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Abstract

The algorithm SOGEN is described, which transforms a SIG-sorted clause set CS into a
SIG -sorted clause set CS', where the output clause set is smaller, but the sort structure
1$ more sophisticated.

This produced clause set is the input for our Theorem Prover, which has TRP* . an
extension of ZRP as its basic deductive calculus. Both calculi have resolution and
paramodulation as their basic operations.

We prove that the transfor mation induced by SOGEN does not affect unsatisfiability,
respeclively satisfiability, of the clause set.

Introduction.

The advantages of 2 many-sorted calculus in automated reasoning systems are well
known [Hay71, Hen72, Wa83, GM84, GM85, Co83, CD83, 0b62).: In a many-soried
calculus we obtain a shorter refutation of a smaller set of shorter clauses, as compared
to the unsorted version.

To exploit the power of a many-sorted calculus, it is necessary that the problem to be
solved has a sort structure and that it is presented in it's sorted version to the Theorem
Prover. Usually this many-sorted input is hand-coded. There are examples, where the
sort structure is naturally given, but there are also examples, for which this hand-coding
is a hard task. Moreover this coding by hand may be faulty or not (un-)satisfiability
preserving for some reasons.

In [Wa83,Sch85, 0b62] it is proved in the so called Sort-Theorem, that for special
kinds of clause sets the transformation into a sorted version preserves unsatisfiability.
But the direction of transformation described there is from the sorted version to the
unsorted version (the relativization). However the input clause set is not of this form in
general.

A further motivation for such an automatic transfor mation are the troubles in using a
knowledge base with definitions and lemmas together with a sort-structure, since this
requires a global (very unflexible) sort-structure. This limitation may be 100 strong and
precludes the usage of sorts in such knowledge bases. But once a translation module is
available, a knowledge base can be built up without sorts. The translator module
preprocesses the input clause sets and prepares a sorted version for the Theorem
Prover.

The question whether such a transfor mation does affect or not the (un-)satisfiability
of clause sets needs a well-suited notion of the semantics of such a transfor mation. The
right notion of a model in our case is the somewhat adapted notion of models in their
original meaning, but not the Herbrand-models. The (adapted) E-model provides a very
natural semantic for such transformations and shows how to design correct rules.




1) Basic Notions of a Many-Sorted Calculus,

We define the notions of signatures, sorts and algebras similar to those in the
IRP*-calculus [Sch85], but we drop some conditions on polymorphic functions. Such
more general definitions are needed, since the rules of SOGEN, which we introduce in the

next chapter, allow an "ad hoc” polymorphism of functions, which is not allowed in
IRP*.

1.1 Definition. (generalized signature)
A signature SIG is a triple (§, I, IP), where
i) 8 is the finite set of sorts, ordered by the reflexive and transitive relation <
(possibly not antisymmetric). T is the greatest element of $. (i.e. for all Se §:
S s 7). The ordering s is extended to tuples of sorts and means componentswise s.
ii) IF is the set of function symbols. F - U Py, where [Py is the set of functions of arity
n and signature @ + W ¢ $8*1_The sets Py are pairwise disjoint.
If Py + 9, then W satisfies:

1) The sort of constants is unique: i.e. W s sl s 1w-1.
2) It Ws$™! for n21, W contains a greatest element Sy §-Sw neq)s L€ for all
(51 ""'Snd ) eW: (Sl ,....Sn+1 ) b (SW.I "“'Sw,n+1 )
iii) IP is the set of predicate symbols. IPp) is the set of predicates of arity n with domain
DeS™ ItisP - UPp,
iv) For every sort S € 8, there exists a constant ¢ of sort ScsS.ie. SIGis
sensible in the sense of [H080). =

We use the following additional notation and abbreviations:
- SO(f) =W, ifffelPy.

- SO(P)-D, iff PelP),

- (€ denotes the set of constants.
- Cs denotes the set of constants of sort S.

- RnS={TeSIT<RandTsS)
- RaS denotes the least element of R n S, provided this set is not empty
and there is exactly one least element.

The following is the standard definition of a heterogeneous algebra (see e.g. [H080])

with the additional proviso that the subsort relation is represented as the subset
relation.

1.2 Definition. (algebra with respect to SIG.)

Let SIG be a signature. The pair (ASIG) is an algebra of type SIG, iff the following
conditions hold:

i) A is a nonempty set (the carrier).
ii) For every sort Se $ , there is a related subset SA & A, such that
1) th =a
2) VRSeS:RsS = RAgsA.
iii) For every sort S and every constant ¢ € Cs. there is a related ¢ e S

iv) For every function f € [P \ €, there is a related function f A, AR S A, such that for

From the definition of a signature 1.1 iv), we have that SA ¢ @ for every sort S.
Furthermore, if there are sorts RS such that S <R and R < S, then their representations
are identical, i.e. RA.sA

We extend the notion of a homomorphism to a $-homomorphism, which respects the
Sort structure.
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1.3 Delinition. ( $-homomorphism of algebras)

Let SIG be a signature and let (A,SIG) and (B.SIG) be algebras of type SIG.

A mapping ¢:A - B is a $-homomorphism, iff

i) VSe$: g5t pisB)

i) of A(al,...,an) - fB(tpal,..., pag ) forallfe¢F and all a; ¢ Sf.iA' 1<i<n , where
(Sg 1,-Sg n+1) is the greatest element of SO(f).

Obviously, the composition of two $-homomorphisms is again a §-homomorphism.

Let Vg be the infinite set of variables of sort S, which we assume to be pairwise disjoint.
Let V = UV be the set of all variabies. Let T be the set of all (i.e. including ill-sorted)
terms. That is, T is the least set with Ve T.C & T and f(ty,..t;) €T for all
fePandallyeT.

We define the sort of a term t, namely GS(1), as a set of sorts. Intuitively, this is the set
of sorts S, such that t could be substituted for a variable of sort S.

Definiti
Let SIG be a signature. Then the (geperalized) sort of a term is defined by the mapping
GS: T - 25

[(RIR2S} if t is a variable or constant of sort S (ie.te VquGg). ]
GS(t) = { {R|there exist S; € GS(t;) ,1sisn, and a S, { < R, such that (S{....S;, ) € SO(f)}}
L if t =flty,..t5). J

For example: In the sort structure of the complex numbers: GS(1) - (COMPLEX, REAL,
INT, NAT ). The set GS(t) has the property, that V S € GS(t): {Re$ 1S s R) & GS(1).
We define the set WST , the set of well-sorted terms as the set {t € T | GS(t) + 9).

1.5 Lemma, Let SIG be a signature. Then (W8T, SIG) is an algebra of type SIG, if the
operations and the representations of sorts are defined as follows:

l) f 'sr (11"""'11) - f(ll,,tn)

i) sWST _(1|secs(t)).
Proof, We verify the conditions of definition 1.2:
i) Obviously WST is not empty.

i) 1) TVST . waT, since T € GS(t) for every well-sorted term t.
2) LetRSeS and let R <S. We have to show, that RWST o SWST
Let t € RWST Then R e GS(1). Since RS, S e GS(t). Hence t € SWST,
iii) Let ce Gg be a constant. Then C'ST =¢; S € GS(c). Hence cWST . SWST
iv) Lett; e Si'sr, 1sisn, andlet(Sy,.5,,1) €SO(f). The definition of Si'sr gives
S; € GS(1;), 1 s i < n. Now the definition 1.4 yields S, 1 € GS(f(ty,...Lp)).

Hence f(14,..t;) € Sn+1'3r.

(W8T SIG) is the free algebra of type SIG. (W8T, ..SIG) is the initial algebra of type SIG,
gr

where the suffix "gr" denotes ground objects (ie. objects without variables). For proofs
we refer to [Sch85].

1.6 Definition. A mapping &: W8T - W8T , which is identical aimost everywhere is a
$-substitution, iff it is an endomorphism of the algebra WST. m

Let £ denote the set of all $-substitutions.
4



1.7 Lemma, Let SIG be a signature and let &: WST - WST be a mapping. Then 6 is a
8-substitution, iff the following conditions hold:

i) ec=c, foraliceC.

ii) ef(ty,..1,) =flety,. oty) for all terms f(ty,..L.).

iil) GS(x) ¢ GS(ex) for all variables x.

iv) {x e V| ox 2 x} is finite.

Proof,

“=" Let & be a 8-substitution. Then & is a $-endomorphism. The only nontrivial

condition is iii). Let x € V and let S € GS(x). Then x € SWST 1.3 i) yields exe€ sWST
Hence S € GS(s1).

"«" Let i) - iv) be satisfied. We show only that s(S¥ST) g SWST,
We use induction on the term structure.

Base case. For xe SWST we have S e GS(x), hence by iii) S e GS(ex). This implies
6x € s'-"'f. Por constants, trivially c € 5'81‘ implies ece s'S'l'_

Induction step. Lett = f(ty,...t ) e WST. We show GS(et) 2 GS(t). Let R € GS(t), then
there exist S; € GS(t;), 1 sisn,and aS;, ¢ s R, such that (S4,..S,,1) €SO(f). The
induction hypothesis yields S; € GS(et;). From Lemma 1.5 and definition 1.2 iv) we
conclude, that (WST maps (51'81" —_ Sn'ST ) onto sn+l'“'

Hence f(et,..6t ) =6t€eS,, 1'“. which implies S, { € GS(st).
PFinally S, { s R implies R € GS(ot). m

We shortly describe some needed notions:
P(tl.....tn) is an atom, where P is a predicate symbol and the t;'s are terms such that

S; € GS(t;), where SO(P) = (§....5,). A (well-sorted) lileral is a signed atom. The set of all
well-sorted literals is called L. A clause is a set of literals, i.e. an abbreviation for the
disjunction of the literals, where all variables are universally quantified. A ground atom.
a ground literal or a ground clause is one without variables. [nstances of atoms, literals

and clauses are their images under a $-substitution. Equality (=) is a distinguished
binary predicate with domainsorts SO(=m) = (T, 7).

1.8 Definition, Let SIG be a signature. SIG is a polymorphic signature [Sch85), iff the
following (additional) condition is satisfied:

i) «8,% is a partially ordered set.
ii) ForeveryfelP,every (Sq,..5;,1) € SO(f) and every (T,..T,) e 8™

(Tl'Tn) < (S1,,Sn) = 31 Tn+1 eS: Tn+1 < Sﬂ+1 A (Tl'Tn+1) € SO(!') L |

The next lemma shows the connection between the sort in polymorphic signatures and
the generalized sort in the signatures considered in this paper.

1.9 Lemma. Let SIG be a polymorphic signature. Then the following holds:
i) For all t e WST: GS(t) contains a unique least element, which we denote with [t].
ii) Forallt=f(ty,.t;) e WST: ([t,]., [t,] [t]) e SO().

Proof. We show i) and ii) by induction on the term structure of L.
Base case For te Vgor teCg [t] =S, and GS(t) = (Re $ | R 2 S). Since «B,5> is a partial

ordering, S is the unique least element of GS(t).
Induction step. Let t=1f(ty,.t;). Let §; =[t;]1 < i< n Let R e GS(t). Then there exist

Rj € GS(t;) and a Ry, 4 <R, such that (Ry,-.RyRp, 1) € SO(f). We have
(S4...55) ¢ (Rq,...Rp). Hence (by definiton 1.8) there exists a unique S, 1 s Ry, 1.
such that (S4,..S, 1) e SO(f). Now Sp41 is the unique least element of GS(1).



Since a clause set CS is said to be satisfiable, if and only if a model for CS exists, it is
necessary 1o give a precise definiton of a model with respect to a signature.

1.10 Definition. Let CS be a SIG-sorted clause set. An E-model for CS is a triple (D.SIGR),

such that the following conditions are satisfied:

i) (DSIG) is an algebra of type SIG.

ii)Ror every predicate P there exists a relation PPeR of the same arity.

iif) All clauses in CS are valid under all $-homomorphisms ¢: WST - D. Le. all clauses
in CS are valid under all assignments of values in D to variables in clauses, where
sorts are respected. (We say a literal P(tl,...tn) is valid under @, iff @ (P(t4...t;)) -
pD( Ptq.. Pty) is valid ie. (@ty... 9ty is in the relation pD)

iv) The equality predicate m is represented as the identity on D.

Remark. A Theorem of Herbrand states, that D could be chosen in such a way, that D is
the image of '.’o'l'gr under all $-homomorphisms.

Furthermore, if no equality literals are in D, we can choose D - 'S'fsr.
If all equality literals are unit-clauses, then we can choose D - 'STgr/~ ,where ~ is
the congruence relation on 'S'l'gr. which is induced by all such unit-equalities.



2.The Algorithm SOGEN.

The goal of this chapter is to present the algorithm SOGEN, which transforms unary
predicates into appropriate sorts, generating a polymorphic signature and a
corresponding clause set f[rom a given unsorted clause set. The algorithm is formulated
in production rules. The correctness of each rule is shown in chapter 3.

The algorithm SOGEN needs a memory for already introduced relations on sorts and
relationships between sorts and predicates to characterize the situation, where
predicates and their corresponding sort are simultaneousty present. It is not possible to
express this in the signature. We call this set SC (sort constraints) and consider the
members of SC as a special type of clauses. (The constraints in SC could be coded as
special clauses; see rules RSC3 and RSCS) In the following we write P, if we mean a
signed predicate. Now we specify SC:

SC is a set of pairs and triples:
1) A pair (PSp) € SC, where P ¢ [P and Sp € 8 stands for "P is transformed into Sp". This

means that for every term t, the sort of t is Sp, iff P(t) holds.

2) A triple (RS,T) with RS,T € 8 represents Rn S = T. This means that for every term t :
if tisof sort S and of sort R, thentisof sort T. m

Let < be a reflexive, transitive relation on a finite set U. Then we denote with MINS(U) a

set , such that:
i) MINS(U) sU.

ii) VuveMIN(U)usv=u-v.
iii) YueU,3ve MIN(U)vsu
Such a subset exists, since s is reflexive and transitive.

During the run of SOGEN, information about the intersections of sorts is available (sort
constraints in the set SC). From this information, some new relations on sorts are
deducable, for example, that two sorts are in the relation s or that two sorts are "equal”.
For rules, which manipulate the set SC or which deduce this new information, we need
some definitons.

2.1.1 Definition, Let SIG be a signature and let SC be a set of sort constraints. We define
the set RBPSC(S), which is the set of all sets {84....S5), which satisfy "§yn..n§, -8

a) Por every S ¢ 8, we define the set REPg((S) of representations recursively:
i) (S)e REPy(S).
il) If (Sl ....,Si.....sn) € REpsc(S) and (Rl 'RZ'S)) € SC, then
MINS( ((Sl....,Sn)\(Sl}) v (RI’RZ) ) e RBPsc(S).
iif) If RPy, RP, € REPg(S), then MINJ(RP{ u RP,) € REPg{(S).
b) We define a relation sgc on sets of sorts, which is only used for elements of some
REPg(S):
{81..5g) sgc (T ... Ty}, iff for every T {Ty....T ). there exists an element
S€(84...5p), such that S sT.
(84,85} sgc (Ty....T ) can be interpreted as Syn.nSpeTin..naTp"

c) The base set for intersections is defined as:
BASEgc - (Se$ | all elements of REPg(S) are sets with exactly one element. ). i.e. all

sorts, which have only trivial representations.
d) Similarly REPg(((S....S,}) is defined for sets of sorts. The intended meaning is to

represent "Sln nSn".

e) For RS € S, we define R~gc S, iff there exist RPgy, RPg € REPg(R) and
RPg, RPg; € RBPS(:(S) such that RPp sgc RPgq and RPgy sgc RPpo.
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Two sorts RS which satisfy R ~g¢ S have always the same set as representation in an
E-model, hence they can be identified in the sort structure.

2.1.2 Example, Let A'B'C'AI'BI'CI' Az.Bz,Cz €S and let (A.B.Al). (A,C’Bl ! (B'C'Cl ),
(Al By Az) (Al .C1.B,). (B4.C{.C;) € SC. The following diagram shows the relationships:

|><>/1
IX><

B, ¢

From the set SC, we get the following relations:

{A.B} € REPSC(A1 )s (A.C} € RKPS(:(Bl ); {B,C) € RBPsc(cl )l {A.B.C} € RBPsc(Az); (A.B.C} €
REPg((B;), {AB,C} € REPg(C,), Hence we have:

Az ~SC B, ~SC C2 ., which reflects the fact, that n is associative, commutative and

idempotent. The following computation shows, what happened:
Ay-Ay nBl =AnBnAnC-AnBn C-AanBnC-Al nC1 -B,.

2.1.3 Example, Let A B,CD be sets, such that A n B = Cn D holds.

Then BnCa AnB,since AnB= (AnB)n(CnD).

Without the rule 2.1.1 a) i) this relation is not deducable with the representation
mechanism.

2.1.4 Example, This example demonstrates, that in definition 2.3.1 e) in general

RPR1 * RPSI and RPRZ $ R.Psz=

Let ABCDEbesetsandletF=-AnB=-CnDnE G=-BnC=-AnD.

Then F is represented by {F},(A B}, (CD.E}, (A.B,CD.E} and G is represented by {(G), {B.C},
{AD), (ABCD). (We use Fs ABCDE and G s ABCD).

We have: {AB.CD} sgc {AB) and {AB,CDE} s {AB.CD). Hence F ~gcG. =

In the following we describe the rules of SOGEN by their input (IN) and their output
(OUT), respectively by their condition and action.

2.2 Basic Transformation Rules.,
Rule BT1., Introduction of sort
IN a) SIG
b) CS CS contains a clause C, whose literals all have the same unary
predicate P.

c) SC There is no pair (PS) for some S in SC.
QUT a) SIG § -8 v (Sp). Sp is a new sort symbol, ¢ is a new constant of sort Sp.

Sps Spp is added, where SDP - SO(P). 5" is the transitive closure of s.
b) C8 CS
¢) SC SCu ((P.Sp)).

Rule BT2, Changing sorts of constants.
IN a) SIG ce &g,

b) CS CS contains the clause {P(c)}

¢) SC SCcontains (P.Sp) and a triple (Sp.S..T)
QUT a) SIG' Eg, =g, \ {c) Cy'=Cr v (0}

b) & CS

¢) SC SC



Rule BT3. Introdcution of sort relations.
IN a) SIG
b) CS CS contains the clause {P(x)}, where [x] = §;.

) SC (PSp)esC

QUT a) SIG 8§ =8, but Sy s Sp is added and <’ is the transitive closure of s.
b) G5 CS
c) SC SC

Rule BT4, Changing the sort of a variable.
IN a) SIG
b) CS CS contains the clause C = {-P(x)} v A, where [x] = S,.

c) SC (P.Sp) € SC and (Sp.Sx.T) € SC.

QUT a) SIG
b) CS° €S =(CS\{C})u{C), whereC = A’ and x is replaced by a new variable
yof sort T.
c) SC SC

Rule BTS. Adding tuples to SO(f).
IN a) SIG
b) CS CS contains the clause C - {P(f(x....x,)}. where [1;] - §;

and the variables x; are pairwise different.
c) SC (p.sp)ESC
QUT a) SIG SO'(f) = SO(f) v ((51,...,Sn,Sp)}.
b) C8° CS
c) SC SC

23 Dedudti | Deletion Rul

Rule DD1. Deductions.
IN a) SIG
b) CS
c) SC
OUT a) SIG
b) CS° CSwu{C), where Cis a resolvent, factor or paramodulant of clauses in CS.
c) SC SC

Rule DD2, Clause Deletion Rules.
IN a) SIG
b) CS CScontains the clause C, which satisfies one of the following conditions:
i) Cis subsumed by another clause C in C, i.e. there exists a
substitution &, such that 6C & C.
ii) Cis a pure clause, i.e. C- {L}v A, L is a literal, the predicate P of L
is not the equality predicate, neither(PS4) nor (-P.S,) is in SC, and

there exists no complementary literal in any of the clauses of CS.
iii) Cis atautology. i.e. either C= {L}u{(-L}u AorC={(P(t)) u A,
(P.Sp) € SC and Sp € GS(1).
c) SC
QUT a) SIG
b) CS° CS\(C}
¢) SC SC



Rule DD3. Literal Deletion Rule (implicit resolution).
IN a) SIG
b) CS CS contains C = {-P(t)} v A, where Sp € GS(t)

¢) SC SCcontains (PSp).
QUT a) SIG

b) CS° (CS\{C) u(A).
c) SC SC

2.4 Manioulations Based:on SC

Rule SC1. Trivial Intersection Properties.
IN a) SIG
b) G
c) SC
OUT a) SIG
b) C§

c) SC SC=SCu {(31.52.52) | 51 2 52) v {(52.51.T) | (SI‘SZ'T) € SC).

Rule SC2, I.ntroduction of sort relations by representations.
IN a) SIG There exist 5.T ¢ $ and RPg € REPg((S) and RPy € REPg{T)such that
RPg <o RPpandnot S T.

b) CS
¢) SC
QUT a) SIG' ST isadded tos. s is the transitive closure of 5.
b) C§
¢) SC

Rule SC3, Application of contraposition.
IN a) SIG contains $; < SQ.
b) CS
¢) SC contains the pairs (P.Sp), (-P.S_p), (Q.SQ). (‘Q.S.Q)l and the triples
(S.Sp.s1 ), (S'S-Q'SZ) .
OUT a) SIG Sps S_p is added to s. s is the transitive closure of s.

b) C§
c) SC

Rule SC4, Introducing the intersection of two sorts.
m a) SIG 51.5258 and81 HSZ ¢ 0.

b) CS
¢) SC does not contain (S4.82.8) nor (5,.5,.5).
QUT a) SIG § =S v {Sp), Sy is a new sort with SN S 84,5y s Sy, and S s” Sy for all
Se Synm 82. s’ is the transitive closure of <.

b) €S
c) SC SC =SCu{(S;.SpSN).

10



2.5 Manipulatiog tt itsell

Rule MS1. Deletion of cycles in <8§,5>.

IN a) SIG ThereexistsortsSTeS, suchthatS+T,S<T and T sS.
b) CS
c) SC

QUT a) SIG 8 s> =<8/~ s /~>, where~is defined as: T~S,iff TsSand TzS.

In SO'(f) and SO'(P) sorts are replaced by their equivalence class.

b) CS° CS, where all sorts are replaced by their equivalence class.
¢) SC SC where all sorts are replaced by their equivalence class.

2.6 Manipulations of the si

Rule SO1, Making [ a polymorphic funtion.
IN a) SIG 8.s> iscycle free. (sfll,...,sf 0+ ) is the greatest element of

SO(f). The following condition is satisfied:
For every (S4...S,1) . (T{,.Tp, 1) € SO():

(Vi=1,..0 §;nT; ¢ 9) = ((Vi=1,..n §;aT,is unique) and there
exists asort R,y suchthatS ;2 Rp,q.
Tn+l 2 Rn+1 and (Sl"Tl""'sn“Tn*le ) € SO(f))

b) CS
c) SC
OUT a) SIG where SO'(f) =

r I Si 2 Sr.i Jfori=1,..n and ]
{(S1.-Sgs1) | Sp.q is the least element of the set t
L | 8 1(54..5,'8)€SO(f) and ;s ;)

b) CS CS

c) SC SC

Rule 502, Adding intersections of range-sorts.

IN a) SIG (S4..8,,1) (T{...Tp,1) €SO(f) and §; n T; # & for i= 1,...n
Sn+l l'lTn+1 =4

b) CS

c) SC

QUT a) SIG" § -8 v {Sy), where Sy is a new sort. ¢ is a new constant of sort Sy.
SNs$S4,q andSys Ty, isadded. s° is the transitive closure of s.
b) CS° CS
c) SC SC

Rule SO3 Adding a tuple of intersection sorts.
m a) SIG (Sl.....sn+1) . (Sl.,Sml) € SO(“ and (Tl""'Tn*i ) ¢ SO(”
b) G
c) SC (8;8;T)eSC fori=1,.n+1
QUT a) SIG SO'(f) - SO(f) v ((Tl-"'-Tnd”-
b) C§° CS
¢) SC SC

Rule SO4 SO(f)-Restriction.
IN a) SIG felF

b) CS aterm or subterm (in CS) starting with f exists.
c) SC ‘

11



QUT  a) SIG" SO'(F) ={(Sy....8,,1) € SOLf) |(84...85,4) 5 (Ty....Tq, 1) J.. where
(T{...Ty41) is an appropriate tuple, such that

Rule SOS SO(P)-Restriction.
IN a) SIG PeP
b) CS a literal starting with predicate P is in CS.
) SC does not contain (P.Sp) or (-P.S_p).

QUT a) SIG' SO'(P) is changed into (Sl.....Sn) < SO(P) , such that all literals in CS’
remain well-sorted.
b) & &
c) SC SC

Remark. If SIG is a polymorphic signature in the rules SO4 and SOS and <S> is a
semilattice, then the changes for SO(f) and SO(P) are uniquely determined.

Rule S06 Deleting functions and constants from the signature.
IN a) SIG feF.(ceC)
b) CS fdoesnot occur in a literal of CS. (c does not occur in a literal of CS.)
¢) SC
QUT a) SIG' fis removed from SIG. (c is removed from SIG.)
b) CS° CS
¢) SC SC

2.7 Reducing SC.

Rule RSC1 Trivial cases.
IN a) SIG containsT2$S
b) CS
¢) SC contains (T.S,S)or (S.T.S)
QUT a) SIG
b) ¢S C§
c) SC SC\{(TSS),(S.TS).

Rule RSC2 non complementary predicates.
IN a) SIG
b) CS neither P nor -P occurs in CS.
c) SC contains (PSp), but no pair (-PS_p)

QUT a) SIG Pisremoved from SIG.
b) CS° €S
¢) SC SC\{(PSp).

Rule RSC3 complementary predicates. (general case).
IN a) SIG
b) CS neither P nor -P occurs in CS.
¢) SC contains (P.Sp) and (-P.S_p)

OUT a) SIG" P isremoved from SIG. Two new functions f, and f_ are added to IF.
With SO(P) = Spp, the (not polymorphic ) functions have Spp as their
domain and Sp and S_p as their range respectively.

b) C8° CSul{VxSp,yS p xsy)u{(VasSpp, x=f,(x)vi=f (1))
The last clause is the skolemized form of :
{VBSDP, Gl=5p Imz)v (alts_p Imz)).
12



c)

SC SC\ ((PSp) (-PS_p) ).

Remark: The functions [, and f_ are in fact skolem functions.

Rule RSC4
IN a)

b)
c)
OUT a)
b)

c)

Rule RSCS
IN a)

b)
c)
QUT a)
b)
c)

Rule RSC6
IN a)
b)

c)

OUT a)

b)

c)

IN a)
b)

c)

complementary predicates. (a special case).
SIG Pe P, SO(P) = Spp. For every ground term t:

SDp e€GS(t)=» Sp € GS(t) v S_p € GS(t)

CS neither P nor -P occurs in CS. CS contains an equality literal
SC contains (P.Sp) and (-PS_p)

SIG" P is removed from SIG.

G CSu{(vxSp,ySp xwy)

SC SC\{(Psp), (-PS_p).

complementary predicates. (a special case).
SIG PelP, SO(P) - Spp. For every ground term t:

SDp €GS(t) » (Sp € GS(t) = S-p ¢ GS(1) ).

S neither P nor -P occurs in CS. CS contains no equality literal
SC contains (PSp) and (-P.S_p)

SIG" P is removed from SIG.

s CS

SC SC\ ((P,Sp), (—P,S_p)).

Removing intersection information (general case).
SIG
cs

SC contains (Sl,Sz.T). where Sy +T,85 ¢+ T and S(ASy =T

SIG" a new (skolem) function g is added to SIG, where g has domain-sort
Sy and range-sort T and (S,S) € SO(g) for all Ss T

G CGSu{{VxSy.ySy. xeyvgx)mx)}

(The new clause is the optimized and skolemized form of
Vi$,y$Sy) xmy = (32T 1mz))

SC' SC\{(S{5,.T)(S,8,.T).

Removing intersection information (a special case).
SIG

CS = occurs only in unit-clauses. For every triple (S.T.S°) and for every
literal 3 m t, which follows semantically (= ) from the equality clauses in
CS, where S € GS(s) and T € GS(t) hold, there exists a term tg-, such that

S'e GS(ts') and s = tg- follows semantically from the equality clauses in
cs.

SC For every triple (81.52.83) €SC: $aS, = S3

SIG’

s’

SC° SC\ {all triples in SC).

Removing intersection information (a special case).
SIG

CS there is no equality literal in CS.

SC

SIG

s’

SC° SC\ (all triples in SC).

13



2.8 Analysis by cases,
Rule AC1. Adding the tautology {(Vx -P(x)) v 3y P(y))}
b) CS contains P
c) SC  does not contain (P,Sp)
QUT i) a) SIG ©'=Cw {c},where c is a new constant of sort Spp-
b) G5 CSu (Plc)}
c¢) SC SC
QUT ii) a) SIG
b) CS° CSv (Vx:Spp -P(x)}
¢) SC SC

Rule AC2, For constants c either P(c) or -P(c).

IN a) SIG SO(P) = Spp- C is a constant of sort S s Spp. S4Sp.S4Sp
b) CS
¢) SC contains (P.Sp) and (-P.S_p)

QUT i) a) SIG
b) CS° CSu {{P(c)))
¢) SC SC

QUT ii) a) SIG
b) S CSv{{-Pc))
c) SC SC

Rule AC3, Using {(Vx:S P(x)) v (VxS -P(x)) v((3yS P(y)) a (3zS$ -P(z)) )
IN a) SIG SO(P)-SDp.SGSand SSSDP,S$SP.S$S_p

b) CS
c) SC  contains (PSp) and (-PS_p)

QUT i) a) SIG" SIG
b) €8 CSu{(vxsSP(X))
c) SC SC
QUT ii) a) SIG" SIG
b) CS° CSu{{vxsS -P(x)})
c) SC SC
QUT iii) a) SIG" c,.c. are new constants of sort S.

b) CS° CSu{{Plc,} v {(-Plc.)))
¢) SC SC

Rule AC4. Splitting a clause into two clauses.

b) CS CS contains a clause C, such that there exists an x ¢ V(C), with
(1] =S SDP'

¢) SC contains (p.Sp). ('P.S_p). (S.Sp.sl ), (SS_p.Sz).

ouT a) SIG SIG
b) C8° CS\{Qu {CI, Cz}, where Ci is the clause C, but the variable x is

replaced by x;: §;.
c) SC SC

2.9 Termination Conditi

001 If SC contains (P.Sp) and (-P.S_p) and there exists a S e $, such that S s Sp and
Ss S_p. then the signature contains a contradiction.

14



C02  If the clause set is empty and for all (PSp) (-P.S_p) € SC, where SO(P) = Spp and
forallSe8:S<sSpp=(Ss SpeS4 S_p.) then the original clause set is

satisfiable.

Co3 If some clause is empty, then a refutation has been found.

CO4  If norule besides the rules RSCi is applicable, but some clause contains a literal
tP(t) and a pair (P.Sp) or (-P.S_p) is in SC, then the algorithm SOGEN failed.

210  Manipulations Caused by Equaliti

Rule EO1,
IN a)
b)

c)

OUT a)

b)
c)

Rule EQ2,
IN a)

b)
c)
OUT a)

b)
c)

Rule EQ3.
IN a)
b)

c)

OUT a)
b)

c)

Rule EQ4,
IN a)

b)

c)

OUT a)

b)
c)

Existence of an intersection sort.

SIG
CS CS contains a clause {smt}, Se€ GS(s), Te GS(t)and SnT =@
SC

SIG" §" =8 v (Sy), Sy is a new sort symbol, c is a new constant of sort SN-
Sy ¢S and Sy < T is added. . <” is the transitive closure of .

[OS )

SC SCu {(STSy.

The sort of a constant is changed.
SIG contains a constant c of sort S¢

Cs  CS contains a clause {c= t}, S, € GS(t).
SC contains (S.,5,.5).

SIG the sort of ¢ is changed into S .

s CS

SC SC

New Sort Relations.

SIG

CS CS contains a clause (x m t}, T € GS(t). and x is a variable of sort S.
SC

SIG" S < T is added. <’ is the transitive closure of s.

s

SC SC

New tuples in SO(f).
SIG (S4....85,1) € SOLI)

(S G contains a clause {f(xy,...x;) = t}, T € GS(t) and the x; are distinct
variables of sort §;.

SC contains (S, .T.S")

SIG' SO°(f) = SO() u ((Sy,...5,5 ).

s Cs

SC SC

2.11 A Rule for Unary Functions.

Rule UC1. Introducing a new predicate.

IN a)

b)
c)

OUT a)

SIG SO(P) - Spp.

CS CS contains a literal tP(g(t))
SC

SIG P8 is a new predicate with SO(Pg) =(T).
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b) G5 C5"v ((Vx;S; -Plalx;) v Pylx;)} v ((Vx;S; P(a(x})) v -Py(xp))) for all i,
where {51 ....,Sn} - MAXS(Tll (TI'TZ) € 30(8) .TzSSDP}.

CS" is the clause set CS, where all literals of the form tP(g(t)) are
replaced by the tPg(t).

c) SC SC

Remark, The clauses {(Vx;S; -P(g(x;)) v Py(x;))} and ((Vx;$S; P(g(x;)) v -Py(x;)}) give rise
to a tuple for the function g (with rule BTS).

2.12 How the Rules Work,

We describe, which rules are tightly connected and which combination of rules solve

some subproblems, such as making the signature polymorphic. Furthermore we give the
sequence in which the blocks of rules should be applied and say, which rule to apply
first.

The priority of the rules is essential, since the set of rules without any priority may
run in a loop.

1)

2)

3)

4)

5)

6)

7)

8)

9)

The rules BT2, BT3, BT4, BTS, DD2 and DD3 have highest priority. They should be
applied, whenever possible. Every application of a rule BT2, BT3, BT4, BTS could be
followed by the deletion of the corresponding literal.

The rule BT1 should be applied, whenever possible, but the restriction is given, that
it may be possible, that the transformation of one or more unary predicates is
inhibited since a control module knows, that the transformation of this sorts is not
possible or incomplete.

The rules SC1, SC2, SC4, MS1 form a block of rules, which is able to complete the
sort structure, such that for all sorts 51-52 either 81 A 52 exists or Sl n 52 +d.In

this block, the rule SC4 must have lowest priority, since the uncontrolled application
of SC3 alone does not terminate.

The rule SC3 makes it possible to code more infor mation into the signature. It
avoids, that the relations between the sorts Sp depend on the sequence of

application of the rules. For example the clause P = Q is equivalent to -Q = -P, but if
the relation Sp s SO is generated, then the clause is deleted, but the relation

S_Q s S_p may be missing.

The rules S01, S02, SO3 together with the rules of 3) i.e. SC1, SC2, SC4, MS1 are able
to make the signature polymorphic. The priority of rules should be: SO2, S03, SC1,
SC2, MS1, SC4, SO1.

The rule S04 and S06 may be used to delete unnecessary information from SO(f)
(resp. the signature). This reduces the set of well-sorted terms, and possibly the
conditions for the rule RSCS are satisfied after application of this rules.

The rules RSCi should fire, if no other rules are applicable. In practical applications,
the addition of clauses by the rules RSC4 and RSC6 is very unpleasant, since they
introduce equality literals. They may be used to indicate, that the transformation is
possibly incomplete.

The rules ACi need some control, since it depends on global infor mation or
knowledge, which of this applications may contribute to a proof or not. Note that
every application of a rule ACi could be followed by a rule BTi.

The rules EQi are not essential, (we have not implemented these rules) since on the
one hand, an equality reasoning module exploits unit-equalities much better, and on
the other hand, in the connection graph calculus, all unifiers in all links have to be
recomputed after application of these rules.

10) The rule UCI is relevant only for a decision procedure for the corresponding clause

set.
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3. Soundness and Completeness of SOGEN,

In this chapter we show, that all rules preserve satisfiability repectively inconsistency
of the combination clause set + sort constraints + signature. Therefore a notion of
satisfiability (inconsistency ) is needed, which is given in a preliminary paragraph.

For a certain set of rules, we show that they terminate. Furthermore we prove, that
SOGEN provides a decision algorithm for clause sets, where all predicates and functions

are unary.

3.1.1 Definition. Notion of a mode! for CS and SC.
Let SIG = (8, IF, IP) be a signature. Let CS be a clause set and SC be a set of sort
constraints.
We say the CS + SC have an E-model (DSIGR), iff
i) (DSIGR) is an E-model for CS.

if) For all (PSp) € SC: SpP - (d 1 d € P and P(d) is valid), where SO(P) = (5)
iii) Por all (RS.T) € SC: RPnsD - 1D,

In the sequel we deal with signatures SIG and SIG’. We sometimes abbreviate 'STSIG
with WST and WSTg ;- with WST". The same holds for the symbols like SOS P, and IP.
We say a rule is sound, iff it preserves the satisfiability of CS + SC, a rule is said to be
complete, iff it preserves the inconsistency of CS + SC. We sometimes cite lemmas, which
are proved only for the case SC = ©. But all proofs are adaptable to the case SC+ @ in a

straigth forward way, since all clauses in SC could be coded as clauses (see rules RSC4
and RSCS).

The next definiton provides the notion of embedded algebras, which frequently occurs
in the rules of SOGEN,

3.1.2 Definition. (embedding of two algebras.)

Let SIG - (8, IF, IP) and SIG” - (8", IF, IP") be signatures and let (D,SIG) and (D" SIG’) be
algebras of type SIG, respectively SIG'.

We say (DSIG) is embedded in (D' SIG'), iff the following conditions are satisfied:

i) 88, FalF.

ii) WST ¢ WST"

iii) D = D', and D, D" have the same representationsfor Se S and f ¢ IF.

3.1.3 Lemma, Lifting and restriction of 8-homomorphisms in embedded algebras.

Let SIG - (8, IF. IP) and SIG" = (8", IF", [P") be signatures and let (D,SIG) be an algebra,
which is embedded in (D’ SIG").
Then we have: :

i) Por every $-homomorphism ¢: WSY - D, there exists an $-homomorphism
@: WST "D, such that ?|wst - ¢

ii) For every 8-homomorphism ¢: W8T " - D, the restriction ¢’ | ST is an
$-homomorphism ¢’ |WsT WST-D

Proof,

i) We define ¢'(x) = p(x) for all x € V. Since W8T is a free algebra with respect to SIG’
and since condition 3.1.2 iﬁ) is sausﬁed,’ this defines uniquely a $-homomorphism
¢ WST D, since - and DV’ Obviously, q;'l'sr - .

ii) From 3.1.2 iii) we conclude that the restriction ¢’ |WST is an §-homomorphism with
respect 10 SIG. m

The next lemma provides a tool for proving that a rule of SOGEN is sound and complete.
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3.1.4 Lemma. Let SIGSIG" be signatures, such that L s L". Let CS be a clause set, where
all literals are in L. Let SC be a set of sort constraints for SIG.
Then the following holds:
i) Given an E-model! (DSIG,R) for CS + SC and an algebra (D’,SIG’), such that (DSIG) is
embedded in the aigebra (D',SIG’), then there exists an E-model (DSIG' R’) for
CS + SC.
ii) Given an B-model (DSIG"R’) for CS + SC and an algebra (D,SIG), such that (DSIG) is
embedded in the algebra (D, SIG’), then there exists an E-model (D SIGR) for CS + SC.
Proof,
We can assume, that the equality predicate is in IP.
i) Let (DSIGR) be an E-model for CS + SC and let (D' SIG’) be an algebra, such that
(DSIG) is embedded in the algebra (D' SIG’).
We define R'- R, and show, that (D,SIGR’) is an E-model for CS + SC with respect to
SIG". The conditions 3.1.1 ii) and iii) are trivially satisfied, since the representations
of sorts and predicates are not changed. The equality is still represented as the
identity.
Now let @' : W8T - D be an $-homomorphism with respect to SIG'.
Then by lemma 3.1.3ii) ¢ = ¢'lyygy is an S-homomorphism with respect to SIG.

Since all literals in clauses of CS are in L, the images of clauses under ¢ and ¢" are

the same. Thus @'C is valid for all Ce CS, since @'C = ¢C and (D,SIGR) is a E-model.
ii) Let (DSIG' R’) be an E-model for CS + SC and let (D,SIG) be an algebra , such that

(D,SIG) is embedded in the algebra (D" SIG).

We define R = R', and show that (D,SIGR) is an E-model for CS + SC:

We show the nontrivial parti:

Let ¢ : WST - D be an $-homomorphism with respect to SIG. Then by lemma 3.1.3 i)
there exists an $-homomorphism ¢": W8T * - D (with respect to SIG), such that
9 |wsT - @- Since all literals in clauses of CS are in L, the images of clauses under

@ and @ are the same. Thus ¢'C is valid for all C ¢ CS, since ¢'C = @C and (DSIG' R) is
an B-model. m

The next lemma gives sufficient conditions, such that WST ¢ WST °, which is one of the
basic preconditions for an algebra D to be embedded in an algebra D'.

315 Lemma, Let SIGSIG be signatures and let y& - $° be a mapping.
Let the following conditions be satisfied:
i) FelF
il) yreT
iii) VRSeS:RsS =yRs ¢S
iv) ForallSe8 : Vgs V"s
v) For ce Gy : ¢ is contained incs'. such that S s" yR
vi) PoreveryfeIF \ C and for every (S4.Spe1) € SO(), there exists a tuple
(Sl'.....Sml') € SO'(f) with “'(Sl""'sn) s’ (Sl',....Sn') and sml' s’ Wsn+1.
vii) For every P e IP: ySO(P) - SO(P’)
Then i) WST < WST .
ii)LsL".
Proof. We prove yGS(t) & GS'(t) for all t ¢ WST by structural induction.

i) For all t e WST, we have GS'(t) 2 w(GS(1)) + 9, hence t ¢ WST .
ii)Let P(t;....t;) be a well-sorted literal. Then S; € GS(t;), where SO(P) = (S,...Sp).

Since yS; € wGS(ti) € GS'(ti). this literal is also well-sorted with respect to SIG'. m
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Proof of yGS(t) s GS'(t):
Base case. For x € ¥ we have yGS(x) € GS'(x) by condition iv).
For ¢ € Cg, we conclude from condition v), that yGS(c) s GS'(c)

Induction step. Let t = f(ty,...t;,) e WST and let S € GS(t).
Then there exist S; € GS(t;), i~1,..n and S, 4 € § such that (§,..5p,1) € SOf) and
Speq $S. Now the induction hypothesis implies yS; € GS(t;). Condition vi) yields,
that there exists a (S¢”....5y, 1) € SO'(f) with yS; " §;" and S 1" 5" yS,, . This
implies S, 1" € GS'(t). From yS 2" y§; .1 2" S;,{". we conclude yS € GS'(t). m

Remark, The mapping y in the lemma above is usually the identity on 8, or the
canonical mapping from 8 onto $/~.

3.2 Soundness and Completeness of the Rulesin 2.1

3.2.1 Lemma,. The introduction of new sorts is sound and complete.
Rule BT1:
IN a) SIG
b) CS CS contains a clause C, whose literals have all the same unary predicate P
¢) SC There is no pair (P,S) for some S in SC.
QUT a) SIG" 8’ -8 v (Sp), Sp is a new sort symbol, ¢ is a new constant of sort Sp-
Sp ¢ Spp is added, where Spp = SO(P). 5" is the transitive closure of .
b) CS° CS
¢) SC SCu{(P.Sp)).
Proof, We show, that IN has an E-model, iff QUT has an E-model.
IN - OQUT: Let (D,SIGR) be an E-model of IN, We show, that the conditions of 3.1.4 i) are
satisfied. Therefore we construct (D,SIG’) as an extension of (DSIG). Let
SpP - (d1d e SppP and P(d) is valid). We have SpP  5ppD.

Since IN has an B-model, there exists some dp € D, such that PD(dp) is valid. We have
SDPD + 0. The conditions of Lemma 3.1.5 are satisfied, if we choose y as the identity on
S.Then WST ¢ WST',andL ¢ L'. We take (DSIG') as the algebra with the same
representation as (D,SIG) on D, SPD as above and cP = dp. Now (DSIG) is embedded in
(DSIG’) and 3.1.4 i) is applicable.

OUT - IN. Let (D,SIG',R’) be an E-model for QUT, We define (D,SIG) as the restriction of
(DSIG). Then obviously (D,SIG) is embedded in (D,SIG’) and 3.1.4 ii) is applicable. m

322 Lemma, Changing the sort of a constant is sound and complete.
Rule BT2:
IN a) SIG ce G,

b) CS CS contains the clause {P(c)}
c¢) SC SCcontains (PSp) and a triple (Sp.S.T)
QUT a) SIG €5 =Cg \ (e} Cp'~Cp v {c)
b) ¢S CS
c) SC SC
Proof.
IN - QUT: Let (DSIG,R) be an E-model for ]N. We show, that the algebra (D.SIG) can be
.considered as an algebra of type SIG". It suffices to show, that ¢’ ¢ TD. We have
Pe SPD. since (P,Sp) € SC and obviousty Pe SCD. This together with (SpS.T) € SC

implies, that cD eTP. SpD n SCD . The conditions of Lemma 3.1.5 are satisfied, if we
choose y as the identity on 8, since T s* S, . Now Lemma 3.1.4 i) gives an E-model for
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QUT + IN: Let (DSIG'R’) be an E-model for QUT, Since T s S, (DSIG) is an algebra of

type SIG. The conditions of Lemma 3.1.5 are satisfied, if we choose y as the identity
on $. Now Lemma 3.1.4 ii) gives an E-model for IN. =

3.2.3 Lemma. The iniroduction of sort relations is sound and complete.
Rule BT3:
IN a) SIG
b) CS CS contains the clause (P(x)}, where [x] - S,.

c) SC (PSp)eSC

OUT a) SIG" §' -8, but Sy < Sp is added and <’ is the transitive closure of .
b) 5 CS
¢) SC SC
Proof.
IN - QUT: Let (DSIGR) be an E-model for IN, We show, that the algebra (D,SIG) can be
considered as an algebra of type SIG". Therefore it suffices to show, that SxD s SpD.

The conditions of Lemma 3.1.5 are satisfied, if we choose y as the identity on 8, hence
WST c WST . Letde SxD. There exists an $-homomorphism ¢: WST - WST", such
that ¢x - d. @{P(x)} - PD(d) is valid, since (DSIGR) is an E-model, hence d SpD.
Now Lemma 3.1.4 i) gives an E-model for QUT.

QUT - IN: Let (D.SIG'R’) be an E-model for QUT. Trivially, \D,SIG) is an algebra of type

SIG. The conditions of Lemma 3.1.5 are satisfied, if we choose y as the identity on $.
Then Lemma 3.1.4 ii) gives an E-model for IN. m

3.2.4 Lemma. Changing the sort of a variable is sound and complete.
Rule BT4:
IN a) SIG
b) CS CS contains the clause C « {(-P(x))} u A, where [x] = Sy

c¢) SC (P.Sp)eSCand (SpsS,.T) e SC.

QUT a) SIG
b) CS° €S =(CS\{C))v{C), where C - A" and x is replaced by a new variable
y of sort T.
c) SC SC

Proof,

IN - QUT: Let (D,SIGR) be an E-model for I[N, We show, that (D,SIGR) is an E-model for
QUT, It suffices to show, that the changed clause is valid under all $-homomorphisms.
Let 9: WST -~ D be an $-homomorphism. From T < Spand T < §; we conclude, that
gy € SpD and py € SXD. Since WST is free, there exists an $-homomorphism
7: W8T - D, such that nx - ¢y and TV(ANMD = | V(ANT) n((-P(x)} v A) is valid,
since (DSIGR) is an B-model, but n((-P(x))) is not valid, because mx € SpD. Hence m(A)

must be valid. n(A) = p(A’) implies , that the new clause A’ is valid under .
QUT - IN: Let (DSIG.R) be an E-model for QUT. Let p: WST » D be an $-homomorphism.
We determine, whether @({-P(x)} v A) is valid or not.
CASE px ¢ SpP.

Then @({-P(x)}) is true, hence C is valid under .

CASE greSpP.
The triple (S;,5p,T) is in SC, hence px € TD, Since WST is free, there exists an
$-homomorphism %: WST - D, such that ny - ¢x and
n |V(A)\(X) = Olv(A)\(x). 7(A’) is valid in the E-model (D,SIGR). m(A*) = Q(A)
implies , that A’ is valid under ¢. m
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325 Lemma, Adding tuples to SO(f) is sound and complete.
Rule BTS:
IN a) SIG
b) CS CS contains the clause C = {P(f(x4,...x,)}, where [x;] = S, and the
variables x; are pairwise different.
¢) SC (PSpleSC
OUT a) SIG" SO'(f) - SO(f)  {(Sy,...5.Sp))
b) &8 CS
c) SC SC

Proof,

IN - QUT: Let (D,SIGR) be an E-model for [N, We show, that (D,SIG) can be considered as
an algebra of type SIG". Let d; € S;0,i - 1,...n. We argue, that f2(d,...d ) € SpD. Since
WST is free, there exists an $-homomorphism ¢: WST - D, such that
Qxi - di 3 i= 1....,n.

(DSIGR) is an E-model, hence @P(f(xy...x;)) = PD(rD(dl.....dn)) is valid. Now
fD(d1 ,....dn) € SpD. since (P.Sp) € SC. The rest follows with Lemma 3.1.5 and 3.1.4 ).

QUT - IN: Let (D,SIG"R’) be an E-model for QUT. Obviously (DSIG) is embedded in
(DSIG’). Then Lemma 3.1.4 ii) is applicable. m

3.3 Soundness and Completeness of the Rules DDi.

In this paragraph we give only proofs for the nonstandard deletion rules such as
tautology deletion and a special kind of replacement resolution.

3.3.1 Lemma, The deletion of a tautology clauses {P(t)} u A, where (PSp) € SC and

S € GS(1), is sound and complete.
(Rule DD2 iii) 229 case)

Rule DD2. Clause Deletion Rules.
IN a) SIG
b) CS CS contains the clause C, which satisfies the following condition:
C={P(t)} v A, (PSp) € SCand Sp € GS(t). Le. C is a tautology.
c) SC
QUT a) SIG
b) CS° CS\{C}
¢) SC SC
Proof, IN - QUT: trivial
QUT - IN: Let (D,SIG,R) be an E-model for QUT, For every $-homomorphism ¢: WST - D:
pte SpD. hence PD(qn) is valid. Thus the whole clause {P(t)} v A is valid under ¢ . m

332 Lemma. The rule DD3 (replacement resolution) is sound and complete.
Rule DD3:
IN a) SIG
b) CS CScontains C - {-P(t)} v A, where Sp € GS(t)
¢) SC SCcontains (PSp).
OUT a) SIG
b) C5° (CS\{(C)) v (A},
¢) SC SC
Proof.
IN - QUT: Let (D.SIG.R) be an E-model for [N We show, that (DSIGR) is an E-model for
QUT. Let p: WST » D be an $-homomorphism. Then ¢C is valid. We have gt ¢ SPD and

hence PD(qn) is true. This means @(-P(t)) is false. Thus A is valid.
QUT - IN: trivial. m
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3.4 Sound | Comol [ SC-Manioulati

In this paragraph we prove, that the rules SCi are sound and complete. The first two
lemmas show, that the representations REPg , defined in paragraph 2.1, have the

intended meaning.

3.4.1 Lemma. Let (DSIGR) be an E-model for CS and SC.
Then: (Sy,..Sp) € REPg(S) »§;Pn .. a5 D-sD.

Proof. We verily the construction of the set REPg , see Definition 2.1.1. lL.e. the proof is
by induction.
i) SeREPg(S), Obviously sD.sD,
ii) Let (Sy,..S;..Sp) € REPG(S) and let (Ry R,S;) € SC. We have R;n RyD -5;P
and SID n.n S Dn.n Sa D _gD by the induction hypothesis. The replacemem of
S’D does not chanse the right side of the equation. Furthermore, if TOD Tl are
among the sets to be intersected, and Ty s Ty, then To s Tl ,and T1D can be

removed.
iii) Similar (trivial) arguments show, that case iii) is also correct. m

342 Llemma Let (S ....,Sn} and {Tl.....Tm} be sets of sorts such that
{84.-Sp} 55 (Ty....T ). Then in every algebra representation, which corresponds to
an E-mode! we have: 81D n.n SnD = T1D n.n TmD.

Proof. We show Slnn .nS DnTiDn nT D. Slbn "SnD‘
By the definition of <gc , for every T; there exists a S such that S s T;That means
S’D nT; D. sz Hence we can add successively the T; D to the right side of
S1 n..nSy 81D n.n S,_.‘D , getting the desired equality. m

343 Lemma. Adding trivial tuples to SC is sound and complete.
Rule RSC1 Trivial cases.
IN a) SIG containsTz$S
b) CS
c) SC contains (T S,S) or (S,T.S)
QUT a) SIG
b) S CS
c) SC SC\({(TSS),(STS).
Proof,
IN - QUT. Let (DSIG,R) be a E-model of IN, For S¢S, ¢8,5; 25,

implies, that SID 2 SzD. hence Sln n SZD - SZD.
QUT - IN. trivial. m

3.4.4 Lemma. The introduction of sort relations by intersection representations is sound
and complete.

Rule SC2:
IN a) SIG There exist S,T € $ and RPg € REPg((S) and RPp € REPg((T) such that
RPg sgc RPr and not S < T.

29
88

ouT SIG’

w

< T is added to <. <" is the transitive closure of <.

& a
B e
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Proof.

IN - QUT, Let (DSIGR) be an E-mode! of [N. Lemma 3.4.2 implies, that S° ¢ TP, Thus
(D,SIG) can be considered as an algebra of type SIG'. The rest follows with Lemma
3.1.5 and 3.1.4 i) in a standard way.

QUT - IN. trivial. m

3.4.5 Lemma, The application of contraposition is sound and complete.
Rule SC3:
IN a) SIG contains S¢ s SQ
b) CS
¢) SC contains the pairs (PSp), (-P.S_p), (Q.SQ). (-O.S_o). and the triples
(S.SpSy). (S.S_Q.Sz) .
QUT a) SIG S =S_pisadded tos. <’ is the transitive closure of <.
b) G CS
c) SC SC
Proof.
We apply some rules of the algorithm SOGEN, which we have proved to be sound and
complete. It is allowed to use all rules in two directions.
i) From$s S we can introduce the tautology VxS Q(x) .(Rule DD2)

( (Q.SQ) €SCand Sp e GS(x), since S < So )
ii) We replace this clause by the clause Vx:S P(x) = Q(x) .(Rule BT4)
((S.SpSy)€SC and (PSp) e SC).

ili) This is the same as Vx:S -Q(x) = -P(x). Then application of the rule BT4 yields the
clause Vx:$, -P(x). ( (5'5-0'52) € SC and (-Q.S,Q) €SC)

iv) Rule BT3 yields the relation SpsSpm

3.4.6 Lemma, Adding the intersection of two sorts is sound and complete.
Rule $C4:
m 8) SIG 31.52€S and51 ﬂ52 £ 0.
b) CS
¢) SC does not contain (S4.82.5) nor (S5.5(.8).
QUT a) SIG" §' =8 v (Sy). Sy is a new sort with Sy <" S¢, Sy <" S5, and S <" Sy for all
Se S1 n Sz. s’ is the transitive closure of <.
b) CS° CS
c) SC SC =SCu{(S;.8,5\)
Proof,
IN - OUT, Let (D,SIG,R) be an E-model of IN. SIG’ is a signature, since SIG’ is strict. We
construct an algebra (DSIG'): Lel SND - Sln n SZD. Then all relations between sorts
and their representing subsets of D satisfy Definition 1.2 ii). (D.SIGR) is an E-model

for SC'. Now by Lemma 3.1.5 and 3.1.4 i) there exists an E-model for CS" and SC'.
QUT - IN. Pollows trivially from Lemmas 3.1.5 and 3.1.4ii)m

3.4.7 Lemma. Making <85> cycle free is sound and complete.
Rule MS1, Deletion of cycles in <$,<>.
IN a) SIG There exist sorts STeS, suchthatS+T,S<T andT sS.
b) CS
c) SC /
OUT a) SIG §'.s">=<®/~,s'/~>, where~ is defined as: T~ S,iff T<sSand T2S.
In SO'(f) and SO'(P) sorts are replaced by their equivalence class.
b) CS° CS, where all sorts are replaced by their equivalence class.
c) SC SC, where all sorts are replaced by their equivalence class.
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Proof. .
IN - QUT, Let (DSIGR) be an E-model if [N, The relation ~ is an equivalence relation. Let
y: 8 - 8/~ be the canonical mapping. For S; ~ S,we have Sln - SZD. Lemma 3.1.5

and Definition 3.1.2 together imply, that (D,SIGR) is embedded in an algebra
(DSIG' R). An E-model of QUT can be derived from Lemma 3.1.4 i).

QUT - IN. Let (DSIG"R) be an E-model if QUT. The same arguments as above yield an
E-model of IN.

3.5 The Manipulation of S0 is Sound and Complete. (Rules SO

3.5.1 Lemma, To make f polymorphic is sound and complete.
(Rule SO1)

Rule S01, Making f a polymorphic funtion.
IN a) SIG 85> iscycle free. (Sg 1.-Sf ne1) is the greatest element of SO(f). The

following condition is satisfied:
For every (S{...Sp,1) . (T{...Tg, 1) € SO(f):

(Vi-1,.n §;nT;+0) » (Vi-1,.n §; A T; is unique) and there
exists a sort Ry, ¢ such that S, 2 Rp,q.
Tn+1 2 Rﬂ*i and (SIATl .....SnATn,Rn,1 ) € SO(f))

b) CS
c) SC
QUT a) SIG" where SO'(f) =

[ | Sj=S¢; fori=1...n and ]
{(S1.-Spe1) ISpeq is the least  element of the set: H
L | (5105155 8)€SO0(0) and S;s S; }

b) ¢S CS

c) SC SC

Proof,

IN - OUT, Let (DSIGR) be an E-mode of IN,

i) We show, that the definition of SO'(f) makes sense.: )
Let §;. 1 sisn, befixed, S; s Sp; Let MSS = (S| (S,..5,5) € SO(f), §; s 5;, 1 sisn).
Assume, that MSS contains two distinct minimal elements MS; and MS,. Let
(Ty...Tp.MS¢) and (Ty"...T ;" MS;) be (existing) (n+1) - tuples in SO(f) with T; 2 §;
and T;" z S;. The condition of Rule SO1 implies, (obviously T, nT; ¢ ) that there
exists a sort MS3 such that MS 2 MS3 and MS, 2 MS3 and
(T{AT{ oo TaTy MS3) € SO(f). Since <§,5> is cycle [ree and MS; and MS, are
minimal, MS - MS5 - MS3.

ii) We show, that the defined SO'(f) satisfies the conditions for a poly morphic
function.:
Let (84...8y,1) €SO'(f) and let (T,...,T;) €8P, such that (Ty,..Ty) < (S4...8,). Ifa
Tp.q exists, such that (Ty....Tp, ) € SO(f), then T, { is unique (by the definition of
S0°(f)). In order to show, that such a T, exists, is suffices to show, that the set

MSS above is not empty. But the maximal range-sort of f is always in MSS.
iii) (D,SIG) can be considered as an algebra of type SIG'.

Let d; e SiD 1 sisnandlet(Sy..S;, 1) €SO(f), Then l‘D(dl,....dn) ¢ SD for all
S€(S(Sy...5,5) €S0(),S; s S;. 1 sisn). Thusr(d,,..d e, L.

iv) Now Lemma 3.1.5 can be applied in both directions, where y is the identity, since
the condition 3.1.5 vi) is satisfied with S{=S;".1 sisnfor the direction $ - §",

and in the other direction " -+ $, the tuple in SO(f) , which has the minimal
element as range-sort is the desired one. Hence WST - W8T and (DSIG) is
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embedded in (DSIG’). Now Lemma 3.1.4 i) shows, that an E-model of QUT exists.
QUT - IN. We show only, that (DSIG) is embedded in an algebra (D,SIG'), the other
arguments are the same as above. Let (S¢,..S,,1) € SO(f) and let d; € SiD Jd<isn
By the definition of SO'(f), there exists aS,, ;" < S, ¢ With (Sy,..,$,.8,,17)€SO(f).
D D D
Hence f(dy,..dp)eSy ™ €Sy, 4. m

3.5.2 Lemma. The introduction of intersections of range sorts is sound and complete.
Rule S02:
Sne1 P Tpeq =2
b) CS
c) SC
OUT a) SIG' 8 =8 u (Sy), where Sy is a new sort. ¢ is a new constant of sort Sy.

SN S Sp.q and Sy < Tp,q isadded. <" is the transitive closure of <.
b) CS° CS
c) SC SC
Proof.
IN - OUT: Let (DSIG,R) be an E-model for IN. We construct (DSIG'), such that (DSIG) is
embedded in (DSIG').: Let SND - Sn+1D n Tn+1D- There exist d; € SiD n TiD JI<isn

Then f2(d;,.d.)e SyP. We define c® = fP(dy,..d_). By Lemma 3.1.5 we have
1=%n N 1=%n

WST ¢ WST and (DSIG) is embedded in (D,SIG’). The rest follows with Lemma
31.41).

OUT - IN Let (DSIG",R) be an E-model for QUT. Obviously (D,SIG) is embedded in
(DSIG'). The rest follows with Lemma 3.1.4.ii). &

3.5.3 Lemma. Adding a tuple of intersection sorts is sound and complete.
Rule S03:

b) CS
c) SC (S;5;.T)eSC fori=1,.n+1
ouT a) SIG SO'(f)-SO(f)u{(Tl,...,Tml)}.
b) CS° CS
¢) SC SC
Proof.
IN - QUT: Let (DSIG,.R) be an E-model for IJN. We show, that (D,SIG) is embedded in
(DSIG).: Let d; € TiD ,1sisn Then d;e SiD and d; e Si'D , 1 <isn Hence

rD(d, ..... d,)e S,MD n Sn,1'D - Tn,ID .By Lemma 3.1.5 we have WST ¢ WST . The
rest follows with Lemma 3.1.4 i).
OUT - IN . trivial m

3.9.4 Lemma. SO(f)-restriction is sound and complete. (Rule SO4)
Proof. Follows immediately from Lemma 3.1.5 and 3.1.4. =

3.5.5 Lemma. SO(P)-restriction is sound and complete. (Rule SOS)
Proof. Follows immediately from Lemma 3.1.5 and 3.1.4. m

3.6 Reducing SC.
In this paragraph it is proved, that the reformulation of conditions, which stem from

SC, is sound and complete, and that under certain preconditions, these (undesired)
clauses are not needed.

3.6.1 Lemma. Rule RSC1 is sound and complete.
Proof. trivial.
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3.6.2 Lemma, Deleting (P,Sp) is sound and complete, if S_p is not generated.

Rule RSC2:
IN a) SIG
b) CS neither P nor -P occurs in CS.
¢) SC contains (P,Sp), but no pair (-PS_p)

QUT a) SIG Pisremoved from SIG.
b) CS° CS
¢) SC SC =SC\{(PSp).

nel

roof.

IN - OUT: trivial.

OUT - IN. Let (D,SIG'R’) be an E-model for QUT. We change the relation PP of R in the
following way: PD(d) should be valid iffde SpD. Then the resulting (D,SIGR) is an
E-model for IN, since the predicate P does not occur in clauses of CS and the
constraint defined by (PSp) € SC is satisfied. m

3.6.3 Lemma, Deleting (P.Sp) and (-P.S_p) from SC and adding the appropriate clause is
sound and complete.

Rule RSC3.
IN a) SIG
b) CS neither P nor -P occurs in CS.
¢) SC contains (P,Sp) and (-P,S_p)

OUT a) SIG" Pisremoved from SIG. Two new functions f, and {_ are added to [F.
With SO(P) = Spp. the (not polymorphic ) functions have Spp as their
domain and Sp and S_p as their range respectively.

b) CS° CSu{{VxSp, y:S_p x& y}}u{(VxSpp, x& [ (x)vx=[ (x)))
c) SC SC' =SC\{(PSp) (-PS_p)).

Proof.

IN - OUT: Let (D,SIG,R) be an E-model for IN.
We define an E-model for QUT. Let the algebra (DSIG’) have the same
representation as (D,SIG). We have to define the representation of f, and f : Let

d_peS_pPand let dpeSpP be fixed.f,(d) = d,f deSpand f,(d):=dp,if d €S_p.
f(d):=d ifdeS pandf (d):=d_p,if d € Sp.We define R to be R where the

relation PP is removed. Our task is to show, that (D,SIG",R’) is an E-model for OUT.
Let 9: WST » D be an §-homomorphism.
It suffices to show, that the new clauses are valid in the model.
o(x # y) is valid: Assume, that ¢(x % y) is not valid. Then @x = 9y = d, where
de SpD n S_pD . But this is impossible, since either PD(d) is valid or -PP(d) is

valid (equivalently PD(d) is not valid) in (DSIGR).
o(f (x)=xvf (x)=1)isvalid: Let px = d; thende SDPD and either PP(d) or -PP(d)

is valid, hence either d € SPD ord €S_ D Thus either d = f,(d) or d =f_(d). This
means, that @( f,(x) = x v f_(x) = x ) is valid.

QUT - IN: Let (DSIG'R’) be an E-model for QUT. We define an E-model (D,SIG,R) for IN.
LetR=Ru {PD), and let PP(d) be valid, iff d € Sp. It suffices to show, that the

constraints (P,Sp) and (P,S_p) are satisifed in (D,SIGR). We have

(d 1 -PP(d) is valid) - SDpD \ SpD. From the clause x # y we get that SpD n S,pD =0,
and from the clause f (x)=xvf_(x)=x we get, that SpD uS_pD = SDPD .

Thus {d | -PP(d) is valid) -ShpD.
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3.6.4 Lemma. Deleting (P,Sp) and (-P,S_p) is sound and complete in a special case.
Rule RSC4:
IN a) SIG Pel?,SO(P) - Spp. For every ground term L
SDP € GS(t) » SP € GS(t) v S_p € GS(t)
b) CS neither P nor -P occurs in CS. CS contains an equality literal
c) SC contains (P,Sp) and (-PS_p)
QUT a) SIG Pisremoved from SIG.
b) CS CSu {(VX=SP. Y=S_p X& Y}}
) SC SC\{(PSp) (-PS_p.
Proof.
IN - QUT: see the proof of the lemma above.
OUT - IN: Let (D,SIG" R’) be an E-model for QUT. We can assume, that D is the image of
WSTgr (under every S-homomorphism). The condition for ground terms t imply
that SDpD - SPD v S_pD. From the clause x % y we get that SpD nS_ D. Q. Now it is

easy to construct an E-model for I[N. m

We give an example, that the unrestricted deletion of (P.Sp) and (-P.S_p) from SC may
be faulty:

3.6.5 Example. Let the unsatisfiable clause set be:
{-P(x) Q(x x) }; { P(x) Q(x x) }; { -Q(a a) } ; {P(c) }. {-P(d) }.
A derivation of the empty clause is possible.

The clause set after the transformation is:

{(x:Sp Qx x) ); (x:8_p Q(x x) }; (-Q(a a) )
If (PSp) and (-P,S_p) are deleted from SC, then this clause set does not allow a
derivation of the empty clause: all clauses are pure and the clause set is satisfiable.

This example may also serve as an example, that the usage of the union of sorts may
lead to undesired effects:

In the above clause set the information, that Sp v S_p =T makes the clause set
unsatisfiable, since then the constant a is either of sort Sp or of sort S_p. But all the

clauses remain pure in the sense of complementary unifiability. Hence the purity
reduction rule is not correct in this case.

3.6.6 Lemma. Deleting (PSp) and (-P,S_p) is sound and complete in a special case.
Rule RSCY:
IN a) SIG PelP,SO(P) = Spp. For every ground term t:
SDp € GS(t) = (Sp € GS(t) &= S_p ¢ GS(t) ).

b) CS neither P nor -P occurs in CS. CS contains no equality literal
c¢) SC contains (PSp) and (-P.S_p)
OUT a) SIG' Pisremoved from SIG.

b) CS° CS
c) SC SC\ {(PSp) (-PS_p)}.

Proof.

IN - QUT: trivial.

QUT - IN: Let (D,SIG',R’) be an E-model for QUT. We can assume, that D is the image of

WSTgr (under every §-homomorphism). The condition for ground terms t imply

that SDPD = SPD u S_pD and that SpD n S_pD = . Now it is easy to construct an

E-model for [N. =
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3.6.7 Lemma. Deleting intersection information from SC is sound and complete provided
the appropriate clauses are added.

Rule RSC6.
IN a) SIG
b) CS
¢) SC contains (Sl-SZ'T)- where Sy #T,5) #+Tand §4aS, =T
QUT a) SIG A new (skolem) function g is added to SIG where g has domain-sort
§{ and range-sort T and (S,8) € SO(g) for all S < T
b) CS° CSL{{VXS{, ySy . x#yvgx)=1})
¢) SC SC\{(S4.57.T)(S2.81.T)).
Proof.
IN - OUT: Let (DSIGR) be an E-model for IN. We construct an E-model for QUT. We
define gD(d) =d for every d e TP For dye SID and dye SZD either dy # d, or

dy=dpandd; e TD. For both possibilities, the new clause is valid. Hence there exists

an E-model for QUT.
QUT - IN: We show only, that 51D n SZD -0, Obviously SID n SZD 27D

Letde 51D n SZD. Then d # d is false, hence d = g(d) is true. But this means d € D

3.6.8 Lemma. Deleting intersection information from SC is sound and complete in a
special case.
Rule RSC7.
IN a) SIG
b) CS = occurs only in unit-clauses. For every triple (5,T,S) and for every
literal s = t, which follows semantically ( = ) from the equality clauses in
CS, where S e GS(s) and T € GS(t) hold, there exists a term tg , such that

§" € GS(tg-) and s = 15- follows semantically from the equality clauses in

CsS.
c) SC For every triple (S4.57S3) € SC: 5445, - Sz
QUT a) SIG SIG
b) G5 CS
c) SC SC\({all triples in SC}).
Proof.
IN - QUT: trivial.

QUT - IN: Let (D,SIG",R’) be an E-model for QUT. Then we can assume, that
D= WSTgr / ~, where ~ is the congruence relation on terms defined by the

unit-equalities of CS. We show, that SlD

n SZD = S3D for every triple (81,52.53) € SC.
Letde SID n SZD. Then d =D d is valid. There exist 11y € WSTE,.. such that

1 €GS(ty), S, €GS(ty) and t ~ t,. The condition of RSC7 implies, that there exist
aterm i3 of sort 53 =Sy »55and 13 ~1,. Hence 13D =d € S3D. ]

3.6.9 Example. The creation of intersection of sorts may be incomplete, if this
infor mation is not coded in clauses. We give an unsorted contradiclory clause set and
transform it in a sorted one, which is satisfiable, if the intersection clause is missing.
The clause set is:
Alf(xy)); B(g(xp)) f(a)=g(b); Alx3)a Blxz)= -P(x3x3); P(f(a), f(a)); Alc);Blc).

The empty clause is deducable, since A(f(a)) and B(f(a)) are deducable, and hence
-P(f(a), f(a)) is deducable.
After the transformation, we have the sort structure § = (TS A,SB,SC} with S, 2S¢

and SB > SC- The signature contains the information: f: T - S A BT SB; c¢C; aT, b

The clauses are:
f(a) mg(b), -P(x4,x4) (Where x4Sc), P(f(a), f(a)).

Paramodulation into -P(x“,xq) is not possible, since the x 4 is not unifiable with f(a)
or g(b). Paramodulation into the third clause is possible, the first argument of all
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paramodulants is either f(a) or g(b).The empty clause is not deducable, since
-P(x4,1,) and P(f(a),...) respectively P(g(b),..) are not unifiable. The reason for this
incompleteness is, that SCD is not forced to be identical with S AD n SBD in an
E-model. If we add the clause VXS, ,ySgx#yv h(x)=x ,wherehS) »Scisa

new function, then a deduction of the empty clause is possible, since we can deduce
h(f(a)) = f(a) and P(h(f(a)), h(f(a))). The latter is unifiable with -P(x4x ).

3.7 The Rules ACi are Sound and Complete,

3.7.1 Lemma. The rules AC1, AC2 and AC3 are sound and complete.
Proof. These rules are correct, since the clauses, which are added, are tautologies and
hence true in every E-model. m

3.7.2 Lemma. Splitting a clause into two is sound and complete.
Rule AC4.
IN a) SIG SO(P) =Spp

b) CS CS contains a clause C, such that there exists an x € V(C), with
[11 =Sg SDP
c¢) SC contains (P,Sp), (-P.S_p), ($Sp.S1), (85_p.Sy).
QUT a) SIG SIG
b) CS" CS\{C}u {Cl' CZ}. where Ci is the clause C, but the variable x is
replaced by x;: §;.
c) SC SC
Proof.
IN - OUT. trivial, since the clauses C; are instances of the clause C.
QUT - IN. Let (DSIG,R) be an E-model of QUT. Let ¢:WST - D be an §-homomorphism.
Then gpx € 81D or Px € SZD. since either PD(qx) is valid or -PD(gx) is valid. We assume
w.log., that ¢xe SID. Then an §-homomorphism ¢: WST » D exists with

PIV(C) = P1IV(C) and ¢x = @xy. We have ¢C= ¢,Cy, hence ¢C is valid. m

3.8 Sort Manipulations.C v Bauii

3.8.1 Lemma. Rule EQ1 is sound and complete.
Rule EQ1.
IN a) SIG

b) CS CS contains a clause {s=t},Se GS(s), Te GS(t)and SnT =0
¢) SC

QUT a) SIG" 8 =S v (Sy), Sy is a new sort symbol; ¢ is a new constant of sort Sy.
Sy ¢S and SN < T is added. . <" is the transitive closure of <.
b) CS° CS
¢) SC SCu ((S.T.SN)).
Proof.
IN - QUT. Let (DSIGR) be an E-model of [N . The nontrivial part is 1o show, that

sPaTD: @ For every S-homomorphism @: WST - D, we have ¢s = ¢t , hence
Pse sDatD -SND.

OUT - IN. trivial. m

3.8.2 Lemma. Rule EQ2 is sound and complete.
Rule EQ2.
IN a) SIG contains a constant c of sort S,

b) CS CS contains a clause {c = ), S € GS(1).
¢) SC contains (S,S,S.,).
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QUT a) SIG the sort of ¢ is changed into Sct:
b) CS° CS
¢) SC SC
Proof.
IN - OUT. Let (DSIGR) be an E-model of IN We have e S Dns D -5 D

ct
OUT - IN. trivialm

3.8.3 Lemma. Rule EQ3 is sound and complete.
Rule EQ3,
IN a) SIG
b) CS CS contains a clause {x = t}, T € GS(t). and ¥ is a variable of sort S.
¢) SC

OUT a) SIG" S <Tisadded. < is the transitive closure of s.
b) CS° CS
c) SC SC
Proof.
IN - OUT. Let (DSIGR) be an E-model of IN. For every d e sD there exists an
S-homomorphism ¢: WST - D, such that ¢x - d. We have d = ¢t , hence d ¢ D we
conclude SP ¢ TD.

QUT - IN. trivialm

384 Lemma. Rule EQ4 is sound and complete.
Rule EQ4,
IN a) SIG (Sl,...,Sml)e SO(f)

b) G (S contains a clause {f(x;,...xy) = t}, T € GS(t). and the x; are distinct
variables of sort §;.
¢) SC contains (S;,1.T.5")
OUT a) SIG" SO'(f) = SO(F) u {(S,..8,.5)).
b) CS° CS
c) SC SC

Proof.
IN - QUT Let (D,SIG,R) be an E-model of IN. For every d; € SiD there exists an

2(dy,..dp) €Sy, D TD -sD,
OUT - IN. trivial. m

3.9 Decision Rules for Clause Sets with Unary Predi U
Functions.

391 Lemma. Rule UC1 is sound and complete.

Rule UCL,

b) CS CS contains a literal +P(g(t))
c) SC
QUT a) SIG P8 is a new predicate with SO(Pg) = (T).

b) €& CS"v ((Vx;S; -P(g(x;)) v Pg(xim v {{(Vx;S; P(g(x;)) v -Pg(xi)}} for all i,
where {S;,...S,) = MAXAT4| (T{.T,) € SO(g) .T<Spp).

CS" is the clause set CS, where all literals of the form tP(g(t)) are
replaced by the ng(t).

c) SC SC
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Proof.

IN - QUT: Let (D,SIG,R) be an E-model of IN. Note that the new clauses are well-sorted.
FordeD, let Pg(d) be valid, iff PD(gD(d)) is valid. We have constructed an E-model of
QUT.

OUT - IN, The added clauses guarantee, that Pg(d) is valid, iff PD(gD(d)) is valid. The rest

ig trivial.m

3.9.2 Lemma. For a clause set, where all predicates and functions are unary (no equalitiy
literals are allowed), there exists a sequence of applications of rules of SOGEN, such
that a set { (SIG;,CS;SC;), i=1,...n } (ie. splitparts) is produced and CS; = @ for all i. The

initial clause set is contradictory, iff all elements of this sets are contradictory.

Proof. With rule UC1, it is possible to transform the clause set, until all clauses with an
occurrence of a function are among the clauses, which are added by UC1. By case
analysis (rule AC1), for every unary predicate we can introduce sorts. Obviously, all
clauses are deleted and coded into the signature and SC. Now the rules (AC3 + BT),
S0i,5Ci, and MS have to be applied until the rule AC3 is not applicable and the
signature is polymorphic. Then Lemma 3.10.1 is applicable. m

3.10 Termination of SOGEN.
3.10.1 Lemma. Let SIG be a polymorphic signature. Let CS be the empty clause set. Then
an E-model for CS,5C exists , iff for every two pairs (P,Sp). ( -P.S_p) € SC and all sorts

Se§: SSSP@ ﬂ(SSS_p).

Proof. "=": The only-if part is trivial. .
"<": Let the conditions above be satisfied. We have to construct an E- model for SIG,CS,
SC.Let $4,..S,, be the minimal sorts of SLetD ={s;li=1,..n} where all s; are

different elements. We define the algebra (D.SIG):

SiD ={s;}. I c is a constant of sort S, then we choose a minimal sort Sy < S, and
define ¢ - sy For a function f and (Ty,...T, 1) € SO(f), such that the T, are
minimal sorts, we choose an element d; .y e Dwith d; 4 € Sn+1D- For the unique
elements d; € SiD we define fD(dl,.._,dn) = dp, 1. With these definitions (DSIG) is an

algebra of type SIG, since S1G is polymorphic.
WehavesP- L JrD

TsS, S minimal
This implies that all intersection restrictions are satisfied. The pairs (P,SP). (-P,S_p)

are equivalent with SPD n S“pD = and SPD V] S,,pD = SDPD. where SO(P) = Spp- But
since for all sorts S < SDP we have S' g Sp or S s S_p . these conditions are
satisfied. m

3.10.2 Lemma, Given arbitrary SIG and SC, the rules MS1, SC1, SC2 and SC4 can be
applied only finitely many times, provided the rules MS1 and SC2 have an higher
priority than SC4. The resulting <§,<"> has the following properties:

i) For allS{,S,€8: Sy nS,+ & implies, that there exists a Sy¢ 8§, such
that (51,32,33) €SCand that S < Sz for all Se Sy n S, ie either
S1 A S, exists and equals §4 n 52 or Sy nSy=4.

i) 8,5 is cycle-free.

Proof. The Rule MS1 does not increase an intersection base BASESC. The same holds for
the rule SC4. Now the number of possible equivalence classes (with respect to "'SC) is
finite. Since any relation ~g. or <g( is immediately transformed in a relation

between sorts, and ~ is immediately factored out, the application of the Rule SC4 1s
possible only once for every combination REP{, REP, of subsets of BASEg. The

number of such combinations is finite, hence SC4 can be applied only finitely many
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times. But then MS1 and SC2 are trivially applicable only finitely many times. =

The next lemma shows, that a certain combination of rules terminates and that the
resulting signature is polymorphic.

3.10.3 Lemma. For any imput IN , we can apply the rules SC1,5C2,SC3,5C4, MS1,
501,502,503 only finitely many times, provided the rules have the priority: SO2,
S03, SC1, SC2, MS1, SC3, SC4, SO1. The resulting signature is a polymorphic one and
the sort structure <8,<> is a semilattice.

Proof.

No one of the rules mentioned above increases BASEg. The same arguments as in

3.10.2 show, that the rules S02, S03, SC1, SC2, MS1, SC3, SC4 can be applied only
finitely many times. We show, that after termination of these rules:
- <8< is a semilattice,
- the precondition of SO1 is satisfied.
- rule SO1 makes SO(f) polymorphic for every f.
i) That <8.<> is a semilattice is trivial, since for every RS € §:
ifRnS %0, thenRaS is defined and (RS.R A S) € SC.
it) «8,s> is cycle free, since the rule MS1 is not applicable.
For Si -Ti with Si n Ti + 0, the element Si A Ti is defined and unique, since

otherwise either SC4 or MS1 fires.

The rule SO2 does not fire, hence for two tuples (Sl ..... Sml) and

(Tq,Tpe) €SO(0):S;nT; +0,i=1,..n ,wehaveS  nT 4 +0.

The rule SO3 then yields a R, ¢, such that (S4aTy,.., S;aT Ry, 1) € SO(F).

iii) Let (Sy,..S,,1) € SO(f) and let (Ty,...Tp) < (S4...S,) . Then thereexistsaTy,; .
such that (T,...T;,1) € SO(f) and T 4 <S4, since S, ¢ is the minimal element

of a set Mg and T, 1 of M, and obviously Mg e Mt. ®
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4. i eductio

The reduction rule given here is a very complex one. It does not directly reduce the
search space of a problem, but is able to detect some hidden sort-information. With this
reduction rule, the results in Example 5.4 are the same in i) and ii). This means, that the
sort-generation becomes stronger. Unfortunately, this reduction rule can not be
transformed into deductions.

4.1 Theorem. Let CS be a clause set, f € P be a (fixed) function.
Let the following conditions be satisfied:
i) Cq.-Cy are exactly the clauses with an occurence of f.

ii) G- Ci,O v Ci.f , Where Ci,O is the f-free part of C; and Ci,r are the literals of C; with

an occurence of f.
iii) Cyg=(P(ty,..t )} every subterm of Cl.f starting with f is identical

with f(xl....,xn), where the x;'s are distinct variables of maximal sort

iv) V(CU-) € (xy,..1p5)

v) For every subterm U f(sq,...5,) of ij , there exists a Z-substitution A with
DOMQ) € V(C{) \ {xy,..x5} and A+(x; « 5;li-1,..0 }Cigs Cio-

vi) There exists a unit clause P(ry,.., rp) in CS, such that t Cyp = P(rq...cq), where
Cyg isconstructed from Cy ¢ by replacing all terms f(x4,...x) by a (new) variable
Yo of sort Sf , the maximal range sort of f. The matcher t should have the

vii) There exists a unique minimal range sort S¢ min ©f { such that [ryol S 8¢ min
( T is the substitution of vi) )

Then we can replace Cl o by any subset of Cl 0 without loosing soundness and
completeness.

Proof.

Let CS* be the clause set after removing literals from CI,O- We show, that CS has an
E-model, iff CS* has an E-model:

The one direction is trivial.

We prove, that CS* is satisfiable, provided CS is satisfiable:

Let (D,SIGR) be an E-model for CS.

We construct an E-model of CS*:

[ | djeSy iD. For every § -homomorphism ¢: WST - D, )
LetN= {(dy,..dy) | with ox; = d;, ¢Cy o is valid in (DSIGR). ¢
L I J

We define an algebra E of type SIG with E = D, but the representation is different:
Sorts: SE-sProraises.
Constants: cE=cPforallc e
Functions: For g #f, let gD - gE.

-----

that 904, 4,-Tx=d; .
We define fE(dl,...dn)-q)Dd"._'dn('tyo).

The condition vii) now guarantees, that E is an algebra of type SIG, since the mapping
properties of (E are satisfied.
The set of relations R is not changed.
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There is a 1-1 correspondence between $-homomorphisms w.r.t. E and §-homo-
morphisms w.r.t D. 31) corresponds to wE, iff they are equal on all variables.
y

Obviously wE(L) = yY(L) for every literal, which does not contain the function symbol
"f",

Now we show, that (ESIG,R) is an E-model of CS*:
Let (pE: WST - E be an $-homomorphism and let cpExi - d;.

a) The changes do not affect the clauses in CS \ {Cy....C ), hence they are true under all

$-homomorphisms q)E= WST-E
b) The clause C;* is true in (ESIGR):

CASE (dy,..d;) ¢ N. Then an §-homomorphism 60 WST - D exists, such that
BDxi - cpExi. Hence by construction of N, there exists an S-homomorphism
wD: WST - D, such that WD(CI,O) is not valid. But then wDC1 1 is true, because

(DSIG,R) is an E-model. From the conditions iii) iv) and the definition of f Eit
follows, that wDC” = qJECI £ » hence cpECu is valid in (ESIG,R).

identical with q;Dm'__.dn: WST - D on all variables.
We have (pE(xi) - tpdE-r(xi) - d; and

q)Er(x jenTg) =

=f E(dl....dn) (definition of an $-homomorphism)

- 924 qalty0) (definition of fE and (d;,.d ) e N)

= prd(ryO) (tyg is f-free)

Hence we have:

‘PECLf =

-9Bg T (Cyp) (9B(0(x,..x)) = B getlyg) and @B(xp) = 94Br (x))
- prd(P(rl ..... ) (see condition vi) )

- ({)Dd, _da (Plegar ) (Plry,..r ) does not contain f).
This shows, that Cy ¢ is valid in (ESIG.R) under q)E.

iii) Cl- is true in (ESIGR) for j 2 2:
CASE For every subterm f(sy,..s) of cjf we have (cpEsl,..., qJEsn) ¢ N.:

Then for the corresponding S-homomorphism q)D: WST-D

( (pr = tpEx for all variables x) we have (pDCj = cpECj, since

(E (qJEs1 Q)Esn) =P (ch‘sl ..... chsn). Hence Ci is true in (ESIGR).
CASE A subterm f(sy,..s,) of Ci £ exists such that (q)Esl,..., q)Esn) eN.

Let 6 = (x{ «s;,i=1,.n }. & is an §-substitution. From condition v),

we have that there exists an $-substitution A with A6 ¢ 0S Ci.O‘

The following equalities hold:

qJE A6X; =
=¢Eksi (6 Xi=Si)
-gFs; (DOM(A) nV(s;) - & )

Now ¢E( A6 Cy o) is valid, since (q)E A6 Xy, oF L6 1) eN @F Xes is an
$-homomorphism (= ch A6 onCy ) and Cy isf-free. Hence q)E (Ci o) is also
true. m
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3. Examples

In this section some examples are given, which demonstrate the power of SOGEN:

5.1 Schubert’s Steamroller [Wa84]
The problem of Schubert reads as follows:
Wolves, foxes, birds, caterpillars, and snails are animals. Grains are plants. There exist
wolves, foxes, birds, caterpillars, snails, and grains.
Every animal eats all plants or any smaller animals that eat some plants.
Birds are smaller than foxes which in turn are smaller than wolves. Wolves do not eat
foxes or grains. Birds eat caterpillars, but no snails. Caterpillars and snails eat some
plants.
The theorem to prove is:

There is a grain eating animal that is eaten by another animal.

Here is a axiomatization in first order predicate logic (without sorts):

WOLF (x) = ANIMAL (3);
FOX (x) = ANIMAL (x);
BIRD (x) = ANIMAL (x);
CATERPILLAR (x) = ANIMAL (x);
SNAIL (x) = ANIMAL (x);
GRAIN (x) = PLANT (x);

WOLF (LUPO) a FOX (FOXY) a BIRD (TWEEDY) a» CATERPILLAR (MAGGIE)
A SNAIL (SLIMEY) a GRAIN (STALKY) ,

Vvw: ANIMAL(w) = ((vx PLANT (x) = EATS (wx)) v
((Vy: ANIMAL(y) » SMALLER (y w) a (3z: PLANT (z) a EATS(y z)))
> EATS (wy)):

CATERPILLAR (x)  BIRD (y) - SMALLER (x y);
SNAIL (x) A BIRD (y) = SMALLER (x y);
BIRD (x) A FOX (y) =» SMALLER (2 y);
FOX (x) a WOLF (y) > SMALLER (xy);
WOLF (x) A FOX (y) > 1 EATS(x y);
WOLF (x) » GRAIN (y) = 1 EATS(x y);
BIRD (x) A CATERPILLAR (y) = EATS(xy)
BIRD (x) a SNAIL (y) 5 1 EATS(x y);
CATERPILLAR (x) = (3y: PLANT (y) A EATS (x y));

SNAIL (x) = (3y: PLANT (y) a EATS (x y));

- EATS (X X);

ANIMAL (x) < ~PLANT (),

Theorem:
3x,y: ANIMAL (x) » ANIMAL (y) » EATS (x y) & (VzZ GRAIN (z) = EATS (y z)

Normaljzation and skolemization yields the clauses:
Ax1  -WOLF (x), ANIMAL (x),

Ax2  -FOX (x), ANIMAL (x),

Ax3  -BIRD (x), ANIMAL (x) ,

Ax4 -CATERPILLAR (x), ANIMAL (x);
AxS  -SNAIL (x), ANIMAL (x) ;

Ax6  -GRAIN (x), PLANT (x);

Ax7 WOLF(LUPO) ;

Ax8  FOX(FOXY) ,

Ax9 BIRD (TWEEDY),

Ax10 CATERPILLAR (MAGGIE) ;
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Axit SNAIL (SLIMEY),

Ax12 GRAIN (STALKY),

Ax13 -ANIMAL(w), -PLANT(x), EATS(w x), -ANIMAL(y), -SMALLER(y w),
-PLANT (z), -EATS(y z), EATS(wW y) ;

Ax14 -CATERPILLAR (x), -BIRD (y), SMALLER(x y) ;

Ax15 -SNAIL(x), -BIRD(y), SMALLER (x y) ;

Ax16 -BIRD (x), -FOX(y), SMALLER(x y) ;

Ax17 -FOX(x), -WOLF(y), SMALLER(x y) ;

Ax18 -WOLF(x), -FOX(y), -EATS(x y) ;

Ax19 -WOLF(x), -GRAIN(y), -EATS(x y) ;

Ax20 -BIRD(x), -CATERPILLAR(y), EATS(x y) ,

Ax21 -BIRD(x), -SNAIL(y), -EATS(x y) ;

Ax22 -CATERPILLAR(x), PLANT(fl(X)) ;

Ax23 -CATERPILLAR(x), EATS(x f{(x)),
Ax24 -SNAIL(x), PLANT(f,(x)) :
Ax25 -SNAIL(x), EATS(x fp(x));

Ax26 ANIMAL(x), PLANT(x),
Ax27 -ANIMAL(x), -PLANT(x),
Ax28 -EATS (x x),

Th1  -ANIMAL(x), -ANIMALC(y), -EATS(x y), GRAIN(f3(Y X)),
Th2  -ANIMAL(x), -ANIMAL(y), -EATS(x y), -EATS(y f3(y 1)),

The Automated Theorem Prover(ATP) MKRP [KM84] has found a contradiction after 59
resolution steps. This proof uses only unit-resolution steps and was actually found by
the Terminator-module [AO83].

This clause set was transformed by SOGEN into it's sorted version. The resulting
signature and clauses are:
Sorts: T 2 S+ANIMAL, S+PLANT,
S+ANIMAL 2 S+WOLF, S+FOX, S+BIRD, S+CATERPILLAR, S+SNAIL
S+PLANT 2 S+GRAIN
Constants: LUPQ: S+WOLF; FOXY: S+FOX; TWEEDY: S+BIRD;
MAGGIE: S+CATERPILLAR; SLIMEY: S+SNAIL; STALKY: S+GRAIN.
Functions: f;: S+«CATERPILLAR - S+PLANT

f7: S+#SNAIL - S+PLANT
f3: S*ANIMAL x S+ANIMAL - S+GRAIN.

Clauses:
IC1 (Ax28) xT -EATS(x x)
IC2 (Ax23) x:S+CATERPILLAR +EATS(x I‘](x))

IC3 (Ax25) x:S+SNAIL +EATS(x f,(x))

IC4 (Ax14 x:S+CATERPILLAR, y:S+BIRD +SMALLER(x y)

ICS (Ax15) x:S+SNAIL, y:S+BIRD +SMALLER(x y)

IC6 (Ax16) x:S+BIRD, y:S+FOX +SMALLER(x y)

IC7 (Ax17) x:S+FOX, S+WOLF +SMALLER(x y)

IC8 (Ax18) x:S+WOLF, x:S+FOX -EATS(x y)

IC9 (Ax19) x:S+WOLF, x:S+GRAIN -EATS(x y)

IC10 (Ax20) x:S+BIRD, x:S+CATERPILLAR +EATS(x y)

IC11 (Ax21) x:S+BIRD, x:S+SNAIL -EATS(x y)

IC12 (Ax13) xy:S+ANIMAL zu:S+PLANT +EATS(x u) -SMALLER(y x)
-EATS(y z) +EATS(x y)

IC13(Th2)  xy:S+ANIMAL -EATS(y x) -EATS(x f3(x y))
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The MKRP Theorem Prover found a (unit-) refutation for this clauses set after 11 steps
(including 10 resolutions and one factorization). The used CPU-time for the
transformation and the search for the proof in the sorted clause set was remarkably
shorter than the search for the proof in the unsorted version.

We note some difficulties in getting this result from SOGEN.

1) The theorem clause Th1 was deleted by the literal reduction rule
mentioned in chapter 4.

2) To obtain the signature of the functions [{, {5, and f 3 the restriction

rule is neccessary (S04).

3) The rule SC3 is needed to identify the sorts S-PLANT S+ANIMAL
and S-ANIMAL, S+PLANT.

4) The transformation is complete , since the preconditions of rule RSC4
are satisfied. m

.2 The Lion & Unicorn Examples

These examples are taken from “What is the Name of This Book” [SM78], which
appears to be a goldmine for theorem proving examples. During a course on automated
theorem proving in the last semester, our students had to translate these puzzles into
first order predicate logic and to solve them with our theorem prover (Markgraf Karl
Refutation Procedure) [KM84]. Two of these problems (Problem 47 + 48) read as follows:
"When Alice entered the forest of furgetfulness, she did not forget everything, only
certain things. She often forgot her name, and the most likely to forget was the day of
the week. Now, the lion and the unicorn were frequent visitors to this forest. These two
are strange creatures. The lion lies on Mondays, Tuesdays and Wednesdays and tells the
truth on the other days of the week. The unicorn, on the other hand lies on Thursdays,
Fridays and Saturdays, but tells the truth on the other days of the week."

Problem 47: One day Alice met the lion and the unicorn resting under a tree. They made
the following statements:

Lion:  Yesterday was one of my lying days.

Unicorn: Yesterday was one of my lying days.

From these statements, Alice who was a bright girl, was able to deduce the day of the
week. What was it?

Problem 48: On another occasion Alice met the Lion alone. He made the following two
statements:

1) I lied yesterday
2) 1 will lie again tomorrow.

What day of the week was it?

We use the predicates MO(x), TU(x), ..., SO(x) for saying that x is a Monday, Tuesday
etc. Furthermore we need the binary predicate MEMB, indicating set Membership and a
3-ary predicate LA. LA(x y z) is true if x says at day y that he lies at day z, LDAYS(x)
denotes the set of lying days of x. The remaining symbols are self explaining.
One-character symbols like u,x,y,z are regarded as universally quantified variables.
Axiomatization of the days of the week:

MO(x) <«  (TU(x)v WE(x) v TH(x) v FR(x) v SA(x) v SU(x) )

TU(x) &  ~(WE(x)v TH(x) v FR(x) v SA(x) v SU(x) v MO(x) )

WE(x) <  ~(TH(x)v FR(x) v SA(x) v SU(x) v MO(x) v TU(x) )

TH(x) &  =(FR(x)v SA(x)v SU(x) v MO(x) v TU(x) v WE(x) )

FR(x) &  (SA(x)v SU(x)v MO(x) v TU(x) v WE(x) v TH(x) )

SA(x) «  =(SU(x)v MO(x) v TU(x) v WE(x) v TH(x) v FR(x) )
=1

SU(x) ~(MO(x) v TU(x) v WE(x) v TH(x) v FR(x) v SA(x))

Axiomatization of the function yesterday:
MO(yesterday(x)) & TU®)

TU(yesterday(x)) <  WE(x)
WE(yesterday(x)) = TH(x)
TH(yesterday(x)) & FR(x)
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FR(yesterday(x)) = SA(x)
SA(yesterday(x)) & SU(x)
SU(yesterday(x)) = MO(x)

Axiomatization of the function two-after:

MO(two-after(x)) & FR(x)

TU(two-after(x)) & SA(x)
WE(two-after(x)) & SU(x)

TH{two-after(x)) e MO(x)
FR(two-after(x)) < TU(x)
SA(two-after(x)) e WE(x)
SU(two-after(x)) < TH(x)

Axiomatization of the function LDAYS:
MEMB(x LDAYS(lion)) & MO(x) v TU(x) v WE(x)
MEMB(x LDAYS(unicorn)) « TH(x) v FR(x) v SA(x)

Axiomatization of the predicate LA:

-MEMB(x LDAYS(u))» LA(uxy) = MEMB(y LDAYS(u))
~MEMB(x LDAYS(u)) » ~LA(uxy) = -MEMB(y LDAYS(u))
MEMB(x LDAYS(u)) » LA(uxy) =-MEMB(y LDAYS(u))
MEMB(x LDAYS(u)) a -LA(uxy) = MEMB(y LDAYS(u))

Theorem of Problem 47:
3x LA(lion x yesterday(x)) » LA(unicorn x yesterday(x))

Theorem of Problem 48:
3x LA(lion x yesterday(x))  LA(lion x two-after(x))

The MKRP proof procedure at Kaiserslautern found a proof for the unsorted version of
problem 47 after 183 resolution steps, among them 81 unnecessary steps, hence the
final proof was 102 steps long. This proof contains a lot of trivial steps corresponding to
common sense reasoning (like: if today is Monday, it is not Tuesday etc.).

Later the sort structure and the signature of the problem 47 was generated
automatically by SOGEN.

The sort structure and the signature contain all the relevant information about the
relationship of unary predicates (like our days) and the domain-rangesort relation of
functions. The sort structure of the subsorts of DAYS in our example is equivalent to the
lattice of subsets of {Mo, Tu, We, Th, Fr, Sa, Su} without the empty set, ordered by the
subset order. Hence there are 127 (-27-1) sorts. The functions “yesterday” and
“two-after” are polymorphic functions with 127 domain-sort relations. For example:
yesterday ({MO, WE}) = (SU, TU).

The unification algorithm exploits this information and produces only unifiers, which
respect the sort relations, i.e. {x « t} is syntactically correct, if and only if the sort of the
term t is less or equal the sort of the variable x. We give an example for unification: the
unifier of x:50+TU and vyesterday(y:MO+TU) is ({x « yesterday(y: MO) ;y « y{:MO }.

The MKRP theorem-proving system [KM84] has proved the theorem of both problems
in the sorted version immediately without any unnecessary steps. The length of the
proof of problem 47 is 6, whereas the length of the proof of problem 48 is 4. As the
protocol shows, the final substitution into the theorem clause (Problem 48) was
{x « y:MO). Thus the ATP has found the answer, Monday, in a very straight forward and
humanlike way. A proof protocol for problem 47 can be found in [Sch85]. We give a
proof protocol for Problem 48:

C1 All x:Mo MEMB (x LDAYS(lion))

C2  Allx:Tu MEMB (x LDAYS(lion))
C3 All x:We MEMB (x LDAYS(lion))
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C4  AllxyDays z:Animal MEMB(y LDAYS(z)) MEMB (x LDAYS(z)) -LA(z y 1)
C5  Allxy:Days zAnimal MEMB(y LDAYS(z)) -MEMB(x LDAYS(z)) LA(zy x)
C6  All x,y:Days zzAnimal -MEMB(y LDAYS(z)) MEMB(x LDAYS(z)) LA(z y x)

C7  Allx,y:Days z:Animal -MEMB(y LDAYS(z)) -MEMB(x LDAYS(z)) -LA(zy x)
C8  All x:Th+Fr+Sa+Su -MEMB(x LDAYS(lion))

Th1 All x:Days -LA(lion x yesterday(x)) -LA(lion x two-after(x))

C1,1 & C6,1 R1: All x:Mo y:Th+Fr+Sa+Su MEMB(y LDAYS(lion)) LA(lion x y)

R12&C81 - R2: All x:Mo y:Th+Fr+Sa+Su LA(lion x y)
R2,1 & Th1,2 » R3: All x:Mo -LA(lion x yesterday(x))
R3,1 & R2,1 -+ Reé: a]
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6. Extension of SOGEN to Well-Formed Formulas.

In this chapter some special rules for introducing sorts in wff’s are given. The
mixed application of sort-generation, simplification, nor malization and skolemization has
the advantage, that the generated clause set is simpler and that more unary predicates
can be transferred into sorts. We introduce the rules in an infor mal way. We give no
rules for simplification, normalization or skolemization. All proofs , that these rules are
sound and complete, are omitted, since we are sure, that these proofs are straight
forward.

Remark. A polymorphic signature is the basis for the logic. wif's are formed in the usual
way with the junctors 2,av,>« and the quantifiers V 3, where all terms and literals are
well-sorted. TRUE, FALSE are nullary predicates, which denote the corresponding
truth-values.

Remark. We assume, that the wif W is the input into a Theorem Prover, which tests W
for satisfiability or unsatisfiability. If W = W a ..o W, and some W; is a clause, then

the rules of SOGEN can be applied to Wi'
We use the set SC with the same meaning as in SOGEN.

i) 1f(PSp)eSCand (Sp.Sy.Sy) € SC, then

(\7’){:5x -P(x) v A) - (VX:SO FALSEv A)
i) If (PSp)eSCand (Sp,S;,Sq) € SC, then

(31:S, -P(x) A A) - (3x:S TRUE A A)
iii) If (P,Sp) € SCand [t] < Sp, then

P(1) - TRUE
iv) 1f (P.Sp) € SC and [t] < Sp, then

-P(1) - FALSE
v) 1f (PSp)eSCand Sy 2 Sp, then

(Vx:SO -P(x) » A) - FALSE
vi) If (PSp) € SCand S 2 Sp, then

(315 P(x) v A) - TRUE
Vii) (Vx:S AaB) - (VxS A) A (Vx:SB)
viii) (3x:S AvB) - (3x:S A) v (3x:SB)
6.2 Example. " Andrew’s Little" [EW83].

The formula W is :
{ (Vxl Q(Xl)) =4 (3X2 0(12) ) } & (313 (VI4 0(13) &= 0(14) ))

1) We use Rule AC1 for Q, that means:
( (-Q,S_Q) €SCandS g = T) or (Q,SQ) €SC

CASE 1, (—O,S_Q) € SC and S_o -T)
Then W = (FALSE < FALSE} {313 (Vx4 FALSE < FALSE) },
which evaluates to true.
CASE 2. (Q.SQ) €SC.
Then W = {(Vx; Q(xy)) &= TRUE} « {313 (V14 Q(x3) = Qlxg)))
CASE218g =T. |
Then W - TRUE « (313 (Vx4 TRUE « TRUE) }, which evaluates to true.



CASE 22 (-0S_g) € SC. Then:

FALSE & (3x3 (Vxy Q(X3) = Qlxg))} e
(313 (Vg Qx3) = Qlxg))) ey
(313 (Va4 (-Qx3)vQlx 4)) A (Q(X3)V -Q(x4)) ).} —_—
-(3x3 (Vg (-Q(x3)VQ(x4))) A (Vxg (Q(xz)v -Qxg)))} —

-{313 (V14is_o ’0(13))’\ (VXS:SQ (0(13)))} =)
315 -Qxz) Qlxs)) —
FALSE.

6.3 Example. We demonstrate, how a formula , which occurs in the first order
formulation of "Schuberts Steamroller” [Wa83], is normalized and skolemized using
different methods:

We have the clauses G(Gp): A(Ag) and

Vvxy -A(x) v -E(x,y) v (32 G(z) A -E(y 2))

i)

i)

Sort generation after normalization.
We obtain the following clauses after normalization:

AlAg),

Viy -A(x) v -E(x.y) v G(f(x.y)):

vy -A(x) v -E(xy) v -Ely, f(x.y))
Sort generation yields:

(SA.A)E SC, Aoi SA Vi SA <T, SG ST,

The clauses are:

G(Gp):

vxs$, .y -Elxy)v Gl(xy))
VxS, yT -E(xy)v -Ely, f(xy)) ;

Sort generation during normalization. We get:
(S5:G) € SC, (Sp.A)€SC, Ag:Sp i Gy: Sg iS4 < Ti S < T and the clause

VxS, . yT -E(xy)v (3zSg -Ely. 2))
Skolemization then yields a function f: (§,,7) » S; and the clause
VxS, ,yT -E(xy)v -Ely, f(x, y))

The difference between the two methods is that in i) the clause
VxS, . yT -E(ry)vG(f(x,y)) does contain the literal -E(x,y), whereas in ii) this literal

is avoided. In chapter4, we gave a reduction rule, which allows to delete such
(superfluous) literals.
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7. Summary.

The main results of this paper are:

i) An algorithm is described, which transforms unsorted clause sets (respectively
wifs) into a sorted version. Furthermore a proof is given, that this algorithm
preserves (un)satisfiability.

ii) Conditions are given for the completeness of the naive transfor mation (i.e. the
transfor mation which doesn’t care of intersections and complementary sorts Sp and

S_p).

It is not possible to give a sufficient and necessary condition for a clause set to be
transformable into a sorted version. The reason is, that deduction may be necessary for
such a transformation( the algorithm SOGEN makes in fact such deductions).

The algorithm SOGEN is implemented at Kaiserslautern as a preprocessor for the MKRP
Automated Theorem Prover [KM84]. It has shown remarkable improvements searching
for a proof in a lot of example runs.

Since this algorithm is some sense deterministic (no search) the cpu-time consumed by
SOGEN is neglectable in most of the examples, but serious problems arise in cases,
where the number of sorts exceeds 150. The sort structure constructed in example 5.2
is isomorphic to the lattice of subsets of a set with 7 elements (i.e. 127 sorts). | am sure
that a modified implementation of sorts (computing sorts and their relations if needed)
allows to handle far bigger sort structures of this type.

In the case that SOGEN fails, the cpu-time consumed by it is not totally wasted, since
some of the toplevel reductions ( tautologies and replacement resolution) do not
depend on the success of SOGEN.
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