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Abstract

In 2019, dementia is has become a trillion dollar disorder. Alzheimer’s disease (AD)
is a type of dementia in which the main observable symptom is a decline in cognitive
functions, notably memory, as well as language and problem-solving. Experts agree that
early detection is crucial to effectively develop and apply interventions and treatments,
underlining the need for effective and pervasive assessment and screening tools. The
goal of this thesis is to explores how computational techniques can be used to process
speech and language samples produced by patients suffering from dementia or related
affective disorders, to the end of automatically detecting them in large populations us-
ing machine learning models. A strong focus is laid on the detection of early stage
dementia (MCI), as most clinical trials today focus on intervention at this level. To this
end, novel automatic and semi-automatic analysis schemes for a speech-based cogni-
tive task, i.e., verbal fluency, are explored and evaluated to be an appropriate screening
task. Due to a lack of available patient data in most languages, world-first multilingual
approaches to detecting dementia are introduced in this thesis. Results are encouraging
and clear benefits on a small French dataset become visible. Lastly, the task of detecting
these people with dementia who also suffer from an affective disorder called apathy is
explored. Since they are more likely to convert into later stage of dementia faster, it
is crucial to identify them. These are the fist experiments that consider this task us-
ing solely speech and language as inputs. Results are again encouraging, both using
only speech or language data elicited using emotional questions. Overall, strong results
encourage further research in establishing speech-based biomarkers for early detection
and monitoring of these disorders to better patients’ lives.
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Zusammenfassung

Im Jahr 2019 ist Demenz zu einer Billionen-Dollar-Krankheit geworden. Die Alzheimer-
Krankheit (AD) ist eine Form der Demenz, bei der das Hauptsymptom eine Abnahme
der kognitiven Funktionen ist, insbesondere des Gedächtnisses sowie der Sprache und
des Problemlösungsvermögens. Experten sind sich einig, dass eine frühzeitige Erken-
nung entscheidend für die effektive Entwicklung und Anwendung von Interventionen
und Behandlungen ist, was den Bedarf an effektiven und durchgängigen Bewertungs-
und Screening-Tools unterstreicht. Das Ziel dieser Arbeit ist es zu erforschen, wie com-
putergestützte Techniken eingesetzt werden können, um Sprach- und Sprechproben von
Patienten, die an Demenz oder verwandten affektiven Störungen leiden, zu verarbeiten,
mit dem Ziel, diese in großen Populationen mit Hilfe von maschinellen Lernmodellen
automatisch zu erkennen. Ein starker Fokus liegt auf der Erkennung von Demenz im
Frühstadium (MCI), da sich die meisten klinischen Studien heute auf eine Intervention
auf dieser Ebene konzentrieren. Zu diesem Zweck werden neuartige automatische und
halbautomatische Analyseschemata für eine sprachbasierte kognitive Aufgabe, d.h. die
verbale Geläufigkeit, erforscht und als geeignete Screening-Aufgabe bewertet. Auf-
grund des Mangels an verfügbaren Patientendaten in den meisten Sprachen werden in
dieser Arbeit weltweit erstmalig mehrsprachige Ansätze zur Erkennung von Demenz
vorgestellt. Die Ergebnisse sind ermutigend und es werden deutliche Vorteile an einem
kleinen französischen Datensatz sichtbar. Schließlich wird die Aufgabe untersucht, jene
Menschen mit Demenz zu erkennen, die auch an einer affektiven Störung namens Ap-
athie leiden. Da sie mit größerer Wahrscheinlichkeit schneller in ein späteres Stadium
der Demenz übergehen, ist es entscheidend, sie zu identifizieren. Dies sind die er-
sten Experimente, die diese Aufgabe unter ausschließlicher Verwendung von Sprache
und Sprache als Input betrachten. Die Ergebnisse sind wieder ermutigend, sowohl bei
der Verwendung von reiner Sprache als auch bei der Verwendung von Sprachdaten,
die durch emotionale Fragen ausgelöst werden. Insgesamt sind die Ergebnisse sehr er-
mutigend und ermutigen zu weiterer Forschung, um sprachbasierte Biomarker für die
Früherkennung und Überwachung dieser Erkrankungen zu etablieren und so das Leben
der Patienten zu verbessern.
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• Dr. Johannes Tröger, who always helped bring structure intro my chaos. My life
is better when you are there!

• Dr. Alexandra König, who was the clinical partner for much of this work. Thank
you for always reminding me about the patient perspective and showing me that
research colleagues can grow into friends.

• Prof. Dr. Philippe Robert, who kindly helped me along the journey of becoming
a researcher with an always positive attitude. Just keep swimming, Philippe!

... and all of my other previous colleagues from DFKI and ki elements who allowed me
to write this thesis by having my back!

Finally, I want to thank my family and friends, who dealt with me during periods of
extreme work, always lending a hand when necessary, and my husband Felix and our
dog Finn, who were always there for me!



vii



Contents

Part I Introduction and Background 1

1 Introduction 3
1.1 Aim and Research Questions . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Results and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Foundations and Related Work 13
2.1 Dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Etiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Assessment methods . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Apathy, an affective syndrome . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Cognitive Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Verbal Fluency . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Cookie Theft Picture Description . . . . . . . . . . . . . . . . . 29
2.3.3 Mini-Mental-State Examination . . . . . . . . . . . . . . . . . 30
2.3.4 Clinical Dementia Rating Scale . . . . . . . . . . . . . . . . . . 31
2.3.5 MMSE and CDR as Assessment Tools . . . . . . . . . . . . . . 32
2.3.6 Computerized cognitive testing . . . . . . . . . . . . . . . . . . 33

2.4 Machine Learning Prerequisites . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Classification Performance Metrics . . . . . . . . . . . . . . . . 35
2.4.2 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.3 Classification Models . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.1 Computational approaches: New features . . . . . . . . . . . . 44
2.5.2 Automated analysis pipelines . . . . . . . . . . . . . . . . . . . 46
2.5.3 Computational Analysis of SVF . . . . . . . . . . . . . . . . . 48

viii



ix

2.5.4 Language features in CTP . . . . . . . . . . . . . . . . . . . . 50
2.6 Language in Dementia . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6.1 Traditional linguistic exams: AD . . . . . . . . . . . . . . . . . 55
2.6.2 AD: Classic performance measures and test paradigms . . . . . 55
2.6.3 The task itself matters: Reconciling conflicting results . . . . . 57

Part II Automatic Detection of MCI from Speech and Lan-
guage 59

3 Detection of Dementia from manual Verbal Fluency Transcripts 61
3.1 Neural Word Embeddings in analysing Semantic Verbal Fluency . . . . 61

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.2 Methodology and Results . . . . . . . . . . . . . . . . . . . . . 64
3.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Language Modelling in Semantic Verbal Fluency . . . . . . . . . . . . 67
3.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.2 Language Modelling . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Temporal Analysis of Semantic Verbal Fluency . . . . . . . . . . . . . 77
3.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4 Predicting Dementia Screening and Staging Scores From Semantic Ver-
bal Fluency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Using Automated Speech Recognition to detect Dementia 107



CONTENTS x

4.1 Fully Automatic Speech-Based Assessment of Semantic Verbal Fluency 109

4.1.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Telephone-based Dementia Screening through Automatic Analysis of
Semantic Verbal Fluency . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Part III Multi- and Crosslingual Methods for Dementia De-
tection 131

5 Multi- and Crosslingual Methods for the Detection of Dementia from Pic-
ture Description Tasks 133

5.1 Cross-lingual Detection of Early Dementia from Speech . . . . . . . . . 135

5.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2 Class-based Language Modelling for cross-linguistic detection of Alzheimer’s
Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



xi

Part IV Automatic Detection of Clinical Apathy in Dementia
Patients from Speech and Language 161

6 Detection of clinical Apathy in Dementia Patients 163
6.1 Speech Features for the Detection and Characterisation of Apathy . . . 163

6.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.2 Detecting late-life Apathy in Dementia using Sentiment and Psycholin-
guistic Analysis of Emotional Language . . . . . . . . . . . . . . . . . 179
6.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.2.2 Apathy Detection from Manual Transcripts . . . . . . . . . . . 182
6.2.3 Effects of Automatic Speech Recognition . . . . . . . . . . . . 190
6.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7 Conclusions and Future Work 199
7.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.3.1 Standardised data collection . . . . . . . . . . . . . . . . . . . 202
7.3.2 Longitudinal data . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.3.3 New protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.3.4 Differentiating different dementias . . . . . . . . . . . . . . . . 203
7.3.5 Detection of Depression . . . . . . . . . . . . . . . . . . . . . 203

7.4 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A Abbreviations and Definitions 205

B Cognitive Domains in DSM-5 209

C Literature Review 213



List of Figures

1.1 Prevalence of different dementia causes. . . . . . . . . . . . . . . . . . 4

1.2 Progression of cognitive decline in Alzheimer’s disease. . . . . . . . . . 5

1.3 Technical pipeline of machine learning experiments . . . . . . . . . . . 7

2.1 Process of cognitive decline. . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Prevalence of apathy in dementia and relation to depression in dementia. 19

2.3 Model of neurocognitive domains according to DSM-5. Each box rep-
resents a super-domain of cognitive functions. Subdomains are listed as
items inside. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Example performance in a SVF task of category animals . . . . . . . . 24

2.5 Cookie Theft Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Schematic of a confusion matrix . . . . . . . . . . . . . . . . . . . . . 36

2.7 Schematic plot of multiple ROC curves . . . . . . . . . . . . . . . . . . 38

2.8 Schematic representation of k-fold cross validation . . . . . . . . . . . 39

2.9 Plot of a sigmoid function . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10 Example of an optimal hyperplane in a two-dimensional feature space . 42

3.1 Boxplots of perplexity in relation to diagnostic criteria . . . . . . . . . 72

3.2 Schematic of time interval analysis . . . . . . . . . . . . . . . . . . . . 80

3.3 Word Count, Word Frequency and Transition length by time interval . . 83

3.4 Correlation between 10 second WC intervals and neuropsychological
test scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 AUC of classification models plotted against number of features . . . . 89

3.6 Histograms of MMSE and CDR-SOB scores. . . . . . . . . . . . . . . 95

3.7 Visualisation of feature distribution in relation to MMSE (a) and CDR (b). 97

3.8 Confusion matrix heat-map for MMSE and CDR-SOB predictions. . . . 100

3.9 Confusion Matrix heat-map for MMSE categories and CDR-SOB stages. 103

xii



xiii

4.1 Confusion matrix for diagnosis based on normative data, automatic WC
and manual WC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 ROC for features based on manual transcripts and on automatic transcripts.126

5.1 Results of uni-, multi- and cross-lingual classification experiments. . . . 153
5.2 AUC as a function of the amount of English data used in the training set 154
5.3 Visualisation of feature weights for uni- and multilingual experiments . 156

6.1 Correlation coefficient between features extracted from vocal tasks and
AI subdomains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.2 ROC of classifiers trained to detect apathy from speech. . . . . . . . . . 175
6.3 Boxplot group comparisons between control and apathy population. . . 188
6.4 Chord diagram showing the shift in sentiment for substitution errors

from the manual to automatic transcripts. . . . . . . . . . . . . . . . . . 193



List of Tables

2.1 Subtests of the MMSE . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Hyper parameters, classification results and Pearson correlation coeffi-
cient between clustering and chaining-based features. . . . . . . . . . . 66

3.2 Demographic data and clinical scores by diagnostic group. . . . . . . . 73
3.3 Classification results for different scenarios and models as F1 scores. . . 75
3.4 Demographic information; the MMSE (Mini Mental State Exam) is a

general screening test of cognitive status and has a maximum score of 30. 82
3.5 LMR model examining the effects of time interval, diagnosis, age and

education on one of three variables . . . . . . . . . . . . . . . . . . . . 87
3.6 Demographic data and clinical scores by diagnostic group. . . . . . . . 94
3.7 Pearson correlation of MMSE, CDR-SOB and computed features. . . . 98
3.8 Mean Absolute Error (MAE) and 95% confidence intervals for different

regression models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.9 Mean Absolute Error (MAE) of MMSE and CDR-SOB prediction for a

SVR model by diagnosis group. . . . . . . . . . . . . . . . . . . . . . 101
3.10 κ for CDR-SOB staging and different cut-off strategies. . . . . . . . . . 103
3.11 κ for MMSE staging and rounding to nearest integer. . . . . . . . . . . 104

4.1 Demographic data and clinical scores by diagnostic group. . . . . . . . 111
4.2 Spearman correlation of automatically and manually computed features. 114
4.3 Classification results between different diagnostic groups. . . . . . . . . 114
4.4 Demographic data and clinical scores by diagnostic group. . . . . . . . 122

5.1 Demographic data for each of the sub-corpora. . . . . . . . . . . . . . . 138
5.2 Speech and language features extracted from the Cookie Theft narra-

tives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3 AUC score for different classification scenarios and languages . . . . . 144

xiv



xv

5.4 Highly-ranked features in the unilingual and cross-lingual classification
experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.5 Demographics of participants in multilingual experiment . . . . . . . . 149
5.6 LM and info features extracted from the CTP task . . . . . . . . . . . . 150

6.1 Feature definition of acoustic markers. . . . . . . . . . . . . . . . . . . 168
6.2 Demographic data for population by gender and apathy. . . . . . . . . . 170
6.3 Statistical group comparisons between non-apathetic and apathetic group. 174
6.4 Feature weights from L1 regularised Logistic Regression models . . . . 176
6.5 Demographic data for population by gender and apathy. . . . . . . . . . 184
6.6 Classification results for models trained on word count and sentiment

features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.7 Classification results for models trained on LIWC features. . . . . . . . 189
6.8 Count of the errors from the WER for intrusions, deletions and substi-

tutions separated by sentiment valence. . . . . . . . . . . . . . . . . . . 192
6.9 Classification results for models trained on word count and sentiment

features extracted from ASR transcripts. . . . . . . . . . . . . . . . . . 194

B.1 Description of cognitive domains and sub-domains . . . . . . . . . . . 212



List of Equations

3.1 Semantic cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Semantic chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3 Mean semantic cluster distance . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4 Cluster distance cut-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5 Maximum likelihood formulation . . . . . . . . . . . . . . . . . . . . . . 70
3.6 Conditional probability based on Markov assumption . . . . . . . . . . . . 70
3.7 n-gram probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.8 Perplexity of a language model . . . . . . . . . . . . . . . . . . . . . . . . 71
3.9 Mean absolute error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.10 Cohen’s κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.1 Word Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xvi



Part I

Introduction and Background

1





Chapter 1

Introduction

Dementia has a large economic impact on our society. In Europe, dementia results in
more costs than cancer and cardiovascular disease combined. Today, 55 million people
live with dementia worldwide [132]. Since most dementia causes are not deadly them-
selves, large proportions of these costs can be attributed to care. This is in parallel to the
immeasurable amount of emotional suffering and grief caused to caregivers and families
of patients. Following the World Alzheimer Report 2021, dementia became a trillion
dollar disorder in 2019 [132], which underlines the need for effective and pervasive
assessment and screening tools.

Dementia is not a disease but rather an umbrella term employed to describe a group of
symptoms originated by a number of diseases and causes. It is generally understood
to refer to cognitive impairments that cause an affected person to be unable to live au-
tonomously [255]. Alzheimer’s disease (AD) is a type of dementia in which the main
observable symptom is a decline in cognitive functions, notably memory, as well as
language and problem-solving. AD is caused by plaques and tangles in the brain that
stop blood flow to cells and eventually lead to their death [30]. Because of this death
of neurons, it is considered a neurodegenerative disorder. While AD is the most com-
mon organic cause of dementia, there are many other causes, such as vascular disorders,
e.g., strokes, brain tumors, traumatic brain injuries, or frontotemporal lobe degenera-
tion (FTLD). Additionally, there are other, mostly reversible, causes for dementia-like
symptoms, such as depression and substance abuse (see also Figure 1.1).

3
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Figure 1.1: The Left panel shows the types of dementia, according to their cause, in-
cluding Fronto-Temporal Lobar Degeneration, and Vascular Dementia (VD); the dotted
areas indicate those cases where more than one cause underlies the disorder. The right
panel shows other, mostly reversible, causes for dementia-like symptoms.

Due to the degenerative nature of most dementia causes, experts agree that early diagno-
sis is vital. Figure 1.2 depicts the progress of Alzheimer’s Disease over time. A decline
in cognitive ability, and therefore autonomy that is beyond normal ageing is character-
istic for AD. In the debate of staging dementia severity, the concept of Mild Cognitive
Impairment (MCI) was introduced [100]. It generally describes the early stages of, e.g.,
AD, where only a minimal cognitive impairment is visible, and most people are still
capable of living on their own. As of now, no effective medical treatment to stop the
progression of AD has been discovered. There are however measures that allow slow-
ing the progression if applied early [40, 332, 136]. There is a broad agreement, that
detection at an MCI or even preclinical stage is key to effective treatment as well as the
development of drugs [212].

AD and its predecessor MCI are currently diagnosed and detected through a combi-
nation of imaging, biomarker, and functional assessments. Imaging techniques, such
as magnet resonance tomography (MRI), are capable of producing visual scans of the
brain. Using these scans, different dementia causes are easily identifiable and separable.
A clear statement about the affected brain areas can be made from them. Albeit they
are highly predictive, they also require expensive equipment (an MRI scanner can easily
cost a million euros). This limits their suitability for screening applications. Addition-
ally, the injection of a radioactive tracer would make the repeated screening with these
techniques dangerous in itself.

The functional assessment is usually administered by a psychologist using a series of
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Figure 1.2: Progression of cognitive decline in dementia using the example of
Alzheimer’s disease. Autonomy and dignity are plotted against age. At each stage,
common symptoms are presented.

questionnaires and so-called cognitive tests. These tests are, often speech-based, short
cognitive exercises that allow a clinician to assess a particular part of patient’s cognitive
functions. According to the Diagnostic Manual for Psychologists (DSM-V) there are six
known superdomains of human cognitive ability. A speech-based cognitive test is not
only able to evaluate language functions but, e.g., also memory or executive function.
In this context, speech can be seen as a window to human cognition [404]. The kind
of stimuli speech is being provoked with, play a significant role in both possibilities of
predicting a persons’ cognitive state as well as in the analysis method that is used to
do so. Generally, this can be seen as a trade-off between usefulness for prediction of
cognitive functions and ecological validity. Some open speech tasks show high ecologic
validity, as they assess everyday skills people need, but do not put enough cognitive load
on the assessed to notice the more subtle changes in early-stage dementia (e.g., picture
description tasks). Some speech tasks require high cognitive effort from a participant
but do not directly relate to critical every-day skills (e.g., verbal fluency tasks).

While a full assessment of cognitive function requires a trained clinician, the increasing
prevalence of dementia and milder forms of cognitive impairment warrant large-scale
screening of the population, even in high-income countries, as many as 50% of all rele-
vant cases remain undiagnosed [320]. To address this problem, we need new tools that
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are fast, do not need a laboratory, and can automatically indicate which patients might
need to be referred to a specialist [378, 213, 352]. Such tools are highly scalable and can
be made accessible to health care professionals with little to no specialized training in
old age psychiatry. Ideally, it should be possible to administer them remotely, and they
should integrate easily with existing telehealth and telecare solutions for older patients.
Automated analysis of speech, in particular speech that is produced during a standard
clinical assessment, is a prime candidate for such a tool [203, 340, 168].

Recent advances in the fields of artificial intelligence—particularly in natural language
/ speech processing, machine learning, as well as speech recognition—have rendered
the idea of automatic screening systems possible. Previous authors have proven that
the analysis of speech and language can be used to detect dementia, with a particu-
lar focus on AD, e.g., from transcribed speech samples produced in picture description
tasks [128]. Some authors even report fully automatic systems for dementia detec-
tion [374]. However, only a few researchers have explored the question of detecting
early stages of AD, such as MCI, from speech samples [125]. Additionally, due to the
cost of collecting clinical data, only a few resources of speech recordings from these pa-
tient groups exist. This lack of available data is especially challenging for the training of
well-performing machine learning models, that could be used to screen for MCI. Mul-
tilingual analysis methods that would allow the combination of these scarce resources
from different languages are a potential solution but have not been explored so far. Fi-
nally, when constructing a real-world screening system based on speech and language,
one has to acknowledge the complexity of MCI. Consequently, it has to be considered
that about 65% of cases do not only suffer from dementia, but also from an affective
disorder, such as depression, caused by dementia [1]. Seeing as these disorders are not
only responsible for large proportions of patient’s suffering [412, 256], but are also good
predictors of conversion from MCI to AD stages [360, 359], their detection is equal in
importance. In contrast to speech-based depression detection, which has received a sub-
stantial amount of attention in the literature [87], the speech-based detection of clinical
apathy in MCI patients has not received any attention.
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Figure 1.3: Technical pipeline of machine learning experiments. Patient generated
speech and language data is fed into linguistic and para-linguistic feature extractions,
with the potential of using automatic speech recognition. Clinically relevant features are
selected and used to train machine learning models, with the goal of classifying patient
populations.

1.1 Aim and Research Questions

The goal of this thesis is to explore how computational linguistic techniques can be used
to process speech and language samples produced by patients suffering from dementia
or related affective disorders, to the end of automatically detecting them in large popu-
lations using machine learning models. Figure 1.3 describes the general architecture of
these experiments. Multiple research question are going to be worked on to the end of
advancing this field with concrete contributions. The main questions are

1. Can Mild Cognitive Impairment be automatically detected from concise speech
recordings?
The construction of automatic diagnostic models for MCI from speech samples
will be investigated. The presented approach will focus on recordings of verbal
fluency tasks, in which patients are asked to name as many words according to
a given rule as possible in a given time frame (e.g., as many animals as possi-
ble in 60 seconds). Clinical performance in these test is usually assessed as the
number of correct words and has been shown to be highly predictive for MCI.
We will introduce and validate novel and extended automatic analysis methods
and show that they improve the diagnostic ability of these tasks. Both the func-
tionality to detect and stage dementia will be explored. In addition to validation
experiments on manual transcripts, fully automatic experiments using automatic
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speech recognition will be carried out. These will be used to validate the utility of
such analysis and assessment methods for real-world broad population screening
applications—i.e., over the telephone.

2. How can data resources from different languages be leveraged in multi- and
cross-lingual dementia detection?
Multilingual analysis methods that allow increasing the productivity of models in
under-resourced languages will be explored. The most widely available speech
data in most language are picture descriptions of the Boston Cookie Theft Pic-
ture. The use of English data to improve productivity in other languages will be
explored. In addition to general domain adaptation methods, novel multi-lingual
analysis methods are used.

3. Can affective disorders in dementia be automatically detected based on speech
recordings?
Methods for the detection of clinical apathy in dementia patients from speech and
language will be explored. To this end, a subpopulation of cognitively matched
patients telling positive and negative stories will be analysed. Speech and signal
processing, as well as sentiment and psycholinguistic language analysis, will be
considered as a diagnostic marker and validated using machine learning.

1.2 Results and Contributions

This thesis explores how computational linguistic techniques can be used to process
speech and language samples produced by patients suffering from dementia or related
affective disorders, to the end of automatically detecting them in large populations using
machine learning models. A strong focus is laid on the detection of early stage demen-
tia i.e., MCI, as most clinical trials today focus on intervention at this level. To this
end, novel automatic and semi-automatic analysis schemes for Verbal Fluency tasks
are explored and evaluated to be an appropriate screening task. Furthermore, world-
first multilingual approaches to detecting dementia are introduced in this thesis. This is
mainly motivated due to the sparsity of data in most languages and a wish to combine
this resources. Results are encouraging and clear benefits on a small French dataset be-
come visible. Lastly, the task of detecting these people with dementia who also suffer
from an affective disorder called apathy is explored. Since they are more likely to con-
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vert into later stage of dementia faster, it is crucial to identify them. These are the fist
experiments that consider this task using solely speech and language as inputs. Results
are again encouraging, both using only speech or language data elicited using emotional
questions.

The following publications resulted directly from work at this dissertation.

[223] N. Linz, J. Tröger, J. Alexandersson, and A. König. Using Neural
Word Embeddings in the Analysis of the Clinical Semantic Verbal
Fluency Task. In Proceedings of the 12th International Conference
on Computational Semantics (IWCS), 2017

Chapter 3

[222] N. Linz and J. Tröger. Language modelling for the clinical seman-
tic verbal fluency task. In D. Kokkinakis, editor, Proceedings of
the Eleventh International Conference on Language Resources and
Evaluation (LREC 2018), Paris, France, May 2018. European Lan-
guage Resources Association (ELRA)

Chapter 3

[220] N. Linz, K. L. Fors, H. Lindsay, M. Eckerström, J. Alexandersson,
and D. Kokkinakis. Temporal analysis of the semantic verbal flu-
ency task in persons with subjective and mild cognitive impairment.
In Proceedings of the Sixth Workshop on Computational Linguistics
and Clinical Psychology: Reconciling Outcomes. Computational
Linguistics and Clinical Psychology Workshop (CLPsych-2019),
6th, located at 2019 Conference of the North American Chapter
of the Association for Computational Linguistics (NAACL), June 6,
Minneapolis,, MN, USA. o.A., 2019

Chapter 3

[224] N. Linz, J. Tröger, J. Alexandersson, M. Wolters, A. König, and
P. Robert. Predicting dementia screening and staging scores from
semantic verbal fluency performance. In 2017 IEEE International
Conference on Data Mining Workshops (ICDMW), pages 719–728.
IEEE, 2017

Chapter 3

[378] J. Tröger, N. Linz, A. König, P. Robert, J. Alexandersson, J. Peter,
and J. Kray. Exploitation vs. exploration—computational temporal
and semantic analysis explains semantic verbal fluency impairment
in alzheimer’s disease. Neuropsychologia, 131:53 – 61, 2019

Chapter 3
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[201] A. König, N. Linz, J. Tröger, M. Wolters, J. Alexandersson, and
P. Robert. Fully automatic speech-based analysis of the semantic
verbal fluency task. Dementia and geriatric cognitive disorders,
45(3-4):198–209, 2018

Chapter 4

[377] J. Tröger, N. Linz, A. König, P. Robert, and J. Alexandersson.
Telephone-based dementia screening I: Automated semantic verbal
fluency assessment. In Proceedings of the 12th EAI International
Conference on Pervasive Computing Technologies for Healthcare.
International ICST Conference on Pervasive Computing Technolo-
gies for Healthcare (Pervasive Health-2018), May 21-24, New
York, USA. ACM, 2018

Chapter 4

[123] K. C. Fraser, N. Linz, B. Li, K. L. Fors, F. Rudzicz, A. König,
J. Alexandersson, P. Robert, and D. Kokkinakis. Multilingual
prediction of alzheimer’s disease through domain adaptation and
concept-based language modelling. In Proceedings of the An-
nual Conference of the North American Chapter of the Association
for Computational Linguistics. Annual Conference of the North
American Chapter of the Association for Computational Linguis-
tics (HLT-NAACL-2019), June 2-7, Minneapolis,, Minnesota, USA.
o.A., 2019

Chapter 5

[202] A. König, N. Linz, R. Zeghari, X. Klinge, J. Tröger, J. Alexanders-
son, and P. Robert. Detecting apathy in older adults with cognitive
disorders using automatic speech analysis. Journal of Alzheimer’s
Disease, 69(4), 2019

Chapter 6

[221] N. Linz, X. Klinge, J. Tröger, J. Alexandersson, R. Zeghari,
P. Robert, and A. König. Automatic detection of apathy using
acoustic markers extracted from free emotional speech. In Pro-
ceedings of the 2nd Workshop on AI for Ageing, Rehabilitation and
Independent Assisted Living (ARIAL), pages 17–21, 2018

Chapter 6

1.3 Thesis Structure

Below, the contents and goals of each chapter are outlined:
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Chapter 2: Foundations

In this chapter, a general introduction to the functional assessment of dementia and
its causes is given. A special focus is laid on the introduction of cognitive testing.
Furthermore, machine learning techniques are introduced. The chapter also contains a
list of abbreviations and definitions used throughout the thesis.

Chapter 3: Detection of Dementia from manual Verbal Fluency Transcripts

This chapter starts with an introduction to the clinical application of verbal fluency tasks,
with a particular focus on their neuropsychological properties and associated brain re-
gions. A review of clinical literature is presented to examine the state-of-the-art in anal-
ysis methods. Afterward, novel analysis methods for both the semantic and phonemic
version of verbal fluency are introduced, and their predictability for cognitive impair-
ment is examined in classification experiments. First, language modelling and neural
word embedding techniques are both explored as analysis methods on manually created
transcripts. Novel features extracted from manual verbal fluency task transcripts are
used to predict clinically relevant dementia screening and staging scores.

Chapter 4: Detection of Dementia from automated Verbal Fluency Transcripts

In this chapter, analysis methods introduced and evaluated in Chapter 3 are transferred
to two real-time applications using automated speech recognition (ASR). The effects
of errors introduced by ASR as a statistical system are examined in a clinical use case,
where automated analysis can be used either as part of a regular assessment to save time
and generate additional features. To enable potential remote screening applications, the
performance of novel markers when extracted from automatically created transcripts
from telephone-quality audio is considered.

Chapter 5: Multi- and Cross-lingual Methods for the Detection of Dementia from
Picture Description tasks

This chapter considers multi- (or even cross-)lingual solutions to the problem of data-
sparsity observed in dementia detection. Multiple experiments are carried out with a
number of datasets, analysis methods, and languages. First, features mentioned in pre-
vious work are extracted from transcripts of picture description tasks, from two small
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French, Swedish and English corpora. Classifiers are trained multilingually using do-
main adaptation to separate early-stage dementia from controls, with the goal of im-
proving performance on each single data set. Second, we introduce novel features for
the multilingual analysis of picture description tasks, based on concept-language mod-
els. Their performance is evaluated by augmenting a small French with a larger English
Alzheimer dataset and training classifiers multi- and cross-lingually. Lastly, multi- and
cross-lingual experiments are performed on Swedish, French and German transcripts of
verbal fluency performances from early-stage dementia patients.

Chapter 6: Detection of clinical Apathy in Dementia Patients

This chapter starts with an introduction to clinical apathy observed in dementia patients,
its consequences and relation to depression. Recordings of answers to positive and
negative questions are used to provoke speech from dementia patients. The chapter first
investigates the detection of apathy from para-linguistic analysis directly on the speech-
signal of these recordings and later examines the feasibility of detecting clinical apathy
in dementia patients by psycholinguistic and sentiment analysis of manual as well as
automatic transcripts.

Chapter 7: Conclusions and Future Work

This chapter sums up the main contribution of all previous chapters. It discusses and
concludes their implications and potential applications in different clinical contexts.
Future directions of clinical speech and language analysis are discussed.



Chapter 2

Foundations and Related Work

This chapter introduces the reader to concepts from both clinical psychology and com-
puter science. Accordingly, not all sections might be relevant to a single reader. The
chapter closes with an alphabetical listing of clinical and technological abbreviations
used throughout the thesis and their definitions.

2.1 Dementia

This section serves as an introduction to the dementia syndrome, the underlying patholo-
gies that cause it, current assessment methods and how cognition is modelled in neu-
ropsychology. Figure 2.1 show the process of cognitive decline over time and the clini-
cal stages.

2.1.1 Etiology

Cognitive disorders negatively affect the mental capability of a person. Causes vary
widely between chronic neurodegenrative disease–e.g. Alzheimer’s and Parkinson’s
disease– to mostly reversible causes–such as drug or alcohol abuse–to trauma-induced
brain damage, that is usually the result of a single event, e.g. a stroke, and therefore non-
progressive and partly reversible [317]. The symptoms experienced by people suffering
from cognitive disorders are referred to as ”dementia”.

13
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Figure 2.1: Process of cognitive decline.

2.1.1.1 Dementia syndrome

Dementia is a syndrome–not a disease–comprised of several symptoms caused by an
underlying cognitive disorder. Not all symptoms are present in every case of dementia,
but impairments in the following cognitive functions are common:

Memory and Learning Patients experience a gradual loss of old information and an
inability to store new memories. The loss affects memories (i.e., people do no
longer recognise friends and family) as well as factual and procedural knowledge
(e.g., how to prepare coffee). The trouble with storing new memories classically
manifests itself in the repetition of tasks of conversation topics.

Language and Communication Demented persons often have trouble with producing
meaningful utterances with a certain fluency. Problems are either due to an in-
ability to control the motor aspects of speech production (i.e., Dysarthria) or in
forming semantically complex sentences (i.e., Aphasia). Language in dementia is
often perceived as being ”empty”.

Focus and attention Patients show trouble with complex tasks or activities that require
selective or prolonged attention. Driving a car is a good example of a task that
requires all these skills.

Executive function Demented persons often have problems with planning tasks, cal-
culations and decision making. Inhibition reflexes are also impaired [20].
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Perceptual-motor functions Patients show problems coordinating visual inputs and
motor functions. Copying simple figures with a pen can be problematic for people
with dementia.

Social Cognition Demented persons often have trouble recognising or understanding
emotions in others. They also often show delusional or even aggressive behaviour
[20].

Affected persons’ life quality and the effort required to care for these people is depen-
dant on the severity of symptoms. The progressing losses in cognition, quality of life
and dignity, lead to an eventual dependence on other people. Progressive types of de-
mentia are lethal, often due to complications from impaired primary motor functions
[57, 320].

2.1.1.2 Alzheimer’s Disease

The most common organic cause of dementia is Alzheimer’s disease, responsible for
about 60% to 80% pf cases [19]. Prevalence increases with age, as 95% of AD patients
develop the disease aged 65 or older [18]. With an increasingly ageing population,
the amount of affected people in developed countries continues to rise. Worldwide, 46
million people suffered from AD in 2015. This number is expected to triple by 2050
[320].

The specific cause for this type of dementia is known by the name of psychiatrist and
neuropathologist Alois Alzheimer (1864 – 1915), who first documented a case of this
disease. While the specific destructive mechanisms of AD are still under investigation,
its biochemical aftereffects are well documented. AD causes fragmentation, missfold-
ing and clumping of tube structure permanently connected to neurons, referred to as
amyloid precursor proteins. This transition of an essential protein leads to the death of
the neural cell. The spread of this decay is heterogeneous, but often starts in regions
like the temporal lobe. The dementia symptoms observed in AD are directly linked to
the atrophy in these areas [307].

The loss of short-term memory is the most-common and therefore most well-known
early symptom. In addition, difficulties in language production are also observed across
early to late stages of the disease. Beginning with less fluent speech patterns and a
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reduced vocabulary, the symptoms deteriorate into a stage in which a person is incapable
to verbally express themselves.

2.1.1.3 Mild Cognitive Impairment

Mild Cognitive Impairment describes a stage of cognitive decline in which patients ex-
perience first obvious symptoms of cognitive impairment, but are not yet hindered in
their everyday life [310]. Impairment is usually specific to one cognitive domain. If
memory is affected, this is referred to as amnestic Mild Cognitive Impairment (aMCI).
MCI is often seen as a predecessor to Alzheimer’s disease. Although there are cases
where this form early impairment can not be linked to neurocognitive decline, patients
with MCI convert to AD with a rate of 10% to 15% in comparison to the normal popu-
lation with 1% to 2% per year [310].

2.1.2 Assessment methods

There are several methods to diagnose cognitive disorders, that vary in their scaleability,
intrusiveness and effectiveness. The rising number of dementia cases require us to find
a diagnostic method that is accessible and applicable to large populations, has low costs,
is simple to administer and is effective in identifying early stages of disorders like AD.

2.1.2.1 Biological and physiological markers

One, very accurate, was of differential diagnosis is through brain imaging. In these
methods, images and models of a persons brain allow detailed accounting of causes for
observed dementia symptoms. This is especially useful for determining different stages
of the disease.

There are multiple techniques of brain imaging, such as magnetic resonance imaging,
positron emission tomography (PET) or computer tomography (CT) [282]. In theses
procedures, a patients head is placed in a machine and scanned externally. The resulting
images of the brain are mostly accurate and unambiguous in identifying organic causes
of dementia, such as AD [269]. There main disadvantage lies in the practicality for
continuous application. While the scanners do not come in direct physical contact wit
the patient, a contrast agent has to be injected to trace blood flow in the brain. In
case of PET and CT scans, these contrast agents are radioactive and therefore a health
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hazard in themselves. A single PET scan can lead to 2-5 times higher radiation exposure
than the average normal exposure per annum [157]. Non-radioactive agents that are
used in MRI can cause extreme allergic reactions and agents containing gadolinium
are thought to cause complications in patients with low kidney functions. Additionally,
severely claustrophobic patients or those with magnetisable materials inside their bodies
are excluded from this procedure [155]. Scanners are also extremely expensive and
require specialised personnel to operate [275]. These health risks and limiting factors
make brain imaging infeasible for use in broad population screening.

Brain imaging methods are used to observe the physical damages caused by neurode-
generative disease. Those damages however are also indicated by the symptoms that
they cause (e.g. damage in the temporal lobe results in memory loss). By testing for
typical symptoms, a conclusion can sometimes be derived. Methods to quantify cogni-
tive abilities will be discussed in the next section.

2.1.2.2 Behavioural markers

The medical practice to derive a diagnosis from the symptoms which a patient reports
is obviously nothing new. Fever usually indicates an infection the body fights against,
acute localized pain most likely results from overtaxing of the respective body parts.
Such simple diagnoses usually do not require a specific blood test or leg-CT, nor would
most patients put up with a time consuming procedure if an improvement of the symp-
toms is likely. When talking about the diagnosis of diseases like Alzheimer’s, there are
several issues with asking a patient for their symptoms. Firstly, neurodegerative disease
do not cause any direct pain like headaches, therefore it is not helpful to ask a patient
“where it hurts”. The symptoms might also be not be significant enough at first, and
often get attributed to just getting old. When eventually visiting a doctor, the damage
could already be severe and - as discussed - permanent. Given the nature of the symp-
toms like memory loss that Alzheimer’s causes, the patients might not even notice loss
of memory at first, because they forgot it [19]. People at an age where they are prone to
suffer from the disease would need regular testing for symptoms, and those tests would
need to be efficient enough for this purpose.
So-called Cognitive Assessments are the method by which the mental capabilities of
a patient are tested with the purpose of detecting cognitive disorders. They are short,
game-like tasks of multiple categories a patient has to perform. Those tasks challenge a
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patients performance in six major cognitive domains defined by the fifth edition of the
DSM-5 [26]. Those are Language, Executive Function, Learning and Memory, Com-
plex Attention, Perceptual-Motor Function and Social Cognition [335].
To test for example a persons memory and consequentially function of the temporal
lobes, a patient would have to remember a sequence of numbers or words, and recount
them after a short waiting period. There are dozens of clinically approved tests over
all categories. Depending on the type of assessment, a predetermined sequence (bat-
tery) of differing tests and varying length is administered [298]. The Mini-Mental State
Examination takes only about 5-10 minutes, and is a commonly used tool for early
assessment first published in 1975 [299, 116]. These cognitive assessments can help
show symptoms of dementia in its early stages due to their accessibility. They provide
good ground work for future diagnostic methods, are clinically approved and commonly
used by doctors and neuropsychologists. Generally, doctors are aware of the issue that
Alzheimer’s represents, and will administer cognitive tests if an unexpected decline of
cognitive functions is noticeable [291]
The disadvantages of these tests is that they can show at most symptoms of a potential
disease, not detect the disease itself. Since dementia can be caused by different disor-
ders with different treatment methods but overlapping symptoms, a final diagnosis may
still be determined via brain imaging. Even though those cognitive tests are relatively
easy to administer, they still require guidelines to follow. The tests and their rating
scales are standardized, and any distraction could skew the results. The tests can be ad-
ministered by any neuropsychologist who sits down with the patient. If those tests are
administered for the first time, demographic data of the patient has to be raised if not
available already. The patients age, years of education, gender or preexisting conditions
are relevant in the evaluation of the patients performance.

2.2 Apathy, an affective syndrome

Apathy can be described generally as a syndrome comprising a reduction in goal-
directed behaviours, reduction of interests and emotional blunting [276]. Study find-
ings suggest that a disruption of mechanisms underlying the way in which reward is
processed to motivate behaviour could be the potential cause [43, 32]. Consequently,
it can be seen primarily as a motivational disorder present in several psychiatric and
neurological conditions such as stroke [62], traumatic brain injury [407], major depres-
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Figure 2.2: Prevalence of apathy in dementia and relation between symptoms of apathy
and depression in dementia. Both affective syndromes can occur in dementia (disorder).
Symptoms of diminished goal-directed behaviour and cognition can overlap between
apathy and depression.

sion [415] or schizophrenia [411], as well as in neurodegenerative diseases including
Alzheimer’s disease [1] or Parkinson’s disease [292]. Although there seems to be a
lack of consensus in the definition across different pathologies, with different terms em-
ployed interchangeably according to patient groups, Cathomas et al [66] proposes that
for research purposes it may be helpful to regard it as one concept to a large extent, ap-
plicable across traditional nosological categories, to be considered a ”trans-diagnostic
clinical phenotype”.

Figure 2.2 depicts the relation between dementia, apathy and depression.

The presence of apathy visibly and significantly affects the patient’s and caregiver’s
quality of life [412, 256]. In neurodegenerative disorders, apathy is associated with
faster cognitive and functional decline [359] representing a risk factor for the conversion
from early stages to AD [300]. Thus, identifying apathy timely in disease progression
is considered a clinical and research priority.
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Current assessment methods for apathy rely mostly on scales or interview-based self-
reports such as the Apathy Inventory [328] or the Neuropsychiatric Inventory [86],
which might not always reflect the actual activities and motivational states during the
time a patient is being evaluated [148]. Furthermore, their application for early detection
is rather limited because of their dependency on human observers as well as frequent
impaired capacity for self-observation [199, 72]. Recently, a task force redefined the
apathy diagnostic criteria for better operationalization in clinical and research practice,
stipulating the presence of quantitative reduction of goal-directed activity either in the
behavioural, cognitive, emotional or social dimension in comparison to the patient’s pre-
vious level of functioning. These changes may be reported by the patient him/herself or
by the observation of others [327]. Furthermore, information and communications tech-
nologies (ICT) may supplement these classical tools with additional objective measures
and potentially provide more continuous endpoints in clinical trials.

König et al [199] performed a review of ICT for the assessment of apathy and con-
cluded that no one had previously used ICT specifically in this context, but that tech-
niques seemed promising. Since apathy seems to affect emotion-based decision making,
attempts to measure it through games were made such as the Philadelphia Apathy Com-
puterized Task (PACT) [115], detecting impairments in goal-directed behavior including
initiation, planning, and motivation. Reward and effort mechanisms have been explored
along with physical effort discounting through paradigms such as the one developed
by Pessiglione et al [308]. Studies in Schizophrenia have shown that actigraphy and
the measurement of motor activity provides a promising readout for quantifying apa-
thy [195]. Actigraphy has been used as well to measure physical changes in dementia
patients with apathy [91]. Apathy has also been explored using eye-tracking in AD pa-
tients [69] with the result that apathetic patients tend to less fixate social images than
the non apathetic patients [211]. Despite these efforts to find alternative objective mea-
surements of apathy, a cheap and fast method which could help with early, remote and
non-intrusive screening is still urgently needed.

Recent advances in computer linguistics and language processing have led to the use
of automatic speech analysis in the assessment of various clinical manifestations [110].
Semantic and acoustic features automatically extracted from speech tasks seem highly
sensitive to cognitive decline and potential conversion risk to dementia [204]. Signifi-
cant associations were found between negative symptoms in schizophrenic patients and
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variability in pitch and speech proportion, even in different languages [42]. Strong cor-
relations were obtained between negative symptom severity and phonetically measured
reductions in tongue movements during speech [79]. Since it is well recognized that
aprosody – flattened speech intonation – represents a negative symptom of schizophre-
nia and that there is a clear resemblance to apathy, we can hypothesise that this technol-
ogy could represent a promising candidate for measuring and tracking its severity even
in different types of population [75].

In depression, it is notable by ear, that patients show a reduced prosody spectrum and
sound rather monotonous which could serve as an indicator, if objective measurements
can quantify these observations. Until now several groups investigated the use of au-
tomatic analysis of speech as an additional assessment tool with an extensive review
published by Cummins et al [87] outlining the interest of using speech as a key ob-
jective marker for disease progression. Prosodic, articulatory and acoustic features of
speech seem affected by depression severity and thus can be easily identified and used
for continuously monitoring patients. With a considerable overlap of symptoms be-
tween depression and apathy, namely the lack of interest and goal-oriented behaviour,
we anticipate similar results when applying speech technology methods to apathy with
a slightly different pattern in regards to emotionally triggered speech.

2.3 Cognitive Testing

Cognitive tests are concise exercises that are designed to measure specific cognitive
abilities of an assessee. An example is a wordlist learning task, in which a patient is read
a list of word repeatedly and has to remember them after a certain amount of time. They
belong to the category of functional assessments, as they offer an external perspective
on the cognitive capabilities of a person. Exercises are often speech or pencil based and
administrable in a few minutes. They are used extensively in the diagnosis of different
dementia types. Tests usually result in one or more outcome variables that are used
as a measure of performance of the assessee (in the wordlist example, the number of
correctly recalled words). The outcome variables (scores) alone are often not directly
interpretable as a point of reference is needed to interpret what constitutes a normal or
an impaired performance. This is why tests are usually distributed with so called norms.
These norms are used to normalized the obtained scores against a control population
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of healthy individuals. To this end, large groups of people who are cognitively healthy
perform these tests to establish what a ’normal’ performance looks like. Since cognitive
functioning generally declines with age and is increased by a higher education level,
these demographic variables are used to stratify norm groups. Formally, norms are
encoded in tables and can be created and applied in multiple variants:

• z-score
A statistical representation of a outcome score that expresses it in terms of mean
and standard deviation of the reference population. Let x be the score obtained
in the test, µ the mean of the applicable age and education level stratified norm
group and σ their standard deviation. Then the z-score can be expressed as

z =
x − µ

σ

It is a way to express the outcome score on a scale where 0 represents the popu-
lation mean and in terms of standard deviations. Consequently, a z-score of e.g.,
−1 would be interpreted, as a performance that is one standard deviation below
the reference populations mean.

• Percentiles
Percentiles represent a value in relation to how many percent of observations in
a population are below it. So performance in the 20th percentile is equal to 20%
of the population showing a worse performance. Where the z-score represents a
value using the population mean and standard deviation, percentiles relate values
to the population median. This is preferable, especially if populations are are
not normally distributed and therefore not well represented by mean and standard
deviation.

• Cut-Offs
For easy decision support, some norms are transformed into cut-off values that
clearly state at which point a performance can be counted as impaired. Although
practical, these representations often lack in describing the differences in perfor-
mance experienced by people in a single cut-off category.

Norms are an intuitive way to compare performance in a cognitive test against a group
of healthy individuals to identify abnormal behaviour. Problems arise mainly when a
persons demographic information is not well represented in a norm population. Either
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Perceptual-motor coordination

Learning and memory
Free recall
Cued recall

Recognition memory
Semantic and autobiographical

long-term memory
Implicit learning

Social cognition
Recognition of emotions

Theory of mind
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Figure 2.3: Model of neurocognitive domains according to DSM-5. Each box represents
a super-domain of cognitive functions. Subdomains are listed as items inside.

because of a unusual demographic structure (very high/low age/education level) or a
lack of data variability in the population the norm was created on. In this case, single
time measurements of cognitive functioning are often note sufficient, since people with
a very high education level might show above average performance, while still experi-
encing cognitive decline. Comparisons are clearer when assessing the same person over
a period of time. The focus then shifts away from performance at individual time points
to longitudinal performance developments.

As previously mentioned, cognitive tests are often defined in a way to measure a spe-
cific cognitive ability. This can be especially important in differential diagnosis. Mul-
tiple types of dementia show different progression patterns in the brain, which translate
to different declining cognitive deficits. Furthermore, a certain cognitive impairment
might be linked to a physical injury of a closely associated brain area (e.g., after an
accident). Human cognition can be modelled in several dimensions and there are mul-
tiple approaches to do so. In this work, we utilise the model introduced in the DSM–5.
This diagnostic manual is the gold-standard for psychological assessment methods and
diagnostic criteria around the world. It models a total of six super domains of cognitive
function, which each contain multiple subdomains. See Figure 2.3 for an overview and
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Figure 2.4: Example performance in a Semantic Verbal Fluency task of category ani-
mals. The position of each word on the timeline indicates when the assessee named the
animal in the 60 seconds.

Appendix B for detailed descriptions.

Cognitive tests are usually designed to measure a certain cognitive subdomain. Many
of the tests are speech-based exercises, although that does not necessarily mean they
measure language function. Take a word list learning task for example. A list of words
is read out loud to an assessee and he is asked to verbally recall them after some time.
Although the complete test is speech based, it clearly does not measure language func-
tion, but learning and memory ability. This distinction is important, as consequentially
patient generated speech and language can be used as a means to measure more than
just language functions. Other tests are not performed using speech, but rather paper
and pencil. Although these tests also offer wide room for improvements through dig-
italisation and advanced analysis of the so captured data, they are not the topic of this
thesis.

If multiple tests are combined into a package, which often comes with a specific scoring
scheme, this is referred to as a test battery. Through the combination of a variety of
tests, a broad part of cognition can be assessed. These batteries can either be used as
screening instruments or to stage the progression of cognitive decline. In the following,
some tests and test batteries which are analysed or referred to throughout the thesis are
introduced in more detail.

2.3.1 Verbal Fluency

Verbal fluency (VF) is amongst the most widely adapted neuropsychological standard
tests and is routinely applied in the assessment of neurocognitive disorders. Its subform,
category fluency or semantic verbal fluency, demands the assessed person to produce as
many different items from a given category as possible within a given time interval,
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e.g., “as many animals as possible in 60 seconds”. A substantial number of clinical
studies confirm the discriminative power of SVF for brain pathologies including such
as Alzheimer’s disease [293, 323, 28, 139, 160], Parkinson’s disease [159], psychiatric
disorders such as schizophrenia [329], Primary Progressive Aphasia (PPA) and its sub-
forms [49, 244], as well as focal lesions [379]. Generating words according to a given
semantic category involves multiple cognitive processes including (1) lexical retrieval,
(2) systematic lexical search, (3) holding active generated words, and (4) inhibition of
automatic erroneous responses [81].

Especially the latter ones impose high executive-control demand on the subject due
to the efficient organisation of the actual retrieval, as well as self-monitoring aspects.
However, semantic verbal fluency depends primarily upon the integrity of semantic as-
sociations within the lexicon; deficits in this test above all indicate semantic retrieval
problems. Considering the involvement of two distinct cognitive processes, Troyer et al.
[379] first introduced a systematic framework to calculate measures for both processes
from the response behaviour of a subject. In general, production of words is organised
in spurts—temporal clusters—followed by pauses, implying the lexical search (2) for
semantic fields or subcategories between clusters, and retrieval/production of words (1)
within the cluster [151, 379]. This means, that between temporal clusters, executive
search processes—switching (2)—and within temporal clusters, semantic memory re-
trieval processes—clustering (1)—are engaged. The underlying notion is, that temporal
clusters, correspond to semantic clusters; in other words, ”words that comprise these
temporal clusters tend to be semantically related” [379, p. 139]. From the transcript
of the produced succession of words (e.g. animals), qualitative measures can be calcu-
lated, following the suggested approach by [379]. Hereby, multiple subjectively defined
taxonomic subcategories, based on main categories, are used to determine whether suc-
cessively generated words belong to the same subcategory—i.e. form a cluster.

Temporal analysis of verbal fluency tasks shows, that subjects’ performance follows a
logarithmic curve asymptotically flattening out in the second half of the, typically, 60
seconds of the fluency task [112, 405]. Factor analysis based on 10-second-intervals flu-
ency performance reveals two main components which have been interpreted by [112],
as semi-automatic rapid retrieval—during the first three intervals—and relatively slow
effortful search/retrieval—during the second 30 seconds; only the first half scores have
been shown to effectively discriminate between dementia, MCI and healthy controls
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[113]. Beyond this classic fixed interval temporal analysis, temporal clustering as indi-
cator for cognitive processes is typically not investigated, although the spurt character of
the performance shown in such a task has been well documented. In fact, the association
of retrieval time and semantic memory organisation goes back to Collins et al. [74] and
has been investigated early on by Grünewald et al. [151], temporally fitting a two-stage
model (fast semantical retrieval and slow executive search) revealing a strong correla-
tion between the temporal clusters and the semantic clusters. However, current practice
in neuropsychology does not require to record the SVF task performance, which results
in a loss of the temporal dimension of the data.

Additionally, there is strong evidence for the multifactorial nature of the SVF from
neuroimaging studies. Investigating the correlation of underlying neural structures and
behavioural patterns in VF tasks, researchers have been putting forward the hypothesis
of a distributed neural system for semantic retrieval. In neuroimaging studies, pooling
functional magnetic resonance imaging (fMRI) and behavioural data, overall SVF per-
formance, i.e., word count, has been found to be related to the activation of distributed
functional systems, comprising specific brain regions, such as inferior frontal gyrus (as-
sociated with executive retrieval processes, correlated with working memory), medial
and lateral fusiform gyrus (semantic storage), as well as occipital regions, e.g., lingual
gyrus (visual processing) [388, 245].

Beyond these investigations on the macro level of SVF, i.e., the overall word count in the
task, some brain lesion studies investigate the underlying neural structures of qualita-
tive measures of the SVF task on a micro level, i.e., switching and clustering behaviour.
Most prominently, [380] compared semantic clustering and switching variables between
frontal-lobe lesion and temporal-lobe lesion patients. However, results are not conclu-
sive, as the authors report (1) significant main effects in switch-counts for frontal-lobe
lesion patients compared to healthy controls and no cluster size effects, but (2) found
not significant main effects for clustering among temporal lobe patients and the to the
contrary ”on semantic fluency switching there were overall group differences” [380,
p. 502]. Additionally, frontal-lobe patients’ SVF scores have been found to improve
significantly, as soon as they are provided with external subcategory cues, e.g., by the
interviewer. Given the frontal brain regions’ importance for executive processes [383],
this serves as evidence for the distinct cognitive functions involved in the semantic flu-
ency task.
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To summarise, the overall involvement of different distinct cognitive processes (i.e. ex-
ecutive control processes and semantic memory retrieval processes) in the performance
of the SVF task has been well documented in the literature. This is mainly due to ev-
idence from lesion and neuroimaging studies. The evidence from behavioural studies
is less conclusive, especially when it comes to the dissociation of selective functional
impairments and their predictive power for neurocognitive impairments like found in
multiple forms of dementia.

2.3.1.1 SVF in Alzheimer’s Dementia

On the behavioural macro level, evidence for the involvement of a distributed neural
network during semantic fluency task and the corresponding behavioural impairments
which are obvious in most dementias’ progressions is well documented. However be-
yond this general/macro-level SVF impairment, both clustering and switching processes
could be impaired and correlated with the symptom. Accordingly, evidence from liter-
ature on the corresponding semantic fluency measures with Alzheimer’s patients—and
dementia in general—shows inconsistent results: Longitudinal studies report a signif-
icant decline in switching index, driving the semantic fluency performance’s decline,
[323], whereas other longitudinal studies identify mean cluster size as propelling mea-
sure [273]. Other cross-sectional studies report an impairment of both measures dis-
criminating between Alzheimer’s patients and healthy age-matched controls [279, 139,
380] or neither one of these measures [293]. However, across multiple studies seman-
tic fluency scores highly correlate with both the number of semantic clusters, as well as
switches [329, 139]. This sometimes leads to the conclusion, that those measures do not
provide additional incremental validity, arguing that ”examination of qualitative aspects
of fluency is time consuming and does not appear to improve diagnostic discriminability
beyond that achievable using quantitative aspects of fluency” [139, p. 774]. This is in
line with the notion, that the hybrid character of the SVF renders it difficult to interpret
in clinical applications [346].

Nevertheless, SVF performance can be modelled as a combination of two cognitive
sub-functions, i.e., executive search processes and semantic memory retrieval processes,
manifesting in two respective measures, i.e., switching index and cluster size. Assum-
ing that AD is marked by a vast corruption of the respective neural distributed network,
both of the derived qualitative fluency measures should be equally affected, resulting
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in basically no more than simply an impaired semantic fluency count. The correla-
tion/connection between both number of switches (NOS) and mean cluster size (MCS)
and the overall semantic fluency count (SVF-count) necessarily follows from their for-
mal relation:

SVF-count = (MCS ∗ (NOS + 1))− repetitions − intrusions

The fact that some studies report different cluster sizes, can be explained through the
subjective clustering criterium [379], which leaves room for interpretation regarding the
clustering, thereby directly affecting both measures, NOS and MCS.

Following the traditional approach, words, e.g., animals, can belong to one or more pre-
defined subcategories. There are about 25 subcategories based on three main categories:
”living environment”, ”zoology”, and ”human use”. A cluster is then defined as succes-
sively generated words belonging to the same subcategory. If a word can be assigned
to two consecutive clusters, it is counted as belonging to both. A cluster contained by
another cluster is not counted. To better understand the ambiguity incorporated in this
rating scheme, one should consider the following example from the SVF with animals:

frog - dolphin - donkey - monkey - gorilla - tiger - panther - aardvark - ant - crane

There are multiple ways how these utterances could be clustered following the tradi-
tional subcategory-based approach:

• (frog - dolphin - donkey - monkey - gorilla - tiger - panther - aardvark - ant -
crane) [all African animals]

• (frog - dolphin) [water animals], (donkey) [animals of burden], (monkey - gorilla -
tiger) [jungle animals], (tiger - panther) [felines], (aardvark) [insectivores], (ant)
[insects], (crane) [birds]

• ... (monkey - gorilla - tiger - panther) [jungle animals], ...

Additionally, there are multiple non category-based cluster possibilities which are not
catered for: (1) phonemically similar words (e.g. donkey & monkey), or (2) concepts
that occur together in popular culture (e.g. panther, crane & aardvark, as in the cartoon
series The Pink Panther). One could also argue, that having only one subcategory for
water animals—having frog and dolphin appear in the same semantic cluster—may not
capture the variance accurately.
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Figure 2.5: The Cookie Theft Picture used to elicit speech in description tasks.

However, beyond the comprehensive qualitative analysis of the SVF category animals,
the literature does not consider other parallel versions of the SVF featuring different
semantic categories than animals, at all. This might be due to the fact that the tradi-
tional qualitative scoring scheme is based on manual categorisation and hand-crafted
taxonomies. As a matter the practical application of qualitative SVF analysis is highly
restricted.

2.3.2 Cookie Theft Picture Description

A widely-used language assessment is the Cookie Theft picture (CTP) description from
the Boston Diagnostic Aphasia Examination [143]. In this task, participants are shown
a line drawing of a kitchen scene, where a boy can be seen standing on a stool, trying
to reach a cookie jar, while a woman is preoccupied washing dishes. They are asked
to describe everything they see going on in the picture, in as much detail as possible.
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Cognitive domain Task Points

Concentration Serial subtraction or spell ’WORLD’ backwards 5
Language Repetition (single complex sentence) 1

Comprehend instructions 2
Follow written instructions 1
Write a short sentence 1
Recognise and name two common objects 3

Memory Word list learning 3
Orientation Questions about the current time, date and location 10
Visuospatial Copying of intersecting pentagons 1
Working memory Repeat three words 3

Table 2.1: Subtasks of the Mini Mental State Examination, what cognitive function they
measure and point distribution among them.

The line drawing is presented in Figure 2.5. The task has been used as a way to elicit
free speech from people suffering from Alzheimer’s disease [128], although its original
application is for the detection of aphasia.

2.3.3 Mini-Mental-State Examination

The Mini Mental State Examination (MMSE) is a common test battery used as a screen-
ing tool for dementia. It takes around ten minutes and requires a minimally trained
assessor, consists of a series of tasks that cover different forms of cognitive functions,
such as memory and attention [347, 116], and is designed to be used as a global screen-
ing tool. Table 2.1 gives an overview of its tasks and scoring scheme. Patients score
between 0 and 30 points and generally, the score can be interpreted as

30-25 degree of impairment is questionably significant
25-20 Mild cognitive impairment
20-10 Moderate cognitive impairment
10-0 Severe cognitive impairment

Its validity has been proven and it is widely translated and used [372]. The MMSE
is unfortunately sometimes misunderstood as a diagnostic tool, when it is actually a
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screening test with relatively modest sensitivity in detecting a mild degree of cognitive
impairment. It has floor and ceiling effects and limited sensitivity to change which is
becoming a particularly important issue with the recent increased focus of researchers
on the milder stages of AD [381]. Despite all these drawbacks, the MMSE is still an
incredibly widely used screening instrument around the world. All of the few available
speech and language corpora of MCI populations contain the MMSE as a general score
for cognitive health. Due to the difference in diagnostic criteria used between different
studies, it can be used to make patient populations comparable.

2.3.4 Clinical Dementia Rating Scale

The Clinical Dementia Rating scale (CDR) [285] represents internationally the most
widely applied staging tool for assessing dementia’s global severity. It is a mix of ques-
tionnaire and cognitive test battery that encompasses six domains of cognitive and func-
tional performance: Memory, Orientation, Judgment & Problem Solving, Community
Affairs, Home & Hobbies, and Personal Care [174]. The assessment is conducted in the
form of semi-structured interviews with the affected person and an affiliated person/co-
interviewee, e.g., a family member. The CDR is relatively time-consuming - interviews
can take up to 90 minutes - depending on the availability of a co-interviewee and re-
quires significant training of the raters in order to achieve good reliability [270].

The Inter-rater reliability for CDR is excellent (correlation coefficient 0.89) [271] and
content validity can be assumed, as the six cognitive domains rated by the CDR are
linked to validated clinical diagnostic criteria for AD [114]. Each domain is rated on a
5-point scale of functioning as follows: 0, no impairment; 0.5, questionable impairment;
1, mild impairment; 2, moderate impairment; and 3, severe impairment (personal care
is scored on a 4-point scale without a 0.5 rating available). The global CDR score is
computed via an algorithm that weighs memory more heavily than the other categories.
The CDR Sum of Boxes (CDR-SOB) score is obtained by summing each of the domain
box scores, with scores ranging from 0 to 18 [285]. In general, the higher the score, the
greater the severity of dementia. CDR-SOB scores are used to rate dementia severity as
follows :
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0 Indicates normal cognitive functioning
0.5–4.0 Indicates questionable cognitive impairment
3.0–4.0 Indicates very mild dementia
4.5–9.0 Indicates mild dementia
9.5–15.5 Indicates moderate dementia
16.0–18.0 Indicates severe dementia

The CDR-SOB score has been considered a more detailed quantitative general index
than the global score and provides more subtle information than the global CDR score in
patients with mild dementia, and a suitable tool for measuring the response to treatment
in clinical trials of AD [236]. The advantages of the SOB method include that the
CDR-SOB scores can be treated as interval data in statistical analyses, whereas global
CDR scores are ordinal by the nature of the algorithm approach to condensing the data.
Finally, the most significant advantage of using CDR-SOB scores for staging dementia
severity is the increased precision, allowing for tracking changes over time [285].

2.3.5 MMSE and CDR as Assessment Tools

Both, MMSE and CDR-SOB, global assessment measures are the most widely used in
clinical and research settings for dementia screening and staging its severity. Staging
dementia is crucial for clinical trials and the development of effective pharmacological
interventions. They are administered and interpreted by specially trained healthcare
clinicians in order to provide appropriate patient care and to identify the effectiveness
of prescribed treatment interventions in patients with dementia. Inter-rater reliability
for CDR is excellent (correlation coefficient 0.89) [271] and content validity can be
assumed, as the six cognitive domains rated by the CDR are linked to validated clinical
diagnostic criteria for AD [114].

Each domain is rated on a 5-point scale of functioning as follows: 0, no impairment; 0.5,
questionable impairment; 1, mild impairment; 2, moderate impairment; and 3, severe
impairment (personal care is scored on a 4-point scale without a 0.5 rating available).
The global CDR score is computed via an algorithm that weighs memory more heavily
than the other categories1. The CDR-SOB score is obtained by summing each of the
domain box scores, with scores ranging from 0 to 18 [285]. In general, the higher the

1http://www.biostat.wustl.edu/˜adrc/cdrpgm/index.html

http://www.biostat.wustl.edu/~adrc/cdrpgm/index.html
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score, the greater the severity of dementia.

The CDR-SOB score has been considered a more detailed quantitative general index
than the global score and provides more subtle information than the global CDR score in
patients with mild dementia, and a suitable tool for measuring the response to treatment
in clinical trials of AD [236]. The advantages of the SOB method include that the
CDR-SOB scores can be treated as interval data in statistical analyses, whereas global
CDR scores are ordinal by the nature of the algorithm approach to condensing the data.
Finally, the most significant advantage of using CDR-SOB scores for staging dementia
severity is the increased precision, allowing for tracking changes over time [285].

The MMSE encompasses a variety of questions, requires minimal training and takes
around 10 min. The questions are typically grouped into seven categories, represent-
ing different cognitive functions: orientation to time (5 points), orientation to place
(5 points), registration of three words (3 points), attention and calculation (5 points),
recall of three words (3 points), language (8 points) and visual construction (1 point)
[347, 116]. Patients score between 0 and 30 points, and cutoffs of 23/24 have typically
been used to show significant cognitive impairment.

Its validity has been proven and it is widely translated and used [372]. The MMSE
is unfortunately sometimes misunderstood as a diagnostic tool, when it is actually a
screening test with relativelxy modest sensitivity in detecting a mild degree of cognitive
impairment. It has floor and ceiling effects and limited sensitivity to change which is
becoming a particularly important issue with the recent increased focus of researchers
on the milder stages of AD [381].

2.3.6 Computerized cognitive testing

Digital tests that seek to assess cognitive functions, briefly and globally, are being de-
veloped with the aim to be administered remotely [54]. The exhibited advantages of
these tests are standardization of administration and stimulus presentation as well as the
measures (e.g. reaction times and latencies) are more accurate: performances can be
compared to established norms [402] allowing the clinician to concentrate on a person-
alized analysis of the patients’ needs.

For instance, the CogState Brief Battery (CogState) is a brief computerized test which
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assesses reaction and processing speed, episodic memory, attention, working mem-
ory, learning, and decision-making. [93] examined the specificity and sensitivity of
the CogState test for the diagnosis of mild cognitive deterioration, comparing it with
classical pen and paper tests with the result that it reaches similar discrimination level
as traditional tests.

CANTAB, one of most known cognitive screening tools, offers specialized AD test bat-
tery versions for assessing prodromal states, or mild dementia. The batteries measure
motor skills, executive function, episodic memory, visual memory information process-
ing and sustained attention. CANTAB has been shown to be highly sensitive to cognitive
dysfunction and ties in closely with current neurobiological models for MCI [121, 103].

The TDAS (Touch Panel-type Dementia Assessment Scale) [175] based originally on
the pen and paper ADAS-cog test [331], measures word recognition, instruction compli-
ance, temporal orientation, visuospatial skills, recognition of object use, naming, plan-
ning of the writing process, money computation, and recognition of the time indicated
by an analogue clock. This digital test can be administered in 30 minutes, just two-thirds
of the time that ADAS-cog requires.

The CNSVS (CNS Vital Signs) [152] is a digital screening test, assessing working mem-
ory, mental flexibility, psychomotor speed, verbal and visual memory, set shifting and
inhibition and vigilance and sustained attention. The authors studied test-retest reliabil-
ity as well as concurrent and discriminant validity concluding that it can be used as a
reliable screening tool in medical contexts.

Phone-based screening has been investigated by Castanho et al. (2016) comparing the
delayed recall task and a classical neuropsychological assessment with the Telephone
Interview of Cognitive Status (TICS) in a population of older adults. The TICS consists
of 13 items evaluating spatial, temporal and personal orientation, working memory,
attention, and verbal and semantic memory. TICS showed high correlation levels with
global scores of classical tests as well as a satisfactory internal consistency. This method
could allow faster access to assessment for people living in rural areas producing similar
results as the usual pencil and paper screening tests.
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2.4 Machine Learning Prerequisites

One main focus of this work is to use markers extracted from speech and spoken lan-
guage to construct computational models that are able to automatically label new sam-
ples with a diagnostic group. The area of computer science concerned with building
such predictive models is referred to as Machine Learning (ML).

Given a group of samples (i.e. recordings of patients), a set of specific properties for
each sample, referred to as features (i.e. variables calculated from each recording) and
an assignment of a label to each sample (i.e. a diagnosis), a machine learning model
tries to use inductive inference to predict a samples label based on the given feature
representation. If the predicted set of labels is discrete (as is the case for diagnosis),
these models are referred to as classifiers. The features extracted for each sample are
encoded in a numerical feature vector x, which contains a single feature per row. A
set of samples can be encoded by appending these features vectors horizontally, which
leads to a feature matrix referred to as X. The label of single sample is denoted by y,
labels of a set of samples are gathered in a vector Y.

Generally, the construction and evaluation of a classifier can be split in a training and
testing phase. In the training phase, the classifier is presented with features from labeled
samples. Its task is to find structures in the given features, that allow it to predict the
label of a given sample well. These structures should generalise well to unseen samples,
since in practical application, the task of a classifier is to label unseen samples. The
performance of classifiers is evaluated in the testing phase. To this end, the classifier
is first trained on a separate training set and its performance is evaluated by letting it
predict the labels of samples from a separate test set. Given the actual labels of samples
from the test set and the predicted ones, a performance score can be calculated.

2.4.1 Classification Performance Metrics

Assume a binary classification problem, where the possible labels y ∈ {0, 1}. Let Y
denote the true labels of a set of samples and Y′ the labels predicted by a classifier.
Then the results of classification can be visualised in a so called confusion matrix. This
matrix visualises the agreement of true and predicted labels and the type of error made
in prediction (i.e., confused 0 with 1; confused 1 with 0). Figure 2.6 gives a schematic
example of a confusion matrix. Samples are counted to one of four categories in accor-
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Figure 2.6: Schematic of a binary confusion matrix. Samples are counted into one of
four categories depending on their true and predicted labels. The column is determined
by the true label and the row by the predicted one.
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dance with their true and predicted label. These categories are:

• True Positive (TP), for samples with a true and predicted positive label

• True Negative (TN), for samples with a true and predicted negative label

• False Positive (FP), for samples with a true negative and predicted positive label

• False Negative (FN), for samples with a true positive and predicted negative label

Multiple performance metrics can be directly calculated form the counts of these cate-
gories.

Accuracy

ACC =
TP + TN

TP + FP + TN + FN

Accuracy is a general performance metric that counts the instance of correctly classified
samples in relation to the number of overall samples. It does not distinguish between the
types of errors made (i.e., False Positives vs. False Negatives) which is problematic in
many application scenarios where one type of error has much more severe consequences
than another (i.e., failing to treat a condition). Furthermore, accuracy is easily skewed
by class imbalances (i.e., when one class only occurs in 1% of samples, a classifier that
always predicts the other class has 0.99% accuracy).

Sensitivity

SENS =
TP

TP + FN

Sensitivity (or how it is more often referred to in the ML community, Recall) measures
the ratio of actual positives that are correctly classified as such (e.g., ratio of people with
a disease, who are correctly classified as having it). Especially in the medical field, this
metric is often considered to evaluate the goodness of a diagnostic method. For example
in screening scenarios, it might be considered most important that people suffering from
a disease are correctly identified for further treatment.
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Figure 2.7: Schematic plot of multiple ROC curves. The chance baseline is indicated
by the dotted diagonal. Two ROC curves with different AUC values are displayed by a
green and blue curve.

Specificity

SPEC =
TN

TN + FP
Specificity is the inverse of Sensitivity. It measures the ratio of actual negatives that
are correctly classified as such (e.g., ratio of healthy controls, who are correctly clas-
sified as such). In the medical domain, it relates a diagnostic instruments ability to
correctly reject healthy controls without a certain disease. Especially for treatments that
are dangerous or harmful themselves, high sensitivity in choosing the subjects to which
to administer these procedures is desirable.

Area Under the Receiver Operating Characteristic Curve

The Receiver Operating Characteristic Curve (ROC curve) is a plot of Sensitivity as a
function of (1 - Specificity) for different decision threshold settings of a classifier. It
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Figure 2.8: Schematic representation of k-fold cross validation. The training set (blue)
and test set (green) in each fold is displayed.

allows for a visual representation of different trade-offs of sensitivity and specificity to
which a classifier can be configured. The name originates from its invention by electrical
engineers in World War II, where it was used to detect enemy objects on the battle field.

Figure 2.7 shows a schematic plot of multiple ROC curves. The stepped appearance
indicates the possible threshold configurations and their respective sensitivity and speci-
ficity levels. Generally, a curve that leans toward the upper left of the plot is indicative
of better performance, since the tradeoff between Sensitivity and (1 - Specificity) is less
severe. This fact can be specifically encoded into a variable by measuring the area un-
der this curve (AUC). AUC can be interpreted as the probability of the classifier ranking
a randomly chosen positive sample higher than a randomly chosen negative one. In
Figure 2.7 the ROC curves for three different classifiers are given. The random chance
baseline is indicated by the diagonal curve. Since AUC is rather robust against imbal-
ances in the label distribution, the AUC baseline is always at 0.5. The classifier with
better performance is represented with a blue line (more to the upper left, higher AUC)
and the other one by the green line (closer to the chance baseline, smaller AUC).

2.4.2 Evaluation Methods

There are multiple ways to estimate the performance of a classifier. The easiest way is
to keep a hold-out set of test samples which a trained classifier can predict to evaluate
model performance. This set is usually split off the whole available data (often about
15% of it). Especially in domains where sample sizes are small already (as is the case
for us), separate test sets are problematic. They further limit the amount of data models
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can be trained on and often do not accurately represent the statistical distribution of the
data. In these cases, the preferred alternative is to use so called cross validation (CV)
approaches.

In CV, a random portion of the data is dynamically split off to serve as a test set. This
procedure is repeated multiple times and performance is estimated through averaging
results. The most famous form of CV is k-fold cross validation, where 1

k th of the data is
split off in each iteration (where k is classically 10). The general process is visualised
in Figure 2.8. The most extreme form of k-fold CV is when k is chosen as the number
of samples, meaning that only a single sample is held out in each iteration, which is
referred to as Leave-One-Out cross validation (LOOCV). AUC can not be computed
without bias on a single data point in each iteration [9], which is why the concept of
Leave-Pair-Out cross validation (LPOCV) was introduced. Since the hold-out set now
consists of a pair of samples, this procedure is often applied to all possible pairs of data
points, where the two labels of each point not to be different.

Although more suitable to smaller datasets, CV is computationally more expensive. In
k-fold CV, k–instead of only one–models have to be trained and evaluated. For LPOCV
the number is exponentially higher which makes it infeasible for larger datasets or learn-
ing methods that require longer training or prediction times.

2.4.3 Classification Models

A small description of ML algorithms used in classification is given. In recent years,
deep learning has been very popular and applied successfully to a number of problems.
These models usually require large amounts of data for training, but often outperform
classical models on a number of tasks. A drawback of deep learning is, that models
usually lack explainability, meaning that a trained classifiers is not able to reason about
which markers or which combination of markers was helpful to classify a given sample.
Since the data sets used in our experiments are very small and explainability is often a
requirement in medical applications, we only use simple classification models.

2.4.3.1 Logistic Regression

Logistic Regression (LR) is a discriminative classifier which tries to explicitly model the
boundaries between two classes. As the name suggests, it is closely related to classical
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Figure 2.9: Example of a sigmoid function plot used in Logistic Regression to convert
the output into a probability value

linear regression models, with the difference that the logistic sigmoid function is used to
make a discriminatory distinction between two classes, as shown in Figure 2.9. Math-
ematically, LR models use a so called regularisation function, a mathematical addition
to the goal function of these algorithms, that force the to prefer feature structure with
high generalisability. LR models usually use either the so called L2 regulariser, which
uses the L2 norm or the L1 regulariser, which is best on the L1 norm (in this setting, the
LR model is often referred to as lasso). Especially the L1 regularised model has a nice
property, in that it performs implicit selection of features by setting the importances of
all other features to 0. The results can be interpreted to understand what features are
important to a trained classifier and their discriminative between the groups.

2.4.3.2 Support Vector Machines

Support Vector Machines (SVM) are also discriminative classifiers, but are in contrast
to LR models, what is referred to as maximum margin classifiers. This means that they
are constructed to find a decision boundary in an N-dimensional space that maximises
the margin between the classes. In two-dimensional space, the hyperplane is a line,
in three dimensional space, it is a plane. In Figure 2.10 the optimal hyperplane for
the illustrated two-class problem in a two-dimensional space is highlighted in blue.
Specifically, SVMs try to maximise the distance between the nearest data points of both
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Figure 2.10: The optimal hyperplane for the given two-class problem in a two-
dimensional feature space is highlighted in blue. The arrow points out the maximum
margin.

classes and the decision boundary. In cases where the points are not linearly separable,
the condition is relaxed to maximise the margin and, at the same time, minimise the
misclassification rate. These data points closest to the decision boundary are referred
to as support vectors, hence the name of the method. In non-linearly separable cases,
SVMs can use non-linear so called kernel functions to implicitly map their inputs into
a high-dimensional feature space. When using a linear kernel, an interpretation of the
feature weights is also possible.

2.5 Related Work

Recently, progress has been made in approaching the detection of neurodegenerative
diseases using computer-supported techniques. The degree of manual intervention varies.
Some researchers even report completely automatic analysis pipelines: [374] use auto-
matic speech recognition to extract features and employ machine learning methods to
separate subjects with MCI from HC yielding significant discrimination results. [128]
obtain state-of-the-art classification accuracies in distinguishing subjects with AD from
HC based on short speech samples elicited with a picture description task. Again, when
looking at these recent studies, it is important to carefully analyse which target groups
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they address, which corpora and tasks are being used and which features are being ex-
tracted. When discriminating between cognitive impairment and HC and using speech
data from paragraph-recall and semantic verbal fluency tasks, [413] develop support
vector classification models and, with the best model, achieve 90% accuracy. Note that
their cognitive impairment class consists of participants diagnosed with either some
form of amnestic MCI or with dementia. Other authors report classifiers discriminating
between AD and HC [60, 369, 254], between MCI and HC [374, 146, 205] and be-
tween MCI and AD [205]. Some related work has dealt with the automatic analysis of
language in other clinical pathologies and dementia types [325, 130, 127].

While many of these studies conduct experiments with small sample sizes, corpora such
as the DementiaBank [39] are attractive in that they comprise speech samples, partially
also transcripts, for larger populations of specific target groups. Speech samples orig-
inate from different formats and may include conversations as well as tasks that are
drawn from classic, validated test batteries such as the Boston Diagnostic Aphasia Ex-
amination, which also includes the CTP. Apart from target groups, corpora and tasks,
the features that are extracted can be used to structure related computational approaches.
Generally, these features draw on the rationale that informs traditional linguistic exams
and the observations being made in other scientific disciplines. As such, they apply and
expand those features introduced in the previous sections to quantify semantic, morpho-
syntactic, pragmatic and/or acoustic language impairment. Interestingly, especially tem-
poral and acoustic features have been proven to be powerful in discriminating different
target groups – specifically being sensitive to MCI, early-AD and HC [205, 194, 254].

This subchapter complements the previous one by first introducing additional features
that have been used with respect to picture description tasks. To provide a sound
overview, it will then broaden the scope to include not only CTP experiments but exper-
iments in general that are based on natural language data, computer-supported feature
extraction and machine-learning classifiers. The majority of these experiments treat the
detection of signs of neurodegenerative diseases as an n-ary, typically binary, classifi-
cation problem while a relatively small subset of studies predicts clinical scores from
speech samples.
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2.5.1 Computational approaches: New features

2.5.1.1 Content: Number of information units

Given that manually annotating speech samples for information units is time-consuming,
there have been several approaches to scoring information content computationally.
Prud’homme- aux and Roark (2015) generate a source description and use a graph-
based alignment method to determine the degree to which any other description in their
data recalls the source elements. When doing so, the description with the highest aver-
age pairwise BLEU score is selected from the HC data to act as source narrative. This
candidate then is manually tuned to only contain information portrayed in the picture.
Using only the content words in the source narrative, the authors achieve a best accu-
racy of 82% on a subset of the DementiaBank corpus when distinguishing AD and HC.
Other automated estimates of informativeness search for lists of keywords or n-grams:
[295] manually predefine lists of unigrams, bigrams, trigrams and 4-grams that repre-
sent correct information units and account for their morhological variants. Similarly,
[154] rely on unigram recall to score picture descriptions from elderly HC. Drawing on
the last two papers, [128] extract binary information units features from CTP descrip-
tions taken from the DementiaBank. Using WordNet, they semi-automatically generate
sets of possible synonyms for the list of information units introduced by [83]. Addition-
ally, they compute integer-valued frequency features for the relevant information units
counting each unigram occurrence as contributing to a key word separately. Although
this approach allows for a higher degree of underspecification than the original list pro-
posed by [83], reference resolution is a potential problem: Reasonable but unpredictable
word choices could be omitted and discounted, whereas false positive counts wrongly
sanction matching words even when applied to refer to a different entity or when used
off-topic.

2.5.1.2 Content: Temporal perspective

Low density in conveyed information over time manifests itself in perseverative be-
haviour [283, 38]. For example, [373] report that AD patients are more likely to re-
peat ideas in a picture description task than HC. While these authors manually annotate
ideational repetitions, [128] automatically compute semantic similarity between each
pair of utterances in a transcript using a bag-of-words model. After stopword removal,
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they calculate five features using this information, namely average cosine distance, min-
imum cosine distance, zero cosine distance and the proportion of utterances falling be-
low some threshold. Finally, [33] identify repeated speech segments in recorded data
using motif discovery techniques. As a proof of concept, they carry out a test on five
HC reading scripts containing short, embedded, repeated questions and statements and
achieve a maximum accuracy of 71%.

2.5.1.3 Morpho-syntactic form

Previous computational studies of AD have used moving-average type-token ratio, Brunet’s
index and Honoroé’s statistic as alternative measures to assess lexical diversity [60, 153,
369, 128]. Bucks et al. [60] borrow the latter two measures from stylometric studies
of text to overcome the shortcomings of standard type-token ratio, namely that it posi-
tively correlates with text length. Brunet’s index is calculated as B = NV(−0.165)

, where
N is the number of tokens and V the number of types or the vocabulary. The lower this
value is, the richer is the speech sample. Honoroé’s statistic is based on the notion that
lexical complexity is high if there is a high number of word types only used once. It is
calculated as R = (100logN)

(1−V1/V)
, where V1 is the number of types occurring only once. The

higher this value is, the richer is the vocabulary. Drawing on [111], Fraser et al.,[128]
additionally use moving-average type-token ratio (MATTR) as an unbiased metric of
lexical complexity. A window of fixed size is moved through the sample and the TTR
is computed for every position of the window. The MATTR is the mean of all TTRs in
a sample. Unlike taking the average of a fixed number of segments, the MATTR thus
offers a higher resolution view into the sample. The same authors also dive deeper into
the complexity structure on a single-word basis by rating each content word on existing
psycholinguistic norms for familiarity, imageability and age-of-acquisition. The au-
thors hypothesize that poor lexical complexity manifests itself in an increased reliance
on words that are highly familiar, have a strong association to their mental image and are
acquired early in life. With respect to syntactic complexity, computational approaches
have added features that exploit parse tree information such as the height of the tree
or measures of its embeddedness or that built on the constituents of the parse tree by
quantifying them in sets of applied context-free grammar rules [67, 128].
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2.5.1.4 Acoustic features

Several computational studies have augmented purely textual features extracted from
the transcribed speech sample with acoustic features that can be calculated directly from
the audio file: [295] use a semi-automated system to evaluate speech characteristics in
patients with FTLD. Among other variables under investigation, they look at the total
duration of speech in the sample, normalized pauses of different lengths and pause-
to-word ratio, where a pause is defined conservatively as a silent segment longer than
150ms. Especially the latter measure turns out to be able to discriminate between some
of the FTLD variants. [326] additionally use measures of phonation to quantify the
amount of time in the sample that contains speech. Totally relying on acoustic and tem-
poral speech features, [254] show that measures such as variations in the percentage of
voice breaks, number of periods of voice, number of voice breaks, shimmer and noise-
to-harmonics ratio characterise people with AD with an accuracy of 84.8%. Similarly,
[205] distinguish between HC, MCI and AD solely relying on acoustic and temporal
features.

2.5.2 Automated analysis pipelines

2.5.2.1 Detecting clinical populations as a classification problem

Studies that use computational approaches are novel in the sense that they apply compu-
tational techniques to quantify signs of neurodegenerative impairments, i.e they trans-
fer technical methods to research questions and data that are fundamentally clinical.
Mostly, the detection of impairments is treated as a classification problem, where the
number of output variables is typically small and labels correspond to a highly re-
stricted number of potential pathologies or stages of a disease. [128] use linguistic
and para-linguistic features as introduced above to discriminate patients with AD from
HC. With logistic regression, they achieve an accuracy of 81% with the 35 top-ranked
features, which remains relatively constant until a feature set of size ¿50 is chosen. This
stresses the need to do feature selection. Unlike previous studies, the authors use a much
larger sample size drawn from DementiaBank: The corpus has 240 samples from AD
patients and 233 data points for HC. [153] use conversations between 31 AD patients
and 57 HC. Comparing different learning algorithms, both the decision tree and support
vector machine algorithms achieve high accuracies, namely 79.5% and 75% respec-
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tively. The authors find fluency measures to be statistically more significant than mea-
sures of morpho-syntactic complexity. [176] use acoustic features, POS-based features
and psycholinguistic features as given by the software Linguistic Inquiry Word Count
which, with more than 80 output variables, provides quantifications for psychological
and human-made constructs on top of standard linguistic dimensions [305]. When dis-
tinguishing between semi-structured interviews between 9 AD patients and 9 HC, they
obtain a maximum accuracy of 88%.

The approach of [392] is solely based on n-gram models with subsequent evaluation
of perplexity. Applied to picture description tasks from DementiaBank, they achieve
an accuracy of 77.1% separating AD patients and HC. With the same target groups
and also using picture descriptions form DementiaBank but extracting para-linguistic
features, [11] compare the performance of four different machine leaning algorithms
under different running configurations. The authors achieve their highest classification
accuracy of 94.71% when using a Bayes Net classifier using pre-processing and the
top 22 features. The study by [205] mentioned above trains three different classifiers
with varying accuracy on data from MCI and AD patients as well as HC performing
different vocal tasks (counting down, picture descriptions, sentence repetition, semantic
verbal fluency). The results point to the assessment utility of automatic audio analyses:
Between HCs and those with MCI, 79% ± 5%; between HCs and those with AD, 87%
± 3%; and between those with MCI and those with AD, 80% ± 5%. With temporal
and acoustic features extracted from a sentence-reading task, [254] distinguish between
30 AD patients and 36 age-matched HC. The spectographic measures the authors use
are subjected to linear discriminant analysis with diagnosis as the dependent variable
obtaining an accuracy of 84.8%.

2.5.2.2 Predicting clinical scores as a regression problem

There has been little work on the prediction of scores from screening or diagnostic tests
instead of predicting adherence to a disease category. Most of the existing work stems
from the image processing community, where authors have successfully predicted clini-
cal scores from brain imaging features [370, 418, 173]. Using a set of 477 lexicosyntac-
tic, acoustic and semantic features extracted from 393 speech samples in DementiaBank,
[408] predict clinical MMSE scores. They obtain a mean absolute error (MAE) of 3.83
in predicting MMSE which they improve to 2.91 for patients where longitudinal data is
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available. This highlights the importance of longitudinal data collection. [224] investi-
gate the relation between the performance on a semantic verbal fluency task and scores
from the standard dementia screening tool MMSE as well as the standard dementia stag-
ing tool CDR. Over a set of 179 patients with different degree of dementia, they are able
to train a regression model on linguistic and vocal features with a MAE of 2.2 for the
MMSE and 1.7 for the CDR.

2.5.3 Computational Analysis of SVF

Recently, computational approaches to analyse SVF have been proposed. There goal is
twofold: (1) to avoid the above-mentioned shortcomings, statistical methods have been
applied in order to obtain semantic clusters and (2) automated methods are reliable and
fast, rendering the extraction of more detailed measure feasible in a clinical scenario.

To verify their adaptation of Troyer’s method, Ledoux et al. [214] use Latent Seman-
tic Analysis (LSA), based on the LSA website2 to compute similarity within clusters
and between clusters. They recorded VF production of 153 healthy adults between
18 and 63, transcribed the responses and time aligned the transcript to the audio sig-
nal. Afterwards, clusters were determined manually by the Troyer method and a newly
developed scoring system. The quality of clustering approaches was validated by exam-
ining the LSA distance between and within clusters, as well as the time between words
in and between a cluster. Generally, the newly developed rule-based method showed
higher separations in all metrics between words inside and between clusters. Ledoux et
al. mainly used computational semantic as well as temporal analysis to verify a novel
manual scoring system. Although the new system seems more effective in determining
clusters, it still suffers from the problems of inter-rater reliability, inter-study reliability
and automatability that are intrinsic in manual rule-based systems.

Woods et al. [405] use Explicit Semantic Analysis (ESA) [129]—a vector embedding
trained on co-occurrence of words in Wikipedia articles—to identify chaining behaviour
for different demographics based on pairwise cosine similarity. They studied a popu-
lation of 180 control subjects between the ages of 18 to 82 years performing semantic
verbal fluency for the category animals. In addition to the traditional performance met-
ric of SVF—the word count—they compute semantic clusters and switches based on

2http://lsa.colorado.edu/
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the pairwise cosine distance in an ESA model, based on a fixed percentage of the av-
erage ESA distance. Moreover, novel metrics, such as the mean word frequency, mean
word length, as well as temporal decline to the end of the task were examined. Strong
correlations between ESA clusters and ones determined using the Troyer method were
found.

Clark et al. [71] proposed novel semantic measure based on graph theory; most promi-
nently they put forward graph-based coherence measures which compare the patient’s
created sequence/path of words with the ”shortest” possible path through the fully con-
nected weighted graph of all patient’s words. Although the [71] approach is quite similar
to the idea of LSA/ESA or word-embeddings in general—comparing a patient’s actu-
ally produced sequence with an independent/averaged global world/representation—
they normatively provide the graphs’ weights (orthographic, phonological, and seman-
tic similarity) and thereby influence the global representation, whereas distributional
semantic and word embeddings directly learn spacial representations of words from
large corpora; the latter methods allow for the same sort of coherence measures without
the need of normatively constructing the global space representation.

Pakhomov et al. [293] examined the decline of several indices of semantic verbal flu-
ency performance in longitudinal study of ageing. To this end, they included 53 patients
diagnosed with AD, 71 with MCI and 46 age and education matched controls. All
performed SVF tests of the animals category. The authors then go on to use part of
the healthy population to built a model of semantic relatedness of words by looking
at co-occurrence of word pairs. Through this, clusters are determined and the mean
cluster size, the cumulative relatedness, repetition density and mean word frequency are
recorded. All metrics but the mean cluster size, show significant differences in between
the three groups.

Para-linguistic features also have been shown to be of value in the analysis of SVF. [413]
used the pseudo-syllable rate and average pause lengths for the analysis of SVF. [404]
analysed pauses, speech rate and disfluencies in SVF. In order to differentiate between
multiple pathologies, the above mentioned qualitative measures have been established
which serve as additional markers next to the raw fluency word count [151, 379]. There
is a broad agreement that these measures serve as indicators for underlying cognitive
processes. Pauses can occur both within clusters, as participants search their mental
lexicon for more examples of a specific group, and between clusters, at the time of a
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switch, when a participant is searching for the next potentially productive subcategory.
In the first 10-15 seconds of the task, pauses tend to be rare, and they typically become
more frequent, and longer towards the end of the test.

In summary, using statistical analysis of the SVF task, one could obtain powerful qual-
itative semantic measures which are relatively independent from the actual macro-level
performance (SVF-count) within this task. This is enabled through decoupling the SVF
task performance measures from the semantic/lexical measures and interpreting them
within an external framework of large text-corpora based semantic representations.

2.5.4 Language features in CTP

2.5.4.1 Content: Quantity

Turning to the Cookie-Theft-Picture, the hallmark stimulus, features that capture con-
tent are the most prominent and most frequently cited indicator of clinical language
alterations. Notions of content are quite diverse with respect to the linguistic surface
phenomena they address. In the most basic interpretation, content has been conceptu-
alized as the total amount of words, i.e. mere quantity. [83, 135, 225] report that AD
descriptions are always shorter than control texts. The latter two studies as well as [58]
do not find a difference in quantity when comparing other groups - [135] compared
three subgroups of AD severeness, [225] used two severness subgroups as did [58] who
additionally included an MCI group. Note that all these studies make use of different
languages with respect to the speech data (English, Portuguese, German) and, more im-
portantly, rely on different diagnostic criteria to assign patients to the respective severity
groups. It is thus hard to interpret the results across studies although they all point to a
lack of discriminant validity when it comes to staging.

2.5.4.2 Content: Number of information units

The same studies do however identify the number of information-carrying units to be
a salient variable which differentiates between the different groups. Again, all of these
studies label different entities as information units. [135], for example, use the term
information unit to refer to the smallest, non-redundant piece of information – in their
understanding synonyms are discounted while grammatical morphemes such as tense
-ed or plural -s count as one. [58] have sets of words and phrases that refer to persons,
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objects, localizations or actions in the Cookie-Theft-Picture. Their measures discrim-
inate between different AD stages but they do not distinguish between MCI and HC.
Finally, [225] use a set of words that are relevant to the picture. This approach is com-
mon in studies that have examined the Cookie-Theft-Picture. Focusing only on those
studies that include MCI and/or AD pathologies, [164, 389] assess content using a list
of eight relevant observations and find the failure to make relevant observations to be
more pronounced in the AD group – when contrasting it with HC but also when divid-
ing the AD group in two stages. [120] come to the same conclusion when dividing their
AD population into three subgroups. Starting with [83], numerous studies have used an
extended set of information units that thus is more liberal with respect to the patient’s
performance [63, 185, 225].

2.5.4.3 Content: Temporal perspective

It is worth noting that applying a similar construct to a different picture stimulus, [351]
do not find a difference in the number of pictorial themes but in the conciseness of the
description, i.e. the sample duration and the amount of syllables needed to convey these
pictorial themes. Several other studies explored the relation between content words and
the length of the sample as indexed by the total number of words in the sample and/or
its duration [164, 251, 338]. The general assumption is that AD speech is less specific
and more empty. Low density in ideas is thought to result from word-finding difficulties
that increase the proportion of low-content phenomena such as repetitions, circumlo-
cations, indefinite umbrella terms and deictic expressions [283]. Most of the studies
mentioned above find AD speech to be corrupted. Those studies focusing on early AD
stages point to the fact that dysfluent speech tends to be more pronounced later in the
disease continuum. Another area of research has investigated the compensatory meta-
strategies patients apply when producing errors or have difficulties in finding target
words. [118, 120] find significant differences between HC and minimal AD. In assess-
ing patient performance, they use several scales with which raters score each individual
sample manually – a single step which costs at least 30 minutes per sample according
to the authors.
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2.5.4.4 Morpho-syntactic form: Lexical complexity

Apart from content features, measures of lexical variation and lexical diversity have
widely been applied. The type-token ratio, which is obtained by dividing the total num-
ber of different words by the total number of words occurring in a sample, is the measure
of choice in studies that do not have a strictly computational approach [225, 280, 338].
[8, 6, 5] additionally calculated proportional frequencies of open-class (nouns, verbs,
descriptive terms) and closed-class (grammatical function) words. They find a signifi-
cant change in lexical complexity that is largely driven by the proportion of pronouns
that is different between MCI and moderate AD groups. The assumption that informs
measures such as the animia index is that pathological speech is less specific. The
anomia index, which is the number of nouns divided by the number of nouns plus pro-
nouns, captures the specificity of referents.

2.5.4.5 Morpho-syntactic form: Syntactic complexity

Several studies have found evidence for a decrease in syntactic complexity. Measures
of syntactic complexity are: Words per clause [185], phrase length [338], degree of
subordination [83], counts for distinct morphological forms or syntactic constructions
such as tense, voice, coordination [120, 210, 164, 185] and, prominently, mean length
of utterance, which is the number of morphemes divided by the number of utterances
[6, 8, 164, 280]. Some studies also identified morpho-syntactic errors such as agree-
ment errors [185, 8, 338]. Although, in sum, these studies point towards significant
changes in syntactic complexity with disease progression, the effect of both MCI and
AD on syntax is controversial and feeds the debate on whether observed changes are
due to working memory limitations or reflect difficulties due to increasingly comprised
semantic processing.

2.5.4.6 Pragmatics and prosody

The measures mentioned above when discussing semantic content can also be seen as
pragmatic compensatory strategies as they mark the patients effort when confronted
with word-finding difficulties, communication problems and uncertainty. Few studies
have analysed other aspects of pragmatics: [68] find important differences in coherence
between HC, AD and a third group of old-elderly using a manual annotation method-
ology based on frame analysis. [238] evaluated the discourse of neurologically normal
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adults doing a picture description task by manually rating the presence, accuracy and
completeness of seven concepts they consider to be central to the Cookie-Theft-Picture.
In an equally labor-intense manual annotation process, [119] score prosodic features
according to subjective notions of the appropriateness of the melodic line. Their finding
is of interest here as the authors compare a simple and a complex picture. The Coolie-
Theft-Picture as a simple stimulus comes with less pictorial themes than the complex
stimulus they use. Indeed, there is a complexity effect: Groups only show differences
in melodic line in the complex condition.

2.5.4.7 Objectivity and reliability

Especially the hand-crafted measures that assess pragmatics and prosody introduced
above risk to be subjective and can hardly be reproduced in subsequent studies. This
lack in objectivity also holds for the measures of semantic content that consist in man-
ually created referent lists. These run the risk of being biased towards the assumptions
of the list author. Another limitation of most of these studies is that guidelines for tran-
scription and validation are not made explicit. Few are those studies that report scores
of inter-rater reliability for both transcription and scoring. Seen from this perspective,
studies that take different versions of the same assessment task into account, such as by
using a complexity condition within a picture description scenario, benefit from higher
transparency as they provide explicit measures of parallel forms reliability. In an earlier
study, [120] use two picture stimuli per condition and find high correlations on both
measures for both responses to the simple stimuli and responses to the complex stim-
uli. Using one stimulus per complexity condition, [104] find their AD group producing
more content units in the simple condition than in the complex condition relative to HC,
i.e. there is a significant group and complexity interaction.

2.6 Language in Dementia

Linguistic ability is impaired in persons with MCI, and the impairment mirrors the de-
cline of language in AD, albeit to a lesser degree. The semantic level of language is
typically most affected, resulting in problems with word-finding and naming, whereas
there is no clear evidence of syntactic impairment [365]. Computational modelling of
linguistic impairment for different pathologies is motivated by the empirical knowl-
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edge about distinctive language deficits. Language is considered a sensitive and highly
informative marker for cognitive assessments–not only a symptom–in a number of neu-
rodegenerative disease [109, 356, 14]. Studies have been conducted on several levels
of linguistics, i.e., phonetics, phonology, semantics, morpho-syntax and pragmatics.
There is, however, a large variance in study design, regarding patient populations, used
elicitation tasks, as well as the choice and operationalisation of linguistic variables. A
generalisation of findings is therefore difficult.

There are a number of ways to elicit narrative or connected speech in research studies
and clinical practice, including semi-structured interviews, story-telling tasks, or asking
the speaker to describe a picture or series of pictures. The exact nature of the task
has been shown to affect various properties of the speech that is produced [338]. One
widely-used task is the Cookie Theft picture description (see Section 2.3.2). Due to the
widespread use of this task in multiple languages, CTP narratives will be the basis of
multilingual experiments in Chapter 5.

Distinct linguistic profiles have been described for a number of psychiatric and neu-
rodegenerative dissorders, including schizophrenia [208], multiple sclerosis [134], amy-
otrophic lateral sclerosis (ALS) [31, 76, 217, 382], Huntington’s disease (HD) [178,
281, 314], Parkinson’s disease (PD) [138, 150, 306, 385] and primary progressive apha-
sia [353].

PPA is a selective, progressive language disorder, therefore language impairment can
be assessed without any other major cognitive deficits or behavioural disturbances [144,
145]. Three different sub-types of PPA, with distinctive language impairments, can be
separated: the agrammatic variant, is characterised by non-fluent speech and morpho-
syntactic problems (i.e., missing function words). In the semantic variant, patient exam-
ine troubles in single word comprehension and often produce speech that is perceived
as ”empty”. The last variant, the logopenic one, is characterised by mispronunciations
and word finding difficulties.

Since language impairment is not the major symptom in the other listed pathologies,
they have received little attention in research. As PD mainly affects the motor system,
speech impairments are often visible at an acoustic and phonetic level [333]. A reduc-
tion of verbal fluency and use of action verbs has also been observed [163]. Speech and
language patterns in ALS and HD have rarely been studied and only along few linguistic
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domains [52].

2.6.1 Traditional linguistic exams: AD

Unlike PPA, AD cannot be characterized by a selective language disorder. Its pathology
is more global and affects a wide range of cognitive processes [192]. A vast amount
of literature exists on the observed decline in memory, the hallmark domain of AD
[59]. Symptoms typically involve difficulties in remembering recent events and en-
coding new information. Episodic memory impairment is the cornerstone of clinically
probable AD. Diagnosing dementia and identifying the underlying cause typically in-
volves screening for behavioral and biological markers. At an early stage, executive
functioning is frequently affected translating into difficulties with regards to planning
or decision-making. As the disease progresses, changes become more substantial and
symptoms significantly affect instrumental activities of daily living [25]. Although the
most prominent early symptom is episodic memory impairment, language impairment is
another characteristic symptom of AD. Within the language domain, particularly mani-
festations along the semantic dimension have gained scientific attention and given rise
to many linguistic tasks by which the deficient performance of AD patients should be
demonstrated. Distinct tools and test batteries such as the MMSE have been developed
in order to make the screening for AD more light-weight. Although the MMSE does
not exclusively assess language function and also includes non-linguistic tests (orienta-
tion, attention, memory, drawing), this expresses a general conceptual shift in research
priorities: It stresses the identification of AD criteria that precede obvious mid-stage
symptoms. The aim to detect potentially incipient dementia in prodromal and preclini-
cal stages, i.e. before the impairment is severe enough to be classified as dementia, also
explains the increased attention paid to MCI [131].

2.6.2 AD: Classic performance measures and test paradigms

Word-finding difficulties have long been recognized [193, 36, 192]. Mostly, word-
finding ability is evaluated by tests that belong either to the the paradigm of Verbal
Fluency Tasks or to the paradigm of Confrontational Naming. Evidence suggests that
category naming fluency and letter naming fluency impose different demands on se-
mantic memory and executive function and that category naming fluency tasks tend
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to be more sensitive as they rely more heavily on the integrity of semantic memory
[339, 268, 158, 4]. Picture-naming tasks such as the Boston Naming Task [142] re-
quire the patient to name drawings on visual confrontation. Apart from the conceptual
integrity of semantic memory and retrieval, such tasks thus involve processing of the
visual stimulus. Studies reporting difficulties in the AD population mostly use nouns
as target concepts [37, 167]. [330] used frequency-matched pairs of nouns and verbs
that were homophonic and homographic. They found verb naming to be significantly
more difficult within the AD population relative to HC. As a result of the decline in
lexico-semantic abilities and additional anomias and conceptual substitutions, i.e. spe-
cific words are replaced by semantically empty words of the same word category, the
language of AD patients maintains fluency but lacks information content [283, 187].
Perseverations, the persistent repetition or continuation of a response, are other phe-
nomena that are common in AD and likely to be observed using one of the paradigms
above. For category naming fluency, [302] distinguish three different types of persevera-
tions two of which, recurrent (e.g. ”cat, dog, mouse, cat”) and continuous perseveration
(e.g. ”cat, cat, cat”), correlate with disease severity.

Higher-order language functions such as thematic coherence have also been reported to
be impaired in AD. However, the notion of coherence that informs studies that investi-
gate discourse tend to be pretty vague and thus to rely strongly on the impression of the
rater that manually scores transcripts of speech output. Using an interview task, [137]
find a reduction in global coherence in their AD population. Global coherence is under-
stood as the extent to which a response provides substantive information directly related
to the designated topic, where the topic is the question asked by the interviewer. [46]
hand-coded the speech acts they identify in open-ended interviews between five AD pa-
tients and their spouses. According to them, the AD group produced significantly more
turns and topic shifts than did their healthy spouses. Also focusing on macro-linguistic
language functions, in their review article, [324] stress that studies predominantly re-
port a deficit in the comprehension of nonliteral, figurative language such as metaphors,
proverbs, idioms, irony or sarcasm in AD populations and come to the conclusion that
nonliteral language is a worthwile test tool in everyday clinical routine that requires
further exploration.

The effect of AD on phonetics and syntax is controversial. At early stages, phono-
logical and syntactic processing appear to be relatively spared [185, 120]. Contrary to
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this claim, [84] find phonological and articulatory deficits for a variety of tasks. Using
picture description tasks, [83] and [104] provide evidence for a decrease in syntactic
complexity as operationalized by the number of subordinate clauses and functors for
the former study and utterance length for the latter, respectively. By contrast, [188]
and [137] show a similar level of complexity and range and frequency of syntactic con-
structions for both AD and HC using an interview task. [338] directly compare these
two most commonly used tasks to elicit connected speech, namely structured interview
and picture description. They present evidence for a phonological and syntactic de-
cline in patients at the mild stages of AD and, more importantly, show that the tasks
are not fully interchangeable: While the structured interview task is more sensitive to-
wards morpho-syntax, the picture description task is more sensitive towards semantic
performance measures.

2.6.3 The task itself matters: Reconciling conflicting results

The discrepancies inherent to AD literature can partially be disentangled by the differ-
ences in study design and the statistical evaluation of the results obtained. Small sample
sizes are usually employed in the studies mentioned above. Taken together, they crit-
ically point to potential effects of the elicitation task itself. Generalizations from one
paradigm to another neglect such an effect [52]. To give an example: While pauses
in semantic category fluency are well researched and generally understood as being in-
dicative of a semantic memory problem, pauses in tasks that go beyond the single-word
level require a multifactorial explanation as connected speech involves interactions be-
tween diverse cognitive processes and representational levels. Besides, populations that
are labelled the same in different studies may show different impairments due to disease
progression. Language decline in AD has been shown to be heterogeneous [101]. [166]
assess episodic and semantic memory in three AD groups (minimal, mild, moderate)
that were formed according to disease severity as assigned by their performance on the
MMSE. While all patients show a significant deficit in episodic memory, the minimal
and mild group show a considerably heterogeneous performance.

The general consensus is that language impairment becomes more pervasive as the dis-
ease progresses. In the moderate to severe stages, deficits in both production and com-
prehension become more severe ultimately leading to communication breakdowns and a
decline in the quality of everyday interactions and relationships [186, 44, 343]. Patients
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with MCI show language impairments that are similar to those of early AD. Again, there
is considerable variability. Conflicting results in literature are further complicated by
varying, co-existing diagnostic criteria. Language tasks that selectively assess specific
language functions, prominently semantic category fluency and confrontation naming,
provide evidence that deficits appear at pre-AD stages [4, 181].

The take-away of this sub-chapter is that no language test by itself will be able to iden-
tify all cases of MCI and/or AD while being at the same time specific. It is in the
combination of a variety of methods and the careful collation of their results that lan-
guage performance can be assessed. Low scores on standard language tests do by no
means reflect everyday language performance and competence [334, 274, 60]. Picture
description elicitation tasks as introduced more closely in the next sub-chapter mediate
between the richness of free speech and the idiosyncrasy that is inherent to unregulated,
everyday communication.
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Chapter 3

Detection of Dementia from manual
Verbal Fluency Transcripts

This Chapter presents analysis methods and experiments detecting MCI using tran-
scripts of verbal fluency tests. In these common neuropsychological tests, people are
asked to name as many words as they can in a short time frame. In clinical scenarios,
a handwritten transcript is often the only form of recording preserved in such a tests.
The tests are highly predictive for core cognitive functions, such as lexical retrieval and
executive control. Clinical performance in these test is usually assessed as the number
of correct words and has been shown to be highly predictive for MCI. We will intro-
duce and validate novel and extended automatic analysis methods and show that they
improve the diagnostic ability of these tasks. Both the functionality to detect and stage
dementia will be explored. Results of this Chapter will be the basis and justification for
fully automated approaches presented in Chapter 4.

3.1 Neural Word Embeddings in analysing Semantic Ver-
bal Fluency

Multiple studies investigating the same subject group report a great variance of cluster
sizes and switch counts in VF. This can be explained through the subjective clustering
criterion [379] which leaves some room for interpretation regarding the clustering and
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thereby directly affecting both measures, switches and cluster size. Statistical seman-
tic analysis automatically and reliably providing clusters is a powerful solution to this
problem.

This section explores the possibility of using distributional semantics in the analysis
of SVF tasks with a focus on clustering and switching patterns. This is in contrast to
taxonomic models which are based on predefined subcategories and might not be able
to capture the full complexity of semantic connections made by humans. We investigate
the application and performance of word2vec [257] by which words are embedded into a
vector space and where the cosine distance in this space is used as a metric for semantic
similarity. This allows for an automatic identification of semantic clusters as well as the
computation of switches and cluster size. To indicate the feasibility of this approach
within the particular scenario of automated SVF analysis for clinical MCI detection, we
compare a set of statistical classification experiments building upon multiple variations
of word2vec models to an implementation of the taxonomic approach provided by [379].

3.1.1 Background

The concepts of clustering and switching have been previously discussed (see Sec-
tion 2.3.1) and related computational work has been explored (see Section 2.5.3). Here,
the general differences between subcategory-based and statistical clustering methods
are explored in further detail.

3.1.1.1 Subcategory-based clustering

[379] described a taxonomy-based semantic clustering approach, which despite obvi-
ous shortcomings is still extremely popular within clinical research [380, 139, 49]. In
this approach words, i.e., animals, can belong to one or more predefined subcategories.
There are about 25 subcategories based on three categories “living environment”, “zo-
ological categories”, and “human use”. A cluster is then defined as successively gen-
erated words belonging to the same subcategory. If a word can be assigned to two
consecutive clusters, it is counted as belonging to both. A cluster contained by an-
other cluster is not counted. Several adaptations have been suggested, e.g., extending
the inclusion rules [214], the minimal cluster size [329], and the handling of repeti-
tions and intrusions [273]. However, the fundamental mechanisms remain the same and
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some prominent limitations are: (1) recognising non-category based associations is not
catered for: phonemically similar words (e.g. donkey & monkey) or animals that occur
together in popular culture (e.g. panther, crane & aardvark, as in the cartoon series The
Pink Panther); (2) human-made taxonomies are error prone and likely to be incomplete.
In the [379] system, there is only one category for water animals and therefore, frog
and dolphin appear in the same semantic cluster which may not capture the differences
between both animals well; (3) there is a high effort to build a model for a new category
which leads to usage within a single category. However, availability of different seman-
tic categories (e.g., tools & supermarket) is of high clinical value for re-testing patients
as it prevents confounding training effects, see also [405].

3.1.1.2 Statistical clustering and chaining

To avoid the above-mentioned shortcomings, statistical methods have been applied in
order to obtain semantic clusters. However, careful revision of these approaches reveals
that many do not actually implement semantic clustering, but rather what we would call
semantic chaining. In semantic chains, the semantic chain adherence decision is solely
based on the previous word.

chain: (cat - dog - wolf ) - (cow) vs. cluster: (cat - dog) - (dog - wolf ) - (cow)

To our knowledge, [165] are the only authors who explicitly differentiates between a
static and fluid switch model—a clustering and a chaining model. In this study, the
model of [379] is used to evaluate clustering and chaining models. A chaining model is
built on the basis of the BEAGLE [180] model, a holographic word embedding trained
on Wikipedia. To the best of our knowledge, there has been no research into building a
clustering model instead of a chaining one based on distributional semantics.

In summary, though very powerful for automation of SVF tasks, statistical approaches
are only as good as the linguistic material they are trained on. Most approaches dis-
cussed above were trained on Wikipedia articles. However, this might not be the most
suitable training material for a model that should capture semantic associations made
by humans. Therefore, we compare the discriminative performance of qualitative SVF
parameters derived from statistical models based on word2vec to the approach by [379]
as prominent baseline and subcategory-based approach. Additionally, we investigate the
performance of two different text corpora as basis—the common Wikipedia-based ap-
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proach vs. a less organised and less academic corpus. We also explore the performance
of semantic clustering and semantic chaining implementations.

3.1.2 Methodology and Results

Also we are left with a lack of hard metrics to reliably compare the performance of
semantic similarity models. [257] propose a benchmark task for evaluating word2vec
models, but it is not suitable to judge the applicability to our task. To get around this
conundrum, we adhere to the following line of reasoning: Whatever approach performs
best at our task at hand, that is discriminating between MCI and healthy subjects, is the
approach we should use in analysis. This method is obviously limited by the amount of
data that is available for evaluation and results have to be interpreted with this in mind.
Below, we compare two different distributional semantic models with different hyper
parameters.

3.1.2.1 Data

The corpus used consists of 100 samples from older persons1: 53 patients diagnosed
with MCI (MAge=76.8 ±7.2; 28F/ 25M; MFluencyCount=14.63 ± 5.76) and 47 healthy
control subjects (HC) with a subjective memory complaint (MAge=72.4 ±7.9; 40F/ 7M;
MFluencyCount=18.86 ± 5.57). Patients are given 60s to name as many animals as they
can. All performances have been recorded and transcribed.

3.1.2.2 Models

We compare a set of models, all of them learned using word2vec [257]. word2vec is a
word-embedding based on a shallow, two-layer neural network trained to embed words
in a vector space, where the cosine distance is a measure for semantic similarity. We
compare models trained on two different linguistic corpora: (1) models based on the
FraWac corpus [34], a large corpus collected by a web crawler and (2) models based on
a dump of the French Wikipedia. Pre-trained models are taken from here2. All vary-
ing word2vec hyper parameters are reported in Table 3.1. For all models, the context
window was set to 5 tokens and negative sampling was used.

1Data collected in the context of the Dem@Care project [183]
2http://fauconnier.github.io/
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3.1.2.3 Clustering and Chaining

On the basis of these models and the cosine distance in the resulting vector space we
compute semantic clusters/chains in the following way:

Let a1, a2, . . . , an be the sequence of animals produced by patient p. Let a⃗1, a⃗2, . . . ,
a⃗n be their representations in the vector space and let a1, . . . , an−1 form a semantic
cluster/chain. an is part of this cluster/chain if

Cluster
| ⟨µ⃗, a⃗n ⟩
∥µ⃗∥ · ∥a⃗n ∥

| > δp (3.1)

Chain
| ⟨ ⃗an−1, a⃗n ⟩
∥ ⃗an−1∥ · ∥a⃗n ∥

| > δp (3.2)

with
µ⃗ =

1
n − 1

· ∑
x⃗∈{a⃗1,..., ⃗an−1}

x⃗ (3.3)

δp =
n!

(n − 2)!
· ∑

x⃗,⃗y∈{a⃗1,...,a⃗n}
| ⟨x⃗, y⃗ ⟩
∥x⃗∥ · ∥y⃗ ∥ | (3.4)

One of the main problems of using distributional semantic models to determine clus-
ters/chains is finding a sensible cut-off value δ. We decided to use the mean distance
between any animal produced by a subject. An ad-hoc global cut-off value would be
hard to determine, since similarity scores tend to vary a lot.

3.1.2.4 Prediction

We train different classifiers, one for each model using SVMs with a radial basis kernel:
this is mainly because we only have two features [171]. Moreover, since our data set
is small, we perform a stratified 10-fold cross validation. As features we use the mean
size of clusters identified and the number of switches between clusters. For results, see
Table 3.1.
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Hyper parameters Chain Cluster Correlation
Model Size Algorithm Cutoff Dimensionality Pre Rec F1 Pre Rec F1 rSwitch rSize

FraWac 1.6 B

CBoW 100 200 0.75 0.79 0.77 0.73 0.80 0.76 0.90 0.87
Skip 100 200 0.66 0.75 0.70 0.70 0.83 0.76 0.90 0.85
Skip 100 500 0.72 0.72 0.72 0.68 0.68 0.68 0.91 0.88
Skip 200 500 0.71 0.72 0.69 0.71 0.84 0.77 0.90 0.75

Wiki 600 M

CBoW 100 1000 0.67 0.71 0.69 0.67 0.75 0.71 0.99 0.95
CBoW 200 1000 0.77 0.74 0.75 0.71 0.69 0.70 0.96 0.87
Skip 100 1000 0.68 0.80 0.74 0.71 0.72 0.72 0.91 0.84
Skip 200 1000 0.70 0.74 0.72 0.67 0.76 0.71 0.84 0.77

Troyer - - - - - - - 0.71 0.74 0.72 - -

Table 3.1: Hyper parameters of trained word2vec models (CBoW=Continous Bag of
Words; Skip=Skip-Gram Model), classification results for chaining and clustering im-
plementations (Pre=Precision; Rec=Recall; F1=F1 Score; highest values are marked in
bold) and Pearson correlation coefficient between clustering and chaining-based fea-
tures (switch counts=rSwitch; mean cluster size=rSize).

3.1.3 Discussion

This section set out to compare the discriminative performance of qualitative SVF pa-
rameters derived from statistical models based on neural word embeddings with the tra-
ditional subcategory-based approach by [379]. We thus implemented Troyer’s approach
as a baseline deriving the semantic clustering criterion from predefined subcategories.
We compared this to a group of statistical approaches based on a patient-dependent
clustering criterion derived from word2vec models. We automatically calculated mean
cluster size and number of switches based on transcripts of two groups’ SVF recordings:
MCI and healthy controls. In order to examine both approaches’ feasibility within the
given scenario, we trained classifiers, showing results clearly in favour of the statisti-
cally derived feature set. This is in line with reported feasibility benefits of this approach
in [405, 165]. However, to the best of our knowledge, no study so far compared both
approaches based on the discriminative performance they achieve given a clinical clas-
sification scenario; so far, either one of both approaches has been used to validate the
features derived by the other approach and vice versa. Nonetheless, perhaps the most
straight forward way of comparing both approaches is by applying them to a relevant
clinical scenario—which SVF has actually been designed and used for—and deciding
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based on their performance in the classification task at hand.

Additionally, we investigate the performance of two different text corpora as basis for
the word2vec models. Our results show that the classifiers using features based on
the FraWac corpus models [34] achieve higher F1 scores than the ones based on the
Wikipedia models. Although it is difficult to derive a conclusion from this rather ex-
ploratory result, possible explanations might be that the FraWac corpus is simply larger,
or that it represents a less (artificially) academic and therefore more natural linguistic
resource.

Finally, considering different effects through semantic chaining vs. semantic cluster-
ing, we yield no interpretable results favouring either one of the implementations. Our
experiments yield throughout high correlation indices between both implementations
across both SVF dependent variables/features: switch count & mean cluster size. This
is in line with [165], who also did not succeed in finding clear patterns.

To conclude, this section presents a clinical application of neural word embeddings
rendering a statistical approach to the traditionally manual analysis of semantic verbal
fluency tasks. Our results demonstrate the feasibility and therefore economic valid-
ity of such an approach, having especially relevant implications for remote automatic
screening applications as in [376]. The strong dependency between both qualitative
SVF measures, switch count & mean cluster size, and simple word count performance,
still remains a challenge for understanding their respective diagnostic values.

The next section explores the utility of natural language modelling as a parallel approach
to modelling production strategy in SVF tasks.

3.2 Language Modelling in Semantic Verbal Fluency

In this Section we use statistical language models (LMs) as a tool for modelling produc-
tion of SVF responses of healthy patients, those with a diagnosis of MCI and Alzheimer’s
disease or related dementia (ADRD). LMs intuitively model production of words in
SVF, as production of the next word depends on the previously produced words. Given
a corpus of SVF performances, we use LMs to learn these probabilities from data, and
then test the model, by estimating the likelihood of a patient’s SVF performance. We use
the LM’s perplexity of a given SVF performance — a score for how well the model is
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able to predict a given sequence — as a feature for classification of a person’s cognitive
health.

This section is structured as follows: Section 3.2.1 discusses prior work on clinical ap-
plications of language models and perplexity scores. Section 3.2.2 introduces language
models. Section 3.2.3 describes the data for further experiments, how the language
models were trained and evaluated in a classification experiment. Section 3.2.4 presents
results of the conducted experiments. Lastly, Section 3.2.5 discusses implications and
concludes this section.

3.2.1 Background

There is a growing body of research using language modelling and perplexity scores for
classification of neurocognitive disorders including Alzheimer’s disease, varying types
of dementia, and FTLD. In previous work, perplexity scores have been used to auto-
matically classify between AD patients’ and healthy controls’ speech [392]. Language
models were built on transcripts from spontaneous speech of subjects describing the
Cookie Theft Picture from the Boston Diagnostic Aphasia Examination battery. The
resulting language models based on AD speech and control subjects’ speech were then
used to compute different perplexity scores per patient including perplexity of an AD
language model given an AD speech sample and perplexity of an AD language model
given a control speech sample. The authors conclude that perplexity in such a free
speech task is higher for AD samples than healthy controls, which could be interpreted
as evidence for the deterioration of expressive language capabilities over the course of
AD. Using free speech from autobiographic interviews — a more liberal scenario for
natural language — Weiner et al. used perplexity scores to automatically discriminate
between general dementia patients and healthy controls [396]. Multiple-hour interviews
(98 subjects, 230 hours) were cleaned of experimenter speech interventions and tran-
scribed both manually and by an automatic speech recognition system. Based on the
raw audio signal and transcripts, the authors compared classification results using both
automatically and manually generated feature sets divided into acoustic features, lin-
guistic features and ASR features. Perplexity scores were reported as ASR features,
differentiated into within and between subject perplexity. The authors concluded that
automatic classification is feasible and report within/between speaker perplexity as two
of their best performing features. Similarly to [392], other researchers used manual
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transcripts from speech of the Cookie Theft Picture description task and language mod-
els built on healthy controls’ speech to differentiate between different forms of FTLD
[296]. Results show that perplexity scores discriminate well between different subforms
of FTD: behavioural variant of the FTLD and semantic dementia. This is in line with the
notion that the behavioural FTD variant manifests not primarily in corrupted language
but semantic dementia does. The authors also correlated perplexity scores with results
from common neuropsychological tests, such as SVF: the free speech task perplexity
scores negatively correlate with the SVF task. This is perfectly in line with the semantic
retrieval problems in semantic dementia, manifesting in a very low SVF word count
(i.e., high perplexity due to corrupted free speech and low SVF score).

The underlying latent objective of free speech tasks is, by nature, to produce syntac-
tically correct speech. Using a language model trained on healthy controls, perplexity
measures how people are not able to produce such an output following the given objec-
tive. In the semantic verbal fluency task however, the inherent objective is to produce
as many items as possible which necessarily requires to exploit deeper semantic stock.
As the objective is also to not produce repetitions, to be successful one has to produce
sequences of increasingly rare items to maintain a high production rate towards the end
of the task; this follows as the common easy-to-access semantic items are typically
produced at the beginning of the timed task. There is broad evidence, proving that de-
mented persons have significant difficulties in the SVF task which manifests not only
in a lower SVF raw count, but also in inefficient semantic stock exploitation strategies.
In other words, demented patients are, especially towards the second half of such a
task, not able to produce rare/repetition-free sequences of correct item responses. This
lack of strategic semantic memory exploitation can be observed through multiple com-
putational approaches [405], allowing to automatically compute semantic exploitation
measures which compare the patient’s sequence of words to a global semantic repre-
sentation inferred from large text corpora leveraging either graph theory [71] or neural
word embeddings (see Section 3.1).

Work presented in the previous section, on the qualitative computational analysis of
the SVF in demented patients shows that features based on neural word embeddings
discriminate well between healthy controls and dementia types. Especially semantic
density—the lexical coverage of a patients semantic exploitation—and word frequency—
the lexical rareness of a patients produced items—have been shown to be very predictive
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and highly significant features in this task (see Section 3.4). In general, demented per-
sons are less successful in the SVF task as they are less able to systematically exploit a
large distributed semantic stock and produce sequences of relatively rare items.

Therefore the aim of this section was to explore the possibility of a SVF language model
to detect inefficient SVF production strategies, thus dementia. This represents a novel
approach, as to the authors’ knowledge, perplexity has so far only been used to detect
language corruption.

3.2.2 Language Modelling

Statistical Language Models are a common tool for representing the probability distribu-
tion of language data, in either written or spoken form. After computing these models,
they can be used to determine the probability of a given sequence of words.

To train a model, a corpus is split into a list of n-grams, a sequence of words of length
n, N = (w1. . . wn). The probability of the ngram, N, is determined using maximum
likelihood estimation (MLE):

P(N) = P(wn|w1...wn−1) =
P(w1...wn)

P(w1...wn−1)
(3.5)

The model stores the counts of all the n-grams in the corpus, thus ‘training’ it. To eval-
uate the probability of getting a certain sequence of words of length m, S = (w1...wm),
from our model, based on the Markov assumption, we can multiply the probability of
each ngram in the sequence.

P(S) =
m

∏
i=1

P(wi|w1...wi−1) (3.6)

Unigram models are simple models where the probability of every type, or unique word,
is equivalent to the relative frequency of the word in the training set. Because unigrams
assume that every word does not depend on any of the previous words, they does not
capture the relationships between words. This is why we continue with the bigram and
trigram models, where conditional probabilities are used in training.
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One challenge of language modelling is data sparsity as we will never encounter every
possible combination of n-gram that can be generated during training. Data sparsity
makes it likely that our model will encounter unseen n-grams during testing and assign
them a probability of zero, causing P(S) = 0. To counter this, language models employ
a technique known as smoothing, in which some of the probability mass of seen n-
grams is shifted to unseen n-grams. Lidstone smoothing [219] is an additive smoothing
technique in which an ’unknown’ token is added, as a placeholder, to our training set.
Then, a predetermined α is added to every n-gram count. Any n-grams that appear
in testing, and that were not seen in training, will be accounted for by the ’unknown’
token. The counts of the n-grams are then normalized by adding the count of the n-
gram’s history, C(w1...wn−1), to the size of the vocabulary of the n-gram’s history, V,
multiplied by α. After smoothing, the probability of an n-gram is represented by:

P(wn|w1...wn−1) =
C(w1...wn) + α

C(w1...wn−1) + Vα
(3.7)

After calculating the smoothed probability distribution of a training set, language mod-
els can be evaluated on a test sample using a measure called perplexity. Perplexity is a
score that shows how well a trained model predicts a test sample by taking the proba-
bility of the test sample and normalizing it by the number of words in the test sample.
Perplexity is computed by the following equation:

PPL(S) =
1

m

√
m
∏

n=1
P(wn|w1...wn−1)

(3.8)

Perplexity and probability are inversely related, so when perplexity is minimized, prob-
ability is maximized. This means a low perplexity indicates that the model fits the test
sample well.
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Figure 3.1: Boxplots of perplexity in relation to diagnostic criteria for all three sets of
language models. The HC group is depicted in red, the MCI group in green and the
ADRD group in blue. Horizontal brackets indicate group comparisons by a Wilcoxon-
Mann-Whitney test (∗ : p ≤ 0.05, ∗∗ : p ≤ 0.01, ∗∗∗ : p ≤ 0.001, ∗∗∗∗ : p ≤ 0.0001).
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HC MCI ADRD

N 40 47 79
Age 72.65 (8.3) 76.59∗ (7.6) 79.0∗ (6.1)
Sex 8M/32F 23M/24F 39M/40F
Education 11.35 (3.7) 10.81 (3.6) 9.47∗ (4.5)
MMSE 28.27 (1.6) 26.02∗ (2.5) 18.81∗ (4.8)
CDR-SOB 0.47 (0.7) 1.68∗ (1.11) 7.5∗ (3.7)

Table 3.2: Demographic data and clinical scores by diagnostic group; mean (standard
deviation); Significant difference (p < 0.05) from the control population in a Wilcoxon-
Mann-Whitney test are marked with ∗; HC=’Healthy control’, MCI=’Mild cognitive im-
pairment’, ADRD= ’Alzheimer’s disease and related disorders’; MMSE=’Mini-Mental-
State-Examination’; CDR-SOB=’Clinical Dementia Rating Scale - Sum of boxes’.

3.2.3 Methods

3.2.3.1 Data

The data used for the following experiments was collected during the Dem@Care [183]
and ELEMENT [376] projects. All participants were aged 65 or older and were re-
cruited through the Memory Clinic located at the Institute Claude Pompidou in the Nice
University Hospital. Speech recordings of elderly people were collected using an auto-
mated recording app on a tablet computer and were subsequently transcribed following
the CHAT protocol [239]. Participants completed a battery of cognitive tests, including
a 60 second animal SVF test. Furthermore, all participants completed the MMSE [116]
and CDR [270]. Following the clinical assessment, participants were categorised into
three groups: Control participants (HC) diagnosed healthy after assessment, patients
with MCI and patients that were diagnosed as having Alzheimer’s Disease or related
disorders. AD diagnosis was determined using the NINCDS-ADRDA criteria [250].
Mixed/Vascular dementia was diagnosed according to ICD 10 [406] criteria. For the
MCI group, diagnosis was conducted according to Petersen criteria [310]. Participants
were excluded if they had any major auditory or language problems, history of head
trauma, loss of consciousness, or psychotic or aberrant motor behaviour. Demographic
data and clinical test results by diagnostic groups are reported in Table 3.2.
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3.2.3.2 Language Modelling

Based on our three patient populations (HC, MCI, ADRD), we construct three LMs: (1)
trained only on the healthy population, (2) trained only on the impaired population (MCI
+ ADRD) and (3) trained on all patient data, regardless of diagnosis. For each training
set we build unigram, bigram and trigram models. We stop at trigrams, since given
our vocabulary (n=238) the possible number of trigrams is 13,481,272 and our corpus
only contains 2,203 trigram tokens, leading to extreme sparsity. We apply Lidstone
smoothing to the model with α = 1. Due to the nature of our training samples, lists
of animals, and leave one out method of cross validation, we have a small vocabulary
and do not expect a high amount of unseen tokens in the testing sequence, compared to
natural language, making this a justifiable method of smoothing on this data set.

Perplexity is calculated as described in Equation 3.8. For models (1) and (2) we discrim-
inate between the training population and the rest. Let At = a1, ..., am be the training
population and Ar = am+1, ..., an the rest of the samples. Then we perform leave-one-
out cross validation on At, generating one perplexity value for the held-out sample ai

and each sample in Ar, per iteration. In the end, every sample in At has one perplex-
ity value and every sample in Ar has m perplexity values. Averaging the m values per
sample, leaves us with one perplexity value per sample. For (3) we perform a sim-
ple leave-one-out cross validation on the complete set a1, ..., an, yielding one perplexity
value per patient.

3.2.3.3 Prediction

To confirm the diagnostic power of perplexity, we perform a simple classification ex-
periment. Each person in the database was assigned a label relating to their diagnosis
(HC, MCI and ADRD). Perplexity values from different models were used as input to
classification models. All features were normalised using z-standardisation.

In all scenarios we use SVMs 2.4.3.2 implemented in the scikit-learn framework [301].
We use a radial bases kernel, since there is only one feature [171] and 10-fold cross
validation was used for testing. To find a well-performing set of hyperparameters, pa-
rameter selection using cross-validation on the training set of the inner loop of each
cross validation iteration was performed. Performing cross validation on small data
sets only once leads to performance fluctuations between different iterations. To work
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Scenario Model F1

HC vs. MCI
Uall 0.62
Ball 0.71
Tall 0.67

HC vs. ADRD
Uall 0.83
Ball 0.81
Tall 0.72

MCI vs. ADRD
Uall 0.75
Ball 0.76
Tall 0.69

Table 3.3: Classification results for different scenarios and models as F1 scores. Uall =
Unigram model trained on all samples; Ball = Bigram model trained on all samples; Tall

= Trigram model trained on all samples.

around this problem, cross validation was performed multiple times and then the mean
of all performance metrics was calculated.

3.2.4 Results

Figure 3.1 displays boxplots of perplexity values by diagnostic groups. Each column
corresponds to either uni-, bi- or trigram models. Rows indicate the training scenario. In
general the perplexity decreases with disease progression - from HC, to MCI, to ADRD.

People with ADRD have significantly smaller perplexity values compared to the HC
population, regardless of the context history length considered and training material.
The same is true for people with ADRD in comparison to the MCI population. A sig-
nificant difference between the HC and the MCI population for unigrams is only visible
in the ’Impaired’ model, (3). Bigram models all show significant differences between
both populations. Trigrams only show this effect for models trained on the whole popu-
lation or the impaired part. Overall, trigrams show less differences between populations
and high perplexity values, which can be attributed to the extreme sparseness of these
models given our small data set.

Table 3.3 shows classification results for different models and scenarios. Following



CHAPTER 3. MANUAL VERBAL FLUENCY 76

inspection of Figure 3.1, only models trained on all samples in the population were
used in classification experiments, as the inter-group effects seem consistent between
different training material. Between the HC and the ADRD group, as well as the MCI
and ADRD populations, the unigram and bigram model show comparable performance.
For classification of the HC and the MCI population the bigram model clearly shows
the best performance.

3.2.5 Discussion

A general result of this study is that people with MCI or dementia show significantly
lower perplexity values in SVF compared to a healthy population, meaning the n-gram
LMs, regardless of training corpus, are more suited to model a demented person’s
speech versus that of a healthy person. Thus people with dementia are more predictable
in their production of words in the SVF task. This differs from findings about per-
plexity of demented patients in free speech tasks, where perplexity values of demented
speech have been shown to be higher than that of healthy controls [392]. This can be
explained by the different scenarios where language modelling is applied: on natural
language, a LM and its resulting perplexity can be interpreted as a measure for syntactic
normality/correctness. When training on and predicting SVF performances, in which
production of word sequences is motivated semantically, the perplexity can be viewed
as a measure for effective semantic retrieval strategy.

Furthermore, we found word production in SVF differed in advancing stages of demen-
tia syndromes. Unigram perplexity approximated on the SVF task, can be seen as a
measure of predictability of word choice. Perplexity values of unigram models were
found to be good indicators to separate the ADRD group from the HC group, but not
the MCI population from the HC. Thus, word choice in SVF is more predictable in late
stage dementia and not in early stage. Perplexity of bigram models trained on SVF
productions—and for that matter any ngram where n ≥ 2—can be seen as a measure
for predictability of production strategy in the task. Both ADRD and MCI groups show
significant differences in perplexity of bigram models to the HC group. Consequently,
both populations show more predictable production strategies. When modelling with
trigrams, we would expect to see effects of context length—such as people with de-
mentia using less contextual information. Unfortunately, this study is limited in the
conclusions that can be drawn about the trigram models as it lack sufficient amounts of
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SVF data and therefore those models are severely undertrained.

In future experiments, we would like to gather more data to generate well-trained tri-
gram models and possibly draw a more definitive conclusion on the effects of context
length in SVF. We would also like to try different smoothing techniques, possibly inter-
polated methods such as Witten-Bell, that are not as coarse as the Lidstone technique.
Based on the trends shown in the unigram and bigram models, demented patients show
significantly lower perplexity values, regardless of training data, and are therefore more
predictable. Furthermore, persons in advanced stages of dementia differ in predictabil-
ity of word choice — as shown by the unigram models — and production strategy — as
shown by the bigram models — where as people with mild cognitive impairment only
show significant predictability in their production strategy. Perplexities from both the
unigram and bigram models also function as adequate diagnostic features in classifica-
tion tasks where the unigram model differentiates the best between HC and ADRD and
the bigram model differentiates best between the more fine-grained distinctions of MCI
versus the healthy controls or more severely demented patients.

Previously presented approaches to extract qualitative features from SVF were largely
language dependant. The next Section will introduce a temporal analysis method that
analysis the production of words over the task to reason about cognitive processes. This
analysis method is largely language independent.

3.3 Temporal Analysis of Semantic Verbal Fluency

In this section, we examine SVF results of three groups of Swedish participants; those
with Subjective Cognitive Impairment (SCI), with MCI and healthy controls (HC). By
analysing the data temporally, we are able to reveal differences that are not evident
when looking at the SVF as a whole. This section is structured in the following way:
An overview of related work is given, with a focus on performance on the SVF by per-
sons with MCI and SCI. Then the dataset and methodology are described as well as the
features that were extracted. Finally, the results of our analyses and machine learning
experiments are presented and discussed in tandem with other relevant neuropsycholog-
ical metrics.
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3.3.1 Background

Performance of SVF tasks in healthy older adults tends to decline with age, and is par-
tially attributed to a decrease in processing speed, rather than a diminished verbal knowl-
edge [105]. In line with this reasoning, [366] found that the performance of Swedish
speakers on SVF is negatively correlated with age and positively correlated with years
of education. Healthy participants in the age range 65-89 with ≤12 years of education
produced a mean of 14.9±6.4 animals, whereas those in the same age range but with an
education of >12 years produced 19.4±5.6 animals in the same task. The deterioration
of cognition in MCI, with impairment both in processing speed and switching atten-
tion [24], results in persons with amnestic MCI (aMCI) producing smaller clusters and
fewer switches than healthy controls [309]. This reduction across strategy generalises
to persons with aMCI producing significantly less categorical words [319, 273]. [284]
found categorical differences between naming animals and vegetables when comparing
participants with SCI and HC on the SVF test. While the animal category revealed no
differences, persons with SCI generated significantly fewer vegetables, specifically in
the later 30 seconds. Participants with SCI produced smaller clusters and made more
switches in the animal category. The groups did not differ significantly on any demo-
graphic variables (age, education, gender) or on the MMSE.

Throughout the SVF, word production rate decreases regardless of the presence of cog-
nitive impairment. To further explore the performance of persons with MCI and healthy
controls, [96] divided and analyzed the task into three 20-second sections with two sub-
stantial findings; both groups declined over time and generated more words in the first
time span. However, persons with MCI performing within normal limits produced fewer
words in the first time interval. Slow initiation of lexical search process suggests that
MCI inhibits early semi-automatic word retrieval processes. This is in line with previ-
ous research showing that the last 30 seconds of the verbal fluency task does not differ
between participants, whereas the first 30 seconds contain discriminating information
[113]. When performing an even finer-grained temporal analysis based on ten second
intervals, [113] found that intervals 1 and 2 were useful in distinguishing persons with
AD and MCI, and interval 3 made it possible to differentiate between persons with MCI
and SCI, and MCI and AD respectively.



79

3.3.2 Methods

3.3.2.1 Recruitment and Data Acquisition

All the participants in the current study on ”Linguistic and extra-linguistic parameters
for early detection of cognitive impairment” were recruited from the Gothenburg MCI
study [390]. All participants were speakers of Swedish, selected according to detailed
inclusion and exclusion criteria [198]. Data collection took place in a quiet lab environ-
ment where participants were fitted with a lapel microphone (AudioTechnica ATR3350)
and digitally recorded with a Zoom H4n Pro recorder (44.1 kHz sampling rate; 16bit
resolution). The following instruction was given in Swedish: ”Your task is to think
of words. I want you to tell me all the different animals you can think of. You have
60 seconds. Do you have any questions? Are you ready? Go ahead and start.” If the
participant seemed unsure, they were told ”any animals are okay: big ones, little ones,
etc.”. At the end of the 60 seconds, a timer would go off and the test leader would let
the participant know that 60 seconds had passed. The resulting audio files were man-
ually transcribed and manually time aligned in Praat [94]. All animals named were
transcribed on a separate tier.

A future follow-up visit at the memory clinic in 2019, after a second round of language
tests, will include a renewed GDS (Global Deterioration Scale) classification and neu-
ropsychological tests. The study was approved by local ethical committee (ref. number:
206–16, 2016 and T021-18, 2018).

3.3.2.2 Clinical Assessments

Participants in the Gothenburg MCI study were classified as having SCI, MCI, or de-
mentia, and the controls were recruited separately and evaluated to ascertain that they
were cognitively healthy. The classification is based on the GDS, where level 1 codes for
cognitively healthy, level 2 SCI, level 3 MCI and level 4 and above dementia [27, 390].
Participants were further evaluated with neuropsychological tests, MRI, blood samples,
and spinal fluid samples [390].

Compared to the other study participants, the persons with SCI were relatively young,
had higher levels of education, higher prevalence of stress conditions and depressive
symptoms as well as a family history of dementia [102].
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Figure 3.2: The schematic of a time interval analysis for a verbal fluency sample. Pro-
duced words are presented on a timeline. Color of a word indicates the affiliation to a
time interval.

3.3.2.3 Traditional features

From the manual transcripts, traditional SVF performance metrics were automatically
extracted. The word count was determined as the number of unique, correctly named
animals. Clusters and switches were determined based on a temporal metric proposed
by [378]. In this approach, the cluster structure is solely determined by the temporal
position of words in the recording. Consecutive words are clustered if the transition
time between them is shorter than then average transition time over the sample. This
threshold is furthermore scaled over the process of the task to account for the decline
in production speed. The mean number of clusters and the number of switches between
them is extracted.

3.3.2.4 Temporally resolved features

To explore different cognitive processes engaged over the course of the one minute
task, SVF performance is examined in 10 second steps. Words in the transcript were
assigned to a temporal interval based on their onset, as depicted in Figure 3.2. Word
count is determined for each interval, disregarding repetitions from earlier intervals.
Lexical frequency of words were determined using the KORP collection of Swedish
corpora [51]. Transition times between consecutive words were defined as the difference
between the end of the current word and the onset of the next. Word frequency and
transition times are reported as the average over each interval.
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3.3.2.5 Statistical analysis

Statistical analysis was performed using R (software version 3.4.0). For group compar-
isons of traditional measures, linear models with the measure as a function of diagnos-
tic group were examined. Temporally resolved measures were examined with separate
linear mixed effects analysis, one for each response variable –word count, lexical fre-
quency and transition time– using the lme4 [35] package. Each time interval is modelled
as a single data point and with age and education level, as well as the interaction be-
tween the time interval (T) and diagnosis, as fixed effects. The participant identifier
was modelled as a random intercept. Spearman correlations between the interval word
count and neuropsychological scores were examined. Age and education were chosen
as demographic variables. As neuropsychological correlates, the following scores were
used: the Trail Making Test Part A (TMT-A), as an indicator for processing speed; the
Boston Naming Test (BNT; [182]), which assess language ability with a spectrum of
high to low frequency words as a proxy of vocabulary size; and the Wechsler Adult
Intelligence Scale Similarities (WAIS-Similarities), which measures abstract thinking,
concept formation and verbal reasoning [394].

3.3.2.6 Prediction

The predictive power of the proposed temporal and semantic features were validated
with machine learning experiments for the HC and MCI populations. For each tran-
scribed speech sample, the features described in Section 3.3.2.3 and 3.3.2.4 were ex-
tracted and label in accordance to their diagnostic category. LR 2.4.3.1 and SVM
2.4.3.2 models, as implemented by the scikit-learn [301] framework, were trained as
binary classifiers to separate the groups. First, models were trained with only word
count, to establish a baseline, and then, on the complete feature set, utilizing univariate
feature selection. AUC is reported as the evaluation parameter. Due to the small size of
the dataset, we used leave-pair-out cross validation, which has been shown to produce
an unbiased estimate for AUC on small datasets [9]. We also computed the standard
deviation in AUC as described by [326].

Feature scaling and hyper-parameter optimisation were done on the training set in each
fold. Features were scaled using min-max scaling between 0 and 1. For both SVMs and
LR, C was optimised between C ∈ [10−4, ..., 104] using a grid search. LR models were
trained with both L1 and L2 loss; for SVM a linear and an rb f kernel were used. For the
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HC SCI MCI

N 32 19 24
Sex (M/F) 12/20 8/11 11/13
Age (years) 68.1 (7.2) 66.0 (6.7) 70.8 (5.6)
Education (years) 13.2 (3.5) 16.0 (2.3) 13.8 (3.5)
MMSE (max 30) 29.7 (0.5) 29.6 (0.8) 28.5 (1.4)

Table 3.4: Demographic information; the MMSE (Mini Mental State Exam) is a general
screening test of cognitive status and has a maximum score of 30.

extended feature set, feature selection based on χ2-tests was applied to the training set
in each fold. The number of selected features was scaled between 1 and the maximum
of 30.

3.3.3 Results

3.3.3.1 Demographic information

Demographic information by diagnostic group is reported in Table 3.4. The SCI group
is slightly younger and has a higher education level than the other two groups. The
MMSE, a general index of cognitive status with a maximum score of 30, is lower in the
MCI group. With an average MMSE of 28.5, this MCI population is still quite functional
in comparison to other MCI populations (mean MMSE score can vary between 23 and
29 in the MCI group) [226]. Note that cut-off points for MMSE may vary slightly: for
Swedish, a cut-off value between 25 and 27 indicates possible cognitive impairment
which should be further evaluated [297] while other studies consider an ”abnormal”
MMSE score to be lower or equal to 25 [416].

3.3.3.2 Traditional measures

A linear model of word count as a function of diagnosis revealed a significant main
effect (F(2, 72) = 8.57, p < 0.01). Compared to the control group (WC = 24.06 ±
6.37), the SCI group (WC = 27.84 ± 5.6) had a significantly increased word count
(3.78 ± 1.8, p < 0.5); the MCI group (WC = 20.12 ± 6.08) a significantly lowered
one (−3.94 ± 1.6, p < 0.5). No significant effects for the size of temporal clusters
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(F(2, 72) = 2.59, p = 0.08) or the number of temporal switches (F(2, 72) = 1.64, p =

0.2) as a function of diagnosis are found.

3.3.3.3 Temporally resolved measures

Word count, lexical word frequency and transition times by 10 second intervals is visu-
alized in Figure 3.3 and the results of linear mixed random effects models are presented
in Table 3.5.

A general decline in the word count for each time interval is visible and reflected in the
model, regardless of diagnostic group. A significant effect for age is present, implicating
that higher age leads to a reduced word count. For the SCI group, there is a significant
interaction between the diagnostic group and the decline in WCT2,WCT5 and WCT6. In
these intervals, the decline of the SCI group is less severe. The MCI diagnostic group
shows a significant interaction with the decline in WCT3, with a stronger decline in
word count than the other groups.

For lexical word frequency, again, a significant decline over time is visible, regardless
of diagnostic group, which means that participants produce more common words at the
start of the task, and less common words towards the end. Older participants produce
words that are significantly more frequent. The MCI group has a significant interaction
with WFT3 , indicating this group uses lower frequency words in this time interval.

Starting from the third interval, a significant increase in word transition times is visible.
A significant interaction between the SCI group and the fifth and sixth interval, indicates
the SCI group shows significantly lower transition times in these intervals.

3.3.3.4 Correlation analysis

Spearman correlations between the word count by time interval, neuropsychological
scores and demographic information is displayed in Figure 3.4. Only significant corre-
lations are displayed.

Significant positive correlations between the BNT score and the word count in the last
three time intervals are observed. The WAIS Similarity score shows positive correla-
tions with the word count of the last two intervals. Negative correlations are observed
between TMT A and the second and third interval, as well as between age and these two
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Variable Estimate t 95% CI p-Value

WCT1−T2 -0.456 -6.196 [-0.529, -0.382] < .01
WCT1−T3 -0.698 -7.898 [-0.787, -0.61] < .01
WCT1−T4 -0.937 -8.681 [-1.046, -0.83] < .01
WCT1−T5 -1.301 -8.675 [-1.452, -1.152] < .01
WCT1−T6 -1.290 -8.690 [-1.439, -1.142] < .01
Age -0.011 -3.294 [-0.014, -0.008] < .01
Education -0.003 -0.411 [-0.010, 0.004] .68
SCI -0.086 -1.128 [-0.164, -0.010] .26
SCI x T

SCI x WCT1−T2 0.247 2.161 [0.133, 0.361] < .03
SCI x WCT1−T3 0.155 1.102 [0.014, 0.296] .27
SCI x WCT1−T4 0.180 1.068 [0.012, 0.349] .29
SCI x WCT1−T5 0.543 2.738 [0.345, 0.742] < .01
SCI x WCT1−T6 0.575 2.959 [0.381, 0.770] < .01

MCI -0.041 -0.602 [-0.111, 0.028] .55
MCI x T

MCI x WCT1−T2 -0.088 -0.724 [-0.210, 0.034] .47
MCI x WCT1−T3 -0.383 -2.176 [-0.559, -0.207] < .05
MCI x WCT1−T4 -0.015 -0.089 [-0.189, 0.158] .93
MCI x WCT1−T5 -0.101 -0.396 [-0.354, 0.153] .69
MCI x WCT1−T6 -0.299 -1.046 [-0.585, -0.013] .30

(a) Word Count
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Variable Estimate t 95% CI p-Value

WFT1−T2 -0.774 -2.558 [-1.077, -0.472] < .05
WFT1−T3 -0.696 -2.298 [-0.999, -0.393] < .05
WFT1−T4 -1.274 -4.208 [-1.577, -0.971] < .01
WFT1−T5 -1.386 -4.578 [-1.689, -1.083] < .01
WFT1−T6 -1.514 -5.000 [-1.816, -1.211] < .01
Age 0.023 2.600 [0.014, 0.032] < .05
Education 0.000 0.003 [-0.018, 0.018] 0.99
SCI 0.228 0.642 [-0.127, 0.582] .52
SCI x T

SCI x WFT1−T2 -0.549 -1.108 [-1.045, -0.053] .27
SCI x WFT1−T3 -0.763 -1.539 [-1.259, -0.267] .12
SCI x WFT1−T4 -0.123 -0.248 [-0.619, 0.373] .80
SCI x WFT1−T5 -0.138 -0.279 [-0.634, 0.358] .78
SCI x WFT1−T6 -0.575 -1.159 [-1.071, -0.079] .25

MCI 0.193 0.588 [-0.135, 0.521] .56
MCI x T

MCI x WFT1−T2 -0.261 -0.564 [-0.723, 0.202] .57
MCI x WFT1−T3 -0.936 -2.025 [-1.399, -0.474] < .05
MCI x WFT1−T4 -0.356 -0.769 [-0.818, 0.107] .44
MCI x WFT1−T5 -0.256 -0.554 [-0.719, 0.206] .58
MCI x WFT1−T6 -0.282 -0.610 [-0.745, 0.180] .54

(b) Word frequency
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Variable Estimate t 95% CI p-Value

LT1−T2 0.986 1.460 [0.311, 1.662] .15
LT1−T3 2.557 3.786 [1.882, 3.233] < .01
LT1−T4 2.641 3.911 [1.966, 3.317] < .01
LT1−T5 5.245 7.766 [4.570, 5.921] < .01
LT1−T6 5.641 8.352 [4.965, 6.316] < .01
Age 0.028 1.029 [0.001, 0.055] .31
Education -0.074 -1.355 [-0.129, -0.019] .18
SCI 0.311 0.365 [-0.541, 1.163] .72
SCI x T

SCI x LT1−T2 -0.703 -0.635 [-1.81, 0.404] .53
SCI x LT1−T3 -1.429 -1.291 [-2.536, -0.322] .20
SCI x LT1−T4 -0.803 -0.726 [-1.910, 0.303] .47
SCI x LT1−T5 -2.528 -2.284 [-3.634, -1.421] < .05
SCI x LT1−T6 -2.384 -2.154 [-3.490, -1.277] < .05

MCI 0.22 0.281 [-0.564, 1.004] .78
MCI x T

MCI x LT1−T2 0.167 0.162 [-0.865, 1.198] .87
MCI x LT1−T3 0.510 0.494 [-0.522, 1.542] .62
MCI x LT1−T4 0.724 0.702 [-0.308, 1.756] .48
MCI x LT1−T5 -1.212 -1.175 [-2.244, -0.18] .24
MCI x LT1−T6 0.41 0.397 [-0.622, 1.441] .69

(c) Transition Length

Table 3.5: Linear Mixed Random Effects model examining the effects of time interval,
diagnosis, age and education on one of three variables, while controlling random effects
per subject. Significant values (p < .05) are indicated in bold.
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Figure 3.5: AUC of different classification models separating HC and MCI, plotted
against number of features selected through univariate feature selection. Horizontal
lines show the performance of models solely trained on the word count. Error bars
indicate standard deviation of performance.

intervals (for the TMT A a lower score indicates a better performance).

3.3.3.5 Prediction

Figure 3.5 displays the results of the machine learning experiments. AUC is plotted,
while varying the number of features chosen in feature selection, using different classi-
fiers.

The baseline performances of models using just the word count is AUC = 0.64 for
LR, both with L1 and L2 loss, and the linear SVM. The SVM with an rb f kernel only
achieves AUC = 0.62 with the word count feature. Generally, the models using all
features outperform the baseline. The best performance of AUC = 0.72 is observed
for a linear SVM with 20 features. Generally, the linear and rb f SVM and the LR with
L1 loss show similar performance patterns, across all number of features. The LR with
L2 shows steadily increasing performance. The SVM with rb f kernel outperforms the
other models with a lower number of features.
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3.3.4 Discussion

Reviewing the overall performance on the SVF, a significant difference in word count
was found between the groups, but no differences in cluster size or number of temporal
clusters. The temporally resolved measures showed that the MCI, SCI and HC group
follow similar trends with regard to word count, word frequency and transition length:
word count and word frequency generally decrease over time, while average transition
times increase. Significant differences between the MCI group and the other two groups
were found mainly for the third interval, where the participants in the MCI group pro-
duce fewer and less frequent words. For the word count, this is in line with previous
findings from [113], and the lower word frequency in the third interval indicates that
persons with MCI have to resort to low frequency words earlier in the task, switching
from semi-automatic retrieval of more common words to effortful retrieval at an earlier
point than the other groups.

The persons with SCI showed an increased word count in the second, fifth and sixth
interval, and reduced transition times in the fifth and the sixth interval. This suggests
that they were able to sustain a continuous production for longer. The words they pro-
duced in the last intervals did not differ in frequency from the other groups, but the
persons with SCI seemed to have access a larger store of words. Participants in the SCI
group had a longer education than the general population, and one possibility is that the
participants with SCI in the Gothenburg MCI study perform better because of higher
premorbid functioning [102].

Correlation analysis with additional psychometric data lends a deeper understanding of
the results, and significant correlations showed that higher BNT and WAIS similarities
scores were associated with a higher word count in the latter part of the SVF. This sug-
gests that having a broader vocabulary, as measured by the BNT, predicts a higher word
count in the second half of the SVF. When reviewing the word count graph in Figure 3.3
and comparing the groups, it is evident that the ability of participants with SCI to sus-
tain performance in the later time intervals can be explained by the access to a larger
vocabulary as measured by the BNT. Age and TMT-A both show significant negative
correlation with the second and third time intervals of the SVF. TMT-A is a measure of
processing speed, and it decreases with increasing age. A decrease in processing speed
seems to specifically inhibit production in the second and third interval. [96] suggested
a semi-automatic retrieval phase at the beginning and a more effortful retrieval at the end
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of the task. Our findings support the notion of these phases occurring over the course of
task, where the first phase is more influenced by processing speed and the later benefits
more strongly from a larger vocabulary.

The benefits of temporal analysis were apparent in the increase of the ability to correctly
classify participants as HC or MCI, compared to a classification based solely on word
count. In the best case, the performance of the SVM with rb f kernel improved from
AUC = 0.62 to AUC = 0.72 with temporal analysis.

This section introduced a novel, interval-based temporal analysis method for SVF tasks.
The resulting outcome revealed distinct patterns that differentiated the groups: persons
with SCI had a higher word count and sustained lexical frequency level during the last
intervals, while persons with MCI had a steeper decline in both word count and lexical
frequencies during the third interval. Correlations with neuropsychological scores sug-
gested that the superior performance of the SCI group could be attributed to vocabulary
size. Classification results improved when adding the novel features (AUC = 0.72),
supporting their diagnostic value. This increase over the baseline performance under-
lines the value of using novel methods in addition to clinical standards. The results of
group comparisons and correlations are in line with previous findings about phases of
production in SVF. The special role of the third time interval in discriminating MCI
patients is also supported by previous research.

The previous sections have looked at diagnosis as a classification problem. In the next
section, SVF data will be used to to predict diagnostic scores of healthy, MCI and AD
patients.

3.4 Predicting Dementia Screening and Staging Scores
From Semantic Verbal Fluency

In order to quantify dementia’s severity and prepare for its potential impact on a patient’s
environment, staging and screening tools have been developed. The Clinical Dementia
Rating scale represents internationally the most widely applied staging tool for assess-
ing the disease’s global severity. It encompasses six domains of cognitive and func-
tional performance: Memory, Orientation, Judgment & Problem Solving, Community
Affairs, Home & Hobbies, and Personal Care [174]. The assessment is conducted in the
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form of semi-structured interviews with the affected person and an affiliated person/co-
interviewee, e.g., a family member.

The CDR is relatively time-consuming - interviews can take up to 90 minutes - depend-
ing on the availability of a co-interviewee and requires significant training of the raters
in order to achieve good reliability [270]. The CDR is often used in combination with
the Mini Mental State Examination, a common screening tool for dementia. It takes
around ten minutes and requires a trained assessor, consists of a series of tasks that
cover different forms of cognitive functions, such as memory and attention, and is de-
signed to be used as a global screening tool. However, in some applications the MMSE
lacks sensitivity; especially for early stages, its items are considered to be relatively easy
and are highly likely to result in ceiling effects [372]. Moreover, it has been shown, that
the standard MMSE might lack sufficient intra- and interrater reliability [267].

While there are many screening tools, a reliable diagnosis of probable dementia can
only be made through in-depth assessments, and a comprehensive combination of be-
havioural (e.g., psychometric tests) and in vivo organic assessment (e.g., functional
brain imaging). Behavioural assessments typically consist of structured interviews and
can also include a number of well-defined tasks to assess particular aspects of cogni-
tion, such as memory and executive function. We argue that qualitative analysis of SVF
allows for the deduction of corresponding dementia staging and screening scores which
would allow to objectify and underpin CDR and MMSE scores, as well as to mitigate
some of their afore-mentioned methodological caveats. In this Section, we present an
analysis method that uses SVF data to predict two test scores, MMSE and CDR - Sum
of Boxes, which has been used as a quantitative approximation of the CDR scale it-
self [285].

After introducing background information in Section 3.4.1, we outline our approach in
Section 3.4.2. In Section 3.4.3, we compare regression models for prediction of the
MMSE and CDR-SOB. We interpret predicted scores according to common clinical
thresholds and report Cohen’s κ as a reliability measure. In Section 3.4.4, we discuss
how our algorithm can be leveraged for medical human-computer interaction applica-
tions for dementia screening, and conclude by outlining further work.
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3.4.1 Background

Background on the MMSE is provided in Section 2.3.3, on the CDR in Section 2.3.4.
Both measures are compared in Section 2.3.5.

3.4.1.1 Diagnosis as a Classification Problem

The common approach for detecting signs of neurocognitive diseases from speech is
to treat it as a classification problem, which is either binary or n-ary (with small n for
a highly restricted number of potential diseases). The degree of manual intervention
varies, from approaches that rely on manual transcriptions to a completely automated
speech-based screening pipeline yielding significant discrimination results [374]. Work
in this direction usually differs in means of the analysed corpora (free speech vs. cog-
nitive tests vs. conversation), classification scenario (healthy vs. impaired or healthy
vs. mildly impaired vs. severely impaired) and extracted features (linguistic vs. para-
linguistic).

[128] worked on recordings of picture descriptions of the Cookie Theft Picture Descrip-
tion Task, extracted from the DementiaBank corpus [240]. They discriminate individu-
als with AD from healthy, age-matched, controls (HC) with an accuracy of 81% using
linguistic and para-linguistic features. [392] uses language modelling techniques to cal-
culate the perplexity of picture description tasks from DementiaBank to separate AD
and HC individuals with an accuracy of 77.1%. [11] extracts para-linguistic features
(e.g., pauses, pitch & jitter) of picture descriptions from DementiaBank to discriminate
between AD and HC with an accuracy of 94.7%. [203] use para-linguistic markers
from recordings of people performing different spoken cognitive tests (countdown, pic-
ture descriptions, sentence repetition and SVF) to classify individuals into three groups:
early AD, MCI and HC. They train three binary classifiers with varying accuracies (HC
vs. MCI: 20% ± 5; AD vs. MCI: 19% ± 5; HC vs. AD: 13% ± 3). [374] analyses
spontaneous speech collected in a clinical setting through extracting temporal and para-
linguistic features to separate HC from MCI patients. The resulting classifier yields
an F1 score of 86.2% and an accuracy of 82.4%.[254] extracted vocal features from a
sentence reading task to discriminated between age-matched AD and HC patients with
an accuracy of 84.8%. [413] uses phonetic features collected from a SVF and the East
Boston memory test (EB) to discriminate between HC and MCI groups with an accu-
racy of 86.5%. Our own group previously extracted vocal features from cognitive tests
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HC MCI AD MD VD Other Total

N 42 47 33 37 10 10 179
Age 72.5 ± 8.3 76.6 ± 7.7 79.2 ± 5.0 78.8 ± 7.5 78.6 ± 4.6 78.1 ± 7.2 76.8 ± 7.5
Sex 8M/34F 23M/24F 12M/21F 19M/18F 8M/2F 10M/10F 80M/109F
MMSE 28.3 ± 1.6 26.0 ± 2.5 18.9 ± 5.0 18.5 ± 4.7 20.2 ± 4.1 23.7 ± 4.8 23.2 ± 5.5
CDR-SOB 0.48 ± 0.68 1.68 ± 1.11 7.52 ± 3.95 8.05 ± 3.31 5.50 ± 4.16 3.03 ± 3.63 4.02 ± 4.16

Table 3.6: Demographic data and clinical scores by diagnostic group (mean ± stan-
dard deviation). HC=’Human control’, MCI=’Mild cognitive impairment’, AD=
’Alzheimer’s disease’, MD=’Mixed dementia’, VD=’Vascular dementia’.

(counting down numbers and Cookie Theft picture description) to identify patients with
AD from HC with an accuracy of 89% ±3 [376].

3.4.1.2 Diagnosis as a Regression Problem

Neurocognitive diseases are complex and vary in their exact symptoms from person to
person and from stage to stage. Therefore, it might be more useful to predict scores
on screening or diagnostic tests than predicting a raw diagnosis. This makes it easier
for clinical practitioners to integrate findings from an automatic analysis tool with the
overall clinical picture, in particular when it comes to distinguishing between different
potential causes for the same symptoms.

To our knowledge, there has been very little work on prediction of clinical scores from
audio samples. [408] used semantic, acoustic and lexiosemantic features extracted
from DementiaBank to predict MMSE scores. Using a bivariate dynamic Bayes net
they achieved a mean absolute error of 3.83, which they improved to 2.91 for patients
where longitudinal data is available. The topic has received more attention in the image
processing community and multiple authors have predicted clinical scores from brain
imaging features, e.g., average regional grey matter density and tissue volume of MRI
[370, 418]. As an example, [173] uses a Random Forest Regressor to predict clinical
scores, including the MMSE and CDR-SOB, based on imaging data. This leads to a
best Mean Absolute Error of 1.68 for the MMSE and 0.69 for the CDR-SOB.



95

0 5 10 15 20 25 30
MMSE Scores

0

5

10

15

20

25

30

Nu
m

be
r o

f S
am

pl
es

0 2 4 6 8 10 12 14 16 18
CDR-SOB Scores

0

5

10

15

20

25

Nu
m

be
r o

f S
am

pl
es

Figure 3.6: Histograms of MMSE and CDR-SOB scores with cut-off values for staging
are indicated by dotted lines.

3.4.2 Methods

3.4.2.1 Data

The data used for the following experiments was collected during the Dem@Care [183]
and ELEMENT [376] projects. All participants were aged 65 or older and were re-
cruited through the Memory Clinic located at the Institute Claude Pompidou in the
Nice University Hospital. Speech recordings of elderly people were collected using
an automated recording app on a tablet computer and were subsequently transcribed
following the CHAT protocol [239]. Participants were asked to perform a battery of
cognitive tests, including a 60 second animal SVF test. Furthermore all participants
completed the MMSE and CDR. Following the clinical assessment, participants were
categorised into three groups: Control participants that complained about having sub-
jective cognitive impairment (SCI) but were diagnosed as cognitively healthy after the
clinical consultation, patients with MCI and patients that were diagnosed as suffering
from Alzheimer’s Disease and related disorders (ADRD). AD diagnosis was determined
using the NINCDS-ADRDA criteria[250]. Mixed/Vascular dementia were diagnosed
according to ICD 10 [406] criterea. For the MCI group, diagnosis was conducted ac-
cording to Petersen criteria [310]. Participants were excluded if they had any major
auditory or language problems, history of head trauma, loss of consciousness, psychotic
or aberrant motor behaviour. Demographic data and clinical test results by diagnostic
groups are reported in Table 3.6.
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The distribution of clinical scores in the data is shown in Figure 3.6. The left figure
shows MMSE scores, which range from 0 (worst) to 30 (best). The most commonly
used cut-off in the literature for possible dementia is 24. Other cut-offs include 17, 18,
19, 23, 25, and 26 [82]. Fewer than 10 of our participants fall below the lowest cut-off,
while roughly half of them are below the traditional cut-off. The right figure shows
CDR-SOB scores, which range from 0 (normal) to 18 (worst). Again, most subjects are
staged as normal or having possible impairment, and only few have moderate or severe
dementia.

3.4.2.2 Features

In the following we describe which features have been computed for each sample. We
compute features from three different categories: Statistical Clustering and Switching,
Word Frequency Features, and Vocal Features.

Let a1, a2, . . . , an be the sequence of animals produced by patient p, with ai ∈ A and
A being the set of all animals.

Word Count

WC = n

Statistical Clustering and Switching

We compute features based on semantic clusters, which are determined using the Equa-
tions 3.1, 3.3 and 3.4 from Section 3.1.2.3.

Let c1,c2, . . . , cm be the sequence of clusters, determined as described above and let |ci|
be their size. We compute the following metrics:

Semantic Density

SD = δp
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Figure 3.7: Visualisation of feature distribution in relation to MMSE (a) and CDR (b).
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MMSE CDR-SOB WC MCS NOS MWF SD MPL

MMSE 1.000 -0.834*** 0.602** -0.176 0.486* -0.560** -0.552** -0.352*

CDR-SOB 1.000 -0.569** 0.226 -0.464* 0.550** 0.553** 0.306*

WC 1.000 -0.123 0.838***-0.514** -0.538** -0.398*

MCS 1.000 -0.335* 0.191 0.339* 0.006
NOS 1.000 -0.370* -0.511** -0.376*

MWF 1.000 0.642** 0.311*

SD 1.000 0.399*

MPL 1.000

Table 3.7: Pearson correlation of MMSE, CDR-SOB and computed features.

* |σ| > 0.3 ** |σ| > 0.5 *** |σ| > 0.7

Mean Cluster Size

MCS =
1
m

m

∑
i=1

|ci|

Number of Switches

NOS = m − 1

Word Frequency

We approximate word frequency of animals using the Python wordfreq package [355],
which combines resources such as Wikipedia, news and book corpora and Twitter. Let
f : A → R be the function mapping a word to its frequency.

Mean Word Frequency

MWF =
1
n

n

∑
i=1

f (ai)

Vocal Features
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Let p1, p2, . . . ,ps be the pauses in the audio sample, determined using the Praat software
[94] as intervals of absence of sound longer than 250 ms. Let |pi| be the length of a
pause.

Mean Pause Length

MPL =
1
s

s

∑
i=1

|pi|

3.4.2.3 Evaluation Criterion

For evaluation of the quality of prediction of regression models there are many different
metrics. Popular for its mathematical sophistication and severe punishment for large
errors is the Root Mean Squared Error (RMSE).

In our case the use of the Mean Absolute Error seems more appropriate. It delivers
interpretable results on the real error made by the predictive model, scaled in the same
way the clinical scores are. Let yi be the actual value of sample i, let ŷi be the regression
models prediction and N the number of samples. The MAE is defined as

MAE =
1
N

N

∑
i=1

|ŷi − yi| (3.9)

In the following we will describe the results of regression models and discuss the impli-
cations of their predictions.

3.4.3 Experiments

In order to determine the importance of and relationship between MMSE, CDR-SOB
and the computed features we examine correlations, reported in Table 3.7, and look at
scatter plots of features and MMSE/CDR-SOB in Figure 3.7. Correlations smaller than
0.3 are considered as weak, greater than 0.5 as moderate and greater than 0.7 as strong.
Both MCS and MCL have weak correlations to MMSE and CDR-SOB. Looking at their
respective scatter plot, MCS does not seem to have any predictive power for either score,
whereas the MPL seems to have at least some. Therefore, we exclude MCS from our
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Figure 3.8: Confusion matrix for MMSE and CDR-SOB predictions, as heat-map, ob-
tained using a SVR model and rounding predictions to the nearest scale values.

feature set for all further analysis. WC, MWF and SD have correlations greater than
0.5 with both MMSE and CDR. Inspection of their respective scatter plots shows a near
linear relationship. To predict the CDR-SOB and MMSE, we train different regression
models and evaluate their performance using MAE.

3.4.3.1 Prediction

Regression models are trained including Support Vector Regression (SVR), Lasso (Lin-
ear Regression with L1 regularisation), Ridge Regression (Linear Regression with L2

regularization), Elastic Net (EN) and a Random Forest Regressor (RFR). Their imple-
mentations are provided by the scikit-learn python framework [301] and all are trained
with the features described in Section 3.4.2.2 excluding MCS. Features are normalised
by subtraction of their mean and division through their standard deviation. Because of
the small data set size (n=179) we can not use a separate validation/test set. Instead we
rely on averaging multiple shuffled k-Fold cross validations, with k set to 5. Hyper pa-
rameters are determined using a cross validation based grid search on the training folds
in each iteration of the outer cross validation loop.

Results of the regression are reported in Table 3.8. The RFR shows the worst perfor-
mance of all tested regression models. For prediction of the CDR-SOB all other models
(SVR, LR-L1, LR-L2, EN) show similar performance with overlapping 95% confidence
intervals. For the MMSE the RFR also has the worst performance and the other regres-
sors’ performance is comparable again. Especially because of the small data set we are
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MAEMMSE MAECDR-SOB

SVR 2.205 [1.920, 2.490] 1.670 [1.433, 1.907]
LR - L1 2.274 [1.988, 2.560] 1.683 [1.454, 1.912]
LR - L2 2.289 [1.997, 2.581] 1.715 [1.485, 1.945]
EN 2.286 [1.993, 2.579] 1.688 [1.456, 1.920]
RFR 2.363 [2.073, 2.654] 1.728 [1.469, 1.986]

Table 3.8: Mean Absolute Error (MAE) and 95% confidence intervals for different re-
gression models. Best performance indicated in bold.

µMMSE MAEMMSE µCDR-SOB MAECDR-SOB

SCI 28.244 ± 1.523 1.205 [0.905, 1.505] 0.489 ± 0.687 0.808 [0.589, 1.027]
MCI 25.679 ± 2.759 2.175 [1.678, 2.672] 1.708 ± 1.121 1.328 [1.030, 1.626]
DCI 18.914 ± 4.882 2.781 [2.311, 3.251] 7.556 ± 3.843 2.372 [1.955, 2.789]

Table 3.9: Mean Absolute Error (MAE) of MMSE and CDR-SOB prediction for a SVR
model by diagnosis group.
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not able to identify any clear best performing model.

In contrast to normal regression, our predicted value is bound to a discrete scale, we are
able to draw a confusion matrix for each score by rounding predictions to the nearest
value on the respective scale (1 steps for MMSe and 0.5 steps for CDR-SOB). Figure
3.8 shows the confusion matrices for MMSE and SDR-SOB using predictions from the
SVR model. For predictions of the MMSE score, there seems to be an underestimation
for patients with an MMSE > 24 and an overestimation for patients with MMSE ≤ 24.
Predictions of the CDR-SOB are overestimating for a CDR-SOB ≤ 3 and underesti-
mating for CDR-SOB > 3.

To better understand the results we examine the MAE by diagnosis group. We de-
fine three different groups: SCI, MCI and dementia (DCI). SCI and MCI are diagnosis
groups appearing in our dataset. Anyone with a confirmed diagnosis of Alzheimer’s dis-
ease, Vascular Dementia or Mixed Dementia is put into the DCI group. The results are
listed in Table 3.9. At first glance it seems like the prediction error is growing with im-
pairment of patients. But looking at the mean of each diagnosis group, one can observe
that the standard deviation grows as well - meaning the values are spread further apart.
This increases the complexity of the regression problem and accounts for the increased
error.

3.4.3.2 Clinical Interpretation of Predictions

In practice, clinicians will interpret predicted scores relative to the interpretation frame-
work they use for the actual tests. Therefore, we translated the continuous predicted test
scores into categorical judgements and compared these judgments to those made on the
original values using Cohen’s unweighted κ [73] to measure agreement. For each case,
we used the predicted value where the case was part of the test cross validation fold,
not the training folds. A total of 179 cases with predicted CDR-SOB and MMSE values
were available. κ was computed using the R package psych, Version 1.7.5.

κ =
agreementobserved − agreementexpected

1 − agreementexpected
(3.10)

Since the predicted scores are continuous, we devised two strategies for mapping them
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(a) (b)

Figure 3.9: Confusion Matrix for MMSE (a) categories and CDR-SOB (b) stages, as
heat-map.

Cut-Off κ

Strict 0.47 [0.36, 0.57]
Rounded 0.52 [0.41, 0.62]

Table 3.10: κ for CDR-SOB staging, different cut-off strategies. Estimated value with
95% Confidence Interval. Best performance indicated in bold.

onto the discrete scores required for decision making. For the MMSE, we used a strict
cut-off, where all values smaller than the boundary value indicate possible dementia,
and a cut-off that rounds the predicted value to the nearest integer. For CDR-SOB,
we used a strict cut-off that mapped values in between two category boundaries onto
the category indicating less impairment, and a cut-off where values are rounded to the
nearest 0.5.

Reliability for CDR-SOB is not very high—the best agreement is 0.52, and there is a lot
of overlap in the 95% confidence intervals (Table 3.10). As the confusion matrix shows,
this is due to a tendency to slip into the next higher or next lower category. While this
does not seem critical at first, in clinical practice, misdiagnosis in either direction can
be highly problematic [403].
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Threshold κ

17 0.59 [0.40, 0.78]
23 0.76 [0.66, 0.86]
24 0.74 [0.64, 0.84]
26 0.64 [0.53, 0.75]

Table 3.11: κ for MMSE staging, rounding to nearest integer. Estimated value with 95%
Confidence Interval. Best performance indicated in bold.

For the MMSE, however, agreement is much better. Depending on the threshold and
the cut-off mechanism used, κ varies between 0.59 (95% CI [0.4, 0.77]) for a threshold
of 17 and 0.76 (95% CI [0.66, 0.86]) for a threshold of 23. Table 3.11 shows agreement
values for four thresholds, 17 (lowest), 23 (best), 24 (traditional), and 26 (highest), using
the rounding strategy to match thresholds. As we can see from the confusion matrix,
decisions based on the MMSE scores estimated by our approach would lead to slightly
more people being screened.

3.4.4 Discussion

In principle, it is desirable to detect dementia at an early stage, so that the person with
the disease and their family can take steps to maximise their quality of life. However,
coming to terms with a diagnosis of dementia can be very difficult [64, 21]. Even if a
person is referred for additional screening on the basis of a test such as the MMSE, and
is found to be healthy, there can be negative consequences, such as people taking screen-
ing results less seriously, or becoming more anxious to bother their doctor for nothing
[249, 403]. Therefore, once we have established that a machine learning approach has
promise, we need to consider how it is best integrated into practice to avoid unnecessary
harm.

While SVF clearly contains some information that can be useful when establishing the
stage of a person’s dementia, the most promising results are those for predicting MMSE
scores. This makes sense clinically, as SVF does not reflect all of the dimensions on
which people with dementia can be impaired, and the trajectory of decline can be very
different depending on the person and the subtype of dementia they have. At the mo-
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ment, for the MMSE, we achieve good agreements with traditional judgements using
manual features. Problems might arise when automating the scenario. [294] saw the
performance of their classifiers deteriorate when using ASR but this is likely to improve
as ASR modules are specially developed for clinical data. Since administering SVF
requires minimal training, this makes the test ideal for deployment in a telehealth sce-
nario. Recordings of patients can be obtained by carers, case workers, social workers,
and nurses, and they can take place in a quiet room in the patient’s home or a conve-
nient clinic room. After automatic analysis, the results can be sent automatically to the
patient’s General Practitioner and their specialist geriatrician or old age psychiatrist. It
is even possible to fully automate the SVF test as part of an in-home kiosk or tablet
app. However, for this use case, algorithms would need to be calibrated with additional
training data, as people with moderate to severe dementia may find it difficult to follow
the instructions of an automated app.

In this Section, we explored the possibility to predict MMSE and CDR-SOB scores
based on linguistic and vocal features extracted from a SVF task. We were able to train
a regression model with a MAE of 2.2 for the MMSE and 1.7 for the CDR-SOB. We
discussed how these predictions could be used in clinical practice and that the agree-
ment of MMSE predictions and real scores were high enough for a potential use as a
screening tool. For predictions of the CDR-SOB the SVF task does not seem to capture
all dimensions of impairment found in dementia. These promising results are first steps
in the direction of formulating diagnosis and cognitive assessment as a regression prob-
lem. To additionally reliably predict severity of dementia progression, in-depth analysis
of more than one cognitive test might be needed.

3.5 Summary

This chapter presented different novel approaches to the analysis of verbal fluency tasks
on the basis of text transcripts to the end of automatically classifying dementia. Ap-
plications of these novel scores for prediction of dementia screening and staging scores
were also explored.

Section 3.1 presented a novel approach to calculate clusters in semantic verbal fluency
utilising neural word embeddings. The resulting clusters had high correlations, with
previous taxonomic approaches and showed promising performance as input features
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in a classification task. Advantages, such as the generalisability and validity of this
approach to their semantic categories than animals, were discussed.

Section 3.2 used language modelling techniques to model production strategies in SVF.
LMs were trained in a Leave-One-Out fashion, on all three groups (HC, MCI, ADRD).
Demented patients show significantly lower perplexity, thus are more predictable. Per-
sons in advanced stages of dementia differ in predictability of word choice and pro-
duction strategy - people in early stages only in predictability of production strategy.
Consequently, unpredictability is an important factor for good performance in SVF.

Section 3.3 described experiments on Swedish verbal fluency data from healthy con-
trols, MCI and subjective cognitive complaints, using a novel temporal analysis method.
A general decline in word count and lexical frequency over the course of the task is re-
vealed, as well as an increase in word transition times. Persons with subjective cognitive
impairment had a higher word count during the last intervals, but produced words of the
same lexical frequencies. Persons with MCI had a steeper decline in both word count
and lexical frequencies during the third interval. Additional correlations with neuropsy-
chological scores suggest these findings are linked to a person’s overall vocabulary size
and processing speed, respectively. Classification results improved when adding the
novel features (AUC = 0.72), supporting their diagnostic value.

Section 3.4 applied the previously validated metrics to predict the standard dementia
screening tool MMSE and the standard dementia staging tool CDR. A mean absolute er-
ror of of 2.2 for MMSE (range 0–30) and 1.7 for CDR-SOB (range 0–18) were achieved.
True and predicted scores agreed with a Cohen’s κ of 0.76 for MMSE and 0.52 for CDR-
SOB.

Novel analysis methods introduced in this chapter, and their application in classification
experiments, validated verbal fluency as a speech task that can be used to predict early
stage dementia or MCI automatically. All experiments performed in these chapter used
manually created transcripts of SVF. In real world applications, it is not always feasible
to first have to transcribe a patients answers to this task. This is why Chapter 4 will
explore the possibility to integrate these metrics into a fully automated pipeline using
automatic speech recognition.



Chapter 4

Using Automated Speech Recognition
to detect Dementia

The urgent need to identify a treatment that can delay or prevent AD has increased
the number of preventional trials targeting disease modifying risk factors for which
early screening of subjects at risk to develop cognitive impairment is highly relevant
[10]. Recent research has shown that prevention at prodromal stages targeting disease
mechanisms show promising results and are more likely to be effective [349]. Many
challenges remain detecting these ’silent’ stages, where clinical signs are not yet very
obvious since our understanding of the pathological mechanism is still quite limited
[106] and current tools may lack sufficient sensitivity to detect subtle but meaningful
changes.

This approach has led to the current discussion on creating and approving more clini-
cally relevant measures for early population based screening with low-cost tests of high
sensitivity and lower specificity [100]. For instance, currently, just 50% of cases are
diagnosed in Europe and the US [320]. This can be attributed to effective screenings
for early signs of dementia (mild neurocognitive disorder) having not reached sufficient
coverage. Especially in areas with low population density, clinical facilities and experts
are too distributed to screen populations effectively, as this is still done in a face-to face
manner today. Many clinical trials suffer from high drop out rates partly due to visit fre-
quency and study length [149]. This translates into a medical supply resource problem
and highlights the opportunities for telemedicine applications.

107
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It has been put forward that new tools may address this need fast, require neither labora-
tory setup nor external material, and automatically evaluate and indicate potential clin-
ically relevant persons. Therefore, research should focus on innovative computerized
tools that reveal robust psychometric properties for early detection of neurocognitive
disorder significantly decreasing the workload of expert clinicians, which represent a
very rare resource in most cases. Thus, automatic, inexpensive and remote solutions al-
lowing a broad frontline screening of cognitive abilities in the general population should
be developed.

There is growing evidence for the feasibility of automatic speech analysis in addressing
exactly this need [216, 168, 374]. Speech-based solutions can be remotely administered
via telephone and therefore have minimal technical user interface requirements. This
makes them a very attractive solution in the mentioned frontline screening context.

Neuropsychological studies comparing a video and telephone based psychometric de-
mentia screening with a face-to-face assessment, reported good ecological validity for
the telemedicine application [278]. However, such studies do not fully exploit the com-
bined opportunities of telemedicine neuropsychological screening empowered by auto-
matic speech analysis and machine learning classification.

This chapter focuses of the automatic analysis of Verbal Fluency tasks, on the basis of
transcripts produced by automatic speech recognition. In Chapter 3, different analysis
methods for VF tasks were explored. Good results were achieved, both in the classi-
fication of individuals with dementia from controls and in the separation of different
dementia stages, both through classification and regression of diagnostic staging scores.
The goal of the chapter is twofold: (1) in a clinical scenario, to provide further analysis
of these tests, and (2) as a screening tool, to automatically determine people in need of
medical attention.

ASR can be seen as a mature technology, that is offered as a service for integration
into many different consumer applications. However, ASR as a statistical system still
produces errors. Since acoustic models in ASRs are hardly ever trained on older in-
dividuals, performance is generally worse for them [176]. Furthermore, VF tasks are
very unusual settings that might be confusing to language models, seeing as they are
trained to give higher probabilities to word sequences that occur in natural speech. All
this posses the question in how far fully automatic analysis of VF is actually feasible,
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since even small errors in ASR might obstruct important information about production
strategy.

4.1 Fully Automatic Speech-Based Assessment of Seman-
tic Verbal Fluency

Any analysis of SVF data that goes beyond word counts is too time consuming for daily
clinical practice, especially for general practitioners and family physicians, who are
typically the first point of contact for people who suspect that they or one of their loved
ones has a cognitive impairment. In addition, any analysis strategy that is based on fixed,
pre-defined categories is open to subjective judgement. This might explain some of the
variation in cluster sizes and switch counts reported in the literature [380, 279, 139].

While automatic analysis introduces its own systematic biases, it is objective, replicable
and yields almost immediate results for clinicians to act on. In this Section, we describe
an automated analysis method for the fine-grained analysis of SVF data in terms of
clusters and switches and validate it for the category of animals. Clusters and switches,
determined by the tool correlate well with clusters and switches that were determined
manually using a strict annotation procedure. Both manually and automatically derived
statistics were successful in distinguishing between healthy controls, people with mild
cognitive impairment and people with ADRD.

4.1.1 Methods

4.1.1.1 Recruitment

Within the framework of a clinical study carried out for the European research project
Dem@care, and the EIT-Digital project ELEMENT, speech recordings were conducted
at the Memory Clinic located at the Institut Claude Pompidou and the University hos-
pital in Nice, France. The Nice Ethics Committee approved the studies (ID RCB
Dem@care ID RCB 2012-A00175-38, ELEMENT ID RCB 2017-A01896-45). Each
participant gave informed consent before the assessment. Speech recordings of partici-
pants were collected using an automated recording app which was installed on an iPad.
The app was provided by researchers from the University of Toronto, Canada and the
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company Winterlight Labs.

4.1.1.2 Clinical Assessments

Each participant underwent an assessment including: MMSE, phonemic verbal fluency
(letter ’f’), semantic verbal fluency (animals), and the CDR. Following the clinical as-
sessment, participants were categorised into three groups: Control participants (HC)
that complained about having subjective cognitive impairment but were diagnosed as
cognitively healthy after the clinical consultation, patients with MCI, and patients that
were diagnosed as suffering from Alzheimer’s Disease and related disorders. For the
AD group, the diagnosis was determined using the NINCDS-ADRDA criteria [250].
Related mixed / vascular dementia was diagnosed according to the ICD 10 [406]. For
the MCI group, diagnosis was conducted according to Petersen criteria [310]. Partic-
ipants were excluded if they had any major hearing or language problems, history of
head trauma, loss of consciousness, psychotic or aberrant motor behaviour.

Each participant performed the SVF task during a regular consultation with one of the
Memory Center’s clinicians who operated the mobile application. For the Dem@care
data, the vocal tasks were recorded with an external microphone attached to the patients
shirt and for the ELEMENT data, with the internal microphone. Instructions for the vo-
cal tasks were pre-recorded by one of the psychologist of the center ensuring standard-
ised instruction over both experiments. Administration and recording were controlled
by the application and facilitated the assessment procedure.

Relevant demographic characteristics of the HC group (n = 40, age 72.65 years, MMSE
28.27, CDR-SOB 0.47), the MCI group (n = 47, age 76.59 years, MMSE 26.02, CDR-
SOB 1.68), and the ADRD group (n = 79, age 79 years, MMSE 18.81, CDR-SOB 7.5)
are presented in Table 4.1. The total number of participants was 166. Healthy controls
were younger than the MCI and ADRD population. 75% of the HC population was
female, compared to 50% of the MCI and the ADRD sample. The AD sample also had
fewer years of education.

4.1.1.3 Speech data processing and transcription

Recordings of patients were analysed manually and automatically. For manual anal-
ysis, a group of trained speech pathology students transcribed the SVF performances
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HC MCI ADRD

N 24 47 24
Age 76.12 (4.41) 76.59 (7.6) 77.7 (3.99)
Sex 5M/19F 23M/24F 8M/16F
Education 10.50 (4.05) 10.81 (3.6) 9.75 (4.69)
MMSE 28.21 (1.82) 26.02∗ (2.5) 18.83∗ (4.99)
CDR-SOB 0.46 (0.67) 1.68∗ (1.11) 7.5∗ (3.7)

Table 4.1: Demographic data and clinical scores by diagnostic group; mean (stan-
dard deviation); HC=’Healthy control’, MCI=’Mild cognitive impairment’, ADRD=
’Alzheimer’s disease and related disorders’. Significant difference (p < 0.05) from the
control population in a Wilcoxon-Mann-Whitney test are marked with ∗.

following the CHAT protocol [239] and aligned the transcriptions with the speech sig-
nal using PRAAT [48]. For the automatic transcription, the speech signal was separated
into sound and silent parts using a PRAAT script based on signal intensity. The sound
segments were then analysed using Google’s ASR service, which returns several possi-
ble transcriptions for each segment together with a confidence score. The list of possible
transcriptions was searched for the one with the maximum number of words that were in
a predefined list of animals in French. In case of a tie, the transcription with the higher
confidence score was chosen.

4.1.1.4 Features

Word count was defined as the number of animal names produced minus the number of
repetitions.

Clusters were determined based on statistical word embeddings, a commonly used tech-
nique in computational linguistics, which is discussed in detail in [223]. Mean clus-
ter size was computed as the average number of words per cluster, and the number of
switches was the number of clusters - 1.
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4.1.1.5 Prediction

In order to evaluate the feasibility of the automatic approach, we performed two anal-
yses that aimed to replicate existing results in the literature on differences in semantic
verbal fluency performance between people with no impairment, mild neurocognitive
impairment/MCI, and major neurocognitive impairment/AD [279, 357]. The first used
a staging approach using validated normative data provided by [357], and the second
used machine learning classifiers.

Automatic norm-based neurocognitive evaluation For simulation of a real world
clinical application scenario, word counts from manual and automatic transcripts were
compared using normative data for SVF. First, normative equations [357] were used
to determine a z-value, based on manual word counts, age and education level, and
people were staged in accordance with diagnostic categories of DSM-5 (z > −1 =
no impairment, z > −2 = minor impairment, z <= −2 = major impairment). In
a second step, people were staged using the normative equations, based on automatic
word count, age and education level. The first staging was considered the ground truth
and the second was compared to the first using classification metrics.

Machine learning based classification To give an idea of how the collected features
could be combined to make a diagnostic decision, a ML classifier was trained. Each
person in the database was assigned a label relating to their diagnosis (HC, MCI and
ADRD). The features described in Section 4.1.1.4 were used, either calculated from au-
tomatic or manual transcripts, depending on the scenario. All features were normalised
using z-standardisation.

In all scenarios we use SVMs implemented in the scikit-learn framework [301]. 10-
fold cross validation was used for testing. In this procedure the data is split into 10
equally sized subsets (”folds”). For each of the folds, the classifier is trained on the 9
remaining folds and evaluated on the held out fold. To find a well-performing set of
hyperparameters, parameter selection using cross-validation on the training set of the
inner loop of each cross validation iteration was performed.

Performing cross validation on small data sets only once, leads to performance fluctu-
ations between different iterations. To work around this problem, cross validation was
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performed multiple times consecutively and then the mean of all performance metrics
was calculated.

4.1.1.6 Performance Measures

The performance of ASR systems is usually determined using Word Error Rate (WER)
as a metric. WER is a combination of the mistakes made by ASR systems in the process
of recognition. Mistakes are categorised into substitutions, deletions and intrusions. Let
S, D and I be the count of these errors respectively, and N be the number of tokens in
the ground truth. Then

WER =
(S + D + I)

N
(4.1)

We only calculated WER for words describing animals, not for off-task speech, which
also occurs in our data. We refer to this metric as VFER (Verbal Fluency Error Rate).

As performance measures for prediction of each class in the ML classification experi-
ment, sensitivity, specificity, accuracy, F1 Score and AUC are reported.

4.1.2 Results

4.1.2.1 Automated Speech Recognition

Evaluation of all samples in the corpus yielded a VFER of 19.4 %. Since not all types
of errors might have the same impact on analysis (e.g. word count is not influenced by
substitutions), the proportion of types of error made are considered. 75.9 % of all errors
were deletions, 13.3 % were substitutions and 10.8 % were insertions.

4.1.2.2 Correlation

The relationship between features extracted from automated transcripts and manual ones
was examined. Since one is the prediction of the other, their relationship is linear.
Consequently, Pearson’s correlation coefficient was computed. All relationships are
reported in Table 4.2. The correlation between manual and automatic SVF analysis
was strong across all three relevant features with a correlation of r = 0.90 for the main
clinical feature in this task, the word count.
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Manual

Automatic

WC MCS NOS
WC 0.921***0.436* 0.547**

MCS 0.404* 0.862***-0.161
NOS 0.612** -0.142 0.797***

* |σ| > 0.3 ** |σ| > 0.5 *** |σ| > 0.7

Table 4.2: Spearman correlation of automatically and manually computed features.
WC=’Word Count’, MCS=’Mean Cluster size’, NOS=’Number of switches’

ACC SENS SPEC F1 AUC

HC vs. ADRD
Manual 0.882 ± 0.042 0.898 ± 0.065 0.728 ± 0.137 0.882 ± 0.042 0.822 ± 0.069
Auto 0.877 ± 0.043 0.914 ± 0.058 0.664 ± 0.134 0.873 ± 0.042 0.784 ± 0.072

HC vs. MCI
Manual 0.756 ± 0.079 0.816 ± 0.108 0.612 ± 0.139 0.758 ± 0.078 0.708 ± 0.093
Auto 0.778 ± 0.075 0.846 ± 0.102 0.624 ± 0.139 0.779 ± 0.073 0.736 ± 0.079

MCI vs. ADRD
Manual 0.770 ± 0.046 0.867 ± 0.078 0.362 ± 0.136 0.772 ± 0.046 0.643 ± 0.077
Auto 0.793 ± 0.048 0.861 ± 0.073 0.485 ± 0.137 0.795 ± 0.048 0.696 ± 0.081

Table 4.3: Classification results. (± 95% confidence interval); HC=’Healthy control’,
MCI=’Mild cognitive impairment’, ADRD= ’Alzheimer’s disease and related disor-
ders’; ACC=’Accuracy’, SENS=’Sensitivity’, SPEC=’Specificity’, AUC=’Area under
the curve’
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Figure 4.1: Confusion matrix for diagnosis based on normative data, automatic WC
and manual WC; (no=’z > −1 no impairment’, minor=’z > −2 minor impairment’,
major=’z <= −2 major impairment’)

4.1.2.3 Automatic norm-based neurocognitive evaluation

Neurocognitive disorder evaluations (no impairment, minor and major impairment) de-
termined with the automatic word count, agree with labels based on the manual WC
with an accuracy of 0.783, weighted precision of 0.81, weighted recall of 0.78 and F1

of 0.78. When looking at sensitivity and specificity in a one versus all scenario, using
HC as the negative class, the model achieves a sensitivity of 0.988 and a specificity of
0.736. A detailed confusion matrix is depicted in Figure 4.1.

4.1.2.4 ML automatic diagnosis classification

Classification measures for all scenarios are reported in Table 4.3. Classifiers trained on
automatic measures perform as well as ones trained on manual features.

4.1.3 Discussion

In this research, we set out to investigate whether fully automatic analysis of the SVF
task can be (1) considered as reliable as the manual one, (2) can be used for auto-
matic qualitative assessment of neurocognitive impairment within this task and the cor-
responding domain and (3) in the end could be used as a valid fast and scalable screening



CHAPTER 4. AUTOMATED VERBAL FLUENCY 116

tool, based on ML classification.

4.1.3.1 Automated Speech Recognition

Considering the reliability of the fully automated pipeline, ASR is often considered to
be the main limiting factor [374]. Our results show an overall low error rate of 19.4 %
for the automated system, compared to the manual transcripts. This in itself represents
an improvement over results of other authors using ASR systems for evaluating the SVF
tasks [294, 216]. In line with previous research, more word errors are produced by the
ASR for ADRD patients, compared to healthy subjects, which can be explained by age-
related speech erosion. Closely looking at the types of errors, insertions and deletions
are both problematic for further analysis. Both skew the raw word count, which still is
the single most predictive performance indicator in SVF for dementia detection. Substi-
tutions only affect qualitative measures such as the mean size of clusters and the number
of switches between clusters, but do not effect the word count.

4.1.3.2 Automatic norm-based neurocognitive evaluation

Even though the ASR produced word errors, mainly deletions, which negatively affect
the overall word count and thereby the main clinical measure of SVF, the correlation
between the automated and manual systems is very strong, i.e. 0.90. This shows that
although the ASR system introduces some errors, it does not greatly affect the over-
all clinical measure, since the errors are not correlated to cognitive status. In the first
experiment, we benchmarked the automatic pipeline for a norm-based neurocognitive
evaluation. The performed neurocognitive evaluation based on automatic word count
agreed strongly with labels based on the manual word count. The confusion matrix (see
Figure 4.1) shows that the automatic approach tends to systematically underestimate
the performance of a person in the SVF task. This can be attributed to the deletions of
the ASR. Thus, the automatic pipeline can be considered conservative, showing high
sensitivity, which is of great importance to its use as a screening tool.

4.1.3.3 Automated ML diagnosis classification

No significant difference can be seen between the models trained on manual and au-
tomatic transcripts. In each scenario, the 95% confidence intervals overlapped. The
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difference of the previous experiment can be explained by the flexibility of ML mod-
els to learn decision boundaries, in contrast to pre-determined diagnostic norms. ML
models are also able to accommodate the previously mentioned systematic errors of
ASR.

A similar approach has been suggested by [71], studying the utility of an automatic SVF
score for the prediction of conversion with the result that higher prediction accuracy was
obtained with the classifiers trained on all scores, rather than on manual scores. Overall,
it can be stated that using automatic analysis of the SVF task allows immediate access to
reliable and clinically relevant measures such as the word count, switches and clusters.
This is potentially useful for differentiating between deficits in either executive or se-
mantic processing. The automation of recording, transcription and analysis streamlines
test administration and ultimately leads to more robust, reproducible data.

In addition to the assessment of cognitive decline, these qualitative measures extracted
from the SVF performances may be of great interest as well for other neurocognitive
disorders affecting verbal ability and executive control such as frontotemporal dementia
or primary progressive aphasia [41].

Costa et al. [78] states that we are far from having available reliable tools for the
assessment of dementias, since one of the main problems is the heterogeneity of the
tools used across different countries. Therefore, a working group of experts recently
published recommendations for the harmonisation of neuropsychological assessment of
neurodegenerative dementias in Europe with the aim to achieve more reliable data on
the cognitive-behavioural examination. Automated speech analysis of the SVF could
be one potential tool to assist in harmonising test procedures and outcomes. It also
provides additional quantitative measurements extracted from speech signals for cogni-
tive screening without increasing time, costs or even workload for the clinician. Such a
tool could be used as an endpoint measurement in clinical trials to assess intervention
outcome and monitor disease progress, even remotely over the phone.

4.1.3.4 Limitations

A few limitations of this study should be considered. Significant differences in educa-
tion level and age were found between our study populations. The age differences are
sufficiently small not to have influenced SVF performances particularly under neutral
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instruction condition [345]. The data set for this study is only in French, thus, lim-
iting transferability of its results to other languages. A major goal for future work is
the collection of SVF recordings in multiple languages and within the framework of
longitudinal studies.

4.1.3.5 Conclusion

To conclude, the study demonstrates the feasibility of automatic analysis of SVF perfor-
mances in elderly people to assess and monitor cognitive impairment. Furthermore, new
measures beyond simple word counts such as word frequencies could be investigated in
the future, possibly giving way to a deeper understanding of underlying cognitive func-
tions and changes due to neurodegenerative disease.

4.2 Telephone-based Dementia Screening through Au-
tomatic Analysis of Semantic Verbal Fluency

The goal of this section is to validate technology with which raw speech data can be
processed via the telephone—facilitated by computational linguistic techniques and ma-
chine learning—in order to give a simple risk assessment for dementia. Instead of using
free, unconstrained speech, we hope to achieve better performance and shorter assess-
ment times, through analysing performances of cognitive tests.

Therefore we benchmark a solution processing raw telephone quality SVF data suitable
for inclusion in a fully automated dementia frontline screening for global risk assess-
ment.

4.2.1 Background

The following section gives an overview of efforts aiming at the automated detection
of dementia based on multiple different sensor solutions. For this paper, we would
like to differentiate between solutions based on classic pervasive sensing such as home
monitoring systems and speech analysis as a special subcategory of pervasive sensing.
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4.2.1.1 Automated Screening Based on Pervasive Sensing

Manifold research has been done into the feasibility of home monitoring systems for
modelling domestic circadian activities (activity patterns following a biological 24h
rhythm). As such rhythms are typically disturbed by dementia—especially noctur-
nal activity patterns—these techniques provide a useful basis for automatic demen-
tia detection/screening. Using infrared sensors to monitor nocturnal activities, stud-
ies have found significant differences between dementia patients and healthy controls
(e.g. [361]). Similarly, the same technical setup has been shown to effectively model
daily routines [122]. Following the same rationale and technique [200] leveraged auto-
matic detection of instrumental activities of daily living (IADL) in patients with MCI
and healthy participants. Besides promising results, such studies are often carried out
with very small sample sizes (N < 50) and focus mainly on the automatic classification
of activities rather than the actual neurocognitive disorder. Moreover, the installation
of home-monitoring systems require significant resources and a person’s consent to be
monitored in their private life; two issues that render such a solution unrealistic in broad
population frontline screening.

Also focusing on circadian rhythm monitoring but using less complex wrist-worn tech-
nology, [290] found significant correlations between sleep patterns and common de-
mentia staging scales. However, similar to the above-mentioned studies, sample size is
relatively small and the main automatic analysis effort was spent on activity monitoring
rather than prognostic classification problems.

Beyond such passive sensing approaches, there is also research on the diagnostic use of
pro-active sensing situations: situations that are framed by some task/instruction pro-
ducing more diagnosis related variance. Leveraging virtual reality technology, [367]
used a realistic virtual reality (VR) fire evacuation task to predict amnestic Mild Cog-
nitive Impairment; often considered as the precursor of dementia, Alzheimer’s disease
(AD) and controls from task performance reaching AUC values of more than 80%.
Though very sensitive, the classification setup requires a lot intervention from tech-
nicians to analyse the VR task performance. Moreover, the VR screening setup has
similar limitations as the classic neurological assessment: it requires the expensive VR
laboratory and test persons have to leave their home.

Other studies combine gait and balance analysis through a hip-/foot-worn accelerom-
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eter and specific walking tasks [172, 70]. Such approaches take advantage of classic
geriatric assessments showing age-/dementia-related gait irregularities when confronted
with a simple straight-line walking task or dual task paradigms (e.g. walking and mental
arithmetic task).

These pervasive sensing approaches reveal several shortcomings for our use case. They
are either very technology-heavy, which implies significant investments, and rely heav-
ily on activity recognition which represents an ongoing classification research challenge
in itself. Alternatively, they have to be done in laboratories far away from peoples’
homes. Conversely, automatic speech analysis recently has reached a technical readi-
ness level that renders it very attractive for speech based pervasive solutions. Moreover,
the only technical requirement is a working telephone which can be considered as ubiq-
uitous in most countries even for an aged population such as the dementia screening
target group.

4.2.1.2 Automated Screening Based on Speech

Authors have reported studies on automated dementia screening with possible appli-
cations in phone-based telemedicine scenarios. [376] extracted paralinguistic features
from speech based cognitive tests and trained classifiers to discriminate between healthy
controls and patients with AD. Furthermore, [216] used ASR to extract features from
a story retelling task and was able to discriminate between MCI and healthy controls
with an AUC score of 80.9%. [340] used four spoken cognitive tests (Countdown, Pic-
ture description, Repetition and SVF), extracted paralinguistic features to discriminate
individuals with MCI, early AD and healthy controls (HC). Trained models achieve an
accuracy of 87% for early AD vs. HC and 81% for MCI vs. HC. Not focusing on
dementia detection but on Parkinson’s Disease, [196] report an application which is
phone-based and acts as a passive listener to monitor speech over time. However, as
soon as an anomaly is detected the app also uses classic cognitive speech tasks to elicit
richer and more controlled variance (i.e. a psychomotor task: continuously repeating
pa-ta-ka during a given period of time)

Multiple studies report approaches that are less feasible in phone-based screening sce-
narios but provide strong evidence for the effectiveness of speech-based screening for
dementia patients, including early stages. Overall, reported work either uses speech
from conversations, spontaneous speech tasks, reading or repetition tasks, and fluency



121

tasks.

The most liberal setting consists of conversations with clinicians. Audio files of spon-
taneous speech from conversations [99, 191], or classical autobiographic patient inter-
views [168] have been used in small setups, yielding significant effects. For such data,
considerable effort has to be spent on preprocessing the data (e.g. annotating turns or
trimming the audio file) in order to prepare it for further computational learning.

Tasks, eliciting spontaneous speech, are slightly more restricted and therefore easier to
process; descriptions of the Cookie Theft Picture or comparable visual material, allows
for extracting a wide variety of features and yields very good results [128, 11, 203, 288].
Similarly, some researchers report positive results from speech samples based on an
animated film free recall task [146].

Reading or repetition tasks are the most handy to deal with, in the sense of automated
processing, as they need little transcription and provide an inherent ground truth. Simple
sentence reading has been shown to provide enough variance to effectively discriminate
between AD and HC with an accuracy of 84% [254].

Verbal fluency tasks, such as the semantic animal fluency task, have produced rich vari-
ance to discriminate between AD patients and HC [203, 413, 223]. The benefits of
semantic vs. phonemic fluency tasks have been discussed in multiple publications and
there is a large body of neuropsychological evidence reporting dementia patients’ dif-
ficulties in semantic fluency tasks, concluding that dementia patients and MCI patients
have significant more difficulties in semantic, e.g., animal, fluency tasks compared to
other psychometric standard tests.

In summary, speech analysis provides a powerful opportunity to broad dementia screen-
ing as it has minimal technical requirements and leverages a mature technology—ASR—
and can be done remotely in almost all geographic areas. Sensitivity can even be in-
creased through the use of specific psychometric speech tasks, such as the semantic
verbal fluency task. Therefore, our aim is to benchmark an entirely automatic pipeline
for dementia screening using telephone-quality audio recordings of a classic dementia
screening speech task, ASR and machine learning classifiers on top.
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SMC MCI D

N 40 47 79
Age 72.65 (8.3) 76.59 (7.6) 79.0 (6.1)
Sex 8M/32F 23M/24F 39M/40F
Education in years 11.35 (3.7) 10.81 (3.6) 9.47 (4.5)
MMSE 28.27 (1.6) 26.02 (2.5) 18.81 (4.8)
CDR-SOB 0.47 (0.7) 1.68 (1.11) 7.5 (3.7)

Table 4.4: Demographic data and clinical scores by diagnostic group; mean (standard
deviation); SMC=’Subjective Memory Complaints’, MCI=’Mild Cognitive Impair-
ment’, D= ’Dementia’, MMSE=’Mini Mental State Examination’, CDR-SOB=’Clinical
Dementia Scale - Sum of Boxes’.

4.2.2 Methods

In order to address the above-mentioned challenges, this section will elaborate on the
technical pipeline of the proposed system and provide evidence for its feasibility. In
the following, the telephone-based speech data processing and the machine learning
experiment will be described.

4.2.2.1 Participants

Within the framework of a clinical study carried out for the European research project
Dem@care, and the EIT Digital project ELEMENT, speech recordings were conducted
at the Memory Clinic located at the Institut Claude Pompidou and the University hos-
pital in Nice, France. The Nice Ethics Committee approved the study. Each participant
gave informed consent before the assessment. Speech recordings of elderly people were
collected using an automated recording app which was installed on a tablet computer.
Participants underwent a clinical assessment including a battery of recorded speech-
based tasks.

Each participant went through an assessment including: MMSE, the phonemic and se-
mantic verbal fluency [371], and the CDR. Following the clinical assessment, partic-
ipants were categorised into three groups: control participants that complained about
having subjective cognitive impairment (SMC) but were diagnosed as cognitively healthy
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after the clinical consultation, patients with MCI and patients that were diagnosed with
dementia (D), including AD. For the AD group, the diagnosis was determined using
the NINCDS-ADRDA criteria [250]. Related mixed/vascular dementia was diagnosed
according to the ICD 10 [406]. For the MCI group, diagnosis was conducted according
to Petersen criteria [310]. Participants were excluded if they had any major audition or
language problems, history of head trauma, loss of consciousness, psychotic or aberrant
motor behaviour.

Each participant performed the SVF task during a regular consultation with one of the
Memory Center’s clinician who operated the mobile application which was installed on
an iPad tablet. Instructions for the vocal tasks were pre-recorded by one of the psychol-
ogist of the center ensuring a standardised instruction over the experiment. Adminis-
tration and recording were controlled by the application and facilitated the assessment
procedure.

4.2.2.2 Speech Data Processing

Speech was recorded through a mobile tablet device using the built-in microphone. The
recordings were digitised at 22050 Hz sampling rate and at 16 bits per sample. To
simulate telephone conditions, the recordings were downsampled to a 8000 Hz sampling
rate, using the Audacity1 software. Since the tablet device’s microphone is used in
mobile phones, no further transformations were applied.

Recordings of patients were analysed manually and automatically. For manual anal-
ysis, a group of trained speech pathology students transcribed the SVF performances
following the CHAT protocol [239] and aligned the transcriptions with the speech sig-
nal using PRAAT [94]. For the automatic transcription, the speech signal was separated
into sound and silent parts using a PRAAT script based on signal intensity. The sound
segments were then analysed using Google’s Automatic Speech Recognition (ASR)
service2, which returns several possible transcriptions for each segment together with a
confidence score. The list of possible transcriptions was searched for the one with the
maximum number of words that were in a predefined list of animals in French. In case
of a tie, the transcription with the higher confidence score was chosen.

1http://www.audacityteam.org/
2https://cloud.google.com/speech/

http://www.audacityteam.org/
https://cloud.google.com/speech/
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4.2.2.3 Features

We extracted a variety of features from the generated transcripts. All hereunder reported
features are either clinically accepted (i.e. word count), have been proven to have diag-
nostic power based on previous medical research (i.e. clusters and switches) or proved
to have diagnostic power based on research in the field of computational linguistics
(i.e. semantic metrics). Moreover, all features are firmly based on clinical research and
therefore explicable and understandable by medical experts.

4.2.2.4 Word Count

The count of distinct correct responses (animals), excluding repetitions, is the standard
clinical measure for evaluation of SVF. Its diagnostic power for even early stages of
cognitive impairment has been shown in countless studies.

4.2.2.5 Clusters and Switches

Many previous researchers [379, 151, 323, 223] have shown that production in SVF
is guided by so called clusters—clusters of words that are produced in rapid succes-
sion and often shown to be semantically connected. We determine clusters in multiple
ways—taxonomy-based [379] and statistical [223] semantic, as well as temporal analy-
sis [113]—and compute mean cluster size and number of switches between clusters as
features.

4.2.2.6 Semantic Metrics

Many purely semantic metrics have been suggested for the analysis of SVF, that look at
the type of words produced. We include frequency norms (see Section 3.4.2) estimated
from large text corpora and computed as the mean frequency of any produced word
and semantic distance (see Section 3.4.2) approximated using neural word embeddings
trained on external text resources. We include the mean semantic distance between
any produced word, the overall mean of means of semantic distances inside a temporal
cluster and the the mean semantic distance between any temporal cluster.
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4.2.2.7 Prediction

In order to evaluate the feasibility of using SVF in a telephone screening scenario, we
performed a machine learning experiment. We built classifiers that discriminate the
healthy population from the impaired samples. People were counted into the impaired
population, when they belonged to either the MCI or dementia groups. First we estab-
lished a performance baseline, training models based on features extracted from manual
transcripts. After that we used the transcripts from ASR to extract features and con-
structed models.

In all scenarios we used SVM 2.4.3.2 implemented in the scikit-learn framework [301].
Due to our limited amount of data—166 samples—we could not keep a separate hold-
out set for testing and instead used leave-one-out cross validation. For each sample,
the data is split into a training-set—all samples but the one—and a test-set—the one
held-out sample. The classifier is trained on the test set and evaluated on the held-out
training set. To find a well-performing set of hyperparameters for the SVM (i.e., kernel,
C, γ ), we performed parameter selection using cross-validation on the training set of
the inner loop of each cross validation iteration.

4.2.2.8 Performance Measures

The performance of ASR systems is usually determined using Word Error Rate as a
metric. WER is a combination of the types of mistakes made by ASR systems in the
process of recognition. Mistakes are categorized into substitutions, deletions and intru-
sions. Let S, D and I be the count of these errors and N the number of tokens in the
ground truth. Then WER is calculated as described in Equation 4.1.

Since WER considers all utterances, including off-task speech which is not reflected in
any of our features, we used a slightly adapted version. Instead of comparing the ground
truth annotation of the recording and the ASR results, we transformed both into a list of
animals and calculate the WER for these sequences. We refer to the result as the Verbal
Fluency Error Rate (VFER) in further discussion.

As performance measures for prediction of each class in the ML classification exper-
iment, we report the receiver operator curve, as different tradeoffs between sensitivity
and specificity are visible. We also report AUC as an overall performance metric.
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Figure 4.2: Receiver Operator Curve for features based on manual transcripts (green)
and on automatic transcripts (red). AUC is reported in the legend.

4.2.3 Results

We first evaluate the VFER on the automatic transcript, which is determined to be
33.4%. Of the errors made by the ASR, 69% are deletions, 22% are substitutions and
9% are intrusions. Substitutions are the least problematic error, since they only skew
the word count—the single most predictive feature—in rare cases, where a word is sub-
stituted with a previously named one.

Figure 4.2 shows the receiver operator curve—a plot of true positive rate vs. false
positive rate, see Section 2.4.1—for both classification experiments. Models based on
features extracted from manual transcripts have an AUC of 0.852 and models built on
features extracted from automatic transcripts show an AUC of 0.855. Since a high
sensitivity is key for screening applications, a sensible sensitivity-specificity trade-off
for the automatic model could be at a sensitivity of around 0.85 and a specificity of
0.65.
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4.2.4 Discussion

The results of our experiments show, that (1) the fully automated analysis of phone-
based SVF is feasible for dementia screening, (2) the phone-based pipeline produces
classification results comparable to the gold-standard manual transcription based classi-
fiers and (3) the word error rate for the ASR approach is acceptable despite the reduced
telephone bandwidth and the aged population.

In general, regarding screening scenarios, high sensitivity scores are important. Our
classification experiment based on the fully automated pipeline shows a good AUC
and for screening scenario a good sensitivity of 0.85 and decent specificity of 0.65.
For achieving better specificity results, it may be necessary to include additional tasks,
especially focusing on the differentiation of MCI and healthy controls. Nevertheless,
this is not the main goal for broad screening, as false positives are less expensive for a
health-care system than false negatives.

In our experiments, the automated ASR-/phone-based screening pipeline and the pipeline
based on manually transcribed speech reach comparable classification results. This is
very encouraging, as the transcription of speech is the number-one resource-straining
factor, showing that an automatic speech-based system has become a powerful alterna-
tive to manual analysis of speech-based psychometric tests.

ASR is often considered to be the main weakness in speech based automatic screening
approaches [374]. Our results show an overall error rate of 33.4 % for the automated
system, compared to the manual transcripts. This result represents an improvement over
results of other authors using ASR systems for evaluating the SVF tasks [294, 216]. In
line with previous research, more word errors are produced by the ASR for dementia
patients, compared to healthy subjects, which can be explained by age-related speech
erosion. Considering the types of errors, insertions and deletions are both problematic
for further analysis, as they skew the raw word count, the single most predictive perfor-
mance indicator in SVF for dementia detection. Substitutions affect the word count less,
only in rare cases, where a word is substituted with a previously named one, generating
a false repetition.

In this Section we set out to benchmark a telephone-based analysis of SVF for inclu-
sion into a fully automated dementia frontline screening for global risk assessment. Our
results show that SVF is a prime candidate for inclusion into an automated pipeline, pro-
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viding decent sensitivity and specificity scores. Additionally, we show that the phone-
based classification is as effective as the gold-standard manual transcription based clas-
sifier displaying an acceptable ASR word error rate despite telephone setup and the aged
sample for the experiments.

Further research will be directed into finding additional tests, that offer increased sen-
sitivity and specificity in combination with SVF. The idea of this series is to validate
and construct a system, that solely based on the telephone as a technological interface
and administrable in less than 10 minutes, perfectly fits the need of broad dementia
screening tools. It should also serve epidemiological research studies and inclusion for
pharmaceutical trials, which aim at including representative shares of the population by
cost-effective screening for persons with early onset neurocognitive impairments.

4.3 Summary

This chapter showed the potentiell applications of automated VF in clinical and auto-
mated screening scenarios.

Section 4.1 explored the applicability of automatic SVF analysis in a clinical scenario.
Although a WER of 19.4% was present, manual and automatic analysis of SVF showed
high correlations in the achieved word count. Comparing the two through usually ap-
plied clinical norms showed a potentiell for high sensitivity in the automatic approach,
since the word count was mostly underestimated by ASR. In a classification scenario,
no differences between classifiers trained on manual or automatic features were found in
distinguishing between HC vs. AD and HC vs. MCI. Only for the case of MCI vs. AD,
differences were visible with the manual approach outperforming the automatic one.
This underlines the applicability of automatic SVF analysis for low-level screening with
general practitioners.

Section 4.2 introduced experiments for the validation of an automatic SVF pipeline
as a telephone-screening tool. Recorded speech was transformed to telephone-quality
and transcribed using ASR. The WER increased drastically to 33.4%. Features form
Chapter 3 were extracted from the newly created automatic and manual transcripts.
Classifiers were trained to separate healthy controls and people suffering from different
severity levels of dementia (MCI, ADRD). No significant differences between models
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trained on manually and automatically extracted features were found. A good AUC of
0.85 was achieved in both cases.

In summary, experiments in this chapter validated both the technical feasibility of auto-
matic SVF analysis based on ASR technology, as well as its applicability in real world
clinical assessment and non-clinical screening applications. Chapter 3 and Chapter 4
have focused on analysing a constrained neuropsychological task. The next chapter is
going to focus on the multi- and cross-lingual detection of dementia based on more open
tasks using transcripts and through acoustic analysis of speech.
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Chapter 5

Multi- and Crosslingual Methods for
the Detection of Dementia from Picture
Description Tasks

The fact that the elicitation task by itself has an effect on the dependent variables un-
der investigation, i.e. that different tasks make different contributions to the assessment
of different linguistic dimensions, rewards further consideration. Indeed, the task may
even influence the most salient variables such as word retrieval [184] or perseverations
[38] – both have widely been described as reliable indicators of cognitive impairment
and a common characteristic of conditions such as AD. As tasks that test isolated lan-
guage functions such as confrontation naming [37] neglect the full spectrum of everyday
language performance, tasks to which the patient responds by producing connected lan-
guage have been conceived as an ecological approximation of real language in use [52].
Research indeed suggests that picture description measures show weak correlations with
measures obtained from the former testing paradigms, i.e. that picture description tasks
may potentially help to shed light on additional cognitive processesses [272]. By design,
these tasks rely on diverse cognitive processes and, at the same time, place a relatively
low burden on episodic and autobiographical memory. Connected language analysis
has its roots in developmental psychology and was originally concerned with language
development in children [53]. Its study has received much scientific attention in AD
research. Yet literature on MCI and the status of picture description tasks in MCI is
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comparatively small.

Comparing different elicitation methods, picture description tasks have several advan-
tages: Unlike spontaneous speech or semi-spontaneous speech tasks such as story nar-
ration or interview [22], picture description tasks place restrictions on the context and
the expected response. As a consequence, clear hypotheses can be stated with respect to
the realizations to be observed along various linguistic dimensions. At the same time,
these restrictions make responses comparable in between- and within-group settings.
These empirical claims do not necessarily hold for (semi-)spontaneous speech in which
subtle changes may not be apparent and less standardization is induced by the weak
manipulation as given by the elicitation task [384]. From the patient’s point of view, a
cognitive support is provided by the picture stimulus itself and the task moderates well
between heavier testing scenarios and completely free production prompts [135]. How-
ever, picture description tasks have one big disadvantage: From a clinical point of view,
they require a significant amount of time as they rely on transcriptions and a multidi-
mensional analysis. This becomes evident when turning to the measures that have been
brought forward with respect to the Cookie-Theft-Picture.

Machine learning experiments using speech and language for the detection of demen-
tia or related disorders have been conducted in many languages, including English
[326, 259, 128, 23], French [376, 204], German [397], Hungarian [362, 387], Spanish
[254], Greek [342], Swedish [233, 125], Japanese [348], Portuguese [17], and Mandarin
Chinese [210]. Most of these studies acknowledge the small size of the data sets as a
limitation of analysis, and describe the difficulties in gathering more data; these include
the challenges in patient recruitment, the expense of running clinically-based studies,
and the manual effort required for transcription and annotation. Here, we consider
whether it could be possible to increase the amount of available data by augmenting
a data set in one language by data from other languages and thus increasing prediction
performance.

The previous Chapters 3 and 4 have focused on the automatic detection of early de-
mentia/MCI through processing of speech and language generated during a constrained
cognitive task, namely verbal fluency. This chapter uses a different, more open task,
in which patients are shown an image and asked to describe what they see. The image
used here is the Cookie Theft Picture from the Boston Diagnostic Aphasia Examination
[143] (see Figure 2.5). This is mainly due to the fact, that for most languages it is the
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only available form of patient generated speech. First, background on the CTP task and
related work is presented.

5.1 Cross-lingual Detection of Early Dementia from Speech

We examine English data from the DementiaBank corpus which is part of the TalkBank
project [240], French data from the EIT-ELEMENT project [376] and Swedish data
from the ALZ-RJ project [197].

Speech and language features are extracted from the speech samples in each data set,
and through z-scaling features by language, the data sets are made comparable cross-
linguistically. For each language, we first build language-specific classifiers, and then
consider the effect of augmenting the training set with data from other languages, using
domain adaptation. For each feature, predictability of dementia per language is consid-
ered and effects are compared across languages. Per language classification experiments
are carried out, where data from other languages is used to augment the training set of
each language. This work represents a first step towards the goal of multilingual de-
mentia detection.

The Section is structured in the following way: Section 5.1.1 presents background infor-
mation about how multilingual approaches have been realised in other NLP subdomains.
Section 5.1.2 describes the data, extracted features and set-ups used in the classification
experiments. Section 5.1.3 presents the results of the classification experiments and ex-
plores the relationships of extracted features in the examined languages. Section 5.1.4
closes the paper by discussing the results and their implications, as well as the limita-
tions of the study and possible future directions.

5.1.1 Background

As mentioned above, several recent studies have used natural language processing and
machine learning to analyse speech samples from people with dementia and other cog-
nitive disorders. Most relevant, here, are those which focus on picture description tasks
in English, French, or Swedish.

One of the most commonly-used corpora for this task is DementiaBank, which contains
primarily English data. This large database of semi-openly available patient speech data
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is unique in the field. As a result, there have been a number of papers automatically
classifying participants with and without AD on the DementiaBank Cookie Theft data
[11, 409, 350]. Only a small subset (around 5%) of the DementiaBank participants are
labelled as having MCI; [248] reported an F-score of 0.64 classifying MCI vs. healthy
controls (HC), which was improved to 0.71 by including the AD data and using domain
adaptation techniques.

Language analysis of Cookie Theft data from other sources has also been used to
differentiate between different underlying pathologies in AD [325], and variants of
frontal lobar temporal degeneration [295]. Other English-language work on detecting
MCI/dementia using speech and language processing has focused on other tasks, such
as immediate and delayed story recall [326], semi-structured interviews [176, 23], and
conversation [259].

In French, picture description was one of multiple tasks used to elicit speech for the
classification of participants with MCI and AD reported by [203] and [204]. In the first
study, 15 controls and 23 MCI participants were distinguished with a best accuracy of
79% using purely acoustic features. In the second study, with a greater number of tasks
contributing to the classification, 44 participants with MCI were distinguished from 56
participants with subjective cognitive impairment (i.e. a subjective sense of impairment
in the absence of a clinically measurable cognitive deficit) with 86% accuracy. The
features which distinguished the groups best on the picture description task were related
to the duration of silent and voiced segments.

In other related French-language work, [376] achieved an accuracy of 89% distinguish-
ing between AD participants and controls on the basis of speech features only, extracted
from three story-telling tasks and a counting task.

In Swedish, [233] considered only syntactic features extracted from Cookie Theft nar-
ratives, and reported an F-score of 0.68 on the task of distinguishing MCI from control
participants. [125] included a wider range of linguistic features, but also included cog-
nitive test scores in their classification. A best result of F = 0.81 was achieved on the
MCI vs. HC task using the combined feature types.
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5.1.1.1 Multilingual classification

To our knowledge, there is no prior work on multilingual or cross-lingual dementia
classification. However, since problems of unilingual data sparsity arise in other NLP
domains, we briefly outline some previous work on multi- and cross-lingual classifica-
tion more generally.

[391] used English sentiment analysis training data to augment the sparse available
Chinese resources. Using a machine translation service, unlabelled Chinese data was
transferred to English and labeled English data was transferred to Chinese. Finally, both
views, original and translated, of a single datum were used for training a classifier using
the co-training algorithm [47]. Although the single-language baseline was overcome,
we do not consider translation to be an ideal approach, since subtle, yet important,
information may be lost around word choice and sentence structure.

[318] also considered the task of cross-lingual sentiment classification, building on the
‘structural correspondence’ learning algorithm of [45]. This method involves identify-
ing pivot features that generalize across languages, and then inducing correspondences
between features across the languages, based on their correlations with the pivot fea-
tures within languages. Using English as the source language, they were able to train
sentiment classifiers in German, French, and Japanese, without any labeled data from
the target languages.

Here, in contrast, we have labels for all the available data. One simple and popular
method of supervised domain adaptation was proposed by [90]. The method involves
augmenting the feature space with copies of each feature, such that one copy is spe-
cific to the target domain (i.e. the domain of the test set), one copy is specific to the
source domain (i.e. the domain of the extra available training data), and one copy com-
bines information from both domains. We use a similar approach here by considering
each language to be a different domain, such that for each target language we have two
additional source languages with which to augment the training data.

Note also that although we label each domain by its language (i.e. French, English,
or Swedish) and we expect the differences between languages to be the main source
of variation, there are other relevant differences between the data that must be taken
into account by the adaptation procedure, such as recording conditions and participant
demographics.
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5.1.2 Methodology

5.1.2.1 Data collection

All data were collected as part of the projects referenced in Section 5.1, and detailed
information about the protocols for each study can be found in the cited papers. The
demographics for the participants in each language are shown in Table 5.1. The MMSE
score is a global measure of cognitive health. In all studies, the participants were asked
to perform the Cookie Theft picture description task in their respective languages. In
English and Swedish, the image was shown on paper and speech was digitally recorded,
while in the French study, the image was displayed on a tablet and speech was recorded
via the tablet microphone.

English French Swedish
HC MCI HC MCI HC MCI

N 34 34 22 27 36 31
Age (years) 67.4 ± 6.9 68.4 ± 8.1 75.8 ± 7.4 75.6 ± 7.2 67.9 ± 7.2 70.1 ± 5.6
Education (years) 14.4 ± 2.7 15.7 ± 2.5 13.5 ± 2.3 13.0 ± 3.1 13.2 ± 3.4 14.1 ± 3.6
Sex (M / F) 26 / 8 26 / 8 6 / 16 13 / 14 13 / 23 15 / 16
MMSE (/30) 29.0 ± 1.3 27.9 ± 1.4 28.5 ± 1.5 25.4 ± 2.6 29.6 ± 0.6 28.2 ± 1.4

Table 5.1: Demographic data for each of the sub-corpora.

5.1.2.2 Feature extraction

The English and French audio samples were manually transcribed using the CHAT pro-
tocol [239]. The Swedish transcriptions were manually produced by a professional
transcription company according to provided guidelines similar to the CHAT protocol.
Thereafter, a wide variety of lexical and acoustic features were extracted using auto-
mated methods. In English and French, part-of-speech (POS) tagging and dependency
parsing was done using the Stanford CoreNLP package [243]; in Swedish, the Sparv
tool was used [50]. In all languages, acoustic features were extracted using a combina-
tion of Matlab [55], openSMILE [108] and the Syllable Nuclei Praat script [48, 94]. A
detailed description of the extracted features and their motivation is given in Table 5.2.
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Dependency distance
Dependency distance is a measure of the complexity of

sentences, and has been shown to be significantly re-
duced in MCI participants on a story retell task [326].
We compute the mean dependency distance for each
word in an utterance, and then calculate the mean, me-
dian, and maximum over all utterances.

Part-of-speech tags
POS counts are computed by mapping the POS tags to the

Universal Tag Set [311] and then normalising the raw
counts by the total number of words in the narrative.

POS ratios are also computed in some cases. Based on the
previous literature, we compute the ratio of nouns to
verbs, pronouns to nouns, determiners to nouns, and
open-class words to closed-class words [326, 5].

Lexical features
TTR is the type-token ratio, calculated by dividing the

number of unique word types by the total number of
tokens in the narrative. Vocabulary size may be di-
minished in early cognitive impairment [22].

Word frequency We compute the mean, median, and
max frequency of all tokens, and of the relevant
information-bearing words (below). Word frequency
estimates are calculated using the wordfreq Python
library, which is available in English, French, and
Swedish [354]. People with early stage cognitive im-
pairment have more difficulty naming low-frequency
items [7, 193]
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Information units

Information unit occurrence Using the list of information
units from [83], we manually construct a set of syn-
onyms for each information unit, for each language
(e.g. in English, the boy can be referred to as boy,
son, or brother, in French he can be referred to as
garçon, fils, fiston, or frère, and in Swedish as pojke,
son, or bror). For each of the 23 information units, we
have a binary indicator for presence of each concept.
Deficits in information content in the Cookie Theft
Task have been observed in dementia [83, 117, 120]
as well as MCI [5], and even in the asymptomatic
stage [85]

Information unit ratios are computed for each of the infor-
mation units, by dividing the total number of times a
given information unit is mentioned by the total num-
ber of words in the narrative.

Content density and information density are computed by
dividing the total number of information units men-
tioned (out of 23) and the total number of information
unit counts by the total number of words in the narra-
tive.

Content efficiency and information efficiency are com-
puted by dividing the total number of information
units mentioned (out of 23) and the total number of
information unit counts by the total time taken to pro-
duce the narrative.

Fluency features

Narrative length is the length of the narrative, measured in
the total number of words produced (excluding filled
pauses, but including unintelligible words and false
starts), number of sentences, number of syllables, and
total time. Cookie Theft narratives in AD tend to be
shorter than control narratives [83].
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Sentence length is the length of each sentence, in words;
we calculate the mean, median, and maximum.

Word length is the character length of each word; we cal-
culate the mean, median, and maximum.

Speech rate is measured in words per minute (total words
divided by total time) and number of syllables divided
by duration. Persons with AD have been shown to
have a lower speech rate [133].

Articulation rate is measured as number of syllables di-
vided by phonation time. Persons with moderate to
severe AD show lower articulation rates than healthy
controls [168]

Average syllable duration is measured as speaking time
divided by number of syllables.

Pause features We measure the mean duration of pauses,
number of pauses, the pause rate (number of pauses
divided by total time), the phonation rate (time spent
in speech divided by total time), and the ratio of silent
to non-silent segments. Speakers with word-finding
difficulties may pause longer and more often as they
think about what to say next [133, 215].

Acoustic features

Fundamental frequency (F0) measures the number of pe-
riods per second in voiced segments of speech. We
measure the mean, minimum, maximum and standard
deviation of fundamental frequency, the smoothed
fundamental frequency contour and the envelope of
the smoothed fundamental contour. Voicing probabil-
ity of the final fundamental frequency candidate of-
fers a measure of confidence in the selected F0 curve.
Persons with AD tend to have smaller variations in
fundamental frequency [119, 190].
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Jitter is a measure of the frequency variation between con-
secutive periods, and has been found to be a useful
feature in distinguishing between persons with AD
and healthy controls. [263, 11]

Shimmer is a measure of the amplitude variation between
consecutive periods. Persons with mild AD have been
found to present with more shimmer in their voices
than healthy controls [254, 263].

Periodicity measures the regularity of the speech sig-
nal. Features measuring periodicity include the mean,
maximum, and minimum cross-correlation. [203]
found that periodicity measurements helped differen-
tiate AD, MCI, and control participants in a picture
description task.

Intensity is measured directly via the PCM loudness, and
indirectly via the logarithmic power of Mel frequency
bands (log of the rate of energy release in the lower
Mel-scaled frequency bands). Patient with dementia
tend to have lower intensity and less control of airflow
than healthy individuals [254]

MFCC (Mel-Frequency Cepstral Coefficients) 0-14 are
the discrete cosine transforms of logarithms of spec-
tral power, and they are commonly used in speech
recognition to separate the speaker-dependent charac-
teristics from the linguistic information in the speech
signal. MFCCs have been found to be useful in ma-
chine learning classifications of persons with AD and
healthy controls [11, 15].

Linear predictive coding (LPC) provides an estimate of
the source of the speech signal. We measure statistics
of the LPC coefficients as well as the line spectral pair
(LSP) frequencies.

Table 5.2: Speech and language features extracted from the Cookie Theft narratives.
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5.1.2.3 Cross-lingual prediction

As a baseline, classification models are built only on the target language. For each
target language, classification models are also trained on combinations of data sets from
different languages and evaluated on samples from the target language.

Leave-one-out cross validation is performed on the target language. Data normalisation
is always applied inside each loop of cross validation, based only on the training set.
To account for differences between languages, features are normalised inside a single
language data set using z-scaling. This has the advantage that it scales features between
languages while preserving effects between the MCI and HC groups inside a language.

For the cross-lingual case, they are then combined according to method described by [90]:
the feature matrix Xt

train containing all training samples from the target language for this
fold and Xt

test containing the test sample from the target language for this fold are ex-
panded by a copy of themselves. The feature matrix Xs

aug containing all samples from
a given source language is expanded by an equally sized matrix containing only zeros.
Afterwards, both the expanded Xt

train and the expanded Xs
aug are stacked to create the

training set. The first half of the resulting feature matrix can be seen as containing the
set of combined features, the second half only the set of target language specific ones.

To help interpret which features transfer well between languages, logistic regression
with L1 regularisation is used as a classifier, implemented in the Python scikit-learn
framework [301]. The L1 regularisation has the effect of setting many of the feature
weights to zero, therefore acting as a method of feature selection. The parameter C is
chosen from the following set {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000} using
grid search with an inner loop of cross validation on the training set, optimising AUC.
Only samples from the target language were used in test folds of this inner cross valida-
tion procedure. As an evaluation metric for final classification, AUC was recorded.

5.1.3 Results

5.1.3.1 Cross-lingual prediction

Classification results of cross-language prediction are reported in Table 5.3. The lan-
guages used in training and testing are given as rows. Each column shows different
settings for augmentation of the training set. In every case, there is an augmented set-
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Baseline +F +S +E +SE +SF + EF

French (F) 0.553 / 0.493 0.580 0.703 / /
Swedish (S) 0.344 0.477 / 0.524 / / 0.641
English (E) 0.640 0.672 0.636 / / 0.654 /

Table 5.3: AUC score for different classification scenarios and languages. Rows corre-
spond to languages tested on, columns to languages training sets are augmented with. ‘/’
shows scenarios which are not possible. Improvements over the single-language base-
line are indicated in bold.

ting that outperforms the baseline of training on the target language alone.

Swedish clearly shows the worst baseline performance – under the 0.5 AUC mark of
random performance. French is just above the overall baseline and English shows decent
performance. Augmenting training sets with data from other languages overall shows a
positive effect. Adding either French or English data leads to clear improvements over
the baseline. Adding Swedish data does not increase classifier performance. Adding
data from both other languages leads to the best performance for French and Swedish,
while in the case of English it is better to augment only with French. Adding English and
French to Swedish data shows the highest improvement, nearly doubling performance.

5.1.3.2 Feature analysis

To examine which features drive the classification results in each case, we look at the
weights assigned to each feature by the classifier. For each task, we first rank each
feature according to the proportion of folds in which it is assigned a non-zero weight
(i.e. selected), and then by the absolute value of the weight it is assigned, averaged
across folds. The top 10 features in the unilingual case, and the case of training on all
three languages, are given in Table 5.4.

The acoustic features generally dominate the feature rankings. The only linguistic fea-
tures to be ranked in the top 10 in the unilingual cases are: the number of times the
woman information unit is mentioned, divided by the total number of words (Swedish),
the POS count for X, indicating an unknown or unintelligible word (English), and the
binary indicator for the sink information unit (French). In the multilingual cases, the
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Feature Proportion Weight

voicingFinalUnclipped sma quartile1 0.15 0.05
mfcc sma de[13] skewness 0.15 0.03
mfcc sma de[3] quartile2 0.15 0.03
ratio concept woman 0.15 0.02
F0final sma de minPos 0.13 0.09
mfcc sma[11] stddev 0.13 0.08
lspFreq sma de[5] kurtosis 0.13 0.08
logMelFreqBand sma[3] percentile1.0 0.13 0.07
lspFreq sma[3] linregc2 0.13 0.06
lspFreq sma de[4] amean 0.13 0.06

(a) Swedish unilingual.

Feature Proportion Weight

voicingFinalUnclipped sma quartile1 C 1.00 0.28
median word length C 1.00 0.26
mfcc sma de[6] percentile1.0 C 1.00 0.21
mfcc sma de[4] percentile99.0 T 1.00 0.18
mfcc sma de[0] skewness C 1.00 0.18
lspFreq sma[5] linregc2 C 1.00 0.17
lspFreq sma[3] minPos C 1.00 0.15
mfcc sma de[4] amean C 1.00 0.12
logMelFreqBand sma[7] maxPos C 1.00 0.11
voicingFinalUnclipped sma skewness C 1.00 0.11

(b) Swedish augmented with English+French.

Feature Proportion Weight

mfcc sma[10] quartile3 1.00 0.24
mfcc sma de[7] linregc2 1.00 0.18
mfcc sma[10] minPos 0.99 0.66
pcm loudness sma de maxPos 0.99 0.62
mfcc sma de[1] minPos 0.99 0.60
mfcc sma de[6] amean 0.99 0.59
ratio pos X 0.99 0.56
mfcc sma[12] quartile1 0.99 0.51
lspFreq sma[6] iqr1-2 0.99 0.50
mfcc sma[4] pctlrange0-1 0.99 0.50

(c) English unilingual.

Feature Proportion Weight

voicingFinalUnclipped sma quartile1 C 1.00 0.39
logMelFreqBand sma[7] maxPos C 1.00 0.33
lspFreq sma[3] minPos C 1.00 0.28
median word length C 1.00 0.24
lspFreq sma[5] linregc2 C 1.00 0.23
lspFreq sma de[1] quartile2 C 1.00 0.23
mfcc sma de[3] quartile2 C 1.00 0.19
mfcc sma de[6] percentile1.0 C 1.00 0.18
mfcc sma de[0] skewness C 1.00 0.18
voicingFinalUnclipped sma upleveltime75 C1.00 0.16

(d) English augmented with Swedish+French.

Feature Proportion Weight

mfcc sma de[14] quartile3 1.00 0.52
mfcc sma de[13] iqr2-3 0.98 0.40
mfcc sma de[13] quartile3 0.92 0.29
mfcc sma de[12] quartile1 0.86 0.35
mfcc sma[13] linregc1 0.84 0.68
mfcc sma de[11] skewness 0.84 0.65
lspFreq sma[5] maxPos 0.84 0.47
has concept sink 0.84 0.46
jitterDDP sma linregc1 0.84 0.40
logMelFreqBand sma[4] maxPos 0.84 0.40

(e) French unilingual.

Feature Proportion Weight

voicingFinalUnclipped sma quartile1 C 1.00 0.23
median word length C 1.00 0.20
mfcc sma de[11] skewness T 1.00 0.18
mfcc sma de[0] skewness C 1.00 0.17
lspFreq sma de[1] quartile2 C 1.00 0.17
mfcc sma de[14] quartile3 T 1.00 0.17
voicingFinalUnclipped sma upleveltime75 C1.00 0.15
lspFreq sma[5] linregc2 C 1.00 0.13
lspFreq sma[3] minPos C 1.00 0.12
mfcc sma de[4] amean C 1.00 0.11

(f) French augmented with Swedish+English.

Table 5.4: Highly-ranked features in the unilingual and cross-lingual classification ex-
periments. Features are ranked first by the proportion of folds in which they are assigned
a non-zero weight and then, in the case of a tie, by the average absolute value of the
weights, across folds. In the domain-adapted cases, the suffix C indicates the feature
contains data from the target and source data combined, while T indicates a feature
from the target dataset only.
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median word length appears in all three experiments.

While the interpretation of the acoustic features is more difficult, we can observe broadly
that the selected features tend to be related to the MFCC, LSP, and voicing features. To
the extent that the voicing features indicate prosodic markers, these may provide a proxy
for lexical emphasis or grammatical structure. By contrast, the relation of voicing (and
MFCCs) to articulatory differences is not yet clear.

Looking at the proportion of folds in which the top-ranked features were selected helps
illuminate the benefit of the cross-lingual training set. Particularly for Swedish (Ta-
ble 5.4a and Table 5.4b), where the unilingual performance was very poor, we can see
that there was very little consistency in the features selected across folds, leading to
overfitting and poor generalisability. In the cross-lingual training scenario, the same
features are selected in every fold. Another indicator of the success of the multilingual
training set is that most of the top selected features are from the combined set (marked
with ’C’) rather than only from the target set (’T’).

5.1.4 Discussion

Overall, the classification results are encouraging, as we are able to improve over the
baseline for each language by including training data from other languages. However,
even in the best-case scenario, the data sets are still small (n ≤ 183) compared to
modern machine learning problems, which may limit generalisability of results.

We were somewhat surprised to see that the most frequently-selected and highly-weighted
features were almost exclusively acoustic. While other researchers have reported on the
utility of such features for dementia detection [11, 15], a clinical assessment of speech
for signs of cognitive impairment typically focuses on basic prosodic features (such as
rate of speech) and linguistic markers. As a result, those features are better-supported by
the medical and psychological literature. One benefit of the acoustic features is that they
can be extracted using the same script in all languages, limiting the variability caused
by using language-specific tools such as parsers and POS-taggers. However, we note
that even in the unilingual case, the majority of the top-ranked features are acoustic.

These results also raise the question of interpretability: while we use a simple classifier
and manual feature engineering, the resultant classifiers are not likely to be interpretable
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by a clinician in a downstream application. Further work is needed to better understand
how these paralinguistic features relate to clinically observable symptoms. Addition-
ally, success in achieving performance improvements through training set augmentation
seem to be language—or at least data set—specific. Therefore no claims about transfer-
ability to other languages or resources can be made.

There are many sources of variability between our three subcorpora. The main differ-
ence, of course, is language. The z-scaling served to normalise feature values across
languages (e.g., the ratio of determiners to nouns was much lower in Swedish than in
English or French, due to morphological differences in how definiteness is expressed
in those languages). Differences in feature extraction were also accounted for in the
scaling (e.g., the word frequencies were, by necessity, computed from different corpora
in the different languages). Potentially harder to account for are the minor differences
in patient demographics and diagnostic procedures. If we consider the MMSE score
as a proxy for the severity of cognitive decline, we can see that the mean MMSE in
the Swedish MCI group is approximately 3 points higher than in the French MCI group.
Therefore learning methods trained on one data set with lower MMSE might be sensitive
to different forms of impairment compared to methods trained on data sets with higher
MMSE. However, we consider that when augmenting a training set of one language
with data from another, these effects of differences between corpora (i.e., MMSE, age)
can be considered to have implicit effects of regularisation, perhaps actually increasing
generalisability to the test data.

It is also possible that the nature of a picture description task might not be the most
fitting for detection of MCI. Many studies have shown that features extracted from this
task have high predictability in separating people with Alzheimer’s disease from con-
trols [128], which has lead to a comparably high number of available data and research.
However, it would appear that many of the previously used features do not transfer
to MCI, as—depending on the progression—key linguistic abilities are still preserved
[365].

Finally, technical challenges aside, collaborations of this nature can be difficult due to
the sensitive nature of the data, and the need to respect ethical guidelines and participant
consent when sharing and storing data. With this in mind, we recommend to other
researchers working in similar domains to consider from the outset whether their data
could eventually be shared, and to make suitable provisions in their ethics protocols
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and participant consent forms. We look to DementiaBank as a model for this kind of
data-sharing and openness, and hope that researchers can continue to find ways to share
resources of this nature.

5.2 Class-based Language Modelling for cross-linguistic
detection of Alzheimer’s Disease

Here, we consider whether it could be possible to increase the amount of available data
by augmenting a corpus in one language with data from another language, and thus
improve predictive performance without the need for new data collection. Specifically,
we consider augmenting a relatively small French dataset with a much larger English
one. The two aims of this study are: (1) to identify a set of features that are both useful
for the detection of dementia and that we expect to transfer across different languages,
and (2) to improve classification results on the French dataset by augmenting the training
set with English data.

5.2.1 Background

In contrast to the previous work on AD classification, we measure not only which in-
formation units are mentioned, but also the order in which they are mentioned. Our
approach has some similarity to class-based language models [56], in which words are
first grouped into classes (or clusters), and then the language model is trained on the
classes rather than the individual words. One benefit to this approach is improved gen-
eralisability [169], and another is the ability of classes to span different languages [363].
In other applications, the biggest challenge in applying such methods has been the gen-
eration of appropriate word clusters, but here it is a natural extension to our procedure
for extracting information units, which already maps words to concepts.

5.2.2 Methodology

5.2.2.1 Data

Data were taken from two corpora: a small French dataset (n = 57), collected at the
Memory Clinic and Research Centre of the University Hospital Nice, and the Pitt sub-
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English French
HC AD HC AD

N 241 309 25 33
Gender 154F/87M 189F/120M 19F/6M 22F/11M
Age 64.8 (7.7) 71.4 (8.4) 75.4 (7.0) 79.2 (6.6)
Education 14.2 (2.6) 12.8 (3.0) 14.0 (2.6) 11.3 (4.0)
MMSE (/30) 29.1 (1.1) 19.8 (5.7) 28.6 (1.4) 18.9 (3.9)

Table 5.5: Demographics of participants, where AD indicates Alzheimer’s disease, and
HC indicates healthy control. The Mini Mental State Examination (MMSE) is global
measure of cognitive status.

corpus of DementiaBank, containing 550 English samples1. Detailed information about
the protocols for each study can be found in Tröger et al., 2017 [376] and Becker et al.,
1994 [39]. In both cases, ethics approval for the data collection was obtained from the
local governing bodies.

The demographics for the participants in each language are shown in Table 5.5. In
both studies, the participants were asked to perform the CTP task in their respective
languages. In English, the image was shown on paper and speech was digitally recorded,
while in the French study, the image was displayed on a tablet and speech was recorded
via the tablet microphone.

5.2.2.2 Features

The English and French audio samples were manually transcribed using the CHAT pro-
tocol [239]. A set of pre-defined information units found in the CTP was determined
as an extension to [83], and is given in Table 5.6a. Mentions of information units were
determined using keyword-spotting (based on manually-constructed word lists specific
to each language), and used to translate the full narratives to sequences of information
units. As an example, the English A boy is standing on a stool and French Le garçon
est sur un tabouret would both be mapped to the sequence BOY STOOL.

1In this analysis, we included all participants in the Dementia subfolder, regardless of specific diag-
nosis, to maximize the size of the source data.
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Actions STEAL, FALL, WASH, OVERFLOW, GIRL’S ACTION, WOMAN’S INDIFFERENCE

Actors BOY, GIRL, CHILD(REN), WOMAN

Places KITCHEN, EXTERIOR

Objects COOKIE, JAR, STOOL, SINK, DISHCLOTH, WATER, WINDOW, CUPBOARD, DISH, CURTAIN,
COUNTER

(a) Information units.
has unit Binary feature indicating presence or absence of each information unit (23 features)
ratio unit For each information unit, the number of times that unit was mentioned, divided by the total
number of words in the original narrative (23 features)
unique concept density Total number of information units which were mentioned at least once, di-
vided by the total number of words in the original narrative (1 feature)
unique concept efficiency Total number of information units which were mentioned at least once,
divided by the duration of the sample in seconds (1 feature)
total concept density Total number of words referring to information units, divided by the total num-
ber of words in the original narrative (1 feature)
total concept efficiency Total number of words referring to information units, divided by the duration
of the sample in seconds (1 feature)

(b) info features
perplexity class n-gram The perplexity assigned to the sample by each of the eight language models,
where n = 2, 3, 4, 5, and the models are trained on data from either the AD or HC class. (8 features)
score class n-gram The log probability assigned to the sample by each of the eight language models.
(8 features)
max perplexity class n-gram The maximum perplexity, computed over all n-grams in a sample, for
each of the eight language models. (8 features)
min score class n-gram The minimum log probability, computed over all n-grams in a sample, for
each of the eight language models. (8 features)

(c) LM features

Table 5.6: Top, the information units extracted from CTP narratives. Bottom, the info
and LM features that are computed from the resulting sequence of information units.

Features relating to the occurrence of each distinct information unit comprise the info
feature set, described in Table 5.6b. Additionally, new features are derived from lan-
guage models build on the sequence of information units. To this end, concept-based
language models are trained for English and French in a leave-one-out fashion, using
the kenlm framework [156]. Models up to 5-grams were constructed. For each partici-
pant, two language models are constructed for each n: one trained on the healthy control
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(HC) population and one trained on the AD population. The participant is left out of the
model built on their associated diagnostic group. The trained language models are then
applied to the held-out participant’s sequence of information units and various language
model features are extracted (Table 5.6c).

5.2.2.3 Unilingual prediction

To evaluate the performance of the three proposed feature sets (info, LM, and info+LM),
we first train classifiers to distinguish between HC and AD participants within a given
language. To examine the importance of certain features, we restrict ourselves to more
explainable linear models, namely LR 2.4.3.1 and linear SVMs 2.4.3.2 [301]. In both
cases, we use L1 regularisation to promote sparsity in the feature weights.

AUC is reported as the evaluation parameter. Due to the small size of the French dataset,
we use leave-pair-out cross validation, which has been shown to produce an unbiased
estimate for AUC on small datasets [9], and has also been used in related work [326].
However, since LPO-CV is computationally very costly, we instead use 10-fold cross-
validation (10-CV) for English, making sure that any samples for a given participant
occur in either the training set or the test set, but not both. For LPO-CV we compute
AUC and its standard deviation as described by [326]; for 10-CV we compute the AUC
in each test fold and then report the average and standard deviation over folds.

Feature scaling and hyper-parameter optimisation is done on the training set in each
fold. Features are scaled using Maximum-Absolute Scaling to preserve the binary
nature of the info features. For both SVMs and LR, C was optimised between C ∈
[10−4, ..., 104] using a grid search.

5.2.2.4 Multilingual prediction

Our goal is to improve classification in French, by incorporating training data from
English. To this end, we examine multiple ways to combine data from both English and
French in the training set.

We first consider domain adaptation, where we treat French as the target domain and
English as the source domain. We implement the AUGMENT method of [90], which in-
volves augmenting the feature space with source-specific, target-specific, and combined
versions of all the original features, allowing the classifier to assign a higher weight
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to the combined version when that feature transfers well across domains, while also
retaining source- and target-specific information where appropriate.

We consider as well as the baseline methods described in [90]: WEIGHT, in which the
samples from the source domain are assigned reduced weights in the model; PRED, in
which the prediction made by the source classifier is used as an additional feature in the
target model; LININT, in which the predictions from the source and target models are
linearly interpolated; and ALL, in which target and source data are simply combined in a
single training set. Due to the limited size of our data, we do not optimise the weighting
factors in WEIGHT and LININT, but rather assume the two languages should be given
equal importance, and use a weighting factor of 0.1 in WEIGHT (since the English data
is 10 times the size of the French data), and 0.5 in LININT.

Another option is to combine the French and English datasets before extracting features.
Specifically, we first replace the word-level transcripts with the sequence of information
units, and then combine the two datasets and train the language models over the multi-
lingual corpus, thus generating multilingual language models.

5.2.2.5 Cross-Lingual prediction

To understand how well a trained classification model in one language could be applied
to another, we also perform cross-lingual experiments. For this, we train language and
classification models in one language and test it on the other.

5.2.3 Results

The results of the classification experiments are presented in Figure 5.1.

5.2.3.1 Unilingual prediction

In French, for both LR and SVM, using LM features leads to higher AUC than the info
features, and the combination of features is more effective than either feature set alone.
In the English case, the LM and info features lead to equivalent performance individ-
ually, but the AUC is again marginally improved when the feature sets are combined,
suggesting that they are capturing at least somewhat complementary information.
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Figure 5.1: Results of uni-, multi- and cross-lingual classification experiments. Left
panel displays results for English, right panel for French. Labels in the middle indicate
the classification scenario and method of domain adaptation. Colours indicate the fea-
ture set and classifier. Bars indicate the AUC; error bars represent standard deviation.
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for both multi- and cross-lingual cases. Error bars indicate 95% confidence intervals.
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5.2.3.2 Domain adaptation results

For French, the LM features generally do not benefit from domain adaptation, with
equivalent or poorer AUC relative to the unilingual case. The best result with the LM
features is achieved in the AUGMENT scenario, where the classifier can select the French
LM features only (although this result holds only for the SVM classifier). In contrast, the
info features do benefit from the additional data available through domain adaptation,
and lead to better results than the unilingual baseline. The best overall result of AUC =
0.89 is achieved by combining the feature types in the ALL configuration.

For English, we do not expect to see much benefit from including the (much smaller)
French dataset. The WEIGHT adaptation technique is not feasible when the source
data is smaller than the target data, and the LININT technique performs poorly, as it
assigns too much importance the smaller and out-of-domain dataset. However, we do
see marginal improvements using ALL and AUGMENT, reflecting the value of increasing
the training set size by roughly 10%. The best result of AUC = 0.84 is achieved in the
ALL condition, using the combined feature set.

5.2.3.3 Multilingual LM results

Using the multilingual LM does not affect the info features, and therefore Figure 5.1
shows only the LM and info+LM results. Clearly, the multilingual LM approach does
not work well here. Unlike in domain adaptation, combining the datasets using this
method assumes that information units will be produced in the same order in the two
languages. While French and English are similar in this respect, there are many pos-
sible counter-examples, such as cookie jar (COOKIE JAR) versus boı̂te à biscuits (JAR

COOKIE).

5.2.3.4 Cross-lingual prediction

When training entirely on English data and testing on French, the results using info and
info+LM features are significantly improved over the unilingual baseline, while the LM
results are reduced, once again indicating that the info features transfer better across
languages. The results are very similar to those using the ALL technique for domain
adaptation, suggesting that in that case, model training is dominated by the English
data.
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Figure 5.3: Visualisation of feature weights for uni- and multilingual experiments. Me-
dian feature importances over LPO- and 10-CV are displayed. The left panel displays
the English and the right panel the French data sets. Unilingual experiments are given
in blue and multilingual in yellow.
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To further explore the similarity in performance in the ALL and cross-lingual cases, we
examine the effect of incrementally increasing the amount of English data in the training
set, when testing on French data. Figure 5.2 displays the classification performance of
SVM and LR classifiers trained either using the ALL method of domain adaptation or
cross-lingually with increasing amounts (10% at a time) of the English data. Consider-
ing first the ALL method (red and blue), at x = 0 there is no English data, and so we
recover the French unilingual baseline. As we increase the amount of English data in
the training set, performance slowly increases, eventually reaching the values reported
in Figure 5.1. Considering next the cross-lingual case (yellow and green), we see that
training on only 10% of the English data (55 samples) results in much poorer AUC val-
ues. However, each further 10% increases the classification performance. At 80% of
English data (440 samples) the multi- and cross-lingual cases converge in performance.
Thus, it would appear that domain adaptation is more data-efficient, as we achieve close
to optimal results with a smaller proportion of English data, but that the cross-lingual
approach can be equally effective, given a large enough corpus.

5.2.3.5 Feature analysis

Finally, we examine the features to determine which features are most useful to the task
of dementia detection, and to compare the selected features in the unilingual and mul-
tilingual cases. Figure 5.3 shows the median absolute value of the weights assigned to
each feature, for English and French, in the unilingual and multilingual ALL condition.
The L1 regularisation serves to set many feature weights to zero.

As a high-level observation, in both the uni- and multilingual cases, relatively more info
features are selected, and relatively fewer LM features. Of the LM features that are
selected, those which relate to the maximum perplexity or minimum probability appear
to be more useful. These features capture locally anomalous speech patterns, relative to
either the AD or control language models.

In the unilingual case, the French models show a preference for the binary “has” features
(indicating whether or not an information unit has been mentioned). Only 4 of the “ra-
tio” features and none of the density or efficiency features have a median value greater
than zero. However, these features are relevant to the task, and potentially more gen-
eralisable (e.g., total concept efficiency differs between the French AD and HC groups
with p < 0.001 on a t-test, and represents an aggregate score rather than depending on
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the presence or absence of a single information unit). Such features are selected more
often in the multilingual case, and lead to improved performance. One explanation for
this could be that in the small French training set, spurious correlations due to noise
can overpower the real signal, and lead to less relevant features being assigned high
weights, while correlated (but perhaps actually more relevant) features are suppressed.
By increasing the size of the training set with English data, the signal-to-noise ratio is
improved, and a better set of features is selected.

Generally, the feature values (not shown) support the intuition that controls mention
more of the information units in the image (higher “has” feature values), convey in-
formation more efficiently, with fewer off-topic words (higher density and efficiency
scores), and organize the narrative in a more predictable way (narratives have lower per-
plexity and higher probability) than the AD participants. Again, these trends are more
apparent in the English data than the French data, likely due to the relatively larger
number of samples.

5.2.4 Discussion

One perhaps surprising result of this study was that naively combining features in the
ALL condition led to better results than the AUGMENT algorithm. However, this is in
line with the original findings of [90], where he identified a set of tasks where AUG-
MENT performed sub-optimally: specifically, those cases where training on source-only
data was better than training on target-only data. This is precisely the case we have here,
as training cross-lingually (on English source data) leads to better results than training
unilingually (on French target data). The explanation offered by Daumé III is, “If the
domains are so similar that a large amount of source data outperforms a small amount
of target data, then it is unlikely that blowing up the feature space will help.” In some
sense, then, these results are confirmation that we have indeed identified a set of features
over which the two languages (i.e. domains) are very similar.

The fact that the ALL configuration is optimal in both French and English has an added
practical benefit: since there is no distinction between source and target features, the
resulting classifier is language-agnostic. This means that test data could come from
either language, in a hypothesized future screening application.

There are no previously published results on this French dataset; however, we note that
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the classification results presented for the English data do not exceed the state-of-the-
art. The DementiaBank dataset has proven difficult to benchmark, due to different (but
poorly documented) releases, decisions by researchers to exclude participants with mul-
tiple samples, samples with fewer than 100 words, and so on. Our best English result
is AUC=0.84, which corresponds to an accuracy of 75% and F1 score of 0.77. This im-
proves over the reported results of AUC=0.83 [321], F1=0.74 [409], and F1=0.75 [350],
but does not improve on the accuracy of 82% reported by [128]. Further complicating
matters, our result exceeds the AUC=0.79 reported by [162], but is worse than their
accuracy of 79% and F1 of 0.81. Regardless, the main contribution of the paper is not
to push the state-of-the art on the DementiaBank dataset, but to use that resource to
improve classification in a lower-resource language.

In this work, we have shown that there are features which can both distinguish AD
patients from healthy controls with a high degree of accuracy, and also generalize across
languages. By incorporating a large English dataset, we were able to improve the AUC
on the French dataset from 0.85 to 0.89. We also developed a new set of features for
this task, using concept-based language modelling, which improved AUC from 0.80 to
0.85 in the unilingual case, and 0.88 to 0.89 in the multilingual case.

Future work will involve extending the set of features involved, incorporating data from
other languages, and testing whether similar techniques can be effective for detecting
earlier stages of cognitive decline, such as MCI. Other work from our group has also
begun to explore the use of unsupervised methods and out-of-domain data sources [218].

Technical challenges aside, collaborations of this nature can be difficult due to the sensi-
tive nature of the data, and the need to respect ethical guidelines and participant consent
when sharing and storing data. With this in mind, we recommend to other researchers
working in similar domains to consider from the outset whether their data could eventu-
ally be shared, and to make suitable provisions in their ethics protocols and participant
consent forms. We look to DementiaBank as a model for this kind of data-sharing and
openness, and hope that researchers can continue to find ways to share resources of this
nature.
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5.3 Summary

This chapter examined several methods to combine data resources from different lan-
guages to improve the predictability of classifiers in under-resourced languages.

Section 5.1 examined the feasibility of combining data sets (i.e., French, Swedish and
English) of MCI patients performing a picture description task. Several linguistic and
acoustic features from previous work were extracted for each language separately. Clas-
sifiers were trained in a multi-lingual fashion using domain adaptation techniques. Over-
all, we are able to improve over the baseline for each language by including training data
from other languages. The most frequently selected features were of acoustic nature,
suggesting that linguistic feature did not transfer well between languages. Demographic
and clinical differences in patient populations across languages were found to help gen-
eralisability of classifiers. We concluded that a picture description task, although being
the most available form of speech-recorded language data in dementia and across lan-
guages, might not be the ideal task to capture cognitive impairment in early dementia
stages.

Section 5.2 examined the multi- and cross-lingual detection of Alzheimer’s disease from
picture description transcripts using novel information content measures, specifically
created to transfer across languages. Transcripts were transformed into a language inde-
pendent abstract sequence of mentioned information units and concept based language
models were trained on this sequence, both inside and between languages. Classifiers
were trained in multi- and cross-lingual settings using domain adaptation techniques.
Results show a clear benefit of adding a large amount of English data to a small French
data set. By gradually adding a percentage of the English data to both multi- and cross-
lingual models, we observed that although having in-domain French data to start with
gave the multi-lingual classifier an advantage, a sufficient amount of English data led
to similar performance cross-lingually. A regularisation effect of adding English data
to the small French data set was observed, leading the classifier away from giving high
weights to binary features.

The next chapter will move away focus from automatically separating different stages
of dementia from healthy controls, to separating between patients inside a diagnostic
group based on their affective status.
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Chapter 6

Detection of clinical Apathy in
Dementia Patients

Dementia syndromes often occur with other comorbidities. The most likely co-occurring
syndrome is Apathy, an affective disorder characterised by flattened affect and loss of
motivation–see Section 2.2 for details. As apathy is the biggest risk factor for conver-
sion from MCI to dementia and because it is treatable, its identification is a large priority
on slowing disease progress.

This Chapter describes experiments on the automatic detection of apathy syndrome from
speech recordings of dementia patients. In comparison to previous Chapters, speech
considered here is not produced in standard cognitive assessments but rather during open
questions. Analysis also focuses more heavily on acoustic aspects of speech production.

6.1 Speech Features for the Detection and Characteri-
sation of Apathy

The current chapter intends to investigate the feasibility of automatic analysis utilizing
paralinguistic speech features extracted during a short free speech task as a potential
candidate for clinical apathy assessment (characterisation) and broad screening (detec-
tion) in elderly patients with cognitive impairment.

163



CHAPTER 6. APATHY IN DEMENTIA PATIENTS 164

6.1.1 Methodology

6.1.1.1 Participants

60 patients with cognitive disorders were included in this study. Participants underwent
a clinical assessment including the Mini-Mental State Examination (MMSE) [116], the
Clinical Dementia Rating Scale [285] , the Apathy Inventory (AI) [328] and the Neu-
ropsychiatric Inventory (NPI) [86]. Apathy was diagnosed based on the AI total score
(≥ 4). According to this assessment, participants were categorised into either non-
apathy or apathy groups and matched for age and MMSE per gender group. Subjects
with scores above 4 on other NPI items except from ’Apathy’ were excluded. Speech
features (e.g. pitch) vary naturally between males and females and previous work found
differences depending on gender in the effects of apathy [221], as well as depression
[89] and the effectiveness of classifiers for its detection [232]. This is why this study
considers males and females separately.

All participants were recruited through the Memory Clinic located at the Institute Claude
Pompidou in the Nice University Hospital. Participants were all native speakers of
French and excluded if they had any major auditory or language problems, history of
head trauma, loss of consciousness, psychotic or aberrant motor behavior, or history of
drug abuse. Written informed consent was obtained from all subjects prior to the ex-
periments. The study was approved by Nice Ethics Committee (ELEMENT ID RCB
2017-A01896-45, MoTap ID RCB 2017-A01366-47) and was conducted according to
the Declaration of Helsinki.

6.1.1.2 Speech Protocol

Free and natural speech tasks require low cognitive effort and are capable of eliciting
emotional reactions (or a lack thereof) [88] by asking to describe events that triggered
recent affective arousal [237]. To this end, people were asked to perform two tasks: (1)
talk about a positive event in their life and (2) to talk about a negative event in their life.
Instructions (”Pouvez-vous me raconter en une minute d’un évènement positif/négatif?”)
for the vocal tasks were prerecorded by one of the psychologist and played from a tablet
computer ensuring standardised instruction over both experiments. The vocal tasks were
recorded with the internal microphone. Administration and recording were controlled
by the application and facilitated the assessment procedure. To increase comparability,
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all recordings were sampled at 22.050 kHz and encoded with 16 Bit in the wav format.

6.1.1.3 Features

Features are extracted directly and automatically from the audio signal. This increases
the applicability of results in a clinical scenario, seeing as no prior processing, such
as transcription of what has been said, is required. For each speech task, features are
extracted separately. Overall, acoustic features were extracted from four different main
areas: prosodic, relating to perceived stress, intonation and rhythm in speech (e.g. per-
ceived pitch), formant, features carrying information about the acoustic resonance of
the vocal tract and its use, source, relating to measures of air flow through the glottal
speech production system (e.g. measures of voice quality), as well as temporal, describ-
ing measures of speech proportion (e.g. length of pauses). Table 6.1 gives a detailed
overview, definition and explanation of all extracted acoustic features. All features from
the tempo category as well as F0 features were extracted using the Praat software [48].
Jitter, Shimmer were determined using the openSmile software [108]. A Matlab script
was used to extract HNR and statistics over the first three formants.

6.1.1.4 Statistical Analysis

All statistical analysis were run using R software version 3.4.01. This study computed
the Wilcoxon signed-rank and ranked-sum tests for dependent and independent sample
testing respectively and Spearman’s ρ for correlations. For the characterisation of apa-
thy, differences in acoustic measures are examined between the apathy and non-apathy
group inside a gender. The goal being to find correlations between acoustic markers
and the AI apathy sub-scales, as well as between acoustic markers, ultimately deriving
properties of apathetic speech.

6.1.1.5 Prediction

Machine learning experiments are carried out to validate the diagnostic power of ex-
tracted markers. For this, classifiers are always trained within a gender, to differentiate
people with and without apathy. As classifiers, simple Logistic Regression models im-
plemented in the scikit-learn framework [301] were used. The L1 loss was used as a

1https://www.r-project.org

https://www.r-project.org
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penalty, as it is capable of performing implicit feature selection by reducing weights of
unimportant features to zero. This is especially useful, since the number of used fea-
tures is larger than the number of samples. Because of the small data set, they are trained
and evaluated in a leave-one-out cross-validation scenario. Here, all but one sample are
used in training of the classifier and its performance is evaluated on the held out sample.
This is repeated for all samples and results are averaged. Features are normalised using
z-standardisation based on the training set in each fold. As a performance metric we
report AUC to be able to reason about possible specificity and sensitivity trade-offs.
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6.1.2 Results

6.1.2.1 Demographics

Demographic data is provided in Table 6.2. After matching for MMSE and age, 24
male subjects and 36 female subjects were included in the final analysis and divided
into equal groups of apathy and non-apathy subjects. No significant differences were
present between the groups except for the results on the apathy scales.

6.1.2.2 Correlation

Figure 6.1 presents Spearman correlation coefficients between extracted features and
the AI sub-scales (i.e. affective, interest, initiative), split by gender. Only significant
correlations are presented.

The male population shows overall comparable correlations between the positive and
the negative story. Generally, more significant correlations are observed for temporal
features. In the positive story, correlations between these markers and all AI subdo-
mains are present. Only a small negative correlation between F0 Range and the affective
domain is observable (ρ = −0.47). For the negative story, temporal features again
dominate, while only showing correlations with the interest and initiative subdomains.
Correlations with the affective domain are observed for both F0 Max (ρ = −0.61) and
F0 Range (ρ = −0.69).

The female population shows more correlations in the positive story. Strong correlations
are observed between all three subdomains and features relating to pause lengths. Fea-
tures relating to sound length and speech tempo correlate significantly with the interest
and initiative domain. In the negative story, nearly no correlations between temporal
variables and any subdomain are present. Weak correlations are present between vari-
ables relating to mean Jitter (affective: ρ = 0.28; interest: ρ = 0.29) – which is consis-
tent with correlations in the positive story – minimum Shimmer (interest: ρ = −0.40;
initiative: ρ = −0.31) and minimum (interest: ρ = 0.46; initiative: ρ = 0.50) and
maximum Periodicity (interest: ρ = −0.47; initiative: ρ = −0.41).
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Male Female
N A N A

N 12 12 18 18
Age 78.25 (4.33) 79.58 (5.45) 77.83 (6.12) 79.50 (5.86)
MMSE 22.66 (3.11) 19.42 (4.17) 22.33 (4.02) 19.56 (5.52)
AI total 1.7 (1.23) 6.0∗∗∗ (1.60) 0.56 (0.99) 5.33∗∗∗ (1.97)
AI-Intr 0.75 (0.87) 2.42∗∗∗ (0.90) 0.17 (0.38) 2.33∗∗∗ (0.91)
AI-Init 0.83 (0.94) 2.67∗∗∗ (0.89) 0.39 (0.69) 2.33∗∗∗ (1.19)
AI-Affect 0.08 (0.29) 0.92∗∗(0.90) 0.00 (0.00) 0.67∗∗ (1.08)
NPI-Apathy 1.67 (2.01) 6.50∗∗∗ (3.73) 0.44 (0.70) 5.44∗∗∗ (3.01)
NPI-Depression 0.50 (0.90) 1.50 (2.68) 0.16 (0.51) 1.50 (2.91)
NPI-Anxiety 1.50 (2.06) 2.75 (3.33) 0.94 (1.16) 3.11 (3.61)

Table 6.2: Demographic data for population by gender and apathy; Mean (standard
deviation); Significant difference from the control population in a Wilcoxon-Mann-
Whitney test are marked with ∗ : p < 0.05,∗∗ : p < 0.01,∗∗∗ : p < 0.001.

Abr.: N=’No Apathy’, A=’Apathy’, MMSE=’Mini Mental State Examination’, AI=’Apathy In-
ventory’, AI-Intr=’AI domain Interest’, AI-Init=’AI domain Initiative’, AI-Affect=’AI domain affective’,
NPI=’Neuropsychiatric Inventory’, NPI-Apathy=’NPI domain apathy’, NPI-Depression=’NPI domain
depression’, NPI-Anxiety=’NPI domain anxiety’
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Figure 6.1: Spearman correlation coefficient between features extracted from vocal
tasks and AI subdomains. One correlation matrix is presented per speech task and gen-
der. Only significant correlations (p < 0.01) are displayed.
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6.1.2.3 Group comparison

Statistical comparisons between the apathetic and non-apathetic groups are presented in
Table 6.4a for the male population and in Table 6.4b for the female population. Only
significant values are reported.

Overall, features relating to temporal aspects of speech dominate. Some features show
significant differences regardless of gender (i.e. Speech Rate, Ratio Pause Duration,
Ratio Sound Duration, Ratio Pause Sound, Sound Max, Sound Duration), but for the
female population only in the positive story. Males show significant differences in F0

Range and F0 Maximum in the negative story. Females show significant differences in
HNR across both tasks. Females show differences in the negative story only in voice
quality markers (Periodicity, Jitter and HNR). For the male population, the largest effect
in the positive story is the Sound Duration (ρ = 0.61) and for the F0 Range in the
negative story (ρ = 0.52). For the females, the largest effects are in the Ratio Sound
Duration for the positive story (ρ = 0.54) and the HNR for the negative story (ρ =

0.51).

6.1.2.4 Prediction

Results of classification are reported in Figure 6.2. AUC is far over the chance baseline
of 0.5 for both male and female populations. The classifier trained on the male popula-
tion achieves an AUC of 0.88 and the one trained on the female population an AUC of
0.77. The ROC visualises a trade-off between sensitivity and (1 - specificity). For the
male population, the classifier could be configured to achieve a good sensitivity of 0.91
and a reasonable specificity of 0.68. For the female population, a sensitivity of 0.85
and specificity of 0.72 can be configured. Feature weights from L1 regularised Logistic
Regression models are reported in Table 6.4.

6.1.3 Discussion

Early detection of apathy in older adults has reached high clinical relevance because
of an increased risk of incident of dementia and the danger to be easily overlooked by
clinicians, which could lead to premature withdrawal from care [386].

The current study is the first one of its kind demonstrating clearly that certain paralin-
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Origin Feature Significance Statistic χ2 Effect size ρ Direction

Positive

Duration ∗ 5.60 0.39 ↓
Ratio Pause Duration ∗∗ 6.75 0.43 ↑
Ratio Sound Duration ∗∗ 6.75 0.43 ↓
Ratio Pause Sound ∗ 5.60 0.39 ↑
Sound Max ∗ 6.45 0.42 ↓
Sound Mean ∗ 5.33 0.38 ↓
Sound Duration ∗∗∗ 13.23 0.61 ↓
Pause Mean ∗ 4.56 0.36 ↑
Syllable Count ∗∗∗ 11.81 0.57 ↓
Speech Rate ∗∗ 9.36 0.51 ↓

Negative

Ratio Pause Duration ∗ 6.16 0.41 ↑
Ratio Sound Duration ∗ 6.16 0.41 ↓
Ratio Pause Sound ∗ 5.60 0.39 ↑
Sound Duration ∗ 6.45 0.42 ↓
Sound Max ∗ 4.08 0.34 ↓
Pause SD ∗ 6.45 0.42 ↑
Pause Mean ∗ 4.32 0.35 ↑
Pause Max ∗ 4.08 0.37 ↑
Syllable Count ∗ 3.85 0.33 ↓
Speech Rate ∗ 5.88 0.40 ↓
F0 Range ∗∗ 9.72 0.52 ↓
F0 Max ∗∗ 9.36 0.51 ↓

(a) Comparison for male population
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Origin Feature Significance Statistic χ2 Effect size ρ Direction

Positive

Ratio Pause Duration ∗∗ 10.62 0.54 ↑
Ratio Sound Duration ∗∗ 10.62 0.54 ↓
Ratio Pause Sound ∗∗ 9.61 0.52 ↑
Sound Max ∗∗ 6.73 0.43 ↓
Sound Mean ∗∗ 8.29 0.48 ↓
Sound Duration ∗∗ 8.66 0.49 ↓
Pause Mean ∗∗ 6.73 0.43 ↑
Pause Max ∗ 5.48 0.39 ↑
Pause SD ∗∗ 7.06 0.44 ↑
Syllable Count ∗∗ 7.23 0.45 ↓
Speech Rate ∗∗ 8.11 0.47 ↓
Jitter Mean ∗ 5.33 0.38 ↑
HNR ∗∗ 6.73 0.43 ↓

Negative

Periodicity Min ∗∗ 8.11 0.48 ↑
Periodicity Max ∗∗ 7.93 0.47 ↓
Jitter Min ∗ 5.41 0.39 ↓
Jitter Mean ∗ 5.05 0.37 ↑
Jitter SD ∗ 5.33 0.38 ↑
HNR ∗∗ 9.42 0.51 ↓

(b) Comparison for female population

Table 6.3: Statistical group comparisons between non-apathetic and apathetic group
using Kruskal-Wallis tests. Features with p < 0.05 are reported. Vocal task of origin,
p-value, test statistic (χ2), effect size (ρ) and direction of effect in the apathetic group
in comparison to the non-apathetic group are reported.
∗ : p < 0.05, ∗∗ : p < 0.01, ∗∗∗ : p < 0.001
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Figure 6.2: Receiver Operator Curve (ROC) of classifiers trained to detect apathy from
speech. The blue and red lines represent classifiers trained and evaluated on the male
and female populations respectively. AUC is reported in the legend.
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Feature Source Mean SD Proportion

Sound Duration Pos .99 .24 1.00
F0 Max Neg .77 .25 .96
F3 Mean Pos .71 .21 .96
Ratio Pause Duration Pos .26 .22 .96
Pause Max Neg .41 .16 .92
Shimmer SD Neg .33 .17 .92
Ratio Sound Duration Pos .26 .19 .92
Articulation Rate Neg .25 .16 .88
Jitter SD Pos .08 .08 .54
Mean Pause Neg .04 .12 .25

(a) Male

Feature Source Mean SD Proportion

HNR Neg .79 .18 1.00
Jitter Min Neg .23 .11 .97
Periodicity Min Neg 1.21 .31 .97
HNR Pos .49 .23 .97
Pause Rate Pos .39 .13 .97
Sound Mean Neg .45 .20 .94
Duration Pos .79 .23 .94
Shimmer Max Pos .35 .12 .94
Shimmer Min Pos .46 .14 .94
Ratio Pause Duration Pos .31 .18 .89

(b) Female

Table 6.4: Feature weights from L1regularised Logistic Regression models. Mean of
weights, standard deviation (SD) of weights and proportion of folds with an above zero
weight are presented over all folds, for the top 10 features according to proportion.
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guistic features correlate significantly with levels of apathy severity. Thus, automatic
speech analysis could be a promising new tool for its assessment.

Overall, the strongest correlations were found between the subdomains interest and ini-
tiative of the AI and temporal speech features. The affective subdomain, which repre-
sents the emotional blunting in apathy, seems more associated with prosodic speech fea-
tures which is in line with previous findings on depressed speech with mainly prosodic
speech abnormalities such as reduced pitch resulting often in a dull and ’lifeless’ tone
[87]. Similar observations were made in patients of this study with presence of emo-
tional blunting. Thus, it seems that through speech features, distinct profiles can be
characterized confirming what previous neuroimaging analyses revealed, namely that
apathy is multidimensional and different subdomains are associated with different brain
regions and circuits; the affective one with the ventral prefrontal cortex; the behavioural
one with the basal ganglia; and the cognitive with the dorsomedial prefrontal cortex
[207].

Overall, both males and females showed reduced reaction to the stimuli. Answers to
the posed questions can be generally characterised by drastically shorter (lower sound
duration) and slower (lower Speech Rate) speech. For the female population, a differ-
ence in voice quality (lower HNR) is obvious in both questions. Males suffering from
apathy react less emotionally to the negative question as indicated by a lower variance
of prosody (lower F0 Range). Interestingly, male and female subjects with apathy show
different patterns in their speech features according to the type of free speech task. For
males, significant differences between apathy and non-apathy subjects can be seen in
temporal features for both the negative and positive story. Females show similar pat-
terns in the positive story, but not in the negative one. Until today, no work on gender
dependent symptoms of apathy was found that could explain this pattern. Parts of this
effect could be caused by the fact that men from this generation are in general less likely
to talk enthusiastically about a positive event and show greater responses to threatening
cues [206].

Gender differences in emotional processing and expressivity [97] as well as in emotional
memory retrieval [312] could be another reason and should be further investigated, since
current literature mostly focuses on exploring age as a variable. Gender differences have
been observed in brain activity during emotional tasks with primarily females recalling
more autobiographical memories when it’s of emotional content and cues are given
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verbally [358]. It is possible that females in this study were more likely to be triggered
to an emotional reaction when asked about a positive event and vice versa for males.
Apathy might have an effect on this biased emotional memory retrieval. Hence, it can
be assumed that the type of affective stimulus with which speech is being provoked
might play a major role and might have to be adapted depending on a patient’s gender.

Generally, when classifying between apathy and non-apathy subjects, features related to
sound and pause segments seem to dominate with higher AUC results obtained for the
male group. These features might have been particularly affected by the cognitive and
behavioral aspects of apathy which seem to be reflected in the general amount of speech
produced. Recent findings suggesting that apathetic patients have decreased visual at-
tentional bias for social stimuli compared with non-apathetic patients[69] might apply
as well for speech production since it implies engagement in social interaction. Several
reasons could explain these findings drawn from related studies on depression [277] and
negative symptoms in schizophrenia [80]. This may be attributed to reduced muscle ten-
sion as well as impaired neuromuscular motor or articulatory coordination [79] caused
potentially by alterations in the neurotransmitter system namely low norepinephrine
and/or dopamine levels [265]. Changes in affective states can impact the phonation and
articulation muscular systems via the somatic and autonomic nervous systems [344].
Commonly observed psychomotor retardation in apathy can lead to small disturbances
in muscle tension which in turn can affect the speaker’s speech pattern and, for instance,
reduce pitch variability [170].

Since patient data is always hard to acquire, the here presented sample is relatively
small and future studies should strive to draw more conclusive evidence from larger
datasets. Further work should examine what features in particular are predictive for ap-
athy, how they relate to depression and how the two could be better discriminated. One
potential solution could be to perform a semantic analysis of the content of speech to
better differentiate apathy from depression and anxiety. Adding other additional mea-
surements, for instance, of facial, head or body movement dynamics, by the means of
video might further improve accuracy. In the field of depression, research has demon-
strated more powerful detection when applying a multi-modal audio-visual data fusion
approach [98].

Nevertheless, it can be concluded that automatic speech analysis could become a promis-
ing new screening and assessment tool for follow-up measurements (’digital endpoints’)
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in clinical trials of pharmacological and other interventions that aim to monitor apathy
in patients.

6.2 Detecting late-life Apathy in Dementia using Sen-
timent and Psycholinguistic Analysis of Emotional
Language

It can be argued that ’thinking’ and ’speaking’ are intimately linked together through
the sensory and motor systems which are highly affected by syndromes such as apathy
or depression [189], but not always easy to detect by the human ear. Computer-aided
analysis of sentiment and psycholinguistic aspects of language might have the potential
to objectively identify the lack of interest and reduced emotional response characteristic
to apathy.

This chapter analyses sentiment and psycholinguistic aspects of manually transcribed
responses to emotional questions, to predict the presence of apathy in older adults with
cognitive impairment. Results are compared to approaches utilising automatic speech
recognition, in order to verify a fully automatic pipeline. Section 6.2.1 discusses related
work in the fields of apathy detection, sentiment and psycholinguistic analysis. Sec-
tion 6.2.2 describes the first experiment on manual transcripts. Section 6.2.3 leverages
results from the previous section to verify an automatic pipeline. Section 6.2.4 con-
cludes the study and gives an outlook of applications, possible future directions and
limitations.

6.2.1 Background

Sentiment analysis (SA) is the task of classifying documents, or their parts, according
to the emotions or opinions they express. In its simplest form, it distinguishes between
positive and negative sentiment, optionally with a neutral class. More complex SA
identifies different kinds of emotions. Applications of SA are various and range from
opinion-based summaries of product reviews [235] over sentiment annotation of chil-
dren’s stories in order to enrich their presentation by speech synthesis [16] to connecting
the influence of (shifting) emotionality in twitter messages to their spread through the
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social network [209].

In general, SA applications focus on the correct classification of opinion or emotion,
not the quantification thereof, although there are frameworks which also consider the
intensity of the found emotion (e.g., the Google Cloud Natural Language API 2 offers a
sentiment magnitude value). For apathy detection, the concrete kind of emotion is less
relevant than its overall intensity, thus, many of the usual tools and techniques need to
be re-evaluated for their fitness to such a task.

In her survey of SA for text-mining, [252] describes three main groups of unimodal text-
based approaches to SA: lexicon-based approaches, approaches using machine learning
methods and hybrid approaches. The lexicon-based approach scans the documents en-
tries of a pre-built or specifically derived sentiment-annotated lexicon, while machine
learning methods compute linguistic features from the documents that serve as input
to their respective classification model. In a hybrid approach, the lexicon search may
be used to derive one or more input dimensions for a more sophisticated model. In
any case, feature selection and engineering are an important step in the classification
process. While a comparatively simple token-based lexicon lookup can already yield
reasonable results [410], the implementation of more complex natural language pro-
cessing (NLP) techniques is usually able to boost the classification performance, like
the correct handling of negation [179], exploiting sentence structure for better detection
[253] or abstracting from single tokens to the concepts behind them [337].

Regarding the lexicon-based SA approaches, Linguistic Inquiry and Word Count (LIWC)
is a psycholinguistic tool that has been used to evaluate emotional and cognitive func-
tion. It works through comparing a predetermined dictionary of hierarchally-categorised,
psychometrically-validated words to transcribed speech or text, over 5 dimensions (Lin-
guistic processes, psychological processes, personal concerns, spoken properties and
punctuation) [303].

LIWC has been successfuly used in a wide range of clinical applications: Looking at
mental health [77], social behaviours and cognitive disorders such as Depression [92],
Dementia [401], Parkinson’s Disease [364], and Schizophrenia [264]. Focusing on ap-
athy in Parkinson’s, [364] used custom and prebuilt LIWC dictionaries to study ex-
pressive behaviour—fabricating LIWC categories for apathy, hopefulness, protest and

2https://cloud.google.com/natural-language/docs/analyzing-sentiment

https://cloud.google.com/natural-language/docs/analyzing-sentiment
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hopelessness. Participants were interviewed and asked to describe an enjoyable or frus-
trating activity and then rated on verbal, determined by both LIWC dictionaries, and
nonverbal expression patterns. Participants predictably used more words in the positive
emotion and hopefulness categories as well as positive facial expressions while describ-
ing an enjoyable event but produced less speech and facial expressions when describing
a negative aspect of their life, exhibiting increased apathetic behaviour.

Despite the paper mentioned above, research on applications of LIWC for apathy is
very sparse. However, as depression shares significant symptoms with apathy, applica-
tions of LIWC in depression may be promising. [92] used curated LIWC categories to
consider the linguistic (22 specific linguistic styles) and emotional indicators (positive
affect, negative affect, activation, and dominance) of depression on the popular social
media platform, Twitter. They combined these with other features to achieve a 70%
classification accuracy. All emotional and six of the linguistic indicators, determined by
LIWC, were reported to be significantly different between groups.

Some clinical applications of LIWC prune categories to determine which categories
are relevant to the clinical domain. For example [23], used LIWC-driven features in
machine learning classification experiments to distinguish spontaneous speech between
healthy controls and those with MCI. They achieved an accuracy of 84% by selecting
category-specific features and noted that using all LIWC categories yielded a lower
performance (76.2% accuracy), concluding that all LIWC categories may not be suitable
for specific classification tasks.

Similarly, some LIWC categories have been found to be more prominent in indicat-
ing highly goal-oriented behaviour on twitter, presumably the inverse of the diminished
goal-directed behaviour symptom in apathy. [241] performed machine learning clas-
sification tasks based on LIWC categories from the LIWC 2001 dictionary to analyse
influencers on social media platforms. Physical states correlated negatively with in-
fluencer behaviour and were suggested to be an indicator of illness or inactivity, and
a possible signifier of apathetic tendencies. Physical states are listed under the per-
sonal concerns dimension in the LIWC 2007 dictionary, meaning that this may be hy-
pothesised as a possible indicator of apathetic behaviour. To further this point, LIWC
was used to consider word usage and social engagement behaviours on Twitter, where
several psycholinguistic categories correlated significantly with replies and retweets, a
proxy for social engagement. Several psycholinguistic traits correlated negatively, in-
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terpreted as less likely to produce an action, with response rate (anger, anxiety) and
retweet rate (physical states, tentative). These LIWC categories may indicate being ap-
prehensive to engagement, which would be expected to be a trait for those with apathy.
LIWC categories were then used to build predictive models about users engagement
behaviours, where selecting significantly-correlated LIWC categories out-performed all
LIWC categories in both response (4.4% AUC improvement)and retweet (12.6% AUC
improvement) prediction [242].

Incorporating LIWC categories into an automatic pipeline for screening in a clinical
application, [176] established the validity of an automatic pipeline for aided diagnosis
of dementia and its subtypes. They utilized both ASR and LIWC features in binary
classification tasks. Using three to five minute clips of spontaneous speech gathered
from the semi-structured interview portion of the Western Aphasia Battery of a relatively
small corpus (48 participants), they were able to achieve an accuracy of 88% when
distinguishing between ADs and controls as well as ADs and those with FTLD, by
combining part-of-speech tagging, LIWC categories and acoustic features. They report
that 22 of the 81 LIWC features were statistically significant.

To conclude, research indicates that there might be a link between LIWC categories
and symptoms of apathy and that it might be conducive to leverage this in an automatic
pipeline for apathy screening.

6.2.2 Apathy Detection from Manual Transcripts

The first experiment aims to predict apathetic signals in a person based on features
extracted from manual transcripts of responses to two emotional questions.

6.2.2.1 Data

Speech recordings from both the ELEMENT and MoTap projects were used. The stud-
ies were approved by Nice Ethics Committee (ELEMENT ID RCB 2017-A01896-45,
MoTap ID RCB 2017-A01366-47) and were conducted according to the Declaration
of Helsinki. All participants were aged 65 or older and were recruited at the Memory
Clinic located at the Institute Claude Pompidou in the Nice University Hospital. Speech
recordings were collected using an automated recording app on a tablet computer. Only
native speakers of French were included.



183

Participants completed a battery of cognitive tests, the MMSE, the Apathy Inventory
(AI) [328] and the Neuropsychiatric Inventory (NPI) [86]. Participants were excluded if
they had any major auditory or language problems, history of head trauma, loss of con-
sciousness, or psychotic or aberrant motor behaviour. Following the clinical assessment,
patients were grouped into three categories in accordance with the DSM-5 diagnostic
guide: patients without any impairment, minor impairment or major impairment. In this
study, we only look at patients with either minor or major impairments, to prevent con-
founding of group differences by cognitive state. Patients are split into groups according
to their AI score (≥ 4) and groups are matched for MMSE. Due to a strong correlation
between cognitive health and apathy, a group difference in MMSE remains (p = 0.02).
Demographic data and clinical test results by diagnostic groups are reported in Table
6.5.

It has been shown that free speech allows a greater range of induced emotional effects,
particularly when asked to describe events that triggered recent emotional arousal [237].
Hence, to elicit free speech, people were asked to to perform two tasks: (1) to talk about
a positive event in their live and (2) to talk about a negative event in their live. Instruc-
tions (”Pouvez-vous me raconter en une minute d’un événement positif/négatif?”) for
the vocal tasks were pre-recorded by one of the psychologist and played from a tablet
computer ensuring standardised instruction over both experiments. The vocal tasks were
recorded with the tablet computer’s internal microphone. Administration and recording
were controlled by the application and facilitated the assessment procedure. To increase
comparability, all recordings were sampled at 22.050 kHz and encoded with 16 Bit in
the wav format.

Afterwards, recordings were transcribed on a word level by a group of trained speech
pathology students following the CHAT protocol [239]. The transcriptions were aligned
with the speech signal using PRAAT [48]. The words négatif, positif, agréable and
désagréable were removed from the transcripts, as they were part of the instructions
and were often repeated as a form of time-filling speech while the participants were in
thought.

6.2.2.2 Features

To find symptoms of apathy, such as emotional blunting and diminished goal directed
behaviour, in responses to these emotional questions, we utilise methods from both
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Control Apathy

N 31 31
Gender (% male) 35% 45%
Age 77.74 (6.02) 79.00 (7.19)
MMSE 23.45 (3.85) 20.23∗ (4.86)
AI 1.03 (1.20) 5.68∗∗∗ (1.74)
AI-Intr 0.42 (0.67) 2.39∗∗∗ (0.88)
AI-Init 0.58 (0.81) 2.55∗∗∗ (1.09)
AI-Affect 0.03 (0.18) 0.74∗∗∗ (1.00)
NPI-Apathy 1.00 (1.55) 5.97∗∗∗ (3.29)
NPI-Depression 0.94 (1.67) 1.45 (2.49)
NPI-Anxiety 1.74 (2.63) 2.90 (3.36)

Table 6.5: Demographic data for population by gender and apathy; Mean (standard
deviation); Significant difference from the control population in a Wilcoxon-Mann-
Whitney test are marked with ∗ : p < 0.05,∗∗ : p < 0.01,∗∗∗ : p < 0.001.

Abr.: MMSE=’Mini Mental State Examination’, AI=’Apathy Inventory’, AI-Intr=’AI domain In-
terest’, AI-Init=’AI domain Initiative’, AI-Affect=’AI domain affective’, NPI=’Neuropsychiatric
Inventory’, NPI-Apathy=’NPI domain apathy’, NPI-Depression=’NPI domain depression’, NPI-
Anxiety=’NPI domain anxiety’
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sentiment analysis and the psycholinguistic analysis tool LIWC [304] in the form of its
French adaption [313]. In this section, the subscripts p and n refer to features calculated
on the positive and negative story respectively.

Since participants are actively required to fulfil a task – answer the posed question –
a first easy baseline is the number of words in the patients response (WCp, WCn). In
this context, it is an implicit measure of engagement and should be reduced in patients
showing symptoms of apathy.

6.2.2.3 Sentiment Analysis

Another form of task fulfilment – i.e. goal-directed behaviour – can be seen in the emo-
tionality of the answers. Since participants are asked to tell a positive/negative story
from their lives, measuring the sentiment expressed in the response should be indica-
tive for engagement in the task. Furthermore, emotionally blunting – meaning the ab-
sence/reduction of emotion – should be encoded in a response’s sentiment. To classify
the sentiment of responses, the French Expanded Emotion Lexicon (FEEL) [3] is used.
This resource is a supervised translation from the English word-emotion association lex-
icon [266] and has been used as feature in machine learning classification experiments
to distinguish between responses of expert medical opinions and non-experts in French
internet health forums[2]. For a total of 14.000 French words, it contains a characteri-
sation as either positive or negative. For a given participant, we analyse the sentiment
of the response by iterating over all words in the associated transcript, checking if they
are present in the dictionary and if so, counting the valence category they are associated
with. In the end, each sample has a count for positive (Pp, Pn) and negative words (Np,
Nn). We explicitly calculate a sentiment score for each task separately. Since we know
that a positive sentiment was asked in the positive story and a negative in the negative
story respectively and we assume apathy to be unrelated to direct compliance with these
instructions, we can assume that negative words in the positive story and positive words
in the negative story were used to amplify emotional expressions (e.g.‘very sad’). For
the positive story we calculate the sentiment as

Sp = Pp · Np

and for the negative story, the overall sentiment is defined as

Sn = −Nn · Pn
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We also explicitly calculate the magnitude of sentiment in both tasks. For the positive
story this is defined as

Mp = Pp + Np

and for the negative story as
Mn = Nn + Pn

The last used feature from the sentiment scores is the range of observed sentiment be-
tween the two tasks. It should represent the possible range of emotions shown by a
patient and through that be sensitive to emotional blunting. It is defined as

R = Sp − Sn

6.2.2.4 LIWC

LIWC is a psycholinguistic dictionary, that categorises words into groups known as
word subcategories. For example, words such as fils (son), mari (husband) and mère
(mother) are all grouped into the Family word subcategory. One word can belong to
multiple subcategories. LIWC 2007 knows a total of 68 word subcategories, which can
be summed up in five so called word categories: (1) Linguistic Dimensions, (2) Psycho-
logical Processes, (3) Personal Concerns, (4) Spoken Categories and (5) punctuation
[303]. Linguistic dimension contains all subcategories relating to linguistic features,
such as Articles and Prepositions. In Psychological processes, subcategories such as
Affective, Anxiety and Anger are grouped together. Subcategories relating to topics of
daily life, such as Religion, Money and Family are in the Personal concerns category.
Lastly, the Spoken category refers to spoken events, namely Swear words, Nonfluencies
and Fillers. In our analysis, we excluded the punctuation category as all punctuation is
removed from the transcripts during the preprocessing step. For more detailed informa-
tion we refer to the LIWC 2007 user manual [303]. In our analysis, we relied on the
French adaptation of LIWC 2007 provided by Piolat et al. [313].

By analysing psycholinguistic aspects of speech, we hope to identify differences in psy-
chological processes – reduced emotion over multiple categories as a sign of emotional
blunting – and possibly in linguistic variables – as has been shown to be the case in
depression. Each transcript was stripped of external markings (i.e. clinician speech), to-
kenised and then fed into LIWC. The result is a 68 dimensional feature vector. For more
detailed investigation, we split up the vector into four feature subsets corresponding to
the four LIWC categories.
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SVM LR
Acc F1 AUC Acc F1 AUC

WC 0.742 0.758 0.818 0.742 0.750 0.854
Sentiment 0.774 0.781 0.826 0.790 0.794 0.874
Sentiment + WC 0.790 0.800 0.847 0.790 0.787 0.835

Table 6.6: Classification results for models trained on word count and sentiment fea-
tures. Best performances over feature sets in a particular metric are indicated in bold.

6.2.2.5 Prediction experiment

To verify the predictive power of the extracted features, we constructed machine learn-
ing models that are capable of deciding whether a person exhibiting signs of apathy.
Each person in the dataset was assigned a label according to their group (Apathy vs.
Control3). We compare multiple different feature sets: the word count (baseline), sen-
timent features, LIWC categories, all LIWC features and combinations thereof. We
utilise different ML algorithms, namely SVM 2.4.3.2 and LR 2.4.3.1, and compare their
performance. All classifier’s implementations were taken from the scikit-learn frame-
work [301]. Because of our limited data set (n=62), we cannot keep a held-out set for
neither parameter tuning nor testing. Therefore, we exploit LOO-CV for testing our ML
classifiers. Sentiment and word count features are normalised using z-standardisation
based on the mean and standard deviation of the training set in each iteration and LIWC
features are scaled using maximum absolute scaling to preserve sparseness. Hyper-
parameters are optimised using an inner loop of 3-Fold CV on the training set in each
outer loop of the LOO-CV. For SVMs the choice of kernel (linear, rbf ), error-parameter
C (10−4... 104) and for the rbf kernel parameter γ (10−6... 10−3) are optimised. For LR
the penalty (L1, L2) and the error-parameter C (10−4... 104) are optimised. To analyse
performance of trained ML models, we report a variety of metrics: Accuracy, F1 Score
(F1) and AUC.



CHAPTER 6. APATHY IN DEMENTIA PATIENTS 188

****

***

0

50

100

150

200

Control Apathy

Control Apathy

Control Apathy

# 
W

or
ds

****

****

0

10

20

30

M
ag

ni
tu

de

***

**

-40

0

40

Positive Story

 Both

Negative Story

Se
nt

im
en

t

****

0

50

100

150

Ra
ng

e

Control Apathy

Figure 6.3: Boxplot group comparisons between control and apathy population WC, S
and M in both positive (blue) and negative (red) story. Arches indicate group differences
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SVM LR
Acc F1 AUC Acc F1 AUC

Linguistic - - - - - -
Psychological - - - 0.565 - -
Personal 0.613 0.647 0.680 0.597 0.627 0.599
Spoken - - - - - -
All - - - 0.565 - -

Table 6.7: Classification results for models trained on LIWC features. Best perfor-
mances over feature sets in a particular metric are indicated in bold. “-“ indicates per-
formances below the 0.5 chance baseline.

6.2.2.6 Results

First, the distribution of sentiment features and word count is reviewed to understand
how people with apathy differ from controls. Figure 6.3 displays boxplots of these vari-
able with group comparisons through non-parametric Kruskal-Wallis tests. Significant
differences between Controls and people with apathy are found in the word count (Pos-
itive: χ2 = 18.69, df=1, p < 0.001; Negative: χ2 = 14.83, df=1, p < 0.001). People
suffering from apathy use less words in their responses. This pattern is consistent be-
tween positive and negative story. A significant difference is also found in the magnitude
(Positive: χ2 = 17.42, df=1, p < 0.001; Negative: χ2 = 17.72, df=1, p < 0.001), with
people suffering from apathy showing smaller magnitudes. The sentiment of stories is
also reduced in patients showing signs of apathy (Positive: χ2 = 15.2, df=1, p < 0.001;
Negative: χ2 = 14.46, df=1, p < 0.001). Lastly, the range between sentiment in the
positive and negative story is also greatly reduced for patients suffering from apathy
(χ2 = 17.68, df=1, p < 0.0001).

Table 6.6 depicts the results of training ML models on either word count, sentiment
features or both. Using the SVM classifier, the best results in all metrics–accuracy of
0.790, F1 of 0.8 and AUC of 0.847–are obtained by combining both feature sources.
The sentiment features alone show better performance than just the word count, with

3Here, Control refers to patients which do not suffer from apathy, regardless of cognitive status or
other neurologic diseases they suffer from.
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significantly higher accuracy (0.742 vs. 0.774) and higher F1 (0.758 vs. 0.781). The
differences between AUC are more marginal (0.818 vs. 0.826). Using LR, the best
results are obtained by just using the sentiment feature set. Adding the word count
to the sentiment set leads to comparable accuracy (0.790 vs. 0.790) and F1 (0.787
vs. 0.794), but reduced AUC (0.835 vs. 0.874). Just using the word count leads to
the worst accuracy (0.743) and F1 (0.750), as well as reasonable AUC (0.854).

In Table 6.7 the results of training models on LIWC features of different word-categories
are displayed. Generally, results are below the 0.5 chance baseline. For the linguis-
tic word-category features, all models show performances below chance. The psy-
chological category only shows an accuracy above chance (0.565) for the LR model.
Features from the Personal category lead to models with above chance performances
for both SVM (Acc=0.613; F1=0.647; AUC=0.680) and LR (Acc=0.597; F1=0.627;
AUC=0.599), where SVM models show superior performance. The models trained on
features from the Spoken word-category all showed performances below chance. Using
all features, the LR model has an accuracy above chance (0.565).

Models trained on sentiment and word count clearly outperform LIWC features. Only
the Personal word-category shows merit across all metrics and for both classification
algorithms. To see if this can further improve classification performance we combine
word count, sentiment and LIWC Personal features. In this experiment, features are
scaled depending on their origin. Word count and Sentiment features are z-standardised
and LIWC features scaled using maximum absolute scaling to preserve sparseness. The
resulting classification models achieve a performance of Acc = 0.758, F1 = 0.769,
AUC = 0.721 for LR models and Acc = 0.758, F1 = 0.746, AUC = 0.812 for
SVM models. This is not an improvement above results previously achieved with only
Sentiment and Word count features.

6.2.3 Effects of Automatic Speech Recognition

ASR has made great advances and can be considered a mature technology [414]. Here,
we will examine to what extent classification results are maintained when no manual
transcripts are available and ASR technology becomes imperative for analysis. This is
a realistic scenario, as in a clinical setting the overhead of creating a manual transcript
would be considered a big barrier for acceptance of such approaches.
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6.2.3.1 Methodology

To automatically generate transcripts, commercially available ASR technology provided
by Google4 was used. Audio files are sent to the service via a REST API and a list
of hypothesis transcriptions is returned. To create the final transcript we choose the
most likely hypothesis. Word count and Sentiment features described in Section 6.2.2.2
are extracted from automatic transcripts. ML models are trained as described in Sec-
tion 6.2.2.5. Experiments on LIWC features are not conducted on automatic transcripts,
since they only showed limited merits on the manual ones.

As a general performance criterion for ASR, word error rate is calculated between the
manual and automatic transcriptions. WER is a combination of the mistakes made by
ASR systems in the process of recognition. Mistakes are categorised into substitutions,
deletions and intrusions. Let S, D and I be the count of these errors respectively, and
N be the number of tokens in the ground truth. Then WER is computed as given in
Equation 4.1.

Seeing as Sentiment features play an important role in classification using manual tran-
scripts, we will also in detail analyse how ASR errors affect them. For this, words will
be split up in three categories: positive, negative and neutral. Positive and Negative
words are words occurring and labeled in the FEEL dictionary (see Section 6.2.2.3), all
other words are classified as being neutral. The specific error counts (S,D and I) will be
analysed separately for each of the categories.

6.2.3.2 Error rates in ASR

The overall WER was 23.7%, with the majority of errors being deletions, 59.2% of the
total error. Substitutions accounted for 30.5% of the total error and intrusions made up
only 10.3% . Table 6.8 gives a more in depth look at the WER make up by considering
the sentiment of the erroneous words with the FEEL dictionary, assigning either positive
or negative valence. Words that were out of vocabulary of the FEEL dictionary were
considered to be in a third category, neutral. Insertions from the manual to automatic
transcripts were low overall. The number of inserted words per valence consisted of less
than 3% of the overall word count in any category. Positive insertions counted 1.2% of
all positive words, negative 1.2% and neutral 2.6%. Deletions accounted for the most

4https://cloud.google.com/speech-to-text/

https://cloud.google.com/speech-to-text/


CHAPTER 6. APATHY IN DEMENTIA PATIENTS 192

I D S N WER

Positive 15 99 63 1202 14.72%
Negative 4 39 18 341 17.88%
Neutral 357 2022 1029 13818 22.19%

Total 376 2160 1110 15361 23.74%

Table 6.8: Count of the errors from the WER for intrusions, deletions and substitutions
separated by sentiment valence. I is for intrusions, D is for deletions. S is for substitu-
tions and N is the word count in the ground truth.

likely error in the transcripts generated by ASR. Deletions from the positive subclass
made up 8.2% of total positive words. From their respective subclasses, negative lost
11.4% and neutral 14.6%.

Figure 6.4 illustrates the shift in the sentiment classification of the errors from the man-
ual to automatic transcripts for substitution errors. 86.5% of all substitutions resulted
in a switch to the same category with 99% of same category substitutions going from a
neutral valence to neutral (N2N). Due to the high number of N2N substitutions, 85.6%
of all substitutions, it was removed from Figure 6.4 to better demonstrate the movement
of errors that are represented by a sentiment valence in the FEEL dictionary. 13.5% of
substitutions resulted in a category switch. 5.05% went from neutral in the manual tran-
script to positive in the automatic transcript, while 4.95% went from positive to neutral.
2.1% of errors went from neutral to negative and 1.3% went from negative to neutral.
Less than 1% of substitutions switched valence from positive to negative or negative to
positive.

6.2.3.3 ML Classification with ASR

Classification results for models trained on features extracted from ASR transcripts are
reported in Table 6.9. Overall, decent performances are achieved. Using SVM as a
classifier, the best AUC = 0.864 is achieved using only sentiment features. Accuracy
and F1 improve when adding the word count (Acc = 0.774, F1 = 0.817). For LR,
Sentiment features show the overall best performance (Acc = 0.806, F1 = 0.813,
AUC = 0.849). In both cases the lowest performance across all metrics is achieved
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Figure 6.4: A chord diagram showing the shift in sentiment for substitution errors from
the manual to automatic transcripts. The volume of the movement can be determined
by the tick marks on the circumference of the circle as the raw count of the error. Green
is used to represent positive, red for negative and gray for neutral. The opaque rim of
the diagram is used to denote the sentiment of the category.
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SVM LR
Acc F1 AUC Acc F1 AUC

WC 0.709 0.736 0.835 0.758 0.769 0.823
Sentiment 0.774 0.774 0.864 0.806 0.813 0.849
Sentiment + WC 0.774 0.817 0.847 0.790 0.794 0.849

Table 6.9: Classification results for models trained on word count and sentiment features
extracted from ASR transcripts. Best performances over feature sets in a particular
metric are indicated in bold.

by only using the word count (SVM: Acc = 0.709, F1 = 0.736, AUC = 0.835; LR:
Acc = 0.758, F1 = 0.769, AUC = 0.823).

6.2.4 Discussion

The results on manual transcripts clearly show the predictive power of linguistic senti-
ment features in predicting people with apathy from controls. Just looking at the word
count, we already observe a steep reduction and group difference (see Figure 6.3), re-
sulting in a strong baseline classification performance. Focusing on sentiment features,
these outperform word count regardless of any metric or classifier. We observe a reduc-
tion in both magnitude and (absolute) sentiment over both tasks, which is in line with
previous findings about emotional blunting in apathy [276]. Combining word count
and sentiment features, an increase in predictive power is visible when using SVM as
a classifier. Using LR, sentiment maintains the best performance. Both the diminished
goal-directed behaviour – in form of shorter answers – as well as emotional blunting –
through reduced sentiment – are detectable through these features and lead to classifiers
with competitive performances.

LIWC features carry minimal, if any, information about a person’s state of apathy. The
classifier is not able to learn performance above the chance baseline in four out of five
settings. This may be attributed to the well-known issue of data sparsity. Produced re-
sponses are very concise (< 200 words) and therefore lead to sparse representation of
LIWC sub-categories. Previous work has found this to cause insufficient performance
[304]. Only the features from the Personal category show merit. The Personal cate-
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gory contains mostly sub-word-categories of Social and Semantic concepts (i.e. Home,
Death, Religion) which are often represented by nouns or verbs. In our data, 38.9%
of words in the personal category are nouns and 32.2% are verbs. The overall number
of nouns and verbs used is also significantly different between the apathy and control
group (Positive–Noun: χ2 = 14.7, df = 1, p < 0.001, Verb: χ2 = 15.7, df = 1,
p < 0.001; Negative–Noun: χ2 = 15.5, df = 1, p < 0.001, Verb: χ2 = 13.2, df
= 1, p < 0.001). This might be because in a story telling task, nouns represent ac-
tors, places and concepts, and verbs their actions, which are directly related to narrative
length. Consequently, a correlation between the number of nouns and verbs used in the
personal category and the overall word count is observed (Positive–Verb: ρ = 0.46,
NOUN: ρ = 0.66; Negative–Verb:ρ = 0.56, Noun: ρ = 0.69). This further explains
why adding the Personal word-category features to the previously best performing com-
bination of Sentiment and Word Count, does not improve performances, as those fea-
tures are implicitly counting nouns and verbs which are correlated with the word count.

Overall, a reasonable performance of an 0.874 AUC has been achieved in the best
case. The next section will explore how stable these results and features are, when
experiments are carried out on automatic instead of manual transcripts.

As previous research has shown [176], ASR is a viable tool for conducting automatic
analysis in specific clinical settings, such as apathy detection in persons with cognitive
impairment. Looking at the break down of WER in terms of sentiment, it is clear that
there is no major shift in the overall sentiment of a transcript. WER is relatively low,
23.7%, considering the average age of the speakers. For comparison, WER rates in
the range 26.3% to 34.1% have been reported for healthy individuals in the same age
category.[154].

However, there is a surprising shift of neutral to positive valence in substitutions, and
vice versa. A positive to neutral valence shift was anticipated as there are many words in
the French language that would not be captured by the FEEL dictionary and it is likely
that an automatic transcription error would find a lexical that is out of the bounds of the
dictionary, resulting in the neutral classification. Less expected is that there is an almost
equal proportion of neutral substitutions resulting in a positive valence. We looked at
each of the errors in the transcripts and were not able to find a clear explanation for this
phenomenon but would like to note that it makes up less than 3% of all error, and results
in an equal shift in overall valence.
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Classification results are stable between the manual and automatic setting. The best
achieved results of AUC = 0.874 in the manual case is comparable to the best result
of AUC = 0.864 in the automated case. Additionally, in both settings the best LR
models are achieved when training on sentiment features, where SVM models are able
to improve performance when the word count is added.

This study investigated the feasibility of using sentiment and psycholinguistic analysis
of emotional language as a diagnostic screening tool for apathy.

Working on manual transcripts, sentiment and word count features both showed high
baseline performances. Depending on the ML algorithm used, a combination of both
feature sets lead to the best performance. Significant reductions in the number of words,
the magnitude of sentiment and the overall sentiment were found for the apathetic pop-
ulation. This effect was consistent between the positive and the negative story. Psy-
cholinguistic features extracted using LIWC mostly did not show any merit, with most
word-categories having sub-random performances in classification. Only the personal
category showed an AUC of 0.680 in the best case. This was determined to be due to
its strong correlation to the word count.

ASR was introduced to fully automate the pipeline and increase its clinical feasibility.
Classification performances remained largely the same with a small decrease (AUC =

0.864). Nevertheless, a WER of 23.7% was observed with over half of errors being dele-
tions. This pattern was consistent when looking at sentiment word categories. A detailed
analysis of substitution for these categories revealed, that a large proportion of positive
and negative words were missrecognised by ASR as being a neutral word. At the same
time, a roughly equal amount of neutral words were substituted with positive/negative
words, keeping the overall distribution of sentiment word categories stable.

Overall, encouraging performances were achieved (best AUC = 0.874) when separat-
ing apathetic from non-apathetic patients using ML models. These were sustained and
only dropped slightly when ASR was introduced to build a fully automatic pipeline (best
AUC = 0.864). These results validate sentiment analysis as a potential tool for apathy
detection in a clinical context. The examined robustness of results against ASR errors
and the wide availability of quality ASR in multiple languages renders this approach a
potential low-cost screening tool for clinical apathy.

The understanding of some limitations is vital for the correct interpretation of the pre-
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sented results. First, the included population is rather small. Although, one always
strives to perform an experiment on the biggest possible population, collection of clini-
cal data is a tedious, involved and therefore an expensive process. The size of the dataset
is further reduced through the process of matching demographic and clinical variables
which is important to be able to draw meaningful conclusions from findings. Another
problem with the population is the slight difference in cognitive health as measured
by MMSE. Due to the strong correlation between affective syndromes such as apathy
and cognitive decline, matching populations to have insignificant differences in MMSE
would lead to a substantial loss of data. However, we do not expect slight differences
in cognitive health of this magnitude to have a direct effect on any of the measured
variables.

6.3 Summary

This chapter explored approaches to detect clinical apathy in people suffering from de-
mentia based on analysis of their answers to emotional questions.

Section 6.1 specifically focused on acoustic analysis of these responses. The population
of older French adults suffering from early dementia was split into males and females
to account for gender differences in voice patterns. Each sub-population was matched
between apathy and non-apathy patients inside a gender. Prosodic, Formant, Temporal
and Source measures were automatically extracted from the audio signal, for both the
positive and negative story separately. Overall, both males and females showed reduced
reaction to the stimuli. Answers to the posed questions can be generally characterised
by drastically shorter (lower sound duration) and slower (lower Speech Rate) speech.
For the female population, a difference in voice quality (lower HNR) is obvious in both
questions. Males suffering from apathy react less emotionally to the negative question
as indicated by a lower variance of prosody (lower F0 Range). Interestingly, male and
female subjects with apathy show different patterns in their speech features according
to the type of free speech task. For males, significant differences between apathy and
non-apathy subjects can be seen in temporal features for both the negative and positive
story. Females show similar patterns in the positive story, but not in the negative one.
Correlation analysis with diagnostic sub-scales of apathy revealed strong correlation
between the sub-domains interest and initiative of the AI and temporal speech features.
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The affective subdomain, which represents the emotional blunting in apathy, seemed
more associated with prosodic speech features. A classifier trained on the data was able
to separate the groups with an AUC = 0.88 for the males and AUC = 0.77 for the
females.

Section 6.2 focused on analysis of the semantic content of the given responses. Popula-
tions were no longer split by gender and sentiment as well as psycholinguistic features
were extracted from text transcripts of the responses. Reduced sentiment and emotional
range was found in both positive and negative story. Trained classifiers already showed
good performance when only including the word count and could be further improved
by adding sentiment features. Psycholinguistic features were examined overall and in
sub-categories and showed no merit. Automatic speech recognition was used to produce
automatic transcripts with an overall word error rate of 23.7%. Features were again ex-
tracted from these transcripts and classifiers trained on them showed nearly the same
performance as the ones trained on manual transcripts.

The next section will close this thesis by summing up the major results from each chap-
ter and putting them into the bigger picture. Furthermore, applications of results and
future work will be discussed.



Chapter 7

Conclusions and Future Work

7.1 Thesis summary

This thesis investigated the possibility to utilise speech and language analysis together
with machine learning, to automatically detect people with early cognitive impairments
as well as emotional disturbances in uni- and multilingual settings.

From the related literature, verbal fluency exercises were identified to be appropriate
tasks to provoke speech from which early signs of cognitive impairment are apparent.
A variety of new semi- and fully-automatic analysis techniques for this task were in-
troduced and validated on data from persons with mild cognitive impairment. Classifi-
cation results clearly indicated the predictive power of these analysis in discriminating
people with early cognitive impairments and normally ageing adults.

Experiments using data from different languages to amend the small available resources
showed success. Through acoustic analysis, data from a larger English resource of
picture description tasks could be used to improve the detection of persons with mild
cognitive impairment in French and Swedish data. In a second step, linguistic tran-
scripts from the English data resource were semantically analysed and combined with
a small french data set into predictive models through domain adaptation. Multilingual
experiments clearly showed the benefits of adding foreign language data for detection of
Alzheimer’s disease. With a sufficient amount of data, a good cross-lingual performance
was achieved as well.

199
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Finally, a free speech task was used to try to automatically separate people with cogni-
tive impairment that suffer from an affective disorder from those who do not. In acoustic
as well as linguistic analysis, clear differences between the groups emerged. Acoustic
patterns were correlated with fine-grained medical information to explain the relation to
different symptoms of the disorder. Sentiment and psycholinguistic analysis were used
to analyse text transcripts, which also resulted in models with high predictivity between
the two groups. Automatic speech recognition was not found to severely worsen results.

7.2 Contributions

This work contributed methodology and knowledge to both medical and computational
domains. It advances the complex issue of automatic early detection of cognitive de-
cline, introduces novel approaches to utilise multi- and cross-lingual data resources in
this domain and deals with the important problem of automatically detecting affective
disorders in this patient group.

The feasibility of using natural language processing and machine learning to detect early
signs of cognitive decline through analysing speech samples was shown. Novel analysis
methods for a classical speech-based cognitive test, verbal fluency, were introduced and
validated on a patient population. Experiments using automated speech recognition
showed that this approach is also viable for use in real world face-to–face, as well as
tele-medicine settings. It may be concluded, that speech is a feasible screening tool for
early detection of dementia.

World first experiments on multilingual dementia detection were preformed. We showed
beyond a reasonable doubt, that there are clear benefits in combining multilingual re-
sources and that, given a large enough data set, even cross-lingual models are capable
of detecting dementia. Furthermore, a new analysis method for the CTP task was intro-
duced and validated.

This work also validated speech analysis as a feasible tool in detecting apathy in older
demented adults. We showed that some characteristics of speech were directly indicative
for specific symptoms observed in this disorder. Furthermore, we linked apathy to a
reduction in conveyed sentiment as a reaction to an emotional question. This form of
linguistic analysis was also validated to be feasible using ASR.
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The research questions raised in Section 1.2, at beginning of the thesis, were addressed
in the following way:

1. Can Mild Cognitive Impairment be automatically detected from concise speech
recordings?
The construction of automatic diagnostic models for MCI from speech samples
was investigated in Chapter 3 and Chapter 4. The presented approach will fo-
cused on recordings of verbal fluency tasks, in which patients are asked to name
as many words according to a given rule as possible in a given time frame (e.g.,
as many animals as possible in 60 seconds). Clinical performance in these test is
usually assessed as the number of correct words and has been shown to be highly
predictive for MCI. We introduced and validated novel and extended automatic
analysis methods and showed that they improve the diagnostic ability of these
tasks. Both the functionality to detect (see Section 3.1, 3.2, and 3.3) and stage
dementia (see Section 3.4) was explored. In addition to validation experiments on
manual transcripts, fully automatic experiments using automatic speech recogni-
tion were carried out (see Section 4.1). These approaches validated the utility of
such analysis and assessment methods for real-world broad population screening
applications—i.e., over the telephone (see Section 4.2).

2. How can data resources from different languages be leveraged in multi- and
cross-lingual dementia detection?
Multilingual analysis methods that allow increasing the productivity of models in
under-resourced languages were explored in Chapter 5. The most widely available
speech data in most language are picture descriptions of the Boston Cookie Theft
Picture. The use of English data to improve productivity in other languages was
explored (see Section 5.1). In addition to general domain adaptation methods,
novel multi-lingual analysis methods were used (see Section 5.2).

3. Can affective disorders in dementia be automatically detected based on speech
recordings?
Methods for the detection of clinical apathy in dementia patients from speech and
language were explored in Chapter 6. To this end, a subpopulation of cognitively
matched patients telling positive and negative stories were analysed. Speech and
signal processing (see Section 6.1), as well as sentiment and psycholinguistic
language analysis (see Section 6.2), were considered as a diagnostic marker and
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validated using machine learning.

7.3 Future Work

The field of using voice as a biomarker for diagnosis of dementia is still young and many
areas have not been researched yet. The following topics have been identified as crucial
to address in the future to further the clinical applicability of these vocal biomarkers.

7.3.1 Standardised data collection

The base for any research in this field is the collection of high quality clinical, as well as
patient-generated speech and language data. Since single studies are limited by budget
and time constraints to collect large amounts of data, standardisation of data collection
protocols becomes a priority to share and combine data from different sources. This
presents clinical, legal and ethical challenges that have to be addressed by researchers
across domain barriers. To this end, colleagues and us have written a position paper on
the necessary steps to establish data sharing in this community in the future [124].

7.3.2 Longitudinal data

Especially in early and pre-clinical stages of Alzheimer’s disease, using a single mea-
surement point of any diagnostic biomarker will only identify a part of the affected
population. A higher sensitivity for early stages can be achieved by looking at the de-
velopment of a single person over time. This paradigm can and should also be applied
to voice and language data collection.

7.3.3 New protocols

This thesis focused heavily on the analysis of a single voice based cognitive task–the
semantic verbal fluency. Although this task has broad applicability in the early diagnosis
of dementia, as shown in Chapter 3 and 4, and has the advantage of being administrable
in a short amount of time, it does not capture all cognitive impairments that can be
present in early Alzheimer’s patients. Future studies should analyse a broader protocol
of voice based cognitive exams and combine their analysis results, while building on
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the results uncovered in this thesis. Memory test, which where specifically designed to
measure learning and memory abilities, are a prime candidate for including into such a
protocol.

7.3.4 Differentiating different dementias

An interesting topic to consider is the ability of speech and language to be used as a
differential diagnostic marker between different forms of dementia. Next to Alzheimer’s
disease, being responsible for 50% of cases, there are other common organic causes
for dementia, such as vascular pathologies and Parkinson’s disease. To bring vocal
biomarkers closer to real-world clinical application scenarios, we have to acknowledge
the complexity of diagnosis. The Patients that walk into a memory clinic everyday
are not as neatly divided into healthy controls, MCI and AD patients, as in the here-
presented experiments. Exploring how diagnostic markers, coming from voice or other
sources, react to these other and less common pathologies is important to enable real-
world application. We have tried to address this topic to some extend, by diving into
possible comorbidities in the form of affective disorders in Chapter 6. Even in this area,
a lot of work is still to be done as exemplified in the next point.

7.3.5 Detection of Depression

Similar to the separation of different forms of dementia, looking into how speech and
language can be used to detect depression in dementia patient is a worthwhile topic.
Although there already is a large body of research on how speech can be used as a
biomarker in depression as a separate condition [87], it would be important to research
how speech and language biomarkers can be used to identify signs of depression in early
MCI patients and how to separate the two. Depression, together with other affective
disorders, is among the top risks for MCI patients to convert into dementia quicker.

7.4 Closing Remarks

Dementia has a large economic impact on our society. This work introduced and vali-
dated methods for the automatic detection of early stage dementia and related affective
disorders through processing speech and spoken language. These findings open up the
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possibility for multiple clinical applications that could help to pervasively screen for
dementia in large populations and thereby treat and slow disease progression. Tech-
nologies as the ones described in this thesis could therefore be used to prevent harm and
suffering caused by these devastating diseases. Further research is needed to validate the
proposed approaches is larger clinical cohorts and across different disease areas, before
this technology can be applied in clinical practice.



Appendix A

Abbreviations and Definitions

This section provides a list of abbreviations used throughout the thesis. A small def-
inition is given for each concept. It serves as a list for readers to return to, when the
meaning of an abbreviation is unclear.

A Apathy, a psychiatric affective syndrome often observed in demented
patients (see Section 2.2)

AD Alzheimer’s Disease, a neurodegenerative disorders that leads to severe
cognitive impairments (see Section 2.1.1.2)

ADRD Alzheimer’s Disease and related Dementias, a group of disorders, Alzheimer’s
and other types of dementia, that a very similar to Alzheimer’s in their
symptomatic

AI Apathy inventory

aMCI Amnestic MCI

ALS Amyotrophic lateral sclerosis

ASR Automatic Speech Recognition, technology used to automatically tran-
scribe the words contained in an audio recording

BNT Boston Naming Test

CDR Clinical Dementia Rating Scale
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CDR-SOB Clinical Dementia Rating Scale Sum of Boxes

CT Computer Tomography

CTP Cookie Theft Picture, a line drawing of a kitchen scene. Often used as
stimulus used to elicit free speech from patients

DB Dementia Bank, a linguistic corpus containing English recordings of
dementia patients performing the Cookie Theft picture description task.
The data was collected by [240].

DSM-V Diagnostic and Statistical Manual Version V

ESA Explicit Semantic Analysis

fMRI Functional Magnetic Resonance Imaging

FTLD Frontotemporal lobe degeneration

GDS Global Deterioration Scale

HC Healthy Control, a healthy person included in study to serve as a point
of reference

HD Huntington’s disease

LM Language Model, a probabilistic model used to represent the probabil-
ity distribution of language data in either spoken or written form (see
Section 3.2.2)

LOOCV Leave-One-Out Cross validation

LR Logistic Regression, a class of machine learning models using a logistic
loss function (see Section 2.4.3.1)

LSA Latent Semantic Analysis

MAE Mean absolute error

MCI Mild Cognitive Impairment, a stage of cognitive impairment known as
one of the predecessors to AD (see Section 2.1.1.3)
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MCS Mean cluster size, refers to the mean number of clustered words pro-
duced in succession during the semantic verbal fluency task (see Sec-
tion 2.3.1.1)

ML Machine Learning

MMSE Mini Mental State Examination, a short screening test for dementia de-
signed by [116]. The resulting score can be used as a global index of
cognitive health.

MoCA Montreal Cognitive Assessment, a short screening test used to detect
early stages of dementia.

MRI Magnetic resonance imaging

NLP Natural language processing

NOS Number of Switches, refers to the number of semantic category breaks
in verbal fluency tasks (see Section 2.3.1.1)

PD Parkinson’s disease

PET Positron emission tomography

PPA Primary progressive aphasia

PVF Phonemic Verbal Fluency, a cognitive task in which patients are asked
to name as many words starting with a certain letter as possible in a
given time interval

RMSE Root mean square error

ROC Receiver operator curve

SA Sentiment analysis

SCI Subjective Cognitive Impairment, the concept refers to people who have
a subjective complaint about a decline in cognitive ability that is not
supported by an objective evaluation

SD Standard deviation
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SVM Support Vector Machine, a machine learning model that uses so called
support vectors to construct its decision boundary (see Section 2.4.3.2)

SVF Semantic Verbal Fluency, a cognitive task in which patients are asked
to name as many words belonging to a semantic category as possible in
a given time interval (see Section 2.3.1)

SVR Support Vector Regression, regression model based on the same idea as
SVM

TMT Trail making test

VD Vascular dementia

VF Verbal Fluency, a cognitive task in which patients are asked to name as
many words under a given semantic (see SVF) or phonemic (see PVF)
constraint as possible in a given time interval



Appendix B

Cognitive Domains in DSM-5

This appendix contains a detailed listing of the cognitive domains from the Diagnostic
and Statistical Manual of Mental Disorders (DSM–5) [26] mentioned in Section 2.3.
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Appendix C

Literature Review

This chapter contains a collection of related literature from the space of automatic de-
mentia detection from speech and language. All listed papers used speech or language
analysis on patient populations and classified these using machine learning. The number
of patients included, the pathology of the population, the language of speech samples,
the task used to elicit speech, the kind of analysis (language or speech), if the exper-
iment was fully automatic or required transcription and the classification performance
are reported.
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ã
et

al
.[

22
7]

20
15

70
A

D
M

ul
til

in
gu

al
In

te
rv

ie
w

S&
L

A
C

C
97

.7
L

op
ez

-d
e-

Ip
in

ã
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poral parameters of spontaneous speech in alzheimer’s disease. International
journal of speech-language pathology, 12(1):29–34, 2010.

[169] J. Hoidekr, J. V. Psutka, A. Prazák, and J. Psutka. Benefit of a class-based lan-
guage model for real-time closed-captioning of TV ice-hockey commentaries.
In Proceedings of the Language Resources and Evaluation Conference (LREC),
pages 2064–2067, 2006.

[170] R. Horwitz, T. F. Quatieri, B. S. Helfer, B. Yu, J. R. Williamson, and J. Mundt. On
the relative importance of vocal source, system, and prosody in human depres-
sion. In 2013 IEEE International Conference on Body Sensor Networks, pages
1–6, May 2013.

[171] C.-W. Hsu, C.-C. Chang, and C. jen Lin. A Practical Guide to Support Vector
Classification, 2010.

[172] Y.-L. Hsu, P.-C. Chung, W.-H. Wang, M.-C. Pai, C.-Y. Wang, C.-W. Lin, H.-L.
Wu, and J.-S. Wang. Gait and Balance Analysis for Patients With Alzheimer?s
Disease Using an Inertial-Sensor-Based Wearable Instrument. IEEE Journal Of
Biomedical And Health Informatics, 18(6):1822–1830, 2014.

[173] L. Huang, Y. Jin, Y. Gao, K.-H. Thung, D. Shen, A. D. N. Initiative, et al. Lon-
gitudinal clinical score prediction in alzheimer’s disease with soft-split sparse
regression based random forest. Neurobiology of Aging, 46:180–191, 2016.

[174] C. P. Hughes, L. Berg, W. L. Danziger, L. A. Coben, and R. L. Martin. A New
Clinical Scale for the Staging of Dementia. The British Journal of Psychiatry,
140(6):566–572, 1982.

[175] M. Inoue, D. Jimbo, M. Taniguchi, and K. Urakami. Touch Panel-type Dementia
Assessment Scale: a new computer-based rating scale for Alzheimer’s disease.
Psychogeriatrics, 11(1):28–33, 2011.



[176] W. Jarrold, B. Peintner, D. Wilkins, D. Vergryi, C. Richey, M. L. Gorno-Tempini,
and J. Ogar. Aided diagnosis of dementia type through computer-based analy-
sis of spontaneous speech. In Proceedings of the Workshop on Computational
Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality,
pages 27–37, 2014.

[177] W. L. Jarrold, B. Peintner, E. Yeh, R. Krasnow, H. S. Javitz, and G. E. Swan.
Language analytics for assessing brain health: Cognitive impairment, depression
and pre-symptomatic alzheimer’s disease. In International Conference on Brain
Informatics, pages 299–307. Springer, 2010.

[178] A. M. Jensen, H. J. Chenery, and D. A. Copland. A comparison of picture de-
scription abilities in individuals with vascular subcortical lesions and hunting-
ton’s disease. Journal of Communication Disorders, 39(1):62–77, 2006.

[179] L. Jia, C. Yu, and W. Meng. The effect of negation on sentiment analysis and
retrieval effectiveness. In Proceedings of the 18th ACM Conference on Informa-
tion and Knowledge Management, CIKM ’09, pages 1827–1830, New York, NY,
USA, 2009. ACM.

[180] M. N. Jones and D. J. Mewhort. Representing Word Meaning and Order Informa-
tion in a Composite Holographic Lexicon. Psychological review, 114(1):1–37,
Jan. 2007.

[181] S. Joubert, S. M. Brambati, J. Ansado, E. J. Barbeau, O. Felician, M. Didic,
J. Lacombe, R. Goldstein, C. Chayer, and M.-J. Kergoat. The cognitive and
neural expression of semantic memory impairment in mild cognitive impairment
and early alzheimer’s disease. Neuropsychologia, 48(4):978–988, 2010.

[182] E. Kaplan, H. Goodglass, S. Weintraub, and O. Segal. Boston naming test. In
Psychological Corporation, Philadelphia: Lea & Febiger., 1983.

[183] A. Karakostas, A. Briassouli, K. Avgerinakis, I. Kompatsiaris, and M. Tsolaki.
The DemCare Experiments and Datasets: a Technical Report. Technical report,
Centre for Research and Technology Hellas (CERTH), 2014.
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[185] G. Kavé and Y. Levy. Morphology in picture descriptions provided by persons
with alzheimer’s disease. Journal of Speech, Language and Hearing research,
46(2):341–352, 2003.

[186] S. Kemper, M. Thompson, and J. Marquis. Longitudinal change in language pro-
duction: effects of aging and dementia on grammatical complexity and proposi-
tional content. Psychology and Aging, 16(4):600, 2001.

[187] D. Kempler. Language changes in dementia of the alzheimer type. Dementia and
Communication, pages 98–114, 1995.

[188] D. Kempler, S. Curtiss, and C. Jackson. Syntactic preservation in alzheimer’s
disease. Journal of Speech, Language and Hearing Research, 30(3):343–350,
1987.

[189] D. Kernot, T. Bossomaier, and R. Bradbury. The impact of depression and apathy
on sensory language. Open Journal of Modern Linguistics, 7(1):8–32, 2 2017.

[190] A. Khodabakhsh and C. Demiroglu. Analysis of Speech-Based Measures for
Detecting and Monitoring Alzheimer’s Disease. In C. Fernández-Llatas and J. M.
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[223] N. Linz, J. Tröger, J. Alexandersson, and A. König. Using Neural Word Embed-
dings in the Analysis of the Clinical Semantic Verbal Fluency Task. In Proceed-
ings of the 12th International Conference on Computational Semantics (IWCS),
2017.
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[228] K. López-de Ipiña, J. B. Alonso, C. M. Travieso, H. Egiraun, M. Ecay, A. Ezeiza,
N. Barroso, and P. Martinez-Lage. Automatic analysis of emotional response
based on non-linear speech modeling oriented to alzheimer disease diagnosis.
In 2013 IEEE 17th International Conference on Intelligent Engineering Systems
(INES), pages 61–64. IEEE, 2013.
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[306] P. Péran, O. Rascol, J.-F. Démonet, P. Celsis, J.-L. Nespoulous, B. Dubois, and
D. Cardebat. Deficit of verb generation in nondemented patients with parkin-
son’s disease. Movement Disorders: Official Journal of the Movement Disorder
Society, 18(2):150–156, 2003.

[307] D. P. Perl. Neuropathology of alzheimer’s disease. Mount Sinai Journal of
Medicine: A Journal of Translational and Personalized Medicine: A Journal
of Translational and Personalized Medicine, 77(1):32–42, 2010.

[308] M. Pessiglione, L. Schmidt, B. Draganski, R. Kalisch, H. Lau, R. J. Dolan, and
C. D. Frith. How the brain translates money into force: a neuroimaging study of
subliminal motivation. Science, 316(5826):904–906, 2007.

[309] J. Peter, J. Kaiser, V. Landerer, L. Köstering, C. P. Kaller, B. Heimbach, M. Hüll,
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