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Abstract

Thanks to its extraordinarily high mutation and replication rate, the human immun-
odeficiency virus type 1 (HIV-1) is able to rapidly adapt to the selection pressure
imposed by the host immune system or antiretroviral drug exposure. With neither a
cure nor a vaccine at hand, viral control is a major pillar in the combat of the HIV-1
pandemic. Without drug exposure, interindividual differences in viral control are
partly influenced by host genetic factors like the human leukocyte antigen (HLA)
system, and viral genetic factors like the predominant coreceptor usage of the virus.
Thus, a close monitoring of the viral population within the patients and adjust-
ments in the treatment regimens, as well as a continuous development of new drug
components are indispensable measures to counteract the emergence of viral escape
variants. To this end, a fast and accurate determination of the viral adaptation is
essential for a successful treatment.

This thesis is based upon four studies that aim to develop and apply statistical
learning methods to (i) predict adaptation of the virus to broadly neutralizing anti-
bodies (bNAbs), a promising new treatment option, (ii) advance antibody-mediated
immunotherapy for clinical usage, and (iii) predict viral adaptation to the HLA
system to further understand the switch in HIV-1 coreceptor usage.

In total, this thesis comprises several statistical learning approaches to predict
HIV-1 adaptation, thereby, enabling a better control of HIV-1 infections.
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Kurzfassung

Dank seiner außergewöhnlich hohen Mutations- und Replikationsrate ist das humane
Immundefizienzvirus Typ 1 (HIV-1) in der Lage sich schnell an den vom Immun-
system des Wirtes oder durch die antiretrovirale Arzneimittelexposition ausgeübten
Selektionsdruck anzupassen. Da weder ein Heilmittel noch ein Impfstoff verfügbar
sind, ist die Viruskontrolle eine wichtige Säule im Kampf gegen die HIV-1-Pandemie.
Ohne Arzneimittelexposition werden interindividuelle Unterschiede in der Viruskon-
trolle teilweise durch genetische Faktoren des Wirts wie das humane Leukozytenanti-
gensystem (HLA) und virale genetische Faktoren wie die vorherrschende Korezeptor-
nutzung des Virus beeinflusst. Eine genaue Überwachung der Viruspopulation inner-
halb des Patienten, gegebenfalls Anpassungen der Behandlungsschemata sowie eine
kontinuierliche Entwicklung neuer Wirkstoffkomponenten sind daher unerlässliche
Maßnahmen, um dem Auftreten viraler Fluchtvarianten entgegenzuwirken. Für eine
erfolgreiche Behandlung ist eine schnelle und genaue Bestimmung der Anpassung
einer Variante essentiell.

Die Thesis basiert auf vier Studien, deren Ziel es ist statistische Lernverfahren
zu entwickeln und anzuwenden, um (1) die Anpassung von HIV-1 an breit neutral-
isierende Antikörper, eine neuartige vielversprechende Therapieoption, vorherzusagen,
(2) den Einsatz von Antikörper-basierte Immuntherapien für den klinischen Ein-
satz voranzutreiben, und (3) die virale Anpassung von HIV-1 an das HLA-System
vorherzusagen, um den Wechsel der HIV-1 Korezeptornutzung besser zu verstehen.

Zusammenfassend umfasst diese Thesis mehrere statistische Lernverfahrenansätze,
um HIV Anpassung vorherzusagen, wodurch eine bessere Kontrolle von HIV-1 In-
fektionen ermöglicht wird.
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1. Introduction
HIV has indeed escaped from
Pandora’s microbial box.

Simon Wain-Hobson, 1993

HIV-1 is an escape artist beyond all comparison. With 4.1x10−3 mutations per
base per cell, HIV-1 has the highest encountered mutation rate in vivo in a biological
entity [5]. Together with a high turnover rate [6] and the ability to recombine genetic
material [7], these viral characteristics are responsible for the rapid evolution of HIV-
1 and the cause for the extraordinary viral genetic diversity within and between
HIV-1 patients. This extraordinary genetic diversity is the major reason why the
virus is able to escape and to adapt to the selection pressure imposed by antiretroviral
drug exposure or by the host immune system such that natural clearance is very rare
[8, 9]. The viral variants also differ globally, clustering into different geographical
subtypes, i.e., subtype B is more prevalent in Europe and North America, while
subtype C HIV-1 is most prevalent in Southern Africa and India, accounting for
approximately 50% of the infections [10]. The global viral genetic diversity is also
the reason why there is still no vaccine available despite four decades of research.

Infection with HIV-1 still a global burden By infecting the human CD4+ cells -
specific immune cells carrying the cluster of differentiation 4 (CD4) molecule on the
surface, HIV-1 weakens the immune system in two ways. Infected CD4+ cells can be
directly destroyed by the virus after several rounds of viral replication but also via
a successful elimination from the immune system itself. Eventually, an untreated
infection leads to the acquired immunodeficiency syndrome (AIDS), resulting in the
death of the majority of the patients by opportunistic infections [11]. In 2020, 37.7
million people have been living with HIV-1 and 680 000 people have died from AIDS
related illnesses, making infection with HIV-1 still a serious worldwide health issue
according to UNAIDS [12]. The incidence rate of newly infected HIV-1 patients has
been reduced by 31% from 2.1 million in 2010 to 1.5 million in 2020.

Tracking HIV-1 adaptation essential for viral control With neither a cure nor
a vaccine within reach, viral control is one of the major pillars to end the HIV
pandemic by 2030 [13]. Viral control can, in general, be established naturally by
our human immune system or with the help of antiretroviral drugs. The rapid
viral evolution allows HIV-1, however, to adapt and to evade the selection pressure
imposed by the host immune system and by antiretroviral drug exposure. Thus,
viral adaptation interferes with our attempts to control the virus. Here, adaptation
is defined as the accumulation of changes in the viral genome - viral mutations -
that result in a fitness advantage of the virus with respect to a specific environment.
Thus, understanding and determining viral adaptation towards the human immune
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1.1. VIRAL ADAPTATION CHAPTER 1. INTRODUCTION

system and to existing and novel antiretroviral drugs is vital for the global efforts
to control the HIV-1 pandemic.

This cumulative thesis combines several computational approaches all aiming at
determining viral adaptation using statistical learning techniques. The herein pre-
sented work is focused on adaptation of HIV-1 to the adaptive immune system and
to a novel treatment option with bNAbs. A major challenge in modeling adaptation
is the diversity of the viral proteins of interest, such as Env, but also interindivid-
ual variability of the immune system response. For a better understanding of the
projects, further biological details are provided on viral adaptation to the adaptive
immune system and to current antiretroviral drugs as well as the role of the envelope
protein glycoprotein gp160 (Env) and the coreceptor usage for viral adaptation. In
addition, some general challenges with respect to so-called trustworthy machine-
learning based models are introduced. Afterwards the objectives and challenges
shared across all projects of this thesis are presented, followed by a more detailed
project-wise overview, and an outline of the structure of the remaining thesis.

1.1. Viral and host characteristics influencing viral
adaptation

1.1.1. The role of the env gene

The genetic diversity of HIV-1 is also distributed unevenly across the viral genome.
Among the nine genes of HIV-1, the gene env has the highest genetic diversity
varying 15-20% within subtypes and up to 35% between subtypes [14]. A reason
is the role of its encoded proteins in mediating viral entry while being the only
target for the extracellular immune response. The gene env codes for the precursor
glycoprotein gp160 ( Env) that is further cleaved into the external surface protein
gp120 and the transmembrane protein gp41 [15]. While gp120 is required for host cell
recognition via the CD4 molecule and a coreceptor as well as for positioning, gp41
mediates membrane fusion. The proteins assemble to form non-covalent trimeric
structures of gp120-gp41 heterodimers - so-called spikes - on the surface of the virion.
Since the envelope of the virus is composed of a double-layered membrane of host-
lipids uptaken in the budding process of the virus from the host cell, the envelope
membrane is recognized as self by the immune system. Thus, the spikes are the
only viral proteins on the surface and the only target for the immune system - more
precisely for antibodies. Within this role, the envelope protein, foremost the gp120
protein, acquired several mechanisms to evade the immune system while remaining
functionally intact: (i) high tolerance of mutations in non-functional parts to disguise
the immune system, (ii) heavy glycosylation, steric occlusion and conformational
shielding of functional important and conserved parts [16–18]. In contrast, the viral
protein p24, which is encoded by the gag gene and forms the capsid of the virion,
is rather conserved, not tolerating mutations that are not beneficial. While other
genes are also under selection pressure and important for viral control, the genes
env and gag are in the focus of this thesis.
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CHAPTER 1. INTRODUCTION 1.1. VIRAL ADAPTATION

1.1.2. The role of the coreceptor usage

Interindividual differences in viral control without treatment are mainly influenced
by host factors like the individual HLA complex and by viral factors like the core-
ceptor usage [19, 20]. Upon binding to the the CD4 molecule, HIV-1 requires a
second coreceptor for successful entry. Among many possible, only two coreceptors
have clinical relevance in HIV-1 infection, namely, the C-C chemokine receptor type
5 (CCR5) and the C-X-C chemokine receptor type 4 (CXCR4) [21]. The genetic
determinant of the coreceptor usage is the env gene, where the coreceptor binding
site is located. Based on their coreceptor usage, viruses are termed R5-capable, if
they only use the CCR5 coreceptor, or X4-capable, if they are able to use the CXCR4
coreceptor [22, 23]. Since the coreceptor binding is essential for viral entry, a de-
fective CCR5 coreceptor provides a potential natural resistance to R5-tropic HIV-1
variants. The importance of the CCR5 coreceptor has been also exploited for drug
development leading to the approval of the coreceptor antagonist Maraviroc, which
blocks the CCR5 coreceptor binding site [24, 25]. In 50% of subtype B HIV-1 in-
fected patients a switch from R5 to X4 usage occurs over the course of an infection.
While the trigger mechanisms behind the coreceptor switch are still unknown, the
clinical significance of a coreceptor switch with respect to pathogenesis are known.
CCR5 coreceptor usage is usually observed early in infection and is associated with
slow progression to AIDS, while CXCR4 coreceptor usage occurs at late stages of
infection and is associated with rapid progression to AIDS, and CD4+ cell depletion.
This is in line with the knowledge that CXCR4 coreceptor usage is associated with
lower glycosylation, which renders the virus more prone to antibody detection [26].
With CD4+ cell depletion, the antibody production is not properly activated and
thus the virus replicative efficacy is not reduced by having less glycosylation and
present the vulnerable sites to the immune system. How CXCR4 coreceptor usage
arises with moderate to high CD4+ cells remains, however, puzzling.

1.1.3. Viral adaptation to antiretroviral drugs

Antiretroviral drugs for HIV-1, which suppress the replication of the virus to unde-
tectable levels, are our only counteractive measure to control the virus, since it also
reduces the probability of further transmission. Current drugs represent, however,
not a cure, since they are not able to eliminate the virus within the patient. Instead,
the different drug classes target and inhibit different steps in the replication cycle of
the virus. A virus that integrates in the host deoxyribonucleic acid (DNA) but does
not replicate, a so-called latent provirus, is, however, not affected by current drugs
[27, 28]. Consequently, an interruption of the treatment results in a viral rebound
from these so-called viral reservoirs. Thus, an infection with HIV-1 leads nowadays
to a chronic disease requiring lifelong therapy. To counteract the emergence of drug
resistances, combination antiretroviral therapy (cART) has been developed as an
effective treatment. The treatment usually consists of a three-drug cocktail covering
at least two different drug classes. While three-drug cocktails make the emergence
of resistance mutation more unlikely, multi-drug resistances still occur due to the
limited number of effective drug combinations, the high mutation rate of the virus,
and the lifelong exposure to the virus. Consequently, a tight monitoring of the reg-
imen is required to detect escape variants. Additionally, a constant development of
new effective drugs is needed. New drugs will likely suffer from the emergence of

3
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resistances in a similar way as established drugs and require therefore fast resistance
testing approaches to reach clinical routine.

1.1.4. Viral adaptation to the adaptive immune system

Interindividual differences in viral adaptation are in particular observed to the
adaptive immune system. The adaptive immune system is the second line of de-
fense mechanism of our immune system that comes to action once the pathogen
has not been eliminated by the innate immune system. T cells drive the adaptive
cell-mediated immune response with their ability to distinguish self from non-self
molecules on the surface of the host cells. Thus, they are able to detect and elimi-
nate the pathogen within the host cells. In contrast, B cells are responsible for the
adaptive antibody-mediated (humoral) immune response by proliferating to plasma
cells and producing specific antibodies against antigens of the pathogen after acti-
vation by the T cells. Antibodies, also called immunoglobulin (Ig), are Y-shaped
proteins that bind to antigens (specific molecules that trigger an immune response)
in extracellular form and thereby either directly neutralize the pathogen by blocking
viral entry or indirectly eliminate the pathogen by attracting other components of
the immune system.

The role of the HLA system for viral adaptation

The complex interplay between the components of the adaptive immune system
is based on the identification of non-self antigens on the surface of the host cells,
so-called antigen presenting cell (APC), by the T-cell receptor of a naive T cell.
This process is mediated by the major histocompatibility complex (MHC), which
is also called the HLA system in humans. The main purpose of HLA molecules
is to present peptides from within the cell on the cell surface for recognition by
compatible T cells, which thereby detect foreign molecules. There are two major
HLA classes. All cells apart from red blood cells present intracellular peptides via
the HLA class I molecules. Upon recognition and successful binding to the specific
HLA I-antigen complex, T cells with the CD8 marker, so-called cytotoxic T cells
(CTL) or CD8 T cells, induce cell apoptosis by different mechanisms. HLA class
II molecules are only present on professional APCs - specific immune cells that are
able to uptake pathogens from extracellular fluid. The HLA II - antigen complex is
recognized by specific T cells carrying the CD4 marker (CD4+ T cells) and lead to
the activation of B cells, followed by proliferation and differentiation of B cells into
plasma cells that produce specific antibodies, and into memory B cells.

Hence, CD4+ cells are a major coordinator of the immune system by mediating the
information between the innate and adaptive immune system, cross-checking with
the CD8 T cells, and responsible for the activation of B cells and thus antibody
production. A depletion of the CD4+ cells as happening in the course of HIV-1
leads to a disruption of the communication network and renders the immune system
ineffective.

Viral genetic mutations that specifically hinder the binding or recognition process
by the HLA molecule or the T cell are called HLA-restricted mutations and arise due
to the specific individual pressure by the T cell receptors as well as the individual
HLA alleles that determine which peptide fragments are presented. HLA I restricted
mutations mask the infected CD4+ cells from recognition by CTL cells. Thereby, less
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CD4+ cells are destroyed. HLA II restricted mutations mask the infected professional
APCs from recognition by the CD4+ T cell, such that no antibodies are produced.
Hidden from the immune system, these escape mutations might enable the virus to
evolve unrestricted.

1.1.5. Antibody-mediated adaptation and therapy

Antibodies are produced by the adaptive immune system against the envelope pro-
tein in the beginning of the infection, but usually they are neither broad nor potent
enough to neutralize HIV-1 [29, 30]. Neutralization breadth is measured by the
ability of the virus to neutralize different viral strains. The potency of an antibody
is assessed by the required antibody concentration to reduce viral infectivity by 50%
(IC50).

In 1993, the first generation of bNAbs was discovered [31–34], which, however,
were not potent and broad enough to be clinically relevant [16, 35–37]. The devel-
opment of high-throughput neutralization assays in 2005 and single-cell antibody
cloning techniques in 2009 enabled the identification and production of a second
generation of bNAbs from so-called elite neutralizer with a much higher potency
and breadth [38–44]. Despite these beneficial characteristics, the bNAbs are not
able to clear the infection in the corresponding patients due to the late stage of
development and insufficient amount of bNAbs. [45, 46]. The new generation of
bNAbs targets six different viral epitopes on the viral envelope proteins gp120 and
gp41: the CD4 binding site, a V2-glycan site, a V3-glycan site, a glycan epitope on
the outer domain of gp120, a membrane-proximal external region, and the interface
region between gp120 and gp41 (reviewed in [47, 48]). After showing the efficacy
of bNAb therapy in animal studies and humanized mice [49, 50], the first human
clinical trials investigated the efficacy of a monotherapy with bNAb 3BNC117 [2]
and VRC01 [51], respectively, both targeting the rather conserved CD4-binding site.
The CD4bs bNAbs 3BNC117 and NIH45-46 are, however, more broad and potent
than VRC01 [52, 53]. A review of all currently ongoing clinical trials with monother-
apy and combination therapy with bNAbs is given in [54]. While bNAbs have the
disadvantage of more complex requirements with respect to transportation, storage,
and administration, they offer a new drug target for multi-drug resistant patients as
well as a longer half-life time compared to existing drugs. Despite their neutraliza-
tion breadth, viral escape occurs and thus, it is essential to determine if the patient
harbors resistance mutations to a specific antibody prior to administration, similar
as for current antiretroviral treatment options.

1.2. Challenges for genotypic prediction models for
HIV-1 adaptation

Since the emergence of escape mutations have a quantifiable effect on viral adap-
tation, supervised learning approaches (a group of machine learning methods) are
used to model the unknown relationship f(X) = Y between the phenotypic ob-
served change in adaptation (Y) based on the viral genotype (X). Based on available
genotypic-phenotypic paired data, a function f̂(X) = Ŷ is learned that minimizes
the error between model predictions (Ŷ ) and the observed quantifiable outcome (Y ).
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The estimated adaptation for new samples X ′ is then only based on the viral geno-
type (f̂(X ′) = Y ′). Hence, apart from finding a suitable method that is able to
model the relationship between X and Y , the quality and generalization ability of a
machine-learning model depends on the available data that has been used for train-
ing. Whereas in the past a model-centric approach was rather deployed based on the
assumption that more data and changing the model (parameters) will lead to a per-
formance boost, there is a current trend towards a data-centric approach, where the
quality of the data is seen as the key to gain better performance [55]. With the rising
success of artificial intelligence (by adopting machine-learning techniques) and the
increasing value of data, the protection of data and the trustworthiness of artificial
intelligence (AI) models has gained importance, especially prior to the deployment of
AI-based models in settings without human control or where life-dependent decisions
are influenced. Consequently, several regulations and criteria have been developed
recently (European High-Level Expert Group on AI [56], General Data Protection
Regulation [57], European Data Act [58]). Since the consideration of these regula-
tions and criteria increase the clinical relevance of machine-learning based models,
we evaluate our models and results under these aspects in Chapter 2 though some
of the regulations have been developed after the publication of our studies.

1.2.1. Trustworthy models

In their whitepaper on trustworthy use of AI, Englander et al. [59] present six audit
areas that form the basis for the development of a future AI certification system
in cooperation with the Germany’s Federal Office for Information Security (BSI):
(1) fairness, (2) reliability, (3) transparency, (4) data protection, (5) security, and
(6) autonomy and control. The models and findings of this thesis are not discussed
under security aspects and criteria for autonomy and control, since they are not
relevant for the current state of the models. In the following, the first four criteria
are further defined as in Englander et al. [59].

Fairness A key assumption in machine learning is that the training data set is a
representative sample of the population of interest in the deployment setting.
Unequal distribution of a variable between training and deployment might
introduce a systematic error into the model (so-called bias) with potentially
systematic differences in the outcome for underrepresented groups, thereby
violating the right of equal treatment.

Reliability Reliability relates to the risk of a model to behave unexpected within
the normal use case (accuracy and uncertainty), unexpected with unintended
use (erroneous or adversarial attacks), but also if the data input is slightly
changed (robustness).

Transparency In order to gain trust into the models (i) the user needs to understand
the model, (ii) the model needs to be reproducible, and (iii) the model decision
needs to be explainable. An often alternative used term for transparency
nowadays is explainable AI.

Data privacy Data privacy concerns about the protection of sensitive information
and re-identification of people within current regulations. A major concern
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is that potential new technologies or findings will allow to reconstruct the
identities based on previously published data.

1.2.2. Confounding variables

A brief definition of confounding variables is given in the following as well as the
state-of-the-art methods to correct for them. Not accounting for potential confound-
ing variables might add another form of bias into the model and potentially lead to
unrobust behaviour of the model. All four projects put emphasis on correcting for
potential confounding variables.

A confounding variable is defined as a third variable Z that has an effect on the
independent variable X but is also a predictor for the dependent variable, Y . This
confounding variable Z obscures the learned effect of X on Y by either overestimat-
ing or underestimating the estimated effect –the effect is mixed. Thus, confounding
is a type of bias by adding systematic error to the model.

Stratification (or standardization) or nowadays multivariate analysis are common
methods to adjust for potential confounders. In the latter, the idea is to test if
a confounding variable Z has an effect by including it into the existing linear re-
gression model and compare the new model with the model without the potential
confounder variable (null model) using the likelihood ratio test over the maximized
likelihoods [60]. An alternative approach is to compute Bayes Factors. The Bayes
Factor computes the ratio of the likelihood of the Bayesian linear regression model
with the confounding factors (alternative hypothesis) to the likelihood of the model
without the confounding factor (null hypothesis) based on the marginal likelihoods
[61, 62]. Once a confounding variable is detected, there is the possibility to remove
the association between confounding variable and independent variable by weighting
each sample with the inverse-probability of the occurrence of the sample with the
confounding variable [63].

1.3. Project overview

1.3.1. Overall objectives

This cumulative thesis comprises four different projects that all share the objec-
tive to develop computational approaches to further our understanding of HIV-1
adaptation. On the one hand, the methods aim to advance the development of a
new promising treatment option involving bNAbs and deal with antibody-mediated
adaptation (P1-P3). On the other hand, the developed methods enable to investigate
the relationship between viral adaptation to the T-cell-mediated immune response
and the coreceptor usage that has remained unexplored so far to the best of our
knowledge (P4).

In two projects (P1 and P4), we develop machine learning-based support decision
tools to predict and analyze HIV-1 adaptation with respect to antibodies and the
host immune system, respectively. A challenge in modeling adaptation is to gener-
alize well across intra-host HIV variants and the global diversity of HLA variants
based on a rather small data set. Therefore, we designed the models to be as flexible
as possible by incorporating as little prior information as possible. Another shared
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characteristic is the relevance of the coreceptor usage for antibody-mediated and
cell-mediated adaptation.

The aim of the two other projects was to investigate the clinical efficacy of a
therapy with a specific bNAb in a clinical trial (P2 and P3). Here, we supported
the clinical trial by using statistical learning methods to statistically validate the
effect of the antibody therapy while adjusting for potential confounding variables. In
addition, an alternative method to measure antibody neutralization was developed
since the classical approach of using the IC50 value was suitable for the underlying
data set.

1.3.2. Paper 1 (P1) - bNAb resistance study

A genotypic resistance test for bNAbs is essential for bNAbs reaching the clinical
routine but also for ongoing clinical trials to select patients that do not harbor initial
resistances to bNAbs. It is likely that a combination of bNAbs will be required to
counteract the emergence of resistance mutations. Nevertheless, it is important
to first have a system for predicting resistance to single bNAbs. Therefore, we
investigated whether neutralization response to bNAbs is predictable based only
on the envelope sequence for bNAbs covering different epitopes with a non-linear
machine learning method. In particular, we used existing paired data of the envelope
protein sequence of pseudoviruses and corresponding neutralization response (IC50)
for 11 different bNAbs to train a support vector machine (SVM) classifier [64, 65]
to predict the neutralization response given the envelope sequence of the virus.
By using the oligo kernel [66], which encodes a sequence by the occurrence of its
substrings of size k, we are able to also model more complex binding sites of the
bNAbs. We put emphasis on the explainability of our non-linear models, since
in general the learned coefficients for the features cannot be interpreted directly
as feature importances in contrast to linear models. We also focused on possible
confounder effects like the coreceptor usage on the neutralization capacity of bNAbs,
as they share the same genetic determinant. In addition, the aim was to use our
prediction model to test whether there is a trend towards antibody resistance in the
global viral evolution to extend and confirm previous findings from a small cohort
with subtype B HIV-1 infected patients [67–69].

1.3.3. Paper 2 (P2) - bNAb efficacy study I

While the development of a genotypic resistance method is essential for bringing
bNAbs to the clinical routine, first the efficacy and the characteristics of such a bNAb
treatment needs to be investigated and proven. Antibody-mediated immunotherapy
has the potential to impact the human immune system [70, 71].

In this study, we test the hypothesis that a single infusion of the bNAb 3BNC117
can enhance the neutralization activity of the immune system of the patients. There-
fore, we compared the neutralization activity of patients receiving a single 3BNC117
infusion without antiretroviral treatment (Group A, n = 15), and on ART (Group
B, n = 12 ) against a control group of viremic patients not receiving the treatment
(Group C, n = 36). To study whether there is a change in neutralization activity,
neutralization activity is measured with patients’ antibodies (IgG) before the start
of bNAb treatment at day 0 (d0), and after 24 weeks (w24), when the remaining an-
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tibody concentration is negligible. Neutralization activity of the d0 and w24 IgGs is
then investigated on the patients’ matched viruses at d0 and week 4 (autologous re-
sponse) and on a panel of HIV-1 pseudoviruses (heterologous response). Some of the
patients do not reach the IC50 value that is usually taken to measure neutralization,
though showing a change in neutralization between the two time points. A major
contribution was the development of an alternative method to quantify neutraliza-
tion by considering the area under the neutralization curve (AUC) upon which the
complete analysis is based on. The benefit of using the AUC has been shown previ-
ously [72]. For a more robust measure, we correct the curves for noise and variance
in the experimental assays by using the neutralization information from replicates
and a control virus, and scale the neutralization curves by the maximum possible
AUC. A change in neutralization activity might be confounded by other factors like
difference in viral load, CD4 T cell count, or initial neutralization activity. To test
whether potential confounding factors have an effect on the observed change in neu-
tralization activity, we used a likelihood ratio test approach and a Bayes Factors
approach, respectively, to study whether the inclusion of the potential confounding
factor leads to an improvement of the model or not. The differences in the neutral-
ization changes are compared across different treatment groups and control groups
using appropriate significance tests.

1.3.4. Paper 3 (P3) - bNAb efficacy study II

Apart from determining the effect of bNAb therapy on neutralization activity, it
is important to quantify the actual effect of the treatment - namely the ability to
suppress the virus. Due to the existence of latent viral reservoirs, antiretroviral
treatment interruption results in viral rebound. To study the effect of 3BNC117 in-
fusion, a phase IIa open label clinical trial is conducted where a controlled analytical
treatment interruption (ATI) in 13 HIV-1 infected individuals is performed. Prior
to ATI, these individuals received a treatment with 3BNC117. The time until viral
rebound in the treated group is compared to a historically untreated group, where
treatment interruption was performed without antibody treatment. The challenge is
to correctly model the time to viral rebound, and adjust suitable survival regression
methods for potential confounder variables like age or year of infection.

1.3.5. Paper 4 (P4) - HIV immunoadaptation study

In contrast to the three previous studies, the fourth project investigates the adap-
tation to the cell-mediated immune response, namely adaptation to T cell pressure
and its role on the coreceptor usage. Though, the HLA system and viral coreceptor
usage are known to be important factors in viral control in treatment-naive patients,
their interplay has not been studied so far.

As mentioned in Section 1.1.2, the CXCR4 coreceptor usage is usually observed
together with a depletion in CD4+ cells. How CXCR4 coreceptor usage arises with
moderate to high CD4+ cell counts remains, however, puzzling. A possible hypoth-
esis is that viral adaptation to the cell-mediated immune response determined by
the emergence of HLA-restricted escape mutation has a similar effect like CD4+ cell
depletion. The HLA-restricted escape mutations prevent the HLA presentation or
the T cell recognition of the viral peptides. HLA I-restricted mutations mask the

9



1.3. PROJECT OVERVIEW CHAPTER 1. INTRODUCTION

virus from CD8 T cell recognition and thus the CD4 cells from elimination. HLA
II-restricted mutations prevent the virus from detection by CD4 cells, and thus the
activation of the antibody production is suspended. Hence, these escape mutations
enable the virus to evolve without further pressure by the immune system, eventu-
ally leading to mutations and changes in glycosylation as required for the CXCR4
coreceptor usage.

To test this hypothesis, three components are required: (1) a tool to predict
viral adaptation to the HLA I and HLA II molecules, (2) a data set that comprises
treatment-naive patients with known HLA I, HLA II genotypes with matched viral
proteins Env (for determining the coreceptor use) and (3) a rather conserved viral
protein to learn the cell-mediated adaptation mutations.

To the best of our knowledge, there is no publicly available data set meeting our re-
quirements. Therefore, we sequenced the viral env and gag gene from 312 treatment-
naive, chronically subtype C HIV-1 infected individuals from South Africa. In addi-
tion, we genotyped the HLA I and HLA II alleles of the cohort. The sequences were
provided by the Fraunhofer Institute for Biomedical Engineering, and sequenced and
genotyped by the SEQ-IT GmbH & Co.KG in Kaiserslautern, Germany.

While the existing approach to predict viral adaptation to the HLA I alleles [73]
has been also applied for HLA II molecules [74], there is no approach that jointly
predicts HLA I and HLA II adaptation. To reduce the complexity of the viral di-
versity but also the diversity of the HLA system, the existing approach is based on
pre-learned HLA-polymorphism candidates from a separate large genome-wide asso-
ciation study. Apart from the preselected HLA-polymorphism pairs, the algorithm
requires further feature selection steps to find the most important HLA alleles per
polymorphism. Although the algorithm corrects for potential phylogenetic related-
ness of the viral strains, it requires a second model therefore, which is combined with
the adaptation model. In addition to the rather complex construction, the under-
lying data for training the algorithm are not publicly available such that extending
the approach to jointly model the HLA I and HLA II adaptation was not an option.

Therefore, we developed a novel computational approach that jointly models HLA
I and HLA II adaptation while correcting for potential confounders like phylogenetic
relatedness, age, sex, or ethnicity within the model. The basic idea behind our
approach is similar as in Carlson et al. [73]. The adaptation of a viral sequence to
the HLA system is decomposed to the ratio between the likelihood that each variant
residue of the viral sequence has emerged under HLA pressure and the likelihood
that it emerged without HLA pressure. The conditional probability of the occurrence
of the variant site under or without pressure is modeled using Bayesian generalized
linear mixed models, respectively. Using the horseshoe prior on the coefficients of the
model allows to incorporate the complete HLA repertoire of the cohort without prior
preselection of potential candidates. By construction, we are also able to provide
sequence logos determining which variant sites contributed most to the estimated
adaptation. Using our adaptation models, we are able to investigate the correlation
between viral adaptation and the coreceptor usage that has remained unexplored so
far.
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1.4. Thesis outline

The remaining thesis is structured in the following way. In Chapter 2, the results
of all four papers, which are included separately in Appendix A, are summarized
and discussed together. Section 2.1 provides a high-level summary for each project
as well as an overall summary. In addition a project-wise but also a cross-project-
wise discussion is included in Section 2.2 discussing the realization of the objectives,
the limitations of the projects, and the embedding in current research setting. The
presented work is concluded in Chapter 3, where additionally a perspective is given
on the requirement for clinical relevant genotypic recommendation systems in Sec-
tion 3.2.
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2. Results and discussion
All models are wrong, but some are
useful

George E. P. Box

As pointed out in Chapter 1, assessing viral adaptation is of great importance
to effectively control HIV-1. This chapter starts with a high-level summary of the
contributions and results for each of the four included studies (see Appendix A),
followed by an overview across all studies emphasizing the shared challenges and
findings. Afterwards, the findings and developed models are discussed with regard
to their limitations and possible extensions. In particular, aspects of clinical rele-
vance, data quality, model choice, and choice of performance measures are taken into
consideration. Additionally, the findings are inspected with respect to criteria for
trustworthy machine-learning models including fairness, robustness, explainability,
and data privacy aspects.

2.1. Results

The overall aim of this thesis was to provide computational methods to predict viral
adaptation to immune system pressure - namely to broadly neutralizing antibodies
and to the host immune system. In particular, the objective was to support the
advance of broadly neutralizing antibody therapy to clinical routine and to investi-
gate whether viral adaptation to the host immune system is associated with viral
coreceptor usage. On the one hand, machine-learning based prediction tools have
been developed to predict adaptation to bNAbs and the HLA system (P1, P4). On
the other hand, we used statistical learning techniques to characterize the effect of
bNAb therapy in clinical trials to pave the way for bNAbs from benchside to clinical
routine (P2, P3).

2.1.1. Paper 1 (P1) - bNAb resistance study

A support-decision tool for determining neutralization susceptibility is essential for
the usage of bNAb-mediated therapy in clinical routine, similarly as for existing
antiretroviral drugs. The following section summarizes the developed models and
findings from the bNAb resistance study [1] (see Appendix A.1).

For 11 different bNAbs, we observed that bNAb resistance is well predictable
using only the envelope sequence with prediction performances up to 84% AUC for
the bNAb 10-996. Using SVM-based models with a cost-sensitive regularization
parameter enables to control for the imbalance in the class distribution of the data.
We have chosen the oligo kernel [66] based on its superior performance in comparison
with other kernels. In addition, we observed that the size parameter k of the oligo
kernel, denoting the length of the k-mers to consider, correlated with the length of
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the binding sites of the 11 different bNAbs. Moreover, by construction of the oligo
kernel, we were able to consider non-linear relationships of the amino acids, yet
still explain the feature importances learned by the model. Based only on the viral
envelope protein, the trained models have learned parts of the binding sites of the
bNAbs but also potential glycosylation patterns as important features, indicating
thereby their biological relevance. A novelty is the derivation of the contribution
of each amino acid of the query sequence to the classification outcome using the
oligo kernel definition presented as a sequence logo. Hence, the model is transparent
with respect to learned discriminant features but the reasoning behind each model
decision is also explained via the sequence logos.

To analyze bNAb neutralization susceptibility over time, we used our trained SVM
regression models to predict the neutralization sensitivity of roughly 34 000 HIV-1
samples from the LANL HIV sequence database (http://www.hiv.lanl.gov/). In this
data set, we observed a trend towards increased bNAb resistance over time for all 11
bNAbs for the subtype B variants, and for 6 out of 11 bNAbs for the other subtypes.
This supports and extends a previous finding on a small subtype B HIV-1 cohort
[67, 68]. Additionally, we discovered a bias in the LANL HIV sequence database
with respect to the coreceptor usage of the samples over time. The frequency of
viral strains with X4-usage is decreasing over time. We further observe that the
neutralization capability of the bNAbs PGT121 and PGT128 have a coreceptor
bias similar to PG9 and PG16 [75], meaning that they are better in neutralizing
HIV-1 variants with R5-coreceptor usage than X4-coreceptor usage. This finding
further suggest that coreceptor usage is an important confounding variable and
should be considered when assessing neutralization capability. Additionally, the
administration of a bNAbs with an known R5-coreceptor bias within a bNAb therapy
can potentially exert a biased selection pressure towards X4-usage on the virus that
is associated with faster progression to AIDS.

Apart from its usage as a fast and cheap resistance genotypic-to-phenotypic pre-
diction method for a monotherapy with a bNAb, our approach can be used as a
foundation to build the best combination of bNAbs as potentially required for clin-
ical usage. As the effect of a bNAb therapy strongly depends on the susceptibility
of the patient’s quasispecies to the bNAb, current ongoing clinical trials can benefit
from our model by using it for the patient screening process. Thereby, it is possible
to determine the patients’ sensitivity to the bNAb of interest prior to their inclusion
in the study instead of performing viral outgrowth cultures. The learned discrimi-
native amino acids in our model, which confer susceptibility or resistance, can guide
the selection of potential immunogens for vaccine design as well as the discovery of
epitopes of new bNAbs if only the sequence is available.

2.1.2. Paper 2 (P2) - bNAb efficacy study I

Apart from its neutralizing activity, antibody-mediated therapy has the potential to
engage the host immune system with the crystallizable fragment (Fc) region of the
antibody that interacts with other host immune cells like the natural killer cells. The
following section is based on Paper 2 [2] (see Appendix A.2). The objective of this
study was to investigate whether an infusion of the bNAb 3BNC117 has an effect
on the neutralization activity of the patient over a 6-month period. A major chal-
lenge was that many included study participants did not reach the half maximum
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inhibitory concentration (IC50) value that is usually taken to measure neutraliza-
tion capacity of the bNAbs. The personal main contribution was the derivation
of a robust, noise- and variance-corrected version of the area under the neutral-
ization dose-response curve (AUC) as alternative measure to the IC50 value. The
neutralization AUC was the basis for comparing the change in neutralization in all
individuals before and after treatment administration, including patients not reach-
ing the IC50 value. Based on the neutralization AUC, we observed a statistically
significant difference in neutralization change between treatment and control groups
indicating that an infusion has the capability to boost the patients immune system
beyond the treatment. The increase in neutralization capability was significantly
less pronounced in ART-treated individuals compared to viremic individuals, both
receiving the bNAb therapy. Using linear and Bayesian regression techniques, we
found that the increase in neutralization activity is not confounded by factors like
the initial neutralization activity at day 0 (d0), age, sex, initial viral load, or CD4+

T cell levels. We also observed no correlation between the neutralizing activity at
day 0 and neutralization improvement.

The findings support the hypothesis that an immunotherapy with bNAbs can
boost the host immune system against HIV-1 beyond the bNAb therapy. Moreover,
the findings also suggest that irrespective of the host genetics or viral quasispecies,
the patients have the potential to develop broadly neutralizing antibodies. This is
important for the vaccine design research that aims to trigger the development of
bNAbs with immunogens.

2.1.3. Paper 3 (P3) - bNAb efficacy study II

A prerequisite for bNAb therapy reaching clinical routine is its efficacy proven in
human clinical trials. In the following, the major findings of Paper 3 are presented
[3] (see Appendix A.3).

With this study [3], we further contributed to the advancement of bNAbs to
clinical routine by investigating whether 3BNC117 can suppress viral rebound from
the latent reservoir during analytical treatment interruption (ATI) in chronically
suppressed HIV-1 infected humans in a phase IIa open label clinical trial.

By comparing the time to viral rebound between the treatment group (n=13) and
a historical control group (n=36) after ATI using Kaplan-Meier curves, we observed
that viral rebound in the treatment group was statistically delayed by an average of
6.7 (2 infusions) and 9.9 (4 infusions) weeks compared with 2.6 weeks for historical
controls. We investigated whether variables such as gender, CD4 nadir (lowest CD4
point), age, years on ART, and CD4 count prior to ATI are predictive for viral
rebound to rule out potential confounding effects by these variables. Therefore,
we compared a prediction model with the potential confounder against a model
without the variable of interest using a likelihood ratio test. Rebound time was
modeled as log-normal distribution based on the Akaike information criterion (AIC)
and Bayesian information criterion (BIC) of a goodness-of-fit test. Based on the data
and our tests, we observed that years on ART and age might be confounding factors
for rebound time. Thus, the change in rebound time might be masked by these
variables and a proper test to compare the two treatment groups should thus account
for the confounding variables. Since the ratio of viral rebounds between the groups
differ over time, the proportional hazard ratio assumption by the classical Cox-
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survival regression model was violated. Thus, we used a weighted log-rank test [76] to
additionally adjust for the potential confounders years on ART and age. Adjusting
for the confounders is achieved by computing a separate weight for each sample
that is inverse-proportional to its frequency with respect to the confounder variable,
thereby the potential confounding effect is canceled out. The viral rebound was also
delayed in the treatment group, when adjusting for the confounding variables using
a parametric survival regression approach.

Showing that a monotherapy with 3BNC117 is safe and statistically delays viral
rebound is a further step towards the development of a combination immunotherapy
for clinical routine. In our study, it was also observed that the therapy might impact
the viral reservoir. The occurrence of resistant viral strains at rebound suggests
that viral reservoirs harboring resistant variants are selected by an infusion with
3BNC117. Moreover, the viral outgrowth seems to be restricted after the therapy.
The extent to which bNAb therapy has an impact on the viral reservoir needs to be
evaluated in further studies.

2.1.4. Paper 4 (P4) - HIV immunoadaptation study

The following results are based on Paper 4 [4] (see Appendix A.4). In this study,
the aim was to investigate whether there is a relationship between the coreceptor
usage and viral adaptation to the host adaptive immune system represented by the
host HLA I and HLA II alleles. Especially if viral adaptation enables a coreceptor
switch to the X4 usage with still moderate to high CD4+ cell counts.

Central to this project is the novel approach to jointly predict HLA I and HLA
II adaptation using Bayesian generalized linear mixed models. Using the horseshoe
prior for the coefficients of the model, we were able to incorporate the complete
HLA repertoire in the data cohort as potential predictors without the usage of
p-value-based greedy feature selection methods or prior extensive search for HLA-
polymorphism candidates on external data. The horseshoe prior is a shrinkage prior
shrinking most coefficients to zero and only allowing some large coefficients to escape
shrinkage [77, 78]. Thus, it is suitable for sparse models that only have a few features
with predictive power. Since the HLA molecules have different binding sites, only
a few HLA alleles exert selection pressure at a specific site in the viral genome and
might drive the emergence of an HLA-restricted escape mutation.

Though there is no ground truth for viral adaptation within the available data, we
validate our model by observing that certain expectations are met: (1) adaptation
of autologous viruses are higher compared to heterologous viruses, (2) viruses are
more adapted to host HLA profile compared to random shuffled HLA profiles, and
(3) viruses in chronic patients are more adapted compared to acutely-infected HIV-1
patients.

Moreover, we observed that the per-site models have learned known important
HLA footprints, and that the most predictive sites are some known HLA-restricted
single variant sites. This indicates that the adaptation score is based on biological
relevant models. Moreover, it shows that our adaptation model is transparent with
respect to the learned features and their contributions to the adaptation score. Due
to the definition of the adaptation score, the estimated adaptation of a viral sequence
to its host HLA profile is completely explainable by the probabilities of each potential
single variant site to be under HLA pressure. In addition, we provide motif logos
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that show the single variant sites in the query sequence that contributed to the
corresponding predicted adaptation score.

By comparing the distribution of the estimated HLA adaptation with coreceptor
usage, we observe that in general HIV-1 variants with X4 coreceptor usage are more
adapted than variants with R5-coreceptor usage. Moreover, in variants with high
R5-coreceptor usage, higher adaptation is related to a higher FPR score by the
geno2pheno[coreceptor] tool.

Whether or not increasing adaptation in R5 variants is indeed an indicator for an
imminent coreceptor switch has to be further determined in future studies. Viral
adaptation might, however, be an additional discriminative feature for determining
the correct coreceptor usage as required for current CCR5 antagonist drugs. The
identified potential variant sites under HLA pressure might guide current vaccine
designs to not use these sites for immunogens as they might depend on the host
genetics. Larger sample sizes harbor the potential to find new HLA-polymorphism
candidates for subtypes that have been neglected so far.

2.1.5. Cross-study results

The developed prediction models (P1, P4) share the characteristic that they provide
a rather general framework that can be easily applied to new antibodies (P1) or
additional viral proteins and subtypes (P4). While the initial model parameters
are the same for each bNAb (P1) and each per-site model (P4), internal feature
selection takes place by learning different settings of the oligo kernel parameters (P1)
as well as by applying the horseshoe prior (P4). The feature selection is essential
for both approaches to tackle the challenge of the high viral genome diversity (P1)
and the diversity of the HLA repertoire in the global population (P4). We decided
to use internal model-based feature selection processes to circumvent the commonly
used p-value-based feature selection methods that might lead to overfitting and
non-reproducible results. We also observe that adaptation is already predictable
using only the viral genome as input, i.e., without incorporating additional prior
knowledge such as the structural information of binding sites, glycan patterns, the
bNAb sequence (P1), or known HLA-polymoprhism candidates (P4). We refrained
from incorporating this kind of information for several reasons. First, the model
should be usable in settings where this prior knowledge does not exist, such as for a
novel bNAbs (P1) or other populations of interest (P4). Second, the model should
be as simple as possible, because the models already have more parameters than
samples.

In general, the results from both approaches indicate that only few sites in the
viral genome confer the adaptation. Thus, a more fine-tuned approach using only
the predictive features might lead to a better prediction power.

A major focus of both prediction models was to provide explainable machine-
learning based model despite learning potential non-linear relationships. This was
possible because both models have decomposable characteristics. The oligo kernel
has an explicit decomposable feature mapping function, which enables to trace back
the learned features for each oligomer at each site in the viral genome, even for larger
sizes of the oligomer. The adaptation model can be decomposed into the separate
models for each variant site in the viral genome. Thus, for both models we are able to
show which sites in the genomes contributed the most to the predicted outcome. The
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learned discriminant sites could be partly mapped to known discriminant sites from
experimental validation reported in the literature, thereby indicating the potential
biological relevance of the learned models. Whether the remaining unknown learned
discriminant sites are under adaptation pressure needs to be validated in further
knock-out experiments. Learning known discriminant adaptation sites makes the
models also suitable for applications where limited prior knowledge exists about the
adaptation pressure. In addition, we also provide sequence logos in both projects
showing the contribution of each site in the query sequence to the final prediction
outcome. This enables the user, with their expertise, to make an informed decision
based on the prediction outcome.

We also observe that adaptation to antibodies as well as adaptation to the HLA
system have in common that they differ depending on the coreceptor usage.

In conclusion, both prediction approaches provide a useful framework to assess
the adaptation of HIV-1 to bNAbs and the host immune system. The identified
sites under selection pressure are also of interest to the HIV-1 vaccine research. It
is advantageous to select immunogens for the vaccine that are susceptible to bNAbs
or that can induce the development of bNAbs, with low probability of mutation.
Moreover, the immunogens should not be under the individual selection pressure of
immune system to be globally effective. The methodological frameworks in both
projects are not HIV-dependent and can easily be applied to study virus-host or
virus-antibody interactions in other pathogens such as influenza or severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2).

Across all projects we observed that there are usually several methods that can
be applied leading to very similar results. We also showed that it is important to
control for potential confounders.

2.2. Limitations and extensions

The here presented projects build a good foundation for clinical-relevant support-
decision tools and present important findings to advance immunotherapy with bN-
Abs. Still many aspects have to be addressed until the models and findings make
the transition from research to clinical routine.

In the following, the presented models and findings are discussed with respect to
different criteria. First, the appropriateness of the choice of data, model and perfor-
mance for the applied tasks is discussed. Then, the projects are further evaluated
with respect to the criteria for trustworthy artificial intelligence models, in partic-
ular with respect to fairness, robustness, transparency, and data privacy. Another
important factor for the utility of the findings and models is the consideration of
the future trends and advancements with respect to technology, requirements, and
changing use cases. While guaranteeing a safe and secure execution of a support-
decision tool is essential for clinical routine, the models are not analyzed with respect
to this criteria, since they are currently not in deployment.

2.2.1. Data quality

Currently, there is a paradigm shift in the machine-learning community from model-
centric approaches to data-centric approaches supported by Andrew Ng, who initi-
ated the NeurIPS Data-Centric AI Workshop in 2021 [79] and launched the Data-
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Centric AI Competition [80]. Model-centric approaches assume that more data and
changes in the model result in a performance boost in contrast to data-centric ap-
proaches, where the improvement of the data quality is considered the key to a
better prediction performance.

A data-centric approach additionally facilitates the production of trustworthy
models since criteria such as fairness, robustness, and data privacy are inherent to
data quality rather than to model quality.

All projects presented in this thesis share the characteristic that either no real-
world data were available, no ground truth was given, or no comparison with other
research results was possible due to the novelty of the research question. In addi-
tion, small sample sizes limit the generalization of the results. Further, the models
share the characteristic that they provide rather a general framework than fine-tuned
models. Thus, in our case, it is very likely that more representative data will yield
more robust performance. However, it is possible that a fine-tuning of the model pa-
rameters to specific tasks (bNAb (P1) or polymorphism (P4)) or incorporating more
informative features (like glycosylation) might boost the prediction performance.

Sample distribution shift

Central to each machine learning model is the assumption that the training data
set is a valid, representative sample of the population distribution. The estimated
generalized prediction performance of the model in the development stage would
otherwise not match the prediction performance in the deployment stage on real-
world data. However, distribution shifts may occur, where the real-world data differs
systematically from the training data. A possible shift in the data distribution from
training to deployment time can occur through changes at three levels: the input
data, the output data, and the relationship between input and output data.

Due to the novelty component in all four projects, the available data at devel-
opment stage of the models and studies are not completely representative for the
global population or the deployment setting. Thus, to increase the reliability of
the results further more representative data are required. In the following, these
potential issues are discussed further.

Pseudovirus neutralization panels Due to the novelty of the project at the devel-
opment stage, the training data for our neutralization prediction models consisted of
neutralization assays with single-round-of-infection Env-pseudoviruses instead from
HIV-1 isolates from clinical patients. Thus, it is possible that the performance on
real HIV-1 isolates from patients might be different than reported on pseudoviruses.
There is a potential shift in the data distribution on all three levels described above.

First, the input data are not the same at deployment time, since the viral env
protein in the training scenario was based on the artificially created pseudovirus.
Thus, the observed sequence space can be systematically different compared to clin-
ical data. Though the panel data are aimed to be very diverse with respect to tier
or subtypes, it might not be representative for the real viral population that will be
present in clinical settings.

Second, the scale of the output data might be shifted at deployment time because
of a constant increase both in the potency of the bNAbs [81] and in the resolution of
the neutralization assays over time [82]. Consequently, the IC50 cutoff to distinguish
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between susceptible and resistant samples might shift over time. Therefore, we
suggest not to use predefined cutoffs for dichotomizing the neutralization capability,
but rather learn regression models with censoring for the neutralization detection
limit. Models learned in that way are more robust to the dynamic development of
new bNAbs. Still, it is possible that the IC50 value distribution might shift closer
to 0 in the future with increasing potency of the modified bNAbs. In addition, with
newer bNAbs and assays with better resolution on their way, it is advisable to adjust
for sampling time as potential confounder in future models.

Third, the model learned the relationship between neutralization capacity and the
viral Env protein from pseudovirus neutralization assays. Host factors like ethnicity,
age, but also variables like viral load, CD4 cell count, or previous drug exposure
might have an effect on the neutralization capacity of the patient in contrast to
the assay environment. With many ongoing clinical trials, new data are currently
generated and should be used for further studies and compared to our results.

The CATNAP database [83] has recently been established storing all bNAb re-
lated data. An automated retraining of the models using the CATNAP database
would have two benefits. First, the models are updated to the latest bNAbs and
learned with the maximal available amount of data. Second, a change in the data
distribution is detected faster. However, by merging several datasets together, the
models have to be corrected for potential batch effects like year, assay, publication,
or number of replicates. In a clinical setting, it is also of interest to investigate
whether the clinical data distribution changes over time to detect a shift in the data
distribution or a shift in the use case application.

Clinical trial sample data There is the potential that the selection of patients
is not a good representative for the global HIV-1 infected population, due to the
small sample size in the initial phases of clinical trials. Therefore, the sample size
and the patient selection criteria are usually expanded in the follow-up phases of
the clinical trials to observe if the previous results can be confirmed. Moreover,
it has to be investigated further whether other host factors or previous medication
history impact the effect of the bNAb therapy. If bNAbs will be used as an additive
component to existing antiretroviral treatments in the future, potential cross-effects
have to be examined in more detail.

Patient cohort to study HLA adaptation To investigate the relationship between
viral T-cell based adaptation and viral coreceptor usage, the gag and env genes of a
cohort of treatment-naive, chronic, subtype C HIV-1 infected individuals from South
Africa have been sequenced. In addition, the host’s HLA I and II alleles have been
genotyped, which exert pressure on the viral genome. Alterations in the gag gene
conditional on the host HLA profile were used to learn the T-cell based adaptation
of HIV-1, while the env gene was used to predict the coreceptor usage. A data set
consisting of chronically-infected HIV-1 patients is useful for learning the acquired
adaptation mutations, since there is enough exposure time of HIV-1 to the host
HLA system to accumulate HLA-restricted adaptation mutations. However, only
few HIV-1 patients harbored viruses with X4 coreceptor usage with intermediate to
high CD4 cell count at the same time (n = 27).

We selected treatment-naive individuals to learn adaptation solely based on the
HLA system without a potential masking from drug-dependent resistance mutations.
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However, in real-life applications, it is of interest to assess the viral adaptation to the
HLA system in treated individuals. A potential issue could be that the model is not
able to distinguish if a mutation is equally likely to have emerged by drug exposure
or if the mutation patterns are different in drug-exposed individuals. The same
issue of potential distribution shift is given by changing from chronically infected to
acutely infected HIV-1 patients, though viral adaptation is less likely to be observed
in acutely infected patients. An exception are mother-child transmissions, where
the host immune system is partly shared and transmitted adapted mutations might
be beneficial for the virus and an important factor for the treatment decision.

Due to the small sample size in comparison to the large amount of possible global
HLA profiles, larger sample sizes are required to verify if the HLA distribution
underlying our adaptation model is representative both for South Africa and the
global population.

While the data is appropriate to learn viral adaptation, longitudinal data would
be beneficial to investigate whether increasing HLA adaptation is associated with
an impending coreceptor switch. Using longitudinal data of HIV-1 patients with
different CD4+ cell counts enables to observe whether a change in coreceptor usage
is associated with viral adaptation and differs with respect to CD4+ levels. Note
that the duration of infection also has an effect on the viral adaptation but also on
the coreceptor switch and thus should be adjusted for.

Although, the viral protein p24 is commonly used to study adaptation, other genes
are also under selection pressure by the HLA system. Since potential cross-effects
might exist, it would be beneficial to jointly model the adaptation to all genes.

Our approach focused on single amino acid polymorphisms. Consequently, com-
pensatory mutations have been neglected that can reduce or enhance the adaptation
effect of escape mutations. Therefore, it might be beneficial to consider interactions
between sites.

Another rather technical issue is that currently usually only HLA I alleles are
genotyped without the HLA II alleles. In addition, the resolution of the genotyped
alleles is often restricted to HLA supertypes, which classify the HLA alleles based on
their shared binding site specificities. The HLA supertypes can be used as a feature
reduction technique to reduce the vast amount of possible HLA alleles. However,
it is unclear whether all HLA alleles from a supertype exert the same pressure on
the virus. More frequent HLA alleles within a supertype might also dominate the
potential learned effects for a supertype in such a model setting. Hence, the models
are less interpretable. Nevertheless, it is possible to include the dependencies of HLA
alleles belonging to the same supertype by modeling the relationship as a random
component of the GLMM.

Sample size

If the sample size is small, the sample distribution might not properly represent the
underlying population distribution. Consequently, not all potential relationships
can be observed and unequal distribution of certain categories of the variables (such
as year, sex, ethnicity, HLA alleles, subgroups, coreceptor usage, duration of HIV-1
infection) can lead to the introduction of various forms of bias.

Small sample sizes are a common problem in healthcare, where the number of
potential predictors p is often larger than the number of samples n. At the same
time, it is recommended to have at least 5 to 10 samples per degree of freedom in
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the model for a robust generalization performance [84, 85]. Hence, feature reduction
or selection methods are often applied to reduce the number of predictors. The
sample size in all four projects was rather small with (P1) 115 –220 samples, (P2)
15 treated viremic and 12 treated non-viremic against 36 viremic control patients,
(P3) 13 treated and 52 control patients, and (P4) 268 samples (274 samples for the
HLA I model).

While the developed models have learned already known discriminant signals, the
training data might not have been large enough to observe less pronounced but still
discriminant features. There is potentially not enough statistical power to learn
associations of less frequent mutations or HLA profiles. Potentially, this could lead
to less reliable results on future data. Quantifying the uncertainty with regard to
unseen viral mutations or HLA alleles would be a potential countermeasure.

Fairness

The unequal distribution of a variable within the training data set might lead to a
biased outcome for samples with less frequent observations for this variable such that
the expected performance is over- or underestimated for these samples. If models
systematically perform worse for the underrepresented part of the variable, this can
have very discriminating and harmful effects in the healthcare sector.

While the pseudovirus panel data set is collected such that it is representative
for a variety of different strains with respect to subtypes and the level of difficulty
to neutralize the virus (tier), the frequency of subtypes A, B, C clearly dominate
over other minor subtypes. Demographic and patient data such as sex, age, immune
status, year of infection and others have not been considered as the data set is based
on artificially created viruses. We show that some bNAbs such as PG9, PG16,
PGT121, and PGT128 have an R5-bias by neutralizing R5-capable variants better
compared to X4-capable variants. Thus, it is important to consider coreceptor usage
not only to get correct prediction performances for each subgroup, but also not to
drive patients with R5-capable variants to a coreceptor switch.

In clinical trials, the distribution of clinical and demographic variables between
the treatment and control groups are matched, if possible. Nevertheless, the patient
cohort does not adequately represent the variety of ethnicities, age distribution, or
clinical variables such as viral load and CD4 count in the global population due to
small sample size. A descriptive statistic of all available information as well as a
test for confounding variables within the data has been performed, however.

To study the adaptation of HIV-1 to the immune system in Paper 4, we narrowed
down the patient cohort to subtype C, treatment-naive, HIV-1 infected individuals
from South Africa. While we have used a coarse definition of ethnicity, we were not
able to distinguish between the many different ethnic groups in South Africa due
to inconsistent labeling. In addition, the current predictive performance is limited
to subtype C HIV-1 patients. It needs to be confirmed yet, how the adaptation
models deviate for different subtypes. Moreover, the adaptation model is tailored
to treatment-naive patients, and might be less predictive for acutely infected HIV-1
patients.
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Data resolution

A possible performance boost can be achieved by using higher data resolution, mov-
ing away from averaged information to more fine-grained, not aggregated variables.
In theory, it might be beneficial to use the dose-response curve itself instead of the
area under the neutralization curve or the IC50 value [86, 87]. A drawback, however,
is that the dose-response curve has to be modeled again using the antibody dilution
series containing only several points and few replication measurements, if any. More-
over, there are several approaches for modeling the dose-response curve with respect
to the shape of the curve. On top, it is not trivial to compare two dose-response
curve with respect to the model parameters or testing if the two dose-response curves
differ significantly.

While using the next generation sequencing reads might allow to have a better
resolution of the HIV-1 quasispecies within the patient in theory, there are several
technical and clinical issues that need to be solved first (see 2.2.5).

Feature selection and engineering

Since the quality of the data is essential to learn a model with high generalization
performance, data preprocessing steps like data cleaning, dimensionality reduction,
feature selection, and feature engineering (deriving new features from the existing
ones) play a key-role in the data-centric approach.

To reduce our feature space, we have used feature selection methods within the
model compared to p-value based selection methods. The horseshoe prior, which is
used as prior for the coefficients in the Bayesian GLMMs in Paper 4, shrinks most
of the coefficients to zero. Thereby, only few predictors (clinical variables and HLA
alleles) with strong effect contribute to the model. By using the oligo kernel in Paper
1, we transform the features (envelope protein amino acids) from the input space
to a feature space, where two sequences are not compared by the sequential amino
acid occurrence but by the overlap of the occurrence of k-mers across the complete
sequence. Across all projects, we have observed that only few positions in the viral
genome confer adaptation, which agrees with the biological understanding. Thus,
the usage of feature selection methods is likely to be important for these prediction
tasks.

HIV-1 uses glycosylation to mask conserved parts of its envelope protein from an-
tibody responses. Still, some bNAbs have even a glycan-specific binding site such as
the V2/V3-glycan specific antibodies. Hence, the glycan shield of the viral envelope
protein is often predictive for the neutralization efficacy of an antibody. While our
bNAb neutralization prediction model has learned potential binding sites and poten-
tial N-linked glycosylation sites (PNGS) from the sequence without incorporating
the glycosylation amount of the virus, recent models have shown that incorporat-
ing the glycosylation information as a predictive feature into the model improves
prediction performance [88–90].

2.2.2. Model choice

This subsection discusses the choice of the methods used within the four different
projects. Additionally, it provides a comparison with the related work at time of
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development as well as recent developments in the corresponding field. Finally, an
outlook is given what kind of models might be better suited to meet the objectives.

There is a plethora of machine-learning based models, each having its advantages
and disadvantages. The chosen method should arise from the study design where the
requirements of the model with respect to explainability, data distribution, resources
at development and deployment stage are all considered and evaluated. Neverthe-
less, it is beneficial to compare different methods to obtain robust findings, detect
potential mistakes in the implementation, or reveal unmet model assumptions.

Modeling rare events

In our projects, we often face the challenge of modeling rare events: (1) predicting
neutralization resistance, and (2) analyzing X4 coreceptor usage. The unequal dis-
tribution of these variables of interest is not due to sampling error or study design,
but because these samples are also rare or less frequent in the global population. For
bNAb prediction, the rareness of resistant samples arises due to positive improve-
ments in the development of very potent bNAbs leading to few observed resistant
samples. Thus, the class distribution of the outcome is imbalanced. Even in the
future, the class distribution is likely to stay imbalanced, since the patient selec-
tion criteria in clinical studies lead to the inclusion of patients that are sensitive to
the bNAb of interest prior to treatment. The unequal distribution of HIV isolates
with X4 coreceptor usages is due to the circumstance that nowadays HIV-1 patients
are earlier diagnosed and treated compared to the past. Thereby, the number of
R5-capable viruses is larger compared to X4-capable variants.

Imbalanced data sets represent a challenge for machine-learning approaches, since
the misclassification cost for the rare samples is often higher compared to the ma-
jority class. The consequence of classifying a virus falsely as sensitive to a bNAb,
when it is resistant, is the administration of an ineffective treatment and the loss
of viral control. This is more harmful compared to the misclassification of a virus
as resistant when it is actually sensitive. Therefore, it is fundamental that the pre-
diction performance measure takes the different class proportions into account in
contrast to evaluation metrics like the accuracy.

We used the area under the receiver operating characteristic curve (AUC) to eval-
uate our neutralization prediction models in Paper 1 [1]. AUC is a ranking based
performance measure that sorts all predictions in increasing order of the estimated
probabilities and calculates the true positive rate (TPR) and false positive rate (FPR)
for each possible occurring probability decision cutoff. Consequently, the AUC can
be seen as the probability that a random positive sample (class = 1) achieves a
higher probability of being ranked higher than a random negative sample (class =
0). Thus, it is an aggregate measure over all ratios of TPR and FPR. By construc-
tion, AUC is aware of the (imbalanced) class distributions, since TPR adjusts the
positive predicted samples against the positive class and FPR computes the ratio of
samples incorrectly predicted as positive against the negative class. Recently, there
has been some controversy regarding whether or not AUC is insensitive against im-
balanced data. The major criticism is that if the majority class is set to the negative
class, and the model has a low precision and high recall, the AUC will not reflect the
poor prediction performance on the minority class in terms of precision. How well
AUC reflects the prediction quality depends on the cost for false negatives (FN) and
false positives (FP). A possible solution is to consider a fixed clinically approved
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false discovery rate (FDR) to choose the final probability decision cutoff between
the minority and majority class. The AUC alone is not very useful to select clini-
cally relevant models, since it also covers ratios between TPR and FPR that are not
clinically relevant.

If only the minority class (assigned to the positive label) is of interest, the area
under the precision-recall curve (PR-AUC) has been proposed as a more suitable
evaluation metric for imbalanced settings [91–94]. We used PR-AUC as an evalua-
tion metric for the per-site adaptation models in Paper 4 [4], however, this metric
also harbors some drawbacks. Since precision-based measures are based on the base-
line frequency of the minority class in the training data, they are, however, not useful
for comparing the prediction performance over multiple data sets with varying fre-
quencies. To overcome this and other issues, precision-recall-gain curves [95] have
been proposed as a more suitable measure.

Apart from a suitable evaluation metric, there are some machine-learning methods
that have internal class-sensitive cost parameters. To predict HIV-1 neutralization
resistance, we have chosen to use a cost-sensitive SVM [64], where the regularization
cost parameter C is set per class to be inverse-proportional to the class distribution.
SVMs are large margin classifiers that fit a linear decision hyperplane with the largest
possible margin between the two classes. Using kernel functions, non-linear sepa-
rable data in the input space can be transferred into a potential hyperdimensional
feature space where the data can be separated with the linear hyperplane. Since
the data are often not separable, there is a cost regularization parameter C (or the
inverse-proportional soft-margin hyperparameter λ) that regulates the trade-off be-
tween maximizing the margin while keeping the misclassifications low. Increasing C
allows for more misclassifications and vice versa. The resulting soft-margin is usu-
ally symmetrical on both classes. Given high imbalances, this setting will lead to a
model, whose margin is maximized by allowing the minority class to be misclassified
as majority class. By setting the class-dependent C values to the inverse of the class
distribution, the boundary is pushed from the minority class to the majority class,
allowing for more misclassifications of the majority class compared to the minor-
ity class. Other machine-learning methods, such as Random Forests [96] also have
the ability to use adapted class-weights [97] and thus are suitable for modeling rare
events.

In addition, we used stratified (nested) cross-validation [98] to select the hyper-
parameters of the model and to estimate the generalization error. In a stratified
cross-validation, the class distribution is kept the same over all folds.

In general, there is the possibility to use various sampling techniques to overcome
the imbalances in the class distribution. Since we had rather small sample sizes in
our projects, we don’t use any downsampling technique such as random sampling,
downsampling using cluster centroids, or downsampling using ensemble methods,
which reduce the size of the majority class to the size of the minority class in different
ways [99–104]. Approaches that increases the minority class artificially using either
over-sampling techniques (duplicating the data) (Bagging [105], XGBoost[106]) or
synthesizing data by slightly perturbing the data with noise (SMOTE [107]) are
prone to overfitting and have not been used in our projects as well.
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Predicting neutralization susceptibility

We have chosen SVMs for modeling neutralization susceptibility in Paper 1, due to
several reasons. First, SVMs can handle settings where the sample size n is smaller
than the number of predictors p. Second, they have a cost-sensitive regularization
parameter allowing them to handle imbalanced data. Third, using a suitable kernel,
the method allows to handle non-linear relationships. Nevertheless, we have observed
in our study that a random forest approach leads to similar prediction performances
for this classification task.

We have chosen the oligo kernel [66] as the kernel function in the SVM. The oligo
function encodes a string sequence by the occurrence of k-mers in the sequence,
modeled by a Gaussian with peaks at each occurrence of the k-mer. The second
parameter of the kernel is the width of the Gaussian σ allowing for a shift of the
k-mer. The usage of the oligo kernel has many advantages. First, it outperformed
other kernels in an additional cross-validation for the bNAb VRC-PG04. Second,
we noticed that the learned kernel parameters k for the oligomer size and σ for the
width of the Gaussians coincide with the size of the binding pattern of the bNAbs,
and thus are biologically even more interpretable compared to a Random Forest
approach. We also observed that linear models such as linear SVM or oligo kernel
with a k-mer size of 1 are suitable for single binding sites of bNAbs but not for
more complex binding sites. Thus, the oligo kernel is especially useful if the binding
pattern is not known beforehand.

There are many established genotypic-to-phenotypic prediction methods for de-
tecting drug-resistances in current anti-retroviral drugs [108–111] or determining
the coreceptor usage[112, 113]. At the time of model development there was no
established method to predict neutralization susceptibility. At that time, the re-
search focus was rather on predicting bNAb immunogens (that would elicit bNAbs)
or bNAb epitopes (since structural information was not always available) [114–121].
Neutralization susceptibility was then predicted as a by-product using the identified
immunogens or epitopes. As discussed in more detail in Paper 1, these approaches
are not tailored for predicting neutralization susceptibility. The major drawback
is that residues outside the epitope are not considered but might be important for
bNAb success. In addition, immunogens triggering the development of bNAbs might
not be deterministic for the specific binding success of the bNAb. Moreover, many
approaches assumed either a purely linear relationship between the changes in the vi-
ral envelope protein and the change in neutralization susceptibility, or independence
of the residues in the viral protein.

Apart from the epitope and immunogen predicting approaches, only two alter-
native approaches existed that were directly using the viral envelope amino acid
sequence for predicting neutralization resistance [89, 122]. As discussed in Paper 1,
IDEPI [122] is using a linear SVM for the prediction task and only evaluating the
prediction on 2F5, which is an older bNAb. The other approach [89] uses a neural
network approach despite small sample sizes, which potentially leads to overfitting.
Moreover, they encoded the different amino acids as integers instead of factors,
which might lead to potential unintended model interpretation, since the integers
have an intrinsic order which the amino acids don’t have.

After the publication of our work, more neutralization susceptibility prediction
methods have been published [88, 90, 123–125].

The bNAb-ReP tool [123] uses a gradient boosting machine (GBM) to predict
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neutralization resistance. While the pseudovirus panel data has been used for model
training, the prediction performance of the models is also assessed on the HIV-
1 clinical isolates. A drawback is that the clinical data had almost no resistant
samples, since the HIV-1 isolates have been prescreened using outgrowth cultures in
the clinical trials. Unfortunately, the authors have also used a binary classification
approach using 50 µg/mL as a cutoff to distinguish sensitive and resistant samples.
As pointed out in Section 2.2.1, this is not in accordance with the latest cutoffs used
in clinical trials.

While the SuperLearner approach by Margaret et al. [124] has many advantages
like (1) using a regression and classification approach, (2) defining sensitivity as IC50
≤ 1µg/mL, (3) providing confidence intervals for the predictions, (4) correcting for
the geographical origin of the viral strains, and (5) considering the learned feature
importances of the stacked models, there are still some drawbacks. First, their
model has been tailored only to the VRC01 neutralization susceptibility. Second,
they use a predefined set of amino acid features to reduce the viral genetic diversity.
Third, using a stacked learner like the SuperLearner makes the predictions less
interpretable.

Their follow-up model SLAPNAP [126] is again a potential SuperLearner based
model (though the user can choose to select a single learner) able to compute also
the neutralization sensitivity to a combination of bNAbs using a Loewe additivity
model [127–130] or a Bliss-Hill model [131].

Yu et al. [88] use a Bayesian SVM approach to predict neutralization susceptibil-
ity incorporating the glycan shield information as an additional predictor into the
model.

Conti and Karplus [125] predict the IC50 value for bNAbs binding to the CD4-
binding site using an artificial neural network. The input features are derived from
a 3D-atomistic model per antibody-virus complex, which consists of the amino acid
sequence of the virus and one heavy and light chain of the antibody as well as a
known crystallographic structure of a related complex. While it is an advantage
that a regression model and a classification model have been built (with a cutoff
of IC50 <1 µg/ml), there are several potential issues with this approach. First,
the robustness of the models has to be confirmed in future studies, since no cross-
validation was performed. In addition, the random sampling is unaware of the
differences in the distribution between resistant and susceptible strains. Second, the
models rely on the availability of a crystallographic structure. Third, the models
are built only for CD4-binding site bNAbs. Fourth, it seems that the samples are
not completely independent of each other, since many viral sequences are the same
across the different CD4 binding site bNAbs included in the models.

Recently, a multi-task deep-learning approach was presented by Dănăilă et al.
[90], which adds the antibody sequence information as predictor into the model and
considers all bNAbs in the CATNAP database together. This approach has several
drawbacks. First they use again a binary decision cutoff of IC50 > 50 µg/mL to
discriminate between the susceptible and the resistant viral strains. Second, the idea
to use a multi-task approach is in general appropriate to overcome the small sample
size issue, however, the same viral panels have been used for the different bNAbs,
such that there is no information gain from incorporating other bNAbs on the same
viral strains. Third, the author state that their model lacks interpretability. Hence,
it is not applicable in a clinical setting.
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Due to the closer approval of bNAbs as therapeutic agents, a clinically relevant
genotypic resistance prediction tool for neutralization susceptibility is still urgently
needed.

Modeling antibody neutralization

In Paper 2, we have used the area under the neutralization titration curve (AUC)
instead of the IC50 value to determine the neutralization capacity of an antibody.
The advantage is the inclusion of samples that do not reach the IC50 value, but still
show an increase in neutralization capacity. The benefit of using the area under the
titration curve has been shown before [72]. For a more robust version, we computed
the background noise of the assays based on the neutralization capacity for the
Murine Leukemia virus, which has been used as a control virus on each assay well
plate. The variation of the assays was also assessed by computing the standard
deviation between replicates. Each titration AUC was normalized by the maximal
possible AUC for better comparison.

Why it might be more informative to directly model the titration curve to com-
pare the neutralization titration profiles between different time points or treatment
groups, this approach harbors many caveats. Modeling the shape of the titration
curve is not trivial based on the usually small sample size from a titration exper-
iment. The curves are commonly described by modeling a monotonic sigmoidal
curve with the top plateau value, the bottom plateau value, the Hill slope (the slope
between the plateaus), and the IC50 value. However, it has been observed that in
HIV-1 the neutralization titration curve is often not monotonic [132]. Moreover, by
definition, the titration points are not independent of each other, complicating the
modeling process. Finally, it is to assess if two titration profiles differ statistically.
Instead of comparing the the Hill-slope or the IC50 value, it would be desirable to
compare the shape of titration profiles directly allowing for some variational shift.

Handling confounding variables

There are several ways to control for confounding variables [133]. Some can be ap-
plied during study design, such as (1) randomization of the samples, (2) restricting
the data set such that no unequal distributions with respect to the confounding vari-
able exist, or (3) grouping samples that match with respect to potential confounding
variable. After data collection, confounding variables can only be adjusted for by
either (1) stratification of the samples with respect to all potential confounders or
(2) multivariate analysis. Stratification is often not feasible due to the small sample
size of the studies. In Paper 2 and Paper 3, we have used univariate linear and
Bayesian regression to test whether a variable is a potential confounder for an effect
of interest.

In the linear regression setting, we compared the likelihood of a model with the
potential confounder as predictor with a model without the potential confounder
(null model) using a likelihood ratio test.

In the Bayes regression setting, we also have built a model with the potential
confounder and a corresponding null model. Then the Bayes Factor are computed
instead of performing a p-value based test.

A slightly different approach is to use so-called propensity scores [134–136]. First
a linear model is built to classify the individuals into the different treatment groups
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based on clinical variables and potential confounders. This model predicts for each
individual the probability (propensity score) to get the treatment based on their
individual characteristics. In a second step, the effect of interest is compared between
the different treatment groups adjusted for the estimated propensity scores.

A disadvantage of all of these approaches is the assumptions that the confounding
variable has a linear relationship with the outcome. This is a very strong assumption
that often does not hold.

Once a variable is detected as confounding variable, inverse-probability weighting
can be used to adjust for the unequal distribution of the predictors with respect to
the confounding variable. However, caution is required if some samples have extreme
weights.

A complete different approach is to use causal inference to model and control for
confounding variables [137]. A major advantage is that the definition of a confounder
can be modeled directly in the causal graph as the common ancestor of the predictor
variable and the outcome variable. Moreover, causal inference is independent of the
data per definition by modeling potential interventions. Finally, there is no linear
assumption between predictors and the outcome. However, the causal model is
rather suited for univariate analyses with only one potential confounder at a time.

Flexible framework vs. fine-tuned models

In Paper 1 and 4, we investigated whether bNAb resistance and HLA-restricted
adaptation is predictable using the viral genotype, respectively. In the current
form, both prediction approaches present rather general frameworks than specific
fine-tuned models. We have decided on purpose to incorporate as little prior knowl-
edge as possible into the model apart from the viral genotype. Thereby, our models
are suitable for settings where the task-specific prior knowledge is not available.
In the approach in Paper 4, we included only some general prior knowledge about
potential confounders and the fact that only few HLAs have influence on a viral poly-
morphism. Moreover, the models already suffer from a high number of parameters
compared to the sample size. Therefore, it is advisable to use as few predictors as
possible. Nevertheless, we have included the complete viral envelope protein and the
HLA profile, respectively, to allow for an exploratory search to find also previously
unknown potential predictors. This might reduce our prediction power, though we
have used internal feature selection approaches like the horseshoe prior in Paper
4. Since the prediction methods do not depend on specific prior knowledge, they
can be easily used to study virus-host adaptation for other viruses like influenza or
SARS-CoV-2.

In both prediction approaches, we have observed that only few amino acids in the
viral genome are predictive for adaptation based on our data. Thus, if the aim is to
provide prediction models with a high prediction power for a well-known bNAb for
example, it might be beneficial to incorporate only the found discriminative features
and incorporate further prior knowledge additionally. Note that the model might
have learned only few discriminative features due to the rather small sample size.
Thus, further explorative approaches with more data are needed.
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2.2.3. Performance metric

A rather neglected field in machine-learning is the choice and development of per-
formance measures that are used to optimize the models. The performance metric
should be carefully chosen to not only compare different methods in the training
scenario but also be clinically relevant in the deployment setting.

The choice of AUC

While we have used the AUC in Paper 1 for optimizing the model parameters and
comparing different methods, we argue that AUC is not a suitable choice with
respect to clinical relevance. AUC considers all ratios of TPR and FPR. This is,
however, not applicable for clinical settings where a certain FPR is not allowed to
be exceeded. It might be beneficial to consider either a partial AUC, where the
range of the AUC of interest is chosen in agreement with the clinical stakeholders.
Alternatively, a clinical relevant FDR has to be chosen. Consequently, the decision
cutoff is chosen in a nested cross-validation that does not exceed the selected FDR.

Two-sample hypothesis tests

Across all four projects, we have used the Wilcoxon-signed-rank test (paired data)
as well as the Wilcoxon-rank-sum test (unpaired data) to test whether there is a
difference with respect to a parameter of interest within two groups [138–141]. Both
tests are considered to be non-parametric, since they make no hard assumption
on the shape of the data distribution of the effect of interest. If the variable of
interest is, however, normally distributed and the variance in both groups is the
same and has the same location parameter, a t-test will have a higher power [142].
Another potential issue with the Wilcoxon-signed-rank test (paired data) as well
as the Wilcoxon-rank-sum test (unpaired data) is that the tests assume that the
two populations are from the same distribution under the null hypothesis. If this
assumption is not met, then there are some newer alternatives, namely the Brunner-
Munzel and Fligner-Policello test [143, 144]. If the spread is very different in two
groups, then the Mood’s median test might be a better approach [145]. While
the Wilcoxon-signed-rank test (paired data) as well as the Wilcoxon-rank-sum test
(unpaired data) are widely used, there is some controversy whether a bootstrap two-
sample hypothesis test is less likely to overfit for small sample sizes [146]. Here, the
idea is to have a process to directly sample from the null hypothesis and therefore
be able to provide better confidence intervals for the variable of interest. First the
variable of interest is shifted in both groups such that the mean of the variable is the
same in both groups (by removing the group mean and adding the overall mean).
After having now the assumption that both groups have the same mean, bootstrap
samples are drawn and confidence intervals can be computed for the differences in
between the two groups under the null hypothesis.

2.2.4. Trustworthiness

Until now the models and findings have been discussed with respect to data quality
issues, model choice issues, as well as the issues with performance measures. Among
these categories fall also trustworthy criteria like fairness, robustness, and model
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transparency (explainability). In the following, the prediction models are also dis-
cussed with respect to data privacy concerns but also reproducibility and utility.
Prediction models that are used in clinical routine, should also be trustworthy with
respect to security aspects, however, the current models and results are not discussed
with respect to that criteria here.

Data privacy

In Paper 4, we have used the patient’s HLA genotypes to study the adaptation
of HIV-1 to the HLA system. Due to privacy concerns, we were not allowed to
publish the HLA information along with the viral sequences. Consequently, we
were not able to publish our adaptation model due to potential retrieval of the
HLA information from the model. In general, there are many privacy concerns with
respect to sharing human genomic data [147–149]. While the concerns are legitimate
and sensitive information has to be protected, it contradicts the current efforts to
make data findable, accessible, interoperable, and reproducible (FAIR) [150].

In HIV-1 patients, the risk of re-identification might have severe legal conse-
quences [151, 152]. Apart from potential stigmatization, there are still countries
which criminalize HIV infection by law [153, 154].

Many data privacy concerned methods have been recently developed and investi-
gated for their use in the healthcare sector, such as differential privacy (DP), fully
homomorphic encryption (FHE), secure multi-party computation (SMPC), or feder-
ated learning (FL) [155–157]. Nevertheless, more research needs to be performed to
ensure the protection of sensitive data by these methods while upholding the utility
and quality of the downstream machine-learning models and data analysis.

In a setting where the data cannot be shared due to privacy concerns, a FL
approach might be useful. In a FL setting, many clients train a machine-learning
model locally conducted by a centralized server. While the data never leaves the local
client, learned parameters and model characteristics are propagated to the central
server. The utility and potential issues with FL are currently under research [158,
159]. Since the centralized orchestration of the FL approach is seen problematic, a
blockchain-based swarm-learning approach has been recently proposed to counteract
this issue [160]. Another unexplored issue with federated and swarm learning is the
propagation and adjustment of confounding factors.

A complete different approach is the attempt to create and use synthetic data
based on the sampling data instead of sharing the sampling data. More research
has to be done, however, to assess the utility of synthesized data with respect to
their data quality (representing the underlying distribution, capturing the variance,
and the power to generalize) but also to the privacy concerns - if re-identification or
reconstruction of the original data is possible [161].

While so far privacy concerns were related to sharing human genetic material, the
current SARS-CoV-2 pandemic has drawn attention to the privacy concern related
to viral genomic sequences from human patients [162–166]. HIV genomic sequences
might be used to reconstruct the host HLA genotype based on the HLA-restricted
escape mutations in the viral sequence.

Another problem is that contextual information such as country, age, and ethnic-
ity, and sample date is also regarded as sensitive information enabling a potential
re-identification of the individual. Nevertheless, we have shown in our research that
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this information harbors potential confounding effects that need to be accounted
for.

In the future, newer technologies might allow to re-identify sensitive information
from already published data that has not been considered sensitive before. Thus, it
is advisable to further put effort in developing privacy-preserving machine-learning
techniques and best practices to circumvent the privacy concerns beforehand. Up-
coming regulations based on the European Data Act from February 2022 [58] will
likely drive the transformation to a privacy-preserving modeling and in general to
more trustworthy AI models.

Utility

Apart from criteria like fairness, robustness, transparency, data privacy or clinical
relevance, prediction models need to be reproducible and show their usefulness after
development.

We have performed several efforts to tackle the reproducibility aspect. We have
used the Snakemake Workflow Manager [167], which facilitates the maintaining of
the complete model pipeline (from data preprocessing to model training to model
deployment). The Anaconda Software Distribution [168] allows to control the de-
pendencies of different programs and packages in the running environment of the
model. Thereby, it facilitates the usage of the model by other users. We also
used code versioning and code repositories where possible using github/gitlab or
SVN repositories. Manual steps during data preprocessing like retrieval of reference
sequences, sequence alignments, or sequence subtyping using web tools have been
automatized as well. While we cannot provide the models for Paper 4, due to privacy
concerns, we provide a minimal data set that allows to reproduce all findings, fig-
ures, and tables of the manuscript. In addition, we provide the coding pipeline as far
as it is in accordance with the data privacy policies. For both genotypic prediction
tools, we also provide the top discriminant features within the manuscript.

In terms of utility more steps need to be performed, however, to create clinically
relevant prediction models. For the bNAb prediction model, it is advisable to create
an automatic update of the models using the CATNAP database. Thereby, any
occurring data shifts can be identified. For settings where the code or the pipeline
cannot be shared, either the prediction models must be hosted on a publicly available
server or a federated-learning approach must be enabled to provide the reuse of the
data.

2.2.5. Future trends

Neutralizing antiretroviral drug components

Besides bNAbs, single-chain variable fragments (scFvs) [169–172] antibodies are cur-
rently investigated as novel antiretroviral drug components targeting the same epi-
topes as bNAbs. ScFvs are composed of only the variable regions of the heavy
and light chains of antibodies, thus containing the complementary antigen-binding
site (Fab) of antibodies. The smaller size of scFvs compared to IgGs facilitates the
absorption of the scFvs in mucosal tissue, where most HIV infections occur. In
addition, scFvs might also prevent viral cell-to-cell transmission [173]. A drawback
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is that by lacking the Fc region of the heavy chains, the scFvs do not activate fur-
ther immune cells and have a shorter half-life compared to IgGs. In addition, it is
possible to design the scFv as bi- or trispecific [174–178] targeting multiple binding
sites of distinct bNAbs with only one molecule. Since we have not used the bNAb
structure nor the bNAb sequence in our models, our neutralization prediction tool
(P1) [1] can be easily extended to other bNAb alternatives like scFvs.

Usage of NGS data

While we sequenced the viral env and gag gene using next generation sequencing
(NGS) methods for studying the adaptation of HIV-1 to the immune system (P4),
we have used the simulated consensus Sanger sequence for further analysis. NGS are
cost-effective for massive parallel sequencing, and in contrast to Sanger sequencing,
are able to detect low-frequency fragments, which is important to assess the mi-
nority variants within the quasispecies of a patient for drug resistance testing. The
frequency-cutoff at which the detected drug resistant variant are of clinical relevance
need to be determined yet [179–181]. In addition, the cutoff might differ for different
drug-classes, drugs, or distinct mutations. Moreover, output from NGS methods are
hard to compare since standardized protocols across different platforms are missing
and unified quality assurances need to be determined. Once the standardization and
threshold issues are tackled, it is likely that NGS-based drug testing will become a
standard procedure. Until then, Sanger sequencing is still seen as gold standard.
Hence, the generation of simulated Sanger consensus sequences based on NGS data
is currently a common procedure.

Despite the current described issues with directly using NGS data, there are still
ways to include some additional information from the reads to model the quasispecies
within HIV-1 patients. A possibility is to compute the genetic diversity based on the
reads and include this information as a new feature in the model [182–184]. Another
option is to use the frequency counts of the nucleotides over the reads as additional
information over the actual sequence distribution. This is, for example, used in the
geno2pheno[ngs-freq] tool [185] that allows to predict drug-resistances based on the
frequency files. Still these methods require the selection of a prevalence cutoff.
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3. Conclusion and perspective
Section 3.1 concludes the thesis by providing a summary of the made contributions
across all four studies. In Section 3.2, a personal perspective is given on how current
genotypic-based adaptation prediction models need to be improved based on the
discussion in Section 2.2.

3.1. Conclusion

The four studies included into this thesis contribute on the one hand to our under-
standing of HIV-1 adaptation to bNAbs and to the host immune system. On the
other hand, they introduce fast genotypic-based prediction models to detect HIV-1
adaptation, thereby increasing our means to control HIV-1 infections. Three studies
present methods and findings that contribute to the advancement of bNAb therapy
from benchside to bedside (P1 - P3). The last study (P4) introduces a novel method
to predict HIV-1 adaptation to the HLA system and links HIV-1 adaptation to the
HLA system to the coreceptor usage.

In the first study [1] (see Section 2.1.1), we introduce well-performing SVM-based
models that predict HIV neutralization susceptibility to 11 bNAbs based only on the
viral envelope protein. Due to the rapid evolution of the virus within the patient,
this rapid resistance testing is essential for the selection of an effective personalized
bNAb treatment in the future. While our models predict the neutralization only to
a single bNAb at a time, they can be used as a foundation for a support-decision tool
to predict a bNAb combination therapy using an additive model or the Bliss-Hill
model approach. By providing not only the learned discriminant features, but also
the contribution of the query sequence composition to the classification outcome,
we provide well explained machine-learning based models as required for a clinical
application. On top, our findings reveal that neutralization capacity is influenced by
the coreceptor usage. More precisely, we observe that the neutralization capacity of
the bNAbs PGT121 and PGT128 has an R5-bias as already discovered for bNAbs
PG9 and PG16 [75]. The general framework to predict neutralization susceptibility
is not only useful for the clinical routine, but can also support current clinical trials
in their patient selection process. As current vaccine efforts have the goal to elicit
bNAbs, the learned discriminative features might guide the selection of suitable
immunogens.

While the support decision framework is essential for the administration of the
bNAb therapy, first the characteristics and efficacy of bNAb-based therapy have to
be proven. Therefore, we use statistical learning methods to support two clinical
trials.

In the second study (P2) [2] (see Section 2.1.2) the usage of a noise-corrected
version of the area under the neutralization titration curve (AUC) enabled the in-
clusion of patients with low neutralization capacity not reaching the IC50 value,
which is usually taken as neutralization measure. Using the developed measure, we
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observe that a monotherapy with 3BNC117 statistically increases the neutralization
capacity of the patient compared to a control group. In addition, we ensure that
the observed increase in neutralization capacity is irrespective of other potential
confounding factors such as initial neutralization capacity, age, sex and other clini-
cal variables by performing a linear and Bayesian regression analysis. While further
studies are required to validate the impact of a bNAb therapy on the viral reservoirs,
the findings advance our understanding of the mode of action of a potential bNAb
therapy.

In the third study (P3) [3] (see Section 2.1.3), we use several survival regression
techniques to model viral rebound after analytical treatment interruption. Thereby,
we observe that a monotherapy of 3BNC117 statistically delays viral rebound in
contrast to a historical control group even after adjustment for the identified con-
founding factors age and years on ART with a weighted log-rank approach [76]. This
finding is the prerequisite of the inclusion of 3BNC117 in a potential combination
therapy that is currently further investigated [186].

In the last study (P4) [4] (see Section 2.1.1), we introduce a novel prediction
method that jointly models the adaptation of HIV-1 to the HLA I and HLA II
profile of the patient. Using our models, we observe that HIV-1 adaptation to the
HLA system differs depending on the coreceptor usage. The relationship of HIV-1
adaptation and the coreceptor usage has been neglected so far. The machine-learning
based adaptation model is transparent with respect to the learned polymorphims
in the viral p24 protein that are more likely under HLA pressure. In addition, we
provide a sequence-based logo that explains for each query sequence which amino
acids are likely to be under HLA pressure and which are not according to the model.
As a correct determination of the coreceptor usage is essential for the administration
of CCR5 coreceptor antagonists, an estimation of the viral adaptation to the HLA
system might be an additional useful predictor for coreceptor usage or even the
coreceptor switch.

Due to the general and flexible model definition of both genotypic-based prediction
methods (P1 and P4), they are easily extendable to other related tasks, i.e., to
predict neutralization susceptibility to (1) other bNAb alternatives such as scFvs, (2)
to predict neutralization to combinations of bNAbs, (3) to predict the combined HLA
adaptation for further viral proteins such as Nef and Pol, or (4) to apply the approach
to other less-prevalent subtypes. While the studies have been concerned with the
adaptation of HIV-1 to the adaptive host immune system responses, both approaches
can be used to study any virus-host adaptation, i.e. for viruses like influenza or
SARS-CoV-2. The major strength is however their usage in settings where little
prior information is available such as neutralization prediction for newly derived
bNAbs, or the adaptation to newly emerging viruses such as in the current ongoing
SARS-CoV-2 pandemic, where no prior knowledge exists about HLA footprints nor
large cohorts to identify them.

3.2. Perspective

In this thesis, we have presented several novel and existing methods that advance our
understanding and assessment of HIV-1 adaptation towards the adaptive immune
system components. Due to small sample sizes across all our studies, further studies
are required to confirm our findings on larger data sets. Moreover, further biologi-
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cal knock-out experiments are required to validate whether the identified unknown
discriminant features truly impact HIV-1 adaptation. The clinical relevance for the
two novel support-decision frameworks (P1 and P4) need to be further improved
by considering the aspects of trustworthy artificial intelligence (AI) models and the
requirements of clinical practice.

Currently none of the existing neutralization prediction methods is deployed in a
clinical setting or for clinical trials. To prevent a distribution shift between training
and deployment setting, the support-decision tool needs to be trained and evaluated
not only on pseudovirus panel data but also on HIV-1 clinical isolates. Then, it is
also of interest to analyze if host factors such as the immune status also play a role
on the neutralization capacity of the bNAbs. The evaluation metric to optimize and
evaluate the models needs to be not only class-sensitive but the misclassification
costs should match the clinical requirements. Further, the usage of fixed cutoffs or
thresholds should be avoided. Apart from choosing a machine-learning method that
is explainable and produces explainable outcomes, the support-decision tool should
provide confidence intervals or other means to quantify the expected uncertainty
with regard to new unseen samples, or certain value ranges of the features, or the
estimated neutralization susceptibility. Alignment-free approaches might also be
beneficial, since currently insertions in the query sequence that are not present in
the training data are discarded for the prediction in the alignment process of the
query sequence to the training sequences. Recent studies have shown that an esti-
mate of the glycosylation of the envelope protein improves performance and should
be incorporated as a predictor into the model [88–90]. In order to achieve fair and
robust models, it is important to carefully explore the training data and perform
a confounder analysis on potential factors such as coreceptor usage, country, and
subtype. If possible, the analysis should be extended by host factors such as sex,
age, ethnicity, and clinical variables, i.e., CD4 count, CD8 count, coinfections, infec-
tion year, and years on ART. Another source of bias lies in the sample generation
process, i.e., sample year, sample data, sample location etc. Neutralization suscep-
tibility will also likely be decreasing in the sample collection over time due to higher
resolution of the assays but also more potent bNAbs or bNAb combinations. Thus,
time is a potential confounder in databases that has to be considered. Due to the
highly overparametrized model setting, it is important that the choice of features
are discussed with the clinicians with respect to clinical relevance and the modelers
with respect to data quality. To maintain its utility, it would be beneficial if the
tool is retrained automatically on the CATNAP database. Thereby, not only are the
models trained on the largest available portion of data, but also distribution shifts
or change of use cases can be detected. While there are several machine-learning
methods that have shown to be appropriate for this model task (SVMs, Bayesian
SVMs, Random Forests, GBM), it is of interest to investigate, where these methods
differ with respect to the misclassified samples. The benefit of a generative model
is that samples from the learned generative model can be compared to the training
data and to the expected data distribution at deployment stage. Finally, a data-
privacy preserving approach would facilitate the exchange of clinical data that is
needed to achieve more accurate and robust prediction models. While the approach
by Yu et al. [88] is not meeting all of the mentioned requirements, it is currently
the most promising approach in my personal opinion.

Our HIV immunoadaptation study (P4) had several drawbacks. First, there is no
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ground truth for the adaptation score. Apart from a required in-vitro experimen-
tal validation of the estimated adapatation score, it is possible to perform further
in-silico validatation experiments. Existing tools to predict the HLA binding of pep-
tides can be used to validate whether the peptides of a virus with high predicted
adaptation are also less likely to be bound by the HLA molecule [187, 188]. Second,
the data is a cross-sectional snapshot of the viral population and the immune system.
Thus, it does not allow to observe whether increasing adaptation is an indicator for
a coreceptor switch. Therefore, a longitudinal observation of the patients would be
beneficial. Third, the duration of the infection might be a confounder for adaptation
and should be measured and corrected for. Fourth, the distribution of CD4 counts
and coreceptor usage should be equally balanced to study whether viral adaptation
in patients with high to intermediate CD4 counts play a major role for the coreceptor
switch. Note that having longitudinal data does not ensure to capture a corecep-
tor switch. Still the longitudinal data is useful to further validate our adaptation
score. It can be used to investigate whether a potential change of adaptation over
time is in accordance with emerging HLA-restricted polymorphisms. Fifth, we have
not incorporated dependencies such as the linkage disequilibrium between some HLA
alleles as well as the shared binding sites of several HLA alleles that are captured
in the HLA supertype information. Finally, a data-privacy preserving approach is
recommended to improve the utility of our framework.

The current data-centric trend as well as the upcoming laws with regard to data
protection and trustworthiness of machine-learning models will likely increase the
awareness of potential risks in machine-learning models, especially for the healthcare
sector. Hopefully, this will push the research community to focus even more on study
design, data quality, and potential uncertainties within the training data but also
the real-world application requirements. Data-privacy preserving techniques might
facilitate the usage of existing data among different institutions and clinics increasing
the sample size of the studies and reducing the waste of resources. The resulting
transparency of the model risks might also facilitate the assessment and acceptance
by clinical practitioners leading to a faster deployment of machine-learning based
support-decision tools in clinical practice.
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A. Scientific papers
A.1. Paper 1 - bNAb resistance study

Copyright clearance

The herein included manuscript is the version of record of the article [1] as ac-
cepted for publication in PLOS Computational Biology following peer review under
the Creative Commons Attribution License. The version of record is available at
https://doi.org/10.1371/journal. pcbi.100578.
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Abstract

Treatment with broadly neutralizing antibodies (bNAbs) has proven effective against HIV-1

infections in humanized mice, non-human primates, and humans. Due to the high mutation

rate of HIV-1, resistance testing of the patient’s viral strains to the bNAbs is still inevitable.

So far, bNAb resistance can only be tested in expensive and time-consuming neutralization

experiments. Here, we introduce well-performing computational models that predict the neu-

tralization response of HIV-1 to bNAbs given only the envelope sequence of the virus. Using

non-linear support vector machines based on a string kernel, the models learnt even the

important binding sites of bNAbs with more complex epitopes, i.e., the CD4 binding site tar-

geting bNAbs, proving thereby the biological relevance of the models. To increase the

interpretability of the models, we additionally provide a new kind of motif logo for each query

sequence, visualizing those residues of the test sequence that influenced the prediction out-

come the most. Moreover, we predicted the neutralization sensitivity of around 34,000 HIV-

1 samples from different time points to a broad range of bNAbs, enabling the first analysis of

HIV resistance to bNAbs on a global scale. The analysis showed for many of the bNAbs a

trend towards antibody resistance over time, which had previously only been discovered for

a small non-representative subset of the global HIV-1 population.

Author summary

Several sequence-based approaches exist to predict the epitope of broadly neutralizing

antibodies (bNAbs) against HIV based on the correlation between variation in the viral

sequence and neutralization response to the antibody. Though the potential epitope sites

can be used to predict the neutralization response, the methods are not optimized for the

task, using additional structural information, additional preselection steps to identify the

epitope sites, and assuming independence and/or only linear relationship between the

potential sites and the neutralization response. To model also the neutralization response

to bNAbs with more complex binding sites, including for example several non-consecu-

tive residues or accompanying conformational changes, we used non-linear, multivariate
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machine learning techniques. Though we used only the viral sequence information, the

models learnt the corresponding binding sites of the bNAbs. In general only few residues

were learnt to be responsible for a change in neutralization response, which can addition-

ally reduce the sequencing cost for application in clinical routine. We propose our tailored

models to aid the patient selection process for current clinical trials for bNAb immuno-

therapy, but also as a basis to predict the best combinations of bNAbs, which will be

required for routine clinical practice in the future.

Introduction

With around 36.7 million people living with HIV in 2015 and an incidence rate of around 2.1

million each year [1], infections with HIV continue to be a major global health issue. However,

despite more than three decades of research, there is neither a vaccine against nor a cure avail-

able for infection with HIV-1. HIV-1 infected patients are usually treated with a highly active

antiretroviral therapy (ART). ART suppresses the replication of the active virus, but it is not

capable of eliminating viral reservoirs and thus clearing the infection. To reduce the emer-

gence of drug-resistant viruses, ART usually consists of a combination of three or more drugs

from at least two different drug classes. In total, there are six different drug classes, which differ

in their mode of interference with the HIV-1 life cycle, resulting in more than 20 available anti-

retroviral drugs. A change of the drug regimen is still often required, due to emerging drug

resistances or side-effects. Since lifelong treatment is inevitable, for some patients no efficient

drug regimens might be left eventually. Hence, there is still a high demand for drugs with new

targets [2].

A currently investigated treatment option is the passive transfer of a combination of

broadly neutralizing antibodies (bNAbs) to HIV-1 patients. Upon the advent of new single-

cell antibody cloning techniques [3–5] and followed structure-based rational design

approaches [6], an abundance of these new bNAbs has been isolated and their higher neutrali-

zation potency and breadth have been shown in several studies [6–10]. The potency of an anti-

body is defined as the antibody concentration needed to inhibit HIV-1 infectivity by 50%

(IC50) or 80% (IC80), while the neutralization breadth of an antibody is measured by the abil-

ity of the antibody to neutralize viruses from different subtypes. The latter characteristic is

very important in the case of HIV-1 due to its high molecular diversity within a patient but

also within a population.

The sole target of these neutralizing antibodies is the viral envelope glycoprotein, the so-

called envelope spike, on the surface of the virus. The surface of the virus itself is made of host-

lipids and is therefore undetectable by the immune system. Each spike consists of a trimeric

heterodimer of two viral envelope glycoproteins, gp120 and gp41, which are cleaved from the

envelope glycoprotein, gp160. While gp41 mediates host cell fusion, gp120 is essential for cell

entry [11]. By successful binding of a neutralizing antibody to a spike, a chain reaction is initi-

ated by the host immune system that eventually leads to the elimination of the virus.

So far, there are five known sites on the envelope glycoprotein, which are targeted by a vari-

ety of bNAbs (given in brackets): on gp120 the CD4 binding site (e.g., VRC01, VRC-PG04,

3BNC117, NIH45-46) [9, 12–14], the V1/V2 region (e.g., PG9 and PG16) [7, 8, 15–17], and the

V3 loop (e.g., PGT128, PGT121, 10-996, 10-1074) [8, 10, 18–21]; the membrane proximal

external region (MPER) on gp41 (e.g., 10E8) [22–25]; and a newly identified site comprising

parts of gp41 and gp120 (e.g., 35O22) [26]. Since the specific binding sites of bNAbs, so-called

epitopes, on the envelope protein are not similarly accessed by any available drug, a therapy
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with bNAbs would offer a new effective treatment option for patients with resistance to all cur-

rent therapies or might boost existing therapy combinations with few active drugs [27]. The

efficacy of a treatment with a combination of these broad and potent neutralizing antibodies

has been first shown in HIV-1 infected humanized mice [28, 29] and non-human primates

[30]. Tolerance and safety of the bNAbs VRC01 [31] and 3BNC117 [32] have been shown in

phase 1 clinical trials in HIV-1 infected humans, where for 3BNC117 also the effective suppres-

sion of viremia could be observed. In addition, recent studies have shown that antiretroviral

therapy with only one bNAb (3BNC117) is able to enhance the host immune response against

HIV-1 [33] and leads to a significant delay of viral rebound after treatment interruption [34].

In contrast to ART, which usually requires a daily intake of the drugs, bNAbs have a longer

half-life time, being able to control the viral load for more than 28 days in humans after admin-

istration [32]. High genetic variation of the viral envelope glycoproteins together with a glycan

shielding of more conserved regions on the envelope often allow the virus to escape immune

recognition [35]. Thus, for treatment success, neutralization resistances of the patient’s viral

strains to the given bNAbs must be detected beforehand. Up to now, the neutralization sensi-

tivity of a virus to an antibody can only be determined in time-consuming and expensive neu-

tralization assays.

To ensure a routine clinical practice, these tests have to be more rapid and cost-effective.

This can be achieved, for example, by developing a genetic resistance test, coupled with a resis-

tance prediction method similar to current decision support for ART treatment against HIV

[36]. Since the envelope spike is the sole target of bNAbs, it is sufficient to consider the changes

in the genetic composition of the viral envelope glycoproteins associated with changes in neu-

tralization sensitivity of the virus.

So far, the neutralization together with the genetic information has been mainly used to

determine potential epitopes of bNAbs or to identify immunogens to elicit bNAbs. The aim of

neutralization-based epitope prediction models is to learn potential epitopes or patches of the

bNAb in the amino acid sequence of the envelope protein. There are approaches using only

the neutralization information [37–41] or including structural information [41, 42]. Changes

in the amino acid composition of the epitopes are assumed to be associated with a change in

neutralization sensitivity and thus can be learned from neutralization activity information. As

a consequence, the model learns potential sites instead of predicting neutralization sensitivity.

Nevertheless, some of the models, or more precisely the learnt sites, have been used to predict

the neutralization activity for validation purpose. Unfortunately, the performance might be

overoptimistic if the same data is used for learning the sites and the prediction task [42].

Another application is the identification of immunogens to elicit bNAbs. Therefore, Gnana-

karan et al [43] compared the viral sequences of HIV-1 infected individuals with and without a

broad and potent antibody response, hypothesizing that shared features among the viral

sequences in individuals eliciting bNAbs might be potential immunogens. Shared features

have been learnt using conditional mutual information together with an ensemble learning

technique using classification trees. Similar to the above approaches, the identified features

have been validated by predicting the neutralization sensitivity. An overview of a variety of

computational approaches for epitope vaccine design is given by He et al. [44].

Recently, an artificial neural network approach has been proposed to directly model the

IC50 value based on the envelope sequence information [45]. For this, the amino acids were

mapped to integers. However, the authors modeled each position in the sequences as a contin-

uous variable instead of a categorical one, which leads to a different interpretation of changes

between different amino acids. In addition, only the performance of the older bNAb 2F5 was

provided. IDEPI [46] is a very generic framework that, among other features, models the neu-

tralization sensitivity of the virus to bNAbs using a linear support vector machine (SVM) and
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the envelope sequence of the virus. The above presented models have several shortcomings.

First, potential epitopes can be poor immunogens. Second, sites outside the epitope can have

an influence on the binding success of a bNAb as well, and thus also have an influence on the

neutralization sensitivity. Structural information and other prior information about the bind-

ing sites might not be available for newly identified bNAbs. Most methods assume a linear

relationship between changes in the amino acid composition and neutralization sensitivity on

the one hand [37, 46] and the independence of the epitope sites on the other [37]. This

assumption might not hold for bNAbs targeting a more complex binding site. Another impor-

tant point involves the handling of amino acid positions in the variable regions of the envelope

protein. Though the variable regions are hard to align, they are also the regions where resis-

tance mutations are likely to appear and thus these sites should not be dropped from the analy-

sis [43].

In this study, we present prediction models for 11 different bNAbs (VRC01, VRC-PG04,

3BNC117, NIH45-46, PG9, PG16, PGT121, PGT128, 10-996, 10-1074, and 35O22) that learnt

discriminant signals (amino acids or patterns of amino acids) in the genetic sequence of the

envelope glycoprotein gp160 (envelope sequence), which influence the neutralization sensitivity

to the particular antibody. To learn the neutralization susceptibility of HIV-1 strains to

bNAbs, we trained our prediction models on data from three previously published neutraliza-

tion assays [10, 26, 47]. Depending on the neutralization assay, IC50 titers for 115 to 220 HIV-

1 isolates were available for each of the bNAbs. Following neutralization assay protocols, we

used an IC50 value above 50 μg/mL as a threshold to determine neutralization resistance of a

virus to a particular antibody. Based on the available IC50 titers for the HIV-1 isolates, the cor-

responding envelope sequences, and the threshold, we built binary classifiers with non-linear

support vector machines (SVM) and string kernels to distinguish between HIV-1 resistance

and susceptibility to a bNAb. As non-linear prediction models are often seen as black boxes,

we trace back what each classifier learnt from the data and show that many of the learnt dis-

criminant signals are known to play an important role for the binding success of the antibody.

For a better interpretation of the classification decision (resistant or susceptible), we provide a

new way to produce motif logos that illustrate which and up to what extent amino acids in the

tested sequence contributed to the particular classification result. Though we use the complete

envelope sequence information, we show that only a few signals are important for the classifi-

cation outcome and that models based only on these signals achieve comparable prediction

power.

To study the evolution of HIV-1 resistance to bNAbs, we additionally built regression mod-

els using support vector regression that directly predict the IC50 value from the envelope

sequence of the virus. With these models we analyzed the neutralization sensitivity of HIV-1

to the considered 11 bNAbs for around 34,000 HIV-1 samples of different subtypes over a

time period of more than 30 years from the Los Alamos HIV sequence database [48]. Thereby,

we could not only confirm previous, experimental results, showing that there is a trend

towards bNAb HIV-1 resistance over time in the subtype B population of HIV-1 on a much

larger and more diverse data set, but for the first time, the trend could also be observed for the

global HIV-1 population—a scale-up that would be very expensive in an experimental setting.

A preliminary version of this study [49] has been published as a preprint.

Results and discussion

Prediction performance

Accurate prediction of bNAb resistance from the genetic sequence of the envelope pro-

tein of HIV-1. We used support vector machine (SVM) models to build our prediction
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models. A crucial step in building SVM models is the choice of the kernel that encodes the

similarity structure in the input data. Upon performance comparison between different ker-

nels (see S1 Table), the oligo kernel was selected for all bNAbs to predict the neutralization sus-

ceptibility to each bNAb for new viral strains. The idea of the oligo kernel is to define the

similarity between two sequences x and x0 of same length L by the similarity of the co-occur-

rences of their substrings (oligomers) of length l with 1� l� L within a certain distance (con-

trolled by the width parameter σ2). Fig 1 shows the prediction performance of each of the 11

classifiers measured as the area under the ROC curve (AUC). The prediction performance was

assessed in 10 runs of a stratified 5-fold nested cross-validation in the kernel comparison step.

All 11 classifiers are better than a random classifier (dashed line) and have good performances,

up to 0.84 AUC for the V3 loop targeting bNAbs. The prediction performances of the regres-

sion models are provided in S1 Fig. To determine the best parameter setting for each bNAb

prediction model, we performed an additional 5-fold cross-validation.

Comparison to other machine learning approaches. Due to the large number of features

(the length of the envelope amino acid sequence) compared to the small number of samples,

we chose SVMs to build our models, which are known to generalize well for these kind of pre-

diction problems. Additionally, we compared our final SVM models (based on the oligo ker-

nel) to a selection of other machine learning approaches: random forests, SVM using a linear

kernel, a neural network, and a logistic regression with lasso regularization (see Methods for

details). Overall, only the random forest approach and our model performed well for all 11

bNAbs while not being significantly different performance wise. Similar to the other investi-

gated kernels, the linear kernel had worse performance for the VRC-PG04 bNAb compared to

the oligo kernel or the random forest approach. The prediction performances are presented in

S6 Fig and S5 Table. There are a plethora of machine learning approaches that could be used

to tackle the here discussed classification task. Thus, we do not claim that there cannot be a

better method than SVMs based on the oligo kernel. From our analysis, it seems that for

bNAbs that need a single specific amino acid for a successful binding such as the V3-loop or

V1/V2-loop targeting bNAbs, simpler models will perform equally well as the oligo kernel

approach. Depending on the learnt hyperparameters, the oligo kernel however can also cap-

ture more complex l-mers, an advantage if the binding site pattern of the bNAb is not known

beforehand.

Model reliability and user features

Learnt hyperparameter of prediction models agree with binding patterns of bNAbs.

Table 1 presents the final parameters settings for the classifiers for the bNAbs PG9, PG16, 10-

669, 10-1074, PGT121, VRC01, and VRC-PG04 fitted by a stratified 5-fold cross-validation.

For the PGT121 and VRC-PG04 classifier an l-mer of length 6 led to the best performance

whereas the l-mer length for the other antibodies was comparatively small (2-mers for VRC01

and single positions for the remaining antibodies). The length differences of the l-mers for dif-

ferent epitope classes supports the knowledge gained from experimental findings. For the N-

glycan dependent antibodies, a single glycan site is the most important residue for successful

binding. The N332-linked (V3 loop directed) antibodies PGT121, 10-1074, and 10-996 need in

the first instance an asparagine at position 332 for successful binding [16]. The N160-linked

antibodies PG9 and PG16 bind in a hammerhead-like way to the virus, building contacts with

two glycans (160 and 156 or 171) [15]. For the CD4 binding site (CD4bs), which forms a cav-

ity, it is only known that it is sterically not easy to bind to for antibodies [50]. Longer l-mers

led to the best prediction results for the CD4bs classifiers, which is likely due to the fact that

the CD4bs-directed bNAbs target a larger epitope compared to the other bNAbs.
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Fig 1. Prediction performance of the classifiers. The AUC performances for each bNAb classifier using the oligo kernel were determined by

10 runs of a stratified 5-fold nested cross-validation. On the x-axis, the different classifiers are presented, named according to the bNAb they are

trained on. The colors of the boxes refer to the epitope category of the corresponding bNAb. The prediction performance of a random classifier is

depicted by the gray dashed line.

https://doi.org/10.1371/journal.pcbi.1005789.g001

Table 1. Final parameter settings for the oligo kernel classifiers for each bNAb.

Epitope bNAb l width

V1/V2 Loop PG9 1 1

PG16 1 0.4

V3 Loop PGT121 6 1.6

10-996 1 2.6

10-1074 1 1.6

CD4bs VRC01 2 3.6

VRC-PG04 6 20

The parameter l denotes the size of the l-mer and the parameter width (σ2) the allowed positional uncertainty

of the kernel.

https://doi.org/10.1371/journal.pcbi.1005789.t001
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Classifiers learnt important binding sites. In general, the learnt signals of a non-linear

kernel-based SVM classifier can be traced back, if the kernel incorporates positional informa-

tion such as the weighted degree kernel with shifts (WDKS) [51] or the oligo kernel [52]. By

construction of the oligo kernel (see Methods), it is possible to retrieve the learnt weight of all

occurring oligomers at each position in the sequence to the classifier.

Considering the 15% strongest learnt signals for each classifier, we found that several

amino acids (residues) of the envelope protein were learnt by the classifiers to influence neu-

tralization resistance or susceptibility, which are also supported by literature [39, 53]. In

Table 2 we present the learnt signals of the classifiers exemplarily for the bNAbs PG9, PG16,

10-669, 10-1074, PGT121, VRC01, and VRC-PG04 that are supported by previous studies.

Most of the found discriminant signals for the N-glycan dependent antibodies, that is, for

the V1/V2 loop and V3 loop directed antibodies, contain the amino acids asparagine (N), ser-

ine (S) and threonine (T). These amino acids are also part of the pattern N-X-[S or T], which

defines potential N-glycosylation sites [54]. The classifiers for the CD4bs antibodies identified

known required residues for CD4-binding as reported in [53]. The fact that all classifiers learnt

some known discriminant position, further support the reliability of the prediction models in

addition to the provided prediction performances. Additionally to the already known epitope

sites, we found further discriminant residues whose role needs to be validated in knock-out

experiments and might be interesting for follow-up structural studies (see S7 Table for a com-

plete list of 1% discriminant signals).

Motif logo improves classifier interpretability. To improve the interpretability of the

classification decision, we show how to produce for each classification of a test envelope

sequence a motif logo—a representation of the test sequence—that displays those residues in

the test sequence that contributed the most to the classification result. Using the available ker-

nel feature representation of the oligo kernel, it is possible to retrieve the contribution of each

residue of the test sequence to the classification. As the envelope glycoprotein consists of

around 800 amino acids, visualizing the contribution of all amino acids to the classification

would not be very informative. Instead, since the prediction performance of classifiers based

only on the strongest p% signals with p 2 {1, 3, 5, 7, 10, 15, 20, 25} performed not significantly

worse than the classifiers based on the complete envelope sequences (see S4 Table), we present

only the contribution of the strongest signals in the motif logo.

For demonstration purposes, we retrieved several HIV-1 envelope sequences from the Los

Alamos HIV sequence database [48] serving as test input for the classifiers. In Fig 2 we present

the motif logo for the test sequence with the GenBank ID HM469973, which was classified by

the PG9 classifier as susceptible, using the strongest 5% learnt discriminant signals to the

Table 2. Learnt discriminant signals by each bNAb classifier that are supported by literature.

bNAb susceptible resistant

PG9 N160, N301, S393, S613, K168, K169, K171 N624, D187

PG16 N136, N141, N160, N186, N234, N289, N356

S393, K169, K171, D167, T138

N230

VRC01 N186, N276, N279, N280, G459, K232

VRC-PG04 N186, N276, N279, N280, G459, K232, R456, D368

10-996 N332, S334 N334

10-1074 N332, S334 N334, T388, T818

PGT121 QAHCN328-332, R332

Signals among the 15% strongest learnt signals for each classifier were considered.

https://doi.org/10.1371/journal.pcbi.1005789.t002
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classification outcome of the test sequence. The asparagine (N) at position 160, which is

known to be decisive for a successful binding of the PG9 bNAb, as well as the lysine (K) at

position 157 have the highest contribution to the classification result, more precisely to suscep-

tibility. In general, most of the 5% strongest signals influence the classification result towards

susceptibility.

Trend towards bNAb resistance over time

In order to investigate whether neutralization sensitivity of HIV-1 to bNAbs has changed over

time, we additionally built support vector regression models to directly predict the (logarith-

mized) IC50 value for the 11 considered bNAb. For subtype B variants, a continuous trend

towards resistance has been already confirmed in certain cohorts (around 40 samples) of the

French and Dutch HIV-1 population [55–57]. Since evolving resistance to antibody neutraliza-

tion in the HIV-1 species would have major implications on the antibody selection for current

vaccine development, it is important to know whether such a drift towards resistance also

exists in the global HIV-1 population for all subtypes. In contrast to an experimental setting,

where the large number of viral strains and the accruing costs make neutralization assays for

the comprehensive global population hardly possible, our prediction models can be easily used

to examine this question based on the vast amount of available sequence data.

To model the global HIV-1 population over time, we used all available envelope sequences

from the Los Alamos HIV sequence database (around 34,000 after data processing, see Meth-

ods and S9 Table for accession numbers) comprising viral isolates from all major subtypes

over a time interval from 1981 to 2013. We divided the given time interval into the following

six time periods to account for changes in HIV-1 treatment strategies: 1981-1986 before ART,

1987-1991 ART monotherapy, 1992-1995 ART combination therapy (cART), 1996-1999

cART with protease inhibitors, 2000-2005 cART with Lopinavir/Ritonavir, and 2006-2013

cART with Maraviroc/Raltegravir. With this partitioning of the data, we additionally covered

the considered time intervals in the previously performed experimental studies [55–57]. An

overview of the different subtypes and country distribution per time period are displayed in S2

Fig.

Fig 2. Motif logo for the test sequence HM469973 using the PG9 classifier. For the motif logo the

contribution of 5% of the strongest discriminant signals to the classification is considered. The height of the

letters depends on the proportional contribution to the classification. Amino acids of the test sequence that

influence the classification outcome towards neutralization susceptibility are displayed in capital letters and

blue color; lowercase letters and orange color if they contribute to neutralization resistance. For better

interpretability, the corresponding positions of the amino acids in the envelope sequence of the HIV strain

HXB2 are shown on the x-axis.

https://doi.org/10.1371/journal.pcbi.1005789.g002
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In order to identify a drift towards resistance, we performed a permutation test for umbrella

alternatives [58] on the predicted (logarithmized) IC50 values grouped by the six time periods.

The umbrella test [59] is a more general test than the Jonckheere-Terpstra test [60, 61]. Instead

of testing for a monotonic trend, it tests for a peak in one of the time periods—a trend, mono-

tonically increasing before and decreasing after the peak. The permutation test of umbrella

alternatives [62] provides in additional partial p-values for each group, which enables a better

analysis of the trend. Here, we define a trend towards resistance, if the peak is in the last time

periods (see Methods for details). In contrast to the experimental studies [55–57], our data set

is much larger, covers longer time periods, and is more heterogeneous. Thus, we expected to

see more variation in our groups and therefore decided to use the umbrella test as a more gen-

eral test in our case. However, we additionally provide the statistics for the Jonckheere-Terp-

stra test in S6 Table, which can be seen as a more conservative test.

When considering only the subtype B variants of the around 34,000 viral isolates (17,392),

we observed a statistically significant increase of the predicted (logarithmized) IC50 values

over the six time periods to each of the 11 bNAbs (P� 0.001 using the umbrella test and a sig-

nificance threshold t = α/#tests = 0.05/22 = 0.0023 with Bonferroni correction for multiple test-

ing). Thus, we could confirm the trend towards bNAb resistance [55–57] on a larger and more

diverse data set. The predicted (logarithmized) IC50 values for the subtype B samples for all 11

bNAbs are provided in S3 Fig. Note that in order to avoid misleading data visualization, we

present all the predicted values for all 11 bNAbs on the same y-scale, though the bNAbs differ

in their neutralization strength. Though we find the last time periods as part of a significant

trend in the data for PG9, PG16 and PG128, the partial p-values indicate rather a plateau dis-

tribution than a clear trend towards resistance in the last time periods (see S6 Table).

In addition, we predicted and analyzed the neutralization sensitivity of the non-B subtype

samples (16,546) to the 11 bNAbs. A statistically significant trend towards resistance was

observed for all considered bNAbs, but PG9, PG16, PG121,PGT128 and NIH-4546. In Fig 3

we show exemplarily the predicted (logarithmized) values for the bNAbs (A) 3BNC117

(CD4bs), (B) PGT121 (V3 loop), (C) 35O22 (gp41/gp120), and (D) PG16 (V1/V2 loop); see S4

Fig for all bNAbs and non-B subtype samples. While for the bNAb PGT128 there was no sig-

nificant peak at all, the trend towards resistance to the bNAb PGT121 was not significant after

Bonferroni correction for multiple testing. For PG9, PG16 and NIH-4546, we detected a signif-

icant peak in the data, but not in the last time period, which we however required to determine

a trend towards resistance (see Methods for details). The peak for NIH-4546 was slightly

shifted (in the fifth time period), whereas for PG9 and PG16 a significant peak was already

detected in the first time period, that is, the HIV variants tend to become more susceptible in

the last time period. Since there are no experimental data on HIV-1 resistance development

trends to bNAbs for the non-B subtype population, we decided to first rule out the possibility

of a confounder that might lead to the contrasting trend for PG9 and PG16. Pfeifer et al. [63]

discovered that there is a statistically significant bias in the neutralization susceptibility of

HIV-1 variants to PG9 and PG16 depending on the coreceptor usage of the virus. For success-

ful entry of the virus into the host cell, the glycoprotein gp120 has not only to bind to the

CD4-receptor on the host cell, but also to a second chemokine receptor on the host cell

that acts as co-factor (coreceptor). The coreceptors mainly used by HIV-1 are CCR5 and

CXCR4. Depending on the coreceptor usage, the virus strain is referred to as R5- or X4-tropic,

or dual-tropic if the virus can bind to both of these coreceptors, and X4-capable, if they are

either dual-tropic or X4-tropic [64]. X4-capable viruses have been shown to be more resistant

to PG9 and PG16 [63]. This means that PG9 and PG16 have an R5-bias, that is, they are better

in neutralizing R5-tropic viruses than X4-capable viruses. By determining the coreceptor

usage for all considered viral samples with the most widely used tool for genetic tropism
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Fig 3. Characteristics of the non-B subtype HIV variants over time. Predicted neutralization sensitivity of non-B subtype HIV-1 variants to

bNAbs over time. A - D: the predicted neutralization sensitivity of HIV-1 samples of the non-B subtype to the bNAbs 3BNC117, 35O22, PGT121,

and PG16. E: the ratio of R5-tropic and X4-capable non-B subtype HIV-1 variants in the Los Alamos HIV sequence database over the six time

periods. F: predicted neutralization sensitivity of R5-tropic variants of the non-B subtype to PG16.

https://doi.org/10.1371/journal.pcbi.1005789.g003
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testing, geno2pheno[coreceptor] [65], we detected a stronger increasing ratio of R5- to

X4-capable viruses over the time periods for the non-B than for the subtype B samples (see Fig

3E and S2 Table). Thus, we might see an increase in neutralization susceptibility to PG9 and

PG16 due to the relative increase of R5-tropic variants in the later time periods, since R5-tropic

variants are more susceptible to PG9 and PG16. With an analysis, analogous to Pfeifer et al.

[63], we observed an R5-bias of the bNAb PGT128 (P = 0.00568 using a two-sided Fisher’s

exact test, see also S3 Table). Fig 4 shows the relative number of resistant and susceptible HIV

strains to PGT128 in comparison to PG9, PG16, VRC-PG04 and VRC01. Data for VRC01,

VRC-PG04, PG9 and PG16 was taken from Pfeifer et al. [63]. We additionally analyzed the

association between coreceptor usage and neutralization sensitivity for all considered 11

bNAbs. As can be seen in S5 Fig, we could not detect other bNAbs with an R5-bias. For the

bNAb PG16, a resistance trend was only detected for the R5-tropic variants (see Fig 3F). Note

that sequences from the beginning of the HIV epidemic (first two time periods) were probably

from patients having AIDS and not at early stage of HIV infection as nowadays. Since at early

stage of clinical HIV infection usually R5-tropic viruses are predominant [66, 67], this might

also explain the decrease of X4-capable variants in the database over time. The first time period

contains also less samples than later time periods, which might influence the trend.

We could detect a trend towards resistance for all 11 bNAbs regarding the subtype B HIV-

variants (10/11 if Jonckheere-Terpstra test is used). For the non-B subtype population, we

observed the trend for only 6 of the 11 bNAbs (5 of 11 if Jonckheere-Terpstra test is used). A

summary of the findings and the corresponding p-values of both statistical tests can be found

in S6 Table.

Conclusion

In this study, we showed that neutralization sensitivity of new HIV-1 variants to broadly neu-

tralizing antibodies (bNAbs) is predictable using neutralization information from existing

neutralization assays. The credibility of the models were underlined by the finding that the

prediction models learnt important binding sites for the bNAbs implicitly, without explicitly

getting this type of information in the learning process. Hence, additional information such as

structural binding site information is unlikely to boost the performance significantly. We

increased the interpretability of the models, by offering the user more information on the pre-

diction outcome in form of a motif logo where the logo displays the contribution of the pivotal

residues of the test sequence to the prediction. In general, our method could be applied as a

recommendation tool for bNAbs therapy, but it could already be used in planning clinical tri-

als concerning bNAbs therapy to screen patients before those therapies are approved for clini-

cal use.

It is unquestioned, that an effective bNAb therapy will consist of a combination of bNAbs

targeting distinct epitopes on the envelope spike to prevent the emergence of antibody resis-

tance. To determine which and how many bNAbs to choose, several studies analyzed systemat-

ically combinations of different bNAbs [68, 69] experimentally but also predicted the

neutralization sensitivity using additive models. However, these prediction models need the

neutralization sensitivity of the virus to the single bNAbs in the combination as input. Our

learnt classifiers could be extended similarly to additive models that predict if or how effective

a combination of bNAbs is requiring only the envelope sequence of the virus.

Despite the good performance and biological relevance of our classifiers, the current models

are not suited for a direct application in clinical settings. In the clinical setting, it is more toler-

able to misclassify a sensitive HIV variant to a bNAb than misclassifying a resistant HIV-1 var-

iant. While the area under the ROC curve was helpful in determining, if the classification task
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can be accomplished with our proposed methods and for comparison reasons, it is not the best

approach to design the models for the final application setting due to the low average specific-

ity for some of the bNAbs (see S5 Table). In order to apply our models in the clinical setting,

clinical data has to be analyzed instead of pseudovirus panel data. In addition, an appropriate

false discovery rate has to be agreed on with the clinicians, for which the final models can be

optimized for. This holds for any method used for this classification task. Apart from their

Fig 4. Association between coreceptor usage and neutralization sensitivity. Relative number of resistant (orange) and susceptible (blue)

strains with regard to their coreceptor usage for the bNAbs PGT128 and VRC-PG04, as well as for VRC01, PG9, and PG16. Statistical

significance was assessed with a two-sided Fisher’s exact test. Data for VRC01, VRC-PG04, PG9 and PG16 was taken from Pfeifer et al. [63].

https://doi.org/10.1371/journal.pcbi.1005789.g004
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potential use as recommendation tool, computational prediction models can in general be

used to analyze the change in the neutralization sensitivity of HIV-1 over time. We could con-

firm previous results suggesting a trend towards antibody resistance in the subtype B popula-

tion [55–57]. Moreover, we scaled up the analysis to the global HIV-1 population, showing

that there is a general drift towards antibody resistance in the world-wide HIV-1 population

for most of the bNAbs. These findings are relevant for the selection of suitable vaccine candi-

dates; a combination of bNAbs is however still very potent in neutralizing HIV-1 [56].

Materials and methods

Neutralization assay

We used the IC50 titers of 11 different antibodies (PG9, PG16, 35O22, VRC01, VRC-PG04,

3BNC117, NIH45-46, PGT128, PGT121, 10-996 and 10-1074) for 115 to 220 HIV-1 isolates

from three different neutralization assays [10, 26, 47] (see S8 Table). For the bNAbs PG9,

PG16, PGT121 and VRC01 neutralization information was available from two neutralization

assays. Although the overlap of tested HIV-1 samples was quite high as well as the correlation

of the corresponding IC50 titers, we did not merge the information from the two assays for

these bNAbs. We represented each HIV-1 isolate by the amino acid sequence of its envelope

glycoprotein from the Los Alamos HIV sequence database [48]. We excluded HIV-1 isolates

for which no GenbankID was available, or the envelope sequence was shorter than 800 amino

acids.

Data preparation for prediction models

Since the feature vector of each sample has to be of the same length for most of the kernels, we

aligned the amino acid sequences with the HIValign tool from the Los Alamos HIV sequence

database [48]. For the polynomial and Gaussian RBF kernel the amino acid sequences have to

be transformed to a real-valued input. We used one-hot encoding to represent the sequence

information for the polynomial kernel, i.e., each amino acid ai, i 2 {1, . . .20} is transformed

into a 20-dimensional vector, where only the i-th entry is 1, and the others are 0. For the

Gaussian RBF kernel, we encoded the sequence information using physico-chemical proper-

ties (RBF1 [70] and RBF2 [71]).

In the classification task, the IC50 titers were converted to -1 if the IC50 value was above

50 μg/mL (resistant), and otherwise to +1 (susceptible) similar to Doria-Rose et al. [47]. Due to

their distribution, the IC50 values for the regression task were logarithmized.

Kernel comparison and parameter settings

To test if l-mer string kernels (such as the oligo kernel [52] or the weighted degree kernel with

shifts (WDKS) [51]) perform better than conventional kernels (such as the polynomial or the

Gaussian RBF kernel), we compared the performances of prediction models based on each of

these kernels. The comparison was conducted by 10 runs of a 5-fold nested cross-validation

using AUC and Pearson Correlation Coefficient as performance measure for the classification

and regression task, respectively. The tested parameter range for each kernel is listed in S1

Table. To determine the best parameter setting for each bNAb prediction model, we per-

formed an additional 5-fold cross-validation. Since in the nested cross-validation mainly small

values of the width parameter (2σ2) led to high prediction performances, we further sampled

the range between 0 and 3 for this parameter.
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Method comparison and parameter settings

We compared the final SVM classifiers based on the oligo kernel with random forests, an SVM

using a linear kernel, a neural network, and a logistic regression with lasso regularization

(lasso). For the random forest, the neural network, and the lasso approach, the amino acid

sequences were mapped to their index in the amino acid alphabet. For the linear kernel, the

sequences have been encoded using the one-hot encoding approach, i.e., each amino acid ai,

i 2 {1, . . .20} is transformed into a 20-dimensional vector, where only the i-th entry is 1, and

the others are 0. While the random forest approach can handle internally categorical variables

with more than two factors, we created dummy features for each alignment position for the

neural network and the lasso approach. We used the R package randomForest [72] setting the

number of variables randomly sampled as candidates at each split (mtry) to the square root of

the number of features in the model and the numbers of tree to grow (ntree) to 500. For the

neural network, we used the R package neuralnet [73], we used one layer and set the number

of hidden layers to the square root of the number of features. To build the logistic regression

models, we used the R package glmnet [74] where we used lasso as regularization (α = 1) and

tuned the lambda parameter in an internal cross-validation. For the linear kernel, we used the

R package kernlab [75] setting the kernel to vanilladot using the default cost parameter C. The

performance was assessed on 10 runs of stratified 5-fold cross-validation. We did not compare

the performance over a nested cross-validation iterating over different hyperparameters for

the models, due to the infinite range of possibilities. We used the R package mlr [76] to com-

pare all the methods.

Retrieving discriminant signals from the oligo kernel

A kernel k(x, x0) can be considered as a similarity function between instances x and x0. The

oligo kernel computes k(x, x0) between two sequences x and x0 of same length L by comparing

the co-occurrences of their substrings (oligomer) of length l with 1� l� L within a particular

distance (width parameter σ2). Therefore, the occurrence of a particular l-mer in a sequence x
(denoted as xω) is encoded by the so-called oligo function μ

moðtÞ ¼
X

p2xo

exp �
1

2s2
ðt � pÞ2

� �

ð1Þ

with the continuous position variable t 2 [1, L] and σ2 controlling the positional uncertainty.

As described in [52], the corresponding learnt weight of the classifier for each oligomer ωat

each position t can be retrieved by

jwoðtÞj ¼ j
XN

i¼1

aiyim
i
o
ðtÞj; ð2Þ

where i 2 {1, . . ., N} denotes the i-th training sample with αi� 0 and yi 2 {−1, 1} being the

learnt weight and classification label of the i-th sample, and with mi
o
ðtÞ being the oligo function

of l-mer ω of the training sequence i at position t.
Considering the weights of each oligomer for the test sequence, there exists only one oligo-

mer ω containing the actual residue as starting point whose contribution is calculated as

S�
o
ðtÞ ¼

XN

i¼1

aiyi < mi
o
ðtÞ; m�

o
ðtÞ >; ð3Þ

with m�
o

being the oligo function of l-mer ω of the test sequence. For l-mers> 1 the computed
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contribution is assigned to all amino acids of the oligomer. To visualize the motif logos we

used Weblogo 3.0 [77].

Data preparation and analysis of the sequence data for the neutralization

sensitivity trend analysis

We used all available envelope sequences from the Los Alamos HIV sequence database [48]

(37,137), except the sequences that the prediction models were built on and those that were

too short, resulting in 35,524 envelope sequences. For 1586 sequences no date was given, and

thus these sequences were excluded as well, resulting in 33,938 considered viral envelope

sequences. Before predicting the IC50 value for each test sequence, the sequences were aligned

to the data sets using profile-to-profile MUSCLE alignment [78] with the Ugene tool [79].

Instead of predicting the IC50 value, the regression models were trained to predict the loga-

rithmized IC50 value.

To identify a drift towards resistance, we performed a permutation test for umbrella alter-

natives [58] on the predicted (logarithmized) IC50 values grouped by the six time periods. We

applied the umbrella test according to Basso et al. [58, 62] with the provided R code. The

umbrella test is a generalization of the Jonckheere-Terpstra test, testing for a peak instead of a

monotone trend. A significant peak in the last time period was considered as indicator for an

increasing trend in IC50 values and thus, a trend towards bNAb resistance.

Coreceptor prediction

To predict the coreceptor usage, we used the well established prediction tool geno2pheno[cor-

eceptor] [65]. The prediction tool uses a linear support vector machine to predict whether a

sequence is from a X4-capable or an R5-tropic virus, only based on the V3 loop sequence

of the viral envelope sequence. For each V3 sequence, geno2pheno[coreceptor] provides

the false-positive rate (FPR), which is a measure for the confidence of the prediction. geno2-

pheno[coreceptor] reports the minimal FPR threshold at which the sequence would be

classified as X4-capable. For the manuscript, we used an FPR cutoff of 10% to determine

X4-capable (� 10%) and R5-tropic viruses (> 10%) as recommended by the European Con-

sensus Group on clinical management of HIV-1 tropism testing [80]. Since there are also rea-

sons for other cutoff choices, we additionally provide the results for the FPR cutoffs according

to the German and Austrian treatment guidelines (� 5%: X4-capable;� 15%: R5-tropic) in

the Supporting Information.

Coreceptor usage distribution in the Los Alamos HIV sequence

database

We used the prediction tool geno2pheno[coreceptor] [65] to determine the coreceptor usage

of the 33,938 viral isolates from the Los Alamos HIV sequence database [48]. According to

the prediction tool, we excluded in total 545 sequences due to warnings regarding the align-

ment quality and due to warnings regarding the V3 loop quality (alignment score� 95th

percentile).

Association between coreceptor usage and neutralization by PGT128

For this analysis, we used all available sequences from the CATNAP tool [81], retrieved on

2016-08-10. Since we used a neutralization sensitivity cutoff of 50 μg/mL to determine resis-

tance and susceptibility, all sequences, whose neutralization sensitivity were only given as a

cutoff less than 50 μg/mL were excluded. In addition, we excluded two sequences due to poor
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V3 alignment quality. Coreceptor usage was determined using the prediction tool geno2-

pheno[coreceptor] [65]. To test whether the sensitivity to an antibody is significantly differ-

ent with regard to coreceptor usage, we performed a two-sided Fisher’s exact test for the two-

by-two contingency tables with resistant and susceptible as the row label and X4-capable/

R5-tropic as the column label using significance level = 0.05 with the null hypothesis that

there is no difference.

Implementation details

The prediction and analysis of the neutralization sensitivity were implemented mainly in R

[82], version 3.2.1 (2015-06-18) and the R package kernlab [75]. The oligo kernels were com-

puted using a customized version of the Shogun-Toolbox [83] (version 2.0.0). To visualize the

motif logos we used Weblogo 3.0 [77].

Data availability

In S8 Table we provide the virus names that we considered for the prediction models as well as

the study ID of the neutralization assay. With this, the corresponding neutralization data can

be retrieved from CATNAP [81]. For the trend analysis, we provide the accession numbers of

each considered HIV-1 variant in the Los Alamos HIV sequence database [48] in S9 Table.

At https://github.com/annahake/g2p-bnab, we additionally provide the computed kernels

for the final models as well as the resampling instance for the 10 runs of stratified 5-fold cross-

validation. As mentioned in the Conclusion, the final models are so far not adapted for clinical

usage.

Supporting information

S1 Fig. Prediction performance of the regression models. The prediction performance of the

11 SVM regression models based on the oligo kernel was measured by the Pearson correlation

coefficient, displayed on the y-axis. The regression models are named according to the bNAb

they are trained on, shown on the x-axis. The colors of the boxes refer to the epitope category

of the corresponding bNAb. The gray dashed line denotes no linear relationship. The predic-

tion performance was assessed in 10 runs of 5-fold nested cross-validation. Most regression

models show good performances (average Pearson correlation coefficient� 0.3).

(TIFF)

S2 Fig. Subtype and geographical distribution of HIV-1 variants over the six time periods.

For each time period, we display the number of samples from the three most frequent coun-

tries as well as the sum of samples from the remaining countries (OTHER). The country distri-

bution is shown for the subtype B (A) and the subtype non-B HIV-1 variants (B). In C we

display the number of samples in each time period for the five most frequent subtypes, and

additionally the number of samples for the non-B subtypes (dashed line).

(TIFF)

S3 Fig. Neutralization sensitivity analysis for the subtype B HIV-1 variants. Predicted neu-

tralization sensitivity of HIV-1 variants (subtype B) from the Los Alamos HIV sequence data-

base to all 11 bNAbs. Neutralization sensitivity (logarithmized IC50 values) was predicted

using our SVM regression models based on the oligo kernel. The HIV-1 variants are grouped

in six, consecutive, time periods, displayed on the x-axis. A trend towards bNAb resistance

was reported if the neutralization sensitivity increased over time with a significant peak in the

last time period. The significance was determined using a permutation test for umbrella alter-

natives and a significance threshold t = α/# total tests = 0.05/22 = 0.0023 with Bonferroni
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correction for multiple testing.

(TIFF)

S4 Fig. Neutralization sensitivity analysis for the non-B subtype HIV-1 variants. Predicted

neutralization sensitivity of HIV-1 variants (subtype non-B) from the Los Alamos HIV

sequence database to all 11 bNAbs. Neutralization sensitivity (logarithmized IC50 values) was

predicted using our SVM regression models based on the oligo kernel. The HIV-1 variants are

grouped in six, consecutive, time periods, displayed on the x-axis. A trend towards bNAb resis-

tance was reported if the neutralization sensitivity increased over time with a significant peak

in the last time period. The significance was determined using a permutation test for umbrella

alternatives and a significance threshold t = α/# total tests = 0.05/22 = 0.0023 with Bonferroni

correction for multiple testing.

(TIFF)

S5 Fig. Association between coreceptor usage and neutralization sensitivity. For all consid-

ered 11 bNAbs, we display the relative number of resistant (orange) and susceptible (blue)

strains with respect to their predicted coreceptor usage (R5-tropic or X4-capable). Statistical

significance was assessed with a two-sided Fisher’s exact test.

(TIFF)

S6 Fig. Prediction performance comparison for different machine learning approaches.

For each bNAb classifier, the prediction performance measured by the area under the ROC

curve (AUC) is displayed for our SVM models using the oligo kernel, an SVM model using the

linear kernel, a logistic regression model with lasso regularization, a random forest model, and

a neural network model.

(TIFF)

S1 Table. Performance comparison of different kernels and the investigated parameter

range. In order to select a kernel for the SVM models, the performance of the polynomial ker-

nel, radial basis function kernel (RBF), weighted degree with shifts kernel (WDKS) and the

oligo kernel (Oligo) were compared in 10 runs of a 5-fold nested cross-validation. The cost

parameter C of the SVM was sampled in the range from 10E-6 to 10E6 by powers of 10. The

two RBF kernels differ in the physico-chemical encoding of the amino acid sequences (see

Materials). The parameters of each kernel as well as the sampled range for each parameter are

presented in the first sheet. The second sheet contains the prediction performance of each ker-

nel measured by the Area under the ROC curve (AUC) in 10 runs of a 5-fold nested cross-vali-

dation exemplarily for all 11 bNAbs. All kernels performed equally well for all bNAbs, apart

from VRC-PG04, for which the oligo kernel performed better. Therefore, the oligo kernel was

taken to build the prediction models.

(XLSX)

S2 Table. Ratio of R5-tropic to X4-capable viruses in the LANL database. The observed per-

centage of X4-capable and R5-tropic HIV-1 variants in the Los Alamos HIV sequence database

over the six considered time-periods. The coreceptor usage was determined using the well-

established prediction tool geno2pheno[coreceptor] using an FPR-cutoff of 10% as recom-

mended by the European Consensus Group on clinical management of HIV-1 tropism testing,

and the FPR-cutoff recommended by then German and Austrian treatment guidelines (� 5%:

X4-capable;� 15%: R5-tropic).

(XLSX)

S3 Table. Association between coreceptor usage and neutralization by PGT128. HIV-1 var-

iants from a neutralization assay against PGT128 and their coreceptor usage are presented in
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this contingency table. The coreceptor usage was determined using the well-established predic-

tion tool geno2pheno[coreceptor] using an FPR-cutoff of 10% as recommended by the Euro-

pean Consensus Group on clinical management of HIV-1 tropism testing, and the FPR-cutoff

recommended by then German and Austrian treatment guidelines (� 5%: X4-capable;� 15%:

R5-tropic). To test whether the sensitivity to PGT128 is significantly different with regard to

coreceptor usage for each FPR-cutoff, we performed a two-sided Fisher’s exact test using sig-

nificance level = 0.05.

(XLSX)

S4 Table. Performance comparison of the full and reduced prediction models. Performance

comparison (AUC) of the full classification models and classification models that were built

using the strongest p% beforehand learnt discriminant signals. To compare the performances

of the reduced to the full models, we divided our data set into three partitions. Partition A

(40% of the data) was used to build a full model (parameters were fitted using a 5-fold cross-

validation), from which the p% strongest discriminant signals were extracted. Partition B (40%

of the data) was used to build prediction models only based on the p% of the discriminant sig-

nals. On the same data set, we also build the full prediction model. The performance of full

and reduced models were tested on the third partition C (20% of the data). For each prediction

model, we tested the null hypothesis that the full and reduced model have on average the same

performance using a paired, two-sided, Wilcoxon test and a significance threshold t = α/

#reduced models = 0.05/8 = 0.00625 with Bonferroni correction for multiple testing. For each

prediction model, we could not reject the null hypothesis for most of the reduced models.

Only five comparisons show a significant p-value (marked in red), which is however very close

to the Bonferroni correction threshold.

(XLSX)

S5 Table. Prediction performance comparison for different machine learning approaches.

For each bNAb classifier, the prediction performance measured by the averaged area under

the ROC curve (AUC) is displayed for our SVM models using the oligo kernel, an SVM model

using the linear kernel, a logistic regression model with lasso regularization, a random forest

model, and a neural network model. The prediction performance was assessed using 10 runs

of a stratified 5-fold cross-validation. In addition, we provide the mean sensitivity and mean

specificity for each model.

(XLSX)

S6 Table. Statistical analysis of the neutralization sensitivity over time. To investigate

whether there is a trend towards resistance over time, we performed a Jonckheere-Terpstra

test as well a permutation test for umbrella alternatives. The first sheet contains an overview of

bNAbs and subtypes for which we were able to detect a trend towards resistance. The second

sheet provides the p-values from both tests.

(XLSX)

S7 Table. 1% learnt discriminant signals for each bNAb classifier. For each bNAb we display

the 1% strongest learnt signals (oligomers), their position compared to the HXB2 reference

and the learnt weight. Negative weights denote associations towards resistance, while positive

weights denote associations towards sensitivity. The weights for different classifiers are not

comparable. Note that a gap signal implies an absence of a certain amino acid at a certain posi-

tion. Especially if several amino acids are associated with sensitivity or resistance at a certain

position, the gap character might be strongly associated with the other direction (resistance or

sensitivity), even stronger than the individual amino acid signals.

(XLSX)
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S8 Table. Neutralization assay data used for the predictions. We built prediction models for

each bNAb separately based on existing neutralization assay data. Here, we list for all 11

bNAbs, the considered viruses (virus names) together with the corresponding study ID in

CATNAP [81].

(XLSX)

S9 Table. Data for the trend analysis. The accession numbers of the HIV-1 envelope amino

acid sequences from the Los Alamos HIV sequence database [48] that we used to analyze neu-

tralization sensitivity over time together with the predicted coreceptor usage and our predicted

IC50 values.

(XLSX)
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Abstract: 

3BNC117 is a broad and potent anti-HIV-1 neutralizing antibody that targets the CD4 

binding site on the viral envelope spike. When administered passively, this antibody can 

prevent infection in animal models and suppress viremia in HIV-1-infected individuals. 

Here we report that HIV-1 immunotherapy with a single injection of 3BNC117 impacts 

host antibody responses in viremic subjects. In comparison to untreated controls that 

showed little change in their neutralizing activity over a six-month period, 3BNC117 

infusion significantly improved neutralizing responses to heterologous tier 2 viruses in 

nearly all study participants. We conclude that 3BNC117-mediated immunotherapy 

enhances host humoral immunity to HIV-1. 
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Main Text: 

Development of serum neutralization breadth during HIV-1 infection typically occurs 

several years after infection and is seen as a continuum with ~50% of HIV-1-infected 

individuals developing some level of broad neutralization and a small fraction of 

individuals acquiring serum neutralizing activity of extraordinary breadth and potency (1-

4). Antibody cloning experiments revealed that this activity is due to one or more potent 

broadly neutralizing antibodies (bNAbs) that target one or more epitopes on the viral 

spike protein, gp160 (1, 5-10). 

 

bNAbs show exceptional breadth and potency in vitro, and can protect against or 

suppress active infection in humanized mice (11-13) and macaques (14, 15). Moreover, 

in a phase I clinical trial, a single injection of 3BNC117, a CD4-binding-site specific 

bNAb (6) was safe and effective in suppressing HIV-1 viremia by an average of 1.48 logs 

(16).   

 

In addition to direct effects on target cells and pathogens, antibody-mediated 

immunotherapies have the potential to engage the host immune system and induce both 

innate and adaptive immune responses (17). In particular the Fc domains of antibodies 

interact with receptors on innate cells such as natural killer (NK) cells and phagocytes to 

enhance the clearance of viral particles and the killing of infected cells (18). To test the 

hypothesis that bNAb-mediated immunotherapy can enhance immunity to HIV-1 in 

humans, we examined the serologic responses to the virus in individuals who received 

3BNC117.   
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A single 3BNC117 infusion was administered to HIV-1-infected individuals at doses of 

1, 3, 10, or 30 mg/kg (Fig. 1A, Table S1A) (16, 19). To determine whether 3BNC117 

therapy is associated with changes in viral sensitivity and serologic responses to 

autologous viruses, we cultured HIV-1 from peripheral blood mononuclear cells 

(PBMCs) of 9 viremic individuals before (d0) and 4 weeks (wks) after 3BNC117 

infusion (16). On d0, all but one of the cultured viruses were sensitive to 3BNC117 with 

IC50 values ranging from 0.09 - 8.8 µg/ml (Fig. 1B and (16)). At wk 4, we found 

increased resistance to 3BNC117 in most individuals indicating selection for viral escape 

variants (Fig. 1B and (16)). 

 

When the same viral isolates were tested for sensitivity to the matched individual’s 

immunoglobulins (IgG) obtained before (d0) and 24 wks after 3BNC117 infusion (Fig. 

1A), we found increased neutralizing activity in the wk 24 IgG against both d0 and wk 4 

autologous viruses (p=0.0078, Fig. 1C, Table S2). Thus, while 3BNC117 infusion 

selected for 3BNC117-resistant HIV-1 variants, neutralizing antibody responses 

continued to develop against autologous viruses (20). 

 

To test for changes in heterologous neutralizing activity following 3BNC117 treatment, 

we assayed patients’ d0 and wk 24 IgG against a panel of tier 1 (n=1) and tier 2 (n=12) 

HIV-1 pseudoviruses that included globally circulating HIV-1 strains (21) (Fig. 2, Table 

S1, S3, S4). Neutralizing activity was compared between the two time points by 

measuring the area under the neutralization curve for subjects’ isolated IgG against each 

71



 5 

virus (AUC) (Table S4B). 15 subjects that received 3BNC117 were not on anti-retroviral 

therapy (ART) and had starting viral loads from 640 - 53,470 copies/ml (Table S1A). 

Control IgGs were obtained from 36 viremic individuals who did not receive 3BNC117 

and had starting viral loads ranging from 150 – 303,200 copies/ml (Fig. 2, Table S1B).  

 

During a 6-month observation period, control individuals’ neutralizing activity showed 

no consistent improvement in either breadth or potency (Fig. 2A and B, S1A, S2, Table 

S4, S5A) (4, 22). In contrast, all but one of the 15 viremic individuals infused with 

3BNC117 showed increased breadth and/or potency against the pseudovirus panel at wk 

24 (p=7.1 x 10-7, Fig. 2A, S1B, S2, Table S4, S5, S6). The absolute change in 

neutralizing activity varied between viruses and individuals, ranging from small effects to 

dramatic increases as observed in patient 2A3 for viral strain Q769.d22 (Fig. 2C, Table 

S4, S5, S6). Significant differences were also evident between 3BNC117-treated and 

control groups regardless whether sera from all individuals were considered in aggregate, 

or examined against individual viruses (p=1.9 x 10-9, Fig. 2B, D).  

 

In addition to viremic subjects, we examined 12 individuals that received 3BNC117 

while on ART, with no detectable or low-level viremia (<20 - 100 copies/ml). In 

comparison to viremic subjects, the increase in heterologous neutralizing activity was 

significantly less pronounced in ART-treated individuals (p=0.037, Fig. 2A, B, and D, 

S1B, S2, Table S3, S4, S5). 
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The observed improvement in neutralizing activity could not be explained by 

confounding factors such as differences in initial viral load or CD4+ T cell levels (Fig. 

S3, Table S1, S7). Moreover, we found no correlation between d0 neutralizing activity 

and neutralization improvement (Fig. S4). A comparison of the pattern of neutralization 

increase with 3BNC117’s neutralization profile ruled out that remaining antibody was 

responsible for the effect (Fig. S5, Table S8). We conclude that 3BNC117 enhances host 

immunity to heterologous tier 2 HIV-1 viruses irrespective of initial neutralization 

breadth and potency. 

 

To examine the effects of 3BNC117 immunotherapy on the plasma viral population of 

treated individuals, we performed single genome sequencing (SGS) of over 1,000 

plasma-derived gp160 env genes (gp160) before (d0) and 4 (6), 12, or 24 wks after 

infusion (Fig. 3A, B and S6-S10, Table S9). With the exception of two individuals who 

were sexual partners, all other volunteers had epidemiologically unrelated infections (Fig. 

3A). On d0, env sequences from subjects 2A1, 2A3, and 2C4 comprised multiple 

lineages, which was reflected in a multimodal distribution of pairwise diversity 

measurements from these individuals (Fig. 3B, S6). Analysis of env sequences from 

subsequent time points revealed significant shifts in both nucleotide (6 out of 9 

individuals, Fig. 3B) and amino acid sequence diversity (7 out of 9 individuals, Fig. S6). 

Consistent with the observation that env diversity is associated with neutralization 

breadth (23-25), there was a strong correlation between the initial level of neutralizing 

activity and the initial diversity of the circulating viral swarm (R2 = 0.92, Fig. 3C).   
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We next evaluated viral sequence evolution in each of the 3BNC117-treated subjects over 

time. Shifts in the viral quasispecies were evident regardless of initial 3BNC117 

neutralization sensitivity and bNAb dose (Fig. 4, S7). However, the nature of these shifts 

differed depending on the subject (Fig. 4, S7-S9). For example, in subject 2A1, 15/27 d0 

sequences fell into a single clade marked “group A” (Fig. 4A, S8). Four weeks following 

3BNC117 infusion group A viruses contracted (2/25 sequences) and group C viruses 

expanded (16/25). At wk 24, the viral quasispecies was primarily comprised of group B 

and D viruses (Fig. 4, S8). This pattern of “clade shifting” was also seen in subjects 2A3 

and 2C4 (Fig. S7). Subjects with lower initial env diversities, such as 2E1, did not harbor 

distinct viral sublineages at d0 (Fig. 3, 4A), but continued to accrue mutations some of 

which became fixed during the 24-week follow-up (e.g. changes in V1/V2 in 2E1, Fig. 

S9). 

 

To assess viral sequence changes following 3BNC117 infusion, we generated 

longitudinal logo plots depicting 3BNC117 contact residues (26, 27) for each subject 

(Fig. 4B, S7, S10). While viruses from all nine subjects exhibited mutations within 

3BNC117 contact residues relative to the d0 consensus sequence, their number and 

position varied considerably as exemplified by subjects 2A1 and 2E1 (Fig. 4B, Fig. S7, 

S10). Using LASSIE (Longitudinal Antigenic Sequences and Sites from Intrahost 

Evolution) (28), we scanned the entire env protein sequence for sites selected within the 

24 wk time frame (selection cutoff ≥80%) (Table S10). While selected sites were 

identified in all subjects, no consistent mutational pattern was observed (Table S10). 

These data suggest that 3BNC117 immunotherapy is associated with shifts in circulating 
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quasispecies and a number of different env mutations, some of which persist even after 

the infused antibody levels drop below detection.  

 

To better understand the virus host-interactions that led to the development of enhanced 

heterologous neutralizing breadth, we performed neutralization assays on 63 

pseudoviruses expressing the gp160s found in the circulation on d0, wk 4, 12 and 24 

from 5 individuals (Fig. 4, S7, Table S11). The pseudoviruses were tested for sensitivity 

to the corresponding individual’s IgG obtained on d0 and wk 24. In all cases, we were 

able to identify d0 or wk 4 viruses that exhibited greater neutralization sensitivity to wk 

24 IgG compared to d0 IgG (Fig. 4, S7, Table S11). For example, all tested 2A1 and 2E1 

viruses were 3BNC117 sensitive and exhibited a wk 24/d0 fold change of ~1.7 and ~4.8 

in IgG IC50 respectively (Fig. 4). On the other hand, all tested 2C4 viruses were 

3BNC117-resistant (mean IC50: >20 μg/ml), yet they were ~6.5-fold more sensitive to wk 

24 IgG versus d0 IgG (Fig. S7). In conclusion, viremic individuals receiving 3BNC117 

produced antibodies to autologous viruses that were both sensitive and resistant to 

3BNC117.   

 

While exceptional broadly neutralizing antibodies to HIV-1 develop only sporadically in 

a fraction of infected individuals, most HIV-1 infected individuals develop some level of 

neutralization breadth (1-4). Here we show that 3BNC117 immunotherapy accelerates 

this process. This boost in heterologous breadth occurs irrespective of demographic, 

virologic, or dosage factors and was associated with both transient and lasting changes to 

the viral quasi-species. Of note, neutralization improvements observed were modest in 
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most individuals, potentially owing to the transient nature of therapy with a single 

antibody as well as the short timeframe of observation. 

 

Although the effect of 3BNC117 on neutralizing responses to heterologous HIV-1 viruses 

may seem surprising, anti-HIV-1 antibodies have been associated with enhanced 

immunity in infants born to HIV-1-infected mothers that have circulating anti-HIV-1 

antibodies and macaques treated with monoclonal antibodies or neutralizing serum (29-

31). 

 

How passively administered antibodies to HIV-1 accelerate the emergence of bNAbs is 

not completely understood. One possibility is that 3BNC117 infusion selected for viral 

variants with altered antigenic properties, which in turn stimulated new B cell lineages 

(23-25, 32-34). A second possibility is that immune complexes formed by 3BNC117 and 

circulating viruses act as potent immunogens, a phenomenon that is believed to be 

responsible for the enhanced CD8+ T cell immunity to tumor antigens in individuals 

receiving monoclonal antibody based immunotherapy (35-37). 

 

Irrespective of the mechanism(s), the enhanced antibody response found in individuals 

receiving 3BNC117 therapy indicates that immunotherapy boosts host immunity to HIV-

1. Moreover, the finding that antibody responses to heterologous tier 2 viruses develop in 

nearly all 3BNC117-treated individuals suggests that host genetics or a specific viral 

envelope sequence do not limit the development of neutralizing antibodies to HIV-1.  

 

 

76



 10 

References and Notes: 

1. F. Klein et al., Antibodies in HIV-1 vaccine development and therapy. Science 
341, 1199-1204 (2013). 

2. A. P. West, Jr. et al., Structural insights on the role of antibodies in HIV-1 
vaccine and therapy. Cell 156, 633-648 (2014). 

3. I. Mikell et al., Characteristics of the earliest cross-neutralizing antibody 
response to HIV-1. PLoS pathogens 7, e1001251 (2011). 

4. P. Hraber et al., Prevalence of broadly neutralizing antibody responses 
during chronic HIV-1 infection. AIDS 28, 163-169 (2014). 

5. X. Wu et al., Rational design of envelope identifies broadly neutralizing 
human monoclonal antibodies to HIV-1. Science 329, 856-861 (2010). 

6. J. F. Scheid et al., Sequence and structural convergence of broad and potent 
HIV antibodies that mimic CD4 binding. Science 333, 1633-1637 (2011). 

7. L. M. Walker et al., Broad neutralization coverage of HIV by multiple highly 
potent antibodies. Nature 477, 466-470 (2011). 

8. F. Klein et al., Broad neutralization by a combination of antibodies 
recognizing the CD4 binding site and a new conformational epitope on the 
HIV-1 envelope protein. J Exp Med 209, 1469-1479 (2012). 

9. M. Bonsignori et al., Two Distinct Broadly Neutralizing Antibody Specificities 
of Different Clonal Lineages in a Single HIV-1-infected Donor: Implications 
for Vaccine Design. Journal of virology,  (2012). 

10. J. F. Scheid et al., Broad diversity of neutralizing antibodies isolated from 
memory B cells in HIV-infected individuals. Nature 458, 636-640 (2009). 

11. F. Klein et al., HIV therapy by a combination of broadly neutralizing 
antibodies in humanized mice. Nature 492, 118-122 (2012). 

12. J. A. Horwitz et al., HIV-1 suppression and durable control by combining 
single broadly neutralizing antibodies and antiretroviral drugs in humanized 
mice. Proceedings of the National Academy of Sciences of the United States of 
America 110, 16538-16543 (2013). 

13. J. Pietzsch et al., A mouse model for HIV-1 entry. Proceedings of the National 
Academy of Sciences of the United States of America 109, 15859-15864 
(2012). 

14. D. H. Barouch et al., Therapeutic efficacy of potent neutralizing HIV-1-specific 
monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 503, 224-
228 (2013). 

15. M. Shingai et al., Antibody-mediated immunotherapy of macaques chronically 
infected with SHIV suppresses viraemia. Nature 503, 277-280 (2013). 

16. M. Caskey et al., Viraemia suppressed in HIV-1-infected humans by broadly 
neutralizing antibody 3BNC117. Nature 522, 487-491 (2015). 

17. S. Bournazos, J. V. Ravetch, Fcgamma receptor pathways during active and 
passive immunization. Immunol Rev 268, 88-103 (2015). 

18. C.-L. Lu, Enhanced clearance of HIV-1-infected cells by anti-HIV-1 broadly 
neutralizing antibodies in vivo. Science,  (2016). 

19. Materials and methods are available as supplementary materials on Science 
Online. 

77



 11 

20. X. Wei et al., Antibody neutralization and escape by HIV-1. Nature 422, 307-
312 (2003). 

21. A. deCamp et al., Global panel of HIV-1 Env reference strains for standardized 
assessments of vaccine-elicited neutralizing antibodies. Journal of virology 
88, 2489-2507 (2014). 

22. S. G. Deeks et al., Neutralizing antibody responses against autologous and 
heterologous viruses in acute versus chronic human immunodeficiency virus 
(HIV) infection: evidence for a constraint on the ability of HIV to completely 
evade neutralizing antibody responses. Journal of virology 80, 6155-6164 
(2006). 

23. H. X. Liao et al., Co-evolution of a broadly neutralizing HIV-1 antibody and 
founder virus. Nature 496, 469-476 (2013). 

24. N. A. Doria-Rose et al., Developmental pathway for potent V1V2-directed 
HIV-neutralizing antibodies. Nature 509, 55-62 (2014). 

25. P. L. Moore, C. Williamson, L. Morris, Virological features associated with the 
development of broadly neutralizing antibodies to HIV-1. Trends Microbiol 
23, 204-211 (2015). 

26. T. Zhou et al., Structural basis for broad and potent neutralization of HIV-1 by 
antibody VRC01. Science 329, 811-817 (2010). 

27. F. Klein et al., Somatic mutations of the immunoglobulin framework are 
generally required for broad and potent HIV-1 neutralization. Cell 153, 126-
138 (2013). 

28. P. Hraber et al., Longitudinal Antigenic Sequences and Sites from Intra-Host 
Evolution (LASSIE) Identifies Immune-Selected HIV Variants. Viruses 7, 
5443-5475 (2015). 

29. L. Goo, V. Chohan, R. Nduati, J. Overbaugh, Early development of broadly 
neutralizing antibodies in HIV-1-infected infants. Nat Med 20, 655-658 
(2014). 

30. N. L. Haigwood et al., Passive immunotherapy in simian immunodeficiency 
virus-infected macaques accelerates the development of neutralizing 
antibodies. Journal of virology 78, 5983-5995 (2004). 

31. C. T. Ng et al., Passive neutralizing antibody controls SHIV viremia and 
enhances B cell responses in infant macaques. Nat Med 16, 1117-1119 
(2010). 

32. P. L. Moore et al., Evolution of an HIV glycan-dependent broadly neutralizing 
antibody epitope through immune escape. Nat Med 18, 1688-1692 (2012). 

33. F. Gao et al., Cooperation of B cell lineages in induction of HIV-1-broadly 
neutralizing antibodies. Cell 158, 481-491 (2014). 

34. J. N. Bhiman et al., Viral variants that initiate and drive maturation of V1V2-
directed HIV-1 broadly neutralizing antibodies. Nat Med 21, 1332-1336 
(2015). 

35. T. T. Wang et al., Anti-HA Glycoforms Drive B Cell Affinity Selection and 
Determine Influenza Vaccine Efficacy. Cell 162, 160-169 (2015). 

36. S. Bournazos, D. J. DiLillo, J. V. Ravetch, The role of Fc-FcgammaR interactions 
in IgG-mediated microbial neutralization. J Exp Med 212, 1361-1369 (2015). 

78



 12 

37. D. J. DiLillo, J. V. Ravetch, Differential Fc-Receptor Engagement Drives an 
Anti-tumor Vaccinal Effect. Cell 161, 1035-1045 (2015). 

38. S. J. Ratcliffe, J. Shults, GEEQBOX: A MATLAB toolbox for generalized 
estimating equations and quasi-least squares. J Stat Softw 25, 1-14 (2008). 

39. P. B. Gilbert, A. J. Rossini, R. Shankarappa, Two-sample tests for comparing 
intra-individual genetic sequence diversity between populations. Biometrics 
61, 106-117 (2005). 

40. E. E. Giorgi, T. Bhattacharya, A note on two-sample tests for comparing intra-
individual genetic sequence diversity between populations. Biometrics 68, 
1323-1326; author reply 1326 (2012). 

41. W. Deng et al., DIVEIN: a web server to analyze phylogenies, sequence 
divergence, diversity, and informative sites. Biotechniques 48, 405-408 
(2010). 

42. A. B. van 't Wout, H. Schuitemaker, N. A. Kootstra, Isolation and propagation 
of HIV-1 on peripheral blood mononuclear cells. Nature protocols 3, 363-370 
(2008). 

43. M. S. Seaman et al., Tiered categorization of a diverse panel of HIV-1 Env 
pseudoviruses for assessment of neutralizing antibodies. Journal of virology 
84, 1439-1452 (2009). 

44. M. Li et al., Human immunodeficiency virus type 1 env clones from acute and 
early subtype B infections for standardized assessments of vaccine-elicited 
neutralizing antibodies. Journal of virology 79, 10108-10125 (2005). 

45. A. P. West, Jr. et al., Computational analysis of anti-HIV-1 antibody 
neutralization panel data to identify potential functional epitope residues. 
Proceedings of the National Academy of Sciences of the United States of 
America 110, 10598-10603 (2013). 

46. S. Kryazhimskiy, D. P. Rice, E. R. Jerison, M. M. Desai, Microbial evolution. 
Global epistasis makes adaptation predictable despite sequence-level 
stochasticity. Science 344, 1519-1522 (2014). 

47. M. A. Larkin et al., Clustal W and Clustal X version 2.0. Bioinformatics 23, 
2947-2948 (2007). 

48. M. Kearse et al., Geneious Basic: an integrated and extendable desktop 
software platform for the organization and analysis of sequence data. 
Bioinformatics 28, 1647-1649 (2012). 

49. D. Darriba, G. L. Taboada, R. Doallo, D. Posada, jModelTest 2: more models, 
new heuristics and parallel computing. Nat Methods 9, 772 (2012). 

50. S. Guindon et al., New algorithms and methods to estimate maximum-
likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic 
biology 59, 307-321 (2010). 

51. D. C. Nickle et al., HIV-specific probabilistic models of protein evolution. PloS 
one 2, e503 (2007). 

52. J. L. Kirchherr et al., High throughput functional analysis of HIV-1 env genes 
without cloning. J Virol Methods 143, 104-111 (2007). 

 

 

79



 13 

Acknowledgments: 

We thank all study participants who devoted time to our research. We thank the 

Rockefeller University Hospital Clinical Research Support Office, the nursing staff for 

patient care and recruitment, the clinical study group of the Infectious Disease Division at 

the University Hospital Cologne, and all members of the Nussenzweig lab for helpful 

discussions. We thank M. Schechter and C. Baro for technical assistance, P. Fast and H. 

Park for Clinical monitoring, E. Gotschlich and B. Coller for input on study design and P. 

Hraber for helping with LASSIE analyses. The data reported in this study are tabulated in 

the main paper and in the supplementary material. Envelope single genome sequencing 

data can be downloaded from GenBank (Accession numbers KX027737 – KX028736). 

This work was supported in part by the Bill and Melinda Gates Foundation Collaboration 

for AIDS Vaccine Discovery (CAVD) Grants OPP1032144 (M.S.S.), OPP1092074 and 

OPP1124068 (M.C.N), the Robertson Foundation to M.C.N., NIH Center for HIV/AIDS 

Vaccine Immunology and Immunogen Discovery (CHAVI-ID) 1UM1 AI100663-01 

(M.C.N) and 1UM1 AI00645 (B.H.H.), the University of Pennsylvania Center for AIDS 

Research (CFAR) Single Genome Amplification Service Center P30 AI045008 (B.H.H.), 

NIH grants UM1AI068618 (MJM), UM1AI069481 (MJM), F30 AI112426 (E.F.K), and 

HIVRAD P01 AI100148 (P.J.B.). T.S. is supported by a Deutsche 

Forschungsgemeinschaft postdoctoral fellowship (SCHO 1612/1-1). F.K. is supported by 

the Heisenberg-Program of the DFG (KL 2389/2-1), the European Research Council 

(ERC-StG639961), and the German Center for Infection Research (DZIF), partner site 

Bonn-Cologne, Cologne, Germany. M.B. is supported by the German National Academic 

Foundation. J.C.L. is supported by an award from CNPq "Ciencia sem Fronteiras" Brazil 

80



 14 

(248676/2013-0). M.C.N. is a Howard Hughes Medical Investigator and an inventor on 

U.S Patent Application No. 14/118,496 filed by Rockefeller University related to 

3BNC117. 

 

Figure 1: Virus sensitivity to 3BNC117 and autologous antibody responses. A. Graph 

displays kinetics of 3BNC117 antibody decay in HIV-1-infected individuals as 

determined by a validated anti-idiotype ELISA (16). Shown are mean values of patients 

infused in each respective dose group. Each patient sample was measured in duplicates. 

Gray shaded area indicates lower level of accuracy of the assay (2 μg/ml). Red arrows 

indicate the timepoints of IgG purification. B. Autologous virus sensitivity to 3BNC117 

before (day 0, grey) and 4 wks (black) after 3BNC117 infusion. Y-axis shows IC50s for 

3BNC117 on viral culture supernatants from PBMCs determined by TZM.bl assay. 

Neutralization assays performed in duplicates. C. Graph shows the AUC of the 

neutralization curves of purified IgGs obtained from sera on day 0 (orange) or wk 24 

(green) against day 0 (left panel) or wk 4 (right panel) autologous viruses. Neutralization 

assays performed in duplicates. p-values determined by Wilcoxon signed-rank test. 

 

Figure 2: Heterologous antibody responses. A. Graph shows the difference in overall 

AUC (mean AUC change) per individual in TZM.bl assays against 13 heterologous 

viruses (see 2D) for day 0 vs. wk 24 IgG obtained from 36 untreated viremic controls 

(mean sampling interval: 26.8 wks), 15 viremic individuals infused with 3BNC117 (mean 

sampling interval: 24.1 wks), and 12 ART-treated individuals receiving 3BNC117 

infusion (mean sampling interval: 24.0 wks) (16). Neutralization assays performed in 
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duplicates. p-values determined by unpaired Wilcoxon test (rank-sum test). B. Graph 

shows the aggregated differences in AUC between d0 and wk 24 IgG assayed by TZM.bl 

for all viruses and all individuals. Each dot represents a single AUC difference for a 

single virus from one individual displayed in A. Colored bars represent mean of all 

AUCs. Whiskers show standard deviation. p-values determined using generalized 

estimating equations (38). C. Graph shows 3BNC117 antibody levels (ELISA, white) and 

TZM.bl neutralization titer (green) against tier 2 strain Q769.d22 in subject 2A3 D. Mean 

AUCs of IgGs of all individuals at d0 (grey) and wk 24 (color of respective group) for 

each HIV-1 pseudovirus tested. Changes in neutralization of viremic control individuals 

without 3BNC117 infusion are shown in yellow (left). Change in neutralization of 

3BNC117-treated individuals shown in dark (off ART, middle) and light blue (on ART, 

right). p-values determined using unpaired Wilcoxon test (rank-sum test). Red stars 

indicate significant p-values after Bonferroni-correction (threshold p < 0.0038). 

 

Figure 3: HIV-1 quasispecies diversity before and after 3BNC117 infusion. A. Maximum 

likelihood phylogenetic tree of single genome-derived env gene sequences from d0 

plasma, before therapy with 3BNC117 (Table S9). Asterisks indicate bootstrap values of 

100%. Individual viral sequences are color coded as indicated. B. Scatter plots depicting 

pairwise nucleotide sequence diversity of plasma env sequences on d0, and wk 4 (2E5, 

wk 6), 12 and 24 after infusion. Each dot represents the pairwise genetic difference 

between two sequences at a given timepoint. Colored bars indicate median diversity, 

while black bars indicates the interquartile range. p-values were determined using a two-

sample U-statistic based Z-test (39-41). C. Graph shows the relationship between d0 
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mean heterologous neutralizing AUC against a panel of tier 1 (n=1) and tier 2 (n=12) 

viruses (x-axis) and the median pairwise nucleotide diversity for each patient (y-axis).  

 

Figure 4: Antibody responses to the evolving viral quasispecies. A. Maximum-likelihood 

phylogenetic trees of single genome-derived env gene sequences from subjects 2A1 and 

2E1 sampled on d0 and wk 4, 12, and 24 after 3BNC117 infusion (left). Clades with 

bootstrap support ≥ 70% are indicated by a black star and are arbitrarily named groups A-

D in case of subject 2A1. Bar graphs (middle) indicate the timepoints from which 

sequences in the tree are derived. Heat maps (right) show the 3BNC117 IC50, d0 IgG IC50 

and wk 24 IgG IC50 values against autologous pseudoviruses using env sequences as 

indicated by colored stars. Neutralization assays performed in duplicates.  B. Sequence 

logo plots illustrating longitudinal amino acid changes in and around known 3BNC117-

contact residues (26, 27) in subject 2A1 and 2E1. Letters indicate deviations from the d0 

consensus shown at the top, whereas white spaces indicate agreement with the d0 

consensus. Colors indicate basic (dark blue) and acidic (red) residues and a turquoise “O” 

is used instead of “N” to indicate a potential N-glycosylation site. Logo plots were 

generated using LASSIE (28). + symbols indicate 3BNC117 contact residues confirmed 

by two crystal structures (26, 27). 
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Materials and Methods 
Study participants 

Study participants that received 3BNC117 were all part of the 3BNC117 Phase-I 
open-label clinical trial NCT02018510 (16). The protocol was approved by the Federal 
Drug Administration in the USA, the Paul Ehrlich Institute in Germany and the 
Institutional Review Boards at the Rockefeller University, the University of Cologne, 
Weill Cornell Medical College and the Brigham and Women’s Hospital Boston. The 
control cohort of untreated viremic HIV-1-infected subjects were study participants in 
Seattle Vaccine Unit Observational Protocols 4712 and 4325 (P.I. MJ McElrath). 
Subjects were recruited from the Seattle, WA community through advertisements and 
referrals from care providers. All participants provided written informed consent before 
participation in the studies and the studies were conducted in accordance with Good 
Clinical Practice.  

 
ELISA of 3BNC117 serum levels 

3BNC117 serum concentrations were determined using a validated sandwich ELISA 
as previously described (16). Lower limit of accuracy of the ELISA assay was 
determined to be 2 µg/ml. Patients for whom background > 0.50 µg/ml at Day 0 baseline 
was detected (Subjects 2A4, 2B3, 2C2, 2C4, 2C1 and 2E2) were excluded from the 
illustration of 3BNC117 serum levels shown in Figure 1A. 
 
Virus cultures 

Virus from study participants was obtained by co-culture of patient peripheral blood 
mononuclear cells (PBMCs) with healthy donor PBMCs as previously described (42). 
Healthy donor PBMCs were obtained from patients by leukapheresis under study 
protocol MNU-0628 at Rockefeller University. All donors provided written informed 
consent before participation. Healthy donor PBMCs were pre-stimulated at a density of 5 
x 106 cells ml-1 in IMDM containing 10% FBS, 1% Penicillin-Streptomycin and PHA at 
1 µg ml-1 for 2-3 days at 37°C and 5% CO2. 6 x 106 of the stimulated donor PBMCs were 
then transferred to IMDM containing 10% FBS, 1% Penicillin-Streptomycin, 10 IU IL-2 
ml-1 and 5 µg ml-1 polybrene and co-cultured with 5-10 x 106 patient PBMCs at 37°C and 
5% CO2. Media was replaced weekly and the presence of p24 in culture supernatant was 
quantified by Lenti-X p24 Rapid Titer Kit (Clontech). Cultures exceeding 1 ng/ml of p24 
per ml of supernatant were frozen and stored at -80°C. Determination of tissue culture 
infectious dose 50 (TCID50) and subsequent testing for sensitivity of autologous viruses 
to different broadly neutralizing antibodies and autologous serum IgG was carried out 
using a TZM.bl neutralization assay according to established protocols (43, 44). All 
neutralization assays were run in duplicates. 
 
Antibody neutralization testing by TZM.bl 

To determine heterologous neutralizing activity, patient sera or purified IgG were 
tested against a defined panel of pseudoviruses in TZM.bl assay as previously described 
(21, 43). IgG was purified from patient plasma using Protein G Sepharose 4 Fast Flow 
according to manufacturer’s instructions. All neutralization assays were conducted in a 
laboratory meeting Good Clinical Laboratory Practice (GCLP) Quality Assurance criteria 

91



 
 

3 
 

(Michael S. Seaman, Beth Israel Deaconess Medical Center). Samples from 3BNC117-
treated patients and controls were tested in intermingled batches at a variety of different 
time points. All neutralization assays were run in duplicates. 
 
Antibody-strain coverage curves 

Total IgG coverage curves ((1/AUC) vs. percent of strains neutralized) were 
generated using Antibody database v2.0 (45). 
 
Area under the curve calculation of antibody neutralization 

The area under the curve (AUC) was calculated using the neutralization (y-axis) at a 
particular measured concentration level (x-axis) using the R package flux (version 0.2.1.). 
In order to have equal distance between concentration levels, concentration levels were 
logarithmized using the natural logarithm. Since mean neutralization activity of both 
treated and the control group towards murine leukemia virus (MuLV) was around 7%, a 
neutralization of 10% was considered background noise. In addition, we tested at which 
concentration level the standard deviation (sd) of the assay exceeded variation due to 
neutralization. For neutralization by total IgG, only concentrations greater than 6.173 
ug/ml were taken into consideration since the measurement variation exceeded changes 
in antibody neutralization below this level (i.e. concentration levels used to calculate 
AUCs were 500 µg/ml, 166.667 µg/ml, 55.556 µg/ml, 18.519 µg/ml and 6.173 µg/ml).  
 
Statistical tests of heterologous neutralization AUC data 

In Figure 2A, mean AUC difference values of off/on-ART patients were compared 
to mean AUC differences of control patients with an unpaired Wilcoxon test (rank-sum 
test).  

 
For Figure 2B pairwise testing was performed if AUC difference values are different 

for different groups (i.e., control group, treated while off-ART, and treated while on-
ART). The model was built using generalized estimating equations for a model with 
intercept and group as the only covariate (38). Equicorrelated measurements within a 
cluster (patient) were assumed and normal distribution was used. p-values were estimated 
for the null-hypothesis that the weight parameter of the group covariate is zero. 
GEEQBOX version 1.0 was used for calculations (38). 

 
For Figure 2D, AUC difference values of controls were compared to the AUC 

difference values of the off-ART (panel 2) or on-ART (panel 3) 3BNC117-treated 
patients using an unpaired Wilcoxon test (rank-sum test). This was performed for each 
virus separately. A star is shown if the p-value was significant after Bonferroni correction 
((p-value <= (0.05 / # tests)) = (p-value <= 0.003846154)). 

 
To exclude that leftover amounts of 3BNC117 could explain the neutralization 

increase observed in 3BNC117-treated individuals, the Spearman rank correlation of 
neutralization changes in each patient with the neutralization profile of 3BNC117 was 
calculated (Fig. S5, Table S8). Rank correlation was calculated using both IC50 and AUC 
values. p-values were corrected for multiple testing by Bonferroni-correction (p-value <= 
(0.05 / # tests)) = (p-value <= 0.0019)). 
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Analysis of confounding variables 

To determine whether the observed difference in AUC improvement between 
3BNC117-treated individuals and viremic controls was confounded by variables such as 
age, time of infection and starting AUC, a systematic confounder analysis was 
performed. For each variable and each virus (Table S7), we tested whether the variable is 
predictive for the observed AUC difference. To do so, a linear regression model 
(intercept only/null model) was compared to an extended model that considered the 
variable in question. A likelihood ratio test asking whether the extended model is superior 
to the linear model was performed (Table S7). To compute the bayes factors for the 
likelihood ratio test, the R package BayesFactor (version 0.9.2) was used. A total of 8 
features was tested across each of 13 viruses (total = 104 tests).  
 
Single genome sequencing (SGS) of HIV-1 env genes  

HIV-1-RNA was extracted from patient plasma using the Qiagen MinElute Virus 
Spin Kit according to manufacturer’s instructions. Extracted RNA was subjected to env-
specific cDNA Synthesis using SuperScript III Reverse Transcriptase and primer 
envB3out 5’– TTGCTACTTGTGATTGCTCCATGT 3’. Remaining RNA was digested 
using RNAseH for 20 minutes at 37 °C before diluted cDNA was subjected to two-
rounds of nested PCR with gp160-specific primers. First round PCR was performed in a 
20 ul volume containing 1x High Fidelity buffer, 2 mM MgSO4, 0.2 mM dNTPs and 0.5 
units of High Fidelity Platinum Taq using 0.2 uM each of primers envB5out 
5’TAGAGCCCTGGAAGCATCCAGGAAG 3’ and envB3out 5’ 
TTGCTACTTGTGATTGCTCCATGT 3’. PCR conditions were 94 °C, 2min; (94 °C, 
15s; 55 °C 30s; 68 °C, 4min) x 35; 68 °C, 15min. Second round PCR was performed 
using 1 ul of PCR 1 and 0.2 uM of primers of envB5in 5’ 
TTAGGCATCTCCTATGGCAGGAAGAAG 3’ and envB3in 5’– 
GTCTCGAGATACTGCTCCCACCC 3’. PCR conditions were the same as PCR-1 
except for 45 cycles and an increased annealing temperature of 58 °C. PCR2 products 
were checked using 1% 96-well E-Gels (Invitrogen). Bands from PCRs with 
amplification efficiencies lower than 30% were subjected to library preparation using the 
Illumina Nextera DNA Sample Prepration Kit (Illumina) as described (46). Briefly, 10 ng 
of DNA per band were subjected to tagmentation, ligated to barcoded sequencing 
adapters using the Illumina Nextera Index Kit and then purified using AmPure Beads XP 
(Agencourt). 96 different purified samples were pooled into one library and then 
subjected to paired-end MiSeq Sequencing using the Illumina Miseq Nano 300 cycle kits 
at a concentration of 12 pM. 
 
Bioinformatic processing of MiSeq env-sequences 

Sequence adapters were removed using Cutadapt v1.8.3. Read assembly for each 
virus was performed in three steps. First, de novo assembly was performed using Spades 
v3.6.1 to yield long contig files. Contigs longer than 255bp were subsequently aligned to 
an HIV envelope reference sequence and a consensus sequence was generated using 
Geneious 8. Finally, reads were re-aligned to the consensus sequence to close gaps and a 
final consensus was generated. Sequences with double peaks (cutoff consensus identity 
for any residue <75%) were omitted from downstream analyses. 
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Analysis of viral evolution 

Alignments of env nucleotide sequences were generated using ClustalW (version 
2.11) (47) or via manual alignment using Geneious (version 8.1.6) sequence analysis 
software (48). Regions that could not be unambiguously aligned were removed for 
phylogenetic analysis and diversity calculations. Evolutionary model classes for 
maximum likelihood phylogenetic analyses were selected using jModelTest (49). 
Maximum likelihood phylogenetic trees were generated using PhyML (version 3) (50) 
with joint estimation of model parameter values and phylogenies. Within-patient trees 
were midpoint rooted and colored using the Rainbow Tree webtool through the Los 
Alamos National Laboratory (LANL) HIV Database 
(http://www.hiv.lanl.gov/content/sequence/RAINBOWTREE/rainbowtree.html). 
Pairwise genetic distances were calculated using PhyML (50) in the DIVEIN webtool 
(http://indra.mullins.microbiol.washington.edu/DIVEIN/diver.html) (41) using the Jukes-
Cantor model of nucleotide substitution or the HIVw model of amino acid substitution 
(51). Pairwise genetic diversity was compared among samples using a two-sample U-
statistic test (39, 40) in the DIVEIN webtool (41).  

 
Highlighter plots were generated using the LANL nucleotide and amino acid 

Highlighter tools 
(http://www.hiv.lanl.gov/content/sequence/HIGHLIGHT/highlighter_top.html). To 
generate Day 0 consensus sequences, each site was assigned the residue present in the 
highest frequency in Day 0 sequences. Gaps were treated as characters and sites without a 
single, most common residue were assigned ”X.”  

 
Longitudinal modified weblogo plots of 3BNC117 contacts were generated using 

LASSIE (Longitudinal Antigenic Sequences and Sites from Intrahost Evolution) (28). 
Sites under significant selection (cutoff ≥80% new amino acid residue in particular 
position relative to Day 0 consensus) were determined and graphed using LASSIE. 

 
Generation of CMV-env based pseudoviruses 

CMV-env expression cassettes were generated according to an established protocol 
(52). Briefly, the CMV promoter was amplified from pcDNA 3.1D/V5-His-TOPO 
Expression vector using the primers CMVenv 
5’AGTAATCAATTACGGGGTCATTAGTTCAT 3’and CMVenv1A 
5’CATAGGAGATGCCTAAGCCGGTGGAGCTCTGCTTATATAGACCTC 3’. The 
PCR product was purified using the Macherey-Nagel PCR and Gel Purification Kit. 

1 ul of first round PCR product was amplified using primers env1ATOPO  5’ CACC 
GGCTTAGGCATCTCCTATGGCAGGAAGAA  3’ and Rev19 5’ 
ACTTTTTGACCACTTGCCACCCAT 3’ in a 20 ul volume containing 1x High Fidelity 
Buffer, 2 mM MgSO4, 0.2 mM dNTPs, 0.5 units of High Fidelity Platinum and 0.2 uM 
of each primer. Cycling conditions were 94 °C, 2min; (94 °C, 15s; 55 °C 30s; 68 °C, 
4min) x 35; 68 °C, 10min. The presence of env was validated by analysis on a 0.7% 
Agarose gel and the product was purified using the Macherey-Nagel Gel and PCR 
Purification Kit. 10 ng of envelope and 0.5 ng of CMV were then subjected to 
overlapping PCR with primers CMVenv and Rev19 in triplicates. Total reaction volume 
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was 50 ul containing 1x High Fidelity Buffer, 0.2 uM MgS04, 0.2 mM dNTPs, 1 U of 
Platinum Taq High Fidelity and 0.4 uM of each primer. PCR was carried out at 94 °C, 
2min; (94 °C, 30s; 60 °C 30s; 68 °C, 4min) x 25; 68 °C, 10min. 500 ng of CMV-env 
were co-transfected with pSG3Δenv in 6-well plates into 293T cells and supernatant was 
harvested after 48h. Supernatants were subjected to neutralization testing by TZM.bl as 
described above. 
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Fig. S1.
 
Dynamics of neutralization potency and breadth in each individual. Graphs show 
relationship between neutralization potency (1/AUC, x-axis) and breadth of neutraliza-
tion (% of strains neutralized, y-axis) on Day 0 (grey) and at end of observation period 
(respective color for each group of study). A. untreated viremic control individuals 
(yellow). B. 3BNC117-treated individuals off-ART (dark blue) and 3BNC117-treated 
individuals on-ART (light blue) 
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Fig. S1., continued
 
Dynamics of neutralization potency and breadth in each individual. Graphs show 
relationship between neutralization potency (1/AUC, x-axis) and breadth of neutraliza-
tion (% of strains neutralized, y-axis) on Day 0 (grey) and at end of observation period 
(respective color for each group of study). A. untreated viremic control individuals 
(yellow). B. 3BNC117-treated individuals off-ART (dark blue) and 3BNC117-treated 
individuals on-ART (light blue) 
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Fig. S2. 

Dynamics of neutralization breadth by group of study. Bar plot illustrating the mean 
percentage of viruses neutralized (cutoff AUC ≥ 0.5) on Day0 and at the end of obser-
vation period by group of study. p-values determined using two-tailed Wilcoxon 
signed-rank test (red = significant, grey = n.s.). Raw values in Table S5.
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Fig. S3. 

Comparison of clinical parameters between groups. Scatter dot plot of clinical parame-
ters by patient group. Colored bars represent mean values of each group. p-values 
(indicated in red when significant) determined by unpaired Wilcoxon rank-sum test. 
Two hypotheses were tested for each parameter yielding a Bonferroni-corrected signifi-
cance threshold of 0.025 with significance level α = 0.05. n.s. = not significant. All 
parameters were tested in a confounder analysis and none of the parameter differences 
were found to be significant confounders (Table S7). 
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Fig. S4. 

Correlation between starting AUC and AUC increase. A. Scatter plot of Day 0 AUC 
data (x-axis) and AUC difference W24-D0 (y-axis). Each dot shows the AUC data for a 
single virus from a single patient. B. Scatter plot of mean day 0 AUC data (x-axis) and 
mean AUC difference W24-D0 (y-axis). Each dot shows the mean data across all 13 
viral strains for a particular patient. A linear fit model (dashed red line) is added with 
corresponding r and R2 in black at the top right.
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Fig. S5. 

Neutralization profile comparison of AUC change in 3BNC117-treated individuals 
with neutralization profile of 3BNC117. For each individual the individual’s AUC 
change (Wk24 - Day 0 AUC) against every strain is plotted in blue (A. viremic individ-
uals, B. individuals on-ART). The AUC profile of 3BNC117 against those same strains 
is plotted in red as a comparator. The neutralization profiles were compared by assess-
ing their Spearman rank correlation. p-values indicated in top right corner of graph 
(grey = n.s., red = significant). Bonferroni-corrected threshold: 0.0019. Full rank 
correlation and p-values in Table S8.

C
N

E5
5

C
e1

17
6_

A3
TR

O
.1

1
Q

25
9.

d2
.1

7
25

71
0.

2.
43

Q
76

9.
d2

2
Ba

L.
26

YU
2

X1
63

2_
S2

_B
10

ZM
13

5.
PL

10
a

Q
84

2.
d1

2

24
6.

F3
_C

10
_2

C
N

E8

101



-0.5

0.0

0.5

1.0

1.5

2.0

2.5
2B23 mg/kg

C
N

E5
5

C
e1

17
6_

A3
TR

O
.1

1
Q

25
9.

d2
.1

7
25

71
0.

2.
43

Q
76

9.
d2

2
Ba

L.
26

YU
2

X1
63

2_
S2

_B
10

ZM
13

5.
PL

10
a

Q
84

2.
d1

2

24
6.

F3
_C

10
_2

C
N

E8

-0.5
0.0
0.5
1.0
1.5
2.0
2.5

AU
C

5A110 mg/kg

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

AU
C

5A210 mg/kg

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

AU
C

5A310 mg/kg

-0.5

0.0

0.5

1.0

1.5

2.0

2.5
2C210 mg/kg

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

AU
C

5A410 mg/kg

-0.5
0.0
0.5
1.0
1.5
2.0
2.5

AU
C

5A510 mg/kg

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

AU
C

5B130 mg/kg

-0.5

0.0

0.5

1.0

1.5

2.0

2.5
5B230 mg/kg

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

AU
C

5B330 mg/kg

-0.5
0.0
0.5
1.0
1.5
2.0
2.5

AU
C

5B430 mg/kg

-0.5

0.0

0.5

1.0

1.5

2.0

2.5
5B530 mg/kg

B

p = 0.8922 p = 0.9786 p = 0.1013 p = 0.4930

p = 0.4561 p = 0.6138 p = 0.8632 p = 0.3103

p = 0.5785 p = 0.1955 p = 0.8690 p = 0.8517

Fig. S5., continued

Neutralization profile comparison of AUC change in 3BNC117-treated individuals 
with neutralization profile of 3BNC117. For each individual the individual’s AUC 
change (Wk24 - Day 0 AUC) against every strain is plotted in blue (A. viremic individ-
uals, B. individuals on-ART). The AUC profile of 3BNC117 against those same strains 
is plotted in red as a comparator. The neutralization profiles were compared by assess-
ing their Spearman rank correlation. p-values indicated in top right corner of graph 
(grey = n.s., red = significant). Bonferroni-corrected threshold: 0.0019. Full rank 
correlation and p-values in Table S8.
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Fig. S6. 

Pairwise diversity over time (amino acid level). Scatter plots depicting pairwise amino 
acid sequence diversity of plasma env sequences on d0, and wk 4 (*wk6 for 2E5), 12 
and 24 after infusion. Each dot represents the pairwise genetic difference between two 
sequences at a given timepoint. Colored bars indicate median diversity, while black 
bars indicates the interquartile range. p-values were determined using a two-sample 
U-statistic based Z-test (39-41).
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Fig. S7. 

Viral evolution in subjects 2A3, 2C5, 2C4 and 2E2-2E5. Top. Maximum-likelihood 
phylogenetic trees of plasma-derived env sequences from respective subjects sampled 
on d0, wk4 (wk6 in case of 2E5), wk12 and wk24 after 3BNC117 infusion. Black 
asterisks indicate nodes with significant boostrap values (bootstrap support ≥ 70%). Bar 
graphs (middle) indicate the timepoints from which sequences were derived. Heat maps 
(right) show the 3BNC117 IC50, d0 IgG IC50 and wk 24 IgG IC50 values against autolo-
gous envs as indicated by colored stars. Bottom. Weblogo plots that illustrate amino 
acid changes in and directly adjacent to 3BNC117 contact residues over time. White 
boxes indicate that sequence matches to the d0 consensus, grey boxes indicate gaps in 
alignment. Colors indicate basic (dark blue) and acidic (red) residues and a turquoise 
“O” is used instead of “N” to indicate a potential N-glycosylation site. Logo plots were 
generated using LASSIE (28). + symbols indicate contact residues confirmed by two 
crystal structures (26, 27).
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Fig. S7., continued

Viral evolution in subjects 2A3, 2C5, 2C4 and 2E2-2E5. Top. Maximum-likelihood 
phylogenetic trees of plasma-derived env sequences from respective subjects sampled 
on d0, wk4 (wk6 in case of 2E5), wk12 and wk24 after 3BNC117 infusion. Black 
asterisks indicate nodes with significant boostrap values (bootstrap support ≥ 70%). Bar 
graphs (middle) indicate the timepoints from which sequences were derived. Heat maps 
(right) show the 3BNC117 IC50, d0 IgG IC50 and wk 24 IgG IC50 values against autolo-
gous envs as indicated by colored stars. Bottom. Weblogo plots that illustrate amino 
acid changes in and directly adjacent to 3BNC117 contact residues over time. White 
boxes indicate that sequence matches to the d0 consensus, grey boxes indicate gaps in 
alignment. Colors indicate basic (dark blue) and acidic (red) residues and a turquoise 
“O” is used instead of “N” to indicate a potential N-glycosylation site. Logo plots were 
generated using LASSIE (28). + symbols indicate contact residues confirmed by two 
crystal structures (26, 27).
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Fig. S7., continued

Viral evolution in subjects 2A3, 2C5, 2C4 and 2E2-2E5. Top. Maximum-likelihood 
phylogenetic trees of plasma-derived env sequences from respective subjects sampled 
on d0, wk4 (wk6 in case of 2E5), wk12 and wk24 after 3BNC117 infusion. Black 
asterisks indicate nodes with significant boostrap values (bootstrap support ≥ 70%). Bar 
graphs (middle) indicate the timepoints from which sequences were derived. Heat maps 
(right) show the 3BNC117 IC50, d0 IgG IC50 and wk 24 IgG IC50 values against autolo-
gous envs as indicated by colored stars. Bottom. Weblogo plots that illustrate amino 
acid changes in and directly adjacent to 3BNC117 contact residues over time. White 
boxes indicate that sequence matches to the d0 consensus, grey boxes indicate gaps in 
alignment. Colors indicate basic (dark blue) and acidic (red) residues and a turquoise 
“O” is used instead of “N” to indicate a potential N-glycosylation site. Logo plots were 
generated using LASSIE (28). + symbols indicate contact residues confirmed by two 
crystal structures (26, 27).
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Fig. S7., continued

Viral evolution in subjects 2A3, 2C5, 2C4 and 2E2-2E5. Top. Maximum-likelihood 
phylogenetic trees of plasma-derived env sequences from respective subjects sampled 
on d0, wk4 (wk6 in case of 2E5), wk12 and wk24 after 3BNC117 infusion. Black 
asterisks indicate nodes with significant boostrap values (bootstrap support ≥ 70%). Bar 
graphs (middle) indicate the timepoints from which sequences were derived. Bottom. 
Weblogo plots that illustrate amino acid changes in and directly adjacent to 3BNC117 
contact residues over time. White boxes indicate that sequence matches to the d0 
consensus, grey boxes indicate gaps in alignment. Colors indicate basic (dark blue) and 
acidic (red) residues and a turquoise “O” is used instead of “N” to indicate a potential 
N-glycosylation site. Logo plots were generated using LASSIE (28). + symbols indicate 
contact residues confirmed by two crystal structures (26, 27).
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Fig. S7., continued

Viral evolution in subjects 2A3, 2C5, 2C4 and 2E2-2E5. Top. Maximum-likelihood 
phylogenetic trees of plasma-derived env sequences from respective subjects sampled 
on d0, wk4 (wk6 in case of 2E5), wk12 and wk24 after 3BNC117 infusion. Black 
asterisks indicate nodes with significant boostrap values (bootstrap support ≥ 70%). Bar 
graphs (middle) indicate the timepoints from which sequences were derived. Bottom. 
Weblogo plots that illustrate amino acid changes in and directly adjacent to 3BNC117 
contact residues over time. White boxes indicate that sequence matches to the d0 
consensus, grey boxes indicate gaps in alignment. Colors indicate basic (dark blue) and 
acidic (red) residues and a turquoise “O” is used instead of “N” to indicate a potential 
N-glycosylation site. Logo plots were generated using LASSIE (28). + symbols indicate 
contact residues confirmed by two crystal structures (26, 27).
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Fig. S7., continued 

Viral evolution in subjects 2A3, 2C5, 2C4 and 2E2-2E5. Top. Maximum-likelihood 
phylogenetic trees of plasma-derived env sequences from respective subjects sampled 
on d0, wk4 (wk6 in case of 2E5), wk12 and wk24 after 3BNC117 infusion. Black 
asterisks indicate nodes with significant boostrap values (bootstrap support ≥ 70%). Bar 
graphs (middle) indicate the timepoints from which sequences were derived. Bottom. 
Weblogo plots that illustrate amino acid changes in and directly adjacent to 3BNC117 
contact residues over time. White boxes indicate that sequence matches to the d0 
consensus, grey boxes indicate gaps in alignment. Colors indicate basic (dark blue) and 
acidic (red) residues and a turquoise “O” is used instead of “N” to indicate a potential 
N-glycosylation site. Logo plots were generated using LASSIE (28). + symbols indicate 
contact residues confirmed by two crystal structures (26, 27).
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Fig. S7., continued 

Viral evolution in subjects 2A3, 2C5, 2C4 and 2E2-2E5. Top. Maximum-likelihood 
phylogenetic trees of plasma-derived env sequences from respective subjects sampled 
on d0, wk4 (wk6 in case of 2E5), wk12 and wk24 after 3BNC117 infusion. Black 
asterisks indicate nodes with significant boostrap values (bootstrap support ≥ 70%). Bar 
graphs (middle) indicate the timepoints from which sequences were derived. For 2E5 
pink indicates wk4, dark purple indicates wk6 sequences. Bottom. Weblogo plots that 
illustrate amino acid changes in and directly adjacent to 3BNC117 contact residues over 
time. White boxes indicate that sequence matches to the d0 consensus, grey boxes 
indicate gaps in alignment. Colors indicate basic (dark blue) and acidic (red) residues 
and a turquoise “O” is used instead of “N” to indicate a potential N-glycosylation site. 
Logo plots were generated using LASSIE (28). + symbols indicate contact residues 
confirmed by two crystal structures (26, 27).
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Fig. S8. 

Viral sequence evolution in subject 2A1. Amino acid highlighter plots of 2A1 plasma 
env sequences separated by group (A-D, Fig. 4) illustrate that viral selection in 2A1 
occurs mainly by ‘clade shifting’ with little sequence evolution within ‘clades’. Similar 
patterns of shifting groups of viruses are seen in 2A3 and 2C4 where tree structure is 
even more complex making clear-cut group analyses challenging. Horizontal lines 
represent individual sequences and tic marks denote amino acid differences from the 
respective d0 consensus sequence (cutoff >50% identity) of each group. The amino acid 
color code key is at the bottom right. Bars to the left indicate the timepoint that each 
sequence belongs to and is ordered chronologically within each group from top to 
bottom. Grey-green boxes demarcate variable loops and black/light blue tic marks 
below the plot indicate 3BNC117 amino acid and glycan contacts, respectively, as 
determined by two crystal structures (26, 27).
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Fig. S9.

Viral sequence evolution in subjects 2C5 and 2E1-2E5. Amino acid highlighter plot for 
each patient (2C5, 2E1-2E5) depicts sequence changes over time relative to respective 
d0 consensus (cutoff >50% identity). Horizontal lines represent individual sequences 
and tic marks denote amino acid differences from consensus sequence. Amino acid color 
code key is at bottom right. Grey-green boxes demarcate variable loops and black/light 
blue tic marks underneath plots indicate 3BNC117 amino acid and glycan contacts, 
respectively, as determined by two crystal structures (26, 27). In contrast to subjects 
2A1, 2A3 and 2C4, subjects 2C5 and 2E1-2E5 exhibit less complex phylogenies allow-
ing for more stringent calling of a single day0 consensus sequence.
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Fig. S9., continued

Viral sequence evolution in subjects 2C5 and 2E1-2E5. Amino acid highlighter plot for 
each patient (2C5, 2E1-2E5) depicts sequence changes over time relative to respective 
d0 consensus (cutoff >50% identity). Horizontal lines represent individual sequences 
and tic marks denote amino acid differences from consensus sequence. Amino acid color 
code key is at bottom right. Grey-green boxes demarcate variable loops and black/light 
blue tic marks underneath plots indicate 3BNC117 amino acid and glycan contacts, 
respectively, as determined by two crystal structures (26, 27). In contrast to subjects 
2A1, 2A3 and 2C4, subjects 2C5 and 2E1-2E5 exhibit less complex phylogenies allow-
ing for more stringent calling of a single day0 consensus sequence.
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Fig. S9., continued

Viral sequence evolution in subjects 2C5 and 2E1-2E5. Amino acid highlighter plot for 
each patient (2C5, 2E1-2E5) depicts sequence changes over time relative to respective 
d0 consensus (cutoff >50% identity). Horizontal lines represent individual sequences 
and tic marks denote amino acid differences from consensus sequence. Amino acid color 
code key is at bottom right. Grey-green boxes demarcate variable loops and black/light 
blue tic marks underneath plots indicate 3BNC117 amino acid and glycan contacts, 
respectively, as determined by two crystal structures (26, 27). In contrast to subjects 
2A1, 2A3 and 2C4, subjects 2C5 and 2E1-2E5 exhibit less complex phylogenies allow-
ing for more stringent calling of a single day0 consensus sequence.
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Fig. S9., continued

Viral sequence evolution in subjects 2C5 and 2E1-2E5. Amino acid highlighter plot for 
each patient (2C5, 2E1-2E5) depicts sequence changes over time relative to respective 
d0 consensus (cutoff >50% identity). Horizontal lines represent individual sequences 
and tic marks denote amino acid differences from consensus sequence. Amino acid color 
code key is at bottom right. Grey-green boxes demarcate variable loops and black/light 
blue tic marks underneath plots indicate 3BNC117 amino acid and glycan contacts, 
respectively, as determined by two crystal structures (26, 27). In contrast to subjects 
2A1, 2A3 and 2C4, subjects 2C5 and 2E1-2E5 exhibit less complex phylogenies allow-
ing for more stringent calling of a single day0 consensus sequence.

2E3

DA PG S E H KW Y R

MI L V N Q

other

F C

gapT

0 100 200 300 400 500 600 700 800

Alignment position
V1/V2 V3 V4 V5

3BNC117 contacts

D
ay

 0
W

ee
k 

4
W

ee
k 

12
W

ee
k 

24

115



Fig. S9., continued

Viral sequence evolution in subjects 2C5 and 2E1-2E5. Amino acid highlighter plot for 
each patient (2C5, 2E1-2E5) depicts sequence changes over time relative to respective 
d0 consensus (cutoff >50% identity). Horizontal lines represent individual sequences 
and tic marks denote amino acid differences from consensus sequence. Amino acid color 
code key is at bottom right. Grey-green boxes demarcate variable loops and black/light 
blue tic marks underneath plots indicate 3BNC117 amino acid and glycan contacts, 
respectively, as determined by two crystal structures (26, 27). In contrast to subjects 
2A1, 2A3 and 2C4, subjects 2C5 and 2E1-2E5 exhibit less complex phylogenies allow-
ing for more stringent calling of a single day0 consensus sequence.
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Fig. S9., continued

Viral sequence evolution in subjects 2C5 and 2E1-2E5. Amino acid highlighter plot for 
each patient (2C5, 2E1-2E5) depicts sequence changes over time relative to respective 
d0 consensus (cutoff >50% identity). Horizontal lines represent individual sequences 
and tic marks denote amino acid differences from consensus sequence. Amino acid color 
code key is at bottom right. Grey-green boxes demarcate variable loops and black/light 
blue tic marks underneath plots indicate 3BNC117 amino acid and glycan contacts, 
respectively, as determined by two crystal structures (26, 27). In contrast to subjects 
2A1, 2A3 and 2C4, subjects 2C5 and 2E1-2E5 exhibit less complex phylogenies allow-
ing for more stringent calling of a single day0 consensus sequence.
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Fig. S10. 

Full 3BNC117 contact site logo plots for subjects 2A1 and 2E1. Top. Weblogo plots that 
illustrate amino acid changes in and directly adjacent to 3BNC117 contact residues over 
time. White boxes indicate that sequence matches to the d0 consensus, grey boxes 
indicate gaps in alignment. Colors indicate basic (dark blue) and acidic (red) residues 
and a turquoise “O” is used instead of “N” to indicate a potential N-glycosylation site. 
Logo plots were generated using LASSIE (28). + symbols indicate 3BNC117 contact 
residues confirmed by two crystal structures (26, 27).
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Table S1A. 
Clinical characteristics of 3BNC117-treated subjects 

Subject ID 3BNC117 
dose Age

Years     
since HIV 
Diagnosis

ART regimen 
pre-therapy Clade

Sampling 
Interval 
(days)

HIV-RNA 
level 

(copies/ml)D
ay 0

HIV-RNA 
level 

(copies/ml) 
Week 24

abs. CD4+ T 
cell count  

(day 0; 
cells/mm3)

abs. CD4+ T 
cell count  
(Week 24; 
cells/mm3)

2A1 1 mg/kg 35 11 ART naïve B 168 3210 2330 674 790
2A3 1 mg/kg 39 14 Off ART B 171 43650 2870 520 800
2A4 1 mg/kg 42 8 ART naïve B 167 5340 <20*** 607 671
2B1 3 mg/kg 20 1 Off ART ND 168 4090 <20*** 264* 335
2B2 3 mg/kg 48 20 DRV/r/TDF/FTC ND 167 100 <20 706 578
2B3 3 mg/kg 20 1 ART naïve B 168 38190 <20*** 777 627
2C2 10 mg/kg 51 12 ATV/r/3TC/ZDV ND 169 30 140 728 804
2C4 10 mg/kg 54 23 Off ART B 168 820 530 805 821
2C5 10 mg/kg 50 4 ART naïve B 168 9260 24240 245* 203
2D1 30 mg/kg 33 3 ART naïve B 168 53470 <20*** 980 885
2C1 30 mg/kg 51 17 Off ART B 168 47650 54950 1129 1026
2D3 30 mg/kg 33 0.5 ART naïve B 168 640 <20*** 618 482
2E1 30 mg/kg 21 2 ART naïve B 169 15780 16500 847 660
2E2 30 mg/kg 46 1.5 ART naïve B 169 6990 6590 513 480
2E3 30 mg/kg 23 1.5 ART naïve BF 168 22030 35200 590 850
2E4 30 mg/kg 38 1 ART naïve B 169 32220 69300 603 670
2E5 30 mg/kg 30 1 ART naïve B 169 3610 6110 532 600
5A1 10 mg/kg 28 6 EFV/TDF/FTC ND 168 <20 <20 814 661
5A2 10 mg/kg 58 19 EFV/TDF/FTC ND 168 <20 <20 660 619
5A3 10 mg/kg 54 18 EVG/c/FTC/TDF ND 168 <20 <20 1341 1203
5A4 10 mg/kg 53 5 EFV/TDF/FTC ND 168 <20 <20 466 574
5A5 10 mg/kg 41 4 EFV/TDF/FTC ND 168 <20 <20 924 624
5B1 30 mg/kg 58 28 EFV/TDF/FTC ND 168 <20 <20 654 760
5B2 30 mg/kg 53 19 EFV/ZDV/3TC ND 168 <20 <20 1065 1053
5B3 30 mg/kg 26 5 EFV/TDF/FTC ND 168 <20 <20 583 603
5B4 30 mg/kg 64 9 ATV/r/TDF/FTC ND 168 <20 <20 503 411

5B5 30 mg/kg 63 28 RAL/DRV/r/ETR ND 168 <20 <20 534 821

* Absolute CD4+ T cell count was 309 and 302 cells/mm3 at screening. ND - Not Determined

*** Start of ART (Weeks post infusion): 2A3 (24), 2A4 (12), 2B1 (8), 2B3 (12), 2D1 (20), 2D3 (8)
ART-abbreviations: DRV darunavir, TDF tenofovir, FTC emtricitabine, r ritonavir, ATV atazanavir, 3TC lamivudine, ZDV zidovudine,        EFV 

efavirenz, EVG elvitegravir, c cobicistat, RAL raltegravir, ETR etravirine
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Table S1B. 
Clinical characteristics of untreated viremic subjects

Subject ID 3BNC117 
dose Age

Years     
since HIV 
Diagnosis

ART regimen 
pre-therapy Clade

Sampling 
Interval 
(days)

HIV-RNA 
level 

(copies/ml)D
ay 0

HIV-RNA 
level 

(copies/ml) 
Week 24

abs. CD4+ T 
cell count  

(day 0; 
cells/mm3)

abs. CD4+ T 
cell count  
(Week 24; 
cells/mm3)

10518 / 44 24 / ND 182 38500 10000 643 536
10362 / 56 22 / ND 190 2380 3670 643 818
10112 / 42 20 / ND 171 7170 33500 513 551
10962 / 38 11 / ND 168 7808 14112 489 468
10223 / 44 20 / ND 196 4590 1300 473 444
10482 / 57 14 / ND 183 3690 2014 642 640
10210 / 49 16 / ND 189 3965 31495 546 412
10596 / 43 14 / ND 188 1607 2269 503 488
10138 / 47 16 / ND 196 17304 10149 536 532
10108 / 44 18 / ND 196 7810 37800 850 501
10275 / 36 17 / ND 181 24600 18220 643 648
10959 / 50 15 / ND 189 303200 61000 760 621
10367 / 44 20 / ND 195 432 1460 579 605
10469 / 35 13 / ND 188 24000 573 1150 682
10410 / 46 4 / ND 182 42920 62740 522 403
10397 / 39 20 / ND 182 5327 13520 495 500
10292 / 42 28 / ND 187 2152 3985 624 642
10802 / 40 2 / ND 187 150 629 380 302
10099 / 35 12 / ND 187 9095 12160 669 717
10930 / 52 17 / ND 188 101500 263700* 562 448*
10417 / 36 5 / ND 56 16070 41311 328 N/A
10690 / 30 2 / ND 112 17820 97982 361 N/A
10257 / 32 6 / ND 196 255 52091 449** 397
10587 / 28 1 / ND 117 222465 772642 377 N/A
10169 / 34 12 / ND 617 12423 34836 476 N/A

10160 / 34 0.5 / ND 106 3984 5495 337 N/A

10811 / 43 20 / ND 215 2520 5610 307 377
10239 / 46 3 / ND 245 2660 8659 561 N/A
10814 / 45 5 / ND 181 45000 33900 567 430
10100 / 37 0.2 / ND 76 32360 13014 689 N/A
10779 / 33 4 / ND 89 14029 25234 512 N/A
10785 / 33 1 / ND 218 7438 148000 550 314
10489 / 41 6 / ND 169 41100 1750 588 N/A
10082 / 40 9 / ND 209 37600 104000 469 N/A
10914 / 48 9 / ND 224 25000 21300 383 N/A
10689 / 28 0.5 / ND 188 2600 137000 426*** 336

* Absolute CD4+ T cell count and HIV-RNA level were measured from a different sample from a timepoint 2 weeks later.

** Absolute CD4+ T cell count was measured from a different sample from a timepoint 2 years earlier. ND - Not Determined. N/A - Not Available

*** Absolute CD4+ T cell count was measured from a different sample from a timepoint 3 months earlier. 
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Table S2. 
Autologous neutralization data of patient IgG against PBMC co-culture virus

Subject ID IgG tested IC50 (µg/ml) AUC  IC50 (µg/ml) AUC 

D0 IgG >500 0.071 >500 0.11
w24 IgG >500 0.209 686.4 0.324

0 - 25 µg/ml
D0 IgG >500 0.571 >500 0 25 -100 µg/ml
w24 IgG 385.6 0.972 >500 0.115 100 - 400 µg/ml  

400 - 500 µg/ml
D0 IgG >500 0.203 >500 0.28 >500 µg/ml
w24 IgG >500 0.505 286.5 0.659

D0 IgG >500 0.354 >500 0.143
w24 IgG 287.0 1.022 226.3 0.807

D0 IgG >500 0 >500 0
w24 IgG 417.8 0.857 311.7 0.593

D0 IgG >500 0.209 >500 0.319
w24 IgG 417.6 0.401 194.5 0.84

D0 IgG >500 0.527 >500 0.308
w24 IgG 96.7 1.335 269.3 0.615

D0 IgG >500 0.033 >500 0.005
w24 IgG >500 0.038 >500 0.055

D0 IgG >500 0.181 >500 0.099
w24 IgG 462.6 0.456 >500 0.253

* for 2E5 week 6 virus was used instead of week 4

2E4

2E5

2A1

2A3

2C4

2C5

2E1

2E2

IgG IC50 
titers 
(µg/ml)

Virus Day 0 Virus Week 4*

2E3

AUC

> 2
1-2
0.5 - 1
0 - 0.5
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Table S3.
Panel of pseudoviruses used to determine neutralizing activity

HIV-1 Strains Clade Tier*

246-F3_C10_2 AC Tier 2
25710-2.43 C Tier 2

BaL.26 B Tier 1B
Ce1176_A3 C Tier 2

CNE55 AE Tier 2
CNE8 AE Tier 2

Q259.d2.17 A Tier 2
Q769.d22 A Tier 2
Q842.d12 A Tier 2
TRO.11 B Tier 2

X1632_S2_B10 G Tier 2
YU2.DG B Tier 2

ZM135M.PL10a C Tier 2

*Tier classification for standard TZM-bl, based on (21, 43) 
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Table S4A. 
Heterologous TZM.bl neutralization data of purified patient IgG (IC50 values, µg/ml)
Viremic control patients

Heterologous 
Strain Clade Day 0 Day 0 Day 0 Day 0 Day 0

YU2.DG B >500 >500 >500 >500 28.7 45.6 69.1 65.2 117.0 130.9
BaL.26 B 43.9 42.8 18.6 19.0 4.4 8.9 9.2 8.1 29.1 26.1
Q769.d22 A1 >500 >500 >500 >500 9.5 23.3 69.4 54.9 75.8 69.8
Q259.d2.17 A1 >500 >500 >500 >500 210.9 233.6 132.0 127.4 232.5 176.5
Q842.d12 A1 >500 >500 >500 >500 10.8 26.7 16.3 17.5 24.4 26.3
ZM135M.PL10a C >500 >500 >500 >500 183.1 94.6 233.4 124.8 192.1 490.7
25710-2.43 C 373.9 >500 >500 >500 22.8 42.0 98.7 92.3 79.5 95.6
CNE8 AE >500 >500 >500 >500 115.4 233.3 163.9 136.4 92.4 84.2
TRO.11 B >500 >500 >500 >500 19.9 30.0 28.9 27.9 41.1 57.4
X1632_S2_B10 G >500 >500 >500 >500 >368 >500 258.4 394.5 44.3 70.8
Ce1176_A3 C >500 >500 >500 >500 28.5 68.7 204.2 161.7 89.8 75.6
246-F3_C10_2 AC >500 >500 >500 >500 77.4 109.7 278.6 189.5 120.3 123.2
CNE55 AE >500 >500 >500 >500 N/A 196.1 93.1 90.7 34.7 57.1

Heterologous 
Strain Clade Day 0 Day 0 Day 0 Day 0 Day 0

YU2.DG B >500 >500 384.0 277.2 67.6 83.2 20.9 23.5 54.8 45.6
BaL.26 B 58.9 52.8 19.6 16.5 9.4 8.6 3.4 3.3 1.9 2.1
Q769.d22 A1 >500 >500 >500 >500 >500 >500 38.0 31.4 4.3 5.1
Q259.d2.17 A1 >500 >500 >500 >500 360.2 >500 291.0 371.5 7.2 7.7
Q842.d12 A1 >500 >500 348.5 393.9 89.4 234.6 7.7 11.2 5.2 6.7
ZM135M.PL10a C >500 >500 >500 >500 >500 >500 >500 >500 52.5 37.7
25710-2.43 C >500 >500 480.4 472.1 32.7 61.4 248.2 214.1 14.3 15.1
CNE8 AE >500 >500 >500 >500 >500 >500 327.4 384.8 27.1 29.9
TRO.11 B 276.6 >500 >500 >500 123.2 91.2 15.0 19.0 5.4 6.4
X1632_S2_B10 G >500 >500 >500 >500 271.8 228.1 24.2 33.2 6.7 8.6
Ce1176_A3 C >500 >500 >500 >500 60.3 72.7 >500 >500 94.9 94.1
246-F3_C10_2 AC >500 >500 >500 >500 >500 >500 193.3 304.6 23.0 22.8
CNE55 AE >500 >500 >500 >500 >500 >500 189.1 216.5 18.1 21.1

Heterologous 
Strain Clade Day 0 Day 0 Day 0 Day 0 Day 0

YU2.DG B >500 >500 41.8 41.6 24.8 22.0 439.4 431.5 >500 >500
BaL.26 B 27.1 34.2 10.7 11.8 5.0 6.0 26.4 35.6 56.0 32.0
Q769.d22 A1 >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
Q259.d2.17 A1 >500 >500 >500 >500 166.5 222.0 89.9 139.0 >500 >500
Q842.d12 A1 >500 >500 16.3 17.8 170.9 >500 295.7 373.6 >500 >500
ZM135M.PL10a C >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
25710-2.43 C >500 >500 320.5 334.3 23.7 24.1 302.2 273.4 >500 276.4
CNE8 AE >500 >500 493.4 428.4 >500 >500 >500 >500 >500 >500
TRO.11 B >500 >500 51.1 45.2 11.3 10.5 >500 >500 >500 >500
X1632_S2_B10 G >500 >500 136.9 105.6 102.5 90.4 >500 >500 >500 >500
Ce1176_A3 C >500 >500 >500 >500 20.4 21.6 >500 >500 >500 >500
246-F3_C10_2 AC >500 >500 227.2 209.5 36.8 46.0 >500 >500 >500 >500
CNE55 AE >500 >500 51.0 60.9 >500 >500 >500 >500 >500 >500

Heterologous 
Strain Clade Day 0 Day 0 Day 0

YU2.DG B 160.4 133.8 298.1 279.9 >500 >500
BaL.26 B 7.4 8.0 17.7 21.1 >500 >500
Q769.d22 A1 >500 >500 >500 >500 >500 >500
Q259.d2.17 A1 >500 >500 >500 >500 >500 >500
Q842.d12 A1 >500 438.3 313.0 273.4 >500 >500
ZM135M.PL10a C >500 >500 >500 >500 >500 >500
25710-2.43 C 182.4 320.5 429.6 445.7 >500 >500
CNE8 AE >500 >500 378.7 485.3 >500 >500
TRO.11 B 422.6 422.4 482.1 >500 >500 >500 0 - 25 µg/ml
X1632_S2_B10 G >500 >500 >500 >500 >500 >500 25 -100 µg/ml
Ce1176_A3 C >500 >500 >500 >500 56.4 61.9 100 - 400 µg/ml 
246-F3_C10_2 AC >500 >500 >500 >500 >500 >500 400 - 500 µg/ml
CNE55 AE >500 >500 >500 >500 >500 >500 >500 µg/ml

10397 10292 10802

IgG IC50 
titers 
(ug/ml)

10108

10410

Week 26 
(182d)

Week 27 
(187d)

Week 27 
(187d)

Week 26 
(182d)

Week 27 
(188d)

Week 28 
(195d)

Week 27 
(189d)

Week 26 
(181d)

10367 104691095910275

10518 10362 10112 10962 10223

Week 28 
(196d)

Week 24 
(168d)

Week 24 
(171d)

Week 27 
(190d)

Week 26 
(182d)

Week 28 
(196d)

Week 28 
(196d)

Week 27 
(188d)

Week 27 
(189d)

Week 26 
(183d)

10482 10210 10596 10138
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Table S4A. 
Heterologous TZM.bl neutralization data of purified patient IgG (IC50 values, µg/ml), continued

Heterologous 
Strain Clade Day 0 Day 0 Day 0 Day 0 Day 0

YU2.DG B >500 >500 102.2 122.5 405.2 >500 95.2 92.9 211.3 169.4
BaL.26 B 52.3 42.1 15.8 16.8 6.4 5.5 24.2 33.4 25.7 26.2
Q769.d22 A1 >500 >500 204.5 343.0 >500 >500 >500 >500 >500 >500
Q259.d2.17 A1 >500 >500 199.1 250.1 >500 >500 >500 >500 295.5 183.0
Q842.d12 A1 >500 >500 61.8 77.1 333.4 301.8 455.4 366.8 136.0 70.2
ZM135M.PL10a C >500 >500 >500 >500 219.6 133.7 >500 >500 254.0 155.6
25710-2.43 C 432.6 244.7 235.7 326.7 161.8 90.7 226.9 202.7 169.4 94.1
CNE8 AE 443.1 >500 29.6 39.2 48.5 32.9 365.6 295.1 150.2 117.5
TRO.11 B 187.5 198.6 81.9 122.4 81.7 68.8 174.4 166.6 67.7 62.2
X1632_S2_B10 G >500 >500 54.4 109.2 >500 >500 228.0 122.1 369.1 175.5
Ce1176_A3 C >500 >500 340.1 405.1 367.7 445.0 363.8 347.3 >500 >500
246-F3_C10_2 AC >500 >500 56.4 61.9 >500 >500 >500 >500 >500 >500
CNE55 AE >500 >500 87.7 83.6 476.1 453.9 >500 >500 >500 >500

Heterologous 
Strain Clade Day 0 Day 0 Day 0 Day 0 Day 0

YU2.DG B >500 >500 29.2 49.5 267.5 396.7 325.0 389.9 >500 >500
BaL.26 B 44.4 50.8 4.7 6.4 28.4 28.2 80.0 71.8 55.2 75.7
Q769.d22 A1 140.5 276.7 25.2 39.9 >500 >500 >500 498.6 >500 >500
Q259.d2.17 A1 >500 >500 72.2 102.9 >500 >500 >500 >500 >500 >500
Q842.d12 A1 252.5 194.6 21.2 33.5 >500 >500 476.7 146.2 >500 >500
ZM135M.PL10a C >500 >500 67.4 163.2 >500 >500 >500 >500 >500 >500
25710-2.43 C 377.1 416.7 74.2 37.1 199.7 300.0 254.5 84.6 245.7 326.5
CNE8 AE >500 >500 45.7 67.3 >500 >500 >500 >500 >500 >500
TRO.11 B 66.0 102.2 13.9 16.1 52.4 72.5 294.6 71.8 >500 >500
X1632_S2_B10 G >500 >500 68.2 41.3 >500 >500 >500 >500 >500 >500
Ce1176_A3 C >500 448.5 96.3 150.0 301.2 438.5 426.7 117.2 >500 >500
246-F3_C10_2 AC >500 >500 122.8 245.4 >500 >500 >500 278.4 >500 >500
CNE55 AE >500 311.7 75.2 100.2 >500 >500 472.9 255.5 >500 >500

Heterologous 
Strain Clade Day 0 Day 0 Day 0 Day 0 Day 0

YU2.DG B >500 >500 >500 >500 >500 >500 >500 >500 221.2 239.7
BaL.26 B 126.4 180.7 77.5 96.4 35.0 26.8 23.4 24.6 13.8 20.9
Q769.d22 A1 >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
Q259.d2.17 A1 >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
Q842.d12 A1 >500 >500 >500 >500 >500 >500 473.0 >500 >500 >500
ZM135M.PL10a C >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
25710-2.43 C >500 >500 >500 >500 >500 >500 149.9 151.3 399.0 360.7
CNE8 AE 228.4 233.6 >500 >500 205.3 310.0 >500 >500 >500 >500
TRO.11 B 134.6 175.1 >500 >500 >500 >500 >500 >500 59.2 73.2
X1632_S2_B10 G >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
Ce1176_A3 C >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
246-F3_C10_2 AC >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
CNE55 AE >500 >500 >500 >500 >500 >500 >500 >500 >500 >500

Heterologous 
Strain Clade Day 0 Day 0 Day 0

YU2.DG B >500 >500 170.5 >500 >500 >500
BaL.26 B 34.2 38.8 29.7 77.8 29.0 43.2
Q769.d22 A1 >500 >500 >500 >500 >500 >500
Q259.d2.17 A1 >500 >500 >500 >500 >500 >500
Q842.d12 A1 >500 >500 >500 >500 >500 >500
ZM135M.PL10a C >500 >500 209.9 419.4 >500 >500
25710-2.43 C >500 >500 213.9 456.7 488.1 419.1
CNE8 AE >500 >500 276.4 >500 >500 >500
TRO.11 B 487.1 >500 307.7 >500 >500 >500 0 - 25 µg/ml
X1632_S2_B10 G >500 >500 >500 >500 >500 >500 25 -100 µg/ml
Ce1176_A3 C >500 >500 329.3 >500 >500 >500 100 - 400 µg/ml  
246-F3_C10_2 AC >500 >500 >500 >500 >500 >500 400 - 500 µg/ml
CNE55 AE >500 >500 >500 >500 >500 >500 >500 µg/ml

Week 30 
(209d)

Week 32 
(224d)

Week 27 
(188d)

10099 106901041710930

10785 10489

IgG IC50 
titers 
(ug/ml)

Week 24 
(169d)

Week 31 
(218d)

10257

Week 27 
(188d)

Week 8 
(56d)

Week 16 
(112d)

Week 28 
(196d)

10814 10100 10779

10082 10914 10689

Week 13 
(89d)

Week 11 
(76d)

Week 27 
(187d)

Week 17 
(117d)

Week 88 
(617d)

Week 15 
(106d)

Week 31 
(215d)

Week 35 
(245d)

10587 10169 10160 10811 10239

Week 26 
(181d)
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Table S4A. 
Heterologous TZM.bl neutralization data of purified patient IgG (IC50 values, µg/ml), continued
3BNC117-treated viremic patients

Heterologous 
Strain Clade Day -7 Week 24 Day 0 Week 24 Day -7 Week 24 Day -7 Week 24 Day -7 Week 24

YU2.DG B 24.9 22.2 >500 363.4 >500 >500 >500 >500 >500 >500
BaL.26 B 3.3 3.2 28.4 18.9 89.5 71.3 135.0 164.8 365.9 310.8
Q769.d22 A1 102.6 97.0 >500 19.4 >500 >500 >500 >500 >500 >500
Q259.d2.17 A1 170.9 70.4 92.5 84.7 >500 >500 >500 >500 >500 >500
Q842.d12 A1 22.2 18.3 475.0 417.8 >500 >500 >500 >500 >500 >500
ZM135M.PL10a C >500 234.5 >500 >500 >500 >500 >500 >500 >500 >500
25710-2.43 C >500 324.1 110.8 136.0 >500 >500 >500 >500 >500 >500
CNE8 AE >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
TRO.11 B 137.7 52.9 218.6 203.0 >500 >500 >500 >500 >500 495.5
X1632_S2_B10 G 65.1 48.3 >500 >500 >500 >500 >500 >500 >500 >500
Ce1176_A3 C >500 >500 482.2 446.7 >500 >500 >500 >500 >500 >500
246-F3_C10_2 AC N/A 297.2 445.4 283.7 N/A >500 N/A >500 N/A >500
CNE55 AE >500 204.8 >500 >500 >500 >500 >500 >500 >500 >500

Heterologous 
Strain Clade Day -7 Week 24 Day -7 Week 24 Day 0 Week 24 Day -7 Week 24 Day -7 Week24

YU2.DG B 120.6 69.8 >500 >500 >500 >500 >500 >500 >500 >500
BaL.26 B 43.0 15.7 40.2 15.1 114.6 69.4 111.2 51.1 >500 >500
Q769.d22 A1 >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
Q259.d2.17 A1 >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
Q842.d12 A1 82.0 86.7 >500 >500 >500 >500 >500 423.1 >500 369.1
ZM135M.PL10a C >500 419.5 >500 225.8 >500 >500 >500 >500 >500 >500
25710-2.43 C 241.8 49.6 305.9 159.6 >500 >500 426.3 125.4 >500 >500
CNE8 AE 325.3 83.3 >500 240.4 >500 >500 >500 >500 >500 >500
TRO.11 B 69.8 13.3 >500 316.7 >500 >500 >500 486.2 >500 >500
X1632_S2_B10 G >500 378.2 >500 >500 >500 >500 >500 >500 >500 >500
Ce1176_A3 C >500 79.0 >500 >500 >500 >500 >500 >500 >500 >500
246-F3_C10_2 AC N/A 190.1 N/A >500 >500 >500 N/A >500 >500 >500
CNE55 AE >500 >500 >500 >500 >500 >500 >500 >500 >500 >500

Heterologous 
Strain Clade Day 0 Week 24 Day 0 Week 24 Day 0 Week 24 Day 0 Week 24 Day 0 Week 24

YU2.DG B >500 >500 >500 >500 >500 >500 >500 495.7 >500 >500
BaL.26 B 87.4 41.1 28.9 16.8 85.2 24.2 103.0 87.7 393.8 66.1
Q769.d22 A1 407.3 181.7 >500 >500 >500 >500 >500 >500 >500 >500
Q259.d2.17 A1 >500 >500 >500 >500 >500 >500 >500 366.6 >500 480.4
Q842.d12 A1 >500 >500 >500 >500 >500 >500 467.2 333.4 >500 463.1
ZM135M.PL10a C >500 >500 >500 >500 >500 >500 366.3 495.1 >500 >500
25710-2.43 C 439.1 397.9 >500 >500 >500 471.6 148.4 158.7 >500 >500
CNE8 AE >500 >500 >500 >500 >500 >500 177.8 98.5 >500 >500
TRO.11 B 483.4 135.8 >500 >500 >500 >500 188.4 193.4 >500 >500
X1632_S2_B10 G >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
Ce1176_A3 C >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
246-F3_C10_2 AC >500 >500 >500 >500 >500 >500 277.1 483.5 >500 >500
CNE55 AE >500 >500 NT >500 >500 >500 >500 >500 >500 >500

0 - 25 µg/ml
25 -100 µg/mll
100 - 400 µg/ml  
400 - 500 µg/ml
>500 µg/ml

IgG IC50 
titers 
(ug/ml)

2E42E2 2E3 2E5

2B1 2B3

2C4 2C5 2D1 2C1 2D3

2A1 2A3 2A4

2E1
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Table S4A.
Heterologous TZM.bl neutralization data of purified patient IgG (IC50 values, µg/ml), continued

3BNC117-treated patients on-ART

Heterologous 
Strain Clade Day 0 Week 24 Day 0 Week 24 Day 0 Week 24 Day 0 Week 24 Day 0 Week 24

YU2.DG B >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
BaL.26 B >500 >500 155.0 177.1 83.9 27.3 >500 404.5 >500 >500
Q769.d22 A1 >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
Q259.d2.17 A1 >500 >500 >500 >500 >500 430.6 >500 >500 >500 >500
Q842.d12 A1 >500 >500 >500 >500 >500 388.4 >500 492.9 >500 >500
ZM135M.PL10a C >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
25710-2.43 C >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
CNE8 AE >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
TRO.11 B >500 >500 >500 >500 >500 416.3 >500 >500 >500 >500
X1632_S2_B10 G >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
Ce1176_A3 C >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
246-F3_C10_2 AC >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
CNE55 AE >500 >500 >500 >500 >500 >500 >500 >500 >500 >500

Heterologous 
Strain Clade Day 0 Week 24 Day 0 Week 24 Day 0 Week 24 Day 0 Week 24 Day 0 Week 24

YU2.DG B >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
BaL.26 B 129.2 134.1 127.9 152.5 >500 >500 66.8 46.4 124.8 89.5
Q769.d22 A1 >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
Q259.d2.17 A1 >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
Q842.d12 A1 >500 >500 >500 435.0 >500 >500 >500 >500 359.3 298.1
ZM135M.PL10a C >500 >500 >500 >500 >500 >500 >500 >500 >500 460.0
25710-2.43 C >500 >500 >500 >500 >500 >500 >500 >500 497.9 497.9
CNE8 AE >500 >500 >500 >500 >500 >500 >500 >500 >500 219.8
TRO.11 B >500 >500 >500 >500 >500 >500 >500 >500 >500 487.3
X1632_S2_B10 G >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
Ce1176_A3 C >500 >500 >500 >500 >500 >500 >500 >500 >500 >500
246-F3_C10_2 AC >500 >500 >500 >500 >500 >500 >500 >500 >500 279.2
CNE55 AE >500 >500 >500 >500 >500 >500 >500 >500 >500 381.2

Heterologous 
Strain Clade Day -7 Week 24 Day -7 Week 24

YU2.DG B >500 >500 >500 >500
BaL.26 B 237.0 231.1 134.3 75.8
Q769.d22 A1 >500 >500 >500 >500
Q259.d2.17 A1 >500 >500 >500 >500
Q842.d12 A1 >500 >500 >500 >500
ZM135M.PL10a C >500 >500 >500 >500
25710-2.43 C >500 >500 >500 >500
CNE8 AE >500 >500 >500 >500
TRO.11 B >500 >500 >500 353.6 0 - 25 µg/ml  
X1632_S2_B10 G >500 >500 >500 >500 25 -100 µg/ml  
Ce1176_A3 C >500 >500 >500 >500 100 - 400 µg/ml  
246-F3_C10_2 AC N/A >500 N/A >500 400 - 500 µg/ml  
CNE55 AE >500 >500 >500 >500 >500 µg/ml  

5B4 5B5

2B2 2C2

5A4 5A5

IgG IC50 
titers 
(ug/ml)

5A1 5A2 5A3

5B1 5B2 5B3
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Table S4B. 
Heterologous TZM.bl neutralization data of purified patient IgG (AUC)
Viremic control patients

Heterologous 
Strain Clade Day 0 Day 0 Day 0 Day 0 Day 0

YU2.DG B 0.24 0.18 0.09 0.13 2.08 1.90 1.43 1.51 1.13 1.09
BaL.26 B 1.79 1.96 2.61 2.64 3.30 3.08 3.13 3.19 2.39 2.36
Q769.d22 A1 0.17 0.40 0.37 0.24 2.70 2.49 1.57 1.60 1.52 1.41
Q259.d2.17 A1 0.03 0.19 0.05 0.07 0.73 0.71 1.11 1.06 0.79 0.87
Q842.d12 A1 0.31 0.27 0.16 0.51 2.77 2.44 2.80 2.70 2.52 2.49
ZM135M.PL10a C 0.02 0.31 0.05 0.13 0.87 1.31 0.79 1.28 0.93 0.71
25710-2.43 C 0.76 0.52 0.32 0.29 2.32 1.98 1.18 1.36 1.36 1.34
CNE8 AE 0.00 0.00 0.00 0.04 1.01 0.66 0.88 1.04 1.43 1.47
TRO.11 B 0.09 0.43 0.23 0.22 2.33 2.29 2.32 2.21 2.01 1.70
X1632_S2_B10 G 0.32 0.75 0.58 0.15 0.39 0.64 1.09 0.91 1.98 1.61
Ce1176_A3 C 0.21 0.09 0.35 0.07 1.94 1.65 0.84 0.99 1.43 1.58
246-F3_C10_2 AC 0.00 0.04 0.03 0.09 1.27 1.16 0.83 0.81 1.12 1.15
CNE55 AE 0.00 0.23 0.26 0.00 N/A N/A 1.41 1.31 2.13 1.68

Heterologous 
Strain Clade Day 0 Day 0 Day 0 Day 0 Day 0

YU2.DG B 0.06 0.09 0.51 0.64 1.51 1.46 2.64 2.55 1.73 1.84
BaL.26 B 1.75 1.75 2.54 2.78 3.09 3.08 3.59 3.54 3.75 3.69
Q769.d22 A1 0.29 0.63 0.41 0.08 0.34 0.25 1.90 1.83 3.46 3.36
Q259.d2.17 A1 0.18 0.18 0.40 0.26 0.71 0.23 0.66 0.68 3.28 3.26
Q842.d12 A1 0.59 0.49 0.90 0.89 1.40 1.03 3.20 3.03 3.38 3.19
ZM135M.PL10a C 0.13 0.09 0.38 0.46 0.73 0.36 0.68 0.83 1.85 1.92
25710-2.43 C 0.54 0.72 0.46 0.58 2.20 1.71 0.81 0.79 2.74 2.72
CNE8 AE 0.04 0.06 0.00 0.04 0.10 0.07 0.48 0.40 2.34 2.26
TRO.11 B 0.93 0.95 0.73 0.58 1.20 1.47 2.70 2.54 3.38 3.27
X1632_S2_B10 G 0.20 0.02 0.36 0.08 0.73 1.13 2.32 2.16 3.21 3.12
Ce1176_A3 C 0.31 0.24 0.59 0.35 1.76 1.53 0.15 0.34 1.28 1.46
246-F3_C10_2 AC 0.14 0.13 0.19 0.19 0.49 0.19 0.92 0.65 2.54 2.53
CNE55 AE 0.14 0.15 0.28 0.05 0.00 0.00 1.19 1.01 2.68 2.50

Heterologous 
Strain Clade Day 0 Day 0 Day 0 Day 0 Day 0

YU2.DG B 0.05 0.16 2.02 2.04 2.50 2.58 0.66 0.72 0.21 0.13
BaL.26 B 2.32 2.19 3.02 2.99 3.38 3.37 2.32 2.16 1.69 2.24
Q769.d22 A1 0.10 0.40 0.40 0.45 0.35 0.23 0.31 0.47 0.00 0.00
Q259.d2.17 A1 0.14 0.09 0.23 0.21 0.93 0.74 1.35 1.03 0.00 0.01
Q842.d12 A1 0.41 0.55 2.83 2.76 1.16 0.55 0.71 0.73 0.49 0.33
ZM135M.PL10a C 0.35 0.48 0.38 0.31 0.78 0.34 0.21 0.12 0.21 0.18
25710-2.43 C 0.46 0.40 0.58 0.57 2.48 2.46 0.86 0.97 0.41 1.08
CNE8 AE 0.02 0.00 0.23 0.34 0.14 0.22 0.08 0.08 0.00 0.00
TRO.11 B 0.24 0.27 1.83 1.86 3.03 3.07 0.92 0.82 0.00 0.03
X1632_S2_B10 G 0.20 0.22 1.07 1.19 1.26 1.41 0.69 0.65 0.29 0.23
Ce1176_A3 C 0.44 0.55 0.25 0.20 2.61 2.59 0.67 0.75 0.05 0.50
246-F3_C10_2 AC 0.17 0.11 0.76 0.85 2.06 1.88 0.19 0.19 0.14 0.27
CNE55 AE 0.42 0.05 1.81 1.74 0.69 0.27 0.45 0.11 0.00 0.17

Heterologous 
Strain Clade Day 0 Day 0 Day 0

YU2.DG B 0.90 1.04 0.60 0.65 0.00 0.00
BaL.26 B 3.15 3.16 2.68 2.55 0.11 0.00
Q769.d22 A1 0.16 0.74 0.20 0.00 0.18 0.11
Q259.d2.17 A1 0.00 0.00 0.19 0.19 0.02 0.02
Q842.d12 A1 0.41 0.60 0.63 0.66 0.32 0.36
ZM135M.PL10a C 0.02 0.00 0.00 0.00 0.01 0.08
25710-2.43 C 0.96 0.70 0.32 0.31 0.03 0.18
CNE8 AE 0.21 0.25 0.52 0.46 0.06 0.08
TRO.11 B 0.39 0.60 0.71 0.43 0.00 0.07
X1632_S2_B10 G 0.36 0.65 0.74 0.47 0.00 0.02 > 2
Ce1176_A3 C 0.14 0.19 0.15 0.16 1.82 1.75 1-2
246-F3_C10_2 AC 0.02 0.01 0.05 0.18 0.00 0.02 0.5 - 1
CNE55 AE 0.09 0.14 0.09 0.02 0.33 0.21 0 - 0.5

10518 10362 10112 10962 10223

10482 10210 10596 10138 10108

Week 27 
(188d)

Week 27 
(189d)

Week 26 
(183d)

Week 28 
(196d)

Week 24 
(168d)

Week 24 
(171d)

Week 27 
(190d)

Week 26 
(182d)

Week 28 
(196d)

Week 28 
(196d)

10410

Week 26 
(182d)

Week 27 
(187d)

Week 27 
(187d)

Week 26 
(182d)

Week 27 
(188d)

Week 28 
(195d)

Week 27 
(189d)

Week 26 
(181d)

10367 104691095910275

10397 10292 10802

AUC
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Table S4B. 
Heterologous TZM.bl neutralization data of purified patient IgG (AUC), continued

10257
Heterologous 

Strain Clade Day 0 Day 0 Day 0 Day 0 Day 0

YU2.DG B 0.07 0.09 1.24 1.08 0.48 0.51 1.31 1.37 0.75 0.83
BaL.26 B 1.81 1.95 2.77 2.72 3.24 3.31 2.38 2.16 2.44 2.40
Q769.d22 A1 0.00 0.07 1.27 1.06 0.21 0.08 0.20 0.52 0.26 0.18
Q259.d2.17 A1 0.04 0.06 0.86 0.60 0.19 0.13 0.03 0.09 0.50 0.87
Q842.d12 A1 0.26 0.39 1.85 1.61 0.59 1.03 0.43 0.63 1.26 1.69
ZM135M.PL10a C 0.06 0.06 0.08 0.01 0.76 1.26 0.19 0.15 0.69 1.24
25710-2.43 C 0.38 0.64 0.65 0.54 1.01 1.41 0.73 0.77 0.97 1.48
CNE8 AE 0.56 0.37 2.33 2.18 1.88 2.21 0.54 0.54 0.99 1.18
TRO.11 B 0.81 0.85 1.53 1.19 1.48 1.64 1.06 1.02 1.69 1.77
X1632_S2_B10 G 0.09 0.00 1.68 1.29 0.46 0.30 0.81 1.18 0.61 0.90
Ce1176_A3 C 0.67 0.41 0.82 0.73 0.68 0.69 0.60 0.64 0.28 0.31
246-F3_C10_2 AC 0.11 0.01 1.82 1.75 0.28 0.31 0.07 0.08 0.13 0.21
CNE55 AE 0.03 0.09 1.57 1.54 0.64 0.43 0.18 0.14 0.41 0.08

Heterologous 
Strain Clade Day 0 Day 0 Day 0 Day 0 Day 0

YU2.DG B 0.40 0.29 2.34 1.98 0.64 0.51 0.43 0.48 0.21 0.20
BaL.26 B 1.95 1.83 3.46 3.36 2.30 2.33 1.54 1.53 1.66 1.53
Q769.d22 A1 1.38 0.79 2.36 2.04 0.44 0.28 0.21 0.62 0.12 0.49
Q259.d2.17 A1 0.18 0.21 1.51 1.30 0.16 0.03 0.04 0.10 0.12 0.01
Q842.d12 A1 0.75 0.87 2.55 2.16 0.26 0.20 0.39 1.10 0.23 0.22
ZM135M.PL10a C 0.15 0.05 1.70 0.98 0.40 0.24 0.06 0.19 0.32 0.16
25710-2.43 C 0.49 0.42 1.48 2.07 0.82 0.63 0.69 1.40 0.70 0.54
CNE8 AE 0.28 0.35 1.96 1.62 0.41 0.32 0.07 0.25 0.18 0.12
TRO.11 B 1.66 1.38 2.85 2.58 1.70 1.57 0.93 1.55 0.29 0.26
X1632_S2_B10 G 0.52 0.49 1.60 1.96 0.40 0.71 0.29 0.16 0.35 0.19
Ce1176_A3 C 0.27 0.44 1.47 1.14 0.83 0.69 0.66 1.31 0.29 0.19
246-F3_C10_2 AC 0.04 0.07 1.22 0.62 0.08 0.07 0.16 0.75 0.21 0.10
CNE55 AE 0.63 0.57 1.61 1.46 0.40 0.59 0.79 1.07 0.41 0.29

Heterologous 
Strain Clade Day 0 Day 0 Day 0 Day 0 Day 0

YU2.DG B 0.09 0.25 0.00 0.00 0.02 0.00 0.25 0.15 0.70 0.63
BaL.26 B 1.21 0.99 1.36 1.30 2.81 2.54 2.19 2.05 2.11 2.31
Q769.d22 A1 0.30 0.10 0.00 0.03 0.00 0.07 0.17 0.07 0.00 0.09
Q259.d2.17 A1 0.16 0.10 0.00 0.07 0.00 0.00 0.18 0.10 0.00 0.05
Q842.d12 A1 0.09 0.13 0.00 0.21 0.01 0.04 0.38 0.40 0.12 0.15
ZM135M.PL10a C 0.20 0.34 0.00 0.00 0.25 0.25 0.29 0.25 0.11 0.10
25710-2.43 C 0.18 0.23 0.08 0.18 0.44 0.38 1.14 1.14 0.47 0.60
CNE8 AE 0.79 0.81 0.02 0.16 0.70 0.46 0.18 0.18 0.00 0.04
TRO.11 B 1.11 1.05 0.00 0.02 0.30 0.18 0.30 0.21 1.68 1.59
X1632_S2_B10 G 0.15 0.36 0.00 0.00 0.09 0.06 0.31 0.23 0.00 0.05
Ce1176_A3 C 0.29 0.35 0.20 0.01 0.08 0.19 0.36 0.38 0.21 0.29
246-F3_C10_2 AC 0.15 0.21 0.38 0.08 0.12 0.11 0.31 0.31 0.08 0.14
CNE55 AE 0.19 0.14 0.02 0.87 0.00 0.19 0.22 0.12 0.00 0.00

Heterologous 
Strain Clade Day 0 Day 0 Day 0

YU2.DG B 0.08 0.00 0.88 0.28 0.10 0.08
BaL.26 B 2.46 2.37 2.31 1.45 2.33 1.97
Q769.d22 A1 0.13 0.01 0.08 0.20 0.51 0.22
Q259.d2.17 A1 0.06 0.04 0.02 0.01 0.26 0.25
Q842.d12 A1 0.06 0.00 0.13 0.04 0.44 0.35
ZM135M.PL10a C 0.12 0.15 0.77 0.46 0.30 0.40
25710-2.43 C 0.11 0.07 0.92 0.52 0.44 0.45
CNE8 AE 0.00 0.00 0.62 0.25 0.01 0.00
TRO.11 B 0.45 0.20 0.53 0.20 0.16 0.24
X1632_S2_B10 G 0.13 0.13 0.08 0.00 0.03 0.00 > 2
Ce1176_A3 C 0.05 0.02 0.60 0.27 0.30 0.30 1-2
246-F3_C10_2 AC 0.10 0.11 0.18 0.10 0.24 0.31 0.5 - 1
CNE55 AE 0.00 0.00 0.00 0.00 0.20 0.11 0 - 0.5

10160 10811

10814 10100

Week 28 
(196d)

Week 17 
(117d)

Week 88 
(617d)

Week 15 
(106d)

Week 31 
(215d)

Week 35 
(245d)

10489

10239

10779 10785

10587 10169

Week 27 
(187d)

Week 27 
(188d)

10099 10417 10690

Week 8 
(56d)

Week 16 
(112d)

10930

AUC

Week 24 
(169d)

Week 30 
(209d)

Week 32 
(224d)

Week 27 
(188d)

10082 10914 10689

Week 26 
(181d)

Week 11 
(76d)

Week 13 
(89d)

Week 31 
(218d)
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Table S4B. 
Heterologous TZM.bl neutralization data of purified patient IgG (AUC), continued
3BNC117-treated viremic patients

Heterologous 
Strain Clade Day -7 Week 24 Day 0 Week 24 Day -7 Week 24 Day -7 Week 24 Day -7 Week 24

YU2.DG B 2.51 2.60 0.21 0.61 0.09 0.37 0.03 0.00 0.00 0.02
BaL.26 B 3.72 3.70 2.35 2.55 1.41 1.64 1.03 0.94 0.41 0.52
Q769.d22 A1 1.72 1.64 0.19 2.40 0.00 0.06 0.07 0.00 0.00 0.01
Q259.d2.17 A1 0.91 1.76 1.02 1.61 0.01 0.20 0.05 0.51 0.00 0.20
Q842.d12 A1 2.53 2.67 0.36 0.56 0.04 0.19 0.01 0.00 0.00 0.04
ZM135M.PL10a C 0.25 0.78 0.12 0.32 0.01 0.12 0.09 0.08 0.00 0.22
25710-2.43 C 0.32 0.73 0.96 1.33 0.48 0.58 0.30 0.24 0.01 0.18
CNE8 AE 0.00 0.13 0.03 0.02 0.00 0.01 0.01 0.00 0.00 0.02
TRO.11 B 1.04 1.88 0.67 1.10 0.27 0.70 0.01 0.24 0.00 0.49
X1632_S2_B10 G 1.66 1.91 0.22 0.29 0.06 0.10 0.09 0.00 0.00 0.04
Ce1176_A3 C 0.00 0.28 0.21 0.44 0.00 0.16 0.02 0.15 0.01 0.14
246-F3_C10_2 AC N/A N/A 0.53 0.60 N/A N/A N/A N/A N/A N/A
CNE55 AE 0.34 0.81 0.12 0.13 0.00 0.00 0.03 0.00 0.02 0.02

Heterologous 
Strain Clade Day -7 Week 24 Day -7 Week 24 Day 0 Week 24 Day -7 Week 24 Day -7 Week24

YU2.DG B 1.10 1.64 0.04 0.11 0.16 0.06 0.14 0.15 0.00 0.14
BaL.26 B 2.10 2.81 2.16 2.75 1.11 1.45 1.18 1.71 0.00 0.26
Q769.d22 A1 0.03 0.43 0.08 0.38 0.04 0.26 0.24 0.28 0.01 0.61
Q259.d2.17 A1 N/A N/A N/A N/A 0.20 0.20 0.07 0.42 0.01 0.25
Q842.d12 A1 1.42 1.36 0.02 0.12 0.09 0.23 0.19 0.59 0.00 0.46
ZM135M.PL10a C 0.11 0.55 0.13 0.86 0.16 0.24 0.09 0.23 0.09 0.31
25710-2.43 C 0.62 1.88 0.55 0.98 0.38 0.29 0.47 1.15 0.01 0.00
CNE8 AE 0.47 1.48 0.06 0.79 0.00 0.00 0.03 0.16 0.00 0.02
TRO.11 B 1.61 2.86 0.38 0.83 0.34 0.15 0.16 0.42 0.02 0.12
X1632_S2_B10 G 0.13 0.80 0.08 0.42 0.18 0.05 0.13 0.15 0.01 0.03
Ce1176_A3 C 0.24 1.53 0.00 0.04 0.12 0.00 0.04 0.07 0.08 0.00
246-F3_C10_2 AC N/A N/A N/A N/A 0.22 0.02 N/A N/A 0.18 0.00
CNE55 AE 0.04 0.07 0.02 0.00 0.00 0.01 0.04 0.00 0.02 0.08

Heterologous 
Strain Clade Day 0 Week 24 Day 0 Week 24 Day 0 Week 24 Day 0 Week 24 Day 0 Week 24

YU2.DG B 0.00 0.28 0.08 0.30 0.00 0.13 0.28 0.52 0.00 0.53
BaL.26 B 1.40 2.12 2.24 2.71 1.27 2.33 1.26 1.74 0.63 1.77
Q769.d22 A1 0.48 1.05 0.00 0.50 0.00 0.80 0.47 0.40 0.17 0.73
Q259.d2.17 A1 0.03 0.24 0.30 0.14 0.30 0.18 0.34 0.62 0.13 0.73
Q842.d12 A1 0.02 0.19 0.12 0.19 0.16 0.24 0.36 0.59 0.25 0.56
ZM135M.PL10a C 0.00 0.14 0.24 0.13 0.15 0.37 0.53 0.35 0.12 0.21
25710-2.43 C 0.60 0.65 0.47 0.46 0.42 0.61 1.02 0.99 0.07 0.22
CNE8 AE 0.05 0.07 0.03 0.15 0.04 0.02 0.93 1.32 0.05 0.10
TRO.11 B 0.65 1.14 0.40 0.18 0.34 0.38 0.99 0.80 0.14 0.30
X1632_S2_B10 G 0.16 0.26 0.22 0.41 0.01 0.32 0.21 0.30 0.04 0.51
Ce1176_A3 C 0.21 0.02 0.12 0.00 0.05 0.00 0.34 0.13 0.12 0.15
246-F3_C10_2 AC 0.18 0.51 0.39 0.14 0.17 0.14 0.83 0.57 0.19 1.13
CNE55 AE 0.00 0.00 N/A N/A 0.00 0.00 0.00 0.00 0.00 0.03

> 2
1-2
0.5 - 1
0 - 0.5

2E32E2 2E4 2E5

2B1 2B3

2C4 2C5

AUC

2D1 2C1 2D3

2A1 2A3 2A4

2E1
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Table S4B. 
Heterologous TZM.bl neutralization data of purified patient IgG (AUC), continued
3BNC117-treated patients on-ART

Heterologous 
Strain Clade Day 0 Week 24 Day 0 Week 24 Day 0 Week 24 Day 0 Week 24 Day 0 Week 24

YU2.DG B 0.04 0.02 0.03 0.01 0.07 0.18 0.04 0.03 0.06 0.05
BaL.26 B 0.05 0.02 0.91 0.87 1.30 2.31 0.26 0.44 0.12 0.11
Q769.d22 A1 0.01 0.46 0.01 0.20 0.01 0.07 0.03 0.18 0.21 0.20
Q259.d2.17 A1 0.20 0.21 0.09 0.27 0.33 0.41 0.23 0.20 0.09 0.20
Q842.d12 A1 0.18 0.29 0.25 0.29 0.20 0.52 0.36 0.38 0.18 0.34
ZM135M.PL10a C 0.00 0.09 0.01 0.21 0.07 0.07 0.17 0.05 0.04 0.04
25710-2.43 C 0.01 0.08 0.05 0.23 0.12 0.23 0.18 0.17 0.42 0.46
CNE8 AE 0.00 0.00 0.00 0.03 0.01 0.13 0.02 0.00 0.09 0.08
TRO.11 B 0.11 0.09 0.17 0.05 0.36 0.49 0.12 0.11 0.24 0.27
X1632_S2_B10 G 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.05 0.14 0.09
Ce1176_A3 C 0.00 0.00 0.03 0.00 0.00 0.12 0.00 0.02 0.03 0.02
246-F3_C10_2 AC 0.03 0.01 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00
CNE55 AE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Heterologous 
Strain Clade Day 0 Week 24 Day 0 Week 24 Day 0 Week 24 Day 0 Week 24 Day 0 Week 24

YU2.DG B 0.00 0.02 0.03 0.11 0.00 0.02 0.07 0.05 0.28 0.19
BaL.26 B 1.18 1.22 1.37 1.10 0.15 0.21 1.77 1.85 1.32 1.43
Q769.d22 A1 0.00 0.00 0.54 0.57 0.27 0.14 0.30 0.41 0.73 0.99
Q259.d2.17 A1 0.00 0.10 0.18 0.11 0.00 0.05 0.01 0.04 0.29 0.23
Q842.d12 A1 0.10 0.08 0.18 0.41 0.08 0.20 0.19 0.12 0.56 0.59
ZM135M.PL10a C 0.00 0.02 0.18 0.13 0.03 0.14 0.18 0.25 0.30 0.52
25710-2.43 C 0.14 0.20 0.29 0.21 0.06 0.08 0.18 0.20 0.48 0.44
CNE8 AE 0.02 0.00 0.05 0.04 0.00 0.80 0.04 0.84 0.26 1.08
TRO.11 B 0.00 0.01 0.13 0.12 0.00 0.37 0.06 0.21 0.26 0.87
X1632_S2_B10 G 0.00 0.00 0.10 0.19 0.00 0.36 0.04 0.41 0.07 0.80
Ce1176_A3 C 0.01 0.04 0.08 0.10 0.06 0.13 0.12 0.09 0.10 0.53
246-F3_C10_2 AC 0.03 0.11 0.12 0.15 0.07 0.24 0.16 0.25 0.14 0.80
CNE55 AE 0.00 0.00 0.07 0.25 0.16 0.26 0.14 0.26 0.14 1.08

Heterologous 
Strain Clade Day -7 Week 24 Day -7 Week 24

YU2.DG B 0.00 0.03 0.00 0.02
BaL.26 B 0.68 0.71 1.03 1.40
Q769.d22 A1 0.20 0.00 0.01 0.07
Q259.d2.17 A1 0.00 0.09 0.00 0.29
Q842.d12 A1 0.00 0.14 0.04 0.30
ZM135M.PL10a C 0.11 0.14 0.16 0.29
25710-2.43 C 0.39 0.49 0.28 0.65
CNE8 AE 0.00 0.03 0.00 0.12
TRO.11 B 0.04 0.30 0.11 0.74
X1632_S2_B10 G 0.14 0.08 0.07 0.23 > 2
Ce1176_A3 C 0.02 0.07 0.12 0.22 1-2
246-F3_C10_2 AC N/A N/A N/A N/A 0.5 - 1
CNE55 AE 0.23 0.00 0.27 0.02 0 - 0.5

5B1 5B2 5B3 5B4 5B5

5A1 5A2 5A3 5A4 5A5

AUC

2B2 2C2
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Table S5A. 
Summary measures table breadth and potency Day 0 and Wk24
Untreated viremic control individuals

Subject ID Status before 
therapy

Number of 
viruses 

neutralized 
with AUC > 

0.5 pre-
therapy

Percent of 
viruses 

neutralized 
with AUC > 

0.5 pre-
therapy

Number of 
viruses 

neutralized 
with AUC > 

0.5 post-
therapy

Percent of 
viruses 

neutralized 
with AUC > 

0.5 post-
therapy

Mean AUC 
Day 0

Mean AUC Wk 
24

10518 Control 2 15% 3 23% 0.305 0.413
10362 Control 2 15% 2 15% 0.393 0.352
10112 Control 11 92% 12 100% 1.809 1.692
10962 Control 13 100% 13 100% 1.492 1.536
10223 Control 13 100% 13 100% 1.595 1.497
10482 Control 4 31% 4 31% 0.407 0.423
10210 Control 5 38% 5 38% 0.594 0.537
10596 Control 9 69% 7 54% 1.096 0.962
10138 Control 11 85% 11 85% 1.634 1.566
10108 Control 13 100% 13 100% 2.739 2.701
10275 Control 1 8% 3 23% 0.409 0.422
10959 Control 8 62% 8 62% 1.186 1.193
10367 Control 11 85% 9 69% 1.645 1.514
10469 Control 8 62% 8 62% 0.724 0.676
10410 Control 1 8% 2 15% 0.267 0.396
10397 Control 3 23% 7 54% 0.525 0.623
10292 Control 6 46% 3 23% 0.530 0.468
10802 Control 1 8% 1 8% 0.222 0.225
10099 Control 4 31% 3 23% 0.376 0.384
10930 Control 12 92% 12 92% 1.420 1.254
10417 Control 8 62% 8 62% 0.915 1.023
10690 Control 7 54% 9 69% 0.656 0.714
10257 Control 9 69% 9 69% 0.845 1.009
10587 Control 6 46% 5 38% 0.669 0.598
10169 Control 13 100% 13 100% 2.009 1.789
10160 Control 5 38% 7 54% 0.682 0.627
10811 Control 5 38% 8 62% 0.481 0.807
10239 Control 2 15% 2 15% 0.391 0.330
10814 Control 3 23% 3 23% 0.378 0.390
10100 Control 1 8% 2 15% 0.159 0.225
10779 Control 2 15% 1 8% 0.371 0.343
10785 Control 2 15% 2 15% 0.482 0.429
10489 Control 3 23% 4 31% 0.422 0.465
10082 Control 1 8% 1 8% 0.288 0.238
10914 Control 7 54% 2 15% 0.548 0.291
10689 Control 2 15% 1 8% 0.410 0.359

5.9 45.9% 6.0 46.4% 0.8 0.8Average :

Untreated viremic control individuals

Breadth Overall neutralizing activity 
(Potency and breadth)
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Table S5B. 
Summary measures table breadth and potency Day 0 and Wk24
3BNC117-treated individuals

Subject ID
Status 
before 

therapy

Number of 
viruses 

neutralized 
with AUC > 0.5 

pre-therapy

Percent of 
viruses 

neutralized 
with AUC > 0.5 

pre-therapy

Number of 
viruses 

neutralized 
with AUC > 0.5 
post-therapy

Percent of 
viruses 

neutralized 
with AUC > 0.5 
post-therapy

Mean AUC Day 
0

Mean AUC Wk 
24

2A1 Viremic 7 58% 10 83% 1.250 1.575
2A3 Viremic 5 38% 8 62% 0.537 0.921
2A4 Viremic 1 8% 3 25% 0.196 0.345
2B1 Viremic 1 8% 2 17% 0.144 0.180
2B3 Viremic 0 0% 1 8% 0.038 0.159
2C4 Viremic 5 45% 9 82% 0.717 1.403
2C5 Viremic 2 18% 5 45% 0.321 0.662
2D1 Viremic 1 8% 1 8% 0.230 0.227
2C1 Viremic 1 8% 3 25% 0.232 0.444
2D3 Viremic 0 0% 1 8% 0.033 0.176
2E1 Viremic 3 23% 5 38% 0.292 0.513
2E2 Viremic 1 8% 1 8% 0.384 0.442
2E3 Viremic 1 8% 3 23% 0.224 0.425
2E4 Viremic 6 46% 8 62% 0.581 0.641
2E5 Viremic 1 8% 7 54% 0.147 0.537

2.3 19.1% 4.5 36.5% 0.4 0.6

5A1 on-ART 0 0% 0 0% 0.0482 0.0976
5A2 on-ART 1 8% 1 8% 0.1204 0.1665
5A3 on-ART 1 8% 2 15% 0.1897 0.3528
5A4 on-ART 0 0% 0 0% 0.1090 0.1259
5A5 on-ART 0 0% 0 0% 0.1255 0.1437
5B1 on-ART 1 8% 1 8% 0.1137 0.1382
5B2 on-ART 2 15% 2 15% 0.2535 0.2679
5B3 on-ART 0 0% 1 8% 0.0685 0.2294
5B4 on-ART 1 8% 2 15% 0.2510 0.3820
5B5 on-ART 3 23% 10 77% 0.3799 0.7352
2B2 on-ART 1 8% 1 8% 0.1501 0.1726
2C2 on-ART 1 8% 3 25% 0.1753 0.3616

0.9 7.2% 1.9 15.0% 0.2 0.3

Overall neutralizing activity 
(Potency and breadth)Breadth

Average :

Average :

Individuals on-ART

Viremic individuals
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Table S6. 
TZM.bl neutralization data over time in subject 2A3 (IC50)

Heterologous strain Clade Day 0 Week 12 Week 16 Week 20 Week 24

YU2.DG B >500 483.2 403.7 390.1 363.4
BaL.26 B 28.4 24.2 25.5 24.3 18.9

Q769.d22 A1 >500 452.0 266.2 82.8 19.4
Q259.d2.17 A1 92.5 61.4 71.9 93.0 84.7 0 - 25 µg/ml  
Q842.d12 A1 475.0 499.7 436.0 426.8 417.8 25 -100 µg/ml  

ZM135M.PL10a C >500 >500 >500 >500 >500 100 - 400 µg/ml    
25710-2.43 C 110.8 109.7 159.8 123.1 136.0 400 - 500 µg/ml  

CNE8 AE >500 >500 >500 >500 >500 >500 µg/ml
TRO.11 B 218.6 435.4 401.5 257.5 203.0

X1632_S2_B10 G >500 >500 >500 >500 >500
Ce1176_A3 C 482.2 >500 493.4 432.9 446.7

246-F3_C10_2 AC 445.4 430.4 420.3 299.9 283.7
CNE55 AE >500 >500 >500 >500 >500

IgG IC50 titers (µg/ml)
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Table S7.
Analysis of potential confounding variables

AUC change observed 
in viral strain  Age Time since 

diagnosis
Sampling 
interval

abs. CD4+ T cell 
count              

(cells/mm3)     
Day 0 

abs. CD4+ T cell 
count            

(cells/mm3) 
Week 24

HIV-RNA 
level 

(copies/ml) 
Day 0

HIV-RNA 
level 

(copies/ml) 
Week 24

Starting AUC 
(AUC Day 0)

246.F3_C10_2 1 1 1 1 1 1 1 1
CNE55 1 1 0.18 1 1 1 1 0.18

Ce1176_A3 1 1 1 1 1 1 1 1
TRO.11 1 1 0.41 1 1 1 0.23 1

Q259.d2.17 1 1 0.10 1 1 1 1 1
25710-2.43 1 1 1 1 1 1 1 0.66
Q769.d22 1 1 0.64 1 1 1 1 0.50

BaL.26 1 0.50 0.02 1 0.09 1 1 0.47
YU.2 1 1 0.52 1 1 1 0.69 1

X1632_S2_B10 1 1 0.05 1 1 1 0.92 0.17
ZM135M.PL10a 1 1 0.37 1 1 1 1 1

Q842.d12 1 1 1 1 0.56 1 1 0.0035
CNE8 0.46 1 0.58 1 1 1 1 1

variable is not predictive of AUC change

Bonferroni-corrected significance threshold: 0.0005 with significance level α 
= 0.05

 Variable (p-value of likelihood ratio test if alternative model superior to null-model)
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Table S8.
Rank correlation and p-values for Spearman rank correlation of patient and 3BNC117 neutralization

Subject ID rank correlation 
(AUC-based) p-value (AUC-based)

rank correlation           
(IC50-based) p-value (IC50-based)

2A1 0.46 0.1689 -0.43 0.1369
2A3 -0.33 0.2470 0.35 0.2664
2A4 -0.52 0.1926 0.41 0.0818
2B1 0.02 0.9224 -0.03 0.9611
2B3 0.14 0.5135 -0.21 0.6641
2C4 0.39 0.2250 -0.40 0.2334
2C5 -0.12 0.8815 0.05 0.7287
2D1 -0.65 0.0103 0.70 0.0163
2C1 -0.30 0.3425 0.30 0.3355
2D3* -0.84 0.0001 0.87 0.0003
2E1 -0.62 0.0160 0.66 0.0225
2E2 -0.43 0.1926 0.41 0.1659
2E3 -0.24 0.5292 0.19 0.4364
2E4 -0.48 0.0850 0.50 0.1002
2E5 -0.38 0.1013 0.48 0.1972
2B2 -0.14 0.8690 0.06 0.6641
2C2 -0.09 0.8517 0.06 0.7700
5A1 0.00 0.8922 0.04 1.0000
5A2 0.12 0.9786 -0.01 0.7029
5A3 -0.60 0.1013 0.48 0.0293
5A4 -0.19 0.4930 0.21 0.5339
5A5 -0.21 0.4561 0.23 0.4988
5B1 0.23 0.6138 -0.15 0.4505
5B2 0.01 0.8632 -0.05 0.9644
5B3 0.24 0.3103 -0.31 0.4330
5B4 0.26 0.5785 -0.17 0.3936
5B5 0.43 0.1955 -0.38 0.1377

p-value threshold (Bonferroni-corrected): 0.0019
*Significant rank correlation only detected in 2D3 (indicated in green).
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Table S9.

Subject Day 0 Week 4 (6) Week 12 Week 24 Total per patient
2A1 27 26 24 40 117
2A3 23 32 29 27 111
2C4 33 19 30 19 101
2C5 48 20 22 32 122
2E1 30 31 27 37 125
2E2 20 27 25 27 99
2E3 25 17 24 21 87
2E4 41 25 26 29 121
2E5 47 3 (22*) 23 22 117

Total per TP 294 222 230 254 1000

Number of gp160 nucleotide sequences included in phylogenetic analysis

(*) due to low viral load week 6 plasma was sequenced
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Table S10. 
Envelope amino acid residues under significant selection in each individual

Subject ID

2A1

2A3

2C4

2C5

2E1
2E2
2E3

2E4

2E5
*3BNC117 contact sites confirmed by crystal structures (26, 27) are in red

153, 295, 297, 344, 397-8, 411, 413, 444, 461, 636
32, 145, 440, 464, 683

187dehi, 337, 340, 343

80, 282, 400

Sites Under Selection (≥80% different from Day 0 Consensus)
12,134-6, 138-46, 148-9, 149lmopstuv, 150-3, 155, 161, 164, 166, 168-71, 177, 
178, 182, 185-188, 189bdef, 195, 209, 240, 270, 272, 279*, 283, 287, 291, 293, 
306, 316-7, 318,  321a, 326, 333, 335, 336-7, 343, 344, 346-7, 360, 362, 364, 365, 
373, 386, 395, 398, 401-5, 408, 411-3, 417, 442, 460, 461, 471, 698
137-8, 140, 141af, 142, 187e, 336, 410
59, 188ckl, 283, 308, 339, 346-7, 354, 356, 362, 386, 389, 392-6, 400-5, 410, 415, 
459abhijkl, 640, 674, 689, 742

140, 275, 279, 290, 340, 344, 347, 350, 353, 355, 364a, 396, 397, 400-3, 405-7, 
409, 461, 461abce, 464, 465, 500
141, 147-9, 150b, 160, 398, 401-4, 410, 460, 463, 500, 624
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Table S11. 
TZM.bl neutralization data of CMV-env pseudotyped viruses (IC50)

Subject 
ID

Virus ID (in order of 
appearance in tree top to 

bottom)

3BNC117 
IC50 

(µg/ml)

Day 0 IgG 
IC50 

(µg/ml)

Week 24 IgG 
IC50    

(µg/ml)

2A1-D0-0408TIT-E5_S57 0.119 101.1 33.4
2A1_D0_0409_G3_S89 0.209 333.6 66.6
2A1-D0-0409-B1_S73 0.116 161.5 70.1
2A1-W4-0408TIT-G11_S19 0.157 233.4 109.2 3BNC117 IC50 IgG IC50

2A1-D0-0409-E7_S85 0.141 96.9 94.5 (µg/ml) (µg/ml)
2A1-W24-0409-H4_S33 0.306 185.1 199.5 0 - 0.1 0 - 50
2A1-W24-0409-E1_S22 0.641 171.3 157.6 0.1 - 0.5 50 -100
2A1-W12-TIT0402-D1_S36 0.691 154.3 160.3 0.5 - 1.0 100 - 150
2A1-W24-0409-G11_S30 0.585 175.6 187.1 1.0 - 2.0 150 - 200
2A1-D0-0409-C2_S77 0.692 149.4 135.1 2.0 - 5.0 200 - 250
2A1-W4-0408TIT-H2_S16 0.595 164.2 153.9 5.0 - 10.0 250 - 500
2A1-D0-0409-G9_S90 0.651 165.8 154.5 > 10.0 > 500
2A1-W4-0408TIT-E12-S4 0.184 198.4 96.3
2A1-W4-0408TIT-G9_S12 0.181 266.1 143.2
2A1-W4-0408TIT-G10_S13 0.128 164.9 85.4
2A1-D0-0409-B4-S74 0.317 423.9 186.6
2A1-W24-0409-H11_S34 0.240 176.1 113.6
2A1-W4-0408TIT-F8_S6 0.159 239.1 127.1
2A1-D0-0409-H9_S93 0.008 123.4 139.4
2A1-D0-0409-E5_S83 0.017 187.2 180.6

2E1-D0-0409-E4_S58 0.038 107.7 77.3
2E1-W4_G11_S39 0.185 257.7 23.8
2E1-W4-TIT0408-D3_S63 0.048 338.1 29.1
2E1-D0-0409-H8_S69 0.124 211.0 73.6
2E1-W4-TIT0408-D7_S64 0.106 384.6 38.0
2E1-W12-0409-H3_S20 0.025 >500.0 233.5
2E1-W12-0409-G3_S16 0.063 >500.0 >500.0
2E1-W24-0526PlE-A9_S72 0.052 333.9 154.8
2E1-W24-0526PlE-B3_S74 0.080 >500.0 452.1
2E1-D0-0421-G4_S4 0.091 421.4 97.6
2E1-W4-TIT0408-E7_S69 0.078 360.5 33.5
2E1-W12-0524Pl2-F6_S49 0.087 >500.0 94.6
2E1-W24-0526PlE-G6_S85 0.064 266.7 189.6
2E1-W24-0526PlE-F1e_S80 0.040 370.5 197.9

2C5-W24-0423-H6_S78 >20 22.5 30.2
2C5-D0-0422-H4-S56 0.006 36.4 35.9
2C5-D0-0422-F4-S44 0.011 20.3 34.5
2C5-W24-0423-F2-S73 0.022 145.7 500.0
2C5-W4-0423-A6-S33 3.131 18.1 20.6
2C5-W4-0423-D11_S38 14.079 49.9 12.2
2C5-W12-TIT0418-D2_S6 1.142 2.5 2.8
2C5-W4-0422-G1_S91 >20 85.1 38.1

2A3-W24-TIT0406-B6_S68 0.195 >500.0 407.2
2A3_D0_0404_C9_S75 0.055 543.9 210.4
2A3-D0-0421-A3_S44 0.171 >500.0 >500.0
2A3-W4-0421-E11_S55 1.024 255.2 218.5
2A3-W24-TIT0406-B7_S69 0.022 411.3 419.5
2A3-W24-TIT0406-A6e_S65 0.071 292.9 327.8
2A3-W12-0421-A7_S84 0.051 255.2 182.0
2A3-D0-0421-D3_S50 0.037 305.6 212.7
2A3-W24-TIT0406-C11_S74 0.049 224.0 223.0
2A3-W12-0421-C12_S94 0.055 293.6 263.7
2A3-W12-0406-F2_S50 0.049 276.5 168.6
2A3-W4-0406-E12_S31 0.030 169.3 11.1
2A3_D0_0404_C1_S74 0.074 447.4 155.9
2A3-W4-0406-A3_S14 0.099 >500.0 219.3

2C4-W24-0406-A5_S65 >20 240.8 36.1
2C4-W24-0406-H10_S88 >20 156.7 39.2
2C4-W24-0406-D6_S74 >20 153.9 39.0
2C4-D0-0404-C1_S30 >20 195.7 21.9
2C4-D0-0406-H7_S24 >20 155.3 20.7
2C4-D0-0406-F3_S19 >20 147.6 20.4
2C4-D0-0406-E10_S18 >20 170.9 23.8

2C4

2E1

2A1

2A3

2C5
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A.3. Paper 3 - bNAb efficacy study II

Copyright clearance

The herein included manuscript is the version of record of the paper "HIV-1 antibody
3BNC117 suppresses viral rebound in humans during treatment interruption" as
published in Nature 535 and available at link 10.1038/nature18929.
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HIV-1 antibody 3BNC117 suppresses viral rebound in 
humans during treatment interruption
johannes F. Scheid1,2*, joshua A. Horwitz1*, yotam Bar-On1, Edward F. Kreider3, Ching-Lan Lu1, julio C. C. Lorenzi1, 
Anna Feldmann4, Malte Braunschweig1, Lilian Nogueira1, Thiago Oliveira1, Irina Shimeliovich1, Roshni Patel1, 
Leah Burke5, yehuda Z. Cohen1, Sonya Hadrigan1, Allison Settler1, Maggi Witmer-Pack1, Anthony P. West jr6, Boris juelg7, 
Tibor Keler8, Thomas Hawthorne8, Barry Zingman9, Roy M. Gulick5, Nico Pfeifer4, Gerald H. Learn3, Michael S. Seaman10, 
Pamela j. Bjorkman6, Florian Klein1,11,12, Sarah j. Schlesinger1, Bruce D. Walker7,13, Beatrice H. Hahn3, Michel C. Nussenzweig1,14 
& Marina Caskey1

Interruption of combination antiretroviral therapy in HIV-1-
infected individuals leads to rapid viral rebound. Here we report the 
results of a phase IIa open label clinical trial evaluating 3BNC117, 
a broad and potent neutralizing antibody against the CD4 binding 
site of the HIV-1 Env protein1, during analytical treatment 
interruption in 13 HIV-1-infected individuals. Participants 
with 3BNC117-sensitive virus outgrowth cultures were enrolled. 
Results show that two or four 30 mg kg−1 3BNC117 infusions, 
separated by 3 or 2 weeks, respectively, are generally well tolerated. 
Infusions are associated with a delay in viral rebound of 5–9 weeks 
after two infusions, and up to 19 weeks after four infusions, or 
an average of 6.7 and 9.9 weeks, respectively, compared with 
2.6 weeks for historical controls (P < 0.00001). Rebound viruses 
arise predominantly from a single provirus. In most individuals, 
emerging viruses show increased resistance, indicating escape. 
However, 30% of participants remained suppressed until antibody 
concentrations waned below 20 μg ml−1, and the viruses emerging 
in all but one of these individuals showed no apparent resistance to 
3BCN117, suggesting failure to escape over a period of 9–19 weeks. 
We conclude that the administration of 3BNC117 exerts strong 
selective pressure on HIV-1 emerging from latent reservoirs during 
analytical treatment interruption in humans.

A fraction of HIV-1-infected individuals develops broad and 
potent serologic activity against the virus. Single-cell antibody  cloning 
 methods2 have uncovered the source of this activity as broadly 
 neutralizing antibodies (bNAbs), which target different sites on the 
HIV-1 envelope spike protein, gp160 (refs 1–3).

In animal models, bNAbs show potent prophylactic activity,  suppress 
established viraemia, and delay viral rebound during  analytical 
 treatment interruption (ATI)4–8. In humans, a phase I clinical trial 
showed that 3BNC117 is generally safe and effective in transiently 
reducing viraemia in chronically HIV-1-infected individuals9. A 
 single infusion of 3BNC117 was well tolerated, rapidly decreased viral 
loads in viraemic individuals by an average of 1.48 log10 copies per ml, 
with durable activity for 4 weeks9. In addition, 3BNC117 increased 
 autologous antibody responses in HIV-1-infected individuals, and 
enhanced clearance of infected cells in humans and in humanized 
mice10,11. VRC01, a less potent bNAb that also targets the CD4-binding 
site, suppressed viraemia by 1.14 log10 (refs 12, 13 and Fig. 1a, b).

To investigate whether 3BNC117 can suppress viral rebound from the 
latent reservoir during ATI in chronically suppressed HIV-1 infected 

humans, we conducted a phase IIa open label clinical trial. To select 
participants with 3BNC117-sensitive viruses in their latent  reservoirs, 
we performed bulk viral outgrowth cultures of peripheral blood 
 mononuclear cells (PBMCs) from individuals whose viraemia was 
suppressed by combination antiretroviral therapy (ART). The  resulting 
isolates were screened for sensitivity to 3BNC117 using the TZM-bl 
assay (Supplementary Table 1). Of 63 individuals screened, only 11% 
yielded viruses that were fully resistant to 3BNC117 (IC50 >  20 μ g/ml),  
and 65% were sensitive to 3BNC117 IC50 at concentrations below  
2.0 μ g/ml. In contrast only 29% were similarly sensitive to VRC01  
(Fig. 1a and b, Extended Data Fig. 1 and Supplementary Table 1).

We enrolled HIV-1 infected individuals who were on suppressive 
antiretroviral therapy (ART) with plasma viral loads < 50 HIV-1 RNA 
copies per ml for at least 12 months, had CD4 counts > 500 cells per mm3, 
yielded 3BNC117-sensitive outgrowth viruses (IC50 ≤  2.0 μ g ml−1),  
and whose viral load at screen was < 20 copies per ml (Extended Data 
Fig. 1, Supplementary Tables 2–4, and Methods). Participants were 
enrolled in two groups: eight in group A to receive two 30 mg kg−1 
infusions three weeks apart, while seven in group B received up to four 
30 mg kg−1 infusions at two-week intervals (Fig. 1c, d, Supplementary 
Table 2). Two group A participants had viral loads > 20 copies per 
ml at the time of infusion and were excluded from further analysis 
(Supplementary Tables 2 and 4). Participants are numbered 701–715 
(Supplementary Table 2).

ATI was started 2 days after the first 3BNC117 infusion. ART was 
reinitiated and infusions were stopped after two consecutive plasma 
viral load measurements exceeded 200 copies per ml. All individuals 
on non-nucleoside reverse transcriptase inhibitors (NNRTIs) were 
switched to an integrase-inhibitor-based regimen (dolutegravir plus 
tenoforvir disoproxil fumarate/emtricitabine) four weeks before ATI 
owing to the long half-life of NNRTIs (Supplementary Table 2).

Both dosing regimens were generally well tolerated. The  majority 
of reported adverse events were transient and grade 1 in severity 
(Supplementary Table 5). The mean CD4 T-cell count at baseline (day 
0) was 747 cells per mm3, and the average change in CD4 T-cell counts 
between start of ATI and rebound was − 127 cells per mm3. Although 
CD4 T cells declined modestly during viral rebound in some partici-
pants, CD4 T-cells returned to baseline by week 12 in most participants 
(mean 828 cells per mm3) (Extended Data Fig. 2 and Supplementary 
Table 4). Of 12 individuals tested, 5 showed measurable increases in 
the magnitude and/or breadth of T cell responses to HIV-1 12 weeks 
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after ATI, relative to baseline (Extended Data Fig. 3). None of the par-
ticipants experienced acute retroviral syndrome during rebound, and 
viraemia was re-suppressed below 20 copies per ml in all participants 
within 2–7 weeks after restarting ART (Supplementary Table 4). We 
conclude that up to four 30 mg kg−1 infusions of 3BNC117 during ATI 
are generally safe and well tolerated.

By anti-idiotype ELISA9 the half-life of 3BNC117 during ATI was 
19.6 days among group A participants, and 14.1 days among those 
in group B (Fig. 1e, f and Supplementary Table 4). These measure-
ments are similar to previously reported values for 3BNC117 in HIV-1- 
infected individuals on ART9 (Fig. 1e).

All six group A participants maintained viral loads below 200 
 copies per ml during the first 4 weeks, with rebound 5–9 weeks after 
ART interruption (Fig. 2a and Supplementary Table 4a). In group B, 
rebound occurred 3–19 weeks after ATI, with four out of seven (57%) 
participants remaining suppressed for at least 10 weeks (Fig. 2b and 
Supplementary Table 4b). The average time to rebound was 6.7 weeks 
in group A, 9.9 weeks in group B, and 8.4 weeks for all participants 
together, compared with 2.6 weeks for matched historical non-infused 
control individuals (Fig. 2c, Extended Data Fig. 4a, Supplementary 
Tables 4, 6 and 7). Altogether, 6 of the 13 infused individuals (46%) 
remained suppressed until at least 9 weeks after ATI. Relative to 
matched historical control individuals, the delay to rebound among 
all 3BNC117-infused participants was highly significant (P <  0.00001 
weighted log-rank test, Fig. 2c, Extended Data Fig. 4, Supplementary 
Tables 4, 6 and 7 and Methods). We conclude that repeated infusions 
of 3BNC117 are generally safe and significantly delay HIV-1 rebound 
from the latent reservoir during ATI.

Time to viral rebound did not correlate with pre-ATI viral  culture 
sensitivity to 3BNC117, nor to baseline levels of cell-associated HIV-1 
DNA (Fig. 2d and Extended Data Fig. 4e). Therefore the signif-
icance of viral outgrowth sensitivity as an inclusion criterion is not  
clear. 3BNC117 levels at rebound were also variable, ranging from 
6–168 μ g ml−1, but directly correlated with the IC80 of the emerging 
virus (Fig. 2a, b, e).

To determine whether rebound was associated with resistance to 
3BNC117, we compared pre-infusion and rebound viral outgrowth 
cultures. A majority (8/13) of participants had rebound viruses that 
were more resistant to 3BNC117 (IC80 >  threefold higher, Fig. 3a, c,  
Extended Data Fig. 5a, Supplementary Table 3). Among group A 

 participants, all but one (707) had more resistant rebound viruses; 
 however, among group B participants, four of seven (710, 711, 712 and 
715) showed similar pre-infusion and rebound sensitivity to 3BNC117 
(Fig. 3a, c, Extended Data Fig. 5a, Supplementary Table 3). Among 
these five individuals, 711 was the earliest to rebound at 3 weeks, despite 
having viruses that were surprisingly sensitive to 3BNC117 as measured 
by IC50 (Fig. 2b, Extended Data Fig. 5a, Supplementary Tables 3 and 4). 
However, 100% neutralization was not achieved against 711 rebound or 
pre-infusion viruses, even at high (50 μ g ml−1) antibody concentrations, 
suggesting that 3BNC117 was not fully therapeutic (Extended Data 
Fig. 5a, Supplementary Table 3). Thus, the only participant in the study 
to rebound within 3 weeks of ATI may have done so because of pre- 
existing resistance to 3BNC117 by the dominant virus in the reservoir.

The other four participants that showed no change between pre- and 
post-infusion culture sensitivity to 3BNC117, 707, 710, 712, and 715 
rebounded relatively late at 9, 19, 16 and 11 weeks after ATI, respectively 
(Figs 2a, b, 3a, c, Extended Data Fig. 5, Supplementary Tables 3 and 4). In 
all of these individuals rebound was associated with relatively low anti-
body concentrations ranging from 6–41 μ g ml−1 (mean 19.7 μ g ml−1).  
This antibody concentration represents 9.6-fold the mean IC80 for the 
rebounding viruses, which is consistent with previous reports on the 
relationship between suppressive 3BNC117 concentration and neutrali-
zation titre in macaques14 (Fig. 2, Extended Data Fig. 5, Supplementary 
Tables 3 and 4).

To determine whether viral rebound during ATI was associated with 
resistance to other bNAbs undergoing clinical testing, we examined 
sensitivity to 10-1074 (ref. 15), which targets a different and non- 
overlapping epitope on the HIV-1 trimer (Fig. 3b, d, Extended Data 
Fig. 5, and Supplementary Table 3). With the exception of 703 and 711, 
the participants’ rebound cultures did not show increased  resistance 
to 10-1074. We conclude that rebound during ATI in the presence 
of 3BNC117 is infrequently associated with increased resistance to 
10-1074.

To characterize viruses emerging from the latent reservoir  further, 
we performed single genome sequencing (SGS) of viral RNA from 
the plasma and viral outgrowth cultures from eight individuals. 
Phylogenetic analysis of these sequences indicated that all of these eight 
trial participants were infected with epidemiologically unrelated viruses 
(Extended Data Fig. 6). Given the limited sampling of the pre-infusion  
reservoir, rebound viruses did not always fall within the radiation 
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Figure 1 | 3BNC117 neutralization coverage, 
trial design and pharmacokinetics of 3BNC117 
in HIV-1-infected individuals during ATI.  
a, b, Sensitivity of virus outgrowth cultures from 
63 ART suppressed individuals to 3BNC117 and 
VRC01 (Supplementary Table 1). The y-axis 
shows the fraction of viral outgrowth culture 
supernatants neutralized by a given antibody 
concentration (x-axis) in Tzm-bl assays. Red  
line indicates cut-off IC50 (2 μ g ml−1) for 
participation in the trial. c, d, Diagrammatic 
representation of study groups A and B 
respectively. 3BNC117 infusions indicated by the 
red arrows, and sampling for PK and virologic 
studies indicated below. Numbers indicate study 
weeks. e, f, 3BNC117 levels as determined by 
ELISA for group A (n =  6, left panel, red), group 
B (n =  7, right panel, red (n =  4), black (n =  2) 
and purple (n = 1)), HIV-1 negative (n =  3, blue) 
and viraemic individuals (n =  6, green)9. Curves 
indicate mean 3BNC117 levels, error bars indicate 
standard deviation. Arrows indicate 3BNC117 
infusions.
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of pre-infusion viral isolates (Fig. 3e, f, Extended Data Figs 7 and 8, 
Supplementary Figs 1 and 2).

Remarkably, in five of eight participants, all rebounding virus 
sequences clustered within a low diversity lineage, consistent with the 
clonal expansion of a single recrudescent virus (Fig. 3e, f, Extended 
Data Figs 7 and 8, Supplementary Table 8). These data contrast with 
individuals undergoing ATI in the absence of antibody infusion, where 
virus rebound is consistently polyclonal, indicating the activation 
of multiple latently infected cells16–19. Thus, in addition to delaying 
rebound, 3BNC117 appears to restrict the outgrowth of viral genotypes 
from the latent reservoir.

Six of eight participants sequenced had rebound viral outgrowth 
culture and/or plasma sequences that indicated 3BNC117 resistance. 
For example, in 704, all rebound viruses carried a serine at position 
456 (Fig. 4a and Supplementary Figs 1 and 2), which may disrupt a 
highly conserved salt bridge that maintains the V5 loop’s position 
and conformation20–22. Similarly, in 708 and 709, nearly all rebound 
viruses carried atypical residues at position 282, where a lysine residue 
 typically forms a salt bridge with 3BNC117 (Fig. 4a and Supplementary  
Figs 1 and 2)23. However, documented 3BNC117 resistance  mutations24 
were not universally identified among rebound viral strains (Fig. 4a 
and Supplementary Figs 1 and 2). Only a minor fraction (3 of 23) of 
sequences in the rebound population of participant 701 had  potential 
resistance-conferring residues in Loop D (274F, 282R), while the 

remaining sequences did not (Fig. 4a and Supplementary Figs 1 and 2).  
Similarly, in 702 and 703, only a subset of rebound viruses  carried a 
putative resistance-conferring A281D change1,23. Nevertheless, the 
frequency of this change increased markedly with time in both par-
ticipants, indicating continued selection for 3BNC117 resistance (Fig. 
4a and Supplementary Figs 1 and 2). For participants 707 and 711, 
no sequence features were identified that would indicate 3BNC117 
resistance.

To determine the sensitivity of rebound viruses to 3BNC117, 
we performed TZM-bl neutralization assays using pseudoviruses 
typed with SGS Env genotypes (Fig. 4b, Extended Data Figs 7 and 8, 
Supplementary Figs 1 and 2 and Supplementary Table 9). With the 
exception of participant 707, who rebounded 9 weeks after ATI at very 
low 3BNC117 titres, Env genotypes at rebound were more resistant 
to 3BNC117 than pre-ATI (Fig. 4b, Extended Data Figs 7 and 8 and 
Supplementary Table 9). We conclude that viral rebound during ATI 
in the presence of 3BNC117 selects for the emergence of resistant 
 variants, indicating strong selection pressure by this antibody on viral 
 populations arising from the reservoir.

Antibody potency and half-life are directly correlated with HIV-1 
prophylaxis in pre-clinical models. For example, VRC01, a CD4bs anti-
body that is less potent than 3BNC1171, is less effective than 3BNC117 
in preventing SHIVAD8 infection in macaques8,25. Consistent with these 
observations, clinical trials with combinations of three less- potent 

Figure 2 | Delay in viral rebound in the presence of 3BNC117.  
a, b, Plasma viral loads and 3BNC117 levels in group A and group B 
participants respectively. 3BNC117 infusions are indicated with red 
arrows. The left y-axis shows plasma viral loads in RNA copies per ml 
(black curves), and right y-axis shows antibody levels measured by ELISA 
(red curves). Average rebound time point (2.6 weeks, Supplementary 
Table 6) in 52 ACTG trial participants who underwent ATI without 
antibody treatment29 is shown with dotted lines. Grey areas indicate ART 
therapy. c, Kaplan–Meier plot summarizing viral rebound in 52 ACTG 
trial participants who underwent ATI without antibody treatment (black, 
Supplementary Table 6), and the combination of all 13 participants (red) 
who underwent ATI with 3BNC117 infusions. The y-axis indicates the 
percentage of participants with viral levels below 200 RNA copies per ml,  
x-axis indicates weeks after ATI initiation. The P value is based on a 

bootstrap version of the weighted log-rank test adjusting for the potential 
confounders ‘years on ART’, and ‘age’ (Supplementary Table 7, Methods 
Statistical Analyses). d, Dot plot indicating the relationship between 
3BNC117 sensitivity of pre-infusion outgrowth cultures at screening  
(y-axis, IC80 in μ g ml−1) and the week of rebound (x-axis). Group A (n =  6) 
and group B (n =  7) participants are coloured red and blue respectively. 
The P value was derived from calculating the Pearson correlation 
coefficients. e, Dot plot indicating the relationship between 3BNC117 
sensitivity of rebound outgrowth cultures (y-axis, IC80 in μ g ml−1)  
and the 3BNC117 serum concentration at rebound (x-axis, in μ g ml−1).  
704, 708, 709 and 713 did not reach IC80 at the concentrations tested and 
were assigned a value of 22 μ g ml−1. Group A (n =  6) and group B (n =  7) 
participants are coloured red and blue, respectively. The P value was 
derived from calculating the Pearson correlation coefficients.
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‘Statistical analyses’.
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Figure 4 | 3BNC117 resistance in rebound viruses. a, Logogram shows 
env gp120 regions (amino acid positions; 270–285 and 455–467, according 
to HXBc2 numbering) indicating sequence changes from pre-infusion 
culture(s) (first row) to rebound sequences derived from plasma SGS at 
the indicated time points. The frequency of each amino acid is indicated 
by its height. Red residues represent mutations predicted to affect 
neutralization30. b, 3BNC117 neutralization sensitivity of pseudoviruses 
derived from pre-infusion or rebound SGS. Black lines represent  

pre-infusion virus envs; red lines represent the major env at rebound  
for each participant (Extended Data Figs 7 and 8, Supplementary  
Tables 8 and 9 and Methods); grey lines represent minor rebound envs in 
participants with multiple rebound viruses or variants that evolved after 
rebound (Extended Data Figs 7 and 8, Supplementary Table 9). Symbols 
reflect the means of two technical replicates; error bars denote standard 
deviation.
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first-generation bNAbs showed limited effects on viral rebound in 
the setting of ATI in chronically infected individuals26,27. In addition, 
selective pressure as evidenced by escape mutations was only observed 
for one of the three antibodies used in the combination, 2G1226,27. In 
contrast, 3BNC117 alone significantly delayed viral rebound with nearly 
half of all individuals remaining below 200 copies per ml until at least  
9 weeks, including four individuals who failed to develop resistance and 
only rebounded at low antibody concentrations. We speculate that the 
difference in efficacy between 3BNC117 and less potent bNAbs in the 
setting of ATI is due to increased potency and/or a longer half-life1,9,13.

Nevertheless, the majority of the individuals we studied rebounded at 
high 3BNC117 serum concentrations. A single viral genotype display-
ing increased resistance to 3BNC117 established rebound in most cases. 
These viruses represent pre-existing dormant variants that emerged 
from the latent reservoir. The time to rebound did not correlate with 
the amount of viral DNA in circulating PBMCs; however, this is a poor 
measure of the HIV-1 reservoir, since most integrated proviruses in 
patients on ART are defective28. Instead, the delay in viral rebound may 
represent a measure of the frequency of 3BNC117-resistant variants in 
the latent reservoir.

Combinations of drugs are needed to maintain HIV-1 suppression 
in effective ART regimens. Similarly, combinations of antibodies were 
required to suppress viraemia in humanized mice6,7. We speculate that 
combinations of bNAbs will also be needed to increase the frequency of 
individuals that remain suppressed by antibody during ATI.

Whether 3BNC117 can also impact the size and composition of the 
latent reservoir during ATI will require additional studies.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethOdS
No statistical methods were used to predetermine sample size. The experiments 
were not randomized and the investigators were not blinded to allocation during 
experiments and outcome assessment.
Study design. An open-label, dose-escalation phase 2a study was conducted in 
HIV-1-infected participants (http://www.clinicaltrials.gov; NCT02446847). Study 
participants were enrolled sequentially according to eligibility criteria. Group A 
received 3BNC117 on days 0 and 21 at a dose of 30 mg/kg body weight at a rate 
of 250 ml/hour. Group B received 3BNC117 on days 0, 14, 28 and 42 at a dose of  
30 mg/kg, as long as viral rebound did not occur. Antiretroviral therapy (ART) was 
discontinued 2 days after the first 3BNC117 infusion (day 2). Plasma HIV-1 RNA 
levels were monitored weekly, and ART was resumed when viral load increased 
to ≥ 200 c.p.m. in two consecutive weekly measurements.

Study participants were followed for 36 weeks after the first infusion. Safety 
data are reported until week 36 for participants enrolled in group A and until 
week 14 for participants enrolled in group B. All participants provided written 
informed consent before participation in the study and the study was conducted 
in accordance with Good Clinical Practice. The protocol was approved by the 
Federal Drug Administration in the USA and the Institutional Review Board at 
the Rockefeller University.
Study participants. All study participants were recruited at the Rockefeller 
University Hospital, New York, USA. Eligible participants were adults aged 
18–65 years, HIV-1-infected and before enrolment had plasma HIV-1 RNA levels  
< 50 c.p.m. for at least 12 months while on combination ART and < 20 c.p.m. at the 
screening visit, and current CD4 count > 500/μ l. In addition, participant-derived 
HIV-1 isolates produced by co-culture of participant PBMCs with HIV-uninfected 
donor PBMCs were required to be neutralized by 3BNC117 with an IC50 < 2 μ g/ml  
in TZM-bl neutralization assays, as previously described31. An IC50 of < 2 ug/ml  
was chosen as a cut-off based on previous PK data of 3BNC117 in humans9 
and data in macaques showing that antibody levels 10–100 times the IC50 value 
against infecting viral strains are necessary to control viral rebound14. However, 
given the limited diversity and representation of the latent reservoir in outgrowth 
 cultures (Supplementary Fig. 2) and the fact that no correlation between pre- 
infusion IC50 and delay of viral rebound was found in this study, the significance  
of this  criterion is unclear. Participants on an NNRTI-based ART regimen were 
switched to a study-provided integrase-inhibitor-based regimen (dolutegravir 
(Tivicay, ViiV Pharmaceuticals) +  tenofovir disoproxil fumarate/emtricitabine 
(Truvada, Gilead Sciences) 4 weeks before treatment interruption due to the  
prolonged half-life of NNRTIs. Exclusion criteria included history of CD4 nadir  
< 200 cells/μ l, concomitant hepatitis B or C infections, previous receipt of a mon-
oclonal  antibody of any kind, or clinically relevant physical findings, medical 
conditions or  laboratory abnormalities. Pregnant and breastfeeding women were 
not eligible.
Historical controls (ACTG trial participants). Viral rebound data from  
52  participants who participated in four ACTG ATI studies without additional 
interventions (ACTG 37132, A502433, A506834, and A519732) were compared 
with viral rebound data in this study. Historical controls were selected based on 
similar inclusion  criteria: age 18–65, Plasma HIV-1 RNA < 50 c.p.m. for at least 
12 months before ATI while on combination ART, CD4 count at time of ATI  
> 500 cells/μ l, CD4 nadir > 200 cells/μ l, weekly viral load measurements at least 
until viral rebound occurred.
Study procedures. The appropriate volume of 3BNC117 was calculated according 
to body weight, diluted in sterile normal saline to a total volume of 250 ml, and 
administered intravenously over 60 min. Study participants received 3BNC117 
on days 0 and 21, or 0, 14, 28, and 42 and remained under monitoring at the 
Rockefeller University Hospital for 4 h after each infusion. Participants returned 
for frequent follow up visits for safety assessments, which included physical 
 examination, measurement of clinical laboratory parameters such as  haematology, 
chemistries, urinalysis, and pregnancy tests (for women). Plasma HIV-1 RNA levels 
were monitored weekly during the ATI period and CD4 counts were measured 
every other week (Supplementary Table 4). Study investigators  evaluated and 
graded adverse events according to the DAIDS AE Grading Table and  determined 
causality. Blood samples were collected before and at multiple times after 3BNC117 
infusions. Samples were processed within 4 h of collection, and serum and 
plasma samples were stored at − 80 °C. PBMCs were isolated by density gradient 
 centrifugation. The absolute number of peripheral blood mononuclear cells was 
determined by an automated cell counter (Vi-Cell XR; Beckman Coulter), and cells 
were cryopreserved in fetal bovine serum plus 10% DMSO.
ART re-initiation criteria. Antiretroviral therapy was discontinued 2 days after 
the first 3BNC117 infusion (day 2). ART was re-initiated when HIV-1 RNA levels 
were found to be ≥ 200 c.p.m. and/or CD4 T cell counts decreased to < 350 cells/μ l  
and the result was confirmed with a repeat measurement.

Plasma HIV-1 RNA Levels. HIV-1 RNA levels in plasma were measured at the 
time of screening (within 49 days before the first infusion), day 0 (before  infusion), 
and weekly until week 12, then at weeks 14, 24 and 36. Participants that remained 
virologically suppressed to < 20 c.p.m. off ART beyond week 12, returned for 
weekly measurements of plasma HIV-1 RNA levels. HIV-1 RNA levels were 
determined using the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Assay, 
Version 2.0, which detects between 20 and 1 ×  107 c.p.m. This assay was performed 
at LabCorp.
CD4+ and CD8+ T cells. CD4+ and CD8+ T-cell counts were determined at 
screening, on day 0 (before infusion), and weeks 2, 3, 4, 6, 8, 10, 12, 14, and 36 
by a clinical flow cytometry assay, performed at LabCorp. Cells were analysed by 
flow cytometry. Leukocytes were determined as CD45+ cells. Percentage of cells 
positively stained for CD3, CD4, CD8 as well as the CD4/CD8 ratio were analysed 
with the BD Multiset software (BD Biosciences).
3BNC117 study drug. 3BNC117 is a recombinant, fully human IgG1κ  mAb 
 recognizing the CD4 binding site on the HIV-1 envelope1. The antibody was cloned 
from an HIV-1-infected viraemic controller in the International HIV Controller 
Study1,35, expressed in Chinese hamster ovary cells (clone 5D5-5C10), and purified 
using standard methods. The 3BNC117 drug substance was produced at Celldex 
Therapeutics Fall River (MA) GMP facility, and the drug product was fill-finished 
at Gallus BioPharmaceuticals (NJ). The resulting purified 3BNC117 was supplied 
as a single use sterile 20 mg/ml solution for intravenous injection in 8.06 mM 
sodium phosphate, 1.47 mM potassium phosphate, 136.9 mM sodium chloride, 
2.68 mM potassium chloride, and 0.01% polysorbate 80. 3BNC117 vials were 
shipped and stored at 4 °C.
Measurement of 3BNC117 serum levels. Serum levels of 3BNC117 were 
 determined by a validated sandwich ELISA at Celldex Theapeutics as described 
previously9. Plates (Sigma-Aldrich PN: CLS3590 96-well, High Bind, polystyrene) 
were coated with 4 μ g/ml of an anti-idiotypic antibody specifically recognizing 
3BNC117 (anti-ID 1F1 mAb), and incubated overnight at 2–8 °C. After  washing, 
plates were blocked for 1 h with 5% BSA. Serum samples, QCs and standards 
were added (1:50 minimum dilution in 5% BSA) and incubated for 1 h at room 
 temperature. 3BNC117 was detected using an HRP-conjugated mouse anti- 
human IgG kappa chain specific antibody (Abcam PN: ab79115) and the HRP 
substrate tetra-methylbenzidine. 3BNC117 concentrations were then interpolated 
from a standard curve of 3BNC117 using a four-parameter logistic curve-fitting 
 algorithm. The reference standard and positive controls were created from the drug 
product lot of 3BNC117 used in the clinical study.
Pharmacokinetic analysis. Blood samples were collected immediately before and 
at the end of infusions as well as on the day after infusion, weekly during the ATI 
period and at weeks 14, 24 and 36. 3BNC117 serum levels were measured by ELISA 
(Celldex Therapeutics).
Neutralization assay. Serum samples, viral supernatants, and control antibodies 
were tested against HIV-1 envelope pseudoviruses as previously described36,37.
Cell-associated HIV-1 DNA. Participant’s CD4+ T-cells were isolated from  
10 million cryopreserved PBMCs by negative magnetic selection (Miltenyi). Total 
DNA was extracted and quantitative PCR performed using pol- and CCR5-directed 
primers as previously described7.
Virus cultures. Autologous virus was retrieved from HIV-1 infected  individuals 
as previously described31. Briefly, healthy donor PBMCs were obtained by 
 leukapheresis from a single donor. Cells were cultured at a concentration of 
5 ×  106/ml in Iscove’s Modified Dulbecco’s Medium (IMDM; Gibco) supplemented 
with 10% fetal bovine serum (FBS; HyClone, Thermo Scientific), 1% penicillin/ 
streptomycin (Gibco), and 1 μ g/ml phytohemagglutinin (PHA; Life Technologies) 
at 37 °C and 5% CO2. After 2–3 days, 5 ×  106 CD8+ depleted cells were  transferred 
into IMDM supplemented with 10% FBS, 1% penicillin/streptomycin, 5 μ g/ml 
polybrene (Sigma), and 100 U/ml of IL-2. Cells were then co-incubated with 
4–8 ×  106 CD4+ T cells from the study participants and 10 million irradiated 
healthy donor PBMCs that had been cultured together for 24 h prior in IMDM 
supplemented with 10% FBS, 1% penicillin/streptomycin, 100 U/ml IL-2 and  
1 μ g/ml PHA at 37 °C and 5% CO2. Lymphoblasts were replenished weekly by 
 adding 3 million healthy donor PHA stimulated CD8+ depleted lymphoblasts. 
Culture supernatants were quantified using the Alliance HIV-1 p24 Antigen 
ELISA kit (PerkinElmer) according to the manufacturer’s instructions. TCID50s 
were determined for all HIV-1 containing supernatants36,37 and then tested for 
 sensitivity against 3BNC117 and other bNAbs in a TZM.bl neutralization assay. 
Blood samples and leukapheresis were collected under separate IRB-approved 
protocols and after volunteers provided informed consent.
Sequence analysis. HIV-1 RNA extraction and single genome  amplification 
was performed as described previously38. In detail, HIV-1 RNA was extracted 
from plasma samples using the Qiagen MinElute Virus Spin kit (Qiagen) 
followed by first strand cDNA synthesis using SuperScript III reverse 
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 transcriptase (Invitrogen Life Technologies) and the antisense primer env3out 
5′ -TTGCTACTTGTGATTGCTCCATGT-3′ . gp160 env was amplified using 
envB5out 5′ -TAGAGCCCTGGAAGCATCCAGGAAG-3′  and envB3out  
5′ -TTGCTACTTGTGATTGCTCCATGT-3′  in the first round and second round 
nested primers envB5in 5′ -CACCTTAGGCATCTCCTATGGCAGGAAGAAG-3′  
and envB3in 5′ - GTCTCGAGATACTGCTCCCACCC-3′ . PCRs were performed 
using a High Fidelity Platinum Taq (Invitrogen) at 94 °C, 2 min; (94 °C, 15 s; 55 °C 
30 s; 68 °C, 4 min) ×  35; 68 °C, 15 min. Second round PCR was performed with 1 μ l  
of first PCR product as template and High Fidelity Platinum Taq at 94 °C, 2 min; 
(94 °C, 15 s; 55 °C 30 s; 68 °C, 4 min) ×  35; 68 °C, 15 min. Sequence  alignments, 
 phylogenetic trees and mutation analysis of gp160 was performed by using 
Geneious Pro software, version 8.1.6 (Biomatters Ltd.)39. Sequence analysis was 
performed using Antibody database by A. West30. Logograms were generated using 
the Weblogo 3.0 tool40.
Pseudovirus generation. Selected SGS from virus culture supernatants and 
plasma were used to generate pseudoviruses and tested for sensitivity to bNAbs 
in a TZM.bl assay41. To produce the pseudoviruses, plasmid DNA containing the 
cytomegalovirus (CMV) promoter was amplified by PCR using forward primer 
5′ -GTTGACATTGATTATTGACTAG and reverse primer 5′ -CTTCCTGCCAT
AGGAGATGCCTAAAGCTCTGCTTATATAGAC-CTC. The CMV promoter 
amplicon was fused to individual env SGS amplicons by PCR using forward 
primer 5′ -AGTAATCAATTACGGGGTCATTAGTTCAT and reverse primer  
5′ -ACTTTTTGACCACTTGCCACCCAT. Fusion PCR was carried out using the 
Expand Long Template PCR System (Roche) in a 60 μ l reaction consisting of 1 
ng purified CMV promoter amplicon, 0.125 μ l unpurified env SGA amplicon, 
200 nM forward and reverse primers, 200 μ M dNTP mix, 1×  Buffer 1, and 1 μ l 
DNA polymerase mix. PCR was run at 94 °C for 2 min; 25 cycles (94 °C for 12 s, 
55 °C for 30 s, 68 °C for four minutes); and 72 °C for 10 min. Resulting ampli-
cons were analysed by gel electrophoresis, purified without gel extraction, and 
co-transfected with pSG3Δ env into HEK293T cells to produce pseudoviruses as 
described previously41.
Statistical analyses. Adverse events were summarized by the number of 
 participants who experienced the event, by severity grade according to the 
DAIDS AE Grading Table and by relationship to 3BNC117 as determined by the 
 investigator. PK-parameters were estimated by performing a non-c ompartmental 
analysis (NCA) using WinNonlin 6.3. Kaplan–Meier survival curves were used 
to compare time to rebound in trial participants to participants in previous ATI 
studies conducted by ACTG29. To exclude the possibility that the observed delay 
in rebound is confounded by clinical factors, we compared the clinical variables 
between the control (ACTG trial participants) and treated group using a two-
sided Fisher’s Exact test for categorical variables (gender and CD4 Nadir) and an 
unpaired Wilcoxon test (two-sided) for continuous variables (age, years on ART 
and CD4 count before ATI initiation) (Supplementary Table 7). Additionally, we 
tested for each potential confounder whether the variable is predictive for the 
rebound time. Therefore, we built a univariate survival regression model for 
each potential  confounder and compared those models to a null model using 
a  likelihood ratio test (LRT), which determines how much better the more 
 complex model explains the data than the less complex model. Confounders 
were  considered significant if the model with the potential confounder had an 
LRT P value of 0.05 or less, which was the case for ‘years on ART’ as well as ‘age’ 
for the comparison between the controls and the combined treatment group 
(Supplementary Table 7). We did not perform a standard Cox regression, since 
the proportional hazards assumption was not fulfilled for some of the variables. 
Rebound time was modelled using a log-normal distribution, which resulted in 
the best model fit as measured by Akaike information criterion (AIC) among 
 several different distributions (Extended Data Fig. 4b–d). To determine the effect 
of the treatment after adjusting for the  discovered confounders, we performed a 
weighted log-rank test42. Therefore, for each sample inverse probability weights 
based on the discovered confounders were estimated, which were used to re-weigh 
the variables of the log-rank statistic. We performed a bootstrapped version of the 
weighted log-rank test, as recommended in ref. 42 owing to the small sample size. 
We estimated the class probabilities using a lasso logistic regression model trained 
with the Matlab function lassoglm with five lambda values in a threefold cross- 
validation. To improve stability, the optimal lambda for the lasso logistic regression 
was determined only once using the original labels and used in all bootstrap runs 
to train the models that estimate the class probabilities.

Additionally, we performed an LRT at significance level α =  0.05 based on a 
parametric survival regression model adjusted for the discovered confounders. In 
this analysis the treatment group still significantly predicted the delay in rebound 
(Supplementary Table 7). For the analyses, the R (version 3.2.1) packages survival 
(version 2.38-3) and fitdistrplus (version 1.0-6) were used and Matlab (version 
R2015b) for implementation of the weighted log-rank test.

Sequence and phylogenetic analysis. Nucleotide alignments were generated 
using ClustalW (v.2.11)43 and manually adjusted using Geneious R8 (v.8.1.6)39 
and MacClade (v.4.08a)44. Sites that could not be unambiguously aligned were 
removed for all phylogenetic analyses. Optimal evolutionary model classes were 
determined using jModelTest (v.2.1.4)45. Maximum likelihood phylogenetic 
trees were  generated using PhyML (v.3)46 with joint estimation of evolutionary 
model parameter values and phylogenies. The tree comparing all participants was 
midpoint rooted and each within-subject tree was rooted on the basal branch as 
determined by the between-subject tree. Sequences with premature stop codons 
and frameshift mutations that fell in the gp120 surface glycoprotein region were 
excluded from all deduced protein analyses.

Sequences generated from the supernatants of viral outgrowth assays 
 represented viruses that were present in the latent reservoir. Per assay, 4–8  million 
CD4+ T cells were activated. In an HIV-infected person who is completely 
 suppressed on antiretroviral therapy, it has been determined that 1 ×  10−6  resting 
CD4 cells are latently infected with replication-competent virus47. Thus, one would 
expect to identify up to eight  distinct viral  isolates per individual culture. Single 
genome sequencing of the  culture  supernatants revealed sets of clonally related 
sequences, which appear as ‘rakes’ in a phylogenetic tree (Extended Data Figs 7 
and 8). The most recent  common ancestor of these rakes represents the reactivated 
virus that was present in the host (similar to the inference of infectious molecular 
clones as described in ref. 48). As shown in Extended Data Figs 7 and 8, sequences 
from culture reactions fall in 1–3 rakes within a given individual. We inferred 
each rake’s most recent common ancestor (MRCA) by building a majority-rule 
consensus and treated it as a single virus from the participant’s latent pool. These 
MRCAs were used to build the phylogenetic trees shown in Fig. 3.

Because mixed culture isolates replicated for 14 or more days, in vitro recombi-
nants were observed. In vitro recombinants from culture reactions were identified 
and removed from the data set if they: (i) had two identifiable parental sequences 
within the same culture reaction; and (ii) exhibited three consecutive informative 
sites relative to one parent followed by three consecutive informative sites relative 
to another. We independently verified that a subset of these sequences showed 
evidence of recombination using the Recco tool (v.0.93)49.
Assessment of rebound virus clonality. The Poisson Fitter v2 tool50 is designed to 
test if a set of homogeneous sequences exhibits random diversification. If such a set 
of sequences exhibits a star-like phylogeny and a Poisson distribution of  pairwise 
differences (Hamming distances), it can be inferred that a single virus gave rise to 
those sequences. Poisson Fitter v2 tests these and other parameters using  maximum 
likelihood methods and performs a χ2 goodness of fit test to obtain a P value. A non- 
significant P value signifies that the observed Hamming distances adhere to a Poisson 
distribution and it can be inferred that a single virus gave rise to rebound. Single 
genome derived env sequences from the plasma at the earliest time point post-rebound 
from each participant were tested using Poisson Fitter (Supplementary Table 8).
ELISPOT T-cell response analysis. Interferon gamma Elispot assays were 
 performed as described51. Briefly, 96-well polyvinylidene plates (Millipore, 
Bedford, Mass.) were precoated with 0.5 g/ml of anti-IFNγ  monoclonal antibody, 
1-DIK (Mabtech, Stockholm, Sweden) and previously frozen PBMCs were plated 
at a concentration of 50,000 to 100,000 cells per well in a volume of 100 μ l of R10 
medium (RPMI 1640 (Sigma), 10% fetal calf serum (Sigma), 10 mM HEPES buffer 
(Sigma)) with antibiotics (2 mM l-glutamine, 50 U of penicillin- streptomycin/ml). 
Plates were incubated overnight at 37 °C, 5% CO2, and developed as described51. 
Cells were tested against a panel of 410 B-clade overlapping 18-mer peptides (OLPs) 
spanning the entire HIV-1 genome (consensus sequence from 2001). These peptides 
were used in a matrix system of 11–12 peptides per pool to screen study participants 
for HIV-specific T cell responses. Confirmation of recognized individual peptides 
within a peptide pool was undertaken in an additional Elispot assay, as described52. 
Wells containing PBMCs and R10 medium alone were used as negative controls and 
were run in duplicate on each plate. Wells containing PBMCs and phytohemaggluti-
nin (PHA) served as positive controls. The numbers of spots per well were counted 
using an automated Elispot plate reader (ImmunoSpot Reader System; Cellular 
Technology Limited, Shaker Heights, OH). Responses were regarded as positive if 
they had at least three times the mean number of spot forming cells (SFC) in the two 
negative control wells and had to be > 50 SFC/106 PBMCs (ref. 51,52).
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Extended Data Figure 1 | Study participant selection and neutralization 
of pre-infusion cultures by 3BNC117. a, Flow diagram showing the 
selection of study participants. b, Bar diagrams showing IC50 values  
(μ g ml−1) in TZM-bl assays for 3BNC117 against bulk virus outgrowth 
culture supernatants from the indicated time point pre-infusion for each 

participant (Supplementary Table 3). For some participants both screen 
and day 0 cultures were obtained and showed less than threefold variation 
in IC50 values. The red dotted line indicates an IC50 of 2 μ g ml−1 which was 
used as a threshold for inclusion in the study.
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Extended Data Figure 2 | CD4+ and CD8+ T cells during study period 
in participants. a–d, Absolute T cell counts (a, c) and percentage of 
CD4+ and CD8+ T cells among CD3+ T cells (b, d) for group A and B, 
respectively (Supplementary Table 4). 3BNC117 infusions are indicated 
with red arrows. e, Comparison of absolute CD4+ T cell counts and 
percentage of CD4+ T cells among CD3+ T cells at screen, day 0, rebound 
and after re-suppression. Shown is the data from participants 701, 702, 
703, 704, 707, 708, 709, 711 and 713 for whom re-suppression CD4 counts 

were available (Supplementary Table 4). The last available time point was 
used as re-suppression time point. Red lines indicate the mean value and 
error bars indicate standard deviation. P values were obtained using a 
paired t-test comparing the indicated time points. f, Plasma viral loads 
and CD4 counts in all study participants. 3BNC117 infusions are indicated 
with red arrows. The left y-axis shows plasma viral loads in RNA copies 
per ml (black curves), and right y-axis shows absolute CD4 counts in cells 
per μ l (red curves). Grey areas indicate ART therapy.
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Extended Data Figure 3 | HIV-specific T-cell responses. Total breadth 
(open squares) and magnitude (bars) of T-cell responses against HIV-1 
overlapping peptides (OLPs) at the designated time points following 
administration of 3BNC117 (yellow arrows indicate infusions of 3BNC117 
at 30 mg kg−1). For all study participants, antiretroviral therapy was 
discontinued on day 2 after the first 3BNC117 administration. Blue arrows 

indicate the time of viral rebound. For study participants 710, 712 and 715 
rebound occurred at week 19, 16 and 11, respectively. Baseline samples for 
study participant 710 and week 12 samples for study participant 714 were 
not available for ELISpot analysis. Overall, breadth, magnitude and protein 
specificity were heterogeneous among the study participants.
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Extended Data Figure 4 | See next page for caption.
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Extended Data Figure 4 | Viral rebound in ACTG control subjects  
and trial participants. a, Kaplan–Meier plot summarizing viral rebound 
in 52 ACTG trial participants who underwent ATI without antibody 
treatment (black, Supplementary Table 6) and trial participants  
(Fig. 2a, b, Supplementary Table 4). Six group A participants are shown 
in red, seven Group B participants in blue and the combination in 
green as indicated. The y-axis indicates the percentage of participants 
with viral levels below 200 RNA copies per ml, x-axis indicates weeks 
after ATI initiation. The survival curves of all considered partitions 
of the trial participants (group A, group B and group A +  B) differed 
significantly at significance level α =  0.05 from the survival curve of the 
ACTG trial participants. For the comparison of group A (group A +  B) 
with the ACTG trial participants, we performed a weighted log-rank test 
adjusting for the clinical variables ‘years on ART’ and ‘age’ to correct for 
possible confounding factors (Supplementary Table 7, P <  0.00001). We 
identified those potential confounders by univariate parametric survival 
regression using a likelihood ratio test (Statistical Methods). Since we did 

not discover any confounders with the same analysis among all available 
clinical variables for the comparison between group B participants and  
the ACTG trial participants, we performed a standard log-rank test  
in that setting (P <  0.0001). b–d, In order to perform a survival regression, 
the distribution of the rebound times has to be determined. Therefore,  
we compared the empirical cumulative distribution function (CDF) of the 
rebound times (black, solid line) with the CDF of the rebound times to a 
fitted distribution (Weibull, exponential, normal, logistic, log-normal, and 
gamma) for each comparison group (combined trial participants, group 
A or group B with ACTG control patients). Since the Akaike information 
criterion (AIC) and the Bayesian information criterion (BIC) were smallest 
for the log-normal distribution (green), we have chosen to model the 
rebound times with the log-normal distribution. e, Dot plot indicating  
the relationship between cell associated HIV DNA in pre-infusion PBMCs  
(y-axis) and the week of rebound (x-axis). Group A and group B 
participants are coloured red and blue respectively. The P value was 
derived from calculating the Pearson correlation coefficient.
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Extended Data Figure 5 | In vitro neutralization of pre-infusion and 
rebound virus outgrowth cultures by 3BNC117 or 10-1074. a, b, 
TZM-bl assay neutralization by 3BNC117 (a) and 10-1074 (b) are shown 
for individual virus outgrowth cultures derived from pre-infusion (black 
lines/symbols) or rebound (red lines/symbols) time points for each 
participant. In some cases, multiple independent cultures were grown 
from a single time point and assayed for neutralization (Supplementary 

Table 3). ‘Screen’ refers to cultures of PBMC samples taken weeks before 
infusion during screening, while ‘Day 0’ refers to cultures of PBMCs 
collected immediately before the first 3BNC117 infusion. Rebound culture 
time points are denoted by the week (W) at which the samples were 
collected. Symbols reflect the means of two technical replicates; error bars 
denote standard deviation.
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Extended Data Figure 6 | Phylogenetic tree of env nucleotide sequences 
from trial participants. A maximum likelihood phylogenetic tree was 
constructed from single-genome-derived viral env sequences from 
outgrowth culture supernatants as well as plasma from participants  
701 (olive), 702 (black), 703 (pink), 704 (yellow), 707 (light blue),  
708 (green), 709 (dark blue) and 711 (brown). Hypervariable (as defined 

in http://www.hiv.lanl.gov/content/sequence/VAR_REG_CHAR/) and 
other poorly aligned regions were excluded from the analysis. The tree 
was constructed using PhyML with a GTR+ I+ G substitution model and 
midpoint rooted. Asterisks indicate 100% bootstrap support (only values 
for major nodes are shown). The scale bar indicates 0.01 substitutions  
per site.
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Extended Data Figure 7 | Rebound virus clonality and neutralization 
sensitivity to 3BNC117. Maximum likelihood phylogenetic trees of 
plasma and culture-derived env sequences are shown for participants  
701, 702, 703, 704. Sequences obtained at screening, on Day 0, and 
consecutive rebound time points (plasma and cultures) are colour coded  
as indicated. The trees were rooted based on the branch insertion 
identified in the between-subject tree (Extended Data Fig. 6). Bootstrap 

values ≥ 90% are shown. Names of env sequences used to generate 
pseudoviruses for 3BNC117 neutralization analysis are indicated along 
with the respective IC80 titres in μ g ml−1. Representative rebound viruses 
selected in Fig. 4b are marked with red stars (Fig. 4b, Supplementary  
Table 9). Zero branch length viruses in multi-rebounders 702 and 703  
are marked with black stars.
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Extended Data Figure 8 | Rebound virus clonality and neutralization 
sensitivity to 3BNC117. Maximum likelihood phylogenetic trees of 
plasma- and culture-derived env sequences are shown for participants 
707, 708, 709 and 711. Sequences obtained at screening, on day 0, and 
consecutive rebound time points (plasma and cultures) are colour coded  
as indicated. The trees were rooted based on the branch insertion 
identified in the between-subject tree (Extended Data Fig. 6). Bootstrap 

values ≥ 90% are shown. Names of env sequences used to generate 
pseudoviruses for 3BNC117 neutralization analysis are indicated along 
with the respective IC80 titres in μ g ml−1. Representative rebound viruses 
selected in Fig. 4b are marked with red stars (Fig. 4b, Supplementary  
Table 9). Zero branch length virus in multi-rebounder 709 is marked with 
a black star.
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Abstract

The mechanisms triggering the human immunodeficiency virus type I (HIV-1) to switch
the coreceptor usage from CCR5 to CXCR4 during the course of infection are not
entirely understood. While low CD4+ T cell counts are associated with CXCR4 usage,
a predominance of CXCR4 usage with still high CD4+ T cell counts remains puzzling.
Here, we explore the hypothesis that viral adaptation to the human leukocyte antigen
(HLA) complex, especially to the HLA class II alleles, contributes to the coreceptor
switch. To this end, we sequence the viral gag and env protein with corresponding HLA
class I and II alleles of a new cohort of 312 treatment-naive, subtype C,
chronically-infected HIV-1 patients from South Africa. To estimate HLA adaptation, we
develop a novel computational approach using Bayesian generalized linear mixed models
(GLMMs). Our model allows to consider the entire HLA repertoire without restricting
the model to pre-learned HLA-polymorphisms as well as to correct for phylogenetic
relatedness of the viruses within the model itself to account for founder effects. Using
our model, we observe that CXCR4-using variants are more adapted than CCR5-using
variants (p-value =1.34e-2). Additionally, adapted CCR5-using variants have a
significantly lower predicted false positive rate (FPR) by the geno2pheno[coreceptor]
tool compared to the non-adapted CCR5-using variants (p-value =2.21e-2), where a low
FPR is associated with CXCR4 usage. Consequently, estimating HLA adaptation can
be an asset in predicting not only coreceptor usage, but also an approaching coreceptor
switch in CCR5-using variants. We propose the usage of Bayesian GLMMs for modeling
virus-host adaptation in general.
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Author summary

Viral control is currently our only counter mechanism against HIV-1 with no practicable 1

cure nor a vaccine at hand. In treatment-naive patients, HLA adaptation and 2

coreceptor usage of HIV-1 play a major role in their capability to control the virus. The 3

interplay between both factors, however, has remained unexplored so far. Assessing the 4

degree of viral HLA adaptation is challenging due to the exceptional genetic diversity of 5

both the HLA complex and HIV-1. Therefore, current approaches constrain the 6

adaptation prediction to a set of p-value selected HLA-polymorphism candidates. The 7

selection of these candidates, however, requires extensive external large-scale 8

population-based experiments that are not always available for the population of 9

interest, especially not for newly emerging viruses. In this work, we present a novel 10

computational approach using Bayesian generalized linear mixed models (GLMMs) that 11

enables not only to predict the adaptation to the complete HLA profile of a patient, but 12

also to handle phylogenetic-dependencies of the variants within the model directly. 13

Using this light-weight approach for modeling (any) virus-host adaptation, we show that 14

HLA adaptation is associated with coreceptor usage. 15

Introduction 16

Without the prospect of a vaccine or a cure within reach, viral control is one of the 17

major pillars for combating the HIV pandemic [1]. The coreceptor usage of HVI-1 18

affects the ability to control the virus. Apart from the CD4 receptor, HIV-1 needs a 19

coreceptor for successful cell entry. Only two coreceptors have clinical relevance, CCR5 20

and CXCR4 [2]. Depending on their coreceptor usage, HIV-1 isolates are classified into 21

R5-capable variants (CCR5 usage), X4-capable variants (CXCR4 usage), or 22

R5X4-capable variants (CCR5 and CXCR4 usage) [3,4]. While R5 variants are known to 23

dominate early infection [5], a switch to X4 at later stage of infection occurs in roughly 24

50% of patients infected with subtype B HIV-1 associated with increased depletion of 25

CD4+ T cells, faster progression to AIDS, and a higher mortality rate [4, 6–8]. In 26

patients infected with subtype C HIV-1, a switch to CXCR4 usage is observed less 27

frequently compared to subtype B [9]. Recent studies suggest that an increase in 28

subtype C X4 variants might emerge with the increasing access to antiretroviral drug 29

treatment and the ongoing evolution of the subtype C HIV epidemic [10]. 30

The importance of accurate determination of coreceptor usage has increased with the 31

approval of entry inhibitor drugs that target the CCR5 coreceptor. A determinant of 32

coreceptor usage is the env protein of HIV-1. Currently, phenotypic [11–14] and 33

genotypic [15–22] tropism assays still have difficulties accurately detecting minority 34

populations of X4-using variants, which might lead to a predominance of X4 usage after 35

treatment with a CCR5 antagonist. In addition, it is not only important to predict the 36

correct coreceptor usage, but it would be of advantage to predict how close the variant 37

is to a coreceptor switch. 38

Though the clinical significance of the coreceptor usage is well studied, the trigger 39

mechanisms behind the coreceptor switch from R5 to X4 variants remain unsolved. The 40

emergence of X4-capable variants is associated with a decrease in N-linked glycosylation 41

of the envelope glycoprotein env of HIV-1 [23]. Glycosylation is a viral mechanism to 42

mask conserved amino acids from antibody recognition, such that X4-capable variants 43

should be more prone to antibody neutralization in theory. For antibody development, 44

B cells have to be activated by CD4+ T cells. Thus, concurrent CD4+ T cell depletion 45

counteracts this mechanism. How X4 variants can emerge with still high CD4+ T cells 46

remains inconclusive. However, this is of great importance, since patients with 47

intermediate to high CD4+ T cells contradict the current typical clinical indicators for a 48
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potential coreceptor switch such as low numbers of CD4+ T cells. 49

The potential interplay between HLA adaptation and coreceptor usage has not been 50

explored so far. Viral adaptation to the immune system includes the emergence of viral 51

escape mutations to the host’s individual HLA profile. The central role of HLA 52

molecules is to bind peptides and present them on the cell surface to compatible T cells, 53

which are part of the adaptive immune response. T cells are HLA-restricted, meaning 54

that they recognize only a specific HLA-antigen complex. There are two major HLA 55

classes — HLA class I and HLA class II. HLA class I molecules exist on all nucleated 56

cells and bind to (self and pathogen-derived) antigens degraded from synthesized 57

proteins in the cytosol. The corresponding HLA-antigen complex is recognized by 58

specific CD8+ T cells. HLA class II molecules only occur on professional 59

antigen-presenting cells that are able to uptake pathogens and proteins from 60

extracellular fluid by phagocytosis or endocytosis. Thus, HLA class II molecules bind 61

pathogen-derived antigens degraded from extracellular proteins in the vesicular 62

compartment of the cell. The corresponding HLA:antigen complex is recognized by 63

CD4+ T cells. The emergence of a mutation that hinders the successful building of the 64

HLA-antigen complex, a so-called escape mutation, allows HIV-1 to evade a T 65

cell-mediated immune response [24,25]. 66

High-throughput technologies have enabled large-scale population studies to identify 67

many HLA-restricted polymorphisms (HLA footprints) and their role on viral 68

control [26–31]. A prominent example is the influence of the HLA-B*27 and the 69

HLA-B*57:01 allele on disease progression [32,33]. Determining virus-host adaptation 70

experimentally and computationally on an individual level is challenging due to the 71

extraordinary genetic diversity of both the HLA complex and HIV-1. HLA adaptation 72

models usually focus on viral polymorphisms that likely emerged due to the patient’s 73

HLA profile. This approach requires the general consideration of the extreme large 74

number of possible HLA alleles in the population and viral polymorphisms while 75

modeling the fact that only few HLA alleles have a potential influence on a particular 76

polymorphism. Current computational approaches [34, 35] tackle the complex modeling 77

task by carrying out many rounds of preselection, including the identification of 78

potential HLA-polymorphism candidates on large-scale cohort data and additional 79

greedy feature selection steps to select the HLA alleles per polymorphism within the 80

model, such that potential sites and HLA alleles might get disregarded based on 81

significance threshold values. Since human populations and HIV subtypes display 82

substantial genetic differences, such approaches require a large amount of data for every 83

group of interest. Correcting for potential phylogenetic relatedness of the viral 84

sequences used within the model as proposed by [36] is currently implemented by 85

incorporating a transmission probability that has to be learned in a separate model. 86

While HLA-1 restricted escape mechanisms to CTLs have been studied in detail, only 87

few studies exist that have analyzed the impact of HLA-restricted CD4+ T cell escape 88

polymorphisms [35] on viral control. In total, there is currently no available approach to 89

estimate viral adaptation jointly to HLA class I and class II. Moreover, the available 90

approaches require rather complex training steps to be used on new data. 91

In this study, we investigate the hypothesis that coreceptor usage is associated with 92

the adaptation of the virus to the host’s HLA system, especially to the HLA class II 93

alleles. We explore the novel possibility that viral adaptation to the HLA class II 94

molecules would mask the virus from recognition by CD4+ T cells, such that no B cells 95

are activated, and, thus, no antibodies are developed despite still high numbers of CD4+ 96

T cells. Escape mutations in the rather conserved p24 protein of HIV-1, which is 97

involved in forming the viral capsid, emerge more likely under substantial fitness 98

cost [37,38]. Therefore, we estimate viral adaptation to the patient’s HLA profile only 99

based on the p24 protein of the gag gene as done previously [39–44]. This study 100
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requires a data set consisting of (1) the envelope protein sequences of the virus for 101

determining the coreceptor usage, (2) the p24 protein for estimating the HLA 102

adaptation, and (3) the HLA class I and II profile of the corresponding host. 103

Chronically-infected HIV-1 patients are more likely to harbor viruses that have 104

accumulated escape mutations to the HLA system due to the longer exposure to the 105

human immune system. In treatment-näıve patients, the viral evolution is not restricted 106

by selection pressure from drug exposure and is more able to mutate towards escape 107

variants with respect to the immune system. Current available data sets often lack HLA 108

class II allele information or have not sequenced the envelope sequence of the virus. 109

Thus, we sequence the viral envelope gene env as well as the viral gag (p24 ) gene, and 110

genotype the corresponding HLA class I (HLA-A, HLA-B, HLA-C) and II genes 111

(HLA-DRB1, HLA-DQB1, HLA-DPB1) of the host in a new cohort of 312 112

treatment-naive, subtype C, chronically-infected HIV-1 patients from South Africa. 113

To jointly model HLA class I and class II adaptation, we develop a novel 114

computational approach. In detail, the adaptation of a particular amino acid in a viral 115

sequence to the host HLA profile is inferred using phylogeny-corrected, multinomial, 116

Bayesian generalized linear mixed models (GLMMs). Without the need for an 117

additional model, GLMMs allow to correct for phylogenetic relatedness of the variants 118

directly by modeling the between-subject correlation as a group-level effect. Using a 119

Bayesian setting allows to learn feature importance directly within the model by 120

applying the horseshoe prior on all HLA class I and class II alleles of the data set and 121

without the need for additional preselection steps or a large amount of data. The 122

horseshoe prior is used in sparse model settings to shrink the majority of the coefficients 123

to zero by having the point mass at zero and symmetric fat tails [45]. 124

Materials and methods 125

Study cohort 126

Patients (male and female) who attended Wellness, Antenatal and HIV Clinics in the 127

Durbanville and Stellenbosch regions of the Western Cape were recruited. Only patients 128

older than 18 years were selected. Most of the patients were assumed to be in the 129

chronic stage of the infection. Inclusion was based on recent diagnosis of HIV-1 infection 130

(within the previous 6 months). In total, samples from 329 HIV-infected individuals 131

were available. Subtype C was confirmed for 317 of the 329 samples using the COMET 132

Tool [46]. Patients on antiretroviral were excluded from the analysis, resulting in a total 133

of 312 patients. For each patient, clinical parameters such as sex, age, ethnicity, CD4 134

count, and viral load were collected. In addition, the HIV-1 genes gag (p24) and env 135

were sequenced and the patients’ HLA I and II genes were genotyped. 136

Ethical statement 137

PBMC and plasma samples from HIV-1 positive donors were provided by Stellenbosch 138

University with the written informed consent of the donors. Sample collection was 139

approved under the following ethical statement ”VIROLOGICAL AND 140

IMMUNOLOGICAL CHARACTERIZATION OF CRYOPRESERVED BLOOD AND 141

VIRUS SAMPLES” PROJECT NUMBER: NO7/06/13 142

Molecular methods 143

HIV status was confirmed with a serological test (Architect HIV Ab/Ab Combo, 3rd 144

generation) on serum according to the manufacturer protocol. After the surface staining 145
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of PBMCs by incubation with a monoclonal mouse anti-human antibody coupled to 146

fluorescent dyes, the quantification of cells expressing the CD4 antigen was measured by 147

FACS analysis. Acquisition and analysis was performed on FACs flow cytometer using 148

Cell Quest software. 149

HIV-1 deep sequencing was performed using previous described protocols [47]. 150

Analysis of deep sequencing data was performed using an internally-developed analysis 151

pipeline, where sequence reads in the form of FASTQ files were processed and aligned 152

via a multi-step method. 153

HLA genotyping was performed using the following protocol. Genomic DNA was 154

isolated from 200 µl of EDTA-anticoagulated blood using the QIAamp DNA Blood 155

Mini Kit (QIAGEN, Hilden, Germany). Long-range PCR primers amplified the 156

full-length of HLA class I genes (A, B, C) from 5’- to 3’-UTR. Class II genes (DPB1, 157

DQB1, DRB1) were amplified from exon 2 to 3’-UTR. Fragment sizes were estimated to 158

be around 3000 bp for Class I genes and 6000 bp for Class II genes, respectively. The 159

PCR solution contained 1 x Phusion GC buffer (including 1.5 mM MgCl2), 200 µM 160

dNTPs, 1 M Betaine, 8 µg Bovine Serum Albumin (BSA), 0.4 U Phusion Hot Start II 161

High-Fidelity DNA Polymerase (Finnzymes, Vantaa, Finland), 0.5 µM of each primer 162

and 90 ng of DNA in a total volume of 20 µl. After initial denaturation at 98°C for 1 163

minute, 35 cycles of 98°C for 10 seconds, 65°C for 20 seconds, and 72°C for 4 minutes 164

were performed, followed by a final extension at 72°C for 20 minutes. Agarose gel 165

electrophoresis was used to confirm amplification and correct fragment size as well as to 166

check for non-specific product contamination. The 3 HLA class I and class II amplicons 167

for each individual were pooled and afterwards purified with the Agencourt AMPure 168

XP system (Agentcourt Bioscience, Beverly, MA, United States) according to the 169

manufacturer’s protocol to inactivate unconsumed dNTPs and to eliminate extraneous 170

primers before library preparation. These pooled amplicons then comprised a single 171

sample. Concentrations were measured on a FLUOstar OPTIMA microplate fluorimeter 172

(BMP LABTECH, Ortenberg, Germany) using the Quant-iT PicoGreen assay 173

(Invitrogen, Carlsbad, CA, United States). Sample libraries for NGS were then prepared 174

with the Nextera XT DNA Sample Prep Kit (Illumina, San Diego, CA, United States) 175

according to the manufacturer’s protocol, including distinct DNA fragmentation, 176

end-polishing, and adaptor-ligation steps. Through the adaptor, every sample was 177

finally labeled with a unique identifier sequence. Sequencing was carried out then on 178

the Illumina MiSeq Personal Sequencer (Illumina, San Diego, CA, United States) as 179

described by the manufacturer. 180

Coreceptor prediction 181

Coreceptor usage is predicted using the well-established tool geno2pheno[coreceptor] [17] 182

on the viral envelope sequences. The provided false-positive rate (FPR) corresponds to 183

the confidence with which the sequence is classified as X4-capable. The higher the FPR, 184

the more likely the sequence is not X4-capable, but R5. Viral strains with an FPR 185

cutoff less than 20% are classified as X4-capable, otherwise as R5-capable according to 186

the European Consensus Group on clinical management of HIV-1 tropism testing [48]. 187

Estimating HLA adaptation 188

Assuming independence of all sites in the viral sequence, we define the adaptation of a 189

sequence to its host HLA profile as the adaptation of each frequent single amino acid 190

site in the sequence to the HLA profile. Moreover, though every patient is infected by a 191

quasispecies of viruses, we only consider the consensus sequence as in previous 192

approaches. In order to correct for potential phylogenetic relatedness of the viral 193

sequences used within the model as proposed by [36], we also incorporate the phylogeny 194
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of the viral sequences into the model. Thus, our model requires the amino acid 195

sequences of the viral p24 protein, the corresponding host’s HLA I and II alleles, and 196

the phylogeny between the viral sequences for learning the HLA adaptation (training). 197

For each frequent site, we infer a model (HLA model) to estimate the likelihood that 198

the site is under HLA pressure as well as a hypothetical model (baseline model) that 199

computes the likelihood that the site is not under HLA pressure. HLA adaptation of the 200

complete protein is then defined as a function over the product of the per-site likelihood 201

ratios of the HLA model against the baseline model. Each per-site model is built using 202

multinomial Bayesian generalized linear mixed models (GLMMs). 203

In the following, we formalize the per-site model and the final adaptation score. 204

Afterwards, we present the selection process of the frequent sites. Since each per-site 205

model is built using Bayesian GLMMs, we provide a brief introduction to Bayesian 206

GLMMs and their benefit over classical GLMMs and phylogeny-corrected LMMs. In 207

addition, we provide a section on the model specification for each per-site model. 208

Notation 209

Let S be a random variable representing the set of all possible HIV-1 amino acid 210

sequences of a particular protein of length L. A particular sequence s is a realization of 211

S covering all sites l = 1, . . . , L of the protein. A particular site sl can be realized by 212

any amino acid (aa). Since we do not have enough power to find an HLA-restricted 213

polymorphism at a very conserved site, we restrict the sites to m frequent single amino 214

acid sites sj with j = 1, . . . ,m, which are defined by sites that vary over the set of all 215

HIV-1 sequences in their amino acid realization. A site is defined as frequent, if the 216

particular amino acid is observed in at least 1% of the sequences. 217

The host immune system is represented by the HLA alleles of the HLA I and HLA II 218

genes. The HLA profile of an individual consists in our case of six (homozygous in all 219

genes) to 12 (heterozygous in all genes) different HLA alleles. Let H represent the set of 220

all possible HLA I and HLA II alleles. A particular HLA profile h is encoded as a 221

binary vector with zeros everywhere, apart from the positions corresponding to the HLA 222

alleles of the HLA profile. Note, thereby homozygosity is not modeled. 223

We model adaptation as the conditional probability that a sequence s occurs under 224

pressure from the host HLA profile similarly to [34] : 225

P (S = s|H = h). (1)

Assuming independence among sites and relevance of only frequent sites, the conditional 226

probability over the sequence s can be decomposed to the product over the conditional 227

probabilities over all m frequent sites sj (per-site model): 228

P (S = s|H = h) =

m∏

j=1

P (sj |H = h). (2)

Similarly, a hypothetical model estimating the likelihood of the sequence s without any 229

HLA pressure is defined as: 230

P (S = s|H = ∅) =
m∏

j=1

P (sj |H = ∅) (3)

The conditional probabilities P (sj |H = h) and P (sj |H = ∅) for each site are referred 231

to as the HLA model and the baseline model, respectively. 232
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Identification and encoding of frequent sites 233

Since all patients in the study are infected with the subtype C variant of HIV-1, we 234

align all nucleotide sequences to the subtype C consensus sequence using the alignment 235

tool MAFFT (version 7.407) [49]. The subtype C consensus sequence is retrieved using 236

the HIV Sequence Alignments tool from the Los Alamos HIV sequence database 237

(www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html). We correct and translate 238

the nucleotide alignment using the Codon Align Tool from the Los Alamos HIV 239

sequence database (www.hiv.lanl.gov/content/sequence/CodonAlign/codonalign.html). 240

The alignment positions are mapped to the corresponding HXB2 reference gene with 241

Genbank accession ’AAB50258.1’ (gag) using the alignment tool MAFFT (version 242

7.407) [49]. Ambiguous amino acids X are not considered and set to NA. Frameshifts 243

and stop codons are disregarded and set to gaps. Each site in the sequence s with at 244

least two frequent (1% prevalence) amino acid variants is selected as potential site sj 245

under HLA pressure. For each frequent site and each hypothesis (HLA and baseline 246

model), a multinomial Bayesian generalized linear mixed model is built, where each 247

frequent amino acid is considered a class, and all non-frequent amino acids are grouped 248

together to an ’OTHER’ class. 249

Bayesian generalized linear mixed models 250

We model the conditional probabilities for site adaptation (see Eq. 2 and Eq. 3) using 251

separate multinomial Bayesian generalized linear mixed models (GLMMs). GLMMs are 252

tailored for data with non-normal response distributions and dependency structures in 253

the observations by combining the properties of generalized linear models 254

(GLMs) [50,51] and linear mixed models (LMMs). While GLMs model non-normal 255

response distributions (such as binomial) via link functions of the means (e.g. logistic 256

regression), LMMs enable to model not only population-level effects but also group-level 257

effects assuming dependency structures in the samples. Mathematically, GLMMs have 258

the following form excluding the residuals (ε) [52]: 259

g(E(Y |X,Z, u)) = η = Xβ + Zu, (4)

where Y is the response variable, β and u the coefficients for the population and 260

group-level effects, respectively, X and Z the corresponding design matrices and g(x) a 261

link function relating the response Y to the linear predictor η. Thus, between-subject 262

correlations, like the phylogenetic relatedness of some viruses, can be modeled as a 263

group-level effect. 264

While y, X and Z are given by the data, β and u ∼ N (0, G) are unknown and have 265

to be estimated. We use Markov chain Monte-Carlo (MCMC) based Bayesian GLMMs, 266

since they are more robust and accurate in their parameter estimations of the 267

group-level effects in contrast to classical maximum likelihood (ML) and restricted 268

maximum likelihood (REML) methods [53]. In non-Bayesian frameworks, the 269

group-level effect vector u is treated as part of the error term and thus likelihood 270

computation requires the integration over the likelihood of all group-level effects, which 271

might be analytically intractable for complex group-level structures [54]. In Bayesian 272

settings where posterior distributions of the parameters are estimated by combining 273

likelihood and prior distributions, both u and β are treated as parameters, allowing 274

more accurate variance estimates for the group-level effects. We use the MCMC 275

Bayesian GLMM implementation of the R [55] package brms [56] that provides an 276

interface to the STAN software [57]. By implementing Hamiltonian Monte Carlo [58] 277

and the No-U-Turn Sampler (NUTS) [59], Stan allows for faster convergence compared 278

to conventional MCMC methods. Another advantage of Bayesian models is the 279

possibility to include the prior information of the parameters into the model. The prior 280
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knowledge that only few HLA alleles have potential influence on a variant site [31, 34] is 281

modeled using the horseshoe prior that has a global parameter τ shrinking most of the 282

coefficients to zero and a local parameter λ, which is a heavy-tailed half-Cauchy 283

(C+(0, 1)) prior, allowing some coefficients to escape the shrinkage [45]. Thus, the the 284

horseshoe prior for the D population level coefficients β = (β1, . . . , βD) has the 285

following form: 286

βj |λj , τ ∼ N(0, λ2jτ
2),

λj ∼ C+(0, 1), j = 1, . . . , D.
(5)

In addition, we regularize the horseshoe prior by setting the ratio of the expected 287

number of non-zero coefficients to the expected number of zero coefficients to 10%. All 288

other parameters of the horseshoe prior are set to default. For the remaining coefficients 289

the default priors of the brm function are used (non or very weakly informative priors). 290

Estimating per-site adaptation 291

For each frequent site, we model an HLA model (see Eq. 2) and a baseline model (see 292

Eq. 3) using multinomial Bayesian generalized linear mixed models (GLMMs) as 293

implemented by the brms package [56] in R [55]. Both models estimate the probability 294

distribution of each site sj spanning over the space Y of all frequent amino acid variants 295

(and ’OTHER’ for the non-frequent variants’) conditioned on the potential confounders 296

age, sex, and ethnicity. Age is defined as the interval between sample extraction date 297

and birthday and scaled to mean 0 and variance 1. If missing, months and days are set 298

to the first day and month, respectively. Due to the ambiguous recording of ethnicity 299

groups, samples are assigned to either African, Caucasian, or ’Other’ ethnicity. Sex is 300

modeled as a binary feature. Though deep sequencing has been performed, we use for 301

this study only the consensus sequences derived using a 10% prevalence cutoff, which is 302

commonly used in the research community [60]. The NGS reads were mapped with a 303

customized version of MinVar [61]. 304

Predicting if a polymorphism is under HLA pressure or not is confounded by the 305

phylogenetic relatedness of the viral sequences. As proposed by [62], the phylogeny of 306

the viral sequences of the subjects is incorporated as group-level effect (1|subject) into 307

the model using the option cov ranef = list(subject = A). Here, A denotes the 308

computed covariance-matrix of the phylogenetic tree calculated using the vcv.phylo 309

function from the ape package. A phylogenetic tree is constructed based on the 310

nucleotide sequences of the p24 protein from the chronic lowCD4 data set using the 311

RAxML software (version 8.2.12) [63] under the GTRGAMMA model. Thus, the 312

formula to compute the HLA model taking all HLA alleles H as potential covariates 313

into the model has the following form: 314

Y ∼ age+ sex+ ethnicity + (1|subject) +H, (6)

in contrast to the baseline model, which estimates the probability that the frequent site 315

is not under HLA pressure: 316

Y ∼ age+ sex+ ethnicity + (1|subject). (7)

The logistic function is used as a link function. As described in previous sections, the 317

horseshoe prior is used on all population-level effects [45]. Alleles in H are converted to 318

four digit resolution. Alleles with alternative expression (suffix ’L’, ’S’, ’C’, ’A’, or ’Q’) 319

are treated separately from the normally expressed allele. The complete call to compute 320

the per-site models using the brms package is provided in the code repository. 321
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Calculation of adaptation score 322

We define the adaptation score, as proposed by [34], as: 323

adapt(s, h) =
P (S = s|H = h)

P (S = s|H = ∅)

≈

m∏

j=1

P (sj |H = h)

m∏

j=1

P (sj |H = ∅)

=
m∏

j=1

P (sj |H = h)

P (sj |H = ∅)
,

(8)

where the per-site likelihood P (sj |H = h) and P (sj |H = ∅) are defined by Eq.2 and
Eq. 3, respectively. For better interpretation, we also transform the estimated
adaptation adapt(s, h) using a sigmoidal function g(x) to a range of -1 to 1 [34]:

g(x) =
2

π
arctan(ln(x))

Thereby, a positive adaptation score denotes that the sequence has more likely occurred 324

under HLA pressure than without, and vice versa. 325

Logo computation 326

The adaptation score can be decomposed into the likelihood ratios per frequent variant 327

sites (see Eq. 8). Odds ratios above or below 1 indicate that either the polymorphism 328

at the site sj is more likely to be under HLA pressure, or vice versa. We use this 329

information to provide a visual logo depicting the amino acids that contributed most to 330

the adaptation score. Therefore, only sites with odds ratios differing from 1 (and an 331

offset of 0.01 to account for the variance) are considered. The contribution is scaled by 332

the maximum contribution. In order to use the existing Weblogo 3.0 software to 333

produce the logos [64], we create a pseudo-alignment with 100 sequences with length of 334

the number of important sites. Each position in the alignment represents a 335

polymorphism site. The sequences contain the polymorphism at this position with a 336

frequency equal to the scaled contribution and a gap for the remaining sequences. Thus, 337

the logo is a consensus logo for the pseudo-alignment. 338

Data sets 339

We divide the newly sequenced study cohort based on a CD4+ T cell count cutoff of 500 340

cells/mm3 into a chronic highCD4 data set and a chronic lowCD4 count data set. High 341

CD4+ T cell count indicates a stronger immune system. Since infection duration is not 342

known for the patients, a high CD4+ T cell count might indicate that the patients have 343

been infected for a shorter time (less chronic). Moreover, a virus is assumed to be less 344

adapted to a host with a strong immune system compared to a host with a weak 345

immune system. Thus, the adaptation model is only trained on the chronic lowCD4 346

data set. In addition, we create an artificial data set (random) based on the 347

chronic lowCD4 data set, where the HLA alleles per HLA gene and haplotype have been 348

randomized 100 times. HLA adaptation for this random data set is predicted with 349

models based on the chronic lowCD4 data set as well. For further validation of the 350

adaptation model, we estimate HIV-1 adaptation of publicly available cohort of 351
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acutely-infected HIV-1 patients (n = 23) from the Los Alamos HIV sequence database 352

(http://www.hiv.lanl.gov). The acute data set comprised the p24 sequence as well as 353

the HLA I information of 23 patients with the following accession numbers GQ275453, 354

GQ275750, GQ275852, GQ275894, KM192425, KM192440, KM192471, KM192536, 355

KM192566, KM192640, KM192653, KM192674, KM192686, KM192702, KM192762, 356

KM192844, KM192856, KM192870, KM192884, KM192912, KM192942, KM192970, 357

KM192998. Since only the HLA I profile was available, we build an adaptation model 358

based only on the HLA I profile for this purpose. 359

Statistical analyses 360

We perform a one-sided Wilcoxon rank-sum test to compare the adaptation scores (i) 361

between different data sets and (ii) with respect to different clinical characteristics. For 362

settings, where the data is paired (random data set - same subjects, R5-FPR analysis - 363

matched CD4 count, heterologous - autologous viruses), a one-sided Wilcoxon 364

signed-rank test is performed. A significance threshold of 0.05 is set for all hypothesis 365

tests. 366

Data and code availability 367

The NGS sequences from the study cohort are available under the BioProject ID 368

PRJNA810303 (reviewer link, see submission). The corresponding BioSample Accession 369

IDs are SAMN26241863:26242168 and SAMN28728524:SAMN28728529. The generated 370

consensus nucleotide sequences are provided on Zenodo at link 10.5281/zenodo.6797532. 371

Due to privacy reasons, the HLA information cannot be published. Consequently, we 372

cannot publish the trained models as the HLA information can be exposed thereby. A 373

minimal data set including the estimated adaptation scores for all presented data sets is 374

available on Zenodo at link 10.5281/zenodo.6797722. All code not compromising the 375

privacy concerns, including the complete call to train and build the multinomial 376

Bayesian generalized linear mixed models, is provided at GitHub at link 377

https://github.com/annahake/HIVIA TOOL.git to be used as template. To ensure 378

reproducibility, we have used the workflow manager Snakemake 5.4.5 [65] and the 379

Anaconda Software Distribution [66] for the training and prediction pipeline. We have 380

used the R Language and Environment for Statistical Computing, Version 3.5.1 [55] for 381

modeling and analyses. 382

Results and Discussion 383

Validation of the adaptation score 384

We trained our adaptation model on data from a cohort consisting of 274 385

chronically-infected, untreated, subtype C, HIV-1 patients, all having a CD4+ T cell 386

count less than 500 cells/mm3 and on average a log viral load of 4.87 (’chronic lowCD4’ 387

data set). In addition, 38 samples from the same study cohort with a CD4+ T cell 388

count above 500 cells/mm3 (’chronic highCD4’ data set) were available. Apart from the 389

CD4+ T cell count, the two data sets are comparable with regard to potential 390

confounders and clinical variables (see Table 1). 391

Performing several runs of 10-fold cross-validation revealed that the predicted 392

adaptation score is quite robust, changing with an average standard deviation around 393

0.1. Though there exists no ground truth for HLA adaptation, we set some requirements 394

that a valid adaptation score should fulfill, which can be seen in the following. 395
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Table 1. Summary statistics for the variables of interest for both data sets.

variable chronic highCD4 chronic lowCD4
age 35.24±10.03 35.38±9.99
CD4+ T cell count 690.47±188.39 199.28±117.27
VL 4.22±0.73 4.87±0.85
adapt(x) 0.05±0.38 0.19±0.31
sex:F 0.58 0.61
sex:M 0.42 0.39
ethnicity:AFRICAN 0.79 0.64
ethnicity:CAUCASIAN 0.03 0
ethnicity:OTHER 0.18 0.36
coreceptor:R5 0.82 0.71
coreceptor:X4 0.18 0.29

Study cohort contains HLA adapted sequences 396

We assume that by construction the study cohort should harbor some HLA adapted 397

sequences. 62% of the samples from the chronic lowCD4 data set (n = 274) are 398

estimated to be adapted (adaptation score >0.1), compared to 47% of the 399

chronic highCD4 data set (n = 38). The adaptation scores of the chronic lowCD4 data 400

set are taken from a 10-fold cross-validation, while the adaptation scores of the 401

chronic highCD4 data set are predicted using the full chronic lowCD4 data set for 402

training. Fig. 1 shows the distribution of the adaptation score in the chronic lowCD4 403

data set and the chronic lowCD4 data set. Statistically, HIV-1 isolates of patients with 404

CD4+ T cell count below 500 (chronic lowCD4 data set) are significantly more adapted 405

than patients with higher CD4+ T cell count (one-sided, unpaired Wilcoxon rank-sum 406

test, p-value = 1.97e-2). The comparison of the chronic lowCD4 data set with the 407

chronic highCD4 data set is however not straightforward. On the one hand, the size of 408

the chronic highCD4 data set is quite small compared to the low CD4+ T cell. On the 409

other hand, while we exclude the patients with the higher CD4+ T cell count from the 410

training process as a precaution because they might be less chronic, this assumption 411

does not have to be true and the samples cannot be treated to test the hypothesis that 412

chronically-infected patients have more adapted viruses compared to patients with 413

shorter infection duration. Last but not least, HLA-1 adapted viruses are assumed to 414

escape the CTL response, resulting in fewer infected CD4+ T cells being killed. As a 415

consequence, it is not necessarily the case that patients with higher CD4+ T cell count 416

have less adapted viruses compared to patients with a lower CD4+ T cell count. 417

Random HLA profile leads to non-adaptedness 418

We expect that viruses in the study cohort are more adapted to the host’s HLA profile 419

than to a random HLA profile. Therefore, we predicted the HLA adaptation of the viral 420

sequences of the cohort to a random HLA profile (100 times). Adaptation scores in the 421

random data set are averaged per patient over 100 draws. Only 10% of the random 422

samples (n = 274) are predicted to be adapted. As expected, the adaptation of the 423

same virus to a randomized HLA profile is significantly lower than to its host HLA 424

profile (one-sided, paired Wilcoxon signed-rank test, p-value = 1.50e-44). Fig. 2 shows 425

the distribution of the estimated adaptation scores for the random data set compared to 426

the chronic lowCD4 data set. 427
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Fig 1. Histogram of the adaptation scores of the chronic lowCD4 data set
(red) and the chronic highCD4 data set (turquoise). Dashed line represents the
mean adaptation score per data set. The mean adaptation score is 0.19 for the
chronic lowCD4 data set and 0.05 for the chronic highCD4 data set.
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Fig 2. Histogram of the adaptation scores of the chronic lowCD4 data set
(red) and the the averaged adaptation scores of the random data set
(turquoise). Dashed line represents the mean adaptation score per data set. The mean
adaptation score is 0.19 for the chronic lowCD4 data set and -0.67 for the random data
set.

Autologous viruses more adapted than heterologous viruses 428

We observed that the adaptation score of the harbored virus to its host (autologous 429

virus) is higher (p-value = 1.48e-31) in contrast to the adaptation of the other viruses in 430

the cohort to the same HLA profile (heterologous virus). This meets our expectation, 431

since we define the adaptation score to reflect how likely the virus acquired escape 432

mutations specific to the host HLA profile. Fig. 3 shows the adaptation scores of the 433

autologous virus and the averaged heterologous viruses for each subject (HLA profile). 434

Viruses in acute phase less adapted than in chronic phase 435

We expect that viruses from acutely-infected HIV-1 patients should be less adapted 436

than from chronically-infected HIV-1 patients due to the shorter exposure to the 437

immune system. Fig. 4 shows a histogram of the estimated adaptation scores for the 438

acute and the chronic data sets. Since only the HLA I profile was available for the acute 439

data set, we built an adaptation model based only on the HLA I profile for this purpose. 440

We observed that viral strains from acutely infected patients have significantly lower 441

estimated adaptation scores compared to the chronically-infected HIV-1 patients from 442
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Fig 3. Histogram of estimated adapatation score for each HLA profile and
autologous and heterologous viruses. Estimated adaptation scores for each HLA
profile and its autologous virus (red) and heterologous viruses of the cohort (turquoise).
The adaptation scores of the heterologous viruses are averaged. Dashed line represents
the mean adaptation score per data set. The mean adaptation score for autologous
viruses is 0.19 and -0.12 for heterologous viruses.

our cohort (one-sided, unpaired Wilcoxon rank-sum test, p-value = 4.17e-5). Note that 443

viruses from acutely-infected patients might also carry HLA-related escape mutations 444

due to transmission.
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Fig 4. Comparison of HLA adaptation in acutely- and chronically-infected
HIV-1 patients. Histogram of the estimated adaptation scores for the
chronically-infected data set (turquoise) and the acutely infected data set (red). Dashed
line represents the mean adaptation score per data set. The mean adaptation score is
0.20 for the chronic lowCD4 data set based only on HLA I alleles and -0.24 for the
acute data set, respectively.

445

Validation of the per-site models 446

Non-informative per-site models have no influence on the adaptation score 447

In contrast to the overall adaptation score, it is possible to evaluate the performance of 448

the per-site models. This is useful for the interpretation and validation of the model but 449

irrelevant for the quality of the adaptation score. For each frequent site, we compute 450

the likelihood ratio of a model that estimates the likelihood that the site is under HLA 451

pressure (HLA model) and a hypothetical model that assumes no HLA pressure 452

July 5, 2022 13/24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2022. ; https://doi.org/10.1101/2022.07.06.498925doi: bioRxiv preprint 

174



(baseline). Thereby, the estimated per-site adaptations are directly adjusted by a 453

baseline model and calibrated among all sites. Thus, including sites which are not under 454

HLA pressure will more likely contribute with a factor of 1 to the overall adaptation 455

score and, consequently, have no influence. This allows to take all frequent sites into 456

consideration without any preselection or apriori knowledge. Note, by definition of the 457

adaptation score, the adaptation of each frequent site contributes with the same weight 458

to the overall adaptation score. All per-site models reached the Gelman-Rubin 459

convergence criteria by having an Rhat value less than or equal to 1. 460

Informative models learn HLA footprints 461

While it is not the focus of the study, we can identify sites with a likelihood ratio over 1, 462

indicating a potential association between the frequent site and the HLA profile. In the 463

study cohort, we identified 68 frequent sites in the p24 protein. Out of the 464

corresponding 68 per-site HLA models, 21 had an averaged AUC under the 465

precision-recall ROC curve higher than the averaged precision-recall baseline, where the 466

precision-recall baseline is computed as the ratio of positive samples in the data set. 467

Precision-recall was computed for each possible amino acid at a frequent site via 10-fold 468

cross-validation. If models are evaluated by the performance to predict each frequent 469

single amino acid polymorphism (SAP) separately, 52 models out of 210 perform better 470

than the precision-recall baseline. Table 2 shows the top 10 polymorphisms with 471

precision-recall AUC exceeding the baseline. Further analyzing the learned coefficients 472

of the per-site models with high performance revealed that the models learned known 473

footprints for subtype C such as the association between the T242N mutation and the 474

HLA alleles HLA-B*57:01/02/03 or HLA-B*58:01 as well as the T186S escape mutation 475

associated with HLA-B*81:01 [67–69].

Table 2. Top ten potential HLA-restricted sites and single amino acid
polymorphisms (SAPs) with respect to precision-recall baseline
performance The performance of the HLA model at a specific site and for a specific
SAP is computed as the AUC under the precision-recall curve (PRROC).

site SAP PRROC baseline
242 n 0.81 0.12
186 s 0.45 0.04
163 g 0.26 0.06
309 c 0.20 0.01
146 p 0.38 0.24
357 g 0.65 0.53
242 t 0.98 0.87
146 s 0.21 0.11
312 e 0.39 0.30
230 d 0.14 0.05

476

Interpretable adaptation score by providing logos for each virus 477

For each frequent variant site, an odds ratio above or below 1 (with an offset of 0.1) 478

indicates whether the amino acid at this site is more likely under HLA pressure or not. 479

This information can be used to compute a logo revealing the amino acids that 480

contributed the most to the adaptation score. This information helps the user to 481

understand the results for different inputs. Fig. 5 shows the logo for the patient with 482

the highest adaptation score in the cohort. The known HLA escape mutation 483

T186S [70] has the highest contribution to the predicted adaptation score. 484
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Fig 5. Logo for the patient with the highest adaptation score. The logo shows
the viral polymorphisms that have the highest contribution to the adaptation score of
this patient. Blue capital letters indicate adapted amino acids, while orange lowercase
letters reflect non-adapted amino acids. The height of the letters reflects the
contribution to the adaptation score and is scaled by the maximum contribution. The
x-axis denotes the corresponding sites in the HXB2 virus.
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Fig 6. Difference in clinical variables based on HLA adaption. Measurement
of CD4 + T cell (CD4), logarithmized viral load (VL), FPR, and the FPR of R5 viruses
matched based on their CD4 count (R5-FPR) stratified among adapted (red) and
non-adapted(turquoise) viruses.

HLA adaptation associated with CD4+ T cell count but not 485

viral load 486

We analyzed the estimated adaptation score with respect to viral load, CD4+ T cell 487

count and coreceptor usage. On the one hand, we tested whether patients with adapted 488

and non-adapted viruses differ in these variables, where adapted is defined as an 489

adaptation score > 0.1 and non-adapted as an adaptation score < -0.1, based on the 490

expected variance of 0.1 (see Fig. 6). On the other hand, we analyzed whether viruses 491

of patients with different known levels of these variables differ in their adaptation (see 492

Fig. 7). 493

Though HLA class-I restricted polymorphism are known to be predictive for viral 494

load and CD4+ T cell count in general [26,71], we observed only a correlation between 495

the estimated adaptation scores (based on HLA I and HLA II alleles) and the CD4+ 496

count (Pearson correlation coefficient -0.16, p-value=0.02) but not with viral load (0.04, 497

p-value=0.88). Note, however, that the study cohort consists of rather 498

chronically-infected patients at a later stage of infection, where other factors more likely 499

affect fluctuations in the viral load than the HLA adaptation, and a difference between 500

controllers and non-controllers, for example, is not expected to be seen as in the 501

beginning of the infection. We also observed that adapted viruses do not have 502
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Table 3. Averaged and maximum adaptation score stratified on the
coreceptor usage and two data sets.

data set coreceptor adapt(x) max(adap(x))
chronic highCD4 R5 0.03±0.40 0.80
chronic highCD4 X4 0.14±0.28 0.51
chronic lowCD4 R5 0.17±0.30 0.87
chronic lowCD4 X4 0.25±0.33 0.89

statistically significant higher viral loads than non-adapted viruses (one-sided, unpaired 503

Wilcoxon rank-sum test, p-value = 1.86e-1), and that patients with low viral load have 504

not less adapted viruses (one-sided, unpaired Wilcoxon rank-sum test, p-value=8.54e-2). 505

In addition to the significant correlation between the CD4+ T cell count and adaptation 506

score, we observed that patients with AIDS (CD4+ T cell count < 200) have more 507

adapted viruses than patients with higher CD4+ T cell counts (one-sided, unpaired, 508

Wilcoxon rank-sum test, p-value = 3.20e-3). CD4+ T cell count was also lower in 509

patients with adapted viruses compared to non-adapted (Wilcoxon rank-sum test, 510

p-value = 1.27e-3). 511

Adaptation associated with coreceptor usage 512

Using our adaptation score, we investigated the relationship between HLA adaptation 513

and coreceptor usage. More precisely, we analyzed the hypothesis that high HLA 514

adaptation might trigger the coreceptor switch in a similar way as a weak immune 515

system (measured by a low number of CD4+ T cell counts). Coreceptor usage was 516

determined with the false positive rate (FPR) of the coreceptor prediction tool 517

geno2pheno[coreceptor] [17]. The provided FPR corresponds to the confidence with 518

which the sequence is classified as X4-capable. The higher the FPR, the more likely the 519

sequence is not X4-capable, but R5-capable. Table 3 shows the average adaptation 520

scores stratified for coreceptor usage. We observed a negative correlation between 521

estimated adaptation score and corresponding FPR (Pearson correlation coefficient of 522

-0.15, p-value = 0.03). This means that the more adapted the virus, the higher the 523

likelihood that the virus is classified as X4-capable. This was further confirmed by the 524

observation that X4-capable viruses are more adapted compared to R5 viruses 525

(Wilcoxon rank-sum test, p-value = 1.34e-2, see Fig. 7) and that, in general, adapted 526

viruses have a lower FPR (rather X4 variants) compared to non-adapted viruses 527

(Wilcoxon rank-sum test, p-value = 6.76e-3, see Fig. 6). Note, since the variants are 528

already determined as X4-capable, it is impossible to show if the emergence of 529
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X4-variants is driven by HLA adaptation. This analysis would require longitudinal data 530

where the emergence of the coreceptor switch is captured. To rule out the possibility 531

that higher adaptation of the X4 variants occurs due to longer exposure to the host 532

immune system in contrast to R5 variants, the exact duration of infection is required. 533

However, we observed that even among all R5 viruses, higher adaptation is associated 534

with lower FPR, indicating that more adapted R5 samples might be closer to the 535

coreceptor switch compared to non-adapted samples (one-sided paired Wilcoxon 536

signed-rank test, p-value = 2.21e-2). Since the CD4+ T cell count is a major confounder 537

for the coreceptor usage, we have matched for this test adapted and non-adapted R5 538

samples with similar CD4+ count (± 50 cells/mm3). Note, high adaptation of an R5 539

variant in a chronically-infected patient can also occur due to the long exposure to the 540

immune system, since a coreceptor switch is only observed in 50% of the patients. 541

Conclusion 542

Here, we introduced a novel computational approach to jointly estimate HLA I and 543

HLA II adaptation of HIV-1 using Bayesian generalized linear mixed models. In 544

addition, we presented a new study cohort of 312 treatment-naive, subtype C, 545

chronically-infected HIV-1 patients from South Africa, where we sequenced the viral gag 546

(and env) protein with corresponding HLA class I and II alleles for the training of our 547

models. Apart from validating that our adaptation score inherited appropriate 548

characteristics, we showed that the models underlying the adaptation score are 549

biologically meaningful by learning well-known HLA-restricted polymorphisms. Using 550

our approach and the data, we investigated the relationship between HLA adaptation 551

and coreceptor usage of HIV-1, which had been unexplored up to now. We observed 552

that X4-capable viruses are more adapted compared to R5-capable viruses (Wilcoxon 553

rank-sum test, p-value =1.34e-2). Moreover, even among all R5-capable viruses, higher 554

adaptation is associated with lower FPR, indicating that more adapted R5 variants 555

might be closer to the coreceptor switch compared to non-adapted variants (Wilcoxon 556

signed-rank test, p-value = 2.21e-2). Thus, HLA adaptation might be another factor 557

that should be considered prior to the administration of CCR5 coreceptor antagonists. 558

It might also be useful in predicting how imminent the coreceptor switch is. 559

In general, the estimated adaptation score allows to measure and understand 560

HIV-1’s adaptation to the immune system. The adaptation score can be used to guide 561

the design of suitable immunogens as vaccine targets by selecting sites that are more 562

likely to be non-adapted to the immune system. Since the approach itself is not HIV-1 563

specific, the presented method can be also applied to study any virus-host adaptation. 564

We encourage the usage of Bayesian GLMMs for modeling virus-host adaptation due to 565

their ability to adjust for phylogenetic dependencies in the data and to handle highly 566

overparameterized settings within the model. In light of current and potential future 567

viral threats to mankind, such as SARS-CoV-2 or Ebola or MERS-CoV, this flexible, 568

data non-intensive method can be useful to reveal and analyze virus-host dynamics of 569

new viruses where little data is available. 570

Future studies of the study cohort are required to further evaluate how the 571

adaptation score is coherent with CTL escape experiments. While the study cohort was 572

appropriate to learn HLA adaptation, it only allows to study the coreceptor switch and 573

the role of HLA adaptation on it from a retrospective angle. Moreover, the number of 574

CXCR4-using variants with intermediate to high CD4+ T cell count was very low. 575

Consequently, a study cohort with longitudinal data on coreceptor usage and 576

intermediate to high CD4+ T cell count would give additional insights. This would not 577

only allow to investigate if HLA II adaptation occurs prior to the coreceptor switch, but 578

also if the degree of adaptation is associated with the time until the coreceptor switch 579
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occurs. 580

Note that the presented adaptation score here is a simple approach that can be 581

easily optimized and extended in different ways. Given the available data, we restricted 582

the analysis to subtype C infected patients and the p24 protein. However, our approach 583

can also be applied to other subtypes and/or combined over different viral proteins. 584

Further, we used the viral consensus sequences instead of the NGS sequences, since we 585

aimed at predicting the adaptation per sequence. Still, the within-subject relatedness of 586

different reads per virus could be easily incorporated into the Bayesian models. A larger 587

data set might improve the current adaptation score by better representing the 588

population with respect to the HLA repertoire and potential frequent variant sites, 589

resulting in more informative per-site models. 590

Furthermore, it is possible to make the proposed models more complex by 591

incorporating more dependency structures such as HLA linkage, or by relaxing the 592

assumption of independence among all sites to capture compensatory mutations. 593

Another assumption is that each frequent variant site has the same probability to be 594

under HLA pressure. Prior knowledge about common HLA epitopes can be added to 595

the model by weighting the per-site likelihood odds ratios accordingly. However, if a site 596

is more likely to be under HLA pressure, given by the underlying data, by construction 597

of the adaptation score, the likelihood odds ratio should contribute with a higher factor 598

to the overall adaptation score. 599

Decomposing the adaptation score based on the potential adaptation of each 600

frequent variant site is very advantageous with respect to model explainability and to 601

settings, where little prior information exists. However, it requires the computation of 602

two models per frequent variant sites, leading to a high number of models. Currently, 603

the per-site models are not optimized with regard to parameter and predictor selection. 604

To avoid overfitting and p-value based selection, we forced each model to capture our 605

prior beliefs that the model should be unbiased with regard to sex, age, ethnicity and 606

not be hampered by phylogenetic relatedness. While we ensured that the models are all 607

converging according to the Rubin-Gelman criterion, we do not perform visual checks of 608

the Bayesian GLMMs, such as prior and posterior predictive checks. Though this is a 609

standard procedure for Bayesian GLMMs, it was not feasible in our case due to the high 610

number of models. In our case, this was also not mandatory. Setting the horseshoe prior 611

for the beta coefficients was based on our apriori knowledge that only few HLA alleles 612

and clinical variables should have influence on a site. Setting potential non-optimal 613

parameters might lead to non-informative per-site models. While we might lose some 614

potential information for these sites, the quality of the overall adaptation score remains 615

guaranteed by calibrating the per-site models with a baseline model. For computational 616

reasons, it might be also beneficial to reduce the computation of the adaptation score 617

based on only the informative per-site models. 618
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B. Glossaries

List of abbreviations

AI artificial intelligence
AIC Akaike information criterion
AIDS acquired immunodeficiency syndrome
APC antigen presenting cell
ATI analytical treatment interruption
AUC area under the receiver operating characteristic

curve

BIC Bayesian information criterion
bNAb broadly neutralizing antibody

CCR5 C-C chemokine receptor type 5
CD4 cluster of differentiation 4
CTL cytotoxic T cells
CXCR4 C-X-C chemokine receptor type 4

DNA deoxyribonucleic acid
DP differential privacy

Env glycoprotein gp160

Fc crystallizable fragment
FDR false discovery rate
FHE fully homomorphic encryption
FL federated learning
FN false negatives
FP false positives
FPR false positive rate

GBM gradient boosting machine

HIV-1 human immunodeficiency virus type 1
HLA human leukocyte antigen

IC50 half maximum inhibitory concentration
Ig immunoglobulin

MHC major histocompatibility complex



NGS next generation sequencing

PNGS potential N-linked glycosylation sites
PR-AUC area under the precision-recall curve

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
scFv single-chain variable fragment
SMPC secure multi-party computation
SVM support vector machine

TP true positives
TPR true positive rate
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Glossary

HLA footprints

HLA-restricted viral escape mutations towards the T-cell mediated immune
response.

accuracy

Evaluation measure for predictions defined as

acc(ytrue, ypred) =
(TP + TN)

(TP + FP + TN + FN)
=

TP + TN

N
,

where ytrue refers to the ground truth labels, ypred refers to the predicted labels,
TP to the true positive predictions, TN to the true negative predictions, FP
to the false positive predictions, FN to the false negatives predictions, and N
stands for the total amount of samples.

adaptive immune system

Second line of defensive mechanism by the human immune system, which is
initiated if the innate immune system is not able to handle the pathogen. The
adaptative immune system produces a pathogen-specific immune response and
is able to maintain a memory of the pathogen.

antiretroviral

Effective against retroviruses.

area under the receiver operating characteristic curve

The area under the curve of TPR and FPR for varying decision thresholds.

false discovery rate

Measure of the expected proportion of discoveries that are false with q con-
trolling the number of false discoveries.

FDR = E(q) = E

(
FP

TP + FP

)

false positive rate

The false positive rate describes the ratio of false positives to the total number
of negative samples as calculated by the following formula:

FPR =
FP

FP + TN

fitness

In evolution theory, this term refers to surviving. In particular, it refers to the
reproducing capacity of an organism. The fitness of a genotype depends on
the environment and can confer an advantage or disadvantage in comparison
to other genotypes. A genotype conferring an advantage will likely increase in
frequency within the (quasispecies) population.
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heterodimer

a protein composed of two non-identical monomers (polypetide chains)

HLA supertype

Classification of HLA alleles into groups with shared peptide binding specifici-
ties.

innate immune system

First line of defensive mechanisms by the human immune system, which is
initiated fast but is non-specific to the pathogen.

linkage disequilibrium

Non-random association between different genetic loci.

mutation

A change in the genetic sequence compared to the reference genome.

polymorphism

The existence of two or more forms of a genotype.

precision

Precision describes the positive predictive value, i.e. the ratio of true positive
predicted samples over all positive predicted samples:

precision =
TP

TP + FP

pseudovirus

Artificially created virus, where a non-infective virion lacking the Env protein
is combined with a foreign viral envelope protein capable of a single round of
infection.

recall

Recall is another term for true positive rate.

recombination

Viral genetic recombination may occur in retroviruses during the reverse tran-
scriptation step if a cell is coinfected with two genetically distant variants.
The newly formed virion contains afterwards a mixture of the the genetic
information of the two distinct variants. This process is also termed viral sex.

selection pressure

Factors in the environment of a pathogen like the host immune system response
or drugs provide some characteristic traits of the pathogen an advantage or
disadvantage with respect to survival fitness - the ability to reproduce.
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tier

A classification system of HIV-1 isolates in neutralization assays based on their
phentotypical neutralization sensitivity, frequency, and conformational state of
the envelope trimer [189, 190]. Tier 1a and 1b refers to a very small fraction of
viruses which are very sensitive to antibodies - mostly in open or intermediate
trimer conformation. Tier 2 defines the most prevalent phenotype of HIV-
1 isolates with rather closed trimer conformation and modest neutralization.
Tier 3 refers to the least sensitive HIV-1 isolates having the highest frequency
of a closed Env conformation.

true positive rate

The true positive rate describes the ratio of true positives to the total number
of positive samples as calculated by the following formula

TPR =
TP

TP + FN

turnover rate

The yield of virions per replication time.

viremic

Existence of detectable levels of the virus in the blood.
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