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ABSTRACT

A viscoelastic material which is stretched and is then held at constant elonga-

tion, normally results in decreasing stresses till the equilibrium has been

reached. With the decreasing stresses a crack propagation is not expected as the

energy of the system is decreasing. However, an initial damage could lead to an

increase in the mechanical load on the undamaged chains during relaxation,

leading to material degradation and crack propagation. While experimental

investigations have been presented in the literature, modelling such an effect

has not been thoroughly investigated. In this work, an initial framework for

modelling the damage evolution during relaxation is presented. A mechanical

model is coupled with a phase field to model the crack propagation. For sim-

plicity, a linear viscoelastic model is implemented for the mechanical part. A

mobility constant is employed to model the evolution of the phase field with the

changing mechanical energy during relaxation. The evolution of phase field can

be interpreted as the evolution with which the polymer chains get damaged.

Different load conditions and geometries are simulated, which shows that the

proposed framework is able to model the damage evolution during viscoelastic

relaxation. Thus, with the help of the numerical model a physical explanation

for the failure during relaxation is presented.
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GRAPHICAL ABSTRACT

Introduction

Polymers such as polyurethane and rubber are

widely used as adhesives or sealants. These compo-

nents are normally subjected to a constant deforma-

tion during their lifetime. Such loading conditions

lead to relaxation of these viscoelastic materials.

Therefore, a rupture of these components is ruled out

from the theoretical point of view if the maximum

stress applied is less than the ultimate strength of the

material. However, in the literature, various experi-

ments have shown that material rupture can occur

even at a constant elongation and decreasing stress

[1–4].

The phenomenon was observed in the early 40’s by

Tobolsky et al. [1] during the relaxation of Hevea

rubber (natural rubber) where the stress decayed to

0 MPa during relaxation experiments at higher tem-

peratures. It was theorised that the high temperature

assists oxidation of the rubber which leads to bond

breakage and the drop in the stresses. However, no

change in the behaviour was noticed between the

experiments conducted in presence of ordinary air

atmosphere and in commercial nitrogen. Smith [5]

measured the ultimate tensile strength for unfilled

Styrene-Butadiene Rubber (SBR) at different temper-

atures and strain rates under tensile loads. With the

help of the experimental data, a failure envelope was

presented (Fig. 1) that represented the stress-strain

coordinate at which failure occurs for different strain

rates and temperatures. According to the failure

envelope if a specimen is elongated up to a certain

strain before the failure point and then held at con-

stant elongation (point b in Fig. 1), the stresses will

relax to the failure point of a slower strain rate and

lead to rupture of the specimen. For smaller strains

the relaxation may lead to the equilibrium position

(point a in Fig. 1). The concept was validated with

several relaxation experiments conducted at various

temperatures and strain rates, where the rupture of

the specimens at constant elongation was noticed [2].

With the help of the time-temperature superposition

principle, various failure envelopes were superim-

posed to obtain an envelop independent of the

experimental conditions [3].

In much recent investigations, Neuhaus et al. [4]

investigated the rupture of cross-linked polyurethane

at constant elongations. The effect was not only

reproducible in relaxation experiments, but also in

cyclic experiments, where the specimens were

unloaded after certain time of relaxation and then

again subjected to relaxation. Although a statistical

fluctuation with respect to the time of rupture can be

seen in the experiments, but the stress level for the

rupture was just outside the failure envelope for

polyurethane. Friedrich [6] presented similar results

for ethylene-propylene-diene monomer (EPDM)

rubber where the time to rupture was dependent on

the temperature, the strain rate and the maximum

applied strain before start of relaxation. Failure dur-

ing relaxation was limited in the range between two

extreme points. At strains below the minimum strain,

there was no failure observed in the material and at

strains above the maximum point, the failure was

observed in the loading phase instead of the relax-

ation phase. The concept of delayed fracture in

polymer gels has also been discussed in the literature

[7–11]. At a constant load the polymer gels don’t
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show any signs of failure at a macroscopic level until

crack initiation and then it leads to a sudden failure.

The classical fracture mechanics models presented

by Griffith [12] and Irwin [13] predict crack propa-

gation if the energy release rate reaches a critical

value. To model the fracture with the finite element

method (FEM), the path of the crack results in dis-

continuities in the mesh. These are modelled with the

help of methods such as the extended finite element

method (XFEM) [14] or stable generalised finite ele-

ment [15]. The use of a phase field model to describe

damage evolution has gained popularity in the last

few years [16–19] as the problem of the discontinuity

in the mesh is circumvented by introducing a field

variable / that defines a diffused crack zone around

the fracture. The variational methods for energy

minimisation as introduced by Francfort et al. [20]

and Bourdin et al. [21] are used to calculate the

evolution of the phase field variable and in turn the

crack propagation. Therefore, a fixed crack path does

not need to be defined. Alternatively a Ginzburg-

Landau type evolution equation [22] which is alter-

natively called the Allen-Cahn equation [23, 24] has

also been used to model the crack propagation for

rate dependent dynamic fractures using the phase

field model [25–27].

In this work, an evolution equation for the phase

field is implemented to model the failure of the

material during relaxation tests as noticed in the

experiments. It is assumed that some polymer chains

of shorter lengths break during the loading of the

specimen on a microscopic level, and due to this

other polymer chains carry more stress. During

relaxation, the remaining short chains relax faster

which leads to an increased loading of the longer

chains. This eventually leads to reaching the critical

load for the longer chains and a macroscopic failure

during relaxation. The energy of the load carrying

parts of the system continues to increase during the

relaxation phase till it reaches the critical value suf-

ficient for crack initiation and propagation. The

increase in energy is modelled in the model with the

increasing crack energy density with the evolution of

the phase field variable. The mechanical part is

modelled as a linear visco-elastic material extended

by a degradation function and the evolution of the

fracture energy during the relaxation phase is driven

by the Ginzburg-Landau evolution equation.

Modelling

An introduction to the mechanical model and the

phase field model is presented. The free energy

density for both the parts is added to get the total free

energy density and to derive the model equations.

Figure 1 Systematic

representation of a failure

envelope as suggested by

Smith et al. [5].

Figure 2 Experimental results from Neuhaus et al. [4] showing

the damage of a cross-linked polyurethane system during

relaxation.
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Mechanical model

A rheological model is used to represent the linear

viscoelastic behaviour of the material. A spring rep-

resenting the basic elasticity is connected in parallel

with a Maxwell element (Fig. 3a). In case of a small

displacement u, the strain

e ¼ grad uþ gradT u

2
ð1Þ

can be split additively into elastic and inelastic parts

e ¼ ee þ ei ð2Þ

in the Maxwell element, with the elastic part ee acting

on the spring and the inelastic strain ei stretching the

dashpot. The inelastic strain evolves according to

_ei ¼
ðe� eiÞ
ðs=2Þ ; ð3Þ

where s represents the relaxation time of the Maxwell

element. With the evolution of the inelastic strain, the

stress in the Maxwell element changes with time,

thus representing the non-equilibrium part wneq of the

mechanical energy density. At a constant strain, the

stress in the Maxwell element decays to zero and the

system reaches the equilibrium position. The equi-

librium part of the mechanical energy density weq is

thus represented by the spring element connected in

parallel to the Maxwell element. The total mechanical

energy density is given by

wm ¼ weqðeÞ þ wneqðeeÞ: ð4Þ

These energy densities are given by Hooke’s law as

weq ¼ lðe : eÞ þ k
2
trðeÞ2

� �
ð5Þ

and

wneq ¼ l1ðee : eeÞ þ
k1

2
trðeeÞ2

� �
; ð6Þ

where k, l are the Lamé parameters for the equilib-

rium spring and k1, l1 represent the Lamé parame-

ters for the Maxwell element.

Crack propagation model

A regularised field given by the phase field variable /
is used to model the diffused crack instead of a strong

discontinuity. A value of / ¼ 1 defines the fully intact

material and / ¼ 0 defines the crack in the material1.

The crack surface C (Fig. 3b) is regularised to a dif-

fused crack volume which is achieved by the inte-

gration of a regularisation function cð/; grad/Þ

Cð/Þ ¼
Z
X

cð/; grad/ÞdV: ð7Þ

The regularisation function which can also be defined

as the crack surface density function as proposed by

Miehe et al. [18, 19] is given as

cð/; grad/Þ ¼ 1

2l
ð1� /Þ2 þ lkgrad/k2: ð8Þ

The transition of the phase field from zero to one over

the crack width l defines the surface of the crack.

(a) (b)

Figure 3 A schematic representation of the model a) for the viscoelastic part b) for the crack propagation.

1 Depending on the model it is also possible to model the crack
with / ¼ 1 and the fully intact material with / ¼ 0, which
would fit the ranges of the canonical damage parameters
introduced by Kachanov oder Lemaitre
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The energy needed to create the crack surface is

given by

E/ ¼
Z
X

w/dV ¼
Z
X

GccdV ð9Þ

where Gc is the Griffith-type critical energy release

rate and

w/ ¼ Gc
1

2l
ð1� /Þ2 þ lkgrad/k2

� �
ð10Þ

gives the crack energy density.

Coupling

The effect of the phase field variable on the

mechanical energy density is modelled with the help

of a degradation function

gð/Þ ¼ ð1� jÞ/2 þ j; ð11Þ

where j ! 0 is a stability parameter to prevent zero

mechanical energy at the crack. A quadratic degra-

dation function has been used in a general way.

However a comprehensive study on the choice of the

degradation function can be found in [28]. With

decreasing value of /, the degradation function

decreases and accordingly, the mechanical energy

density is degraded, modelling the crack in the

material. The total energy density

wt ¼ gð/Þwm þ w/ ð12Þ

is given by the contribution of the mechanical energy

density degraded with the phase field and the crack

surface energy density. This leads to the stress

r ¼ owt

oe
; ð13Þ

as a function of the strain and the degradation func-

tion. The evolution of the phase field is modelled

according to the Ginzburg-Landau type evolution

equation

_/ ¼ �ðM=2ÞduðwtÞ; ð14Þ

where M� 0 is the mobility constant driving the rate

of evolution and duðwtÞ denotes the variational of the

total energy. Since the phase field evolves from / ¼ 1

to / ¼ 0, the evolution of the variable is negative. In

this way, crack healing is prevented. Moreover, if /
reaches negative values, then it is artificially cor-

rected to the value of zero to maintain / 2 ½0; 1�. By

expanding equation (14)

_/ ¼ �M ð1� jÞ/ � wmðe;/Þ � Gc
1� /
2l

� 2ldiv ðgrad/Þ
� �� �

;

ð15Þ

it can be seen that the evolution of / is coupled with

the mechanical energy density and hence any

mechanical deformation or change in stress can cause

an evolution of the phase field.

Numerical implementation

The material model is implemented using the finite

element method (FEM) to simulate different load

conditions. The equilibrium condition

div r ¼ 0 ð16Þ

is solved for the mechanical equation where r is

given by the equation (13). For the phase field model

equation (15) is solved. The Newton method is used

to solve both these coupled equations simultane-

ously. The weak form of the mechanical equation (16)

gives the residual

Resm ¼
Z
X
ðgraduu : rÞdv�

Z
oX

uu � tda ¼ 0: ð17Þ

Here t is the traction acting on the surface of the body

which is handled as a Neumann boundary condition.

Similarly the residual related to the phase field is

given by

Res/ ¼
Z

u/
_/þ ðM=2Þ dwt

d/

� �� �
dv

¼
Z �

u/ � _/þMð1� jÞ/ � wm

� �

�MGc u/
1� /
2l

þ 2l gradu/ � grad/

� ��
dv ¼ 0:

ð18Þ

The boundary integral which represents the flux of

the phase field is omitted as the flux is assumed ot be

zero on the boundary. In equation (17), uu represents

the test function for the displacement field u and in

equation (18), u/ represents the test function for the

phase field / in the finite element implementation.

The time integration of _/ is achieved with the help of

the Crank-Nicolson method resulting in
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Res/ ¼
Z

u/
/tþ1 � /t

Dt
þ hðM=2Þ dw

tþ1
t

d/
þ ð1� hÞðM=2Þ dw

t
t

d/

� �� �
dv:

ð19Þ
The value of h ¼ 0:5 is taken to achieve high accuracy

and stability. The quantity ½h�t is the known quantity

at the time step t and the quantity ½h�tþ1 represents

the unknown quantity at the time step of tþ Dt.
Similarly equation (3) for the evolution of the

inelastic strain is also calculated

etþ1
i � eti
Dt

¼ h
ðetþ1 � etþ1

i Þ
s=2

þ ð1� hÞ ðe
t � etiÞ
s=2

ð20Þ

using the Crank-Nicolson method. By rearranging

the terms, an equation for the unknown etþ1
i can be

formulated in terms of the current strain etþ1 and

substituted in equation (13). After solving the cou-

pled equations, the value of the inelastic strain is

stored locally as an internal variable which provides

the value for eti for the next time step. The global

residual equations are transformed into the local

form using the shape function interpolations. The

linearised system of equation

oResm

ou

oResm

o/
oRes/

ou

oRes/

o/

2
664

3
775 Du

D/

� �
¼ �

Resm

Res/

� �
ð21Þ

is solved with the Newton method for the coupled

problem. The derivatives of the two residuals with

respect to the two solution fields are calculated ana-

lytically. The coupled differential equations are

implemented using the finite element libraries of

deal.II [29, 30].

Simulation results

Simulations are conducted on two different geome-

tries to simulate crack propagation with and without

an initial crack in the specimen. The results and their

physical interpretation are presented in the following

subsections.

Specimen with pre-existing cracks

As a first example, a square of sides 1 mm with a slit

half-way through its width is fixed at one face and

loaded on the opposite face in a direction perpen-

dicular to the direction of the face till failure (Fig. 4a).

The dimension of the specimen is irrelevant and is

chosen randomly to be a unit cell. Similarly, the

parameters for the material are chosen arbitrarily and

are given in Tables 1 and 2. Five different strain rates

were used to simulate the tensile test. The stress-

strain curves for all the rates show an increase in the

stress up to a particular strain, following which the

stresses decrease with increasing strain, depicting

crack initiation and propagation (Fig. 4b). The point

of maximum stress is marked as it denotes the failure

point for the material for that strain rate. These points

can be joined to form the failure envelope as sug-

gested by Smith et al. [5]. The equilibrium stress-

strain curve is calculated by neglecting the Maxwell

(a) (b)

Figure 4 a) The investigated load case and the b) stress-strain curves at different strain rates along with the failure envelope.
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element and measuring the stress-strain response for

just the equilibrium spring.

After the failure point the crack propagates parallel

to the slit during loading (Fig. 5) until complete

fracture of the specimen. The parameters for the

mechanical model that are given in Table 1 are

selected so that the basic elasticity element has higher

l than k, whereas the Maxwell element has a higher

k. This produces a different volumetric and shear

stress components in the specimen depending on the

strain rate. At higher strain rates the influence of the

Maxwell element is activated and hence along with

the volumetric part the shear part of the stress also

contributes to crack growth. In contrast, for slower

strain rates the Maxwell element is not activated and

only the volumetric part contributes to the crack

growth. This results in different crack shapes. The

phase field distribution at the time of complete frac-

ture shows that the crack is wider for a higher strain

rate of 10 s�1 (Fig. 5a) whereas it is narrower for the

lower strain rate of 10�4 s�1 (Fig. 5a).

Relaxation test on specimen with pre-
existing crack

Numerical simulations are conducted to find out the

effectiveness of the model to reproduce the damage

during relaxation tests. The simulations are con-

ducted with the geometry given in Fig. 4a. Strain is

applied at the rate of 10 s�1 up to a certain value and

is then held constant. With the constant strain con-

dition the change in the stress during relaxation

decreases the mechanical free energy. However, the

already intiated crack drives the evolution of the

phase field. This results in the desired effect of crack

propagation during the relaxation phase. However, a

certain initial strain needs to be applied to observe

the crack propagation. Three different levels of

strains before the start of relaxation are simulated

(Fig. 6a). When the strain is higher than that of the

failure point of the equilibrium curve, then the crack

propagates and the stress decays to 0 MPa. However,

when the strain is below the failure point for the

equilibrium curve, then the stress relaxes to the

equilibrium stress (Fig. 6b).

Table 1 Mechanical parameters used for the simulation

l k l1 k1 s

23.38 MPa 5.3 MPa 8.6 MPa 13.5 MPa 5e-3 s

Table 2 Phase field

parameters used for the

simulation

Gc M l j Elements

0.02 J/mm 50 4�Element width 10�4�Element width 64�64/(1mm � 1mm)

(a) (b)Figure 5 The crack

propagates parallel to the slit

in the specimen. The crack is

much wider for the strain rate

of a) 10 s�1, where as it is

narrower for b) a strain rate of

10�4 s�1.
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The point of intersection of the stress-strain relax-

ation curve for the highest initial strain and the fail-

ure envelope is marked with the symbol ’�’ in

Fig. 6b. For the corresponding point in Fig. 6a, a

change in the rate of stress decay can be noticed. This

indicates that the failure began at this point of time,

which validates the failure envelope. If the crack

length is taken as a measure of failure, then it can be

seen in Fig. 7 that the point of crack initiation lies

outside the failure envelope. With further increase in

time the crack propagates and the stress reduces to

zero.

Specimen without pre-existing crack

Since no slit or initial crack was present in the

experimental specimens, the model should be able to

simulate crack propagation without a slit in the

geometry. To this end, an hour-glass geometry with a

reduced cross section in the middle is simulated. The

geometry resembles the mid-section of a tensile test

sample. The boundary conditions are similar to the

previous geometry but for faster convergence of the

simulation, the horizontal component of the dis-

placement is not constrained (Fig. 8). The parameters

for the material model are as given in Table 1 and

Table 2. However, to investigate the interaction

between the dynamics of crack propagation with the

dynamics of viscoelastic relaxation, the ratio of the

relaxation time of the Maxwell element s and the

mobility constant M is varied. There are two evolu-

tion equations that are solved simultaneously in time.

The evolution equation for the phase field model is

driven by the mobility constant, whereas the evolu-

tion of the inelastic strain is controlled by the

(a) (b)Figure 6 Relaxation tests

carried out with the strain rate

10 s�1 plotted on a) stress-

time plot and on b) stress-

strain plot along with the

failure envelope.

(a) (b)Figure 7 a) The force and

crack length for the relaxation

test plotted against time. b)

The relaxation tests plotted

against strain. The point of

crack initiation lies outside the

failure envelope.
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relaxation time of the Maxwell element. With the

interaction between these two parameters, the time

for crack propagation during relaxation can be

controlled.

Eight different ratios of s=M are tested and in order

to compare their results, the initial strain is kept

constant for all ratios at 0.2 before the start of relax-

ation. Along with the different s=M ratios, two dif-

ferent values of mobility constant are used.

The change in s leads naturally to change in the

relaxation time and as can be seen in Fig. 9, the relax-

ation time is almost non-existent for the ratio of s=M ¼
10�7 for the orange curve and increases till the ratio of

s=M ¼ 10�4. At higher relaxation times (for

s=M[ 10�4), the stress that is generated during the

initial loading is high enough to initiate the crack.

Therefore, the stress in the material starts to degrade

before the start of relaxation and the crack propagates

during the relaxation phase. In comparison to M ¼ 50

the crack initiates quite early for M ¼ 500. The higher

mobility constant accelerates the phase field evolution

and leads to a faster failure. Thus, to achieve the

varying time to material failure during relaxation

experiments, the parameters M and s and their ratio

are instrumental.

Apart from that, the value of the critical energy

release rate Gc also influences the time to failure.

With a s=M ratio of 10�4 and with M ¼ 50 the relax-

ation simulation was conducted with a smaller Gc of

0.002 Jmm�1. It can be seen in Fig. 10 that the loading

phases remains identical for the two values of Gc.

However, during the relaxation phase, the crack

energy increases with the parameter Gc and hence the

lower value leads to a faster crack propagation.

Comparison with polyurethane specimen

The model is applied to simulate the experimental

results given in Fig. 2 [4]. The experiments were

conducted on a polyurethane (PU90/10) specimen

with the geometry given in Fig. 11.

The geometry is a modified form of a general ten-

sile test specimen. It has a curvature in the middle so

that the crack can initiate. The mesh at this narrow

area is finer in comparison to the mesh in the outer

areas for accurate and efficient numerical results. The

material parameter such as the stiffnesses and

(a) (b)Figure 8 Relaxation test

conducted on geometry

without any initial slit. The

phase field distribution at a)

the start of relaxation and b) at

complete failure.

(a) (b)Figure 9 Relaxation test with

the hour-glass geometry with

a) M = 50 and b) M = 500 for

different s=M ratios.
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relaxation time was determined with the help of the

longest available relaxation data and are listed in

Table 3.

The relaxation test was conducted at a lower

elongation of 10 mm at a speed of 0.1 mm/s. With

the same boundary conditions, simulations were

conducted and compared to the experimental results.

The parameters were optimised using a Nelder-mead

algorithm [31]. The results for the best fit can be seen

in Fig. 12(a). It should be noted that the simulation

has been carried out with just one Maxwell element.

Hence the experiment for longer durations cannot be

adequately captured. However, for modelling the

failure at higher initial loads, such long relaxation

time would not be needed.

To determine the fracture related variables more

experiments are needed, specially in tensile direc-

tions. The fracture toughness is therefore assumed to

be Gc ¼ 0:02 J/mm as per the value available in lit-

erature for other cross-linked polymers [32]. To apply

the suggested model for a real material, the effect of

chain breakage with time needs to be captured in the

model. With increasing damage at the microscopic

level, the mobility of the chains increases, which

results in faster relaxation and faster failure of the

material. This is modelled numerically by the

evolution of the mobility constant M with the

increasing phase-field. Thus,

M ¼ Moð1þ
1

/nÞ ð22Þ

is substituted in equation (14). A value of Mo ¼
2:0� 10�5 was used to simulate the failure during

relaxation. The power n ¼ 6 was used to match the

time of failure during relaxation. These parameters

were determined using the experimental data given

in Fig. 2. Therefore, these are not a validated set of

parameters. They are used to demonstrate the ability

of the model to reproduce experimental results. The

experiment in Fig. 2 were conducted with an initial

deformation of 50 mm with 0.1 mm/s deformation

rate. With the same boundary conditions as the

experiment and with the identified parameters, the

model was simulated. Considering the simplicity of

the model, the simulation result shows an accept-

able similarity with the experimental results as can be

seen in Fig. 12 (b).

Conclusion

Experiments showing damage during the relaxation

of a viscoelastic material have been presented in the

literature by various authors. A probable explanation

for such a behaviour is an initial breaking of some

polymer chains during the loading of the specimen,

which leads to higher stresses on remaining polymer

chains causing them to break during the relaxation

phase. The concept of failure envelope was proposed

Figure 10 The influence of Gc on the crack propagation.

Table 3 Parameters for PU90/10 determined from relaxation at

lower initial load

l k l1 k1 s

0.34 MPa 1.54 MPa 0.44 MPa 0.31 MPa 438.5 s

Figure 11 The geometry used

for the experiments and

simulation.
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by Smith et al. [2] to explain the failure of the material

at constant elongation and relaxing stresses. How-

ever, a more detailed attempt to model this phe-

nomenon is not to be found in the literature up to

now.

In this work, a material model coupling the vis-

coelastic behaviour with the crack propagation is

presented. A rheological model with a Maxwell ele-

ment connected in parallel with a spring element is

used to model the viscoelasticity. For simplicity, the

strain is split additively in the elastic and the inelastic

part of the strain, and the stress response is calculated

using Hooke’s law. An evolution equation for the

inelastic strain is responsible for the time dependent

response of the material. Along with the viscoelastic

part, a phase field model is proposed to model the

crack propagation in the material. The evolution of

the phase field is based on the Ginzburg-Landau type

equation, which is alternatively known as the Allen-

Cahn equation. The evolution leads to a change in the

phase field variable during loading as well as during

the relaxation of the material. A mobility constant is

used to couple the evolution with the energy avail-

able in the system. The coupled model is solved

numerically using the finite element method and

numerical examples are presented. A failure envel-

ope is reproduced for a given set of parameters by

simulation at different strain rates. Relaxation tests

for the same parameters are conducted validating the

concept of the failure envelope. Further numerical

examples are presented to test the effect of the ratio of

the relaxation time for the Maxwell element and the

mobility constant for the phase field evolution. Thus,

these two parameters can be varied for different

materials to reproduce the different times for failure

during relaxation. Further, the experimental results

on PU90/10 specimen were reproduced numerically

with the help of an evolving mobility constant.

The presented model can reproduce the crack

propagation during relaxation as observed in the

experiments, however further improvements are

required to be able to identify the parameters from an

experiment and apply it for predictions. The model is

based on a linear approach for small deformation

which is not the ideal choice for modelling cross-

linked polymers. The mechanical model should

therefore be extended to geometrically non-linear

deformations.

Acknowledgements

We are thankful to our colleagues Henning Seibert,

Selina Neuhaus, and Siva Pavan Josyula who con-

tributed to study of this phenomenon.

Funding

Open Access funding enabled and organized by

Projekt DEAL.

Data and code availability

The data and the code used for this work are avail-

able and can be obtained by contacting the authors.

Declarations

Conflict of interest All authors agree with the

content and give their consent to submit. There are no

conflicts of interest that could potentially influence or

bias the submitted work.

Supplementary information No material has been

omitted from the main body

Figure 12 A comparison of

the simulation and the

experiment result for a) an

initial load of 10 mm and b) an

initial load of 50 mm.

6264 J Mater Sci (2023) 58:6254–6266



Ethical approval No experiments involving human

tissue had been carried out.

Open Access This article is licensed under a Crea-

tive Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long

as you give appropriate credit to the original

author(s) and the source, provide a link to the Crea-

tive Commons licence, and indicate if changes were

made. The images or other third party material in this

article are included in the article’s Creative Commons

licence, unless indicated otherwise in a credit line to

the material. If material is not included in the article’s

Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission

directly from the copyright holder. To view a copy of

this licence, visit http://creativecommons.org/licen

ses/by/4.0/.

References

[1] Tobolsky AV, Prettyman IB, Dillon JH (1944) Stress relax-

ation of natural and synthetic rubber stocks. Rubber Chem

Technol 17:551–575

[2] Smith TL, Stedry PJ (1960) Time and temperature depen-

dence of the ultimate properties of an sbr rubber at constant

elongations. J Appl Phys 31:1892–1898

[3] Smith TL (1963) Ultimate tensile properties of elastomers. i.

characterization by a time and temperature independent

failure envelope. J. of Polym. Sci. Part A: General Papers

1:3597–3615

[4] Neuhaus S, Seibert H, Diebels S (2020) Investigation of the

Damage Behavior of Polyurethane in Stress Relaxation

Experiments and Estimation of the Stress-at-Break b with a

Failure Envelope, 1–15. Springer International Publishing,

Cham

[5] Smith TL (1958) Dependence of the ultimate properties of a

gr-s rubber on strain rate and temperature. J Polym Sci

32:99–113

[6] Friedrich L (2017) Untersuchungen zum materialverhalten
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[15] Babuška I, Banerjee U (2012) Stable generalized finite ele-

ment method (sgfem). Comput Methods Appl Mech Eng

201:91–111

[16] Geringer A, Diebels S (2014) A phase-field approach to

damage modelling in open-cell foams. Tech Mechanik

34:3–11

[17] Heister T, Wheeler MF, Wick T (2015) A primal-dual active

set method and predictor-corrector mesh adaptivity for

computing fracture propagation using a phase-field

approach. Comput Methods Appl Mech Eng 290:466–495

[18] Miehe C, Welschinger F, Hofacker M (2010) Thermody-

namically consistent phase-field models of fracture: varia-

tional principles and multi-field fe implementations. Int J

Numer Methods Eng 83:1273–1311

[19] Miehe C, Hofacker M, Welschinger F (2010) A phase field

model for rate-independent crack propagation: robust algo-

rithmic implementation based on operator splits. Comput

Methods Appl Mech Eng 199:2765–2778

[20] Francfort G, Marigo J-J (1998) Revisiting brittle fracture as

an energy minimization problem. J Mech Phys Solids

46:1319–1342

[21] Bourdin B, Francfort GA, Marigo J-J (2008) The variational

approach to fracture. J Elast 91:5–148

[22] Ginzburg VL, Landau LD (2009) On the theory of

superconductivity

[23] Allen S, Cahn J (1972) Ground state structures in ordered

binary alloys with second neighbor interactions. Acta

Metallurgica 20:423–433

[24] Allen SM, Cahn JW (1973) A correction to the ground state

of fcc binary ordered alloys with first and second neighbor

pairwise interactions. Scr Metallurgica 7:1261–1264

[25] Hakim V, Karma A (2009) Laws of crack motion and phase-

field models of fracture. J Mech Phys Solids 57:342–368

[26] Karma A, Kessler DA, Levine H (2001) Phase-field model

of mode iii dynamic fracture. Phys Rev Lett 87:045501

J Mater Sci (2023) 58:6254–6266 6265

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


[27] Kuhn C, Müller R (2010) A continuum phase field model for

fracture. Eng Fracture Mech 77:3625–3634
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