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Abstract

A formal model for hierarchical obhjects 1is presented. The
hierarchical structure between objects is defined by a general
notion of use relationship. Used objects may be regarded as
formal parameters leading to the definition of parameter
applications and a new parameterization concept called
parameterization-by-use. We study hierarchies with all
applications and give a canonical closure construction to
generate such hierarchies, We show how these consepts can be
incorporated into a specification language for hierarchically

structured objects.
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1. Introduction

Parameterization is a well-established concept in many program-
ming languages (e.q. [Na 63], [Jw 76],[wLS 76], [LALS 77]). The
work on specifications revealed that also for specification

languages parameterization mechanisms are needed in order to
reuse specifications in different contexts and to adjust them to
particular situations (e.g. [BG 77], [BG 80], [Gr 79], [Tww 82],
[Fh 82], [Fh 81], [Ra 81], [Ga 81]).

Hierarchical structures arise in programming languages (e.q.

structured programming), specification languages (e.qg.
hierarchical specifications) and many other areas (e.g.

classifications of objects, divisions in a company, etc.).

In this paper we investigate the relationship between
parameterization and hierarchical structures in a general
setting. We give a general notion of hierarchical objects and
propose a parameterization concept which we call para-
meterization-by-use. In this concept, the declaration of formal
parameters can be disposed of. Instead, every object may bhe
regarded as a formal parameter, identified only when it 1is
associated with an actual parameter. In this way, instances or
applications of hierarchical objects are generated, which are
again hierarchical objects. We study the properties of
hierarchies that are closed under applications and introduce a

canonical closure construction.

In order to give an idea of how parameterization-by-use may be
incorporated in a language for the definition of hierarchically
structured objects, we define such a specification language and
give various example specifications demonstrating the properties

of the parameterization concept.

In Section 2, hierarchical structures are defined using the

notions of appropriate category and appropriate order.



Applications in hierarchies are introduced in Section 3. In
Section 4, we concentrate on a special type of application, the
direct applications, while the general case is considered in
Section 5. Section 6 introduces our canonical closure
construction, In Section 7, a general specification language is
proposed, several examples are given and it is shown how the use
of closed hierarchies leads to non-proliferic (c.f. [BG 81], [Sa

81]) semantics for specification languages.

2. Hierarchically structured objects

2.1 Appropriate categories

A hierarchically structured object is an object that is based on
a set of other hierarchical objects. Often, the hierarchical
relationship between the objects involved is a kind of
subpart-relationship, e.qg. terms in a formal language, nested
blocks or macros in a programming lanqguage, classifications of

objects, divisions in a company, etc.

Thus, without making any further assumptions about the kind of
hierarchical relationship, we will just assume that there is only
one type of it. If the objects are taken from some category, a
hierarchical relationship between two objects is given by a

certain type of unique morphism in that category.

Definition 2.1 [appropriate cateqory]

A category C 1is an appropriate catego;y with subcategory o

iff ¢ has all objects of C and there is at most one morphism
between any two objects in &, i.e.
Vc,c’e/é/ . |hom(c,c”)| <1



Usually, a é—morphism will be called an inclusion and will be

denoted by <—. The obvious embedding functor from ¢ into C is
intoe: ¢ » c.

Often we will ambiquously call the pair AC=(C,6) itself an

appropriate category.

2.2 Appropriate orders

Given the general notion of inclusion above, a hierarchical
object is an object x together with a set B of hierarchical
objects such that there is an inclusion from b to x for every b ¢
B. We say that x uses every b € B. Since the use-relationship
must not introduce any cycles, a set of hierarchical objects may
be represented by an acyclic graph where the use-relationship
corresponds to a path in that graph. Furthermore, if we assume
that a set M of hierarchical objects has exactly one element that
uses no other objects and all other objects use a non-empty but
finite set of other objects, the representing acyclic graph for M

defines an appropriate order:

Definition 2.2 [appropriate order]

An appropriate order A0 = (0,<,|) is a well founded

irreflexive partial order (0,<) with minimum l such that

every element has only finitely many predecessors.
Notation: < denotes the reflexive closure of <,

An appropriate order A0 defines an acyclic graph with the desired
properties. The order category induced by A0 will also be denoted
by AO. It has objects 0 and all order relations as morphisms,
i.e. an arrow a * b 1ff a<b, Next we will introduce structure

preserving maps between appropriate orders.



Definition 2.3 [appropriate order morphism]

An appropriate order morphism f:A0+A0” is a functor between

the corresponding order categories such that f(l) = lﬁ

Fact 2.1
Appropriate order morphisms are determined uniquely by the

object part of their defining functors.

Proof: Because there is at most one morphism (i.e. order

relation) between any two objects in an order category.

2.3 Hierarchies

A hierarchy defines a set of objects that can be constructed step
by step: starting with an object that uses no other objects, all
other objects can be added using at least one but only a finite
number of already existing objects. Thus given the definitions
above, a hierarchy of objects in an appropriate cétegory (C, &)
is a set of objects together with an appropriate order between

them where the relationship A uses B corresponds to an inclusion
R &~ A.

Definition 2.4 [hierarchy, use-relationship]

Given an appropriate order A0 and an appropriate category
AC=(C,6), a hierarchy

H: A0 » AC
is a functor H: A0 » . For ne0 we say that H(n) uses H(m)

for every me0 with m<n.

Notation: We will denote a hierarchy by H: AO =» ¢ assuming that
the appropriate category is given by (c,t).

For a hierarchy H: AO - ¢ we will talk about the hierarchical

object H(n) for an neO referring to the fact that it uses



all objects H(m) with m<n.

Some obvious facts about hierarchies are:

Fact 2.2
A hierarchy H: A0 » ¢ is determined by the object part of the
functor H.

Proof: Follows from the fact that there is at most one morphism

between any two objects in &.

Fact 2.3
For a hierarchy H: AO » ¢

intOCOH: AO » C

1s a commutative diagram in C.

Proof: Because H: AO =+ ¢ is a functor and there is at most one

morphism between any two objects in the subcategory .



3. Parameters and applications in hierarchies

3.1. Motivation

In programming languages such as ALGOL 60 [Na 63] and PASCAIL |[JW
76] as well as in specification languages such as Clear [BG 80 ]
and CIP-L [Ba 81] the parameterization concepts involve two basic
steps:
® Declaring formal parameters when defining a parameterized
object.
® Giving a correspondence between formal and actual

parameters when instantiating a parameterized object.

In general, the following points must be observed and may be

regarded as drawbacks in some applications:

l. When defining a parameterized object P one has to give the
complete set of P°s formal parameters. If later on one
realizes that some other parts of P could be regarded as a
formal parameters and one wants to substitute them by other
objects it turns out to be impossible without rewriting P and

extending its parameter declaration.

2. To instantiate a parameterized object P with formal parameter
set F an actual parameter for each xeF must be given. Even if
one actually wants a partial instantiation of P where some
formal parameters F'c F are kept unchanged one still has to

give a dummy actual parameter for every xeF~.

3. The distinction between non-parameterized, parameterized and
parameter objects sometimes appears to be artificial, e.q.
regarding a parameterized object as a non-parameterized object

or vice versa may not be possible,

These three observations apply especially to specification
languages. Given a specification, say, of ARRAY with parameters



INDEX and FLFMENT, a partial instantiation of ARRAY with actual
parameter INTEGFR for INDEX but leaving FLEMENT unchanged is
usually not supported by the parameterization concept. The
identification of loose specifications and parameter
specifications in [BG 80] lead to a subtle error as pointed out
in [Sa 81]: an actual parameter still had to contain its formal
parameter. But the solution suggested in [Sa 81] introduces a
distinction between the two types of specifications such that a
parameter (meta theory) differs from an ordinary specification
(theory) only in the keyword “meta”.

In order to overcome these difficulties we propose a new
parameterization concept for hierachical structures which is

called parameterization-by-use. Given the notion of hierarchy and

use relationship introduced above it is based on the following

principles:

® When defining hierarchical objects no distinction
whatsoever is made between parameters or used obhjects.

® Fvery object may function as a non-parameterized object, as
a parameterized one or as'a parameter; consequently no
such distinction is made when defining an object.

® Instead of declaring parameters when defining an object X
parameters are identified when some other object uses an
instantiation of X.

® Every object used by some object X may be regarded as a
formal parameter and may be actualized by some other
object.

® Instantiation must be compatible with the hierarchical

structure of the objects involved.

To make these ideas more precise we need some preparatory

definitions.



3.2 Parameter sets

Definition 3.1 [base, parameter set]

Let AO=(O,<,l) be an appropriate order, neO, M c O.
(1) The base of n in AO is given by
base(n,A0) := {n”|n”"<n}
i.e. the set of all elements in AO with a path to n.
(2) M is a parameter set for n iff
- M ¢ base(n,A0)-{n}

- ¥m, m"eM . ¥m“ed . m<m <m"=> m~ eM

(3) M is a direct parameter set for n iff

- M is a parameter set for n and
- ¥m eM . ¥ meO , m<m™<n => m eM
(4) The set of elements between n and a parameter set M for
n is given by
between(n,M,A0) := {o0ed-M | } meM . m < o <n}.
(5) The base of n w.r.t. parameters M is given by
base(n,M,A0) := base(n,A0)-(M u {n} u between(n,M,A0))

Note that a parameter set may be empty. Figure 3.1 gives an

illustration for base and parameter sets.

Fact 3.0
Let AO =(O,<,l) be an appropriate order, neO, M a parameter
set for n. Then:
- M is a direct parameter set for n iff between(n,M,AQ0) = ¢.
- M u between(n,M,A0) is a direct parameter set for n.
- The four sets
- {n}
between(n,M,A0)
- M
- base(n,M,A0)
are pairwise disjoint and their union is
- base(n,A0)

Proof: Immediately from Definition 3.1.



jx ______ between(n,M,A0)

N parameter set M for n
.

-} — — - —base(n,M,A0)

/- — - — — base(n,A0)

Figure 3.1: base and parameter set for a node n (c.f. Def, 3.1)




Fact 3.1
Let AO=(O,<Ll) be an appropriate order, neO, M a parameter
set for n, H: A0 » C a hierarchy.
Then:
- base(n,A0) and base(n,M,A0) are appropriate orders
where the order relationship is inherited from AO.

- HIbase(n,AO) and H|base(n,M,A0)' the restrictions of H

to base(n,A0) resp. base(n,M,A0), are again

hierarchies.

Proof: Immediately from Def. 3.1.

3.3 Applications

Given a hierarchy H: A0 =+ ¢ and a node neO together with a

parameter set M, the hierarchical object H(n) can he viewed as a
parameterized object with parameters {H(m)lmeM}. An instantiation
or application may be generated by providing an object A, for

every meM and a means of getting from H(m) to Ay, i.e. a morphism
£ :A(m) > A . The object A is again a hierarchical object
subject to the condition that it is built upon the same objects
as H(m). First we concentrate on the case of direct parameter
sets: the general case of parameter sets is studied in Sec. 5.

For direct parameters the conditions on the morphisms fm are

captured by the following fact:

Fact 3.2
Let H: 20 » & be a hierarchy, AO=(O,<,l), neO0O and M a
direct parameter set for n. Let (f,h) be a pair with:
(i) f: base(n,$,A0) + AO
is an appropriate order morphism with f(x)=x
for all x ¢ M .

(ii) h: intOCOHIbase(n,q;,AO) *> lntoCOHOf

is a natural transformation with hx=1dH(x)

10



for all x ¢ M.
Then for all x,ye0 with x<y<n the diagram

hy

H(y) ---+ H(£f(y))

hX
H(x) ---» H(f(x))

commutes in C.

Proof: x<y<n implies x,y ¢ base(n,¢,A0), and the commutativity of

the diagram represents the natural transformation property
of h.

Since £ and h of the previous fact are determined by the two maps
f°: M >+ 0
h“s M » /C/
where f£7(x)=f(x) and h7(x)=hy it suffices to supply £~ and h~
(c.f. Figure 3.2).

pDefinition 3.2 [direct application term]

Let H,n,M as before.

T = n{(m,hm,f(m)) |m eM} is a direct application term of

H iff £ and h define an appropriate order morphism and a
natural transformation fulfilling the conditions of Fact
3.2. T is trivial iff M=¢.

The result of a direct application term T = n{(m,hm,f(m)) ImsM}
in H is constructed from the hierarchical object H(n) by removing
the objects H(m) for each formal parameter meM and by
substituting the objects H(f(m)). Similar to e.g. [Fh 82], [FKTWW
80o], [BG 80], [Eh 81], [Ga 81] and [Li 82] where a related
process is defined using pushouts we define the result of a



Figure 3.2: f° and h” determining f and h of Fact 3.2 for the

direct parameter set M = {ml,m?,mg} of n

12



direct application using colimits.

Definition 3.3 [application diagram, application object]

Let H: 20 » C be a hierarchy.

(1) For a direct application term T=n{(m,hm,f(m))|msM} in H

diagram(T) is called a direct application diagram of H.

It is a diagram in C with:
nodes: {nn} u {mnl meM} wu U base(f(m),A0Q)
mebase(n,¢,A0)

where the x_  are new nodes not in O for x € {n} u
M. Xn is labelled by H(x), xe0 is labelled by H(x).
edges: - all edges from A0, labelled by H.

- edges between x and Y, labelled by H((x,y)) iff
there is an edge between x and y in AO.

- edges between x, and Y, labelled by H((x,y)) iff
there is an edge between x and y in A0.

- edges from m, to f(m) labelled by hm for every
meM.,

(2) The set base(T) is given by U base(f(m),A0)

(3)

mebase(n,¢,A0)
If diagram(T) has a colimit ¢ in C such that the colimit
injections from base(T) are inclusions - i.,e. morphisms

in & - then ¢ is a direct application object (or just

application object) for T.

In Figure 3.3 an illustration 1is given for an application

diagram, its base and its application object. Figure 3.4 shows a

further example.

Fact 3.3
Any two application objects ¢ and ¢~ for a direct application

term T are isomorphic in C. Moreover, an application object

may be determined uniquely by giving the colimit injection

from H(n) to c.

13



—base(T)

Figure 3.3: application diagram for T = n{(mi,hmi,f(mi))Iis{l,2,3}}

with application object ¢ (c.f. Def. 3.3)

14



(a)

(b)

——base(T)

Figure 3.4: (a) T = n{(m,h ,n)} is a direct application term
for f(m) = n and hp: H(m) » H(n)
(b) The application diagram for T with application
object ¢ (c.f. Def. 3.3)

15



Proof: Colimits are isomorphic (e.g.[McI, 71], [HS 73]) and there

is at most one inclusion from any object into c.

Thus we will talk about the application object of T, denoted by
application-object(T). Whenever it is necessary it may be

identified by giving the injection from H(n). It can be viewed as.
a hierarchical object that uses all objects H(x) with xebase(T).

Fact 3.4
For every trivial direct application term T = n{ } in a
hierarchy H: A0 -+ ¢ we have
- H(n) = application-object(T)
- base(n,¢,A0) = base(T).

Proof: Since M=¢, base(n,M,A0) = base(T) and diagram(T) results

from into, © Hlbase(n,AO) by replacing node name n by n..

Fact 3.5
Let T = n{(m,hy,£(m) | meM} be a direct application term in
H, meM minimal in M, f(mg,) = my and hmo = idH(mor Then
T°= n{(m,h,£(m)) | m e M={mo} }
is a direct application term in H with
- application-object(T) = application-object(T")
- base(T) = base(T7).

Proof: diagram(T~) results from diagram(T) by “merging” the two
nodes m, and m,_, which is justified by the fact that in
diagram(T) both are labelled by H(m,) and there is an

identity morphism between them.

Definition 3.4 [reduced application term]

A direct application term T is reduced iff there is no
minimal m, as in Fact 3.5.

16



Successive applications of Fact 3.5 yield a function reduce

taking direct application terms to reduced direct application

terms.
Fact 3.6
Let T = n{(m,hm,f(m)) | meM} be a direct application term.
Then
reduce(T) := n{(m,hy,f(m)) | meM”}
with

M~ = M-{meM | £(m) = m, hy =idy s (¥m7eM.
m <m => (£f(m7)=m~ and hm’=idH(m’)))}
is a reduced direct application term with
- application-object(T) = application-object (reduce(T))
- base(T) = base(reduce(T)).

Proof: Follows from Fact 3.5. by an easy induction.

Similarly, a direct application term T may be extended by viewing
all nodes used by n (with the exception of the minimal element)
as formal parameters without affecting the denoted application
object.

Fact 3.7
Let T be as in Fact 3.6.
extend(T) := n{(m,hp,£(m)) | meM} u {(m, idypyom) [ m e
base(n,M,AO)—{l}}
is a direct application term with
- application-object(T) = application-object(extend(T))
- base(T) = base(extend(T)).

Proof: Analogously to Facts 3.5 and 3.6.

17



4. Hierarchies with direct applications

4.1 Closed hierarchies

Since we consider “application-object™ to be an operation on
the objects in a hierarchy, we are interested in hierarchies
being closed under this operation. First, we consider the case of

direct applications.

pDefinition 4.1 [closed under direct applications]
A hierarchy H:AO -+ ¢ is closed under direct applications iff
for every direct application term T in H there exists a node
ne0 with:
- H(n) = application-object(T)
- base(n,¢,A0) = base(T)

A necessary condition for a hierarchy to be closed under direct

applications is:

Definition 4.2 [direct application complete]
A hierarchy H:AO » ¢ is direct application complete iff
for every direct application term T application-object(T)

exists.

It should be noted that requiring both C and ¢ to be finitely co-
complete is not a sufficient condition for direct application

completeness.

Fact 4.1
There is an appropriate category (C,é) with C and & being
finitely co-complete, and a hierarchy H: AO - ¢ such that H

is not direct application complete,

Proof: Let C = SFET be the category of sets, ¢ = SFT with set-

theoretic inclusions as morphisms. AO is given by:

18



H(]) = ¢, H(E) = H(A) = {a}, H(F) = {b}, H(P) = {a,b}. Then
a colimit object of diagram(T) with

T = P{(F,(b+a),A)}
is {aE, aA}. However, there is no colimit object in SET
such that the colimit injections from H(F) and H(A) are

set-theoretic inclusions.

Sufficient conditions for application completeness will he given

in Section 6.

4.2 Evaluation of direct application terms

Definition 4.1 requires the existence of a node labelled with the
application object of a direct application term. Exploiting this
fact one can get a function taking direct application terms to

nodes in a hierarchy.

Fact 4.2
Let H: A0 » C be a hierarchy that is closed under direct

applications. Then an evaluation function

evaly : {T | T is direct appl. term in H} *» 0O
exists such that for every direct application term T

- H(evalH(T)) = application-object(T)

- base(evaly(T),¢,A0) = base(T)

Proof: Immediately from Definition 4.1.

On the other hand, an evaluation function exists only for

hierarchies closed under direct applications.

19



Fact 4.3
Let H be a hierarchy. If there exists an evaluation function

evaly, then H is closed under direct applications.
Proof: Immediately from Def. 4.1 and Fact 4.2.

For a hierarchy H there might be several functions evaly
fulfilling the requirements of Fact 4.2. W.r.t. a specific
evaluation function the composition of direct applications may

be investigated.

4,3 Composition of direct applications

Two direct application terms may be composed if the result of the

first one is the source of the second term.

Fact 4.4
Let H: A0 + C be a hierarchy with evaluation function evaly.

20 = (0,¢,]), ny/m, € O and M, resp. M, direct parameter sets
for ny resp. n,. For i=1,2 let
- fi: base(ni,¢,A0) > AO
be an appropriate order morphism with VxéMi . fi(x) = X
- hi: intoCOHIbase(ni,¢,AO) > intoCOHOfi
be a natural transformation with: Vx&Mi e hyjy = idH(x)
- T, be the direct application term for n,, £, and hi'

If evalH(Tl) = n, then the following holds:

(1) M = M1 u (M2 n base(nl,¢,AO))

is a direct parameter set for ny
(2) £ = f,0f, is an appropriate order morphism

f: base(n1,¢,A0) > AO
with: ¥ x ¢ M . f(x)=x

20



(3)

(4)

Proof:
(1)

(2)

(3)

(4)

t'('ﬂ

h = héohl is a natural transformation
h: intoCOHIbase(n1,¢,AO) > intoCOHOf
with: ¥ x § M . h = 1dy (4)
Let T be the direct application term for Ny, f and h.
Then:
- application-object(T) = H(evalH(Tz))
- base(T) = base(evalH(T2),¢,AO)

Obviously, M ¢ base(nl,¢,AO). It remains to be shown that
for meM, m”e0 m<m’<nl implies m7eM,
- If me My then m’leSEM because Mlis a direct parameter

set for n,.

- If mé Ml' we have meM2 n base(nl,¢,AO).

- If now m’<n2 then m~e M, because M, is a direct para-
meter set for Ny, and together with m7e base(n1,¢,AO)
this implies m7eM.

- If on the other hand m~ 4 ny, we have m’d base(Tl),
since evalH(Tl) = n, and therefore hase(Tl) = base
(n2,¢,AO). But m’d base(Tl) and m’<n1 imply m™ e Ml

c M.
holds because the composition of morphisms is a morphism.

holds because the composition of natural transformations

is again a natural transformation.
We will use the following lemmas about diagrams:

Lemma 1: Let D” be a subdiagram of D such that for every

node n in D there exists a D-path to some node n” in

D”. If for a cocone C = (c,{cnln € D}) of D, CID’=
(C'{Cn| n edD’}) is a colimit of N°, then C is a colimit
of D.

Proof: (c.f. the illustration in Figure 4.1). Let C~ =

21



c cocone C~

colimit C

//dlagram D

—diagram D

Figure 4.1: 1Illustration for the proof of Lemma 1 of Fact 4.4
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c colimit C

-—diagram D

Figure 4.2: 1Illustration for the proof of Lemma 2 of Fact 4.4

= 4
/

D(el)/ D(ei) (ey) ——diagram D~

ml e o0 i o0 mk

m -

e’

g
et et . s o S

Figure 4.3: 1Illustration for Lemma 3 of Fact 4.4
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diagram D

[

diagram D"

o]
N
Cx
m~ *—‘“\\
A
rd ’
ﬂ —— diagram D~
AN
N
< m p
\\ ,"

Figure 4.4: 1Illustration for the proof of Lemma 4 of Fact 4.4
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Non2

Figure 4.5: Diagram Dy in the proof of Fact 4.4(4)
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Non2

mjnz -------------- * fz(mj)

Figure 4.6: Diagram D3 in the proof of Fact 4.4(4)
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Nipl — — = = = = — = — — — —
s —
e -
- / -
_ h
- 1mr
mrnl ————————————— > fl(mr)
N A
[N N ] LN ] /
hlms /
Mgn1 ——=> £1(mg) /
A M
/
/
/
/
idy (br)

b3}

/?
— TTPAN
e o 0 / 1
/
/
/
/
h2m1
minz _____________ > f2(m
A
L h2mj

Figure 4.7: Diagram D, in the proof of Fact 4.4(4)

27




® f2(f1(mr))

hlms h2f1(ms)
msnl ------------- oo fl(ms)nz ------- *> f2(f1(ms))
L idH(br) y] hopr J
brnl ----------------- » brn2 ------------------------ i fz(br)

Figure 4.8: Diagrams Dg and Dg (eliminate Nypa) in the proof of
Fact 4.4(4)
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Ninl

h2f1(mr)°hlmr

R e » £ (£q(m,))
A

U
------------------------------------ --—=+ £, (br)

Fiqgure 4.9: Diagram D, in the proof of Fact 4.4(4)
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Nnl

h2¢1 (me)°Pime

? A

v

Figure 4.10: Diagram Dg in the proof of Fact 4.4(4)
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{c’,{c’nlneD}) be a cocone of D. Obviously, C’ID =
(c”, {c’nl neD”}) is a cocone of D°. Thus, there
exists a unique colimit-to-cocone morphism h: c=*c”
with

(1) ¥ neD”. hoc, = ¢
For neD-D" let p be a path from n to n"eD” with a path

morphism Ppe

(2) ¢"p- © Py = ¢ [c” is cocone of D]
(3) c,- © p, = C [C is cocone of D]
(4) hoco-op, =c  [(1) and (2)]
(5) hoc = c [(3) and (4)]

Thus, (1) and (5) imply that h0cn = c’n for every nebD,

Since h is unique, ¢ is a colimit of D.

Lemma 2: If diagram D results from D™ by adding a new
node n with exactly one outgoing edge e from n to m’
labelled with h, and incoming edges ejs...s€p, k21,
from my to n labelled by hi such that for all i €
{1,...,k} there is a path in D™ from m; to m labelled
with hOhi, then the colimit of D with colimit
injections c, is a colimit of D as well, where the
colimit injection ¢, for the new node n is given by
cmOh.

Proof: (c.f. the illustration in Figure 4.2). We show
that the colimit of D” together with ¢, is a cocone of
D; the rest follows from Lemma l. To show the cocone
property, consider paths from a node x into the
colimit of D°. If x=n, every path other than Cn must
go through m, and thus the path morphism must be cnpoh
= Cp» If a path goes through n, it must go through

some m., thus we may assume x=m,, The path mor phism
must be cmOhOhi or cnOhi, but these are identical
since ¢ oh = ¢ . Finally, if a path does not go
through n, its morphism is given by the D"-colimit
injection Cye
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Lemma 3: Let n be a node in a diagram D with no outgoing
edges and incoming edges €1reeer@y, If D(nf together
with injections D(ei) is a colimit of the subdiagram
of D determined by all nodes m such that there is a
path from m to n, then the colimit of D is also a
colimit of D” resulting from D by eliminating n and
all incoming edges, (c.f. the illustration in Figure
4.3).

Proof: Immediately.

Lemma_4: If for two nodes x and y in a diagram D with
D(x) = D(y) the <colimit injections c, and c, are
identical, then the colimit of D is also acolimit of
D” resulting from D by eliminating y and replacing all
incoming (resp. outgoing) edges for y by incoming
(resp. outgoing) edges for x.

Proof: (c.f. the illustration in Figure 4.4). D may be
transformed into a diagram D" by adding two edges from
X to y and from y to x labelled by idp(yx) Without
affecting the colimit. Then merging x and y in the
above sence results in D and obviously does not

change the colimit either.

To prove (4), we show that application-object(T,) =
application-object(T) by colimit preserving trans-
formations of D, = diagram(Tz) into D3,...,D8 and finally
into diagram(T)., The colimit injections for all x €
base(Tz) will be inclusions for every D;. The diagrams
D; are illustrated in Figures 4.5 - 4.10, starting with
D, in Figure 4.5.

1. D3 s = diagram(extend(Tz)) (c.f. Fact 3.7)
For an illustration of Dy see Figure 4.6.

2. D7, results from D3 by taking the disjoint union with
diagram(extend(Tl)L (Whenever the nodes are unique,
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we will omit the index T, resp.'TZJ D4 results from
D’4 by additional edges from all nodes x of
diagram(extend(Tl)) into - labelled by the colimit
injection from H(x) = D4(x) into H(nz) = D4(n2n2L
Since the colimit of Dy is easily shown to be a cocone
of Dy by taking as additional cocone injections the
composition of the injections into H(n,) and the
colimit injection from H(nz) into the colimit of Dy,
Lemma 1 applies because Dy is a subdiagram of Dy and
there is a path from every node in D4—D3 into Nypoe

(c.f. Figure 4.7)

3. The next step consists of merging actual parameter

nodes from Tl with formal parameter nodes from T2. L.et
B = base(Tl) = base(n2,¢,A0). Since D4(n2n2) is an
application object for T,, the colimit injection from
D4(th) into D4(n2n2) is an inclusion for every beB.
Fur thermore, since D4(hrl) = D4(bn2) and the morphism
from D4(bn2) into D4(n2n2) is an inclusion as well,
the colimit injections from D4(le) and D4(bn2) into
the colimit of D, must be identical for b # | . The
same argument applies to D4(lTl) and D4(lT2)' Dg
results from D, by successive applications of Lemma 4
thereby eliminating all hrl for beR,
Note: Since all node names in Dg are unique, we will
omit the indices T1 resp. T2 in the following.
(c.f. Figure 4.8)

Dg results from D5 by eliminating Nono and all
incoming edges. Lemma 3 justifies this step, since
DS(n2n2) is a colimit of the subdiagram of Dg

determined by all nodes x having a path to n this

2n2

subdiagram is identical to diagram(extend(Tl)) w.r.t.
the renaming of nodes given by x for xn2;
(c.f. Figure 4.8)
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5. Let b be a node maximal w.r.t. A0 such that bno is in
D¢ The edge from bn2 to f2(b) is the only outgoing
edge for bnz in Dg. There is an incoming edge from
node Xn1 if fl(x) = b, There is at least one incoming
edge from i resp. nodes xnz'for X € base(b,¢,A0). D‘7
results from D6 by eliminating bn2 according to TlLemma
2. Dy results from n‘7 by deleting the newly added
edges from nodes with index n2 to £,(b). For such
nodes X, the D‘7 edge label from Xno to fz(b) is
given by the composition of the inclusion H(x) into
H(b) and hgy and due to the natural transformation
property of h2, it is identical to the composition of
h2x and the inclusion H(fz(b)) = D‘7(f2(b)) into
H(fz(b)) = D’7(f2(b)). Thus, the colimits of D‘7 and
D, are identical.

(c.f. Figure 4.9)

6. Since either there is a maximal node bho in D, as
above or there is no node{with index n2 in D, Ng
results from D by successively applying Lemma 2 and
eliminating all nodes with index n2 according to step
5.

(c.f. Figure 4.10)

7. Dg is exactly diagram(extend(T)). The colimit
preserving transformations from D, to Dg imply that
base(Tz) = base(extend(T)) and application-objectcrz)
= application-object(extend(T). The rest follows from
Fact 3.7, completing the proof of Fact 4.4.

As a result of Fact 4.4 we can define the composition of direct

application terms.
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Definition 4.3 [composition of direct application terms]
Let H, Ty, T,, T as in Fact 4.4. T is called the
composition of T; and T, and is denoted by T,0T,.

Definition 4.4. [respecting direct application composition]

|

The evaluation function evaly of a hierarchy H respects
direct application composition iff for all T,T”, such that T
oT” is defined,

evaly(T™) = eval,(ToT")
holds.

Fact 4.5
If H is a hierarchy with evaluation function evaly respec-
ting direct application composition then direct application
composition is associative, 1i.e.
(T10T,)0T3 = T;0(T,0T;)
for all Ty such that T,°T, and T, © T, are defined.

Proof:

im’
(T1T2)T3 = nylimibser (e1(m))°h2g1(m)am)r £3(Ex(E (M) |

m € M(1'2)3]’
Ny {mithyeny e (m)°P2g1(m) %P1m)r £30F(£1(m))) |

m EM1(2,3)}
Since composition of morphisms and functions is associative,

T °(T 50T 3)

M(1,2)3 = My(2,3) £emains to be shown.

Mi(2,3) = Mp u ((My n (Mj u base(n,,¢,R0)) n base(n,,¢,A0))
Mj u (M2 n base(nl,¢,AO))

u (M3 n base(n2,¢,AO) n base(n1,¢,A0))
[since base(n;,4,20) - base(n,,$,A0) c M, ]
My u (M2 n base(nl,¢,Ao)) u (M3 n base(nl,¢,A0))

=Mi,2)3:
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5.Generalized applications

5.1. Indirect applications

In Definition 3.1 parameter sets and direct parameter sets were
introduced. As discussed in Sections 3.3 and 4 we have the
following situation in the case of direct parameter sets: every
node that is used by the node n is either a formal parameter and
is therefore actualized by a corresponding actual parameter, or
it is not affected by the application at all, i.e. it is used by
the application object as well. However, for an arbitrary
parameter set M a third case may arise, If n uses a node m which
is not in the parameter set but uses itself a parameter node m~
in M, m is between n and M in AO. Since no actual parameter is
associated to m and setting f(m) = m may be meaningless we
exclude the nodes between n and M from the domain of £ and h in

generalizing Fact 3.2:

Fact 5.1
Let H:AO » & be a hierarchy, neO, M a parameter set for n, M~
= between(n,M,A0). Let
f: base(n,M”,A0) +» AO
be an appropriate order morphism and
h: intoo © HIbase(n,M‘,AO) + intoc oHof
a natural transformation with £(x) = x and hx = idH(x) for
all x¢ M. Then for all x,y € O-M" with x<y<n the diagram

hy

H(y) ===> H(£(y))

hx
H(x) ===+ H(£(x))

commutes in C.

Proof: For x,y € O-M~ x<y<n implies x,y € base(n,M”,A0) and the
commutativity of the diagram represents the natural
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transformation property of h.

Since f and h of Fact 5.1 are determined by giving their values

for m € M it suffices to supply f£(M) and h(M), (c.f. Figure 5.1).

pefinition 5.1 [indirect application term]
Let H,n,M and f,h be as in Fact 5.1. Then
T = n{(m,hm, f(m))l meM}
is an indirect application term.

An example of an indirect application term is given in Figure
5-2—aa

In specification languages the situation of what we call an
indirect application term 1is usually not considered explicitly.
The parts of a parameterized specification corresponding to the
nodes above a parameter set are not viewed to he hierarchically
structured; instead they are combined into a single object as are
all formal resp. actual parameters. The semantics of the
application is the pushout of the resulting diagram (e.g. [RG
80], [EkTww 80], [Eh 82], [Eh 81]).

Here we choose a different approach. The structure between the
nodes above the parameter set should be preserved in the result
of the application. This can be achieved by providing an actual
parameter for every m e between(n,M,A0). Fact 5.2 shows how a

fitting actual parameter can be found for such a minimal m.

Fact 5.2
Let T be an application term as in Def. 5.1. Then for all
minimal m € between(n,M,A0)

T, = m{(m7,h__,£(m7)) | m“¢e M n base(m,A0)}

is a direct application term.

Proof: Because of the minimality of m, M = M n base(m,A0) is a

direct parameter set for m and the restrictions of h and £ to
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/nl
g
L
hml
ml —————————————————————————— * f(ml)
hm2 \
m2 —————————————————————————————— > f(mz)
/ b3 \
Mg "“'"'""'"""'“'\"""' ''''' > f(“‘3)
bl \ /\'
by b3 by

Figure 5.1: f and h for the non-direct parameter set
M = {ml,mz,m3} of n (c.f. Fact 5.1)



(a) T = n{(m;,hp;,£(m;)) [ie{1,2,3}}

(b) Th2 = np{(mj,hpi,E(m;)) |ie{1,2})
T3 = ny{(my,hp;,£(my)) [ie{1,3})
(¢)  Tina,n3y = nlmy,hpg £(mg))[iefl,2,3)

u {(nj,hyj,evaly (T ;) |ie{2,3})

(d) direct;(T) = n{(m;,hy;,f(m;))|ie{1,2,3}}
u {(n;,h7:,evaly (T, ;1)) |ie(1,2,3}})
where:
Tnl = nl{(mi,hmi,f(mi))|i€{l,2,3}}

u {(ni'hﬁi'evalH(Tni))|i€{2'3}}

Figure 5.2: Application terms for f and h as given in Figure
5.1, illustrating Def. 5.1 (a), Fact 5.2 (b), Fact
5.3 (¢), and Def. 5.4 (4d).
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M~ obviously fulfill the conditions of Fact 3.2.
Examples illustrating Fact 5.2 are given in Figure 5.2-b.

If h is closed under direct applications T~ may be evaluated to

a fitting actual parameter for m.

Fact 5.3
Let T,T, be as before and H be closed under direct
applications. Let M~ be a set of minimal elements in the set
between (n,M,A0). Then
TM;=n{(m,hm,f(m)) | meM} u {(m,m;ﬂvalH(Tm)) | meM~}
is an indirect application term where
hp H(m) - application—objectcrm)
is the colimit injection.

Proof: Since all elements in M~ are minimal, M u M™ is a

parameter set for n. Suppose M~

]

{m}. Extending f by sending
m to evalH(Tm) is an appropriate order morphism since {xe0 |
x<m} = base(m,¢,A0), f(base(m,¢,A0)) c base(Tm), and evalH is
an evaluation function for H. Furthermore since hp is a

colimit injection for diagram(Tm) and the application object
of Ty has inclusions as colimit injections for all m7e
base(T ), extending h by hy yields a natural transformation

fulfilling the conditions of Fact 5.1. The general case with
M~ containing more than one element follows by an easy

induction on |M7]|.
An example illustrating Fact 5.3 is given in Figure 5.2-c.

Fact 5.3 allows the definition of a function direct, taking

indirect application terms to direct application terms.

Definition 5.2 [direct;]

Let H,T, Ty be as in Fact 5.3. The function

direct;: {T | ™ is indirect appl. term of H} =
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{T | T is direct appl. term of H}
is defined by:
direct (T) :=
if T is direct application term
then T

dlrecti(TMz)

As an example the direct application term directi(T) for

an indirect application term T is given in Figure 5.2-d.

The semantics of any indirect application term T is the semantics
of directi(T). Thus, the hierarchical structure of the nodes
between n and M is mirrored by the corresponding actual
parameters in directi(T). On the other hand, this approach is
compatible with the simpler semantics when viewing the objects as

non-hierarchical:

Fact 5.4
Let H be a hierarchy closed under direct applications, T an
indirect application term. Let diagram(T) be the C-diagram
defined as in Def. 3.3. Then:
H(evaly(direct;(T))) = colim(diagram(T)).

Proof: For every indirect application term T as in Definition 5.1
let levels(T) be the depth of recursion in determining
directj(T)- We prove 5.4 by induction on k = levels(T).

k=0: Since between(n,M,A0) is empty and since H is an
evaluation function, we have directi(T) = T and

H(evaly(T)) = application-object(T) = colim(diagram(T)).

k>0: Suppose that the proposition is proved for every

indirect application term T with levels(T) = k.

k+l: Let T be an indirect application term with levels(T) =
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k+1, and let'TM»be as in Definition 5.2. Thus
H(evalH(dlrecti(T))) = H(evalH(directi(TM,)H

by the definition of directj. Furthermore
H(evalH(directi(TM,))) i colim(diaqram(TM,))

by the induction hypothesis. We consider D~ =

diagram(TM») and D = diagram(T). D™ results from D by

adding for every meM”

- nodes mg and evalH(Tm), and an edge between them,

labelled by H(m), H(eval (T )), h&, respectively,
where T and h; are as in Fact 5.3.

- edges from x, tom m. ton., and y to evalH(Tm)

’
for x e base(m,¢,:O),ny e base(evaly(T,),$,A0),
labelled by the respective inclusions.

D” may be transformed into D" by successively applying

Lemma 3 of Fact 4.4(4), thereby deleting the nodes

evaly(T ) for m e M~. D" may be transformed into D by

successively applying TLemma 2 of Fact 4.4(4), thereby
deleting the nodes m, for m e M". Thus,
colim(diagramCPM,) z colim(diagram(T)),

completing the inductive step.

As an example Figure 5.3 shows the application diagrams for an
indirect application term T and its corresponding direct

application term directi(T).

As 1n Section 4 we are interested in hierarchies where every
indirect application term can be evaluated to a node in that
hierarchy. The transformation of indirect to direct application

terms immediately implies:
Fact 5.5
If a hierarchy H is closed under direct applications then H

is closed under indiract applications as well.

Proof: Fact 5.3 and Definition 5.2.

42



—diagram(T)

Figure 5.3: Application diagrams with application object c for
the terms T and directi(T) as given in Figure 5.2
(c.f. Fact 5.4)
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5.2 Application terms and their evaluation

So far we have introduced direct and indirect application terms.
Besides calling every node neO an application term as well, we
will generalize the notion of application term in two

directions:

l. In an application term T = n{...} where n is a node in O, n
could be substituted by an application term denoting n. By
iterating this rule a chain of parameter actualization clauses
can be generated yielding application terms of the form T =
n“{... e {al

2. The observation made above for n applies to formal and actual
parameter nodes m and f(m) as well. Substituting application
terms denoting m resp. f(m) yields an application term of the

form n{...,(m{..-},h,m/{--.}),-..}.
In both cases the semantics of an application term is defined by
the underlying simpler terms and eventually by some direct

application term.

Definition 5.3 [application term]

Let H be a hierarchy closed under direct applications.

"Application term” of H and the function “direct” taking

application terms to direct application terms are defined
inductively by 1.-4. below. The extension of the evaluation
function evaly to all application terms is also denoted by
evaly, and is defined by

evalH(T) .= evalH(directh)

for every application term T.
l. Fvery node neO is an application term with

direct(n) := n.
(As before, evaly(n) = n).
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2. Every direct or indirect application term T 1is an
application term with
direct(T) := direct;(T).

3. If T, T” are application terms, neQ, T~ = n{t’l,.”,t’r} and
evalH(T) = n then
T" = T{t7 ,eeert™}
is an application term with
direct(T") := direct(T) o direct(evalH(T){t’l,”,t’r})
or equivalently direct(T") := direct(T) o direct(T”).

4, If T,Tl,T2 are application ternms,
T = n{tl’“"(ml'hml’mz)'”"tr}
and evalH(Ti) = m; for i=1,2, then
T" = n{tl,ooo,(Tl,hml’Tz)’.-n'tr}
is an application term with
direct(T") :=
direct(n{tl,.”,(evalH(Tl),hml,evalH(Tz)),”.,tr}).

Defining the semantics of arbitrary application terms by reducing
them to direct application terms allows a generalization of Fact
5.5:

Fact 5.6
If H is closed under direct applications it is closed under

all applications.
Proof: Fact 5.5 and Definition 5.3.
Thus it is sufficient to guarantee that a hierarchy is closed
under direct applications. Therefore, when constructing the

closure of a hierarchy only direct aplication terms must be

considered.
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6. Fxtension and closure of hierarchies

6.1 Canonical closure

Provided that all the necessary application objects exist, a
hierarchy H could be transformed into a hierarchy H~ that is
closed under direct and thus under all applications by enlarging
the underlying appropriate order by new nodes and labelling them
with the corresponding application objects. Enlarging a hierarchy
H by a new node n with label ¢ requires also a set of nodes

determining the base of n.

Definition 6.1 [extension of a hierarchy]
Let H: a0 + & be a hierarchy, nd40, B a finite nonempty
subset of 0, ceC such that for every mePRP there is an
inclusion H(m)% c. Then
enter(H,(n,B,c))
denotes the hierarchy H™: a0~ » & resulting from H by adding
n to AO such that

- ¥meO. m<"n iff 4 m“eB. m<m

-

- ¥meO. n {” m

and setting H (n) = c.

If M is a set of triples (n,B,c) such that enter(H,(n,B,c)) is
defined for all triples in M and all the nodes n in M are

pairwise distinct, we will use the notation enter(H,M) for

extending the hierarchy H by a set of new nodes.

Since we are interested in constructing hierarchies step by step
we will distinguish the nodes of a hierarchy entered implicitly
as application nodes from the other nodes: the latter ones are
called extension nodes. This allows the definition of a special

type of hierarchy called canonically closed hierarchy.

Definition 6.2 [canonically closed]
(1) A hierarchy H: ({L},¢,l) » ¢ is a canonically closed
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hierarchy with extension set E = {]}.
H is denoted by initial—hierarchy(J,c) for H(l) = C.

(2) Let H": A0" » C be a canonically closed hierarchy with
extension set E", H = enter (H",(new,B,c)).

Then H: A0 » C is a canonically closed hierarchy with

extension set E = E" u {new} where H is defined

inductively:

i=0: A, = ¢
HO = H
i>0: A, := {r|r = n{(m,hm,f(m)lmsM} is a reduced direct
application term in Hi—l
and neF

and i=1 => new € (f£(M) u {n})
and i>1 => {"T""|T €A, _;} n £(M) # ¢}
H; := enter (H; ,,{("T", base(T), application-object(T))
| Ten,})

H is denoted by closure (H7).

Fact 6.0

Fvery node in a canonically closed hierarchy is either an

extension node or a node of the form "n{...}" such that
- n 1is an extension node,
- n{...} is a reduced direct application term in H,
- H("n{...}") = application-object(n{...})

base("n{...}",¢4,A0) = base(n{...}).

Proof: Immediately from Def. 6.2.

We will show that a canonically closed hierarchy is indeed closed
under direct applications. Furthermore, its evaluation function
respects composition of direct application terms. Thus,
application term composition is associative according to Fact
4.5.
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Fact 6.1

Let H be a canonically closed hierarchy with extension set F.
Then evaly defined by:

evalH(T) := let Tl = reduce (T), T1 = n{...} in
if T, is trivial then n
else if neF then "T,"
else let n ="T," in

evaly ('I‘2 0 Tl)

is an evaluation function for direct application terms of H
respecting composition of direct application terms.

Proof: We first show that evaly is an evaluation function. Let
T = n{(m,h,,£(m)) | meM} be a direct application term of H.
The definition of evalH implies evalH(T) = evalH(reduce(T)L
Recause of Fact 3.6 we can therefore assume that T is
reduced. If T = n{} is trivial, evaly(n) = n and Fact 3.4
completes the proof. Thus, let T be reduced and non-trivial.
Two cases arise: (1) neE and (2) ndE where E 1is the
extension set of H.

(1) Suppose neE. We will show that "T"eO,. H("T") =
application-object(T) and base("T",¢,A0) = base(T). The
rest follows from evaly(T)="T".

Since T is non-trivial, n cannot be the minimum element

of AO. Therefore, there must be some canonically closed

subhierarchy H":A0" » ¢ in the construction of H with

n§0", B c O" for B=base(n,$,A0), and an inclusion from

H"(b) into c for every beB and c=H(n), such that H™ =

enter(H",(n,B,c)) is a subhierarchy of H.

(1.1) I£f £(M) ¢ 0", then T is a reduced direct
application term of H” and in the inductive step of
closing H” in Def. 6.2, T ¢ Aj. Thus,
enter(H”,("T",base(T), application-object(T))) is a
subhierarchy of H.
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(1.2) If f(M) ¢ 07, there must be some canonically
closed subhierarchy Hf of H, such that
- H™ is a subhierarchy of Hj
- £(M) ¢ 0}
- Hi = enter(HY,(new,R”,c”)) is a subhierarchy
of H
- Hyy the canonically closed hierarchy of Hi, is
a subhierarchy of H
- £(M) ¢ Ol'
Let Al,i (resp. Hl,i’ Ol,i) be the sets of direct
application terms (resp. hierarchies, sets of
nodes) generated in the process of closing Hl'
according to Def. 6.2. Since f(M) ¢ 0O}, f(M) c
07 and Oi c Ol,o c Ol,l C «ee C O1 there must be
a minimal i such that £(M) ¢ ol,i-l' T is a reduced
direct application term in Hl,i—l‘ We show that T,
€ Al,i' concluding that enter(H”,("T", base(T),
application-object(T))) is a subhierarchy of H. If
i=1, then new e f(M) since Ol,o = Oi u {new};
thus T € Ay ;. If 1>1, we have £(M) n {"7°"]| T~
EAl,i-l } £ ¢, since Ol,i—l = 01,i-2 u {"p~"
T e Ay j_1} and £(M) ¢ 0y ;_;, but £(M) 4 01 j-2
by the minimality of i, Thus, T ¢ A1,r

(2) Suppose n ¢ E. Because of Fact 6.0, n = "T"" for some

reduced direct application term of the form T~ = n”"{...}.
Since both T and T~ are direct application terms in H and
evalH(T’) = n, the preconditions of Fact 4.4 are ful-
filled and T" := T o T is a direct application term in H
with application-object(T") = application-object(T) and
base(T") = base(T). Since evaly(T) = evaly(T") we only
have to show that eval, yields the proper value for T".
But this follows from (1), since n” € E according to Fact
6.0, completing the proof that evalH is an evaluation

function.
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To show that evaly respects direct application composition we
observe that reduce (T o T7) = reduce (reduce(T) o
reduce(T”)) due to Facts 3.6 and 4.4. Since evalH(T) =
evalH(reduce(T)), it suffices to show evalH(T o T7) =
evalH(T‘) for reduced direct application terms T and T"., If T
is trivial, T o T” = T° and thus evalH(T oT7) = evalH(T’L
If T is non-trivial, let T = n{,..}, 77 = n"{...}. If n e E
then evalH(T) = "7" and evalH(T‘) = evalH(T oT”) since n~ =
"p", Otherwise, if n § F then n = "r," for some reduced
nontrivial direct application term Tz.’Thus evalH(T) =
evaly(T,0"T,"{...}) = ny with either py € F or ngy = "n,{...}"
with ng € F. If ny e E, the above argumentation for the case
that T is trivial applies; if ng = "n4{.n}", the
argumentation for the case that T is non-trivial and ne E is
applicable, thereby completing the proof of Fact 6.1.

Fact 6.2
A canonically closed hierarchy is closed under direct

applications.

Proof: Fact 4.3. and Fact 6.1.

6.2 Prefix hierarchies

In Fact 4.1 an example was given showing that not every hierarchy
H is application complete and thus a canonical closure for H may
not exist., Here we will investigate conditions under which a
hierarchy can be closed. Recalling the definition of application
object (PDef. 3.3) one condition is essential: the existence of
colimits for specific diagrams with certain colimit injections

being inclusions.
Fact 6.3.

Let H: B0 + C be a hierarchy, McO. Then restricting H to the
suborder A0~ with the nodeset being the union of base(m,AQ)
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for meM yields again a hierarchy, called subhierarchy of H

and M and denoted by HIM'
Proof: immediately from Def. 2.5 and 3.1.

pefinition 6.3 [subhierarchy-complete ]

Let H: A0 » C be a hierarchy. H is subhierarchy-complete iff
for all finite McO there is a colimit of H|y that is a

colimit of intoc o HlM as well.

If a hierarchy H is subhierarchy-complete, a direct application
diagram can be transformed into a pushout diagram due to the

following fact.

Fact 6.4
Let T = n{(m,hp., f (m)) | meM} be a direct application term

in H: A0 » & with H subhierarchy-complete.

formal(T) := H|pase(n,4,20)

actual(T) := H|¢(pase(n,é,A0))
Then:

(1) H(n) is a cocone object over into, © formal(T) and the
unique morphism from some colimit of intoC o formal(T)
to cocone H(n) is an inclusion.

(2) The colimit object of actual(T) is a cocone over intoC o
formal(T).

Proof:

(1) Since H is a hierarchy, H(n) is a cocone oject over
formal(T) and over into, o formal(T) as well. Since H is
subhierarchy-complete, there is a c¢ such that ¢ is a
colimit object of both formal(T) and intoC o formal(T).
Thus, the unique morphism ¢ + H(n) must be an inclusion.

(2) Let ¢ = colim(actual(T)). Then the cocone injections .
for intop © formal(T) are given by im = inclm o hm, where
m ¢ base(n,$¢,A0) and incl, is the inclusion f(m) < c.

Fact 6.5 shows how the colimit of a direct application diagram
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corresponds to a pushout in C.

Fact 6.5
Let T, H as before. Let F resp. A be the colimits of
formal(T) resp. actual(T). Then

is a pushout diagram in C with colimit-to-cocone morphisms hg
and hp iff c is a colimit object for the application diagram
of T.

Proof: Let D; = diagram(T). We show that the pushout diagram
results from D; by colimit preserving transformations (c.f.
Figure 6.1 where an illustration for these transformations is

given).

1. According to Fact 6.4. and Lemma 2 of Fact 4.4(4), D; may
be transformed into rg by adding a new node np labelled

with F, new edges from m, into ng for m € M and from np

n
into n, labelled by the respective inclusions. Since all
Dy edges are labelled by the composition of the inclusions
into Np resp. ng into n,, D, results from Di by deleting
all Dy edges into n.
2. Lemma 3 of Fact 4.4(4) allows to transform D, into D, by
adding a new node n, labelled with A and edges from x ¢
base(T) into np labelled by inclusions since actual(T) =

HIbase(T)'

3. Since for every node in D, other than n there is a path

n

52



n
A dH{A) — = = = = = = = = = = = ¢
A A
hp lcp
I
¥ ha |
nF:F —————————————————————————————— + nA:A
t /
l_, hmy
ml ---------------------------- + f(ml)

Figure 6.1: The application diagram of Figure 3.3 after adding
the nodes np, n,, the edge from np to na, and

colimit C according to the proof of Fact 6.5.
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to np or ng and for any path morphism Pp into ng and path
morphism Pa into n, we have hAC)pF = Ppr the colimit of
Doy is a cocone of Dy resulting from D, by adding a new
edge from Np to n, labelled with ha. According to Lemma 1
of Fact 4.4(4) the colimits of D, and Dy are identical.

4. Let Dy be the subdiagram of Dqy containing only the nodes
Npe Npe Np and the edges from np to n, and Np to n,. Let
(c,{cn, Cps CA}) be a colimit of Ny. For every node x €
D3-D4 there is a path in D3 from x to Ny and since all
such path morphisms from x to n, must be identical let c;
be the composition of that path morphism Pya with Cpr i.e.
c; = Cp © Pyac If there is a path from x to n, with
morphism py, it must go through Ng and so there must also
he a path from x to na going through Np. Thus, Pya and Bin
decompose into pyp = hp © pPyp and p,, = hp © p oy
respectively, where p .. is the unique path morphism from x
to ng. Since Cp © hA =c,©° hF we have c; = cp© hA © Pyp
= ¢, °hp op . Thus, (c,{c ,cp,Ca} u {c;|xeD3—D4}) is a
cocone of D3/ and due to Lemma 1 of Fact 4.4(4) D3 and Dy
have identical colimits. D, is exactly the given pushout

diagram, thereby completing the proof of Fact 6.5.

The proof of Fact 6.5 exhibits a condition an appropriate
category must fulfill so that the colimit object for T becomes an

application object for T.

PDefinition 6.4 [mixed pushouts]
An appropriate category (C, 6) has mixed pushouts iff for

every diagram of the form

a pushout diagram
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exists.

Fact 6.6
Let H: 20 » C be subhierarchy-complete. If (C, 6) has mixed
pushouts then H is direct application complete.

Proof: For a direct application term T consider the pushout
diagram of Fact 6.5. According to Fact 6.4, hF is an
inclusion. Since (C, 5) has mixed pushouts, there exists a c
such that c, is an inclusion as well. Sinced actual(T) =
Hlbase(T)' Cp yields an inclusion as colimit injection for
diagram(T) for every x € base(T) according to Fact 6.5. Thus,
c is an application object for T.

Subhierarchy-completeness of H is a necessary condition in Fact
6.6: the hierarchy given in Fact 4.1 does not fulfill this
condition although (SET,SET) has mixed pushouts. However,

consider the hierarchy H”: AO ~» SET with A0 as in Fact 4.1 and

H°(]) = ¢, H'(F) = {F.a}, H'(F) = {F.b}, H"(A) = {A.a}, H7(P) =
{E.a,F.b}. H” results from H by prefixing each element of a set
with the name of the node where the element is introduced. H™ is
subhierarchy-complete and thus direct application complete
according to Fact 6.6. This prefixing method can be generalized

to other categories as well.

Definition 6.5 [prefix function]
Let (C, 6) be an appropriate category, N the set of all

possible nodes in a hierarchy. A function
p: N x 2|C| x |c| + |c]

is a prefix function iff there is a function p'l

with the

same functionality such that for all finite hierarchies H: A0

+ & where each node label for a node n is of the form



p(n,{H(b)| bebase(n,A0)}, c)
the following holds:
(1) ¥ n e N-0. ¥ce|&|. c is a cocone object of H =>
- ¢ and p(n,H(0),c) are isomorphic in C

p(n,H(0),c) is a cocone object of H

p~1(n,H(0) p(n,H(0),c)) = c

(2) There is a colimit of H that is a colimit of intoco H as
well.

The first condition in the above definition guarantees that a
prefix function p does not change the information in a
hierarchy. Instead of labelling a node n with base nodes B by c,
n can always be labelled by ¢ = p(n,H(B),c) since p—l(n,H(B),c’)
yields the original label c. The second condition is crucial
since it is a basis for subhierarchy-completeness.

Definition 6.6 [prefix hierarchy]
H: a0 + ¢ is a prefix hierarchy with prefix p iff p is a
prefix function and every node n in O 1is labelled with

p(n,H(base(n,A0)),c) for some c.

Fact 6.7
Fvery prefix hierarchy is subhierarchy-complete.

Proof: Let M be a finite set, M ¢ O. Since AO is an appropriate
order, every node m ¢ M has only finitely many predecessors.
Thus, M = {m“|m” ¢ base(m,A0) for some m € M} is finite.
Since HIM’ is a finite hierarchy, according to Nefinition 6.5
a colimit of HIM’ exists that is a colimit of intoC o H as

well.

In Definitions 6.1 and 6.2 extension and closure of a hierarchy
were introduced. In the presence of a category with mixed
pushouts and a prefix function, Facts 6.6 and 6.7 suggest a
slight modification so that the canonical closure of a hierarchy

always exists.
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Definition 6.7

Let H be a prefix hierarchy in a category with mixed

pushouts.

(1)

(2)
(3)

Fact 6.8

initial-hierarchy _(]|,c) denotes:

initial-hierarchy(|,p(],¢,c)).
enterP(H,(n,B,c)) denotes enter(H,(n,B,p(n,H(B),c))).

closurep(H) denotes the canonical closure of H

analogously to Def. 6.2 but where every “enter” is

replaced by’enterp.

For every prefix hierarchy H in a category with mixed

pushouts closurep(H) exists and is canonically closed.

Proof:

Definitions 6.2 and 6.7, Facts 6.1 and 6.7.
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7. Parameterization-by-use in specification lanquages

In this section we will give an example what a language with
parameterization-by-use might look like., In 7.1 a general
hierarchy specification language is introduced in such a way that
only the details concerning the concepts of hierarchy and
parameterization are given, and a formal semantics for this
language is defined., In 7.2 an instance of this language 1is
presented by providing all parts left open in 7.1, yielding a
language for the specification of signature hierarchies, In 7.3
we show how canonically closed hierarchies lead to non-proliferic
semantics of specification langquages.

7.1 A general hierarchy specification language

The hierarchy specification language is suitable for the speci-
fication of hierarchies in an arbitrary appropriate category
(C,E) with mixed pushouts and a hierarchy prefix function p. We
will assume the existence of a semantic function

Sth: something + SOMETHING
where something is a syntactic category and SOMETHING is some
particular domain, and another function

build-object: 21l « sompraING » lc|
that builds hierarchically structured objects such that

¥beB., b build-object(B,s)

Since we assume an appropriate category with mixed pushouts and
a hierarchy prefix function p the semantics of the language will
use only prefix hierarchies H. Thus, Fact 6.8 guarantees that the
canonical closure closurep(H) exists. Therefore, we may use the
function evaly of Fact 6.1 extended by Definition 5.3 as

evaluation function for application terms in H.

A hierarchy specification consists of a list of specifications
all but the first one having a use clause denoting a list of

58



objects as base of the new object to be generated. The last part

of a hierarchy specification is either a node name or an

application term. For simplicity, we do not go into details about

the syntactical form of application terms, instead the

mathematical notation as introduced in the previous chapters will

be used.

l. Syntactic categories

hier-spec : hierarchy-specifications

decl : declarations

use-list : lists-of-application-terms

application-term : application-terms

n : node-names

sth : something (suitable as argqument to the

semantic function Sth)

2. Syntax

hier-spec ::= object n = sth endobject decl

decl ::= object n = use use-list sth endobject decl |
application-term

use-list ::= application-term use-list |

application-term

3. Values

n: hierarchies

M: set-of-nodes (in a hierarchy)

4, Semantic functions

P: hierarchy-specifications + hierarchies

D: declarations + hierarchies + hierarchies

U: lists-of-application-terms + hierarchies * set-of-nodes

A: application~terms + hierarchies + hierarchies
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5. Semantic equations

P [ object n = sth endobject decl | =
let s = Sth [sth] in

let ¢ = build-object(¢,s) in
let n = Lnitial-hierarchyp(n,c)
D [decl] n

D [application-term]n = A[application-term]n

D [ object n = use use-list sth endobject decl]n =

let M = U[use-list] n in

let B = {n(m) |meM} in

let s = Sth [sth] in

let ¢ = build-object(B,s) in
let n” = enterp(n,(n,M,c)) in
let n" = closurep(n’) in

n[decl] n"

Ulapplication-term]n =

[

et n:a0 » ¢ in

let n = evaln(application—term) in

base(n,A0)

Ulapplication-term use-list]n =
let n:A0 » & in

let n = evaln(application-term) in

let M = base(n,A0) in
M u U[use-list]n

Alapplication-term]n =
let n

" {n}
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7.2 A specification language for hierarchies of signatures

7.2.1. Signatures

A signature is a set of sorts S together with a set of operators,
ceach operator having an arity in S* x S. A signature morphism is
a translation of sorts to sorts and operators to operators such

that the arities are preserved.

Definition 7.1 [signatures]

(1) r=(S,F) is a signature iff S is a set and F is
an S*xS-indexed family of sets.

(2) o:Z+I” is a signature morphism iff I=(S,F), r"=(S”,F7),

o=(g,h) and g is a map g:S+S” and h is an S*xS-indexed family

of maps h F > F‘g*(w)g(s) where weS*, s €S and g* is

ws® “ws
the extension of g to strings. o is a signature inclusion iff

g and all hws are set-—-theoretic inclusions.

(3) SIG is the category of signatures with signature morphisms as

morphisms, sfc is the subcategory with only signature

inclusions as morphisms.,
For a set N, neN, a set of signatures B = {Zl,u.,Zk}, I, =
($;+F;), and a signature < = (S,F) such that there is an
inclusion r; <= I for i e {1,...,k} let p be the function

p: N x 2I8I6] y [s16| » |s1G|

defined by:

p(n,B,Z) = let S’ = S - (Sl U se0¢ U Sk) E
let Fiyg = Fyg = (Fiyg U ev U Frws) in
let m = Ax. n.x in
let S" = n(S7) in
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let F'p#(w)m(s) = "(FTyg) in
((S=S”) u S", (F=F7) u F")

The function p changes every sort and operator name in I not yet

alread
aritie

y contained in some I” € B into the name prefixed by n. The
s of the operators are changed accordingly.

o1

Fact 7
(s16, sig) is an appropriate category with mixed pushouts and p

is a

Proof:
1.

hierarchy prefix function,

(SIG,SfG) is an appropriate category since obviously there
is at most one signature inclusion between any two
signatures and the objects of SIG and sfG are the same.

2. To prove that (SIG,SfG) has mixed pushouts consider the

diagram
zf
o
I eemmmmccaca——- > "
where ¢ = (S,F), I~ = (Ss7,F7), L" = (8",F"). In order to

apply a general pushout construction let =g (resp. =p) be
the smallest equivalence relation generated by

{(s,0(s))]| ses}
resp.

{(£,0(£))]| feF}

Since ¢ is a signature morphism =g and = are compatible
with the arities of the operators. Thus, =g and Zp define a
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signature congruence =y and

Ipo = ((87 & 8")/2g, (F7 &4 F")/Zp)
is a signature where & denotes the disjoint union and Zpo
is a pushout object of the diagram above: the pushout

morphisms into I take any x into its equivalence class in

po
Zpo' Zpo is isomorphic to the signature """ that results
from zpo by taking a representative for each equivalence
class in zpo as defined by

- X for [qu]
- xy- for [x;-] iff ¥ yeI". xg- 42 Ygn

In both cases the representatives are determined uniquely:
the definition of =g implies that there is at most one xgu

in any equivalence class of I and if there is no such

po’
Xgu then there is exactly one Xy~ in that class. Thus,

gooe
is also a pushout object for the diagram. The pushout
morphisms are given by the inclusion from I" to I™ and by
0”: L7 » 1777 as defined by:

- 07(xX) := o(x) iff xel

- 07(X) := Xy~ otherwise.

Thus,

is a pushout diagram in SIG.

It remains to be shown that p is a prefix function. For a

set N, neN, a set of signatures R={zl,u.,2k}, Zi =
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(si'Fi)’ and a signature I =(S,F) such that there is an
inclusion L, L for i e {1,...,k} let’p'1 be the function

pl: v x 2/516] & |s16| » |siq]

defined by:

[

p-l(n,B,E) = et S‘ = § - (Sl U see U Sk) ﬂ

[
o
(e

Fows ™ Fyg = (Fpyg U <o+ U Fpyg) in
p = AX, X=n,y * y, T *+ x 1in
Sll = p(sﬂ) in
F'ok(w)p(s) = P(Fyg) in
((S-8°) u s", (F=F”) u F")

[
o
(e

|
[+)
(o3

|
[1)
ctr

and let H: A0 » STG be a finite signature hierarchy with
AO = (0,¢,|), O c N and where each node label for a node n
is of the form p(n.{H(b)|b & base(n,a0)},I).

In the following let B = {H(m)|meO}. To show the first
condition for a prefix function (Definition 6.5) we have to
show that for every n € N-O and every (SfG-) cocone object
I of H the following holds:

(1) £ and p(n,B,L) are isomorphic in SIG
(2) p(n,B,L) is a cocone object of H
(3) p~Y(n,B,p(n,B,2)) = I

Let .51 be defined by zcol := U H(m)

me0
where the union of two signatures is diven by the
componentwise union of the sorts and operators. There is an
inclusion from any H(m) for meO into zcol.and for any other
signature I" with this property we have I,,;% ", Thus,

Zcol is a (SfG-) colimit of H, and the inclusion zcolc* z

is the colimit-to-cocone morphism. Since p(n,R,I,51) = L o1
and zcolc* p(n,B,L) we conclude that p(n,B,Z) is a cocone
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object of H as well. Furthermore we can define the
signature morphisms

o: £ + p(n,B,IL)

o1, p(n,R,L) + &
by

9|3zcol T 1ol

9|g--zcol T AX. n.x

0" " |zcol = 1d3c01

°—1]p(n,B,Z)-Zcol = AX. X=n.y *+ y, T + X

Since every sort or operator in .01 has a prefix meO that
is distinct from neN-O it is easy to see that o is a

1

signature isomorphism and that o ~ is its inverse, implying

that £ and p(n,B,L) are isomorphic in SIG. The functions p

1 correspond exactly to ¢ and o1 by taking into

and p_
account that the arities of the operators have to be
changed according to the newly added resp. removed prefix

1

n, implying that p and p ~ are inverse to each other in the

sense of condition (3) above.

In order to prove the second condition for a prefix
function we show that I, ; together with the signature
inclusions {imlmeo} is a (SIG-)colimit of into.oH as well.
Obviously, it is a cocone of into,oH. Now let (Z’,{omlmeo})
be any cocone of into0H. Let o: Z_ 4 * I” be given by
o(x) := let x = m.y in
0, (x)

where o is well defined since every x € I, 4 has a unique
prefix meO and for every such x we have xeH(m). Thus, we
have doip
with this property we conclude that zcol is a colimit of

=gy for every meO, and since there is no other o

intQCOH. Thus we have shown that p is a prefix function,

thereby completing the proof of Fact 7.1.

Fact 7.1 implies that SIG with subcategory sfG and the prefix
function p are suitable for the language introduced in Sec. 7.1.
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We just have to define the two functions

(1) Sth: something + SOMFTHING
(2) build-object: 2!SI6| 4 sompruINg + |SIG]

(1) sth::= sorts S1r eeer Sy

ops f;: S1,1 *** S1,n1 * 51

f + S

*
m* Sm,l *ee Sm,nm m

where r,m,n, n; >0

Let SOMETHING be the set of pairs (S,F) such that S is a
set and F is an S™* x S” - indexed family of sets with
Scs”.

Let sth be as above, then:

Sth[sth] = let s = {sy, ..., s/} in
let Fug = {£;[f5: wos , w=sy joousy 440 s=5;) dn
(S,F)
(2) For B = {Iy, «eey L}, L; = (S;, F;), define:

build-object (B, (S,F))
let 87 = S] U «.. U Sn us in
let F~ = F u..ou

(S’IF‘)

Fn u F 1n

7.2.2 Hierarchically structured signatures

We will now give an example of a specification for a
hierarchically structured signature. Again we will not define the
syntax of applications terms in detail, but we will use
the mathematical notation as we did in 7.1. A complete formal
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treatment with a special syntax for application terms should
pose no difficulties and could be done similarly to the
formalizations above. We will define signatures for booleans,
arbitrary elements, natural numbers, stacks and sets over
arbitrary elements. In the last object declaration we give a
signature for various stack and set instances in order to
illustrate the different aspects“of parameterization-by-use in

hierarchical objects.

The hierarchy specification is:

object BOOL =
sorts bool

ops  true: * bool
false: + bool
not: bool + bool
and: bool bool + bool

endobject

object ELEM =
use BOOL

sorts elem

endobject

object NAT =
use BOOL

sorts nat
ops 0: * nat
succ: nat + nat
le: nat nat + ROOI,.bool

endobject

object LIMIT =
use NAT
ops limit: + NAT.nat

endobject
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object MAX =
use NAT
ops maxl: + NAT.nat
max2: + NAT.nat

endobject

object STACK =

use BOOL, NAT, LIMIT, ELEM

sorts stack

ops empty: * stack
push: ELEM.elem stack + stack
pop: stack + stack
top: stack + ELEM.elem
depth:stack + NAT.nat

endobject

object SET =
use ELEM

sorts set

ops create: » set
insert: ELEM.elem set + set
remove: ELEM.elem set + set
has: FLEM.elem set + BOOL.bool

endobject

object STACKS&SETS
use SFT {(ELEM,0,,STACK )}{(FLFM,0,,NAT)},
SFT {(FLEM,0,,NAT)},
STACK {(ELEM,oz,STACK)}{(ELF.M,ol,NAT)}
STACK {(LIMIT,0,,MAX)}
ops convert: STACK{(ELEM,ol,NAT)}.stack
+> SET{(ELEM,ol,NAT)}.set

endobject

STACKS&SETS
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The signature morphisms used in STACKS&SETS are given by the
identity except for:

ol(ELEM.elem) = NAT.nat
oz(ELEM.elem) = STACK.stack
o}(LIMIT.limit) = MAX.max2

Figure 7.1 shows a section of the closed hierarchy generated by
this specification., If HS is the hierarchy specification and n:
A0+STG is the hierarchy generated by HS, then the semantics of
HS is given by

P[HS] = n|(sracksssrrs}
i.e. the hierarchy of Figure 7.1 restricted to the nodes n having
a path to STACKS&SFTS.

7.2.3 Evaluating signature application terms

As an example for the evaluation of application terms, we will
take the first use clause element of STACKS&SFTS

(1) SET{(ELEM,oz,STACK)}{(ELEM,OI,NAT)}
and show that it evaluates to the same node in the hierarchy as
(2) SET{(ELEM,c4,STACK{(ELEM,ol,NNT)})}
where 0, is given by the identity except for
04(ELEM.elem) = STACK{(ELEM,UINHT)}.stack

Let T be the direct application term

69



STACK{(LIMIT,G3,MAX)}

MAX

STACKS&SFTS

STACK{(ELEM,G4, SET{(ELEM,U4,
STACK{(ELEM,OI,NRT)})} STACK{(ELEM,OI,NHP)})}

Nl

STACK{(ELEM,GI,NRT)}

v

SET{(ELEM,OI,NNT)}

N\

NAT
BOOL

A

' STACK{ (FLEM, 0, ,STACK) }

SET{(ELEM,OZ,STACK)}

/

STACK

/ SFT

7

LIMIT ///////

ELEM

Figure 7.1: The hierarchy of signatures with STACKS&SETS
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T = SET{(ELFM,0,,STACK)}.
Then (1) can be written as
(3) T{(ELEM,0,,NAT)}
which according to Definition 5.3 (3) evaluates to
(4) direct(T) o direct(evaln(T){(ELEM,ol,NHT)}).
Since direct(T) =T and evaln(T) = "T'", (4) is equivalent to
(5) T o direct( T"{(ELEM,ol,NNT)}).

"r"{(ELEM,0,,NAT)} is an indirect application term since no
actual parameter is given for STACK which is used by "T" =
"SET {(ELFM,0,,STACK)}" (c.f. Fig. 7.1). Thus,

between ("T",{FLEM},A0) = {STACK},
and according to Fact 5.2

Topack = STACK{(FLEM,o,,NAT)}
is a direct application term. Let og be the colimit injection

Og: n(STACK) -+ application-objectchTACK)
which is the obvious extension of 0, to STACK by sending the sort
and operation names introduced in STACK identically to the sort
and operation names in STACK{(ELEM,cl,NAT)} where only the new
prefix has to be taken into account. Furthermore, we have

eval, (Tgnack) "STACK{ (ELFM,0, ,NAT)}"

and according to Fact 5.3

(6) T o "T"{(ELEM,cl,NAT), (STACK,OS,"STACK{(ELEM,cl,NAT)}")}

is an application term which is equivalent to (5) according to
Def. 5.3. In Fact 4.4 the composition of direct application terms
is introduced and Fact 6.1 says that the evaluation function
eval, respects direct application composition. Thus, (6) is

equivalent to
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(7) SET{(ELEM,GS ° gy, "STACK{(ELEM,ol,NAT)}")}.

But composing the signature morphisms 9y and g yields
94 = 95 ° 9
so that (7) is equivalent to

(8) SET{(ELEM,0,, "STACK{(ELEM,al,NNT)PW}
which in turn is equivalent to
(9) SET {(ELEM,04, STACK{(ELEM,ol,NAT)})}

due to the definition of application terms in Def. 5.3 (4). Since
(9) is exactly the term (2) given above, we have shown that hoth
(1) and (2) evaluate to the same node in the hierarchy.

The equivalence of (1) and (2) in the sense that they evaluate to
the same node in the hierarchy is an example showing the
associativity of applications (c.f. Fact 4.5): first
instantiating the elements FLFM of SFT by STACK and then
instantiating the elements of STACK by NAT yields the same
result as instantiating the elements of SET by the result of
instantiating the elements of STACK by NAT. Similar associativity
results in a non-hierarchical framework are given in [Eh 82],
[FKTWW 80b], [Ga 81]. In such a framework a non-hierarchical
semantics as in Fact 5.4 would be sufficient, whereas our
hierarchical approach of taking indirect to direct application
terms guarantees that the objects denoted by (1) and (2) are
identical even when viewed as hierarchical objects.

72



7.3. Non-proliferic semantics for specification languages

In Clear ([BG 77], [BG 80]) non-parameterized and parameterized
objects are distinguished, namely theories and theory procedures.

The Clear eguivalent to an application term like
(10) STACK{(FLEM,0,NAT)}

denotes a corresponding instantiation object. However, writing
down the same Clear term twice at two different places yields two
distinct copies of that object: each time a theory procedure is
applied to actual parameters a new object is generated. This
proliferation problem of Clear ([BG 81], [Sa 81]) can be avoided
by the use of canonically closed hierarchies since in all
contexts the term (1l0) evalutes to the same node in the
hierarchy.

This solution to Clear”s proliferation problem goes further than
[sa 81]. In [Sa 81], a term corresponding to (10) would always
yield the same object in different contexts. But the terms

(11) STACK{(ELEM,0,,NAT)} {(LIMIT,0,,MAX)}

(12) STACK{(LIMIT,03,MAX)} {(ELEM,cl,NAT)}

(13) STACK{(ELEM,OI,NAT), (LIMIT,03,MAx)}
would yield three different copies of actually the same

instantiation object. In a canonically closed hierarchy, however,
(11), (12) and (13) all evaluate to the same node, namely

"STACK{(ELF!M,OI,NAT), (LIMIT 103,MAX)}“
and thus all three terms (11) - (13) denote the same object.

Furthermore, the evaluation of indirect application terms by
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transforming them into direct application terms also avoids
unnecessary duplications of instantiation objects. As an example,
consider the indirect application terms in STACKS&SETS s use
clause. Similarly to the evaluation process shown in 7.2.3, we
conclude that the use clause element of STACKS&SFTS

(14) STACK{(ELEM,OZ,STACK)} {(ELEM,Ol,NNT)}

evaluates to the same node as
(15) STACK{(ELEM,04,STACK{(ELEM,cl,NNT)})}

Thus both the objects denoted by (1) and (14) are based on the
same object

(16) STACK{(ELEM,0;,NAT)}
and consequently, STACKS&SETS includes only one copy of (16).

Apparently, this reflects exactly the intuition one might have
when writing a hierarchical specification based on both terms (1)
and (14). Instantiating the elements ELFEM of both SFT and STACK
by STACK , and instantiating the elements ELFM of both the
resulting objects by NAT should be equivalent to instantiating
the elements ELEM of both SET and STACK by the result of
instantiating ELEM of STACK by NAT. Thus, the final
instantiations of SET and STACK should be based upon the same
instantiation of STACK. As demonstrated above, this may be
achieved by the use of canonically closed hierarchies.

The examples given in this section show that in the hierarchy
specification language for signatures introduced in 7.2 a Clear-
like proliferation is avoided since the occuring hierarchies can
be canonically closed. However, following the general development
of parameterization-by-use for hierarchically structured objects
in an arbitrary appropriate category it was possible to prove
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that mixed pushouts and a prefix function suffice to guarantee

the existence of the canonical closure of a hierarchy (Fact 6.8).

These two conditions may easily be met by a specification

language:

- mixed pushouts: many specification languages for the
definition of abstract data types (e.g. [BG 80], [RA 81])
are based on a notion of signature as defined in 7.2. In

Fact 7.1 we showed that (SfG, SIG) is an appropriate

category with mixed pushouts. As already pointed out in [BG
80] and further developed in the framework of institutions
in [GB 83] the existence of pushouts and colimits carry over
from a category of signatures to a category of
specifications (called theories in [GB 83]). It is easy to
prove that the same is true for the existence of mixed

pushouts.

- prefix function: the prefix function given in 7.2 for

hierarchies of signatures guarantees the existence of the
canonical closure of signature hierarchies. Again, since in
the framework of institutions colimits of signatures and
also mixed pushouts carry over to colimits and mixed
pushouts in a category of specifications (or theories), the
existence of the canonical closure for specification
hierarchies is guaranteed as well.

The concepts of parameterization-by-use and canonically closed
hierarchies are incorporated in the specification language ASPIK
[BV 83] that allows for axiomatic and algorithmic specifications
of abstract data types; several examples demonstrating these

concepts are also given in [BGV 83].
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