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Abstract
The algorithm SOGEN is  described, which transforms a SIG—sorted clause set  CS into a

SIG—sorted clause set  CS', where the output  clause s e t  is  smaller,  bu t  the  sort  s t ruc ture
is more sophisticated.

This produced clause set is  the input for our Theorem Prover. which has  ZRP“ , an
extension of ERP as its basic deductive calculus. Both calculi have resolution and
paramodulation as  their basic Operations.

We prove that the transformation induced by SOGEN does not affect unsatisfiability,
respectively satisfiability. of the clause set.

Introduction.
The advantages of a many—sorted calculus in automated reasoning systems are well

known [Hay71, Hen72, Wa83, GM84, GMBS, C083, CD83, 0b62].: In a many—sorted
calculus we obtain a shorter refutation of a smaller  set of shorter clauses. as  compared
to the unsorted version.

To exploit the power of a many-sorted calculus. it i s  necessary tha t  the problem to be
solved has a sort structure and that i t  i s  presented in i t ' s  sorted vers ion to the Theorem
Prover. Usually this many-sorted input is  hand-coded. There are examples,  where the
sort structure is  naturally given, bu t  there are also examples,  for which this  hand—coding
is  a hard task.  Moreover this coding by hand may be  faulty or not (un~)satisfiability
preserving for some reasons.

In [Wa83,Sch85. 0b62] it is proved in the so called Sort—Theorem, that for special
kinds of clause sets  the transformation into a sorted version preserves unsatisfiability.
But the direction of transformation described there i s  f rom the sorted version to the
unsorted version (the relativization). However the input clause set  i s  not of this form in
general.

A further motivation for such an automatic transformation are the t roubles  in using a
knowledge base with definitions and lemmas together with a sort—structure, since this
requires  a global (very unflexible) sort-structure. This limitation may be  too strong and
precludes the usage of sorts in such knowledge bases.  But once a translation module is
available. a knowledge base can be buil t  up  without sorts. The translator module
preprocesses the input clause sets  and prepares a sorted version for the Theorem
Prover.

The question whether such a transformation does affect or not the (un-)satisfiability
of clause sets needs a well-suited notion of the semantics of such a transformation. The
right notion of a model in our case is the somewhat adapted notion of models in their
original meaning. bu t  not the Herbrand—models. The (adapted)  E-model provides a ve ry
natural semantic for such transformations and shows how to design correct rules .
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We define the actions of signatures. sorts and algebras similar to those in the
£RP’-calculus [Schü]. but we drop some conditions on polymorphic functions. Such
more general definitions are needed, since the rules of SOGEN. which we introduce in the
next chapter. allow an "ad hoc" polymorphism of functions. which is not allowed in
£RP'.

Lamm (seneralized signature)
A signature $10 is a triple (S. IP. IP). where
i) is the finite set of sorts. ordered by the reflexive and transitive relation s

(possibly not antisymmetric). 'r is the greatest element of 8 .  (is. for all 8 e Se
5 s T).  The ordering s i s  extended to tuples of sorts and means componentswise 5,.

ii) IP is the set of function symbols. IP - U l .  where ”W is the set of functions d arity
n and signature B s W s: Sn”. The sets IPw are pairwise disjoint.
If vw s c then w satisfies:

' 1) Thesortofconstantsis unique: is. W581  aIWI-  -
2) ltas‘”1 fornzl. Wcontains agreatestelementisw1.....Sw_n‚1).Le. forall

(Si-« ' n+1)e W (51»- 51m) ‘ (SM-°- °5w.n+1)-
iii)llD is the set of predicate symbols. IPD is the set of predicates of arity n with domain

DES”. It islP-UIPD
iv) For every sort S e S.  there exists a constant c of sort Sc s S. is. $16 is

sensible in the sense of [H080]. I

We use the following additional notation and abbreviations:
- som - W. ifffe IP'W.
" SO(P) -D .  i f fPEIPD.

- C denotes the set of constants.
- Cs denotes the set of constants of sort 8.

- RnS- ( ‘TESITsRandSl
- R A S denotes the least element of R n S. provided this set is not empty

and there is exactly one least element

The following is the standard definition of a heterogeneous algebra (see e.g. [H0801]
with the additional proviso that the subsort relation is represented as the subset
relation.

mm (algebra with respect to 816.)
Let 516 be a signature. The pair (A516) is an W iff the following
conditions hold:
i) A is a nonempty set (the carrier).
ii) For everyAsort 5 e 8 .  there is a related subset SA r. A, such that

l l ' l '
2) VR‚S€S=R$S »RAGSA.

iii) For every sort 5 and every constant c e Cs. there is a related t:A e S“.
iv) For every function f e IP \ c. there is a related function IA: An 4 A. such that for

every (51.....Sn,1)e SO“ ) and every “i e Si“. l s i s n = fA(a1.....an) e SIMA. I

From the definition of a signature 1.1 iv). we have that SA s ß for every sort 5.
Furthermore, if there are sorts R‚S such that S s R and R s S, then their representations
are identical. i.e. RA - SA.
We extend the notion of a homomorphism to a 8-homomorphism, which respects the
sort structure.

3



Wt 3-homomcrphism of algebras)
Let SIG be a signature and let (A516) and (3.816) be algebras of type SIG.
A mapping pzA » B i s  aSMamhlm iff
i) VS e 8= 115") = 9(83)
ii) pfA(a1,...,an) - fB(pa1,.... man) for all f e IP and all ai e Sm“, lsisn ‚where

(s f .1""'sf .n+1)  is the greatest element of SO“). I

Obviously. the composition of two S-homomorphisms is again a S—homomorphism.
Let V5 be the infinite set of variables of sort 3. which we assume to be pairwise disjoint

Let V - UVS be the set of all variables. Let 'I' be the set of all (Le. including ill-sorted)

terms. That is. T is the least set with V a 'l'. C c T and f(t1.....tn) e '1' for all

[ € I. and 311 ti € T.

We define the sort of a term 1. namely GS“). as a set of sorts. Intuitively. this is the set
of sorts S. such that t could be substituted for a variable of sort S.

| i D [ .  'I'

Let SIG be a signature. Then the W is defined by the mapping
GS: T a 25:

[ {R lS ] .  iftisavariableorconstantofsort8(i.e.tevsucs). '|
CSU.) - { (RI there exist Si c GSiti) .lsisn. and a SIM s R. such that (51.....Sm1) 6 50(0)}

L if I 'f(l1‚...‚tn). _]

For examples In the sort structure of the complex numbers: 68(1) - (COMPLEX. REAL.
INT. NAT }. The set GS(t) has the property, that V S e 68“) {R e 8 IS s R) a $6).
We define the set vsr .W as the set it e 'r I GS(t) e a}.
Obviously for every term t - f(tl  .....tn) e UST. the subterms ti are also in UST.

1.l Let 816 be a signature. Then (UST. 816) is an algebra of type 816. if the
Operations and the representations of sorts are defined as follows:
i) r '“ (t1.....tn) - f(t„....tn)
n) 3'“ -{t|SeGS(t)).
Emm; We verify the conditions of definition 1.2:
i) Obviously 'S'I' is not empty.
ii) 1) Tv“ - 'S'l‘. since 1' e 65“) for every well-sorted term t.

2) Let R5 e ß and let R $ 3. We have to show. that R'" a s'“.
Let t e R'". Then R e 6%). Since R $ 3, s c es“). Hence t e SV“.

iii) Let c e CS be a constant. Then „UST - c. S e GS(c). Hence c'ST e S'ST .
iv) Let ti e Si'“. 1 s i s n, and let (51..-,Smi) e SO(f). The definition of Si'fl gives

Si e GSüi), 1 s i s 11. Now the definition 1.4 yields Sn”. e GS(f(t1,...,tn)).
Hence fitl ....,tn) e smi'sr.

(WISE) is the free algebra of type SIG. ('S'l'srßlG) is the initial algebra d type 516.
where the suffix "gr" denotes ground objects (Le. objects without variables). For proofs
we refer to [Schü].

1.1mm A mapping o: WIT -» '81' . which is identical almost everywhere is 1
SW m it is an endomorphism d the algebra IST. I

Let! denote the set of all l—substitutions.
- 4



LIME“. Let SIG be a signature and let ea UST 4 'S'l' be a mapping. Then 6 is a
S-substitution. illr the following conditions hold:
i) e c - c .  f ora l l cec .
ii) of(l„...‚tn) - fletl..." ein) for all terms fltl.....tn).
ill) 68(1): GSM) for all variables 1.
iv) { e I  ex s xiisfinlte.
m
"»" Let s be a S-substitution. Then a is a S-endomorphism. The only nontrivial

condition is iii). Let x e V and let S 15 68h). Then I e s“? 1.3 i) yields ex e 3'8T_
Hence 8 e GS(ex).

"a" Let i) - iv) be satisfied. We show only that elS'sr) c 5'81:
We use induction on the term structure.
W For x e 8'“ we have S e GS(1)‚ hence by iii) S e GSlex). This implies

ex (5 8'". For constants. trivially c e 8'" implies ec e s'“.
Wm Let t - fill....,tn) e 'S'l'. We show GS(et) : GS(t). Let R e GSit). then

there exist si e GSiti). 1 s i s n. and as,“ s R. such that (51....sm1) e sou). The
inductionhypothesis yields Si e GS(eti). From Lemma 1.5 and definition 1.2 iv) we
conclude. that für maps (51'31'. .Sn'" )ontoam.
Hence fletl “n) - et a Snd'". which implies Sm! e GSlet).
Finally Sn+1 !. R implies R e GS(et). I

We shortly describe some needed notions:
Pltl.....tn) is an mm, where P is a predicate symbol and the ti’s are terms such that
Si e GS(ti). where SO(P) - (51.....Sn). A (well-sorted) man is a signed atom. The set of all

well-sorted literals is called 1.. A clause is a set of literals, i.e. an abbreviation for the
disjunction of the literals. where all variables are universally quantified. A am
a W or a mum is one without variables. mar atoms. literals
and clauses are their images under a S-substitution. mutual is a distinguished
binary predicate with domainsorts SO(-) - (TJ-).

wm SIG be a signature. $16 is a W [Schü]. iff the
following (additional) condition is satisfied:
i) (3.9 is a partially ordered set
ii) For every 1‘ e IP , every (51.....Sm1) e 50(f) and every (T1,...Tn) e Sn:

(T l . . . .Tn)  $ (51 . . . . . Sn )»  31  TIN!  E 8 = TIN].  $ Sn+1  A (T1 , . . .Tn+1)  € SO“). I

The next lemma shows the connection between the sort in polymorphic signatures and
the generalized sort in the signatures considered in this paper.

W Let SIG be a polymorphic signature. Then the following holds:
1) For all t e “T: GSlt) contains a unique least ele ment. which we denote with [t].
ii) For 111 t ' f ( l1 , . . . ‚ tn )  ! ‚ST: ( [H  L . . .  [In] .  “D € 50“).

m We show i) and ii) by induction on the term structure of t.
WFor te  V5 or t e cs: it] - s, and (SSH) - {Re 8 IR 2 5). Since am is a partial

ordering, S is the unique least element of GSM.
MW Let t= f(t1,...,tn). Let Si  = [til i s i s it. Let R e GSit). Then there exist

Ri 5 Gstti) and a Rn+t s R, such that (R1,...,Rn,Rn+1) e 500‘). We have
(81.....Sn) $ (R1.....Rn). Hence (by definiton 1.8) there exists a unique Sad $ Rn”.
such that (81 ‚...‚Sml ) e SO“). Now S11‚1 is the unique least element of GSlt). I



Since a clause set CS is said to be satisfiable. if and only if a model for CS exists. it is
necessary to give a precise definiton of a model with respect to a signature.

1W Let CS be a SIG-sorted clause set. An Wfor CS is a triple (D.SIG.R).
such that the following conditions are satisfied:
i) (D510) is an algebra of type 516.
iilPor every predicate P there exists a relation PD e R ol‘ the same arity.
iii) All clauses in CS are valid under all S-homomorphisms o: 'S'i' » D. I.e. all clauses

in (3 are valid under all assignments of values in D to variables in clauses. where
sorts are respected. (We say a literal P(t1....tn) is valid under 9. iff cp (P(t1....tn)) -
PD( ml ptn) is valid i.e. ( ct, otn) is in the relation PD.)

iv) The equality predicate II is represented as the identity on D.

Remark. A Theorem of Herbrand states. that D could be chosen in such a way. that D is
the image of UST” under all S-homomorphisms.
Further more. if no equality literals are in D. we can choose D - '81' gr'

if all equality literals are unit-clauses. then we can choose D - 'S'l'g,/~ . where ~ is
the congruence relation on 'STgr. which is induced by all such unit-equalities.



W
The goal of this chapter is to present the algorithm SOGBN. which transforms unary

predicates into approoriate sorts. generating a polymorphic signature and a
corresponding clause set from a given unsorted clause set. The algorithm is formulated
in production rules. The correctness of each rule is shown in chapter 3.

The algorithm SOGBN needs a memory for already introduced relations on sorts and
relationships between sorts and predicates to characterize the situation. where
predicates and their corresponding sort are simultaneously present. It is not possible to
express this in the signature. We call this set SC (sort constraints) and consider the
members of SC as a special type of clauses. (The constraints in SC could be coded as
special clauses. see rules RSC3 and RSCS) in the following we write P. if we mean a
signed predicate. Now we specify SG
SC is a set of pairs and triples:
l) A pair (PSP) e SC. where P e IP and Sp 5 $ stands for "P is transformed into Sp". This

means that for every term t. the sort of t is Sp. iff Pit) holds.
2) A triple (RSI) with 11.5.1” 6 S represents R n S - T. This means that for every term t =

i f t i so f sor tSandof sor tR . thent i so f sor tT . l

Let : be a reflexive. transitive relation on a finite set U. Then we denote with Mlw) a
set . such that:
i) mw) ; U .
ii) Vu.v e MINslU): u s v a u - v.
iii) Vu e U. 3v 6 MIN$(U)1V s u
Such a subset exists. since s is reflexive and transitive.

During the run of SOGEN. information about the intersections of sorts is available (sort
constraints in the set SC). From this information. some new relations on sorts are
deducable. for example. that two sorts are in the relation s or that two sorts are “equal".
For rules. which manipulate the set SC or which deduce this new information. we need
some definitons.

Winn. Let SIG be a signature and let SC be a set of sort constraints. We define
the set RBPs). which is the set of all sets (81.....Sn}. which satisfy "81 n n 811 - S":
a) For every 8 e I .  we define the set REPsclS) of representations recursively-

i) {S} a REPs).
ii) If (51.....Si.....5n) e REPsclS) and (R1 325]) 6 SC. then

MIN$( ((sl,...‚sn)\(s‚}) u (R1321 ) e RBPs).
iii) If RP1.RP2 e RBPs). then MllllPI u RPZ) e RBPs).

b) We define a relation ‘SC on sets of sorts. which is only used for elements of some
REPSdS):
(S1.....Sn} SSC(T1.....Tm) . iff for every T 6 (T1 .....Tm}. there exists an element
8 e (81.....Sn}. such that 8 5T.
(81.....Sn} ‘SC ”I'm-rm} can be interpreted as “Sin n8n a: T ln  n'l'm“.

c) The base set for intersections is defined as:
BASBSC - {S e S l all elements of REPs) are sets with exactly one element }. l.e. all
sorts. which have only trivial representations.

d) Similarly RBPscllsl.....Sn}) is defined for sets of sorts. The intended meaning is to
represent “Sin nSn".

e) For RS 5 S. we define R ”SC 5 . iff there exist RPM. RPRZ e RBPs) and
RPM. ”82 e RBPs) such that RPM ‘SC RPS! and R1952 ‘SC RPM.

7



Two sorts RS which satisfy R "SC 8 have always the same set as representation in an
B-model. hence they can be identified in the sort structure.

Wet AB.C.A1.BI.C1. Az-BZ'CZ e and let (ABA! ). (ALB! ). (B.C,C1).
(A131 .122). (A1 £1,132). (BI.C1.C2) e SC The following diagram shows the relationships:

I><: ><I
l>< 2><ll

From the set SC. we get the following relations:
{AB}  € REPSÖAI )1 {A.C} € RBdBl  )t {5,0 € msdcl )! {A.Bß} € msdflzh {A.Bß} €

REPSd). {ABC} :5 REPSdCZJ. Hence we have:
A2 "SC B2 "SC C2 ‚which reflects the fact. that n is associative. commutative and

idempotent. The following computation shows. what happened:
Az-Al  "B1  -AaAnC-Aa  C-AaBnC-Al  0C1  ‘32 .

mm Let AB.C.D be sets. such that A n B - C n D holds.
Then BnCaAnB.s ince  AnB-  (AnB)n(CnD) .
Without the rule 2.1.1 a) 111) this relation is not deducable with the representation
mechanism.

M This example demonstrates. that in definition 2.3.1 e) in general
Rpm * RPSI and RPRZ # „521

Let A.B.C.D.Bbe sets and le tF-AnB-CnDnB.  G-BnC-AnD.
Then F is represented by {PMAB}. {CD3}. {A.B.C.D.E} and G is represented by {G}. {B.C}.

{AD}. (A£.C.D}. (We use P i AB.C.D.B and G c A.B.C.D).
We have: {A.B.C‚D} ‘SC {AB} and {A.B.C.D.B} ‘SC {A.B.C.D}. Hence F "SC 6. I

In the following we describe the rules of SOGBN by their input (IN) and their output
(OUT). respectively by their condition and action.

W

W Introduction of sort
m a) SIG '

b) CS CS contains a clause C. whose literals all have the same unary
predicate P.

c) SC There is no pair (PS) for some S in SC.
QUI a) 816’ 8 '  - 8 u {Sp}. Sp is a new sort symbol. c is a new constant of sort Sp.

Sp s SDP is added. where SDP - SOiP). s '  is the transitive closure of s.
b) 05‘ CS
c) SC' SC U {(PSP)}.

W Changing sorts of constants.
in a) SIG cc  Csc

b) CS (3 contains the clause {Me)}
c) SC SC contains (ESP) and a triple (595c

mm a) 816' egg-csc \ (chef-c1- u {cl
b)CS‘CS
c)SCSC



Kuh-BIZ. Introdcution of sort relations.
' m a) 810

b) CS CS contains the clause {PM}. where [x] - S,.
C) SC (ESP)!  SC

0111'. a) 816‘ S‘  - !. but Sx s Sp is added and s' is the transitive closure of $.
b) 03" CS
c) SC' SC

man Changing the sort of a variable.
in a) 816

b) CS (3 contains the clause C - (43(1)) U A. where [x] - 51-

c) SC (ESP) e SC and (513.811) E SC.

£21.11 a) SlG‘ -
b) CS" (25' - (CS \ (C)) u {C’}. where C' - A' and x is replaced by a new variable

y of sort 'I'.
c) SC SC

Mm Adding tuples to som.
m a) SIG

b) CS (3 contains the clause C - {P(l(11.....xn)}. where [xi] - Si
and the variables li are pairwise different.

c) SC (Pßph SC

on: a) SIG' som - som \: ((31‚...‚5n.5pn.
b) CS‘ CS
c) SC' SC

Z ifl l l '  ID I I 'B I

Emmi. Deductions.
m a) SIG

b) CS
c) SC

QUI a) SIG‘
b) CS' CS u {C}. where C is a resolvent. factor or paramodulant oi" clauses in CS.
c) SC‘ sc '

W Clause Deletion Rules.
m a) 816

b) CS CS contains the clause C. which satisfies one of the following conditions:
i) C is subsumed by another clause C’ in C. Le. there exists a

substitution 6. such that eC' c C.
ii) C is a pure clause. Le. C - {L} u A. L is a literal. the predicate P of L

is not the equality predicate. neitheriPSI) nor (-P.Sz) is in SC. and
there exists no complementary literal in any of the clauses of CS.

iii) C is a tautology. Le. either C - {Li u {-L} U A or C - {PM} u A.
(P.5p) 5 SC and Sp e GSit).

c) SC
QIJIa) 510'

b) (3' CS\{C}
c) SC’ SC



Ruhm Literal Deletion Rule (implicit resolution).
IN a) 516

b) CS CS contains C - {-—P(t)} u A, where Sp 6 GS“)
c) SC SC contains (PSP).

QUI a) SIG‘
b) CS' (CS\{C))U(A}..
c) SC SC

W

RuliiLSCL Trivial intersection Properties.
in a) 816

b) CS
c) SC

QUI a) SIG'
b) CS‘
0) SC' SC“ '- SCU {(3152.52) | 51 z 32} U “52.51.“ | (51.521) E SC}.

Rum Introduction 0! sort relations by representations.
m a) 816 There exist S.T e S and RPS e RBPs) and RP-r e RBPsciTJsuch that

RPS sscRP-rand no tSsT .

b) (3
c) SC

GUI a) 816‘ S s T is added to s. s‘ is the transitive closure of :.
b) CS'
0) SC'

Rum Application of contraposition.
m I) SIG contains 51  S 30.

b) (3
c) SC contains the pairs (P.8p). (-P.S_p). (0.80). (-Q.S.Q). and the triples

9111'. a) SIG‘ 82 : S_p is added to s. s' is the transitive closure of s.
b) CS‘
c) SC‘

WIntroducing the intersection of two sorts.
m l)  316  51 .52%“ and s l  "52  . 5 .

b) CS -
c) SC does not contain (81.825) nor (823‘3). ,

91.11 a) 316' S' -S  0 {SN}. SN is a new sort with SN s‘ 81. SN 5‘ 52. and S s‘ SN tor all
S e 81 n 82. :s' is the transitive closure of 5.

b) (3'
C)  SC' SC' - SC U {(5152514)}-

l 0



25“  . l l '  II | | .I I!

W Deletion cl cycles in <85).
m a) 516 There exist sorts SI 5 B, such that S s T. 8 s T and 'l‘ s S.

b) CS
c) SC

0111'. a) SIG‘ 49353 - <$l~ . s'/~>. where '- is defined as: T ~ S. ill '1‘ s S and T 2 S .
in SO'(f) and 80‘ (P) sorts are replaced by their equivalence class.

b) (3' CS. where all sorts are replaced by their equivalence class.
c) 30 SC. where all sorts are replaced by their equivalence class.

„"  . | | .  [ l l  . |

Rum Making 1‘ a polymorphic l‘untion.
LH a) SIG <85) is cycle free. (Sf , l -"-'sf ,n+l)  is the greatest element of

son). The following condition is satisfied:
For every (51” . . . a  ) . (T1 . . . . .Tn+1)  € 50“):

(V i- l....‚n Si n Ti s fl) » ((V i- 1......n Si a Ti is unique) and there
exists a sort Rn+1 ,such that Sn+l  z Rn+l  ,
Tn+1 ?. Rn” and (Slit-r1 .....snATn.Rn+1) E 50m.)

b) (3
c) SC

gm: a) SlG‘ where SO'il') -
r | S i$5 f j , f0 f i '  l . . . . ‚n  and 1

“SP-" Sud)  | Sn+l  is the least element of the set }
L | {s |(s,‘....s„‘5)e50(r) and Sis sl‘} J

b) CS' CS
c) SC’ SC

81111502. Adding intersections of range-sorts.
m I )  SIG (81 . . . . . Sm1) .  (T1 . . . . .Tn+1)E  SO") and Si  n Ti  I H for i“ i . . . . .n

Sn” l'l TIMI “ß .

b) CS
c) SC

0111 a) 516‘ S’ - s u {SN}. where SN is a new sort. c is a new constant of sort SN-

SN !. Sn+1 and SN 5 Tim is added. 5' is the transitive closure of 5.
b) CS' CS
c) SC' SC

M11391 Adding a tuple of intersection sorts.
m a) SIG (51.....Sm1). (811....Sm1'ie SO(f)and(T1.....Tn+1)s 500)

b) CS
c) SC (Si.Si'.Ti)e SC for i - l.....n+1

9111 a) SIG‘ SO‘U‘) - SO(f)u “Tim-Tm!”-
b) CS' CS
c) SC‘ SC

sun-.301 SOifi-Restriction.
m a) 816  f e ]?

b) CS a term or subterm (in CS) starting with 1‘ exists.
c) sc '

l l



m al 516' 500) " “51  .....a) € SO“) I(S, . . . . .Sn.1)s (T1 ”ml-n+1) ).. where
( l rml )  is an appropriate tuple. such that
(T1 .....Tml) : (SLI .....Sf'ml) and all literals in CS' remain well-sorted.

b) CS‘ es
el SC‘ SC

31112591 sum-Restriction
111 a) SIG P e P

b) CS a literal starting with predicate P is in CS.
c) SC does not contain (PSP) or (-P.S_p).

DUI a) 516' SO'(P) is changed into (81.....Sn) s SO(P) . such that all literals in CS'
remain well-sorted.

b) CS‘ CS
c) SC SC

Remark. If SIG is a polymorphic signature in the rules 804 and SOS and <S.s> is a
semiiattioe. then the changes for SOil‘) and SO(P) are uniquely determined.

Rum Deleting functions and constants from the signature.
I}! a) SIG fe lF . (CGC)

b) CS i does not occur in a literal of CS. (c does not occur in a literal of CS.)
0) SC

0111 a) 816' f i :  removed from SIG. (c is removed from SIG.)
b)  (3' CS
c) SC' SC

W

Wi Trivial cases.
in a) SIG containsS

b) CS
c) SC contains (T55) or (8.118)

0111 a) 510'
b) CS' (3
c) SC’ SC \ ((128.8) . (8,115)}.

M3592 non complementary predicates.
IN a) SiG

b) CS neither P nor -P occurs in CS.
c) SC contains (ESP). but no pair (-P.S_p)

0111 a) 816' Pis removed from SIG.
b) CS‘ CS
c) sc SC\{(P.Sp)}.

W complementary predicates. (general case).
111 a) 816

b) CS neither P nor -P occurs in CS.
0) SC contains (P.Sp) and (-P.S.p)

QUIZ a) 316' P is removed from SIG. Two new functions f„ and f_ are added to IP.
With SO(P) - sDP- the (not polymorphic ) functions have SD? as their
domain and Sp and S_p as their range respectively.

b) CS' CS ullzsp. y=s_p x t y)} u {(W-s.”, x n f‚(1)v x I um).
The last clause is the skoiemized form of =

NISDP. (31:59 a a z) v (32:84; 1 I z) }.
l 2



c) SC' SC \ ((Pßp) ("Es..p) }.

m: The functions f, and [_ are in fact skolem functions.

mm
ma)

b)
c)

QlIi'. a)
b)
c)

W
ma)

b)
c)

0111 a)

b)
c)

um
m a)

b)
c)

01111)

b)

c)

m a)
b)

c)
QUI a)

b)
c)

W
m a)

b)
c)

OLE a)

b)

complementary predicates. (a special case).
516

CS
SC
SIG'CS'

SC

P e IP. 50(P) - SD? For every ground term o
SDP e GS(t) =» Sp e GS“) v S_p e GS(t)

neither P nor —P occurs in CS. CS contains an equality literal
contains (ESP) and (-P.S_p)
P is removed from 816.
cs u (Na-Sp. y=s-p x It y)}
sc \ {(Psp). (-P.s_p)}.

complementary predicates. (a special case).
316

CS
SC
SIG‘CS'

SC‘

P c 1P.SO(Pl - SDP- For every ground term ts
Sm) 6 03(1) I» (Sp € 03“) 0—0 S_p ‘ GS“) ).

neither P nor -P occurs in CS. CS contains no equality literal
contains (ESP) and (-135.13)
P is removed from SIG.
CS
SC \ ((P.Sp). (-P,S_p)}.

Re moving intersection information (general case).
510
CS
SC
SlG'

CS'

SC‘

contains (51.521). where 51 s T ‚32  s '1‘ and $952 - T
a new (skolem) function g is added to SIG. where g has domain-sort

81 and range-sort T and (8.5) 6 50(3) for all S s T
(:5 U (01381. y=52 ‚x a y v 3(1) I 11}
(The new clause is the optimized and skoiemized form of

V151.Y‘Sz I ly  =9 GIST I l l  ) )

sc \ «81523152513».
Removing intersection information (a special case).
816
CS

SC
SIG'CS'
SC'

. occurs only in unit~clauses. For every triple (S.T.S') and for every
literal s I t. which follows semantically ( r- ) from the equality clauses in
CS. where s e GSG!) and T e GS(t) hold. there exists a term ts- . such that
S‘ e 0805') and s I ‘3‘ follows semantically from the equality clauses in
CS.
For every triple (51.52.83) e SQ- Slnsz - S3

SC \ (all triples in SC}.

Removing intersection information (a special case).
SIG
CS
SC
816'CS'

there is no equality literal in CS.

c) SC” SC \ (all triples in SC}.
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Wax.

M Adding the tautolosy {(Vx -P(x)) v (By Hy)”
m a)  SIG 80(P) " SDP'

h) CS contains P
c) SC does not contain (PSP)

0111 i) a) 810' ur- ti: u {c}.where c is a new constant of sort SDP

b) CS‘ CS 0 {PM}
c) SC' SC

0111 ii) a) 516'
b) CS‘ CS u {qs —P(x)l
c) SC' SC

W92. For constants c either He) or -P(cl.
m a) SIG SO(P)-SDpcisaconstantofsortSsSDp.SstSp.S$S_p

1:) CS
c) SC contains (Pßp) and (-P.S-p)

QUI i) a)  516‘
b) CS‘ CS 0 {Mon}
0) SC” SC

QLIL ii) a)  SIG‘
b) CS‘ (3 u (I-Plcll}
c) SC‘ SC

W Using {(Vx-S P(1))v (Virus -P(x)) V((3yuS PM) A (31:5 -P(z)) }
m a) 516 SO(P)-SDp.SeIandSsSDp.S$Sp.S$S-p

b) (3
c) SC contains (PSP) and (-P.S_p)

01111) a) SIG‘ SIG
b) CS‘ CSU({V15P(1)D
c) SC‘ SC

our 11) a) 516’ SIG
b) (3' (sum-s -P(x)}}
c) SC SC

0111 iii) a) 816' c„‚c- are new constantsol‘ sort S.
b) CS‘ CS 0 “Ham U {{-P(c_)}}

c) SC' SC

Rum Splitting a clause into two clauses.
LH :) SIG 50(9) " SD?

b) CS CS contains. a clause C. such that there exists an x 6 WC). with
[ I ]  ' S $ SDP'

c) sc contains (asp). (—P.s_p). (5.51351). (5.5_p.32).

0m. a) SlG‘ 810
b) C5' C5 \ {C} u (c l .  oz}, where Ci is the clause C. but the variable x is

replaced by li! SP

c) SC' SC

W

CO! 11‘ SC contains (PSP) and (-P.S-p) and there exists a S e 8 .  such that S 5 Sp and
S s S_p. then the signature contains a contradiction.
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coz ' If the clause set is empty and for all (PSP) ‚(-P‚S_p) 6 SC. where 500’) - 5D? and
for allSeBa S $ SDP" (S s Spa  S ;  S_p.) then the original clause set is
satisfiable.

C03
C04

If some clause is empty. then a refutation has been found.
If no rule besides the rules RSC! is applicable. but some clause contains a literal
:P“) and a pair (P.5p) or (-P,S-p) is in SC. then the algorithm SOGBN failed.

ZJQH' I I 'C  I IE  l'l'

M..
m a)

b)
c)

Dina)

b)
c)

W
ma)

b)
0)

mal

c)

c)
ma)

b)
c)

Existence of an intersection sort.
SIG
CS CS contains a clause {sul}. S c 65(s). 'l' e GS(t) and S n T -B
SC
816' S' - S u {SN}. SN is a new sort symbol. c is a new constant of sort SN.

SN s S and SN s T is added. . s '  is the transitive closure of 5.
CS' (3 '
SC' SC u ((S.T.SN)}.

The sort of a constant is changed.
816 contains a constant c of sort Sc.
CS CS contains a clause {c I t}. St 6 GS(t).
SC contains (ScStSct).

SlG‘ the sort of c is changed into Sa.
(3‘ CS
SC‘ SC

New Sort Relations.
SIG
05 CS contains a clause {1 I t}. T e GS“). and x is a variable of sort 8.
SC '
SIG' S s T is added. s' is the transitive closure of s.
C8' C5
SC' SC

New tuples in 50(l').
SIG (81.....Sm1) e 50(l')
CS CS contains a clause “(11,411) I t}. 'l' e GS(t) and the xi are distinct

variables of sort 51'

SC contains (Sn,1.T.S')
SIG' 50'0') - som u ((51.....Sn.S')}.
CS‘ CS
SC’ SC

W

W introducing a new predicate.
Ma)

b)
c)

Ma)

(3 CS contains a literal 1P(g(t))

SC
SIG' P8 is a new predicate with 80038) - (T).
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b) CS' CS" U {{i'si "P(8(Ii)) vaüill} U {{fSi P(s(xi)) v -P8(xi)}} for all i.
where (81.....Sn} - MAXSÜ'II (T1.T2) e 50(8) .TsDp}.
CS" is the clause set CS. where all literals of the form tP(g(t))  are
replaced by the 1P8“).

c)SC' SC

Estuarine clauses {(vxi-Si -P(g(xi)) " 98mm and (Mrs. P(g(xi)) v 'Pg(1im give rise
to a tuple for the function g (with rule 3T5).

WW

We describe. which rules are tightly connected and which combination of rules solve
some subproblems. such as making the signature polymorphic. Furthermore we give the
sequence in which the blocks of rules should be applied and say. which rule to apply
first.

The priority of the rules is essential. since the set of rules without any priority may
run in a leap.

1)

2)

3)

4)

5)

6)

7)

8)

9)

The rules 8T2. BT3. BH. BTS. DD2 and DD3 have highest priority. They should be
applied. whenever possible. Every application of a rule 3T2, BT3. BH. BTS could be
followed by the deletion of the corresponding literal.
The rule EU should be applied. whenever possible. but the restriction is given. that
it may be possible. that the transformation of one or more unary predicates is
inhibited since a control module knows. that the ttansformation of this sorts is not
possible or incomplete.
The rules SC1‚SC2,SC4. M51 form a block of rules. which is able to complete the
sort structure. such that for all sorts 81.52 either 51  a $2 exists or SI n 82 s fl. In
this block. the rule 50! must have lowest priority. since the uncontrolled application
of 5C3 alone does not terminate.
The rule SCB makes it possible to code more information into the signature. i t
avoids. that the relations between the sorts Sp depend on the sequence of
application of the rules. For example the clause P » Q is equivalent to -Q » -P. but if
the relation Sp s So is generated. then the clause is deleted. but the relation
8.0 s S_p may be missing.
The rules 801.502. 503 together with the rules of 3) Le. SCl. SC2. 5C4. M51 are able
to make the signature polymorphic. The priority of rules should be: 802. $03. SCI.
$62. MSI, 864. $01.
The rule 804 and 506 may be used to delete unnecessary information from SO“)
(resp. the signature). This reduces the set of well-sorted terms. and possibly the
conditions for the rule RSCS are satisfied after application of this rules.
The rules RSCi should fire. if no other rules are applicable. in practical applications.
the addition of clauses by the rules RSC4 and RSC6 is very unpleasant. since they
introduce equality literals. They may be used to indicate. that the transformation is
possibly incomplete.
The rules ACi need some control. since it depends on global information or
knowledge. which of this applications may contribute to a proof or not. Note that
every application of a rule ACi could be followed by a rule BTi. ‘
The rules BQi are not essential. (we have not implemented these rules) since on the
one hand. an equality reasoning module exploits unit-equalities much better. and on
the other hand. in the connection graph calculus. all unifiers in all links have to be
recomputed after application of these rules.

10) The rule UCI is relevant only for a decision procedure for the corresponding clause
set.
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In this chapter we show. that all rules preserve satisfiahility repectively inconsistency
of the combination clause set + sort constraints + signature. Therefore a notion of
satisfiability (inconsistency ) is needed. which is given in a preliminary paragraph.
For a certain set of rules. we show that they terminate. Furthermore we prove. that
SOGEN provides a decision algorithm for clause sets. where all predicates and functions
are unary.

315 E l"  DE'T Ii

Wimflotion of a model for CS and SC.
Let SIG - (S. IP. IP) be a signature. Let CS be a clause set and SC be a set of sort
constraints.

We say the CS + SC have an B- model (D.SIG.R). ifl‘
i) (D5163) is an B-mcdel for CS.
ii) For all (P.5p) e SC: SPD - {d I d e SD and PDM) is valid]. where SOlP) - (5)

iii) For all (RSI) e sc- RD n SD - TD.

In the sequel we deal with signatures SIG and 516'. We sometimes abbreviate 'eIG
with UST and 'STSIG‘ with '81". The same holds for the symbols like 5031!. and IP.
We say a rule is sound. iff it preserves the satisfiability of CS + SC. a rule is said to be
complete. iff it preserves the inconsistency of CS + SC. We sometimes cite lemmas. which
are proved only for the case SC - ß. But all proofs are adaptable to the case SC e B in a
straigth forward way. since all clauses in SC could be coded as clauses (see rules RSC4
and RSCS).
The next definiton provides the notion of embedded algebras. which frequently occurs
in the rules of SOGBN.

W (embedding of two algebras.)
Let SIG - (8. IF. IP) and SIG' - (S'. IP‘. IP') be signatures and let (D.SIG) and (D'.SIG') be
algebras of type SIG. respectively 816'.
We say (D.SIG) is embeddedjn (D'SIG'). iff the following conditions are satisfied-
ü SESZPGFZ
ii) 181' c '31"
iii) D - D’. and D. D' have the same representations for S e S and f e IF.

um“ Lifting and restriction of S~homomorphisms in embedded algebras.
Let SIG - (8.11?) and 516' - (S“. F .  IP‘) be signatures and let (DSIG) be an algebra.
which is embedded in (D'.SIG' ).
Then we have: .
i) For every S-homomorphism p: 'S'l' » D . there exists an S-homomorphism

qr: '8'! '—+ D, such that «p'l's-r - cp.
ii) For every S-homomorphism gr: 'S'l' '-+ D. the restriction ap" I'ST is an

S-homomorphism tp‘ I'S'l' = 'ST -» D
m.
i) We define f (x)  - 19(1) for all x e V. Since '31" is a free algebra with respect to 516'

and since condition 3.1.2 till is satisfied. this defines uniquely a S-homomcrphlsm
9': 'ST ' .» D. since cn - c” and fD - TD . Obviously. c' I'ST - q).

ii) From 3.1.2 iii) we conclude that the restriction cp' I'S'l' is an S-homcmorphlsm with
respect to SIG. I

The next lemma provides a tool for proving that a rule of seem is sound and complete.
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11mm; Let 516516' be signatures. such that L s: L'. Let CS be a clause set. where
all literals are in 1.. Let SC be a set of sort constraints for SIG.

Then the following holds:
i) Given an B—rnodel (D5163) for CS + SC and an algebra (D'516'). such that (D516) is

embedded in the algebra (D'516'). then there exists an B~model (D516'3') for
CS + SC.

ii) Given an B—mcdel (D516’3') for CS + SC and an algebra (D516). such that (D516) is
embedded in the algebra (D'516'). then there exists an E—model (D5163) for CS + SC.

m
We can assume. that the equality predicate is in IP.

i) Let (D5163) be an E-model for CS + SC and let (D'516') be an algebra. such that
(D516) is embedded in the algebra (D'516').
We define R'- R. and show. that (D5163‘) is an B-model for (3 + SC with respect to
516'. The conditions 3.1.1 ii) and iii) are trivially satisfied. since the representations
of sorts and predicates are not. changed. The equality is still represented as the
identity.
Now let o' :WST -+ D be an S-homomorphism with respect to 516'.
Then by lemma 3.1.3 ii) In - cp'l'sr is an S-homomorphism with respect to SIG.

Since all literals in clauses of C5 are in I.. the images of clauses under 9 and tp' are
the same. Thus 9'6 is valid for all C e CS. since qJ'C - 96 and (D5163) is a B-model.

ii) Let (D516'3’) be an B-model for CS + SC and let (D516) be an algebra . such that
(D516) is embedded in the algebra (D'5IG').
We define it - R'. and show that (D5163) is an B-model for CS + SC:
We show the nontrivial part:
Let p HIST » D be an S-homomorphism with respect to SIG. Then by lemma 3.1.3 i)
there exists an S-homomorphism 1p“: IST ' _, D (with respect to SIG). such that
tp‘ I'S'l' - cp . Since all literals in clauses of CS are in l... the images of clauses under

1: and e' are the same. Thus qJ'C is valid for all C e CS. since cp'C - p6 and (D516'3) is
an B—model. I

The next lemma gives sufficient conditions. such that '8'! = 'S'l' '. which is one of the
basic preconditions for an algebra D to be embedded in an algebra D'.

um Let $16516' be signatures and let an! » S‘ be a mapping.
Let the following conditions be satisfied:
1) IP a ll"
ii) Irr - T'
iii) VR5eS=RsS aeRs 'eS
1V) FOCIUSE§  = VSS v

v) For cecR  = c i s  contained mcs' .  such that S s' vR
vi) For every 1 c IP \ c and for every (81....5m1) e 50“). there exists a tuple

(31'....,sn.1') e som with “Spa-.811) s' (sl‘‚....sn') and sml' s' Vsmr

vii) For every P 5 Pt I’SCXP) - SOlP')
Ihm i) UST a 'S'l' '.

ii) L a L'.
Emmi. We prove uGS(t) a 6310 for all t e '8'1' by structural induction.

1) For all te  WIT. we have 68'(t) a e(GS(t)) s 6. hence te  'S'l' '.
ii) Let P(t1.....tn) be a well—sorted literal. Then Si e 68(ti). where SO(P) - (51....5n).

Since uSi e uGS(ti) = GS'(ti). this literal is also well-sorted with respect to 816'. I



Proof ol‘ uGS(t) r. GS‘lt)=
WFor x e V we have vGS(x) s GS'lx) by condition iv).

For c e cs. we conclude from condition v). that 1105“): GS'lc)
MW. Let t - l‘(t1 .....tn) e 'ST and let S e GSM.

Then there exist Si e GS(ti). H .....n and Sm!  e S such that (81.....Sn.1) 6 50(1‘) and
Sn+l s S. Now the induction hypothesis implies uSi e GS(ti). Condition vi) yields.
that there exists a (81'.....Sn.1') e SO'(f ) with 105i { Si' and Sm] ,  s' ws“.  This
implies sml '  a GS'lt). From as z‘ vs,“ 1‘ sn+1  '. we conclude vs c CS'lt). I

m The mapping y in the lemma above is usually the identity on S .  or the
canonical mapping from S onto 8/~.

WW

We. The introduction of new sorts is sound and complete.
Rum: .

m a) 516
b) CS CS contains a clause C. whose literals have all the same unary predicate P
c) SC There is no pair (PS) for some S in SC.

0111 a) 816‘ S '  - S u (Sp). Sp is a new sort symbol. c is a new constant of sort Sp.
Sp t SDP is added. where SDP - SO(P). s' is the transitive closure of s.

b) 6' CS
c) SC' SC U ((PSP))-

EmgL We show. that in has an E-model. ill‘ 0111 has an B-model.
m»  9111: Let (D.SIG.R) be an E-model of m, We show. that the conditions of 3.1.4 i)  are

satisfied. Therefore we construct (D.SIG') as an extension of (0516). Let
sp” - {d | d e sm,” and PDM) is valid). We have sp” ; sD.
Since m has an B—model. there exists some dp e D. such that PD(dp) is valid. We have
SDPD a ß. The conditions of Lemma 3.1.5 are satisfied. if we choose at as the identity on
S. Then UST c '51". and L a L'. We take @516) as the algebra with the same
representation as (D.SIG) on D. SPD as above and cD - dp Now (D316) is embedded in
(DSIG') and 3.1.4 i) is applicable.

QUIZ-+ m, Let (DSlG'Ji') be an B—model for (NI, We define (DSIG) as the restriction of
(DSIG'). Then obviously (D516) is embedded in (0516') and 3.1.4 ii) is applicable. I

W Changing the sort of a constant is sound and complete.
mm: '

m a) 316 c e cs.
b) CS CS contains the clause {Noll
c) SC SC contains (P.Sp) and a triple (SpSeT)

OBI a) 516' (Cg-CSc \ (c). «if-CT u (c)
b) (38' CS
c) SC’ SC

Bunt.
m»  DUI: Let (D.SIG.R) be an B-modei for m, We show. that the ebra (D.SIG) can be

‚considered as an algebra of type SIG‘. It suffices to show. that «5 T”. We have
CD a SPD. since (ESP) 6 SC and obviously CD a SGD. This together with (SP.Sc.T) 5 SC
implies. that cD e TD - SPD n SGD . The conditions of Lemma 3.1.5 are satisfied. if we
choose w as the identity on 8 .  since T s' Sc . Now Lemma 3.1.4 i) gives an B-modei for
mm



QUIZ-° m- Let (D.516'3') be an B-model for OBI, Since T s Sc. (D316) is an algebra of
type 816. The conditions of Lemma 3.1.5 are satisfied. if we choose 3: as the identity
on S. Now Lemma 3.1.4 ii) gives an E-model for m. I

3.2.3 Lemma. The iniroduction of sort relations is sound and complete.
Rum»

m a) $16 '
b) CS CS contains the clause {Pm}. where [I]  - S,.
c) SC (9.31316 SC

0111 a) SIG' S ‘  - S.  but $x s Sp is added and s ‘  is the transitive closure of s.
b) CS' cs
c) SC' SC

REM.
m» QED Let (D5163) be an E-model for m. We show. that the algebra (D516) can be

considered as an algebra of type 516'. Therefore it suffices to show. that SID a SPD.

The conditions of Lemma 3.1.5 are satisfied. if we choose y as the identity on S. hence
W“ s WS'l' .Let d e 3,”. There exists an S—homomorphism cp: WST -+ WST‘. such
that «p: - d. plPlxD- PDM)‘18 valid. since (D5163) is an B~model. hence d e SPD.
Now Lemma 3.1.4 i) gives an E—model for QUI, _

9111 _» 1131: Let (D5163) be an E—model for DUI. Trivialiy. (D516) is an algebra of type
516. The conditions of Lemma 3.1.5 are satisfied. if we choose ul as the identity on S.
Then Lemma 3.1.4 ii) gives an E—model for m. I

im Changing the sort of a variable is sound and complete.
man

111 a) 816
b) CS CS contains the clause C - (-P(x)) u A. where [I] - S].
c) SC (PSp) 5 SC and (5951.1) 6 SG

QUI a) 816‘
b) CS CS‘ - (CS \ {6}) U (C'). where C‘- A and x is replaced by a new variable

y of sort T.
c) SC' SC

Emi.
ma  OLED Let (b.8163) be an B-model for lH, We show. that (D5163) is an B-model for

0111 it  suffices to show. that the changed clause is valid under all S-homomorphisms.
Let p: IST -» D be an S-homomorphlsm. Prom T 5 Sp and T s s, we conclude. that
w s SPD and w a SID. Since WIT is free. there exists an S-homomorphism
ill "T 4 D . IUCh 1111111! " W and ”IV(A) \ ( I ]  '- QIV(A) \ {1} '  "({-Ph” U A)  il Vllid.

since (D5163) is an B-model. but n({-P(x))) is not valid. because as e SPD. Hence still)
must be valid. „(A)  - IMA') implies . that the new clause A‘ is valid under 1:.

0111-. 111: Let (D5163) be an E-model for 0111. Let cp: WST a D be an S-homomorphism.
We deter mine. whether til-13(1)) U A) is valid or not.

CASE qm 1 sp”.
Then o({-P(x))) is true. hence C is valid under 9.

CASE ex 6 SPD.
The triple (S,.Spil'l'18 in SC. hence 91 6 TD. Since W8!“ is free. there exists an
S-homomorphism m UST » D. such that ny -  oz and
1! ”(ANI) ' '” IVIANx}. 11(A') is valid in the Bl-model (D5163). “(X) - MA)
implies . that A' is valid under 1). I



mums. Adding tuples to 50(1) is sound and complete.
Kahlil}

m a) 516
b) CS CS contains the clause C - (P(f(11.....xn)). where [xi] - Si and the

variables xi are pairwise different.
c) SC (P.Sp) e SC

QUI a) SIG‘ SO‘(f) - SO(f) u “Sp-«51159»-
b) C5‘ C5
c) 56 SC

Emi.
m»  0111: Let (D.SIG.R) be an B—model for m, We show. that (D.SIG) can be considered as

an algebra of type 816'. Let di 6 Sin. i - l....‚n . We argue. that fD(d1.....dn) e SPD. Since
“T is free. there exists an 3-homomorphism a: '81’ a D. such that
qui " di  ‚ i  ' j . . . . ‚n .

(D.SIG.R) is an B—model. hence 0P(f(11.....xn)) - PD(fD(d1.....dn)) is valid. Now
fD(d1.....dn) e SPD. since (ESP) e SC. The rest follows with Lemma 3.1.5 and 3.1.4 i).

m»  m: Let (D.SIG’.R') be an E-model for QLL’L Obviously (D.SIG) is embedded in
(D.SlG'). Then Lemma 3.1.4 ii) is applicable. I

W

ln  this paragraph we give only proofs for the nonstandard deletion rules such as
tautology deletion and a special kind of replacement resolution.

im The deletion of a tautology clauses {PM} u A. where (ESP) e SC and
S e 68(t). is sound and complete.
(Rule 002 iii) 2“d case)

RnlsLDDZ. Clause Deletion Rules.
IN a) 516

b) CS CS contains the clause C. which satisfies the following condition:
C - (PM) U A. (ESP) 6 SC and Sp 6 65(t). Le. C is a tautologv.

c) SC '
QDI a) SIG‘

b) CS' CS \ {C}
c) SC' SC

Enact. m—s QED trivial
QUIZ-+ 111: Let (D.SIG.R) be an 3— model for OLE For every S-homomorphism p: 'S'l' » D:

pt 6 SPD. hence PDM) is valid. Thus the whole clause (P(t)) u A is valid under 9 . I

W The rule DD3 (replacement resolution) is sound and complete.
Wt
m a) SIG

b) CS CS contains C - (-P(t)} u A. where Sp e 68(t)
c) SC SC contains (ESP).

QIII a) SlG'
b) CS‘ (CS\ (C)) u (M..
0) SC‘ SC

mm.
m» 0111: Let (D.SIG.R) be an B-model for m. We show. that (D.SIG.R) is an B-model for

0111. Let c: UST a D be an S-homomorphism. Then cc is valid. We have pt e SPD and
hence PD(t) is true. This means c(-P(t)) is false. Thus qm is valid.

OLE-s m: trivial. I
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“S  l IC l l  [SC-ll . II'

In this paragraph we prove. that the rules SCi are sound and complete. The first two
lemmas show. that the representations REPSC . defined in paragraph 2.1. have the

intended meaning.

We. Let (0,816.1!) be an B-model for CS and SC.
Then: (31.....sn} e 1159553) .. 31°  n n snD - sD.

Brno]; We verify the construction of the set REPSC . see Definition 2.1.1. Le. the proof is

by induction.
i) s e 11313545) . Obviously sD - s”.
n) Let {81.....Sj.....Sn}e R9565) and let (31,112.39 I: so We have R,” n az” - SID

and Sin n...n Sin n...n Sun - SD by the induction hypothesis. The replacement of
Sin does not change the right side of the equation. Furthermore. if TOD.T1D are

among the sets to be intersected. and To s T1. then TOD c Tin.  and T in  can be

re moved.
iii) Similar (trivial) arguments show. that case iii) is also correct. I

mm {SI-""Sn} and (Tl....J‘m} be sets of sorts such that
(51.....Sn} ‘SC (Tl....J'm}. Then in every algebra representation. which corresponds to

an E-model we have: SID n n Sun 5 TID n n Tmn.

MWG show S in  n n SnD n T in  n n TmD - SID n 0 San-
By the definition of ‘sc . for every Ti there exists a Si  . such that S- s Tifl‘hat means. I
Sin n T? - SL”. Hence we can add successively the T? to the right side of
SID  n n Sn - 81”  n n Sn” . getting the desired equality. I

um Adding trivial tuples to SC is sound and complete.
W1 Trivial cases.

In a) SIG containsS
b) CS
c) SC contains (T53) or (S.T.S)

ms)  516'
b) (3' cs
c) SC' SC \ {(T.S.S) . (8.139).

m
m.. 0111, Let (b.8163) be a B-model of m, For 81.52 c 8 .512  52

implies. that SID a 52]). hence SID n 82° - 82°.

QUI-r IH, trivial. I

um“ The introduction of sort relations by intersection representations is sound
and complete.
311115.92-

m a) 816 There exist S.T e S and RPS e RBPsclS) and RP]- e REPSCÜ‘) such that
RPS ‘SC RPT and not S s T.

b) CS
c) SC

OUT a) 516' S s T is added to s. s' is the transitive-closure of s.
hi 6' CS ,
c) SC‘ SC
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Ermß '
m.. gm, Let (D.SIG.R) be an E-model of m, Lemma 3.4.2 implies. that s” a TD. Thus

(D.SIG) can be considered as an algebra of type 816'. The rest follows with Lemma
3.1.5 and 3.1.4 i) in a standard way.

Qua m triviaL I

M The application of contraposition is sound and complete.
81111591:

m a) SIG contains 51 s 50
b) (S
c) SC contains the pairs (PSP). (—P.S_p). (0.30). (-03.0). and the triples

(8.5951). (5.5-0.52) .
91.11 a) 516' 82 s S_p is added to s. s’ is the transitive closure of s.

b) (S‘ CS
c) SC' SC

amt.
We apply some rules of the algorithm SOGEN. which we have proved to be sound and
complete. It is allowed to use all rules in two directions.
i) From 51  s SO we can introduce the tautology V161 0(1) ‚(Rule DD2)

((QSQJG SC and Soc 65(1). since s l  s 80)
ii) We replace this clause by the clause V128 P(1) e 0(1) ‚(Rule 3T4)

( (8.5951) 6 SC and (PSP) 5 SC ).
iii) This is the same as V125 -Q(1) =» —P(1). Then application of the rule BH yields the

clause V1282 -P(1). ( (S.S_Q.Sz) 6 SC and (-05.0) 6 SC )
iv) Rule BT3 yields the relation 52 : S_p I

um Adding the intersection of two sorts is sound and complete.
w. '

IN a) SIG 31.5263 and 51  I182 s6.
b) CS
c) SC does not contain (5152.5) nor (52,515).

on: a) SlG‘ ‘S’ - S u (SN). SN is a new sort with SN s' 31° SN { $2. and 3 { SN for all
S e SI n 82. s' is the transitive closure of 5.

b) CS‘ CS
c) SC' SC' - SC U {(SI'SZ'SND'

Rum
111 _» 9111. Let (D5163) be an B-model of m. SIG' is a signature. since 816' is strict. We

construct an algebra (D.SIG‘): Let 5ND - SID n 52°. Then all relations between sorts
and their representing subsets of D satisfy Definition 1.2 ii). (D.SIG.R) is an E-model
for SC'. Now by Lemma 3.1.5 and 3.1.4 i) there exists an E-model for CS' and SC‘.

nur» m, Follows trivially from Lemmas 3.1.5 and 3.1.4 ii) I

Waking 5.9 cycle free is sound and complete.
Rum Deletion of cycles in &;  >.

IN a) SIG There exist sorts SI 5 S.  such that S . T. S s T and T s S.
b) CS
c) SC _

OUT a) 516' <S'.s'> - <Sl~ , {ln->, where ~ is defined as: T ~ S, ilT T $ 8 and T z S .
In SO'(f) and SO'(P) sorts are replaced by their equivalence class.

b) (3' CS. where all sorts are replaced by their equivalence class.
c) SC’ SC. where all sorts are replaced by their equivalence class.
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Ernst. .
m _. QLIL Let (D5163) be an E-model if m, The relation ~ is an equivalence relation. Let

u: 8 » Sl~ be the canonical mapping. For Sl ~ Szwe have SID - 82D. Lemma 3.1.5
and Definition 3.1.2 together imply. that (D.SIG.R) is embedded in an algebra
(D.SIG'.R). An B-model of Qflcan be derived from Lemma 3.1.4 i).

QUIZ-» m. Let (D.SIG'‚R) be an B-model if QUE The same arguments as above yield an
Remodel of m,

3511 ll . lI' [ 50 ' s  I II: II (BI SQ']

Mm To make 1 polymorphic is sound and complete.
(Rule 501)

mm Making f a polymorphic funtion.
m a) SIG <85) is cycle free. (sf_1.....sf‚ml) is the greatest element of SO“). The

following condition is satisfied:
For every (51""'Sn+1) . (T1.....Tn+1) e 50(1'):
(V i- 1.....n Si H Ti s ß) » ((V i- 1.....n Si A Ti is unique) and there

exists a sort Rn+l .such that 5nd 2 Rn+1 .
Tm! 2 Rn” and (51‘T1--- - -5n*Tn-Rn+1 ) € 50m.)

b) CS
c) SC

cm a) 516‘ where 80'(f) -
f Isissm.fori-1.... .n and ]
((81,...Sn,1) ls,“ is the least element of the set: }

b) 08‘ CS
c) SC’ SC

m
m» QB]; Let (0.8163) be an B-model of m,

i) We show. that the definition of $0'(f) makes sense: .
Let Si. 1 S i S n. be fixed. Si $ Su .Let M35 " {SI (51.....Sn.5) € 50“). Si $ Si . 1 S i S n}.

Assume. that M88 contains two distinct minimal elements MSI and M52. Let
(T1.....Tn.M51) and (T1 '.....Tn'.M82) be (existing) (n+1) - tuples in SO“) with Ti 2 Si
and Ti' z Si. The condition of Rule 801 implies. (obviously Ti n Ti' . H ) that there
exists a sort M53 such that M51 2 M33 and M32 2 M83 and

Wlan}...  TnATn'.MS3) e 50(f). Since <S.s> is cycle free and M31 and M52 are
minimal. Ms1 - M82 - M83.

ii) We show. that the defined $0'(f) satisfies the conditions for a polymorphic
function:
Let (81.....Sm1) e SO'(f) and let (T1.....Tn) e S“. such that (T1.....'l‘n) s (Sl----°sn)- If a
Tn+1 exists . such that (T1.....Tn,1)e SO“). then Tn+1 is unique (by the definition of
80'(f)). In order to show. that such a Tn” exists. is suffices to show. that the set
MSS above is not empty. But the maximal range-sort of i‘ is always in M55.

iii) (D516) can be considered as an algebra of type SIG'.
Let ai e s,” ‚1 s i s n and let (81'....,sn,1') e 3011'). Then fD(d1.....dn) e s” for all
s e (SI (s,..„snm s som. si s s{. 1 s i s n}. Thus fD(d1.....dn) e sm“.

iv) Now Lemma 3.1.5 can be applied in both directions. where u is the identity. since
the condition 3.1.5 vi) is satisfied with Si - Si' .1 s i s n for the direction S -r S',
and in the other direction 8' - $.  the tuple in 80“) ‚which has the minimal
element as range—sort is the desired one. Hence '8'! - '81” and (0.516) is
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embedded in (D‚SIG'). Now Lemma 3.1.4 i) shows. that an E-model of mg: exists.
QUIZ-° IN. We show only, that (D516) is embedded in an algebra (D,SIG')‚ the other

arguments are the same as above. Let (SIP-~5m1)E  SO(f) and let di  e SP ‚15. i sn.
By the definition of SO'(f), there exists a Sn+1 '  .<. Sn+1 with (Sp.... $11,511” ') e SO‘(f) .
Hence fD(d1,...,dn) e Sml'D ; Sn+1D . I

Wm; The introduction of intersections of range sorts is sound and complete.

8.111159% .
m a) SIG (S i r -"511% ). (Tl....‚Tml ) e SO(f ) and Si n Ti $ 6 for i= l,...‚n

sn+1" 'Tn-r1"g‘

b) CS
c) SC

911]: a) SIG' S" = S u {SN}, where SN is a new sort. c is a new constant of sort SN.
5N s Sn+1  and SN 5 Tn+1  is added. s' is the transitive closure of 5.

b) C8’ C5
c) SC” SC

Emi;
ill-+ gm: Let (D,SIG‚R) be an E-model for 1L1. We construct (D.SlG'), such that (D,SIG) is

embedded in (D‚SIG').= Let SND - Sn+lD n Tn+1D°  There exist di  e SiD n TiD . 1 s i s n.

Then fD(d1,...‚dn) e SND. We define cD - fD(d1....‚dn). By Lemma 3.1.5 we have

WST ; WST‘ and (D.SIG) is embedded in (D.SlG'). The rest follows with Lemma
3.1.4 i).

QQI -+ 11;! Let (D.SlG'.R) be an E—model for QUI. Obviously (D‚SIG) is embedded in
(D.SIG‘). The rest follows with Lemma 3.1.4.ii). I

W Adding a tuple of intersection sorts is sound and complete.
Rule 503:

IN a )  $16 (S i r -"Sm” , (51'.....Sn+1')e SO(f ) and (T1,...,Tn+1)¢ 80(1‘ )

b )  CS
c)  SC (Si‚Si'‚Ti)eSC for i = l,...‚n+1

OUT a)  516’ SO'(f)-  SO(f)u{(T1.....Tn+1)}.

b )  C5' C5
0) SC' SC

BLQOL
m» 0111: Let (D,SIG.R) be an E—model for m. We show. that (D516) is embedded in

(D.SIG‘).: Let di  e Tin , 1 s i s n. Then di  e SID and di  e SifD , 1 s i s 11. Hence

IDM, ..... an) e 3n+1D n Sml'n - Tmln . By Lemma 3.1.5 we have UST : VST'. The
rest follows with Lemma 3.1.4 i).

QflI—r 111. trivial I

3.5.4 Lemma. SO(f)-restriction is sound and complete. (Rule 504)
Proof; Follows immediately from Lemma 3.1.5 and 3.1.4. I

3.5.5 Lemma. SO(P)—restriction is sound and complete. (Rule SOS)
Egg); Follows immediately from Lemma 3.1.5 and‘3.1.4. I

e cin SC.

In this paragraph it is proved, that the reformulation of conditions, which stem from
SC, is sound and complete, and that under certain preconditions, these (undesired)
clauses are not needed.

31.6.1 Lemma. Rule RSCl is sound and complete.
mg trivial.
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Mama. Deleting (P.5p) is sound and complete, if S_p is not generated.

Ml
111 a) SIG .

b) CS neither P nor -P occurs in CS.
c) SC contains (ESP). but no pair (-P,S_p)

01.11 a) SIG' P is removed from SIG.
b)  CS' CS
c) so so - sc \ {(PSP)}.

1.31mi.-
m -> 0113 trivial.
QLLI -+ 1131- Let (D.SlG.R') be  an E—model for M. We change the relation PD of R' in the

following way: Pnld) should be valid .iff d e SPD. Then the resulting (D.SlG.R) is an
E— model for LN, since the predicate P does not occur in clauses of CS and the
constraint defined by (ESP) e SC is satisfied. I

im Deleting (ESP) and (-P‚S_p) from SC and adding the appropriate clause is
sound and complete.

W-
LN a) SIG

b) CS neither P nor -P occurs in CS.
c) SC contains (ESP) and ( -P‚S_p)

91.1]: a) 516' P is removed from 816. Two new functions f+ and f_ are added to IP.

With SOlP) = SDP' the (not polymorphic ) functions have SDP as their
domain and Sp and S_p as their range respectively.

b) CS‘ CS u{{Vz=Sp‚ y=S_P x as y}} u ({Vx=SDp. x a U! )  v x = f ‚um.
0) SC" SC' - SC \ {(PSP) (—P‚S_p) }.

@
LL! _, mil: Let (D.SlG.R) be an E-— model for m. _

We define an E-model for 9111. Let the algebra (0516') have the same
representation as (D.SIG). We have to define the representation of f+ and f _= Let
d-P e S_pD and let dp 6 SPD be fixed. f+(d) === d. if d 6 SP and f+(d) == dp, if d e S_p.
f_(d) ==- d. if d e 5—P and f_(d) == d-P '  if d e Sp.We define R' to he R where the

relation PD is removed. Our task i s  to show. that (D.SlG.R') i s  an E-model for QUI.
Let q): WST -—> D be an S-homomorphism.

l t  suffices to show. that the new clauses are valid in the model.
(9(1 at y) is valid: Assume. that cpl! III y) is not valid. Then qm - my a d. where

d e SPD n S_pD . But this is impossible. since either PDM) i s  valid or —PD(d) i s

valid (equivalently PDM) is not valid) in (D.SlG.R).
QII f„(x) & x v U!)  a x ) is valid: Let cpx = (!i then d e SDPD and either PDM) or —PD(d)

is valid, hence either d 6 SPD or d e S_ D.  Thus either d = f+(d)  or d = f „(d). This
means, that <p( fJ ! )  = I v f_(x) = x ) is valid.

on: » m: Let (D.SlG.R‘) be an E-model for 9111;. We define an E-model (0,510.11) rot m.
Let R =- R' U {PD}. and let PDld) be valid. iff d e Sp. It suffices to show, that the
constraints (PSP) and (P‚S_p) are satisifed in (D.SlG.R). We have

{d I -PD(d) is valid) - sm,D \ sp“. From the clause x e y we get that spD n s__,;.D - o,
and from the clause Us )  a x v Li ! )  a x we get, that-S D uS_pD = SDPD .p
Thus {a I -PD(d) is valid} asp”.
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W Deleting (P.5p) and (—P‚S_p) is sound and complete in a special case.

W= _
m a) SIG P e 1?. SO(P) - SDP- For every ground term t:

SDP E GS“) => Sp E GS“)  V S_p  € GS“)

b) CS neither P nor -P occurs in CS. CS contains an equality literal
c) SC contains (PSP) and (—P‚S_p)

QUI a) 516‘ P is removed from SIG.
b) CS‘ CS u {{Vx=Sp, y=S_p x at vl}
C) so sc \ {(Psp) (-P.s_p)}.

ML
m» Qui: see the proof of the lemma above.
9111 » 111: Let (D,SIG'‚R') be an E-model for QUI. We can assume, that D is the image of

VSTgr (under every S-homomorphism). The condition for ground terms t imply

that SDPD - SPD u S_pD. From the clause 1 t y we get that SpD n S_pD - 6.  Now it is
easy to construct an E—model for IN. I

We give an example. that the unrestricted deletion of (P513) and (-P.S_p) from SC may
be faulty:

mm Let the unsatisfiable clause set be:
{—P(x) ()(: x) }; ( 13 (1 ) l  1)}; l -Qla a) } : {P(c) }. {-P(d) }.
A derivation of the empty clause i s  possible.

The clause set after the transformation is:
{1:31; ()(: x) L {1=S_p 0(1 x) }. { -0 (a  a) }

Il‘ (PSP) and (-P‚S_p) are deleted from SC, then this clause set does not allow a
derivation of the empty clause: all clauses are pure and the clause set is satisfiable.
This example may also serve as an example. that the usage of the union of sorts may
lead to undesired effects:
In the above clause set the information, that Sp u 5-P  - T makes the clause set

unsatisfiable, since then the constant a is either of sort Sp or of sort S_p. But all the

clauses remain pure in the sense of complementary unifiability. Hence the purity
reduction rule is not correct in this case.

M Deleting (PSP) and (——P‚S_p) is sound and complete in a special case.

31.119.35.91:
m a) SIG P e 1P.SO(P) == SDP- For every ground term t:

SDP G GS“)  =D (Sp  E GS“)  !="? S _ p (  GS“ )  ) .

b) CS neither P nor -—P occurs in CS. CS contains no equality literal
c) SC contains (PSP) and ( -P‚S_p)

_OJIL a) 516' Pis removed from SIG.
b) CS’ CS
c) SC' SC \ {(PSP) (—P‚S_p)}.

ErneL
m -» mil: trivial.
QUE-v 111: Let (D‚SIG'‚R') be an E— model for QLL'L We can assume. that D is the image of

WSTillr (under every S-homomorphism). The condition for ground terms t imply
that SDPD = SPD u S_pD and that SPD n S_PD - ß.  Now it i s  easy to construct an

15- model for .t I

27



im Deleting intersection information from SC is sound and complete provided
the appropriate clauses are added.

W-
m a) SIG

b) CS
c) SC contains (31,521), where 51 e T . 32 t T and SIASZ = T

QLLI a) 510' A new (skolem) function g is added to SIG where g has domain-sort
$1 and range-sort T and (3.8) e 30(3) for all S 5 T

b) CS' CS u {{Vx=51.y=82 ‚1 $ y v g(x) & x)}
c) so sc\{(sl‚sz‚T)‚(sz‚sl‚T)}.

BMI;
1H -> m: Let (D.SIG.R) be  an E—model for m. We construct an E-model for gm. We

define 3%” =- d for every d e TD. For dl  e SID and d2 e 82D either dl  1: d2 or
dl  - d2 and dl e TD. For both possibilities. the new clause is valid. Hence there exists
an E- model for QUI.

QLlI—ä m: We show only. that SID n 32D - TD. Obviously SID n 52D 9 TD.

Let d e SID n 52D. Then d e d is false. hence d - g(d) i s  true. But this means d e TD .

ML Deleting intersection information from SC is sound and complete in a
special case.

W.
111 a) SIG

b) CS 3 occurs only in unit-clauses. For every triple (S.T.S') and for every
literal s a: t. which follows semantically ( != ) from the equality clauses in
CS. where S e GS(s) and T c GSlt) hold. there exists a term tR . such that

S' e GS(t5?) and s = ‘S' follows semantically from the equality clauses in
CS.

c) SC For every triple (51.82.53) 5 50 51‘52  - S3
QUI a) SIG' SIG

b) CS' CS
c) SC‘ SC \ {all triples in SCI.

Ermf.
int-+0111: trivial.
0111-» 111: Let (D.SIG'.R') be an E-model for DEL Then we can assume. that

D - WSTEI. / ~ . where ~ is the congruence relation on terms defined by the

unit-equalities of CS. We show. that SID n 52D == 839 for every triple (31.52.53) e SC.

Let d e SID n 82D. Then d ID d is valid. There exist t1.t2 e UST”, such that
S ]  e GShl ). 82 e GS(t2) and t1 ~ tz. The condition of RSC7 implies. that there exist

a term t3 of sort S3 - 51 A 52 and t3 ~ t2. Hence 13D - d e 53D. I
W The creation of intersection of sorts may be incomplete. if this

information is not coded in clauses. We give an unsorted contradictory clause set and
transform it in a sorted one. which is satisfiable. if the intersection clause is missing.
The clause set is:
M1111 ))i B(g(12))I f(a) Hub) ;  A(x3) A 3(13) =; -P(x3‚x3). P(f(a)‚ flan; Mc); B(c).
The empty clause is deducable. since A(f(a)) and B(f(a)) are deducable. and hence
—P(f(a). f(a)) is deducable.
After the transformation. we have the sort structure 8 - {T.SA.SB.SC] with SA a SC

and SB 2 Sc. The signature contains the information: 1‘: 'r » SA. 9: 'r —+ $3. c=Ci am b='r
The clauses are:
[(a) Iglb). 43014.14) (where 148€). PIfIa), f(a)).
Paramodulaticn into —P(x4‚x4) is not possible. since the x4  i s  not unifiable with f (a)

or glb). Paramodulaticn into the third clause is possible. the first argument of all
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paramodulants is either f(a) or g(b).The empty clause is not deducable. since
-P(x4.14) and P(f(a)....) respectively Plglb)....) are not uniliable. The reason for this
incompleteness is. that SCD is not forced to be identical with SAD n 531) in an
E-model. If we add the clause V1=SA.y:SB x l y v M!) n x . where h=SA -» SC is a
new function. then a deduction of the empty clause is possible. since we can deduce
h(f(a)) II flu) and P(h(l‘(a)). hlllam. The latter is unifiable with —P(x4.x4).

Wists.

M. The rules AC1. AC2 and AC3 are sound and complete.
Emi; These rules are correct. since the clauses. which are added. are tautologies and

hence true in every E- model. I

mm Splitting a clause into two is sound and complete.
MM '

m a) SIG SO(P) =- SDP

b) CS CS contains a clause C, such that there exists an x 5 WC). with
[ I ]  " 3 $ SDP.

c) SC contains (P.3p). (-P‚S_p). (5.5951). (S‚S_p‚82).
91.11 a)  516' 816

b)  CS' CS \ {C} u {C1, C2}. where Ci is the clause C. but the variable x is

replaced by xi: Si -

c) SC' SC
m
m» 0111:. trivial. since the clauses Ci are instances of the clause C.

91.11 —+ m. Let (D.SIG.R) be an E- model of 9111 Let cp=WST -+ D be an S-homomorphism.
Then (PI e SID or tpx e 52D‚ since either PDQ?!) is valid or -PD(cpx) is valid. We assume
w.l.o.g.. that (px e SID. Then an S-homomorphism cpl: WST -+ D exists with
q’ lV(C)"‘ | ’1 lV(C)  and ‘?!" (9111-  We have @C- ¢1C1.hence cpC is valid.-

Wule  E01 is sound and complete.
81.119.201,

m a) 816
b) C8 C8 contains a clause {sat}. S e GS(s)‚ T e GSlt) and S n T - fl
c) SC

0111 a) SIG‘ S“ - S 0 {SN}. _SN is a new sort symbol. c is a new constant of sort 5N-

SN 1 S and SN & T is added. . s' is the transitive closure of s.
b) (35‘ CS
c) SC‘ SC u [(S‚T‚SN)}.

ELQQL
m—» 0111', Let (D.SIG.R) be an E-model of m . The nontrivial part is to show. that

SD n TD : 6.  For every S-homomorphism q): UST - D . we have as =- cpt . hence
95 e SD n TD - 3ND.

DEE-9 m. trivial. I

W Rule 1302 is sound and complete.
Rum
1N. a) SIG contains a constant c of sort 5c-

b) CS CS contains a clause {c I t]. St  e GS(t).
c) SC contains (5081.361).
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91.11 a) SIG‘ the sort of c is changed into Set—

b) CS' cs
c) SC' SC

Erect.
111» pm. Let (D,SIG,R) be an E-model of im We have c9 6 Sci) n SID . saß.
gm: _. m. trivial.-

Mm Rule E03 is sound and complete.
133119.591

IN a) SIG
b) CS CS contains a clause {1 = t}, T e GS(t). and x is a variable of sort S.
c) SC

QLII a) SIG' S s T is added. s '  is the transitive closure of s .
b) CS' CS
c) SC' SC

122%
m» gm. Let (D.SIG‚R) be  an E-model of m. For every (1 e SD there exists an

S-homomorphism cp: VST —+ D , such that (px - d. We have d - (pt , hence d e TD. We
conclude SD : TD.

QUI _» Hi- trivial]

W Rule 1304 is sound and complete.
Mami

111 a)  SIG (51 - - - - -Sn+1)  e SO(f )

b) CS CS contains a clause {f(11‚...‚xn) = t). T e GS(t). and the xi are distinct
variables of sort 5i-

c) SC contains (Sn+1,T,S')
pm: a) SIG' som = somu ((51,....sn.5')}.

b) CS‘ CS
c) SC' SC

ELOQL
m -» DUI, Let (D.SIG.R) be an E-model of m, For every di  6 Sin there exists an

S-homomorphism cp: '“ —» D . such that qui - di '  tp(l(11,...,xn) u t) is valid. hence
fD(d1,....dn) e SMD n TD - s").

QUIZ—» m. trivial. I

391} . .  E l  E CI 5 ' ! ! !  E | .  Ill

mamma

W. Rule UCI is sound and complete.
BMLUQL

in a) SIG SO(P) - SDP-

b) C5 C3 contains a literal 1P(g(t))
c) SC

Qui a) SIG' P8 is a new predicate with 80(P8) - (T).
b) CS' CS" u “V’i‘si -P(g(xi)) v Pguim u {{i=Si P(s(xi)) v -P8(xi)}} for all i.

where {Sp-"5:13 = MAX${T1I (T1‚T2) 6 50(3) .TsDp}.
CS“ is the clause set CS, where all literals of the form 1P(g ( t ) )  are
replaced by the 1P8“).

c) SC‘ SC
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Proof.
lH -+ QUI; Let (D.SIG.R) be an E-model of LN, Note that the new clauses are well-sorted.

For d e D. let Paid) be valid. iff PD(gD(d)) is valid. We have constructed an E—model of
GUI-.

£11.11 a IN, The added clauses guarantee. that Pgld) is valid. iff PD(3D(d)) is valid. The rest
i s  trivial;

M For a clause set ,  where  all predicates and functions are unary  (no  equali t iy
literals are allowed). there exists  a sequence of applications of rules  of SOGEN. such
that a set { (SlGi‚CSi‚SCi)‚ i-1‚...‚n }(i.e. splitparts) is produced and CSi - @ for all i. The
initial clause set is  contradictory. iff all elements of this se ts  are contradictory.

Eroolj. With  rule UCI, i t  is possible to transform the clause set ,  until  all clauses with an
occurrence of a function are among the clauses, which are  added  by UC1. By case
analysis ( rule  AC1), for every unary predicate we can introduce sorts. Obviously, all
c lauses  are deleted and coded into the signature and SC. Now the rules  (AC3 + BT).
SOLSCi, and MS have to be applied until the rule AC3 is not applicable and the
signature is polymorphic. Then Lemma 3.10.1 is applicable. I

3IUI  . . ESCQEIL

mm SIG be  a polymorphic signature. Let CS be  the empty clause set .  Then
an E—model for CS‚SC exists , iff for every two pairs (ESP). ( —P.S_p) e SC and all sorts
558 :  5 55pm -(S s S_p).

Em. "=>": The only—if part  is trivial.
"=“: Let the conditions above be  satisfied. We have to construct an  E— model for SlG‚CS‚

SC. Let SIMS11 be the minimal sorts of $.Let D =- {S i  I i=1‚...‚n} where all Si  are

different elements. We define the algebra (D516):
SiD == {s i} .  If c is a constant of sort Sc, then we choose a minimal sort Sk  5 SC. and
define CD =- sk. For a function f and (Tl....‚Tml ) e 50(f). such that the Ti  are
minimal sorts, we choose an element dn+ l  e D with dn+ l  e 5n+1D°  For the unique
elements d i  e 811) we define fD(d1‚...‚dn) - dn+ l '  With these definitions (D.SIG) is an
algebra of type SIG. since SIG is polymorphic.
We have SD = L J TD .

TsS, 3 minimal
This implies that all intersection restrictions are satisfied. The pairs (ESP). (—P‚S_P)

are equivalent with SPD n S_pD - @ and SPD U S_pD = SDPD. where SOlP) == SDP- But
since for all sorts S '  s SDP we have 5 '  5 Sp or S‘ s S_p . these conditions are

satisfied. I

mom-n  arbitrary SIG and SC, the ru les  MS].  SCI. SC2 and 801 can be
applied only finitely many times, provided the rules M81 and SC2 have an higher
priority than 5C4. The resulting <S'.s'> has the following pr0perties=
i )  For a1151‚52 e 8 :31  n 52¢  ß implies‚ that there exists a S3  e 8 .  such

that (81.82.83) e SC and that 5 $ S3 for all 5 e 51 n 82. Le either

31 A 52 exists and equals 51  n 52 or 51  n 52-  @.

ii) (3353 is cycle-free.
M The Rule MSI does not increase an intersection base  BASESC. The same  holds for

the ru le  5C4. Now the number  of possible equivalence classes (with respect to ”SC) is

finite. Since any relation “SC or 55C is immediate ly  transformed in a relation

between sorts,  and «— is immediately factored out ,  the application of the Rule 5C4 is
possible only once for every combination REPI, REPZ of subsets of BASESC. The
number  of such combinations is finite, hence 8C4 can be  applied only finitely many
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times. But then M51 and 5C2 are trivially applicable only finitely many times. I

The next lemma shows, that a certain combination of rules terminates and that the
resulting signature is polymorphic.

1W- For any imput JH . we can apply the rules SC1.SC2,SC3.SC4. MSI,
501,502,503 only finitely many times. provided the rules have the priority: $02.
SO3‚SC1‚SC2‚ MSI, SC3, SC4, 801 .  The resulting signature is a polymorphic one and
the sort structure <S.s> is asemilattice.

Emi.
No one of the rules mentioned above increases BASESC. The same arguments as in

3.10.2 show. that the rules 502, $03, 5C1. 5C2, MSI, SC3, SC4 can be applied only
finitely many times. We show, that after termination of these rules:

i)

ii)

(8 ,9  is  a semilattice,
the precondition of $01 is satisfied.
rule 501 makes 50(1”) polymorphic for every f .
That <§.s> is a se milattice is trivial. since for every R.S e 3:
if R n S 1: fl. then R A S i s  defined and (R.S.R A S) 6 SC.
(8.9 is cycle free, since the rule M81 is not applicable.
For Si  'Ti with Si  n Ti  * 6,  the element 51A Ti  is defined and unique. since

otherwise either 5C4 or M51 fires.
The rule 802 does not fire. hence for two tuples (81.....Sm1) and
(T1,....Tn+1) e SO“): Si  n Ti =: Z, i-l....‚n .we have 5n+1  n Tn+1  =: 6.
The rule 803 then yields a R such that (31AT1,..., S AT Rn+1)e SOll‘).n+1' n n'

iii) Let (51,...,Sn+1)e 50(f ) and let (Thu-Ta) s (SI....,Sn). Then there exists a Tn+1 .
such that (T1,....Tn+1) e 80(1’) and Tn+1 s 5n+1-  since Sn+l  is the minimal element
of a set MS and Tn” of MT. and obviously MS 9; MT- I
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The reduction rule given here is a very complex one. It does not directly reduce the
search space of a problem, but is able to detect some hidden sort—information. With this
reduction rule. the results in Example 5 .4  are the same in i)  and ii). This means. that the
sort-generation becomes stronger. Unfortunately, this reduction rule can not be
transformed into deductions.

„man CS be a clause set, f e IP be a (fixed) function.
Let the following conditions be satisfied:

i) C1.....Ck are exactly the clauses with an occurenoe of f.
ii) Ci - CLO u Ci!  ‚where cm is the f ~free part of Ci and CiI are the literals of Ci with

an occurenoe of f.
iii) C1 _f - {P(t1,....tm)}. every subterm of C1 .f starting with f is identical

with f(x1....,xn). where the xi's are distinct variables of maximal sort
[xl ]  - SLi' i.e. (81.1.....Sx.n.[f(x1,....xn)l) is the greatest element of SO“).

iv) V(C1 ‚f) = {x1....,xn)
v)  For every subterm ti - “51 Msn)  of C” . there exists a Z-substitution A with

DOM“) ; V(C1) \ (xl....‚xn} and l-{xi «- si ! i-1‚...‚n }Cm  ; Cm.
vi) There exists a unit clause P(r1.....rm) in CS, such that 1’ C1 ‚f, = P(r1‚...‚rm) . where

C1 ‚f, is constructed from C1 ‚f by replacing all terms f(x1....,xn) by a (new) variable
yo of sort Sf . the maximal range sort of f. The matcher I should have the
pr0perties that t l lxt . . . . .xn)  is a variable renaming and DOMlt) : {x1.....xn.y0}

vii) There exists a unique minimal range sort Sf.min of f such that [tyol  $ Sf min
( 1' is the substitution of vi) )

Ihm we can replace C1.  0 by any subset of Cl  0 without loosing soundness and
completeness.

Ernst.
Let CS" be  the clause set after re moving literals from C1 0 .  We show. that CS has an

E-model, iff CS" has an E— model:
The one direction is trivial.
We prove, that CS’“ is satisfiable, provided CS is satisfiable:
Let (D,SIG,R) be an E- model for CS.
We construct an E- model of CS":

[ I di  e S! in. For every S -homomorphism cp: WST -> D. 1
Let N = {(d1‚...‚dn) | with cpxi = di -  «pc, 0 is valid in (D.SIG.R). }

l I J
We define an algebra E of type SIG with F. = D, but the representation is different:
Sorts: SE = SD for all S e S .
Constants: cE = CD for all e e C.
Functions: For g s f , let gD - 35.

For (d1....,dn) e N: We define fD(d1,...‚dn) = fE(d1,...,dn).
For (d1.....dn) 4 N: Since '1 (see vi) is a variable renaming on the set

(11, „xn} there exists an S -homomorphism ¢Dd1,...da‘ WST -> D. such
that d1“  dn—T x l=d i

We define rE(d1‚...dn)—Dq>(„_ “dnhyoi.
The condition vii) now guarantees, that E is an algebra of type SIG, since the mapping
properties of fE are satisfied.
The set of relations R is not changed.
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There is a 1-1 correspondence between S—homomorphisms w.r.t. E and S-homo-
morphisms w.r.t D. D corresponds to WE. iff they are equal on all variables.
Obviously wElL) = u: (L) for every literal, which does not contain the function symbol
"f".

Now we show. that (E‚SIG.R) is an E— model of (25“:
Let o5: VST —+ E be an S-homomorphism and let (pEIi . di“.

a) The changes do not affect the clauses in CS \ (CI.....Cm). hence they are true under all

S-homomorphisms (ps: WST » B.
b) The clause (21" is true in (E,SIG‚R)=

CASE (d1....,dn) ( N. Then an S-homomorphism BD: WST _, D exists, such that
BDxi - txi. Hence by construction of N. there exists an S-homomorphism

WD: UST —> D. such that tunicm) is not valid. But then wDCI I is true. because
(D.SIG.R) is an B-model. From the conditions iii) iv) and the definition of fE it
follows. that „Pc, .f = cpECI ‚f . hence qJEC1 ‚f is valid in (E.SIG‚R).

CASE (d1....,dn) e N. We denote by cpdE= 'ST _. E the S-homomorphism, which is
identical with °Da1....a„='3'f a D on all variables.
We have cpEüi) - cpdE-flxi) - di and
qJEf(xl,.„1n) "

- fE(d1....dn) (definition of an S-homomorphism)
- (d 1Mdnuzyo) (definition of r5 and (d1....dn) e N )
. (pEdh‘yo) ( wo is f—free)
Hence we have:

‘PF’CI ‚f "
„ (p5d .1 (c1 I ‘ )  v ( oE(f(xi....xn)) = cpEdoflyo) and cpEUi) = tpdE-f (xi) )
. 93 d(Ph-1  ,....rm)) (see condition vi) )
- ‘PDdt....dn (Php-„Im” ( P(r1....‚rm) does not contain f ).
This shows. that C1 ‚f is valid in (E.SIG.R) under mE.

iii) Ci is true in (E,SIG,R) for j z 2:
gm For every subterm l‘(s1....sn) of C”— we have ( ‘ I ’Es l " " '  

@Esn)  4 N.:

Then for the corresponding S—homomorphism (pl): UST —» D
( €p = (9151 for all variables x) we have (|)c =- cpECl-‚ since

{E (tpEs1,.... oEsn) = [Dv(cpEsl‚..., oEsn). Hence Ci is true in (E.SIG.R).

% A subterm f(s1....sn) of C“— exists such that (cpEsl....‚ cpEsn) e N.
Let 6 -{x1 +- si‚ i-1,...n 1.6 is an S~substitution. From condition v),
we have that there exists an S-substitution A with be C1 0 ; Ci 

0 .

The following equalities hold:
cp A-o xi =

"DE)—Si (o xi=si)
- «93 si (Dom 1) nV(si) - a ).
Now ofil loo C1 0 )  is valid, since (q)E loo XP.... (pl-31.6 xn) e N ‚cpE be is an
S-homomorphism (= on be on (31.0) and CLO is f—free. Hence cpE (Cm) is also
true. I
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LEW

In this section some examples are given. which demonstrate the power of SOGEN=

Whitman [Wa84]
The problem of Schubert reads as follows:

Wolves. foxes. birds. caterpillars. and snails are animals. Grains are plants. There exist
wolves. foxes. birds. caterpillars. snails. and grains.
Every animal eats all plants or any smaller animals that eat some plants.
Birds are smaller than foxes which in turn are smaller than wolves. Wolves do not eat
foxes or grains. Birds eat caterpillars. but no snails. Caterpillars and snails eat some
plants.
The theorem to prove is:

There is a grain eating animal that i s  eaten by another animal.

Here i s  a axiomatization in first order predicate logic (without sorts):

WOLF (x) =9 ANIMAL (1 ) ;
FOX (1) =9 ANIMAL (1):
BIRD (1)  =9 ANIMAL ( I ) :
CATERPILLAR (x) =9 ANIMAL ( I )  s
SNAIL(1) =9 ANIMAL (1);
GRAIN (1) => PLANT (1);
WOLF (LUPO) A FOX (FOXY) A BIRD (TWEEDY) A CATERPILLAR (MAGGIE)

A SNAIL(SLIMEY) A GRAINlSTALKY) ;

Vw= ANIMALIw) =9 ((Vx PLANT (1) = EATS (w 1)) v
((Vy= ANIMAL(y) A SMALLER (y w) A (37.: PLANT (z) A EATS(y z)”

=9 EATS (W Y)) =

CATERPILLAR ( I )  A BIRD (Y) =9 SMALLER (x Y);
SNAIL (x) A BIRD (y)  => SMALLER (I  y);
BIRD ( I )  A FOX (Y) =9 SMALLER (I  Y);
FOX (1) A WOLF (y) => SMALLER (1 y) ;
WOLF (1) A FOX (Y) =9 1 EATS(1 Y);
WOLF (1) A GRAIN (y) =9 1 EATS(1 y);
BIRD (1) A CATERPILLAR (Y) =9 EATS“ Y);
BIRD (I) A SNAIL (Y) ==> '1 EATSlI Y);

CATERPILLAR (1) =9 (Ey: PLANT (Y) A EATS ( I  y));
SNAIL (1) =9 (By: PLANT (y) A EATS (1 y));

-1 EATS (1 x);
ANIMAL (1) == 1 PLANT (1) ;

Theorem:
31y: ANIMAL (1) A ANIMAL (y) A EATS (I Y) A (VZ GRAIN (z) =“ EATS ('y' 2)

Normalization and skole mization yields the clauses:
A11 —WOLF (1). ANIMAL (1);
A12 -FOX (1). ANIMAL (1) .
A13 -BIRD (1). ANIMAL (1) :
A14 -CATERPILLAR (1). ANIMAL (1) 1
A15 -SNAIL (1). ANIMAL (1) ;
A16 —GRAIN (1), PLANT (1) ;
A17 WOLF(LUPO) ;
A18 FOX(FOXY) ;
A19 BIRD (TWEEDY).
A110 CATERPILLAR (MAGGIE) ;
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Ax'll SNAIL (SLIMEY);
A112 GRAIN (STALKY);
A113 -ANIMAL(\V). -PLANT(1), EATS(W 1) .  -ANIMAL(Y). -SMALLER(Y W).

-PLANT (z). -EATS(y z). EATS(w y) ;
A114 -CATERPILLAR (1). -BIRD (Y). SMALLER(1 Y) ;
A115 -SNAIL(1). -BIRD(y), SMALLER (1 y) ;
A116 ~BIRD (1). —FOX(y). SMALLER(1 y) ;
A117 —FOX(1). -WOLF(y), SMALLER(1 y) ;
A118 -WOLF(1). -FOX(y). -EATS(1 y ) ;
A119 -WOLF(1). -GRAIN(y). -BATS(1 y) ;
A120 -BIRD(1). -CATBRPILLAR(Y). BATS(1 Y) ;
A121 -BIRD(1). -SNAIL(Y). -EATS(1 y) ;
A122 -CATBRPILLAR(1). PLANT(11(1)) u
A123 -CATERPILLAR(1), EATS(1 qm}.
A124 -SNAIL(1), PLANT(IZ(1)) ;
A125 ~SNAIL(1). £11511 12(1));
A126 ANIMAL(1). PLANT(1) ;
A127 —ANIMAL(1), -PLANT(1).
A128 —EATS (1 x ) .

Thl  -ANIMAL(1), -ANIMAL(Y). -EATS(1 Y). GRAIN(1'3(Y 1 ) )  ;
Th2 ~ANIMAL(1). -ANIMAL(y). -EATS(1 y). -EATS(y f3(y 1)) ;

The Automated Theorem Prover(ATP) MKRP [KM84] has found a contradiction after 55
resolution s teps.  This proof uses only unit-resolution s teps  and was actually found by
the Ter minator—module [A083].

This clause set was transformed by SOGEN into i t ' s  sorted version. The resulting
signature and clauses are:
Sorts: T 2 S+ANIMAL, S+PLANT,

S+ANIMAL 2 S+WOLF, S+FOX, S+BIRD, S+CATERPILLAR, S+SNA1L
S+PLANT 2 S+GRAIN

Constants: LUPO: S+WOLF; FOXY= S+FOX; TWEEDY: S+BlRD;
MAGGIE: S+CATERPILLAR; SLIMEY: S+SNAIL; STALKY= S+GRA1N.

Functions: f 1 :  S+CATERP1LLAR —> S+PLANT
tz: S+SNA1L _, S+PLANT
r3= S+ANIMAL x S+ANIMAL _. S+GRAIN.

Clauses:
1C1 (A128) 1:1' —EATS(1 1 )
1C2 (A123) 1:S+CATERPILLAR +EATS(1 I lm}
IC3 (A125) 1=S+SNAIL +BATS(1 12(1))
1C4 (A114 1=S+CATERPILLAR,y=S+BIRD +SMALLER11 y )
ICS (A115) 1=S+SNAIL,y:S+BIRD +SMALLER(1Y)
1C6 (A116) 1:S+BIRD,y:S+FOX +SMALLER(1Y)
[C7 (A117) 1=S+FOX,S+WOLF +SMALLER(1y)
1C8 (A118) 1:S+W0LF,1:S+F0X -EATS(1 y)
1C9 (A119) 1:S+WOLF,1:S+GRAIN -—EATS(1 y)
IC10 (A120) 1:S+BIRD, 1=S+CATERPILLAR +BAT5(1 y )
IC11 (A121) 1:S+BIRD,1:S+SNAIL ~EATS(1Y)
IC12(A113) 1.y=S+ANIMAL z,u:S+PLANT +EATS(1 u) ~SMALLER(y 1 )

-EATS(Y z) +BATS(1 y)10311112) 1,y:S+ANIMAL —EATS(y 1) 422.1511 r3(1y))
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The MKRP Theorem Prover found a (unit—) refutation for this clauses set after 11 steps
(including 10  resolutions and one factorization). The used CPU-time for the
transformation and the search for the proof in the sorted clause set was remarkably
shorter than the search for the proof in the unsorted version.

We note some difficulties in getting this result from SOGEN.
1) The theorem clause Thl was deleted by the literal reduction rule

mentioned in chapter 4.
2) To obtain the signature of the functions f 1 .  f2. and f3 the restriction

rule is neccessary (804).
3) The rule 8C3 is needed to identify the sorts S-PLANT ,S+ANIMAL

and S-ANIMAL, S+PLANT.
4)  The transformation is  complete . since the preconditions of rule RSC4

are satisfied. I

io U ico  5

These examples are taken from ”What is the Name of This Book" [SM78], which
appears to be  a goldmine for theorem proving examples. During a course on automated
theorem proving in the last semester, our students had to translate these puzzles into
first order predicate logic and to solve them with our theorem prover (Markgraf Karl
Ref utation Procedure) [KM84]. Two of these problems (Problem 47  + 48)  read as follows:
"When Alice entered the forest of f urgetf ulness, she did not forget everything. only
certain things. She often forgot her name. and the most likely to forget was  the day of
the week. Now, the lion and the unicorn were frequent visitors to this forest. These two
are strange creatures. The lion lies on Mondays. Tuesdays and Wednesdays and tells the
truth on the other days of the week. The unicorn. on the other hand lies on Thursdays,
Fridays and Saturdays, but tells the truth on the other days of the week."
Emblem—47: One day Alice met the lion and the unicorn resting under a tree. They made
the following statements:

Lion: Yesterday was one of my lying days.
Unicorn: Yesterday was one of my lying days.

From these statements, Alice who was a bright girl, was able to deduce the day of the
week. What was it?
MM: On another occasion Alice met the Lion alone. He made the following two
statements:
1) Ilied yesterday
2) I will lie again tomorrow.
What day of the week was it?

We use the predicates M0(x). Tl ) .  , SO(x) for saying that x is a Monday, Tuesday
etc. Furthermore we need the binary predicate MEMB, indicating set Membership and a
3-ary predicate LA. LAlx y z) is true if I says at day y that he lies at day zI LDAYSlx)
denotes the set of lying days of x. The remaining symbols are self explaining.
One—character symbols like u,1,y,z are regarded as universally quantified variables.
Axiomatization of the days of the week:
M0(X) © 1(TU(X) v WH!)  v THU) v FR(I) v SMI)  \! SU(I) )
TU(x) == «(wann v TH(1)v FRlx) v SMI)  v Sl )  v M0(x) )
WElx) ea wlTHlx)  v FR(x) v SA(x) v S l )  v M0(x) v TU(x) )
TH(x) ca -1(FR(I)V SM!)  v SU(X) v M0(1)v TU(I) V WEI!) )
FRlx) => w(5A(x)  v SU(x) v mom v Tl )  v WE(x) v TH(x) )
SMI)  =» “1(SU(I)V M0(I) v T l )  v WEI!) v TH(x) v FR(X) )
Sl )  © «(mom v TU(x) v WE(1)v THlx) v FR(x) v SAlx) )

Axiomatization of the function yesterday:
M0lyesterday(1)) es Tl )
TUlyesterdaylxD a With)
WElyesterday(x)) =. THU)
Tl-Iiyesterdaylxn 4: PM!)
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FRlyesterdaylxD es SM!)
SA(yesterday(x)) a SU(x)
SU(yesterday(I)) a MOix)

Axiomatization of the function two-after:
M0(two—after(x)) <= FR(x)
TU(two—after(x)) =» SMI)
WE(two-after(x)) =» SUlI)
THltwo-afterlxD => M0(x)
FR(two-after(x)) e: TU(x)
SAitwo-afterlxl) © WE(x)
SUltwo—afterlxl) =» TH(x)

Axiomatization of the function LDAYS:
MEMB(x LDAYSllionJ) cs M0(x) v T l )  v WEI!)
MEMl LDAYSlunicornD «===.» THU) v FR(x) v SM!)

Axiomatization of the predicate LA:
wMEMl  LDAYS(u)) A LA(u x y)  ==» MEMBW LDAYS(U))
wMEMl LDAYSluD A nLA(u x y) => wMEMBly LDAYS(u))
MEMl LDAYS(u)) A LMU I y)  => 1MEMB(Y LDAYS(U))
MEMl LDAYS(U)) A «LMU x y)  = MEMBW LDAYS(u))

Theorem of Problem 47:
31 LAllion x yesterdayixD A LAlunicorn x yesterdaylxn

Theorem of Problem 48:
3: Million 1 yesterday(x)) A LAllion x two-after(x))

The MKRP proof procedure at  Kaiserslautern found a proof for the unsorted version of
problem 47 after 183  resolution steps, among them 81  unnecessary steps, hence the
final proof was 102  steps long. This proof contains a lot of trivial steps corresponding to
common sense reasoning (like: if today is Monday, it is not Tuesday etc).

Later the sort structure and the signature of the problem 47 was generated
automatically by SOGEN.

The sort structure and the signature contain all the relevant information about the
relationship of unary predicates (like our days) and the domain-rangesort relation of
functions. The sort structure of the subsorts of DAYS in our example is equivalent to the
lattice of subsets of {Mo, Tu, We, Th, Fr. Sa, Su) without the empty set, ordered by the
subset order. Hence there are 127 (-27-1) sorts. The functions "yesterday" and
"two—after" are polymorphic functions with 127  domain—sort relations. For example:
yesterday ({MO. WED - {SU. TU}.

The unification algorithm exploits this information and produces only unifiers, which
respect the sort relations, Le. {x <— t ]  is syntactically correct. if and only if the sort of the
term t is less or equal the sort of the variable x. We give an example for unification: the
unifier of 1:SO+TU and yesterday(y=M0+TU) is {I «yesterday(y1= M0) ;y  +— y1:M0 }.

The MKRP theorem-proving system [KM84] has proved the theorem of both problems
in the sorted version immediately without any unnecessary steps. The length of the
proof of problem 47 is 6 ,  whereas the length of the proof of problem 48  is 4.  As  the
protocol shows, the final substitution into the theorem clause (Problem 48) was
{It <— y=M0}. Thus the ATP has found the answer, Monday, in a very straight forward and
humanlike way. A proof protocol for problem 47 can be  found in lSch85]. We give a
proof protocol for Problem 48:

C1 All X:Mo MEMB (I  LDAYSUionl)
C2 All x=Tu MEMBht LDAYSllionD
C3 All 1=We MEMBlI LDAYSllionD

3B



C4 All x,y=Days zzAnimal MEMB(y LDAYS(z)) MEMB (x LDAYS(z)) —LA(z y x)
C5 All x,y=Days z=Animal MEMBW LDAYS(z)) —MEMB(x LDAYS(z)) LA(z y 1)
C6 All x.y=Days z=Animal —MEMB(y LDAYS(z)) MEMt LDAYStzD LA(z y 1)
C7 All x.y=Days z=Animal —MEMB(y LDAYS(z)) -MEMB(I LDAYS(z)) -LA(z y 1)
C8 All x=Th+Fr+Sa+Su -MBMB(x LDAYS(lion))
Th1 A111:Days -LA(lion x yesterday(x)) -LA(lion x two—merk”

lingo};

C1,1 & C6.1 -» R1: All 1=Mo y=Th+Fr+Sa+Su MEMBW LDAYS(lion)) LA(lion x y)
R1 ‚2 & 68.1 + R2: All x=Mo y=Th+Fr+Sa+Su LA(lion x y )
R2,! & Th1‚2 + R3: All x=Mo -LA(lion x yesterdayü”
R3‚1 & R2.1 -» R6: 0
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6. Extension of SOGEN to Well-Formed Formulas.

ln  this chapter some special rules for introducing sorts in wff’s are given. The
mixed application of sort—generation, simplification. normalization and skole mization has
the advantage, that the generated clause set is simpler and that more unary predicates
can be  transferred into sorts. We introduce the rules in an informal way. We give no
rules for simplification, normalization or skole mization. All proofs . that these rules are
sound and complete. are omitted, since we are sure, that these proofs are straight
forward.

Em A polymorphic signature is the basis for the logic. wff‘s are formed in the usual
way with the junctors '1,A,V,=9,s== and the quantifiers V3. where all terms and literals are
well-sorted. TRUE. FALSE are nullary predicates, which denote the corresponding
truth-values.

M We assume. that the wfl‘ W is the input into a Theorem Prover, which tests W
for satisfiahility or unsatisfiability. If W =- WI A A Wn . and some Wi is a clause, then

the rules of SOGEN can be  applied to Wi.

We use the set SC with the same meaning as in SOGEN.

i) If (PSP) & SC and (513.5150) e SC . then
(“‘51 -P(x) v A) „ (so FALSE v A)

ii) If (Psp) e sc and (51351.50);= sc , then
(ans! -P(x) A A) —> (31:50 TRUE a A)

iii) If (ESP) e SC and [t] s Sp, then
P“) -> TRUE

iv) If (PSP) e SC and [t] s Sp. then
-P(l) -+ FALSE

v) If (P.5p) e SC and SO z Sp, then
(use -P(x) A A) » FALSE

vi) If (PSP) E SC and so a sp. then
(3150 Pl!) v A) -—» TRUE

vii) (V15 A A B) a (VDS A) A (Vx=S B)
viii) (31:8 A v B) . —» (31:5 A) v (31:5 B)

W " Andrew‘s Little" [EW83].
The formula W is =
(NH oupm (312 C(12) ) }  ==» {313  (V14 0(13)é Q(l4)  ) }

1) We use Rule AC1 for 0. that means:
( (-Q.S_Q) e SC and S__Q = T)  or (0.80) e SC

CASLL (-O‚S_0) 6 SC and S_Q - T)
Then W = {FALSE «= FALSE} =» {313 0114 FALSE m FALSE) } .

which evaluates to true.
CASEL (0.50) E SC .

Then W =- { (V11 C(11)) e: TRUE} =» {3130114 ()(13) «=» 0(x4) ) }
955111 SQ ==T. ‘

Then W - TRUE «=» { 313 (V14 TRUE «==> TRUE) } , which evaluates to true.



WLQSQ) 6 SC. Then:
FALSE =» {313 (V14 Q(x3)=o Q(x4) ) }  ___»

'{313 (VL; Q(I3) @ 0(14)  ) }  """"

-{ax3 (V14 (-Q(x3)VQ(x4)) A (0(x3iv -Q(x4)) )} —»
—{ax3 (w4 (-O(x3)vo(x4))l ‚. (V15 (Q(13)v -ot15)m __,
'{313 (V I4=S_Q ‘Q(I3 ) )A  (V1550  (“13 )” )  ——’

'{313 -Q(X3)A Q(I3 ) }  _

FALSE.

We. We demonstrate. how a formula . which occurs in the first order
formulation of "Schuberts Steamroller" [Wa83]. is normalized and skolemized using
different methods:
We have the clauses C(60); MAO) and
n —A(x) v -E(x.y) v (32 G(z) A -E(y‚z))
i)

ii)

Sort generation after normalization.
We obtain the following clauses after nor malization:
also);
MAO).
V1.37 —A(x) v -E(x.y) v G(f(x.Y))a
Vx.y -A(x) v -E(x.y) v -B(y.f(1.y))t
Sort generation yields:
(SA .A)€  SC. A0=SA ”SA ST;SG ST;

The clauses are:

VISA . Y=T "E(I ,Y)  V G(f(x.y));

Vx=S A . s  —E(x.y)v -E(Y,f(x,y)) 3
Sort generation during normalization. We get:
(SG-G)  e SC. (SA‚A) e SC, A0: SA ; Go: SG ; SA s T, SG s T; and the clause

VPSA ,y=T -E(x.y) v (32‘56 -E(y. 2))
Skolemization then yields a function f: (SAJ') e SG and the clause

Vx=SA , yer -E(x.y) v —E(y. f(x. y))

The difference between the two methods is that in i) the clause
ws A ‚y='r —E(x‚y) v G(f(x.y)) does contain the literal —E(x‚y) , whereas in ii) this literal

is avoided. In chapter4, we gave a reduction rule, which allows to delete such
(superfluous) literals.

4 i



7, Summary .

The main results of this paper are:
i)  An algorithm is described. which transforms unsorted clause sets (respectively

wffs) into a sorted version. Further more a proof is given. that this algorithm
preserves (unlsatisfiability.

ii) Conditions are given for the completeness of the naive transformation (Le. the
transformation which doesn't care of intersections and complementary sorts Sp and
s_p).

I t  is not possible to give a sufficient and necessary condition for a clause set to be
transformable into a sorted version. The reason is. that deduction may be necessary for
such a transformation( the algorithm SOGEN makes in fact such deductions).
The algorithm SOGEN is implemented at Kaiserslautern as a preprocessor for the MKRP
Automated Theorem Prover [KM84]. I t  has shown remarkable improvements searching
for a proof in a lot of example runs.
Since this algorithm is some sense deterministic (no search) the cpu—time consumed by
SOGEN is negleCtable in mom of the examples. but serious problems arise in cases.
where the number of sorts exceeds 150. The sort structure construaed in example 5.2
is isomorphic to the lattice of subsets of a set with 7 elements (Le. 127 sorts). I am sure
that a modified implementation of sorts (computing sorts and their relations if needed)
allows to handle far bigger sort structures of this type.
In the case that SOGEN f ails. the cpu-time consumed by it is not totally wasted. since

some of the toplevel reductions ( tautologies and replacement resolution) do not
depend on the success of SOGEN.

MW
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