimension i (resp. 
o). We use ReLu and Softmax activation functions. Each node-wise prediction layer 
MLP contains four sub-layers and is given as:

In our implementation, only the last sub-layer ( o4i  ) contains node-specific weights. This 
enables a node-specific shift of the probability computed in the previous layer. In other 
words, the o3i  already contains valid predictions for each node, but the probably distri-
bution is fine-tuned in the last layers. All other weights are shared among nodes which 
results in strong regularization. Thus, Fi(·) applies the MLP of node vi . Note that we use 
a comparably small dimension (i.e., 10) for internal embeddings, which has shown to be 
sufficient in our experiments. The node-specific weights lead to a small, but consistent, 
improvement of the graph reconstruction. All node-specific weights can be updated effi-
ciently in parallel in a single forward-backward pass.

Training

To solve the graph inference problem, we use a relaxed graph representation to com-
pute neighborhood vectors (Eq. (7)). We evaluate these using node-specific MLPs (Eq. 
(8)). The loss compares the input with the output using node-wise MSE. During training, 
the loss back-propagates to the graph representation and the MLP weights, which are 
updated accordingly (Eq. (4)).

We empirically find that over-fitting is not a problem and therefore do not use a test 
set. However, a natural approach would be to split the snapshots into a training and test 
set and optimize Â and θ on the training set until the loss reaches a minimum on the test 
set. Another important aspect during training is the usage of mini-batches. For ease of 
notation, we ignored batches so far. In practice, mini-batches of snapshots are crucial for 
fast and robust training. A mini-batch of size b, can be created by concatenating b snap-
shots (in the graph layer) and re-ordering the rows accordingly (in the prediction layer).

Limitations

There are some relevant limitations to GINA. Firstly, we can provide no guarantees that 
the ground truth graph is actually the solution to the graph inference problem. In par-
ticular, simple patterns in the time domain (that enable trivial graph inference using time 
series data) might correspond to highly non-linear patterns inside a single snapshot (yet, 
in practice, the spatial patterns seem to be easier to recognize). Secondly, GINA is only 
applicable if statistical associations among adjacent nodes manifest themselves in a way 
that renders the counting abstraction meaningful. Statistical methods are more robust 
in the way they can handle different types of pair-wise interactions but less powerful 
regarding non-linear combined effects of the complete neighborhood. Another relevant 
design decision is to use one-hot encoding which renders the forward pass extremely 

(8)

o
1
i = ReLu(FC|S|,10(m̂i))

o
2
i = ReLu(FC10,10(o

1))

o
3
i
= Softmax(FC10,|S|(o

2))

o
4
i = Softmax(FC|S|,|S|(o

3)) .
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fast but will reach limitations when the node-state domain becomes very complex. We 
also assume that all agents behave reasonably similar to another which enables weight 
sharing and therefore greatly increases the efficiency of the training and reduces the 
number of required samples.

Experiments
We conduct three experiments using synthetically generated snapshots. In Experiment 
1, we analyze the underlying hypothesis that the ground truth graph enables the best 
node-state prediction. In Experiment 2, we compare GINA to statistical baselines on 
independent snapshots. In Experiment 3, we test GINA on time series data and com-
pare with machine learning baselines.

Setup.
Our prototype of GINA is implemented using PyTorch (Paszke et al. 2019) and is exe-

cuted on a standard desktop computer with 32 GB of RAM and an Intel i9-10850K CPU.
Accuracy and loss.
We quantify the performance of GINA using the graph loss and the prediction loss. 

The graph loss measures the quality of an inferred graph. It is defined as the L1 (Manhat-
tan) distance of the upper triangular parts of the two adjacency matrices (i.e., the num-
ber of edges to add/remove). We always use a binarized version of inferred graph Ĉ for 
comparison with the ground truth A∗ . The prediction loss measures how well GINA pre-
dicts masked node-states and follows the definition in Section Prediction loss . All results 
are based on a single run of GINA, performing multiple runs and using the result with 
the lower prediction loss, might further improve GINA’s performance. For more details 
regarding the architecture and hyperparameters of GINA, we refer the reader to Appen-
dix A: Technical details of GINA .

Dynamical models

We study six models. A precise description of dynamics and parameters is provided in  
Appendix B: Dynamical models section . We focus on stochastic processes, as proba-
bilistic decisions and interactions are essential for modeling uncertainty in real-world 
systems. The models include a simple SIS-epidemic model where infected nodes can 
randomly infect susceptible neighbors or become susceptible again. In this model, sus-
ceptible nodes tend to be close to other susceptible nodes and vice versa. This renders 
network reconstruction comparably simple. In contrast, we also propose an Inverted 
Voter model (InvVoter) where nodes tend to maximize their disagreement with their 
neighborhood (influenced by the original Voter model (Campbell et  al. 1954)). Nodes 
hold one of two opinions (A or B) and A-nodes switch to B faster the more A-neighbors 
they have and vice versa. For even more complex emerging dynamics, we study a sys-
tem loosely inspired by Conway’s Game of Life. Nodes (cells) are either dead (D) or alive 
(A). Living conditions are good (i.e., nodes tend to stay alive or be born) when roughly 
half of an node’s neighbors are alive. Likewise, they tend to die (or stay dead) when the 
neighborhood is highly unbalanced. That is, almost all neighboring cells are either dead 
(underpopulation) or alive (overpopulation). We also examine a rock-paper-scissors 
(RPS) model to study evolutionary dynamics (Szabó and Fath 2007) and the well-known 
Forest Fire model (Bak et al. 1990) where a node (spot) can be empty (E), occupied by a 
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tree (T), or occupied by fire (F) induced by stochastic lightning. Finally, we test a deter-
ministic discrete-time dynamical model: a coupled map lattice model (CML) (Garcia 
et al. 2002; Kaneko 1992; Zhang et al. 2019) to study graph inference in the presence of 
chaotic behavior. As the CML model admits real node-values [0, 1], we performed dis-
cretization into 10 equally-spaced bins.

For the stochastic models, we use numerical simulations to sample from the equilib-
rium distribution. For CML, we randomly sample an initial state and simulate it for a 
random time period. We do not explicitly add measurement errors but all nodes are sub-
ject to internal noise (i.e., they spontaneously flip with a small probability). Figure 4 pro-
vides visualizations of typical equilibrium samples from the dynamical models.

Experiment 1: loss landscape

For this experiment, we generated 5000 snapshots for all dynamical models on the so-
called bull graph (illustrated in Fig.  1). We then trained GINA and measured the pre-
diction loss for all potential 5× 5 adjacency matrices that represent a connected graph. 
Note that the ground truth graph has a graph distance of zero. During training, we fixed 
the graph layer and only optimized the prediction layer. We observe a large depend-
ency between the prediction loss of a candidate graph and the corresponding graph loss 
(Fig. 5). We conclude that the hypothesis that graphs that are closer to the ground truth 
yield a better predictive performance is reasonable. The Game of Life dynamical model 
is the only example, where graph candidates exist that allow a better prediction than 
the ground truth graph (by an extremely small amount). Interestingly, this is one of the 
graph candidates that is furthest from ground truth.

Experiment 2: independent snapshots

Next, we compare GINA with statistical baselines on independent equilibrium snapshots.

Fig. 4 Examples of typical equilibrium snapshots on a 10× 10 grid graph. Different dynamics give rise to 
different types of cluster formations
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Ground truth graphs
To generate ground truth graphs we use Erdős-Renyi (ER) ( N = 22 ), Geometric 

(Geom) ( N = 50 ), and Watts-Strogatz (WS) ( N = 30 ). Moreover, we use a 2D-grid 
graph with 10× 10 nodes ( N = 100 , |E| = 180 ). We use 50 thousand samples. Graphs 
were generated the using networkX package (Hagberg et  al. 2008) (cf.  Appendix C: 
Random graph generation for details).

Baselines
As statistical baselines, we use Python package netrd (Hartle et  al. 2020). Specifi-

cally, we use the correlation (Corr), mutual information (MI), and partial correlation 
(ParCorr) methods. The baselines only return weighted matrices. Hence, they need to 
be binarized using a threshold. To find the optimal threshold, we provide netrd with 
the number of edges of the ground truth graph. Notably, especially in sparse graphs, 
this leads to an unfair advantage and renders the results not directly comparable. We 
also tested an automated thresholding approach based on k-means clustering of the 
weighted matrices. The results were quite good, but consistently worse than when the 
edge count was provided (results not shown). Furthermore, netrd only accepts binary 
or real-valued node-states. This is a problem for the categorical models RPS and FF. 
As a solution, we simply map the three node-states to real values (1, 2, 3), breaking 
statistical convention. Interestingly, the baselines handle this well and, in most cases, 
identify the ground truth graph nevertheless. Results are shown in Table 1.

Prediction layer visualization
We can visualize the prediction layer for the 2-state models. It encodes the con-

ditional probability to be in a specific node-state given the 2-dimensional neighbor-
hood counting vector mi . Figure  6 illustrates this conditional probability as a map 
from each possible neighborhood counting vectors. The results are given for a Watts-
Strogatz graph (where each node has approximately degree 4). The prediction layer 
belonging to the same node was used for all three models. We observe that the pre-
diction layer finds conditional probability distributions that capture the specific char-
acteristics of the dynamical models. It also generalizes well (beyond degree 4).

P
re

di
ct

io
n 
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ss

SIS Inverted Voter Game of Life

Rock-Paper-Scissors Forest Fire CMP

Graph Distance Graph Distance Graph Distance
Fig. 5 Exp. 1: [Lower is better.] Computing the loss landscape based on all possible 5-node graphs. x-axis: 
Graph distance to ground truth adjacency matrix. y-axis: Mean prediction loss of corresponding graph 
candidates. Error bars denote min/max-loss
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Experiment 3: time series data

In contrast to approaches for network inference based on time series data, GINA can 
be used when there is no (known) temporal relationship between snapshots. How-
ever, we can still apply GINA when time series data is available. In this experiment, 
we generate a single trajectory of a stochastic process and observe it at an interval 
x ( x ∈ {1, 5, 10, 20} ), e.g., x = 1 means that we observe the process after every jump 
in the underlying stochastic process. The reason to test different intervals between 
observations is that time series analysis methods are, in principle, sensitive to the 

Table 1 Exp. 2: [Lower is better.] Results of different graph inference methods

Bold values indicate better results than other methods

Graph loss Runtime (sec)

Model Graph GINA Corr MI ParCorr GINA Corr MI ParCorr

SIS ER 19 0 0 0 890 < 1 < 1 8

Geom 50 88 141 54 1366 < 1 2 126

Grid 12 0 0 0 2131 < 1 9 1862

WS 0 0 0 0 109 < 1 1 22

InvVoter ER 1 66 24 66 96 < 1 < 1 8

Geom 0 556 38 556 167 < 1 2 125

Grid 0 360 90 360 754 < 1 10 1861

WS 0 138 2 138 110 < 1 1 21

GoL ER 44 48 20 54 599 < 1 < 1 7

Geom 0 554 104 556 152 < 1 2 132

Grid 10 360 20 360 2181 < 1 10 1901

WS 0 138 22 138 111 < 1 1 21

RPS ER 0 0 0 0 114 < 1 < 1 8

Geom 1 76 74 2 317 < 1 3 129

Grid 72 0 0 0 2445 < 1 10 1873

WS 0 4 4 0 128 < 1 1 21

Forest Fire ER 13 0 0 6 1030 < 1 < 1 8

Geom 19 320 130 326 1486 < 1 2 127

Grid 30 0 0 0 2520 < 1 9 1892

WS 0 2 0 4 131 < 1 1 22

CML ER 0 0 4 0 156 < 1 < 1 7

Geom 0 0 46 2 316 < 1 3 125

Grid 8 0 0 0 5569 < 1 11 1874

WS 0 0 4 0 192 < 1 < 1 22
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Fig. 6 Output of the prediction layer for a random node in the Watts-Strogatz network. We map 
neighborhood counting vectors to the probability of the node being instate S (SIS), A (InvVoter), or D 
(Game of Life)
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time resolution of the observations. If too many (or too few) nodes change their 
state from one observation to another, this could hinder these approaches’ capability 
of finding and exploiting temporal patterns. In practice, we observe little depend-
ence on the temporal resolution.

Baseline
We compare GINA with the previous statistical baselines and with the machine 

learning approaches Automated Interactions and Dynamics Discovery (AIDD) 
(Zhang et al. 2021) and Gumbel Graph Network (GGN) (Zhang et al. 2019) which are 
both general frameworks to infer the network structure based on time series data 
(cf. Related work for more details).

Setup
 We used 6000 samples (less were not possible without adapting the GGN code 

further) and a simple 5× 5 grid graph (larger graphs made the GGN application too 
expensive). We used binary state dynamics because we could apply the baseline code 
off-the-shelf only to this format. We trained AIDD for 400 epochs and GGN for 40 
epochs (we found that accuracy would not improve after that). For comparison, we 
made the results of the baselines symmetric and binary.

Results
Generally, we find that GINA outperforms the methods based on time series anal-

ysis (AIDD and GGN). This is surprising as, in principle, the temporal data should 
contain significantly more information on the connectivity than the individual snap-
shots. We can only speculate why GGN performs poorly, but hypothesize that the 
method is conceptually unsuited for stochastic dynamics of jump processes where 
only a single agent changes at a time (and not all agents at once). Less surprisingly, 
we find that GINA is many orders of magnitude faster than AIDD and GGN (ca. 40 to 
70 times) while still processing many more epochs (up to 5000 in GINA vs 400 and 
40 in AIDD and GGN, respectively).

Moreover, we find that GINA performs slightly better than the statistical meth-
ods. Interestingly, Mutual Information is the only baseline that performs well on all 
dynamical models, Corr and ParCorr fail on the InvVoter and GoL model (this hap-
pens consistently even when increasing the number of snapshots). Using automated 
thresholding (instead of providing netrd with the number of edges) prevents the 
“collapse” of the statistical methods, but lead a larger graph loss in general. Detailed 
results are shown in Table 2.

Discussion

The results clearly show that graph inference based on independent snapshots is 
possible and that GINA is a viable alternative to statistical methods. Compared to 
the baselines, GINA performed best most often, even though we gave the baseline 
methods the advantage of knowing the ground truth number of edges. GINA per-
formed particularly well in the challenging cases where neighboring nodes do not 
tend to be in the same (or in similar) node-states. GINA even performed acceptably 
in the case of CML dynamics despite the discretization and the chaotic and deter-
ministic nature of the process.
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Related work
Literature abounds with methods to infer the (latent) functional organization of com-
plex systems that is often expressed using (potentially weighted, directed, temporal, 
multi-) graphs.

Most relevant for this work are previous approaches that use deep learning on time 
series data to learn the interaction dynamics and the interaction structure. Natu-
rally, these approaches require consecutive snapshots but are otherwise conceptually 
similar to GINA. Zhang et  al.  designed a two-component GNN architecture, called 
Gumble Graph Network (GGN), where a graph generator network proposes interac-
tion graphs and a dynamics learner learns to predict the dynamical evolution using 
the interaction graph (Zhang et  al. 2019). Both components are trained alternately 
which is comparably slow. The conceptually similar, but newer, AIDD (framework for 
automated interaction network and dynamics discovery) (Zhang et  al. 2021) scales 
significantly better with the size of the network.

Similarly, Kipf et al. propose NRI (neural relational inference) to learn the dynam-
ics using an encoder-decoder architecture that is constrained by an interaction graph 
which is optimized simultaneously (Kipf et  al. 2018). The technique popularized 
neural relational inference but is reported to scale poorly with the network size and 
seems to be unsuitable for stochastic discrete dynamics (see (Zhang et al. 2021) and 
literature referenced therein). Using our dynamical models from Experiment 3, NRI 
failed to reconstruct any graph.

Another state-of-the-art approach for this problem, based on regression analy-
sis instead of deep learning, is the ARNI framework by Casadiego et al. (2017). This 
method, however, hinges on a good choice of basis functions.

Other methods to infer interaction structures aim at specific dynamical models and 
applications. Examples include epidemic contagion (Newman 2018; Di Lauro et  al. 
2020; Prasse and Van Mieghem 2020), gene networks (Kishan et al. 2019; Omranian 

Table 2 Exp. 3: [Lower is better.] Results of different graph inference methods on time series data

Bold values indicate better results than other methods

Graph loss Runtime (sec)

Model Interval GINA AIDD GGN Corr MI ParCorr GINA AIDD GGN

SIS 1 8 42 179 4 4 2 62 2163 4382

5 0 28 179 0 0 0 62 2318 4396

10 1 29 85 0 0 0 62 2192 4432

20 1 36 83 0 0 0 62 2222 4402

InvVoter 1 0 18 73 80 22 80 44 2224 4358

5 0 28 31 80 16 80 37 2318 4395

10 0 24 66 80 16 80 37 2181 4432

20 0 27 80 80 16 80 37 2172 4419

GoL 1 13 42 199 80 52 80 62 2172 4443

5 4 42 208 80 22 80 62 2166 4353

10 4 40 190 80 26 80 61 2224 4354

20 9 42 163 80 22 80 62 2218 4391
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et al. 2016), functional brain network organization (de Abril et al. 2018), and protein-
protein interactions (Hashemifar et al. 2018). In contrast, our approach assumes no 
prior knowledge about the laws that govern the system’s evolution.

Statistical methods provide an equally viable and often very robust alternative. These 
can be based on partial correlation, mutual information, or graphical lasso (Tibshirani 
1996; Friedman et al. 2008). These methods rely on pair-wise correlations among agents. 
Our method takes the joint impact of all neighboring agents into account, which is nec-
essary in the presence of non-linear dynamical laws governing the system. Moreover, we 
directly infer binary (i.e., unweighted) graphs in order to not rely on (often unprincipled) 
threshold mechanisms.

Our method is also related to self-supervised machine learning, in particular to 
masking. Masking, in the form of masked language modeling, was popularized for the 
pre-training transformer-based models like Bert (Devlin et  al. 2018). Masking image 
patches also results in state-of-the-art pre-training for image recognition (Chen et  al. 
2022). Likewise, node-attribute masking was successfully used as a GNN pre-training 
technique (Hu et al. 2019) and to improve the ability of a network to generalize (Mishra 
et al. 2020).

Another relevant research area is optimization over discrete structures (like graphs). 
While traditional methods use gradient-free techniques like greedy optimization (Netra-
palli et al. 2010), genetic (Barman and Kwon 2018), or memetic (Wu et al. 2019) algo-
rithms, SGD-based approaches gain popularity. For instance, Paulus et al. (2020) apply 
the Gumble-softmax-trick, Fu et al. (2020) use iterative refinement using a differential 
(GNN-based) loss function, and Bengio et al. (2021) directly predict a sample from a dis-
tribution over discrete objects that is implicitly specified by a reward signal.

Conclusions and future work
We propose a model-free and threshold-free paradigm for network reconstruction. 
Based on this paradigm, we develop GINA to infer the underlying graph structure of a 
dynamical system from independent observations in an efficient way. GINA is based on 
the principle that local interactions among agents manifest themselves in specific spatial 
patterns. These patterns can be found and exploited.

More generally, we show that the underlying hypothesis—that the ground truth graph 
best describes a set of snapshots—is a promising graph inference paradigm. We also 
show that node-attribute masking is a principled and practical approach to formalize 
and measure what it means to “best describe” the observational data. For small graphs, 
we demonstrate this by enumerating the whole search space (Experiment 1), and for 
larger graphs, we demonstrate this by showing that GINA beats statistical baselines in 
many cases (Experiment 2) and even beats machine learning baselines that have access 
to the temporal ordering of the snapshots (Experiment 3).
GINA explores the vast space of all possible graphs by utilizing a relaxation of the 

adjacency matrix. This makes the problem amenable to gradient-based methods. Other 
methods (e.g., based on genetic algorithms or Gumbel-softmax-based optimization) are 
also possible and worth exploring. We believe that the main challenge for future work 
is to find ways of inferring graphs when the types of interaction differ largely among all 
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edges. Moreover, a deeper theoretical understanding of which processes lead to mean-
ingful statistical associations, not only over time but also within snapshots, would be 
desirable.

Appendix A: technical details of GINA
We start with a sharpness parameter v = 5.0 and increase v after 50 epochs by 0.3. We 
train (maximally) for 5000 (1000 in Experiment 3) epochs but employ early stopping if the 
underlying (binarized) graph does not change for 500 epochs (measured each 50 epochs). 
Moreover, we use Pytorch’s Adam optimizer with an initial learning rate of  10^− 3.

We use a mini-batch size of 100. For an efficient forward pass, we first stack the 100 
snapshots horizontally, yielding a n× 100|S| matrix. We push it through the graph layer 
and get another n× 100|S| matrix. We then reshape it, yielding a 100n× |S| matrix, and 
apply the prediction layer row-wise.

In Experiment 1, we use a fixed (pre-defined) binarized adjacency matrix and only 
optimize the weights of the prediction layer during training.

In contrast to standard GNN software (like Pytorch Geometric), we do not use a sparse 
representation of the underlying graph, because we optimize over all entries in the adja-
cency matrix. Moreover, our training set consists of snapshots rather than graphs, so we 
do not use any sort of graph batching as is common in GNN training.

We did not utilize hyperparameter optimization. Using a validation set to optimize the 
aforementioned parameters would likely noticeably increase the performance of GINA.

Appendix B: dynamical models
Except for the CML, we use continuous-time stochastic processes with a discrete state-
space to generate snapshots. Specifically, these models have a continuous-time Markov 
chain (CTMC) semantics. Moreover, each node/agent occupies one of several node-
states (denoted S ) at each point in time. Nodes change their state stochastically accord-
ing to their neighborhood (more precisely, according to their neighborhood counting 
vector). We assume that all nodes obey the same rules/local behavior. We refer the 
reader to Kiss et al. (2017); Fennell and Gleeson (2019); Großmann and Bortolussi (2019) 
for a detailed description of the CTMC construction in the context of epidemic spread-
ing processes.

SIS

Nodes are susceptible (S) or infected (I). Infected nodes can infect their susceptible 
neighbors or spontaneously become susceptible again. In other words, I-nodes become 
S-nodes with a fixed reaction rate µ and S-nodes become I-nods with a rate βm[I] , 
where m[I] denotes the number of infected neighbors of the node and β is the reaction 
rate parameter. Moreover, for all models, we add a small amount of stochastic noise ǫ 
to the dynamics. The noise not only mimics measurement errors but also prevents the 
system from getting stuck in trap state where no rule is applicable (e.g., all nodes are 
susceptible).

In the sequel, we use the corresponding notation:
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The reaction rate refers to the exponentially distributed residence times and a higher 
rate is associated with a faster state transition. When the reaction rate is zero (e.g., when 
no neighbors are infected), the state transition is impossible.

The parameterization is µ = 2.0 , β = 1.0 , and ǫ = 0.1.

Inverted voter

describes two competing opinions (A and B) while nodes always tend to maximize their 
disagreement with their neighbors.

We use ǫ = 0.01.

Game of life

Nodes represent cells (resp. areas) that are either dead (D) (resp. unpopulated) or alive 
(A) (resp. populated). Living conditions are good when roughly half of the neighboring 
cells are alive. Otherwise, a cell tends to die due to either over- or underpopulation.

where k = m[A] +m[D] is the degree of the node. We use ǫ = 0.01.

Rock paper scissors

mimics a simple evolutionary process where three species compete and defeat each 
other in a ring-like relationship.

We use ǫ = 0.01.

Forest fire

Spots/nodes are either empty (E), on fire (F), or have a tree on them (T). Trees grow with 
a growth rate g. Random lightning starts a fired on tree-nodes with rate fstart . The fire on 
a node goes extinct with rate fend leaving the node empty. Finally, fire spreads to neigh-
boring tree-nodes with rate fspread.

The parameterization is g = 1.0 , fstart = 0.1 , fend = 2.0 , fspread = 2.0 , and ǫ = 0.1.

Coupled map lattice

Let xi be the value of node vi at time-step i. Each node starts with a random value (uni-
form in [0, 1]). At each time step all nodes are updated based on a linear combination of 
their own node-value and the node-values of neighboring nodes (Kaneko 1992):

I
µ+ǫ
−−→ SS

βm[I]+ǫ
−−−−−→ I.

A
m[A]+ǫ
−−−−→ BB

m[B]+ǫ
−−−−→ A.

A
|m[A]−m[D]|+ǫ
−−−−−−−−−→ DD

k−|m[A]−m[D]|+ǫ
−−−−−−−−−−−→ A,

R
m[P]+ǫ
−−−−→ PP

m[S]+ǫ
−−−−→ SS

m[R]+ǫ
−−−−→ R.

T
fstart+m[F]fspread+ǫ
−−−−−−−−−−−→ FF

fend+ǫ
−−−→ EE

g+ǫ
−−→ T.
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where di is the degree of vi , N(i) denotes the set of (indices of ) nodes adjacent to vi , s is 
the coupling strength and f is the local map. Like (Zhang et al. 2019), we use the logistic 
function (May 2004):

where r modulates the complexity of the dynamics.
We use s = 0.1 and r = 3.57.

Appendix C: random graph generation
We use the Python NetworkX (Hagberg et  al. 2008) package to generate a single 
instance (variate) of a random graph model and test GINA and the baselines on a 
large number of snapshots generated using this graph. In particular, we use Erdős-
Renyi (ER) ( N = 22 , |E| = 33 ) graph model with connection probability 0.15:

 We also use Geometric Graph ( N = 50 , |E| = 278):

 and a Watts-Strogatz graph ( N = 30 , |E| = 69 ) where each node has 4 neighbors and 
the re-wiring probability is 0.15:

 After generation, the node-ids are randomly shuffled in order to guarantee that they do 
not leak information about connectivity to the training model.
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