
Un
ive

rs
itä

t
K

ai
se

rs
ia

ut
em

D
-B

?
5

ü
K

a
i s

e
rs

l a
u

te
rn

1 .W
.

G
en

n
an

y

F
a

ch
b

e
re

i c
h

I n
fo

rm
at

ik

P
o

st
fa

ch
36

49
i n

te
l l

ig
en

ce
L

ab
o

ra
to

r i
es

Ar
tif

ic
ia

l

S
E

H
Io

H
E

P

%
„\ » db w.-

099

Attributive Concept Descriptions with
Unions and Complements

Manfred Schmidt—Schauß & Gerd Smolka
SEK] Report SR-88-21

SEKI Report SR-88-21,_ December 1988
FB Informatik, Universität Kaiserslautern, West Germany

5

AttributiVe Concept Descriptionsw-ff h

Unions and Complements .

Manfred Schmidt-Schaufll and Gert SmollraI

1 DFKI, Universität Kaiserslautern, West Germany

1 IWBS, IBM Deutschland, West Germany _

Abstract . This paper investigates the consequences of adding unions and comple-
ments to the attributive concept descriptions employed in KL-ONE-like knowledge
representation languages. It is shown that deciding consistency and subsumption
of such descriptions are PSPACE—complete problems that can be decided with
linear space.

Smolka has been funded by the EUREKA Project Protos (EU 56).

. Addresses for correspondence: Manfred Schmidt-Schaaf}, FB Informatik, Uni-
versitit Kaiserslautern, 6750 Kaiserslautern, West Germany, .schaussQuklirb.uucp;_

Getlsmona, Iwns, IBM Dentschland, Postfach 300330, 7000 Stuttgart so, was as:
many, smolka©d501ilog.bitnet. '

(5
5 :

5 !

1 Introduction

The idea of a semantic network has led to the development of a family of logic-
based knowledge representation languages known as KL—ONE dialects [Brach-
man/Schmolze 85, Levesque/Brachman 87, Nebel 88]. All members of the KL-
ONE family offer attributive concept descriptions that are interpreted as sets and
employ two kinds of symbols, called concepts and roles. Concepts are interpreted
as sets and roles are interpreted as binary relations. The distinctive formation
rules for concept descriptions are VRzC and BR: C, where R is a role and C is a
concept description. The description VR: C can be read as “all objects for which
all” R’s are in C”, and the description BR: C can be read as “all objects {or which
there is an R in C”. Given an interpretation I for the occurring concept and role
symbols, these descriptions are interpreted as the sets

rave: 0]] =- {a. e I)1r Iv (a,b) e Im : b € Im}

and

I[3R: c1] := {a. e DI | 3 (a,b) e rm: b EIICI},

where Dr is the domain of I . Since concept descriptions denote sets, it’s clear
how to provide {or concept intersection, concept union, and concept complement.

We will speak of an attributive concept description language (AGD—language, for _
short) if at least VR: C, ER: T (where I [T] = DI in every interpretation 1') and
concept intersection C F1 D are available.

So far, K L—ONE concept descriptions with unions and complements have not
been investigated theoretically nor are their present in existing implementations.

To get an idea of the rich expressional repertoire opened up by concept unions and
complements, let’s have a look at a couple of examples.

The class of humans is partioned into the disjoint subclasses- of women and

men. This can be expressed by the terminological axioms

woman g human

man = human -—— woman,

)

where the concept difference human — woman stands for human H awoman.

Animals that are featherless bipeds are humans. This can be expressed with
the axiom

animal Q featherless-biped —> human,

where the concept implication featherIess_biped —+ human is an abbreviation for

-:feather1ess-biped LJ human.

The basic reasoning service provided by a KL—ONE system is a subsumption
test, which, given two concept descriptions C and D , checks whether every inter-

pretation interprets C as a subset of D. For the minimal ACD-language offering
only VRzC', BR: T and C Fl 1), which is called fß" in [Levesque/Brachman 87],
subsumption can be decided in quadratic time. For the more general language
ACE providing 3R:C instead of HRzT, we could not find a complexity result in
the literature. In this paper we will give a linear-space subsumption checking
algorithm for AES .

A common belief of the KL-ONE community says that the subsumption test
must be of polynomial complexity to be of use in practical systems. This, of

course, means that the expressiveness of concept descriptions must be restricted

drastically. Interpreted technically, the quest for polynomial complexity restricts
ACD-languages to be less powerful than propositional logic. In particular, this

requirement rules out the possibility of expressing unions and complements of

concepts. Moreover, based on the results of this paper, we conjecture that already

ACE has a nonpolynomial subsumption problem.

To overcome this obvious lack of expressive power, so-called hybrid knowledge

representation systems [Brachman et a1. 85, Nebel/ Luck 88, Patel-Schneider 84,
Vilain 85] have been proposed, which combine an ACD-language with an asser-

tional language that is typically a suitable subset of predicate logic. One way to

bring in concept descriptions is to allow for formulas m: C that are satisfied if the
value of the variable a: is in the set denoted by the concept description C . The
assertional reasoner then creates conjunctions :c: C & a:: D , which are passed to the
terminological reasoner for consistency checking (often called unification). This is
done by simplifying the intersection C Fl D to a suitable normal form exhibiting

whether C Fl D is-consistent, that is, is interpreted as a nonempty set by at least
one interpretation. Since the terminological reasoner works without knowledge of
the assertions, the assertions must yield a conservative extension of the concept
description level, a fact that seems to have been ignored in the KL-QNE litera-
ture. Höhfeld and Smolka [88] investigate the mathematical foundations of hybrid
systems whose assertional language is restricted to definite clauses and show that
for this class of hybrid systems the conservative extension property always holds.

For many interesting applications a hybrid representation formalism with a
sufficiently expressive assertional language is required. Since the overall reasoning
performance of such a system depends crucially on the reasoning performance of
the assertional system, which typically is nonpolynomial, the popular insistence
on polynomial. complexity AGD—languages seems to us rather shortsighted. In
the context of hybrid systems, ACD-languages with an NP—complete consistency
problem seem to be rather well-behaved.

If the concept description level doesn’t provide for unions and complements,
they will show up at'the assertional level as disjunctions and negations. If the asser-
tional level is undecidable, then lifting complements to negations means to make
undecidable negations out of decidable complements. Furthermore, the definite
clause sublanguage of predicate logic, which is employed in logic programming and
is particularly well-behaved, does not even allow for negations and disjunctions.
Thus, if generalized definite clauses are employed as assertions [Hdhfeld/Smolka
88], negations and disjunctions can only be expressed at the concept description
level as complements and unions.

The conflict between expressive power and computational tractability has led
to the use of incomplete algorithms in existing theorem proving and knowledge
representation systems. The usefulness of such systems certainly increases if one
has a good understanding of the sources of incompleteness, and we believe that
the study of complete methods contributes to this understanding and is essential
in the development of better, and better described, partial methods.

There is a second family of ACD-languages, 'which are known as feature de-
scriptions [Kaplan/Bresnan 82, Rounds/Kasper 86, Johnson 87] and have been
developed by computational linguists for use in so-called unification grammars.

Closely related is Ait-Kaci’s [86] 'di-term calculus that employs a subsort lattice
and is geared towards knowledge representation. Recently, Smolka [88] has shown
that the subsumption relation employed with feature descriptions can be obtained
by a model theoretic semantics given in the same way as outlined above for KL-
ONE concept descriptions. The distinct difference between the two families is that
feature descriptions are more restrictive in that they only allow functional roles,
which are called features hereafter. Furthermore, role inclusions (called role value
maps in the KL—ONE world), whose semantics is given by

1111 ; 1'31] = {a E DI | V (a, b) E Iflrll. (a, b) E-Iflrgfl},

are essential for linguistic applications, while they are of secondary importance in
KL—ONE applications. Restricting roles to features causes a dramatic difference
in the hardness of the subsumption problem if role inclusions are available:

o Smolka [88] shows that an ACD-language with role inclusions has a polynomial
subsumption problem, provided all roles are interpreted as partial functions;
furthermore, he shows that an ACD-language with unions, complements and
role inclusions has a Co-NP-complete subsumption problem, again provided
all roles are interpreted as partial functions

0 Schmidt-Schaufi [88] shows that an AGD—language with role inclusions has
an undecidable subsumption problem if roles are not restricted to partial
functions, even if unions and complements are not available.

In this paper we examine the ACD-language ACC (VR: C, HR: C, C l'l D,
C LJ D , and ~10) and prove that its consistency and subsumption problems are
PSPACE—complete. We give a linear-space exponential-time algorithm deciding
the consistency of ACC-concept descriptions. The consistency checking algorithm

also yields a subsumption checking algorithm since C is subsumed by D if and
only if C FI —-D is inconsistent. We also prove more specific complexity results for
three sublanguages of ACC including «4138,

The focus of this paper is on consistency checking, which is the reasoning
operation on concept descriptions the assertional reasoner in a hybrid knowledge
representation relies on. Our paper complements the existing KL—ON E literature

that concentrates on subsumption checking. Although in the case of ACC consis-
tency and subsumption checking reduce to each other in linear time, consistency
checking leads to technically simpler proof methods.

Acknowledgement. We are grateful to Bernhard Nebel for stimulating dis-
cussions and his willingness to share our repeated excitement about several consis-
tency checking algorithms for ACS , which one after the other all turned out to be
garbage since they were either incomplete or nonpolynomial. The second author
would also like to thank his colleagues in the LILOG project of IBM Deutschland
for providing the stimulating environment motivating the research reported in this
paper.

2 Attributive Concept Descriptions

I Let two disjoint alphabets of symbols, called concepts and roles, respectively, be
given. We assume that T is a concept symbol. The letters A and B will always
denote concept symbols and the letter R will always denote a tale symbol.

The concept descriptions of the AGD—language ACC are given by the abstract
syntax rule

0,1) _. A|VR:C|3R:C|CI‘1D|CLJD|——C.

An interpretation 1' = (DIJIH) consists of a set DI (the domain of I)
and a function I []I (the interpretation function of I) that maps every concept
description to a subset of DI , every role symbol to a subset of Dr x Dr , and
satisfies the following equations:

IN = D’ _
IIVRzC] === {a € DI I V (a,b) € 11R]: 5 € 110]}
name] = {a «5 DI | 3 ((1,1)) 6 rm] : b e I[C]}
I[C n D] == IlC] n IflD]
no u D] = no] u run] .
Ihe] :p f — I[C].

A concept description C is consistent if there exists an interpretation I such
that IEC“ is nonempty. A concept description C is subsumed by a concept
description D if HC] ; I [D]] for every interpretation I . A concept description C
is equivalent to a concept description D if I[C] = IflD] {or every interpretation
1.

Proposit ion 2 .1 . A concept description C is subsumed by a concept description
D if and only if the concept description C' Fl fiD is inconsistent.

Hence a. consistency checking algorithm for ‚ACC can also be used for testing
subsumption in ACC and vice versa.

The syntax of ACC is redundant. For instance, T is equivalent to A LI m4 for
every concept symbol A, 3R: C is equivalent to fiVR: ~10 and 0 LI D is equivalent
to “1(“10 l—I —-1D).

The redundant syntax provides for the simplification of complex complements
to simple complements of the form ~1A, where A is a concept symbol. This can
be done in linear time by the following rules reducing concept descriptions to
equivalent concept descriptions:

-I(VR:C) “+ Shir-10

-1(3R:C) —+ VRz—rC

%CFID) —-> “ICU-ID

” 1 (CL ID) —> “ICl—l—ID

-1--IC ——» C.

We call a concept description simple if it contains only simple complements.

Proposition 2.2. For every concept description one can compute in linear time
an equivalent simple concept description.

We define three sublanguages of ACC :

1. AES is obtained from ACC by allowing only simple concept descriptions con-
taining no unions

2. ACU is obtained from ACC by allowing only i s imple concept descriptions and
. restricting existential role quantifications to the form BR: T

3. AC is obtained from ACC by allowing only simple concept descriptions con-
taining no unions and restricting existential role quantifications to the form
HR: T .

Note that AC is the intersection of ACE and Aßu . The names of these lan-
guages are cooked up as follows: ACU is obtained from AC by adding unions,
ACE is obtained from AC by adding general existential role quantifications, and
ACC is obtained from AC by adding general complements. We consider AC to
be the minimal sensible AGD-language. Seen from the KL-ONE perspective, sim-
ple complements provide the possibility of declaring “primitive concepts” to be

disjoint.

Proposition 2.3. Deciding consistency ofACLl-‘concept descriptions is NP-hard,
and deciding subsumption ofACLl-concept descriptions is co-NP-llard. This holds
already for descriptions not containing role symbols.

Proof. Since C is inconsistent if and only if C is subsumed by -IT, i t suffices

to show that checking consistency is NP-hard.

It is well-known that deciding the satisfiability of propositional formulas in
conjunctive normal form (CNF) is an NP-complete problem (see, for instance,
[Garey/ J ohnson 79]). A propositional formula in CNF can be seen as an ACU—
concept description by taking propositional variables as concept symbols, conjunc-
tions as intersections, disjunctions as unions, and negations as complements.

Let F = F1 A . . . A F,, be a propositional formula in CNF, where every F,- is a

disjunction of literals. Obviously, F is satisfiable ii and only if one can choose in
every F,- a literal L5 such that L1, . . . , L„ don’t contain a complementary pair.

Suppose F is satisfiable. Then there exist L1,. . . , L„ as specified above. Let

I be the interpretation such that D1 = {1}, IIAB = {1} if A = L,- for some i,
IflA] = @ otherwise, and 11R] = @ for every role symbol R. Then IIFfl = I|[L,-]] =
{1} [or € € l..n, which shows that F is a consistent concept description.

Suppose F is a consistent concept description. Then there exists an interpre-
tation I and an a E DI such that a € I [F] Hence every F.- contains a literal L.-
such that a € I [L.-]. Thus L1,. . . ,1}n don’t contain a complementary pair, which
shows that F is satisfiable. []

In this paper we are going to prove the following results:

. checking consistency and subsumption of ACC-concept descriptions are
PSPACE—complete problems that can be decided with linear space

o inconsistency (not consistency) of ACE-concept descriptions can be decided
in nondeterministic linear time (this is the best upper bound we could prove;
we could not find any upper bound for ACE in the literature)

. checking consistency of ACM-concept descriptions is an NP-complete problem
(we have already shown that checking subsumption of Alfa-concept descrip-
tions is an NP—hard problem)

0 consistency of ALI-concept descriptions can be checked in linear time.

The relationship between our ACD—languages and the AGD—languages ‚FC
and FC“ in [Levesque/Brachman 87] is as follows:

AC

ACC
ff," + simple complements

PC“ + general complements

n: + J. + SELF,

where _L is a concept symbol and SELF is a role symbol such that

zum = 0 _
IISELF]! = {(a,b) e DI | a: b}

for every interpretation 1'. The first equation is obvious; the other two equations

follow from the equivalences:

(RESTRICT (RESTRICT R C) D) ~ (RESTRICT R (AND C D))

(ALL (RESTRICT R C) D) N VR: (-IC'LI D)

(SOME (RESTRICT R C)) ~ 3R:C

(ALL (RESTRICT SELF C) J.) ~ -«C

VSELF:C N C

HSELF: C ~ C.

We will show that every fit-concept description is consistent. Hence, ff."; is a .
proper sublanguage of AE and FE is a proper sublangnage of ACC.

Finally, we discuss the relationship between ACC and Feature Logic [Smolka
88]. An ACC-interpretation I is called a feature interpretation if it interprets
every role symbol as a partial function, that is, every role symbol R satisfies

((1,1)) 6 IIR] /_\ (a,c) E IHRE => 5 = c

for all a, b,c € DI . Let FACC be the ACD-language having the concept descrip-
tions of ACC but admitting only the feature interpretations of ACC . Then ‚774450
is a sublanguage of Feature Logic, as can be seen from the two equivalences:

VR:C N R:ClJ -1R:T

3R:C N R:C.

Feature Logic can be obtained from 7-3456 by adding agreements (a construct
corresponding to KL-ONE’s role value maps) and constants (individual concepts).
Consistency in Feature Logic is NP-complete [Smolka 88]. Since }".AEC is a sub-
language of Feature Logic, we know by Proposition 2.3 that 7-3450 also has an
NP-complete consistency problem. Since Feature Logic and }"AEC have gen-
eral complements, their subsumption problems are thus Co—NP-complete. Adding
agreements to fAßC doesn’t change }"ACC ’s complexity, while adding role value
maps to ACC causes undecidability [Schmidt-Schaufl 88].

10

A crucial difference between TACC and ACC is the fact that fACC has a dis-
junctive normal form while .450 does not. To see this, note that the equivalences

(Cumns ~ (CF‘IE)LJ(DI‘|E)
ER: (C LJ D) ~ (3R: C) L! (3R: D)

VR: (C LI D) N (VR: G) U (VR: D)

all hold in 34116 while the last equivalence does not hold in ACC . The other
important difference is that the equivalence

HR: (C Fl D) N (BR: C) Fl (HE: D)

holds in ‚TACC but does not hold in ACC .

3 Constraint Systems

The applicative structure of concept descriptions is rather unsuitable for devis-
ing consistency checking algorithms. Fortunately, every concept description can
be translated in linear time into a constraint system (that is, a finite set of con—
straints) such that the concept description is consistent if and only if the constraint
system is consistent. For constraint systems we will give simple transformation
rules keeping consistency and inconsistency invariant and yielding transparent con-
sistency checking algorithms. This technique also has been used successfully for
Feature Logic [Smolka 88].

We assume the existence of two further disjoint alphabets of symbols, called
individual and concept variables, respectively. The letters zn, y, z will always
range over individual variables and the letters X , Y , Z will always range over
concept variables.

Let I be an interpretation. An Irv-assignment is a function or that maps every
individual variable to an element of DI and every concept variable to a subset of
DI . We use ASSI to denote the set of all I—assignments.

A constraint is a piece of abstract syntax having one of the forms

X ; C, X(VR)Y, X(EIR)Y, X ; Y u z, a::X, mRy,

11

where the C in the first form is a simple concept description. Given an interpre—
tation 1" , we extend the interpretation function I [[] to constraints by interpreting
them as sets of I—assignments:

I[X ; C] = {a e‘AssI | a(X) g rm}
I[X(VR)Y] = {a e ASSI | Va. 6 a(X) V(a,b) 6 1m: b e a(Y)}
I[X(E|R)Y] = {a 6 A881 IVa e a(X) 3(a, b) 6 1m: 6 e a(Y)}

;r[X ; Y u Z] = {a e ASSI | a(X) g a(Y) u a(Z)}

Ilm X] = {oz 6 A881 | a(a:) e a(X)}
zum = {a e ASSI | (a(:c),a(y)) e rm}.

A constraint system is a finite, nonempty set of constraints. An interpretation
I interprets a constraint system S as follows:

;r[S]] = fl Ile].
cES .

A constraint system S is consistent if there exists an interpretation I such that
I[[S]| is nonempty. The next proposition gives a translation of simple ACC-concept
descriptions into consistency equivalent constraint systems:

Proposition 3.1. Let a: be an individual variable and X be a concept variable.
Then a simple concept description C is consistent if and only if the constraint
system {a: € X,X ; C} is consistent.

A constraint system S is simple if for every constraint X E C in S the concept
description C is either a concept symbol different from T or a complemented
concept symbol.

The following unfolding rules can be used to simplify general constraint
systems to simple constraint systems:

X E VR: C l—-> X (VR)Y, Y Q C, where Y is a new variable

X ; 311:0 -—9 X(E|R)Y, Y (_; C, where Y is a new variable

XECHDHXEC,X;D .

X E CLID —-+ X I; Y U Z, Y |; C, Z g D , where Y, Z are new variables

X ; T -—+ nothing.

12

Proposition‘3.2. Let a constraint system 5)" be obtained from a constraint sys-
tem S by the application of an unfolding rule. Then S is consistent if and only if
S' is consistent.

Proposition 3 .3 . For every constraint system S one can compute in linear time a

simple constraint system S' such that S is consistent if and only if S' is consistent.

Asimple constraint system defines a directed” graph, called its skeleton, as
follows: every concept variable occurring in the constraint system is taken as a

node, the constraints X (3R)Y and X (VR)Y define existential and universal edges
from X to Y , respectively, and a constraint X ; Y LJ Z defines an or-connected

pair of edges from X to Y and Z , respectively. Furthermore, the constraints

X g A and X ; -1A define A and --A, respectively, as labels of the node X.

Thus every node has a finite, possibly empty set of labels, where every label is

either a. concept symbol different from T or a complemented concept symbol. The

individual constraints s and mRy don’t contribute to the skeleton.

A constraint tree [constraint forest] is a simple constraint system whose
skeleton is a tree [forest]. A constraint tree T is fresh if it can be obtained by
unfolding a simple ACC-concept description. Note that a fresh constraint tree has
only one constraint containing an individual variable, which has the form a::X ,
where X is the root of the tree. Now we can formulate the main result of this
section:

Theorem 3.4. For every concept description C on can compute in linear time a
fresh constraint tree T such that C is consistent if and only if T is consistent.

Proof. First C is transformed into a simple concept description using the
simplification rules given in the previous section, then the corresponding constraint

system is created, which is then Simplified to a fresh constraint tree using the
unfolding rules. All three steps require at most linear time and preserve consistency
and inconsistency. E]

13

4 Consistency Checking as Completion

We now define so—called complete constraint systems whose consistency can be
checked in linear time. We will show that every fresh constraint tree can be
“completed” to a consistency equivalent complete constraint system by adding
individual constraints of the form a:: X and 3123}. This provides a. framework in
which consistency checking algorithms are obtained as completion algorithms for
fresh constraint trees.

A clash is a constraint system having either the form {m: X, X ; -1T} or the
form {m:X, X ; A, a::Y, _Y g —uA}.

Proposition 4.1. Every constraint system containing a clash is inconsistent. Fur-
thermore, one can check in linear time whether a constraint system contains a
clash .

A complete constraint system is a simple constraint system S satisfying the
following conditions:

1. if a::X and X (3R)Y are in S , then there exists a variable y such that y :Y
and mRy are in S .

2. if s , X(VR)Y and city are in S , then 3;: Y is in S I

3. i f s and X gYuzare in 5, then mY or :c:Zis in S.

Proposition 4.2. A complete constraint system is consistent if and only if it
contains no clash.

Proof. One direction is obvious. To see the otherdirection, let S be a complete
constraint system containing no clash. We define an interpretation I by taking
for Dr all individual variables occurring in S , for I [A] all a: such that a:: X and
X ; A are in 5 for some X , and by taking for IHR] all pairs (a:, 3;) such that azRy
is in 5'. Furthermore, we obtain an assignment a € IHS} by mapping individual
variables to themselves and taking for a (X) all a: such that a:: X is in S . E]

Our basic completion algorithm relies on three completion rules whose logical
properties are stated in the following proposition:

14

1. S _—->3 {y:Y,a:Ry} U S _
if a::X and X(3R)Y are in S, .

there exists no variable z such that mRz and 2:: Y are in S , and
y is a variable not occurring in S

2. S "’v {y:Y} U S
if a::X, 9333; and X(VR)Y are in S and y: Y is not in S

3. S ——b„ {m:Z}US

if a::X and X EY1 LlYg are in S,
neither a:: Y1 nor :1:n is in S, and Z is either Y1 or Y3

Figure 4.1. The basic completion rules for constraint trees.

Proposition 4.3. Let S be a constraint system. Then:

1. if 93: X and X (3R)Y are in S and y is an individual variable not occurring in
S, then S is consistent if and only if S U {:cRy, 3}: Y} is consistent

2. ifs: X , mRy and X(VIR)Y are in S , then S is consistent ifand only ifSU{y: Y}
is consistent

3. ifm:X and X ; Y U Z are in S, then S is consistent Hand only i fSU {m: Y}
or S U {m: Z} is consistent.

To obtain an algorithm, we need to impose some control that ensures that
after finitely many completion steps no further completion step is applicable. This
leads to the completion rules given in Figure 4.1.

Proposition 4.4. The basic completion rules in Figure 4.1 have the following
properties:

1 . there is no infinite chain of completion steps issuing from a fresh constraint
tree

15

2. a simple constraint system is complete if and only if none of the completion
rules applies to it

3. if T' is obtained from a constraint tree T by one of the completion rules, then
T' is a constraint tree and T is consistent if T' is consistent.

A completion of a constraint tree T is a complete constraint tree that can
be obtained from T by finitely many applications of the basic completion rules in
Figure 4.1.

Theorem 4 .5 . Every fresh constraint tree has a completion. Furthermore, a fresh
constraint tree is consistent if and only if it has a clash-free completion.

Proof. Follows from the preceding propositions. Ü

Thus we have an algorithm for deciding consistency and subsumption of ACC-
concept descriptions. The example in Figure 4.2 shows that the completions of a
fresh constraint tree can all be exponentially larger than the initial tree. However,
there is no need to keep the entire completion in memory. In the next section we
will give a smarter control for the completion rules yielding a consistency checking
algorithm that requires only linear space.

Theorem 4.6. Every ‚fü—concept description is consistent.

Proof. Let F be an .FC-concept description and T be a simple constraint tree
obtained by unfolding F’s translation into an AEG-concept description. Although
F contains neither unions nor complements, T does since they are introduced by
the translation rule

(ALL (RESTRICT R C) D) —+ VR:(—1C L! D) .

However, if we complete T such that individual variables are always propagated
to the right—hand sides of unions, we obtain a clash-free completion since then a

_ pair as: X and X: m4 cannot occur. EI

16

Figure 4.2. A family of skeletons for which the number of individual
variables in every completion is exponential in the size of the skele-
ton. These skeletons can be obtained from the concept descriptions

' (3R: T) fl (3R: T) FI (VR: - - -). A “double line edge” represents a uni—
versal edge and a “singe line edge” represents an existential edge. Note
that only one role symbol is used.

5 Upper Complexity Bounds

In this section we will prove upper complexity bounds for the ACD-languages AC,
ACE , ACU and ACC. In particular, we will show that the consistency of ACC-
concept descriptions can be decided with linear space. The basic idea behind our
linear—space algorithm is that a completion can be sliced up into so—called traces
such that the completion contains a clash if and only if one of its traces contains
a clash. While the size of completions can be exponential, the size of traces is
linear in the size of the initial concept description. The algorithm systematically
enumerates traces until it has found a clash-free completion.

A partial completion of a fresh constraint tree T is a constraint tree that
can be obtained from T‘ by finitely many applications of the completion rules;
in particular, a fresh constraint tree is a partial completion of itself. Given a
constraint tree T and individual variables a: and y occurring in T, y is called a
successor of a: and a: is called a predecessor of 3; if T contains a constraint mRy.
An individual variable a: occurring in a constraint tree T is called an individual
root if T contains a constraint a:: X such that X is the root of the skeleton of T .

17

Proposition 5.1. Let T be a partial completion of a fresh constraint tree. Then
T has a unique individual root, the individual root has no predecessor, and every
other individual variable occurring in T has a unique predecessor.

A partial completion U of a fresh constraint tree T is called a trace of T if

1. every individual variable occurring in U has at most one successor

2. the completion rules ——>v and "*u don’t apply to U

3. every application of the completion rule —+3 to U yields a constraint tree
containing an individual variable having two successors.

Traces can be computed using the following restriction of the existential com-
pletion rule ~43 :

S "*ra {y:Y,a:Ry}US
if a::X and X(3R)Y are in S,

there is no constraint mR'y' in S, and
y is a variable not occurring in S.

We define the binary relation -——'>T on simple constraint systems by

“""T = vars U—wU—m,

where 4+“ , —~>v and —+„ are the relations on simple constraint systems given by

the corresponding completion rules. Note that the traces of a fresh constraint tree
T are the “’1' —normal forms of T (that is, constraint trees U such that T A} U
and U "*T V {or no constraint tree V).

Proposition 5.2. Let T be a fresh constraint tree. Then:

]. i fT ~43. T' and T’ contains the constraints a:: X and y: X , then m = 3; (that
is, no concept variable in T' has more than one individual variable associated
with it) '

2. the length of ——->T -derivations issuing from T is bound linearly in the size T

3. every trace of T is contained in a completion of T

1—8

eval: nat x constraint tree ——> bool

eval(a:,S)="
if{a::X, XEA, a::Y, Y! ;fiA}(;S V {m:X ,X l ; -1T}QS
then false
elsif{a::X, XI ;YL IZ }§S A z zY¢S A a::Z éS
then eval(:r, {:czY}US) V eval(a:, {x:Z}US')
e l se l e t y=ax+ l in

V {m:X, X(3R)Y} g S:
eval(y, { y :Y} U {y:Z' I 3 {m:Z, Z(VR)Z'} _C_ S} U S)

Figure 5.1. A functional linear-space consiStency checking algorithm
for fresh constraint trees. If T is a fresh constraint tree and a: is the
individual root of T, then eval(a:,T) = true if and only if T has a
clash-free completion, that is, is consistent. For convenience, individual
variables are assumed to be natural numbers.

4. every completion T of T can be obtained as the union of the finitely many
traces contained in T.

The recursive function eval in Figure 5.1 yields true if the fresh constraint tree
given as argument has a clash-free completion and false otherwise. The maximal
recursion depth is the height of the given tree. The function eval can be executed
such that , besides some control information, at most a trace of the given tree needs
to be kept in memory. Hence eval needs at most space linear in the size of the
input tree. The total correctness of eval follows from the propositions we have
stated so far. Thus we have:

Theorem 5.3. Checking consistency and subsumption of ACC-concept descrip-
tions can be done with linear space.

Proposition 5.4. Let T be a fresh constraint tree not containing union con-

19

straints. Then:

1. all completions of T are equal up to consistent renaming of individual variables

2. T is consistent (=> T has a clash—free completion

<==> eyery completion of T is clash—free

my no trace of T contains a clash.

Theorem 5.5. Inconsistency MACE-concept descriptions can be decided in non-
deterministic linear time. Thus the consistency problem for ACE-concept descrip-
tions is in co—NP.

Proof. We have to show that inconsistency of fresh constraint trees containing
no union constraints can be decided in nondeterministic linear t ime. Since such
constraint trees are inconsistent if and only if they have. a trace containing a clash,
this follows from the fact that every trace can be obtained by a ——+T -derivation
whose length is bound linearly by the constraint tree it is issuing from. El

To establish our upper complexity bounds for ABI! and AC we need yet
another restriction of the completion rule ——>3 :

5 "’TB {31: Y,:cRy}US
if a::X and X(3R)Y are in S,

there is no constraint mRy' in S, and
y is a variable not occurring in S.

Note that ——>T3 _C_ HT; since am can be applied t o at most one existential
edge at every level while -->T3 can be applied to several existential edges if they
are labeled with different relation symbols. We define the binary relation ——->-r on
simple constraint systems by

“"T = "*Ta U—wU—m-

Note that “’T g war-.— since “4T3 ; —+T3 .

Proposition 5.6. The length of —>T -derivations issuing from fresh constraint
trees is bound linearly in the size of the initial tree.

20

Proof. Let T be a fresh constraint tree and U be a constraint tree such

that T —+‘!'‚- U. Then {or every concept variable X in U there exists at most one
individual variable a: such that the constraint a::X is in U . From this invariant

the claim follows easily. ' []

The T-completions of a fresh constraint tree T are the -—+-r -normal forms
of T. '

Proposition 5.7. Let T be a T—completion of a fresh constraint tree obtainable
by unfolding an ACM-concept description. If T contains the constraints a::X ,

X(3R)Y and azRy, then T is consistent if and only HT U {3}: Y} is consistent.

Proof. Follows from the fact that every concept variable reachable through

an existential edge is an unlabeled leaf. Cl

Proposition 5.8. Let T be a fresh constraint tree obtainable by unfolding an
ABM-concept description. Then T is consistent if and only if T has a clash-free
T-completion.

Proof. If T is consistent, then every T-completion of T is clash-free. To

show the other direction, suppose T has a clash-free T—completion U. Using the
preceding proposition, we can extend U to a complete constraint tree V since

concept variables reachable through existential edges are always leaves. Since
U is clash-free and concept variables reachable through existential edges are not
labeled, V is clash-free. Hence V is consistent. Since T g U ; V, we thus know
that T is consistent. Ü

Theorem 5.9. Checking the consistency of ‚ALU-concept descriptions is an NP-
complete problem.

Proof. The NP—hardness was already stated in Proposition 2.3. That consis—
tency checking is in NP follows from the preceding theorem since unfolding can
be done in linear time, every T-completion can be computed in nondeterministic

linear time, and clash—freeness can be checked in linear time. EI

21

Theorem 5 .10 . The consistency of Alt-concept descriptions can be checked in

linear time.

Proof. Let T be a fresh constraint tree obtainable by unfolding an Alt-concept

description. Then all T-completions of T are equal up to consistent renaming of
individual variables. Thus it suffices t o compute any T-completion and to check

i t for clashes. El

6 PSPACE-Completeness

We now show that deciding consistency and subsumption of ACC-concept descrip—
tions are problems that are as hard as any problem that can be decided with

polynomial space. Since we have proved in the last section that consistency and

subsumption of ACC-concept descriptions can be decided with linear space, we will
be able to conclude that these problems are PSPACE-complete. We will prove the
PSPACE-hardness of the consistency problem for ACC—concept descriptions by

reducing the validity problem for quantified boolean formulas to i t .

6 .1 Quantified Boolean Formulas

We new review quantified boolean formulas whose validity problem (called QBF,
for short) is known to be PSPACE—complete (see, for instance, [Garey/Johnson
79]). We use a notation providing {or a smooth reduction of QBF to the consistency
problem for ‚ACC .

A literal is a. nonzero integer. A clause is a nonempty sequence 11 - . - In of
literals such that Ill] g [13] g ° — . g | l „ | . A prefix from m. to n, where m and n
are positive integers such that m g n, is a sequence

(Qmm)(Qm+lm +1) ' ' ' (a) !

where each Q; is either “V” or “3”. A quantified boolean formula is a pair
P.M , where, for some n , P is a prefix from 1 to n and M is a finite nonempty set

of clauses containing only literals between -—n and n (M is called the matrix of
the formula).

22

Let P be a prefix from m to n. A P—assignment is a mapping

{m,m+ 1 , . . . , n} —-+ {0,1}.

An assignment 0: satisfies a literal I if (!(l) = 1 if 1 is positive and a(-—l) = 0 if f
is negative. An assignment satisfies a clause if it satisfies at least one literal of
the clause.

Let P be a prefix from m to n . A set A of P-assignments is canonical for P
if it satisfies the following conditions:

1. A is nonempty

2. if P = (Elm)? , then all assignments of A agree on m and, if P' is nonempty,
{Q|{m+1,...,n} | 0: € A} is canonical for P'

3. if P == (Vm)P', then

3.1 A contains an assignment that satisfies m and, if P' is nonempty,
{a|{m+1‚_„‚„} | a E A A a(m) = l } is canonical for P'

3.2 A contains an assignment that satisfies —m and, if P' is nonempty,
{a|{m+1‚___‚„} | o: € A A a(m) = 0} is canonical for P ' .

A quantified boolean formula P.M is valid if there exists a set A of P-
assignments canonical for P such that every assignment in A satisfies every clause
of M. An example of a valid quantified boolean formula written in a readable syn-
tax is VxEly.(~wa:Vy)A(a:V-1y). The following theorem is taken from [Garey / J ohnson
79]:

Theorem 6 .1 . Deciding the validity of quantified boolean formulas is a PSPACE—
complete problem.

6 .2 The Reduct ion

In the following we assume R to be a fixed role symbol and A to be a fixed concept
symbol. Quantified boolean formulas are translated into ACC—concept descriptions

23

using the equation

[P.{C1, . . . , C„}] = [P] n [011° n . . - n [C„]°,
where prefixes are translated using the equations

[(3m)P] = ((311: A) LJ (3R: -1A)) Fl (VR: [P])

[(Vm)P] == (3R:A)|’1(3R:-1A)|'1(VR:[P])
[(3m)] = (HE: A) LI (3R: fiA)
[(Vm)] = (BE: A) F'l (HE: —A)

and clauses are translated using the equations

[10]” = VR: [10]"HLl if „| > m

[mow = A u [01”
[—mC]m = --A LI [Clm

[l]“ = VR:[z]m+1 if m > m

[m]m = A
[—m]"' = ~1A.

The number argument m of the translation function [0]" for clauses is needed
to ensure that only unions of the form A LI C or ~wA L] C are introduced, which is
essential. Figure 6.1 gives an example of a translation.

To show that a quantified boolean formula is valid if and only if its translation
into an ACC-concept description is consistent, we assign levels to the variables
occurring in constraint trees as follows:

1. the concept variable that is the root of the constraint tree has the level 0

2. if the constraint tree contains a constraint X (3R)Y or X (VR)Y and X has
the level n , then Y has the level n + 1

3. if the constraint tree contains a constraint X [_I Y LJ Z, then X , Y and Z all
have the same level

4. if the constraint tree contains a constraint a::X , then a: and X have the same
level

24

A *‘1A A "iA 2 7

W—z EH hv-d \—v—’

Va: Ely. ("122 V y) A (a: V fly)

Figure 6.1. A valid quantified boolean formula and its translation into
a..- constraint tree.

5. if the constraint tree contains a constraint ally and a: has the level n, then 3/
has the level n + 1.

This defines a unique level assignment for constraint trees that are obtained from
fresh constraint trees by finitely many applications of the completion rules.

Lemma 6.2. A quantified boolean formula P.M is valid if and only if its trans-
lation [P.M] is a consistent ACC-concept description.

Proof. Let P.{C1,.. . ‚C„} be a quantified boolean formula such that P is
a prefix from 1 to m. Furthermore, let P U Öl U U Ön be a fresh constraint
tree obtainable by unfolding the translation [P.{C1, . . . , Cu }], where 13 is a fresh
constraint tree obtainable by unfolding [P] and, for t € Ln, Ö.- is a. fresh constraint
tree obtainable by unfolding [C.-].

Let I3 be a trace of P . Then 13 contains exactly one individual variable a:;
for every 2' E 0..m. Furthermore, 15 contains the chain £120l, . . . , mm_1Ra:m. We
say that i is true in f” if P contains two constraints 23,-:X and X ; A, and that
:: is false in l5 if 13 contains two constraints :::n and X |; —1A. Every i E 1..m
is either true or false in I3, but not both. Thus 13 defines a P-assignment or as
follows: a(i) = 1 ifi is true in 15 and a(£) = 0 ifi is false in P.

25

Since no trace of P contains a clash, every completion of I3 is clash—free.
Furthermore, the set of the P-assignments defined by the traces contained in
a completion of P is canonical for P . Vice versa, every set of P-assignments
that is canonical for P can be obtained from the same completion of P . This
correspondence between canonical sets of assignments and completions is crucial
for our proof.

Let C,- be one of the clauses. Then Ö,‘ contains no existential edges. The
leaves of Ö.- correspond exactly to the literals of 05. If I is a positive literal in C,
then the corresponding leaf X of Ö,- has the level l and Ö.- contains the constraint
X E A. If 1 is a negative literal in C, then the corresponding leaf X of a; has the
level —l and Ö,- contains the constraint X I; "1A.

1. “[P.M] consistent => P.M valid”. Suppose [P.{C1,. . .,C„}] is a consistent
ACC-concept description. Then P U Öl U - - - U Ön has a clash-free completion
13 U Öl U . . ° U Ö'n such that I3 is a completion of P .

Let I3 be a trace of P such that I5 g 13 and let a be the P—assignment defined
by 13. Furthermore, let 0; be one of the clauses. It suffices to show that C;
contains a literal that is satisfied by a .

Let f’ U Ö; be the clash—free trace of 13 U C" such that Ö.- 9 Ö.. Then Ö;
contains exactly one constraint a:: X such that X is a leaf. Since Ö; is clash-free,
0: satisfies the literal in C,— that corresponds to X .

2. “RM valid => [P.M] consistent”. Suppose P.{Cl, . . . ‚C„} is valid. Then
there exists a set A of P-assignments that is canonical for P such-that every a € A
satisfies every clause 0;. Let 13 be a completion of P'that yields A. It suffices to
show that there exists a clash-free completion 13 U Ö,- of 13 U 6'.- for every clause C.-
since the union of these completions is a clash-free completion of 13 U Öl U - - -U (-7,.
(because no Ö; contains an existential edge and every individual variable having
a level between 1 and m is either true or false in p) .

Let C; be one of the clauses and let -—->Q be the following restriction of the
completion rule ""u :
By applying the completion rules ——+v and —+g to I3 U Ö.- we obtain a completion
13 U Ö; of P U C". It remains to show that P U Ü; is clash-free. N

26"

i l_I_Y1LIY2‚m:X‚ a:: Z , ZECaniEDare in -S ’ , thenaddmzYlif

=Danda:Yg i fC#D.

Suppose P U C,— contains a clash. Let $012931, . . . ,mh_1R:ch be constraints in
15 such that 330 has the level 0 and an. is involved in a clash in I.5 U a . Because

13 U Ü.- was obtained using the completion rule ___‚Q, the greatest level in a must

be k. Let 13 g 13 be a trace of 13 containing the constraints 30R31,...,m;‚_1Rm;‚
and let a: € A be the P—assignment defined by p. Now it is easy to verify that 0:
satisfies no literal m Ci. This contradicts our assumption that every assignment
of A satisfies every clause. El

Theorem 8.3. Deciding consistency and subsumption of ADC-concept descrip—
tions are PSPACE-complete problems. '

Proof. In Section 2 we have shown that the subsumption and consistency
problems can be reduced to each other in linear time. In Section 5 we have shown
that consistency can be decided with linear space. Since QBF is PSPACE—complete
and the given reduction to the consistency problem is quadratic-time, we have the
claim by the preceding lemma stating the correctness of the reduction. EI

7 Conclusions

This paper is a further step in an effort aimed at the integration of feature de—
scriptions used in computational linguistics with concept descriptions employed
in KL—ONE—like knowledge representation languages. The first step in this effort
was the development of Feature Logic [Smolka 88], which integrates existing-fea-

' ture description formalisms and provides a model-theoretic semantics revealing
the close relationship with KL-ONE concept descriptions. Technically, the differ-
ence between feature descriptions and KL-ONE is that in feature descriptions roles
must be partial functions (called features) while in KL-ONE roles can be arbitrary
binary relations.

The minor semantical difference between features and general roles causes
major computational differences. If role inclusion or agreement is used with roles,

27

it causes undecidability [Schmidt-Schaufi 88], while its use in feature descriptions
neither destroys decidability nor causes a complexity jump. If role inclusion is not
present, the consistency problem for descriptions using general roles is PSPACE-
complete [this paper], while the corresponding problem for feature descriptions is
NP-complete [Smolka 88].

Not surprisingly, feature descriptions have been developed for applications
where feature agreement is essential, while KL-ONE applications exploit general
roles and avoid role inclusions. Nevertheless, there are important applications in
computational linguistics (for instance, coordination) that could be given elegant
solutions using general roles (in this context known as set-valued attributes). The
undecidability result of Schmidt-Schaufi [88] and the results of this paper indicate
that the integration of set-valued attributes is computationally nontrivial and re-
quires great care if decidability is to be preserved.

More work will be necessary to arrive at a computationally useful integration
of Feature Logic and KL-ON E. One difficulty is that the consistency checking al-
gorithms for feature descriptions are very different from the algorithms for ACC
developed in this paper. In addition, the consistency checking algorithms for ACC
are not incremental, that is, they don’t produce a simplified version of the checked
description. In contrast, the consistency checking algorithms for feature descrip-
tions are incremental and are thus much better suited for practical applications.
In fact, what is called unification in the context of feature descriptions is just
incremental consistency checking.

References

H. Ai't-rKaci, An Algebraic Semantics Approach to the Effective Resolution of Type
Equations. Theoretical Computer Science 45, 1986, 293—351.

R.J. Brachman, V.P. Gilbert, and H.J. Levesque, An Essential Hybrid Reasoning
System: Knowledge and Symbol Level Accounts in KRYPTON. Proc. 9th IJ CAI,
Los Angeles, Cal., 1985, 532—539. '

R.]. Brachman and J .G. Schmelze, An Overview of the KL-ONE Knowledge Rep-
resentation System. Cognitive Science 9(2), 1985, 171—216.

28

M.R. Garey and D.S. Johnson, Computers and Intractability—A Guide to the

Theory of NP-Completeness. Freeman, 1979. '

M. Höhfeld and G. Smollra, Definite Relations over Constraint Languages. LILOG

Report 53, IBM Deutschland, West Germany, October 1988.

ME. Johnson, Attribute-Value Logic and the Theory of Grammar. PhD Disserta-

tion, Stanford University, 1987. To appear as CSLI Lecture Notes.

R. Kaplan and J. Bresnan, Lexical-Functional Grammar, a Formal System for

Grammatical Representation. In J. Bresnan (Ed.), The Mental Representation of

Grammatical Relations, The MIT Press, 1982, 173—381.

H.J. Levesque and R.J. Brachman, Expressiveness and Tractability in Knowledge

Representation and Reasoning. Computational Intelligence 3, 1987, 78-93.

B. Nebel, Computational Complexity of Terminological Reasoning in BACK. Ar-

tificial Intelligence 34, 1988, 371—383.

B. Nebel and K. von Luck, Hybrid Reasoning in BACK. In Z. W. Ras and L. Saitta

(eds.), Methodologies for Intelligent Systems 3, North-Holland, 1988, 260—269.

P.F. Patel-Schneider, Small can be Beautiful in Knowledge Representation. Proc.

IEEE Workshop on Principles of Knowledge-Based Systems, Denver, Colorado,

1984,11-16.

W.C. Rounds and R.T. Kasper, A Complete Logical Calculus for Record Struc-

tures Representing Linguistic Information. Proc. of the First IEEE Symposium on

Logic in Computer Science, Boston, 1986, 38—43.

Manfred Schmidt-Schaufi, Subsumption in KL-ONE is Undecidable. SEKI Report

SR—88—14, FB Informatik, Universität Kaiserslautern, West Germany.

'G. Smolka, A Feature Logic with Subsorts. LILOG Report 33, IBM Deutschland,

West Germany, May 1988. To appear in the proceedings of the Workshop on Uni-

fication Formalisms—Syntax, Semantics and Implementation, Titisee, The MIT

' Press.

M.B. Vilain, The Restricted Language Architecture of a Hybrid Representation

System. Proc. of the 9th IJ CAI, Los Angeles, Cal., August 1985, 547—551.

29

