
«
h
a
/
U
s
u
a
l
.

&
J
u
l

3
%

[
T

G

B
‘.o

_
E
U
:

(
.

||.lll.|l

‘

Voß

bt.
Ls

A.

\
\
Ü
/
‚
w

C h . Reierle,

Memo S E K I - 8 3 — 0 8

r0cl
.

P
.S
.U„V
.
.
.

b_nO-1taz
-
1retemaraP

hierarchically structured objects

Ä
c
m
E
L
m
O

‚
>
>

‚
_
.

5
9
3
2
9
3
5
!

om
hwö

m
w
o
m

c
u
m
t
m
o
a

OE”:
E
m
S
E
E
m
m
fi
x

fi
t
fl
m
fi
c
D

I

{
5
5
:
9
5
£
2
9
3
5
3
”
.

-
=
u
m

Parameter izat ion—by-use for

hierarch ica l ly s tructured ob jec ts

Christoph Beierle, Angi voß

Universität Kaiserslautern

Postfach 3049

6750 Kaiserslautern

West Germany

abstract

A f o r m a l rmxhal for hierarchical objects is presented. T h e

hierarchical structure between objects is defined by'a general

notion o f use relationship. Used objects m a y be regarded a s

formal parameters leading to the definition o f parameter

a p p l i c a t i o n s a n d a n e w p a r a m e t e r i z a t i o n c o n c e p t c a l l e d

p a r a m e t e r i z a t i o n — b y — u s e . vhs s t u d y h i e r a r c h i e s \nith a l l

applications enui g i v e ea canonical closure construction to

generate such hierarchies. W e s h o w how these consepts can be

incorporated into a specification language for hierarchically

structured objects.

This research was supported by the Bundesministerium für Forschung und
Technologie under contract IT.8302363.

ggntentg

1. I n t r o d u c t i o n

Hierarchically structured objects

2.1 Appropriate categories

2.2 Appropriate orders

2 . 3 H i e r a r c h i e s

Parameters and applications in hierarchies

3.1 Motivation

3 . 2 Parameter sets

3.3 Applications

Hierarchies with direct applications

4.1 Closed hierarchies

4.2 Evaluation of direct application terms

4.3 Composition of direct applications

Generalized applications

5.1 Indirect applications

5.2 Application terms and their evaluation

E x t e n s i o n and c losure o f hierarchies

6 . 1 C a n o n i c a l cl osure

6 . 2 Prefix h i e r a r c h i e s

Parameterization-by—use in specification languages

7.1 A general hierarchy specification language

7.2 A specification language for hierarchies of

signatures

7.2.1 Signatures

7.2.2 Hierarchically structured signatures

7.2.3 Evaluating signature application terms

7.3 Non-proliferic semantics for specification

languages

References

‚ b
W

N
N

OS

10

18

18

19

20

36

36

44

46

46

50

58

61

61

66

69

73

76

1 . Introduction

Parameterizatidn is a “Edi-established concept in many program-
ming languages (e4L [Na 63] , [JW 76],[WLS 76] , [LALS 77]L The
work on specifications revealed that also for specification

languages parameterization mechanisms are needed in order t o

reuse specifications in different contexts and to adjust them to

particular situations (e.g. [BG 77] , [BG 80] , [GT 79] , [TWW 82] ,
[Eh 82], [Rb 81] , [Ba 81] , [Ga 81]).

Hierarchical structures arise in programming languages (e J L

s t r u c t u r e d p r o g r a m m i n g) , s p e c i f i c a t i o n l a n g u a g e s (e.g.

h i e r a r c h i c a l s p e c i f i c a t i o n s) and Inamy o t h e r a r e a s (e.g.

classifications of objects, divisions in a c o m p a n y , - e t .

I n t h i s p a p e r w e i n v e s t i g a t e t h e r e l a t i o n s h i p b e t w e e n

parameterization EUR! hierarchical structures ix: a general

setting. We g i v e a general notion o f hierarchical objects and

p r o p o s e a p a r a m e t e r i z a t i o n c o n c e p t w h i c h w e c a l l p a r a -

meterization-by—use. I n this concept, the declaration of formal

parameters c a n be disposed of. Instead, every object m a y be

r e g a r d e d a s a f o r m a l p a r a m e t e r , i d e n t i f i e d o n l y when i t i s

associated with an actual parameter. I n this way, instances or

applications o f hierarchical objects are generated, which are

a g a i n h i e r a r c h i c a l o b j e c t s . W e s t u d y t h e p r o p e r t i e s o f

hierarchies that are closed under applications and introduce a

canonical closure construction.

I n order to give an idea o f how parameterization-by-use m a y b e .

incorporated in a language for the definition of hierarchically

structured objects, vwa define such a specification language and

give various example specifications demonstrating the properties

o f the parameterization concept.

I n Section 2 , hierarchical structures are defined using the

notions of appropriate category and appropriate order.

Applications in hierarchies are introduced in Section 3. I n

Section 4, we concentrate on a special type of application, the

direct applications, while the general c a s e is considered in

Section 5. Section 6 introduces our canonical closure

construction.In.Section 7‚aigeneral specification language is

proposed, several examples are given and it is shown how the use

of closed hierarchies leads to non—prolifericl(c.f. [BG 81], [Sa
81]) semantics for specification languages.

2. Hierarchically structured objects

2.1 Appropriate categories

A hierarchically structured object is an object that is based on

a set of other hierarchical objects. Often, the hierarchical

relationship between the objects involved is a kind of

subpart—relationship, eJL terms in_a formal language, nested

blocks or macros ineapmogramming language, classifications of

objects, divisions in a company, etc.

Thus, without making any further assumptions about the kind of

hierarchical relationship, we will just assume that there is only

one type of it„ I f the objects are taken from s o m e category, a

hierarchical relationship between two objects is given by a

certain type of unique morphism in that category.

Definition 2.1 [appropriate category]
A category C is an appropriate category with subcateqory Ö
iff Ö has all objects of C and there is at most one morphism

between any two objects in Ö, i„e.

Vc‚c’e/Ö/ . |hom(c,c')| <1

Usually, a Ö—morphism w i l l be called a n inclusion and will be

denoted by ¢-+. T h e obvious embedding functor from Ö into C is

intoC: Ö + C.

O f t e n una w i l l a m b i g u o u s l y c a l l t h e p a i r A C = (C ‚ Ö) i t s e l f a n

appropriate category.

2.2 Appropriate orders

Given the general notion o f inclusion above, a hierarchical

object is a n object x together with a s e t B of hierarchical

objects such that there is a n inclusion from b to x for every b e:

B. We say that x 3335 every b e B. Since the use—relationship

must not introduce any cycles, a set of hierarchical objects may
be represented by an acyclic graph where the use-relationship

corresponds to a path in that graph. Furthermore, if w e assume

that a set M o f hierarchical objects has exactly one elemeht that

uses no other objects and all other objects use a non—empty but

finite set o f other objects, the representing acyclic graph for M
defines an appropriate order:

Definition 2.2 [appropriate order]
A n a p p r o p r i a t e o r d e r A0 = (0 , < ‚ i) i s a w e l l founded

i r r e f l e x i v e p a r t i a l o r d e r (O , <) w i t h m i n i m u m i s u c h t h a t

every element has only finitely many predecessors.

N o t a t i o n : < denotes the r e f l e x i v e c l o s u r e o f <.

An appropriate order A0 defines an acyclic graph with the desired

properties.'The order category induced by AD will also be deno ted
b y A0. I t has objects 0 and all order relations a s morphisms,

i.e. a n arrow a + b iff a<b. Next w e w i l l introduce structure

preserving maps be tween appropriate orders.

Definition 2.3 [appropriate order morphism]
An appropriate order morphism fßAO+A0’ is a functor between

the corresponding order categories such that f(i) = 1:.

Fact 2.1

Appropriate order m o r p h i s m s are determined uniquely by the

object part of their defining functors.

3399;: Because there is at most one morphism (i.e. order

relation) between any two objects in an order category.

2 . 3 Hierarchies

A hierarchy defines a set of objects that can be constructed step

by-step: starting with an object that uses no other objects, all

other objects can be added using at least one but only a finite

number of already existing objects.1üum;given the definitions

above , a hierarchy of objects in an appropriate category (C, Ö)

is a set of objects together with an appropriate order between

them where the relationship A uses B corresponds to an inclusion

B ‘ L + A.

Definition 2.4 [hierarchy, use—relationship]
Given an. appropriate order AO and an appropriate category

AC=(C,Ö)'‚ a hierarchy

H : A0 + AC

is a functor H: A0 + Ö. For neo we say that H(n) 5535 H(m)

for every man with m<n.

Notation: We will denote a hierarchy by H : A0 + € assuming that

the appropriate category is given by (C,Ö).

For a hierarchy H: A0 + Ö we will talk about the hierarchical

. g g l ' e c t H (n) for a n n e o r e f e r r i n g to t h e f a c t t h a t i t u s e s

all objects H(m) with m<n.

Some obvious f a c t s a b o u t hierarchies a r e :

F a c t 2 . 2

” A hierarchy H: A0 + Ö is determined by the object part of the
functor PL

Proof: Follows from the fact that there is at most one morphism

between any two objects in Ö.

Fact 2.3

For a hierarchy H: A0 + Ö
intoCOH: A0 + C

is a commutative diagram in C.

Proof: B e c a u s e H : I K) + - é is a f u n c t o r a n d t h e r e is a t m o s t o n e

morphism between any two objects in the subcategory Ö.

3. Parameters and applications in hierarchies

3.1. Motivation

In programming languages such as ALGOL 60 [Na 63] and PASCAL [JW
7 6] as well as in specification languages such as Clear [BG 8 0]

and CIP-L [Ba 81] the parameterization concepts involve two basic
steps:

. Declaring formal parameters when defining a parameterized

object.

o G i v i m g a c o r r e s p o n d e n c e b e t w e e n f o r m a l and a c t u a l

parameters when instantiating a parameterized object.

I n general, the following points must be observed and may be

regarded as drawbacks in some applications:

1. When defining a parameterized object P one has to g i v e the

c o m p l e t e s e t o f P’s f o r m a l p a r a m e t e r s . I f l a t e r o n o n e

realizes that some other parts of P could be regarded as a

formal parameters and one wants to substitute them by other

objects it turns out to be impossible without rewriting P and

extending its parameter declaration.

2. T o instantiate a parameterized object P with formal parameter

set E an actual parameter for each xeF must be given. Even if

one actually wants a partial instantiation o f P where some

formal parameters F’c F are kept unchanged one still has to

give a dummy actual parameter for every xeF’.

3. The distinction between non-parameterized, parameterized and

parameter objects s o m e t i m e s appears to be artificial, 94L

regarding a parameterized object as a non—parameterized object

or vice versa may not be possible.

T h e s e three observations apply especially tx) specification

languages. Given a specification, say, of ARRAY with parameters

INDEX and ELEMENP, a partial instantiation of ARRAY with actual

parameter INTEGER for INDEX b u t leaving ELEMENT unchanged is

usually n o t supported b y the parameterization concept. T h e

ü h n n fi f i c a t i o n o f l o o s e s p e c i f i c a t i o n s a n d p a r a m e t e r

specifications in [B G 8 0] lead to a subtle error a s pointed out

i31[saaél]i an.actual parameter still had to contain its formal

parameter. But the solution suggested in [Sa 8 1] introduces a

distinction between the two types of specifications such that a

parameter (m e t a theoryj differs from an ordinary specification

(theory) only in the keyword "meta“.

I n o r d e r t o o v e r c o m e t h e s e d i f f i c u l t i e s w e p r o p o s e a n e w

parameterization concept for hierachical structures which is

called parameterization—by-use. Given the notion of hierarchy and

use relationship introduced above it is based on the following

principles:

. W h e n d e f i n i n g h i e r a r c h i c a l o b j e c t s n o d i s t i n c t i o n

whatsoever i s made between parameters or used objects.

. Every object may function as a non—parameterized object, as

a parameterized o n e or as.a parameter; consequently no

such distinction is made when defining an object.

. Instead of declaring parameters when defining an object X

parameters are identified w h e n some other object 2525 an

instantiation of X.

. Every object used by s o m e object x m a y be regarded as a

f ormal parameter and m a y b e a c t u a l i z e d by s o m e other

object.

O Instantiation must b e compatible with the hierarchical
structure o f the objects involved.

T o m a k e these ideas m o r e precise w e n e e d s o m e preparatory

definitions.

3 . 2 Parameter s e t s

Definition 3.1 [base, parameter set] _
Let AO=(O‚<‚i) be an appropriate order, neo, M'g O.
(1) The base of n in A0 is given by

base(n,A0) := {n’ln’<n}
fine. the set o f all elements in No'with a path to n.

(2) M is a parameter s e t for n iff .

— M g base(n‚AO)—{n}

- Vm, m " e M . vm’eo . m<m’<m"=> m ’ e M

(3) M is a direct parameter set for n iff

- M is a parameter set for n and

- Vm e M . V m’eO . m<m’<n => m'sM

(4) T h e set o f elements between n and a parameter set M for

n is given by

between(n‚M‚A0) := {oeo-M | }- lneM . m < o <n}.

(5) The 9353 2£ n w.r.t. parameters 3 is given by

base(n‚M,A0) := base(n„ND)-(M u {n} u between(n‚M,AO))

Note that a parameter set may be empty. Figure 3.1 gives an

illustration for base and parameter sets.

Fact 3.0

L e t A0 = (0 ‚< ,_L) be a n appropriate order, neo, M a parameter

set for n. Then:

- M is a direct parameter set for n iff between(n,M,A0) = @.

- M u between(n,M,A0) is a direct parameter set for n.

— The four sets

- {n}

- between(n,M,AO)

- M

— base(n,M,A0)

are pairwise disjoint and their union i s

— base(n,AO)'

Proof: Immediately from Definition 3.1.

/\
fix} ,

/\ V: ________ p arameter set M for n

—————— base(n,M,AO)

.. ... _ .. _ _ base(n,A0)

i

F i g u r e 3 .1 : b a s e a nd p a r a m e t e r s e t for a node n (c.f. D e f . 3.1)

Fact 3.1

Let A0=(O‚<‚_|_) be a n appropriate order, n e o , M a parameter

set for n , H : A0 + Ö a hierarchy.
Then:

— b a s e (n ‚ A O) and b a s e (n , M ‚ A O) a r e a p p r o p r i a t e o r d e r s

where the order relationship is inherited from AO.

- H l b a s e (n ‚ A O) and H l b a s e (n ‚ M , A 0) ' the restrictions of H

t o b a s e (n ‚ A O) r e s p . b a s e (n ‚ M ‚ A 0) , a r e a g a i n

hierarchies.

Progfi: Immediately from Def. 3.1.

3.3 Applications

Given a hierarchy H: A0 + Ö and a node neo together with a

parameter s e t M , the hierarchical o b j e c t H(n) can be v i e w e d as a

parameterized object with parameters {H(m)|meM}. An instantiation

or application m a y be generated by providing an object Am for

every m a n and a means . o f getting from H(m) to A m , i.e. a morphism

fm:H(m) + Am. The object Am is again a hierarchiCal object

subject to the condition that H z i s built upon the s a m e objects

a s H (m) . F i r s t we c o n c e n t r a t e o n the c a s e o f d i r e c t p a r a m e t e r

sets; the general case o f parameter sets is studied in Sec. 5.

For direct parameters the conditions on the m o r p h i s m s fm are

captured by the following fact:

Egg; 3.2

L e t H : A0 + Ö b e a h i e r a r c h y , A 0 = (0 , < , l) , n e o a n d M a

direct parameter set for n. Let (f,h) be a pair with:

(i) f: base(n,¢,A0) + AD

is an appropriate order morphism with f(x)=x

for all x & M .

(ii) h: i n t o C O H I b a s e (n , ¢ , A O) + intoCOHOf
is a natural transformation with hx=idH(x)

10

for all x 4 M.
Then for all x,yeo with x<y<n the diagram

h y

H(y) -——+ H (f (y))

h X

H(X) ---+ H<f<x))
commutes i n C .

Proof: x<y<n implies x‚y s_basehn@„AO)‚ and the commutativity of

the diagram represents the natural transformation property

o f h.

Since E and h of the previous fact are determined by the two maps

f’: M + 0
h’: M + /C/

where f’(x)=f(x) and h’(x)=hx it suffices to supply f’ and h’

(c.f. Figure 3.2). '

Definition 3.2 [direct application term]
Let H , n ‚ M a s b e f o r e .

'r = n{(m,hm‚f(m)) lm a M } is a direct apElication term of

H iff f and h define an appropriate order morphism and a

natural transformation fulfilling the conditions of Fact

3 .2 . T is trivial iff M=¢.

T h e r e s u l t o f e a d i r e c t a p p l i c a t i o n t e r m ' r = = n [(m ‚ h m , f (m)) h n s M }

in H is constructed from the hierarchical object H(n) by removing

t h e o b j e c t s H (m) f o r e a c h f o r m a l p a r a m e t e r m u d a n d b y

substituting the objects H(f(m)). Similar to e.g. [Eh 82], [EKTWW
80] , [EG 80] , [Eh 81] , [Ga 81] and [Li 82] where a related
process is defined using pushouts we define the result of a

m l
m l - + f’(’\ml)

h ’ m 2

- \ 6 7
’ (m 2)

_______________________ + f (m 3)
bl

Ffiqure 3 .2 : f’ and h’ determining f and h o f Fact 3.2 for the

direct parameter set M = {ml,m2‚m3} of n

12

direct.application using colimits.

Definition 3.3 [application diagram, application object]
Let H : A0 + Ö be a hierarchy.

(1) For a direct application term T=n{(m,hm,f(m))LmeM} in H
diagramIT) is called a direct application diagram of H.

I t is a diagram in C with:

nodes: {nn} u {mnl meM} u U base(f(m)‚AO)
mebase(n,¢,A0)

w h e r e t h e x n a r e n e w nodes n o t i n O f o r x e { n } u

M. x n is labelled by H(x), 1:30 is labelled by H(x) .

edges: - all edges from A0, labelled by H .

-- edges between X and yn labelled by H((x‚y)) iff

there is a n edge between x and y in A0.

n and Yn labelled by H((x,y)) iff

there is an edge between x and y in AO.

— edges between x

— edges from mn to f(m) labelled by hm for every

m e M .

(2) The set base(T) is given by U base(f(m)‚A0)

mebase(n,¢,AO)

(3) I f d i a g r a m (T) h a s a c o l i m i t . c i n C s u c h t h a t t h e c o l i m i t

injections from base(T) are inclusions — i.e. morphisms

in Ö — then c is a direct application object (or just

application object) for T.

I n Figure 3.3 a n illustration is given for an application

diagram, its base and its application object. Figure 3.4 shows.a

further example.

gact 3.3

Any two application objects c and c’ for a direct application

term T a r e isomorphic in C. Moreover, an application object

may be determined uniquely by giving the colimit injection

from H(n) to c.

13

-——base(T)

Figure 3.3: application diagram for 'T.‘ = n{(mi‘,hmi,f('mi))Ii6{1,2,3}}

with application object c (c.f. Def. 3.3)

14

(a)

i1
LL

(b)

—-—base-(T)

Figure 3.4: (a) T = n{(m,hm‚n)} is a direct application term

for f(m) = n and h m : H(m) + H(n)

(b) T h e application diagram for T with application

object c (_c.f. Def. 3.3)

15

Proof: Colimits are isomorphic (e.g.[McL 71], [HS 73]) and there
is at most one inclusion from any object into c.

T h u s we will talk about _t__h_e_ application object of T , denoted by

application-object(T). Whenever it is necessary it m a y be

identified by giving the injection from m m . It can be viewed as.

a hierarchical object t ha t uses all o b j e c t s H(x) w i t h xebasefl').

Fact 3_.__£_l_ _
For every trivial direct application term T = n{ } in a

hierarchy H: A0 + Ö we have

- m m = application-objectfl')

- b a s e (n , ¢ , A 0) = b a s e (T) .

Proof: S i n c e M=¢, b a s e (n ‚ M , A 0) = b a s e (T) and d i a g r a m (T) r e s u l t s

from intoC O H I b a s e (n ‚ A 0) by replac1ng node name n by nn.

Fact 3.5

Let'T = n{(m,hm‚f(m) | m e M } be a direct application term in

H , moeM minimal in M, f(mo) = m() and hmo = i d H (m o) ' T h e n

T’= n{(m‚hm‚f(m)) | m s M-{mo} }-
is a direct application term in H with

— application—object(T) = application—objector")

- base(T) = base(T’).

Proof: diagram(T") results from diagram('1‘) by ’merging“ the two

nodes m o and m o m ' which is justified by the fact that in

diagramcr) both are labelled by H(mo) and there is an

identity morphism between them.

Definition 3.4 [reduced application term]

A direct application term T is reduced iff there is no

minimal 1110 as in Fact 3.5.

16

Successive applications o f Fact 3.5 yield a function reduce

taking direct application t e r m s to reduced direct application

terms.

Fact 3.9

Let T = n{(m‚hm‚f(m)) | meM} be a direct—application term.

Then

reduce(T) := n{(m,hm‚f(m)) | meM’}

with '
M’ = M—{meM | f(m) = m, hm = i d H (m) ' (Vm’eM.

m <m => (f-(m’)=m" and h m ’ = i d H (m ’))) }

i s a reduced direct application term with

- application—objectvr) = application—object(reducefln)

— b a s e (T) = base(reduce(T)).

Proof: Follows from Fact 3.5. by an easy induction.

Similarly, a direct application term T may be extended by viewing

all nodes used by n (with the exception o f the minimal element)

as formal parameters without affecting the denoted application

object.

Fact 3.7

Let T be as in Fact 3 .6 .

extender) == n{(m‚hm‚f(m)) | meM} u {(mridH(m).m) | m €
base(n‚M‚AO)—{i}}‘

is a direct application term with

— application—object(T) = application—object(extend(T))

— b a s e (T) = base(extend(T)).

Proof: Analogously to Facts 3.5 and 3.6.

1 7

4. Hierarchies with direct applications

4.1 Closed hierarchies

Since we consider ”application-object“ to be an operation on

the objects in a hierarchy, we are interested in hierarchies

being closed under this operation. First, we consider the case of

direct applications.

Definition 4.1 [closed under direct applications]

A hierarchy H:AO + Ö is closed under direct applications iff

for every direct application term T in H there exists a node

neo with:

- H(n) = application-object(T)

- base(n,¢,A0) = base(T)

A necessary condition for a hierarchy to be closed under direct

applications is:

Definition 4.2 [direct application complete]

A hierarchy HzAO + Ö is direct application complete iff

for every direct application term T application-objectcr)

exists.

It should be no ted that requiring both C and Ö to be finitely co-

complete is not a sufficient condition for direct application

completeness.

Fact 4.1

There is an appropriate category (C ,Ö) with C and 5 being

finitely co-complete, and a hierarchy H: A0 + € such that H

is not direct application complete.

Proof: Let C = SET be the category of sets, Ö = SET with set-

theoretic inclusions as morphisms. AD is given by:

18

E /

\

-
—
—
n
a
—
—
—
w
:

/
i

H Q) = «>, ME) = MA) = {a}. mm = { b } . m m = {a,b}. Then
a colimit object o f diagramrr) with

T = P{(F,(b+a)‚A)}

is { a E ‚ aA}. H o w e v e r , there is no colimit object in SET

such that the c o l i m i t injections from H(F:) and H(A) are
s e t - t h e o r e t i c inclusions.

Sufficient conditions for application completeness will be given

in Section 6.

4.2 Evaluation o f direct application terms

Definition 4.1 requires the existence o f a node labelled with the
application object of a direct application term. Exploiting this

fact one can g e t a function taking direct application t e r m s to

nodes in a hierarchy.

Fact 4.2

L e t H: A0 + € be a hierarchy that is closed under direct

applications. Then an evaluation function

evalH': {T I T is direct appl. term in H } + 0

exists such that for every direct application term T

_ H(evalH(T)) = application—object(T)

— base(evalH(T)‚$,AO) = base(T)

Proof: Immediately from Definition 4 .1 .

(“1 the other hand, zum evaluation function exists only for

hierarchies closed under direct applications.

19

Fact 4.3

Let H be a hierarchy. If there exists an evaluation function

evalH, then H is closed under direct applications.

Proof: Immediately from Def. 4.1 and Fact 4.2.

F o r a h i e r a r c h y H t h e r e m i g h t b e s e v e r a l f u n c t i o n s e v a l H

fulfilling the requirements o f F a c t 4 .2 . W.r.t. a specific

evaluation function the composition of direct applications may

be investigated.

4.3 Composition of direct applications

T w o direct application terms may be composed if the result of the

first one i s the source o f the second t e r m .

5922.3..4
Let H: A0 + Ö be a hierarchy with evaluation function evalH.

A0 = (Or<{i)r n1‚n2 € 0 and M1 resp. M2 direct parameter sets
f o r n l r e s p . n 2 . For i = l ‚ 2 l e t

- fi: base(ni,¢,A0) + A0

be an appropriate order morphism with vxéni . fi(x) = x
f hi: i n t o C O H I b a s e (n i , ¢ , A O) + intoCOHOEi

be a natural transformation with: VxéMi . h i x = i d H (x)

- T i be the direct application term for ni, fi and h i ‘

If eva1H(Tl) = n2 then the following holds:

(1) M = Ml l J (M2 n b a s e (n l , ¢ , m 3))

i s a d i r e c t p a r a m e t e r s e t f o r n 1

(2) f = f20f1 is an appropriate order morphism

f: base tn1 r¢yAD) + A0

with: v x 4 M . f(x)=x

2 0 '

(3)

(4)

Proof:

(1)

(2)

(3)

(4)

#41 . .

h = h ° 0 h l 1 5 a natural transformatlon

ä : i n t o C O H I b a s e (n 1 , ¢ , A O) + intoC0H0f

with: V x 4 M . hx # i d H (x)

Let T be the direct application term for nl, f and h.

Then:

— application-object(T) e H(evalH(T2))
— b a s e (T) = base(evalH(T2),¢,AO)

obviously, M E base(n1,¢JKn. It remains to be shown that

for meM, m'd) m<m’<n1 implies m’eM.

- If meM1 then m’eMl g M because M1 is a direct parameter
s e t for n l ,

- If m4 M1, we have meM2 n base(n1,-4>,AO).

— If now m"<n2 then m’e M2 because M2 is a direct para-
meter set for n2, and together with m’e base(nl,<|>‚A0)

this implies m’eM.

- If on the other hand m’ { n2‚ we have m’d base(T1)‚
since evalH(T1) = 112 and therefore hase(T1) = base

(n2p¢:A0)- But m’4 base(T1) and m’<n1 imply'nf e M1

2M-

holds because the composition of morphisms is a morphism.

holds because the composition of natural transformations

is again a natural transformation.

We will use the following lemmas about diagrams:

_L__e__r_n__n_1_g_ _]_._:_ Let D’ be a subdiagram of I) such that for every
node n in D there exists a D-path to some node n’ in

D’. If for a cocone C = (c‚{cn|n € D}) of D, CID»:
(C ' { ° n | n eD’}) is a colimit of D’, then C is a colimit
o f D.

E£29£= (C-f. the illustration in Figure 4 .1) . Let C’ =

21

c cocone C ’

colimit C

/ / d 1 a g r a m D

_ _ d i a g r a m D

Figure 4 .1 : Illustration for the proof of Lemma 1 of Fact 4.4

22

c colimit C

f

Figure 4 .2 : Illustration for the proof of Lemma 2 of Fact 4.4

“(: ;>/ / / ; :e i)

“\1 o o .

..—

\\\\\Q{:k)
_ _ _ — d i a g r a m

D'

0 0 . mk

‚»

%“

Figure 4 .3 : Illustration for Lemma 3 of Fact 4.4

23

diagram h

c

C x Cy

‚"-"'." _.

x j////P

\\ \m

\

/ ""
diagram D"

\m

m’ | '

/fl
r) ? j m d i a q r a m n“

\\\

\ m , . .
\ d— . I’M"!

Figure 4 .4 : Illustration for the proof of Lemma 4 of Fact 4.4

24

n 2 n 2

Figure 4 .5 : Diagram D2 in the proof o f Fact 4 .4 (4)

2 5

n2n2

h?.mi

mi l -12 _____________________________________ + f z h n i)

h 2mj
mju; -------------- + f2(mj)

1»

1dH(b1)

b i n z """"""""""""""""""""""" * b i

Figure 4 .6 : Diagram D3 in the proof of Fact 4 .4 (4)

26

„ „, ""? 1~
‚f , o o . /

‚» ’ /
" /

/

, , " /
/ f /

, l h ‚

m r n l """"""" * f 1 (m r) / m i n z - - - - - - - - - - - - - + f 2 (m i)

A\ . 4‘ / 1x /\

. ,

. /

m s n l ___+ f1(ms) / m j n z “*** f 2 (m j)

A n / fi“ »

// .

/

“’tr) M
———————————————— + b r

A

H (b s)
_____ + b S

im

_Figure 4 .7 : Diagram D4 in the proof of Fact 4 .4 (4)

2 7

“ l m — ' - '— '- — *- *“— - 9”“2n2

, ‚'

f
‚. f

‚_ f

I

, " hlrnr: h 2 f 1 (m 1 : ')

m r n l - - - - - - - - - - - - - - - - + f 1 (m r) n 2 - + f 2 (f 1 (m r))

A “ A

h l m s h 2 f 1 (m s)

m s n l - - - - - - - - - - - - - _ - + f l t m s) n 2 _______ * f 2 (f 1 (m s))

Ix /\ A\

i d H (b r)

Figure 4 .8 : Diagrams D5 and D G (eliminate n2n2) in the proof of

Fact 4 .4 (4)

28

n 1 n 1

h 2 f 1 (m r) ° h l m r

mrnl ——— + f2(f1<mr)>
I\ - 1\

h1ms h2f1(ms)

mSnl “*“"'"'* ““““““ * f1(ms)n2 “““““ * f2 (f1 ‘ms”
/\ . . [\ /\

Figure 4 .9 : Diagram D7 in the proof of Fact 4 .4 (4)

29

n l n l

h 2 f 1 (m r) ° h 1 m r

m r n l ___ + E 2 (f 1 (m r))

A A

h2f1(ms)°h1ms

m s n l """""""""""""""" * f 2 (f 1 (m s))

/\ A '

L h2f1(br)°h1br ',

b r n l "__-""f """""""""""""""""""""""""""""" * f 2 (f 1 (b r))

J h2f1(bs)°h1bs ,
b s n l ___________________________ + f 2 (f 1 (b s))

Figure 4 .10 : Diagram D8 in the proof of Fact 4.4(4)

30

{c’‚{cfnlneD}) be a cocone of EL Obviously) C’ ID =
(c’, {c ’n l neD’}) is a cocone of D’.'Phus, there
exists a unique colimit-to-cocone morphism h: c+c’

with .
(1) v neD". hOcn = c’n

For n-eD—D" l e t p be a path from n to n’eD’ with a path

morphism pn.

(2) C ’ n ’ O pn = C
f [C’ is cocone of D]n

(3) on» Q pn = 0n [C is cocone of D]
(4) h o cn» o pn = c’n [(1) and (2)]
(5) h 0 an = c’n ' [(3) and (4)]

T h u s , (1) and (5) imply that hocn = c’n for every neD.

Since h i s unique, c is a colim'it of D.

_I_J__e__13_1p__a_3: If diagram D results from D’ by adding a new
node n with exactly one outgoing edge e from n to m“

labelled with h , and incoming edges e1‚.„,ek, k>1‚

f r o m m i to n labelled by h i such that for all i e

{ 1 ‚ „ „ ‚ k } there is a path in RF from mi to m labelled

w i t h h O h i , t h e n t h e c o l i m i t o f D’ w i t h c o l i m i t

injections (:X is a colimit of D as well, where the
c o l i m i t injection c for the n e w node n is given b yn
cmOh. :

Proof: (c.f. the illustration in Figure 4.2). We show

that the colimit of Dr together with cn is a cocone o f

D ; the rest follows from L e m m a 1. T o show the cocone

property, consider paths from a node): into the

colimit of UZ If x=n, every path other than cn must

go through m , and thus the path morphism must be cmoh

= cn. I f a path g o e s through n , it must g o through

s o m e m . , thus we m a y a s s u m e x=mif'rhe path morphism1
must be cmOhOhi or c n o h i ' but these are identical

since C m ° h = c„. Finally, if a path does not go
through n, its morphism is given by the D'-colimit

injection ex.

31

I._e__r_n_ma 3: Let n be a node in a diagram D with no outgoing
edges and incoming edges e1....,ek. If D(n) ' together
with injections M e i) is a colimit of the subdiagram
of D determined by all nodes m such that there is a
path from m to n, then t h e colimit o f D is also a

oolimit of D‘ resulting from D by eliminating n and

all incoming edges , (c.f. the illustration in Figure
4.3). '

Proof : Immediately.

Emmi If for two nodes x and y in a diagram D with
n(x) - D(y) the oolimit injections ex and c:y are

identical, then the colim it of D is also a col im it of

D' resulting from D by eliminating y and replacing all
incoming (resp. outgoing) edges for y by incoming

(resp. outgoing) edges for x. ‘
Proof: (c . f . the illustration in Figure 4 .4) . I) may b e

transformed into a diagram D" by adding two edges from

x to y and from y to x labelled by i d D (x) Without
affecting the colimit. Then merging x and y in t h e

above sence results in D’ and obviously ‚does not
change the colimit either.

To prove (4), w e s h o w that application—object(T2) =
application-object(‘1‘) b y c o l i m i t p r e s e r v i n g t r a n s -

formations of DZ = diagram(T2) into D3.,....,D8 and finally

into diagram(T). T h e colimit injections for" all x e

base(T2) will be inclusions for every 1 3 1 ' T h e diagrams
D i a r e ' i l l u s t r a t e d i n F i g u r e s 4.5 -— 4 .10 . s t a r t i n g w i t h

“DZ“ in Figure 4 .5 .

1. D3 :s_diagram(extend(T2)) (c . f . Fact 3 .7)
For an illustration of D3 see Figure 4 .6 .

2. D‘4 results from D3 by taking the disjoint union with

diagram(extend(T1)). (Whenever the nodes are unique,

32

we will omit the index T1 resp. T2.) D4 results from
D"4 by a d d i t i o n a l edges from all nodes x of

diagramtextendflr1)) into n2n2 labelled by the colimit

injection from H(x) = D4(x) into H(n2) = D4(n2n2).

S i n c e the col im it of D3 is easily s h o w n to be a cocone
o f D4 by taking a s additional cocone injections the

composition of the injections into H(n2) and the

colimit injection from H(n2) into the colimit of 0 3 '

L e m m a 1 applies because D3 is a _ s u b d i a g r a m of D4 and

there is a path from every node in D4-D3 into n2n2.

(c.f. Figure 4.7)

3. T h e next step consists of merging actual parameter

nodes from T 1 with formal_parameter nodes from T 2 . Let

IB = base0r1)-= base(n2,¢,A0). Since D4(n2n2) is an

application Object for T 1 , the colimit injection from
D4(bT1) into D4(n2n2) is an inclusion for every beB.
Furthermore, since D4(bT1) = D4(bn2) and the morphism

from D4(bn2) into D4(n2n2) is an inclusion as well,

the colimit injections from D4(b‚„) and D4(bn2) into

the colimit of D4 must be identical for b at _|_ . The
same argument applies to D4(iT1) and D4(iT2). D5
results from D4 by successive appliéations of Lemma 4
thereby eliminating all h r l for beB.
Note: Since all node names in D5 are unique, we will

omit the indices Tl resp.'r2 in the following.
(c.f. Figure 4 .8)

D 6 results f r o m D S by eliminating n2n2 and all

incoming edges. Lemma 3 justifies this step, since

9 5 (n 2 n 2) is a c o l i m i t o f t h e s u b d i a g r a m o f D5

determined by all nodes x having a path to " 2 n 2 - this

subdiagram is identical to diagramtextendfl'ln w.r.t.
the renaming of nodes given by x for “n2;

33

5. Let b be a node maximal w.r.t. A0 such that b n z is in
D 6 ' T h e edge from br12 to f2(b) is the only outgoing

edge for b“2 in D 6 ' There is an incoming edge from
node x n l if f1(x) = b. There is at least one incoming

edge from _|_ resp. nodes xn2 for x e basetb, ¢,A0). D 7
results from D6 by eliminating tan2 according to Lemma
2. 1').7 results from I)“.7 by deleting the newly added
edges from nodes with index n2 to f2(b). For such
nodes "nZ' the D".7 edge label from xn2 to f 2 (b) is

given by the composition of the inclusion H(x) into

t) and h 2 b ' and due to the natural transformation

property of hz, it is identical to the composition of

h 2 x a n d t h e i n c l u s i o n H(f2(b)) == D’7(f2(b)) i n t o

H(£2(b)) I- D‘7 (f2 (b)) . Thus, the colimits of D’.7 and

D7 are identical.

(c.f. Figure 4 .9)

6 . S i n c e e i t h e r t h e r e i s a m a x i m a l n o d e b n 2 i n D 7 a s

above or t h e r e i s no n o d e w i t h i n d e x n 2 i n D 7 , "8

results from D7 by successively applying Lemma 2 and

eliminating all nodes with index n2 according to step

5.

(c . f . Figure 4 .10)

7. D 8 i s e x a c t l y diagra_m(extend(T)). T h e c o l i m i t

preserving transformations from D2 to D8 imply that
basem‘z) = base(extend(T)) and application-objectt)

= application-object(extend(T). The rest follows from

Fact 3 .7 , com-pleting the proof of Fact 4.4

As a result of Fact 4.4 we can define the composition of direct

application terms.

34

Definition 4.3 [composition of direct application terms]

L e t H , T 1 , T 2 , T a s in F a c t 4 .4 . ' r i s c a l l e d t h e

composition of T1 and T2 and is denoted by T10T2.

Definition 4. 4 [respecting direct application composition]
The evaluation function evalH of a hierarchy H respggtg

direct application composition iff for all T;T , such that T

<>T’ is defined,

evalH (T") _ = e v a 1 H (T ° T ")

holds.

Fact 4.5

IfIIi£;a hierarchy with evaluation function‘evalH respec-

ting direct application composition then direct application

composition is associative, i.e.

‘T1°T2’°T3 = T1° (T2-°T3’

for all T i such that T10T2 and T 2 0 T 3 are defined.

Proof:

Let Ti = ni{(m.him.fi(m)) lm 2M1} for i=1.2.3.

(T1°T2)°T3 ” “1{‘m'h3f2(f1(m))°‘h2f1(m)°h1m" f a f f s l f m m ”

T1°‘T2°T3’ "" “1“m'Ü‘3f2)f1(m)°hzf1(m)’°h1m" f 3°f 2‘f1(mml'
m E M 1 (2 ' 3) }

Since composition of morphisms and functions is associative,

M(1'2)3 =-M1(2r3) remains to be shown.

M1(2'3) = M1 u ((M2 n (M3 u base(n2,¢,A0)) n base(n1,¢,Ao))

M1 u (M2 n base(nl,¢,AO))

u (M3 n base(n2,¢,AO) n base(n1,¢,A0))

[since base(n1‚c|>,A0) - base(n2,¢,AO) 5 M1]
M 1 L1 (M 2 n base(n1‚4>‚A0)) u (M3 n base(n1,¢,A0))

”(1,2)3-

35

5.Generali zed appl icat ions

5.1. Indiregt applications

In Definition 3.1 parameter sets and direct parameter sets were

introduced. As discussed in Sections 3.3 and 4 we have the

following situation in the case of direct parameter sets: every

node that is used by the node n is either a formal parameter and

is therefore actualized by a corresponding actual parameter. or

it.is not affected by the application at all, i.e. it is used by

the application object as well. However, for an arbitrary

parameter set M a third case may arise. If n uses a node m which _

is not in the parameter set but uses itself a parameter node m"

in M, m ia between n and M in A0. Since no actual parameter is

associated to m and setting f(m) = m m a y be meaningless w e

exclude the nodes between n and M from the domain of E and h in
generalizing Fact 3 .2 :

Fact 5.1

Let Remo + E be a hierarchy, neo, M a parameter set for n, M’

= between(n‚M,A0). Let

f: base(n,M’,A0) + A0

.be an appropriate order morphism and

h: intoc ° H l b a s e (n ‚ M ' , A o) + intoC o H 0 f
a natural transformation with f (x) = = x and h " = i d H (x) for

all xé M. Then for all x‚y e o-M’ with x<y<n the diagram
hy

H(y) - - -+ H (f (y))

h x

H (x) —--+ H (f (x))

commutes in C .

23995 For x‚y e O-M’ x<y<n implies x,y s base(n,M’,A0) and the

c o m m u t a t i v i t y o f t h e d i a g r a m r e p r e s e n t s t h e n a t u r a l

36

transformation property o f h.

Since f and h o f Fact 5.1 are determined by giving their values

for m e M it suffices to supply f(M) and h(M)‚ (c.f. Figure 5.1).

Definition 5.1 [indirect application term]
Let.H,n,M and f,h be a s in_Fact SQL T h e n

T = n{(m,hm‚ f(m))| m e M }

is an indirect application term.

An example o f a n indirect application term is given in Figure

5 . 2 - a .

I n specification languages the situation o f w h a t we call an

indirect application term is usually not considered explicitly.

T h e parts of a parameterized specification corresponding to the

nodes abowe a parameter set are not viewed to be hierarchically

structured; instead they are combined into a single object as are

a l l f o r m a l r e s p . a c t u a l p a r a m e t e r s . T h e s e m a n t i c s o f t h e

application is the pushout o f the resulting diagram (eqh [BG

80] , [EKTWW 80] , [Eh 82], [Eh 81]).

H e r e w e c h o o s e a d i f f e r e n t a p p r o a c h . ' r h e s t r u c t u r e b e t w e e n t h e

nodes above the parameter s e t should be preserved in the result

o f the application.'rhis can be achieved by providing an actual

p a r a m e t e r fo r e v e r y m a b e t w e e n (n ‚ M ‚ A O) . F a c t 5.2 s h o w s h o w a

fitting actual parameter can be found for such a minimal m.

Fact 5.2

L e t T b e a n application term a s in Def. &J„ T h e n for all

minimal m &: between(n,M,A0)
Tn: = 1n{(m’,hm„f(m’)) | m’e B1 n base(m‚A0)}

is a direct application term.

3529;: Because o f the minimality o f m , M’==P1r1base(m‚AO) isza

direct parameter s e t for m and the restrictions o f h and f to

3 7

n 1

n 2

"3

h m 1

m l - “’ f (m l)

\ hmz \
m 2 - " f (m z)

/ hm3 \ /m3 -------------'::::::: ***** * f(ma)

bl \ /\J

Figure 5 .1 : f and h for the non—direct parameter set

M = {ml,m2,m3} of n (c.f. Fact 5.1)

(a) T =

(b) T n 2 =

T n 3 :

(°) T { n 2 , n 3 }

(d) directi(T)

w h e r e :

n{(mi,h f(mi))lie{1,2,3}}m i '

n2{(mi'hmivf(mi))|i${1‚2}}

n3{(mi,hmi,f(mi))|i€{1,3}}

n { (m i r h m i l f (m i)) I i e { 1 l 2 1 3 }

u {(ni.hgi.eva1H(Tni))Iie{2,3}}

n{(mi,hmi,f(mi))|i€{1,2,3}}
U { (n i , h 6 i , e v a l H (T n i)) | i € { l , 2 ' 3 } }

n1{(mi,hmi,f(mi))Ii€{1,2,3}}
u {(ni,hgi,eva1H(Tni))|ie{2,3}}

Figure 5 .2 : Application t e r m s for f and h as given in Figure

5 . 1 , i l l u s t r a t i n q D e f . 5.1 (a) , F a c t 5.2 (b) , F a c t

5.3 (c) , a n d D e f . 5.4 (d) .

39

M" obviously fulfill the conditions of Fact 3JL

Examples illustrating Fact 5.2 are given in Figure 5.2—b.

If h is closed under direct applications T m ’ may be evaluated to

a fitting actual parameter for m .

Fact 5.3

L e t T f r m b e a s b e f o r e a n d H b e c l o s e d u n d e r d i r e c t

applications. Let M’ be a set o f minimal elements in the set

between(n,M,A0). T h e n
TM’: n{(m‚hm‚f(m)) I m e M } u {(m‚h;l‚evalH(Tm)) I meM’}

is an indirect application term where

hi: H (m) + application-objectflrm)
is the colimit injection.

Proofi Since all elements in M’ are minimal, M u M’ is a
parameter set for n. Suppose M’ = {m}. Extending f by sending

In to evalHCPm) is an appropriate order morphism since {xeol
x<m} = base(m‚4>‚A0)‚ f(base(m,¢,AO)) g base(Tm)‚ and evalH is

a n evaluation function for H. Furthermore since ha is a

colimit injection for diagramflrm) and the application object

o f ' T m has inclusions a s colimit injections for all m’e

basecrm), extending h by H6 yields a natural transformation
fulfilling the conditions of Fact 5L1. The general case with

M’ containing more than one element f o l l o w s by an easy

induction (NI IM’I.

An example illustrating Fact 5.3 is given in Figure 5.2—c.

Fact 5.3 allows the definition o f a function directi taking

indirect application terms to direct application terms.

Definition 5.2 [directi]

Let H;P‚‘PM b e as in Fact 55% T h e function
directi: {T l T is indirect appi. term of H} +

40

{T I T is direct appl. term of H}
is defined by:

directiCP):=

g; T is direct application term

then T

else lg}; M’ = {m | m is minimal in betweerxn‚M‚AO)} in
directi(TM‚)

As an example the direct application term direct-101‘) for

an indirect application term T is given in Figure 5.2—d.

The semantics of any indirect application term T is the semantics
of directi(T).'Thus, the hierarchical structure of the nodes
b e t w e e n n and M is m i r r o r e d b y t h e c o r r e s p o n d i n g a c t u a l

parameters in directi(T). On the other hand, this approach is

compatible with the simpler semantics when viewing the objects as

non-hierarchical:

Fact 5.4

Le t f i tmea hierarchy closed under direct applications‚T‘an

indirect application term. Let diagram(T) be the C-diagram

defined as in Def. 3.3. Then:

H(evalH(directi(T))) E colim(diagram(T)).

Proof: For every indirect application term T as in Definition 5.1

let levels(T) be the depth o f recursion in determining
directi(T). We prove 5.4 by induction on k = levels(T).

hfih Since between(n,M,AO) is empty and since H is an
evaluation function, we have directi(T) = T and
H(evalH(T)) = application-object(T) E colim(diagram(T)).

Mk S u p p o s e t h a t t h e p r o p o s i t i o n is p r o v e d for e v e r y

indirect application term T with levels(T) = k .

I_<_j—_1_g_ Let T be an indirect application term with levels(T) =

41

k + 1 ‚ and let T M " b e a s in Definition 5.2. T h u s

HtevalH(directi(T))) = H(evalH(directi(TMa)))
by the definition o f directi. Furthermore

H (e v a l H (d i r e c t i (T M ‚))) & c o l i m (d i a g r a m (T M ‚))

b y t h e i n d u c t i o n h y p o t h e s i s . W e c o n s i d e r n" =
diagram(TM‚) and D = diagramCPL.If results from D by
adding for every meM’

- nodes mrl a n d e v a l H (T m) , a n d a n edge b e t w e e n t h e m ,

labelled by H(m)‚ H(evalH(Tm))‚ hr}, respectively,

w h e r e
T m and hr; a r e a s in Fact 5.3.

n ' m n to n n ,

for :(e base(m,¢,AO), 5r 6 base(evalHCTm),¢,AO),

- edges from xn to m and y to evalH(Tm)

labelled by the respective inclusions.
D’ m a y be transformed into D" by successively applying

L e m m a 3 o f Fact 4.4(4), thereby deleting the nodes
evalH(Tm) for m s M1. IW m a y be transformed into D ‘by

s u c c e s s i v e l y a p p l y i n g L e m m a 2 o f Pac t 4.4(4), t he reby

deleting the nodes mr1 for m e M’. Thus,
colim(diagram0PM‚) & colim(diaqram(T)):

completing the inductive step.

As an example Figure'5.3 s h o w s the application d i a g r a m s for a n

i n d i r e c t a p p l i c a t i o n t e r m T a n d i t s c o r r e s p o n d i n g d i r e c t

application term directi(T).

A s in Section 4 we are interested in hierarchies w h e r e every

indirect application term c a n b e evaluated t o a node in that

hierarchy. The transformation of indirect to direct application

terms immediately implies:

Fact 5.5

I f a hierarchy H is closed under direct applications then H

is closed under indirect applications as well.

P r o o f : F a c t 5.3 and Definition 5.2.

42

Ä

‚« ” \
., ’ /fl’\ \

/ / / n o u \ \

‚« ! / \ \

/ \ \
./ \

/ \ \
/ \ \

—————————————————————— + eva1H(Tn1)

/ \ “52 b /
n z n “ + e v a l H (T n 2)

A

hfi3

n3n —--———-—-—— ————————— + eva1H(Tn3)

\ ?

N . . — _ \

b hml

m l n “““““““““““““““““““ + f (m l)

hm2 ‚\ b
m z n - + f (m 2)

\/
—-diagram(T)

Figure 5 .3 : Application diagrams with application object c for

the t e r m s T and directi(T) as g i v e n in Figure 5.2

(c.f. Fact 5 .4)

43

5.2 Application terms and their evaluation

So far we have introduced direct and indirect application terms.

Besides calling every node neo an application term as well, we

w i l l g e n e r a l i z e t h e n o t i o n o f a p p l i c a t i o n t e r m in t w o

directions:

1. In an application term T = n{„.} w h e r e n is a node in O , n.

could be substituted by an application term denoting n. By

iterating this rule a chain of parameter actualization clauses

can.be:generated yielding application terms of the fora’ =

n'f...}...{...}.

2. The observation made above for n applies to formal and actual

parameter nodes m and f (m) a s well. Substituting application

terms denoting m resp. f(m) yields an application term of the

fornl n{...‚(m{...},11fm'{...}),...}.

In both cases the semantics of an application term is defined by

the underlying simpler terms and eventually by s o m e direct

application term.

Definition 5.3 [application term]
Let H be a hierarchy closed unde r direct applications.

“Application term” of H enui the function ;ÄÄEESEl taking

application t e r m s to direct application t e r m s are defined

inductively by 1 . -4 . below. T h e extension o f the evaluation

function evalH to all application terms is also denoted by

Elfin and is defined by
e v a l H (T) : = e v a l H (d i r e c t)

for every application term T.

1. Every node neo is an application term with

d i r e c t (n) : = n.

(As before, evalH(n) = n).

44

2. E v e r y d i r e c t o r i n d i r e c t a p p l i c a t i o n t e r m T is a n

application term with

direct(T) := directi(T)-

3. I f T,T" a r e application terms, 1150“, T " = n{t’l,...‚t’r} and

e v a l H (T) = r1 t h e n

T" = T{t’l,...,t’r}
is a n application term with

direct(T") := direct(T) 0 direct(evalH(T){t'1‚..‚t’r})
or equivalently direct(T") := direct(T) 0 direct(T").

4. I f T;r1;r2 are application terms,

T - = 1 1 { t 1 ‚ . . . ‚ (m 1 ‚ h m 1 ‚ m 2) , . u ‚ t r }

and evalHCTi) = m i for i=1‚2, then

T " = n { t 1 f o o c ' (T l ' h m l ' T 2) ' I o | ' t r }

i s an application term with

directlT"):=

direct(n{t1‚.„‚(evalH(T1),hm1,evalH(T2))‚„.‚tr}).

Defining the semantics of arbitrary application terms by reducing

them to direct application terms allows a generalization of Fact

5 . 5 :

Fact 5.6

I f H is closed under direct applications it is closed under

all applications.

Proof: Fact 5.5 and Definition 5.3.

T h u s it is sufficient to guarantee that a hierarchy is closed

under direct applications. Therefore, w h e n constructing the

closure o f a hierarchy only direct aplication t e r m s must be

considered.

4 5

6 . Extension and closur e o f hierarchies

6 . 1 Canonical closure

Provided that all the necessary application objects exist, a

hierarchy H could be transformed into a hierarchy H" that is

closed under direct and thus under all applications by enlarging

the underlying appropriate order by new nodes and labelling them

with the corresponding application objects. Enlarging a hierarchy‘

H by a new node n with label c requires also a set o f nodes

determining the base of n.

Qgfiinition 6;; [extension of a hierarchy]
Let H: A0 + Ö be a hierarchy, n40 , B a finite nonemp ty

subse t o f 0 , e t c s u c h t h a t for e v e r y m e R t h e r e is a n

inclusion H(m)‘+ c. Then

e n t e e ‚ (n ‚ B , c))

denotes the hierarchy H’: AO" + 5 resulting from H by adding

n to AO such that

- vmeo. m<’n EEE } m’eB. m<m
— VmeO. n *“ m

"

and setting H’(n) = c.

I f M is a set o f triples (n‚B,c) such that enter(H‚(n‚B‚c)) is

defined for all triples in M euui all the nodes n in 34 are

pairwise distinct, w e will use the notation enter(HLM) for

extending the hierarchy H by a set of new nodes .

Since we are interested in constructing hierarchies step by step

we will distinguish the nodes of a hierarchy entered implicitly

a s a p p l i c a t i o n n o d e s f r o m t h e o t h e r n o d e s : t h e l a t t e r o n e s a r e

called extension nodes. This allows the definition of a special

type of hierarchy called canonically closed hierarchy.

Definition 6.2 [canonically closed]
(1) A hierarchy H: ({i},¢tl) + Ö is a canonically closed

46

hierarchy with extension set E = {i}.
E1 is denoted by initial—hierarchy(j‚c) for H(i) = c.

(2) L e t l r ü A0“ + € be a canonically closed hierarchy with
I

extension set E“, l ! = enter UPU(new,B,c)L

T h e n H: A0 f 5 is a canonically closed hierarchy with

extension set E = E" u {new} where H is defined

inductively:

i=0 : A0 := @
H o := H _

'i>0: A i := {TIT = n{(m‚hm,f(m)lmsM} is a reduced direct
application term in H i — l

and n e E

229 i=l => new e (f(M) u {n})

311g i>1 => {"T"'|T’eAi_1} 11 EW!) == <>}
:= enter(Hi_l‚{(“r“‚basevr)‚application-object(T))

I TeAi})

H is denoted by closure (H’)..

525.9. gg.-‚9
Every node in a canonically closed hierarchy is either an

extension node or a node of the form "n{„„}“ such that
— n is an extension node ,
— n{„.} is a reduced direct application term in H‚_

— H("n{.„}“) = application-object(n{.„})

— base("n{...}"‚4>‚A0) = base(n{...}).

Proof: Immediately from Def. 6 .2 . '

We will show that a canonically closed hierarchy is indeed closed

under direct applications. Furthermore, its evaluation function

r e s p e c t s c o m p o s i t i o n o f d i r e c t a p p l i c a t i o n t e r m s . T h u s ,

application term composition is associative according to Fact

4 .5 .

47

Fact 6.1

Let H be a canonically closed hierarchy with extension set R.

Then evalH defined by:

_i£ T1 is trivial then n
else _i_g_ nsE then “T1"
else lg; n -"T2" in

evalH (T2 ° T1)

eva1H(T) ==- let T1 = reduce (T), T1 =- n{...}_i_l1

is an evaluation function for direct application terms of H
respecting composition of direct application terms.

2529;}‘WQ first show that evalH is an evaluation function. Let
T = n{(m,hm‚f(m)) I msM} be a direct application term of H.

The definition of evalH implies evalH(T) = evalH(reduce(T)).

B e c a u s e o f F a c t 3.6 w e c a n t h e r e f o r e a s s u m e t h a t T is

reduced. If T = n{} is trivial, evalH(n) = n and Fact 3.4

completes the proof. Thus, let T be reduced and non-trivial.

T w o c a s e s a r i s e : (1) n e E and (2) n d E w h e r e E is t h e

extension set of H.

(l) S u p p o s e nsE. W e w i l l s h o w t h a t "T"eo‚. H("T") =

application-object(T) and base("T"‚d>‚A0) = base(T). The

rest follows from evalH(T)="T"o
Since T is non-trivial, n cannot be the m i n i m u m e l e m e n t
o f A0. Therefore, there mus t : be some canonically closed
subhierarchy H":AO" + Ö in the construction of H with

n40" , B gie" for Babase(n,¢,A0), and an inclusion from
H"(b) into c for every beB and c=H(n), such that H’ =

enter(H"‚(n,B,c)) is a subhierarchy o f H. .
U „ l) I f f(M) g 0', then T is a reduced direct

application term of H"and in the inductive step of
c l o s i n g H ’ i n D e f . 6 . 2 , T 6 A1. T h u s ,

enter(H’,("T",base(T), application—object(T))) is a

subhierarchy of H.

48

(1.2) If f(M) é 0’, there must be some canonically
closed subhierarchy Hf of H , such that

— H” is a subhierarchy o f H i
— f(M) i O i

— Hi’ = enter(Hi‚(new‚B’_‚c')) is a subhierarchy

of H

— H 1 . the canonically closed hierarchy o f Hi, is

a subhierarchy of H

- f(M) g 01.
L e t A 1 , i (resp. H 1 , i ’ 0 1 , i) b e the sets o f direct

a p p l i c a t i o n t e r m s (r e s p . h i e r a r c h i e s , s e t s cm

nodes) generated in the process of closing H1"

according to Def. 6.2. Since f(M) & oa, f(M) 9
0 1 , and 01 g 0 c 0 1 , 1 - 9 „. g_01 there must be°

1,0 —
a minimal i such that f(M) g o 1 , i - 1 ' T is a reduced

direct application term in H 1 ‚ i - 1 ' We show that T i

e A1 i' concluding that enter(H’,("T", base(T)‚
'

application-object(T))) is a subhierarchy of H. If

i=1‚ then n e w s f(M) since O 1 o = O i u {new};
'

thus T e A1 , .1 ' If i>1, we have f(M) n {"T""| T"
8A1,1-1 } * ** Since 01,1-1 = O1.1-2 U { “T " ' l

T’ e Al'i_l} and f(M) g 0 1 . 1 - 1 ' but f(M) g °1‚i-2
by the minimality of i. Thus, T e A 1 ‚ i '

(2) Suppose n 4 E. Because of Fact 6.0, n = firm for some
reduced direct application term of the form'r’==n’{„.}.

Since both T and T“ are direct application terms in H and
e v a l H (T ’) = n, the preconditions of Fact 4.4 are ful-

filled and T " := T " o T i s a direct application term in H

with application-object") = application-object(T) and
base(T") = base(T). Since evalH(T) = evalH(T") we o n l y

have to show that evalH yields the proper value for T".
But this follows from (1), since n’ e E according to Fact

6.0, completing t h e proof that evalH is a n evaluation

f u n c t i o n .

49

To show that evalH respects direct application composition we

obse rve t h a t r e d u c e (T o T’) = r e d u c e (r e d u c e (T) o
reduce(T’)) due to Facts 3.6 and 4 .4 . Since evalH(T) =
evalH(reduce(T))‚ it suffices to show e v a l T o T’) =
evalHflT‘) for reduced direct application terms T and T’. If T

is trivial. T O T“ = T“ and thus evalH(T o T')—= evalH(T').
If T is non-trivial, let T = n{.„}. T ’ = nf{„.}. If n c E
then evalH(T) = “T" and eva1H(T') = eva1H(T 0 T “) since n“ =
“T". Otherwise, if n a E then n = "T2“ for some reduced
nontrivial direct application term T2. 'Thus evalH(T) «-

eva1H(T2°“T2"{.„}) = n3 with either n3 c E or n3 I “n4{.„}"

with "4 e F.. If n3 c E, the above argumentation for the case
that T is trivial applies; if n3 = “ n 4 { . „ } " ‚ the

argumentation for‘the case t h a t T is non—tr ivial and n e E is

applicable, thereby completing the proof of Fact 6.1.

Fact 6.2 _
A canonically closed hierarchy is closed under direct

applications.

Proof: Fact 4 .3 . and F a c t 6 .1 .

6.2 Prefix hierarchies

I n Fact 4.1 an example w a s given showing that not every hierarchy

H is application complete and thus a canonical closure for H may

not exist. Here we w i l l investigate conditions under which a

hierarchy can be closed. Recalling the definition of application

object (Def. 3.3) o n e condition is essential: the existence of

colimits for specific diagrams with certain colimit injections

being inclusions.

Fact 6 .3 .

Let H: A0 + Ö be a hierarchy, Mgp.-Then restricting H to the

suborder AO' with the nodeset being the union of base(m‚AO)

50

for m e M yields again a hierarchy, called subhierarchy of}!

and M and denoted by HIM '

Proof: immediately from Def. 2.5 and 3.1.

Definition 6.3 [subhierarchy—complete]
Let H: A0 + Ö be a hierarchy. H is subhierarchy-complete iff

for all finite M20 there is a colimit of H I M that is a
c o l i m i t o f intoC o H I M a s well.

If a hierarchy H is subhierarchy-complete, a direct application

diagram can b e transformed into a pushout diagram d u e to the

following fact.

Fact 6.4

Let T = n{(m,hm‚ f (m)) I meM} be a direct application term
in H: A0 + Ö with H subhierarchy—complete.

formal(T) == H l b a s e (n ‚ © : A 0)
actua1(T) == H | f (b a s e (n , ¢ , A O))

Then:
(1) H(n) is a cocone object over intoc ° formal(T) and the

unique morphism from some colimit of intoC o formal(T)

to cocone H(n) is an inclusion.

(2) T h e c o l imit object o f actual(T) is a cocone over intoC o

formal(T).

Proof: .
(1) Since H is a hierarchy, H(n) is a cocone oject over

formal(T) and over intoC 0 formal(T) as well. Since H is

subhierarchy—complete, there is a c such that c is a
colimit object of both formal(T) and intoC o formal(T).

Thus, the unique morphism c + H(n) must be an inclusion.

(2) Let<3==colimtactualCT)L T h e n the cocone injections im

for intoC ° formal(T) are given by im = inclm o h wherem ,

m € base(n,$‚A0) and inclm is the inclusion f(m) G é - c .

Fact 6.5 s h o w s how the colimit o f a direct application diagram

5 1

corresponds to a pushout in C.

Fact 6.5

Let T , H as before. Let F resp. A be the colimits of

formal) resp. actuaiiT). Then

c n

H(n) -----------> c

he CA
h A

F -—------———> A

is a pushout diagram in C with colimit-to-cocone morphisms hF

and hA iff c is a colimit object for the application diagram

of T .

2392;: Let D 1 = diagram(T). W e show that the pushout diagram

results from D1 by colimit preserving transformations (c.f.

Figure 6.1 where an illustration for these transformations is

given).

l. According to Fact 6 .4 . and L e m m a 2 of Fact 4.4(4), D 1 m a y

be transformed into EE by adding a new node nF labelled

with F; new edges from m into nF for m e M and f r o m nFn
into nn labelled by the respective inclusions.£3ince all

D1 edges are labelled by the composition of the inclusions

into “ F resp. nF into nn, D 2 results from Di by deleting

all D1 edges into nn.

2. L e m m a 3 of Fact 4 .4 (4) a l l o w s to transform D Z into D3 by

adding a new node nA labelled with A and edges from x e
base(T) into nA labelled by inclusions since actual(T) =

H I b a s e (T) °

3. Since for every node in D2 other than n there is a pathn

52

n
nn:H(n) —' —- —- —-— -- —— -— -- — - - —-> C

A +
hF ' ICA

|
U “A |

a F ______________________________ + n A = A

L\ hm
m l n ““““““““““““““““““““““ + f (m l)

Figure 6 .1 : T h e application diagram of Figure 3.3 after adding

t h e nodes “ F ' " A ! t h e e d g e f r o m n F t o n A , a n d

colimit C according to the proof of Fact 6.5.

53

t o nA or nF and for any path morphisnlpr into nF and path

morphism pA into nA w e have hA<>p@.= pA‚ the colimit of

D2 is a cocone of D3 resulting from D2 by adding a new
edge from nF to nA labelled with hA. According to Lemma 1
of Fact 4.4(4) the colimits of D2 and D3 are identical.

Let I)4 be the subdiagram of D3 containing only the nodes
nn, nF, nA and the edges from nF to nn and nF t o nA. Let

(c‚{cn‚ CF, CA}) be a colimit of n3. For every node x s
D3-D4 there is a path in D3 from x to "A' and since all

such path morphisms from 3: to “A must be identical let c;
be the composition of that path morphism p with CA, idh

c; - cA O p. If there is a path from x to nn with

morphism pxn it must go through nF and so there must also

be a path from x to nA going through nF. Thus, p and p x n

decompose into p = hA o pxF and P x n = h F ° p x F '

respectively, where p x F is the unique path morphism from x
’

to “E" Since CA 0 hA = cn o hF w e have cx = CA 0 hA o P x F

= c“ O h F O p x F . ' r h u s ‚ (c‚{cn‚cF‚cA} u {cx lxeD3-D4}) is a
cocone of D3, and due to L e m m a 1 of Fact 4 .4 (4) I)3 and D4

have identical colimits. D4 is exactly the given pushout

diagram, thereby completing the proof of Fact 6 .5 .

T h e proof of Fact 6.5 exhibits a condition an appropriate

category must fulfill so that the colimit object for T becomes an

application object for T.

Definition 6.4 [mixed pushouts]
An appropriate category (C, Ö) has mixed pushouts iff for

every diagram of the form
' C

i
A - - - - - - > B

a pushout diagram

54

e x i s t s .

Fact 6 . 6

L e t H : A0 + C be subhierarchy—complete. I f (C , C) has mixed

pushouts t hen H is direct application complete.

Proof: For a direct application term T consider the pushout

d i a g r a m o f F a c t 6 .5 . A c c o r d i n g t o F a c t 6.4, h F is a n

inclusion. Since (C , C) has mixed pushouts, there exists a c

such that C A is a n inclusion a s well. Sinced actual(T) =
H I b a s e (T) ' cA yields an inclusion as colimit injection for

diagramcr) for every x e basecr) according to Fact 6.5.‘Thus,

c is an application Object for T.

Subhierarchy-completeness of H is a necessary condition in Fact

6 .6 : the hierarchy given :h1 Fact 4„1 does not fulfill this

c o n d i t i o n a l t h o u g h (S E T , S § T) h a s m i x e d p u s h o u t s . H o w e v e r ,

consider the hierarchy H’: A0 + SET with A0 a s in Fact 4.1 and

H’(i) = @, H’(E) = {E.a}, H’(F) {F.b}, H’(A) = {A.a}, H’(P) =
{E.a,F.b}. H ’ results from H by prefixing each element o f a set

with the name of the node where the element is introduced. H’ is

subhierarchy-complete anna thus direct application complete

according to F a c t 64% T h i s prefixing method can be generalized

to other categories as well.

Definition 6.5 [prefix function]
L e t (C , 5) be an appropriate category, N the s e t o f all

possible nodes in a hierarchy. A function

p: N x Z lc l x |C| + |C|
is a _prefix function iff there is a function p“ w i t h the

same functionality such that for all finite hierarchies H: A0
+ C where each node label for a node n is of the form

1

5 5

p(n‚{H(b)| bebase(n‚A0)}‚ c)
the following holds:

(1) V n e N-o. Vce [Öl . c is a cocone object o f H =>

— c and p(n‚H(0)‚c) are isomorphic in C
- p(n,H(0)‚c) is a cocone object o f H

— p'1(n‚H(0).-p(n‚flco>‚cn = c
(2) T h e r e is a c o l i m i t o f H that is a colimit o f intoco H a s

well.

T h e first condition in the above definition guarantees that a
prefix f u n c t i o n p d o e s n o t change t h e i n f o r m a t i o n in a
hierarchy; Instead of labelling a node n with base nodes‚B by«c,
n can always be labelled by c" = p(n‚H(B),c) since p_l(n‚H(B)‚c’)

yields the original label c. T h e second condition i s crucial

since it is a basis for subhierarchy-completeness.

ninition 6.6 [prefix hierarchy]
H : A0 + Ö is a prefix hierarchy with prefix p iff p is a

prefix function and every node n in 0 is labelled with

p(n,H(base(n,AO))‚c) for some c.

Fact 6;7

Every prefix hierarchy is subhierarchy—complete.

25992: L e t M be a finite set, M g o . S i n c e A0 is an appropriate

order, every node m e M has only finitely many predecessors.

Thus, M’ = {m ’ lm ’ e base(m‚A0) for some m e M} is finite.
Since H I M ’ is a finite hierarchy, according to Definition 6.5

a colimit o f H I M ’ exists that is a c o l i m i t o f intoc o H a s

w e l l .

In Definitions 6.1 and 6.2 extension and closure of a hierarchy

were introduced. I n the presence o f a category with mixed

pushouts and ea prefix function, Facts 6.6 and 6.7 suggest a

slight modification so that the canonical closure of a hierarchy

always exists.

56

D e f i n i t i o n 6 . 7

L e t H b e a p r e f i x h i e r a r c h y in a c a t e g o r y w i t h m i x e d

p u s h o u t s .

(1) initial—hierarchyn(|;c) denotes:

(2)

(3)

F a c t 6 . 8

initial-hierarchy(_|_,p(j_,¢,c)).
e n t e r ? (H , (n , B , c)) denotes enter(H‚(n‚B‚p(n‚H(B)‚c))).

c l o s u r e p m) d e n o t e s t he . c a n o n i c a l c l o s u r e o f ‚H

analogously to Def. 6.2 but where every ”enter” is
&replaced by ’enterp .

For every prefix hierarchy H in a Category with mixed"

pushouts closurep(H) exists and is canonically closed.

Proof: Definitions 6.2 and 6.7, Facts 6.1 and 6.7.

57

7. Parameterization—by-use in specification languages

In this section w e will g i v e an example what a language with

parameterization-by-use might look like. In 7.1 a general

hierarchy specification language is introduced in such a way that

only the details concerning the concepts of hierarchy and

parameterization are given, and a formal semantics for this

language is defined. In 7.2 an instance of this language is

presented by providing all parts left open in 7.1, yielding a

language for the specification o E signature hierarchies. In 7.3

we show how canonically closed hierarchies lead to non-proliferic

semantics of specification languages.

7.1 A genegal hierarchy specification_language

The hierarchy specification language is suitable for the speci-

fication of hierarchies in an arbitrary appropriate category

(C‚Ö) with mixed pushouts and a hierarchy prefix function p. We

will assume the existence of a semantic function

Sth: something + SOMETHING

where.something is a syntactic category and S O M E T H I N G is some

particular domain, and another function

build—object: 2ICI x SOMETHING + ICI
that builds hierarchically structured objects such that

VbeB. b¢+ build-object(B,s)

Since we assume an appropriate category with mixed pushouts and

a hierarchy prefix function p the semantics of the language will

use only prefix hierarchies H. Thus, Fact 6.8 guarantees that the

candnical closure closurepm) exists. Therefore, we may use the

f u n c t i o n e v a l H o f F a c t 6.1 e x t e n d e d b y D e f i n i t i o n 5.3 a s

evaluation function for application terms in H .

A hierarchy specification consists ofaalist.of specifications

all but the first one having a use clause denoting a list of

58

objects as base of the new object to be generated. The last part

o f a h i e r a r c h y s p e c i f i c a t i o n i s e i t h e r a node n a m e o r a n

application term. For simplicity, we do not go into details abou t
t h e s y n t a c t i c a l fofm o f a p p l i c a t i o n t e r m s , i n s t e a d t h e

mathematical notation as introduced in the previous chapters will

be used. '

1. Syntactic categories

hier—spec : hierarchy-specifications

decl : declarations

use—list : lists-of-application-terms

application-term : application-terms

n : node-names

sth : _ s o m e t h i n g (s u i t a b l e a s a r g u m e n t t o tme

semantic function Sth)

2. Syntax

hier—spec ::= object n sth endobject decl

decl === object n = 222 use—list sth endobject decl I
application—term

use-list === application-term use-list |
application-term

3 . Values

n: hierarchies

M: set-of—nodes (in a hierarchy)

4. Semantic functions

P: hierarchy—specifications +.hierarchies

D: declarations + hierarchies + hierarchies

U: lists-of-application-terms + hierarchies + set-of—nodes
A: application-terms + hierarchies + hierarchies

59

5. Semantic equagions

P [object n = sth endobject decl] I
Lg; s = Sth [sth] 32
$25 c = build-object(¢,s) ig
Egg n - initial-hierarchyp(n,c) 33

D [decl] n

D [application-term]n - A[app11cation-term]n

D [object n I ‘ ggg use-list sth endobject decl]n -
let = U[use-list] n 35
335 = {n(m) ImeM} _i__r_1_

Sth [sth] 32
= build-object(B‚s) ig

& = enterp(n‚(n‚M‚c)) ig

H (
I
)

r
l
"

|_
;

(D (
'
1
'

3
-5

0
m

I
I

E
‘

I
n

H 0 ff " = closurep(n’) in
D[decl] n"

U[app1ication—term]n =
lg; fizAO + E 12

333 n = eva1n(application-term) ig

base(n‚A0)

U [a p p l i c a t i o n - t e r m use—1ist]n =

lg; n:AO + Ö 12

ESE n = evaln(application—term) 32

ESE M base(n,A0) 32
M u U[use-list]n

A[application-term]n =

let n
n l {n }

eva1n(application—term) $2

60

7.2 A specification language for hierarchies o f signatures

'L2.1.Sigpatures

A signature is a set of sorts S together with a set of operators,

ceach operator having an arity in S* x S. A signature morphism is

a t r a n s l a t i o n o f s o r t s to s o r t s and o p e r a t o r s to o p e r a t o r s such

that the arities are preserved.

Definition 7.1 [signatures] _
(1) Z=(S,F) is a signature iff S is a set and F is

an S*xS-indexed family of sets.

(2) daS-rl? is a signature morphism iff Z=(S,F),Z"=(S’,F’),

a=(g,h) and 9 is a map g:S+S’ and h is an S*xS-indexed family
of maps h F + F ‚ g * (w) g (s) where wes*‚ 5 es and g* isws= ws
the extension o f 9 to strings. a is a signature inclusion iff

9 and all hws are set-theoretic inclusions.

(3) SIG is the categor1.9£ signatures with signature morphisms as
m o r p h i s m s , S f G i s the subcategory with only signature

inclusions a s morphisms.

For a s e t N , neN,_ a s e t o f signatures B = {El‚...‚2k}‚ E i =
(s i ' F i) r and a signature -E = (S‚F) such that there is an

inclusion g ie—+ 2 for i e {1‚....‚k} let p be the function

p: N x ZISIGI x ISIGI + ISIGI

defined by:

p ‘ n ' B ' z) = l e t S , = S "' (5 1 L] o . . u S k) LE

333 F ‚ w s = Fws ' (F l w s u "' u ks) i2
;gt “ = Ax. n.x in
let s" = ntS') in

6 1

‚41.93. F"1r * (w)1 r (s) = “ (F a n s , JH!

((S-S”) u S", (F -F ') u F")

The function p changes every sort and Operator name in 2 not yet

already contained in some 8’ e B into the name prefixed by n. The
arities of the operators are changed accordingly.

Fqct 7.1

(SIG, SfG) is an appropriate category with mixed pushouts and p
is a hierarchy prefix function.

Proofg .
1. (SIG,SfG) is an appropriate category since obviously there

is at most one signature inclusion between any t w o

signatures and the objects of SIG and SfG are the same.

2 . T o p r o v e t h a t (S I G ‚ S f G) h a s m i x e d p u s h o u t s c o n s i d e r t h e

diagram

E ,

L) U

E — — — — — — — — — — — — + E l !

W h e r e Z = (S 'F) ' z f = (S „ F ‚) ' z u = (Son) . I n o r d e r t o

apply a general pushout construction let Es (resp. 5F) IN3

the smallest equivalence relation generated by

{(s‚o(S))| seS}
resp.

{(f‚a(f))| feF}

Since a is a signature morphism Es and EF are compatible

with the arities of the operators. Thus, Es and E F define a

62

signature congruence a : and

zpo = ((s ’ ü s")/as‚ (F” ü F")/EF)

is a signature where tldenotes the disjoint union and z p o

is a pushout object o f the diagram above: the pushout

morphisms into 2 take any x into its equivalence class inpo
EPO. ÄPO is isomorphic to the signature B”” that results

from E p o by taking a representative for each equivalence

class in Zpo as defined by

"" X for [l i]

.... x x . » f o r [XXI] i f f V y e r " . x x , # 2 Y E "

I n both cases the representatives are determined uniquely:

the definition of 5 2 implies that there is at most one xx"

in any equivalence class of E and if there is no suchI

xx" then there is exactly one €:; in that class. T h u s , E’”

i s a l s o a pushout object for the diagram. T h e pushout

morphisms are given by the inclusion from Z" to 2”" and by

0’: £’-+ Y”' a s defined by:_

+ o’(x) : = 0(x) iff x82

—- o’(x) == .xz ’ otherwise.

Thus,

0 /

E,.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ + 2 4 } ;

h
1}

J 0 U

E ————————————— + E l l

is a pushout diagram in SIG.

3. I t r e m a i n s to be s h o w n that p _is a prefix function. For a

s e t N , n e N , a s e t o f s i g n a t u r e s B = { E 1 , „ . ‚ Z k } ‚ Z. =

6 3 .

(S i ' F i) ' and a signature £ =(S‚F) such that there is an

inclusion ZiL+22for i e {1‚„.,k} let p"1 be the function

p‘l: N x 2ISIGI x ISIGI + ISIGI

defined by:

r
l
“

P- l (n lß l z) . 1 e S ' ' S "" (3 1 u ‘ o c o \] S k) EI
333 F"we ' F w s ' (Flws u "' “ ks) $9
A S E P - A X o x . n o y + Y ' T + x . - £ fl

ASS 3 " ' °(S') 1!

ist. F"p*(w>p(s> ' “F'ws’ £!
((S -S ') u S", (F-F')'u F")

and let H: A0 + S f G be a finite signature hierarchy with

A0 = (O‚<,_|_), o g N and where each node label for a node n
is of the form p(n . {H(b) Ib a base(n,A0)},z).

In the following let B‘= {H(m)|meO}. To show the first

condition for a prefix function (Definition 6.5) we have to

show that for every n e N-O and every (SfG-) cocone object

2 of H the following holds:

(1) Z and p(n,B,2) are isomorphic in SIG -

(2) p(n‚B‚£) is a cocone object of H

(3) p'1(n.n.p<n‚a.zn 2

Let E c o l be defined by E c o l : = mgo H(m)

where the union of t w o signatures.is g iven by the

componentwise union of the sorts and operators; There is an

inclusion from any H(m) for meo into E c o l _and for any other

signature 2" with this property we have 2c01‘*'E"-'Phusp
E c o l is a (Si'G-) colimit of H, and the inclusion Ecole-+ 2

is the colimit-to-cocone morphism. Since p(n,B,£col) = E c o l

and z c o l c + p(n‚B‚£) we conclude t h a t p(n,B,Z) is a cocone

64

o b j e c t o f H a s w e l l . F u r t h e r m o r e w e c a n d e f i n e t h e

signature morphisms

0 : X + p (n ‚ B , Z)

0-1 : p(n‚R,2) + E
b y

°|Ecol == i d E c o l

°|8’-Ecol ! = Ax. n.x

°— IZcol == i d z c o l

“_1|p(n‚B‚E)-Ecol := Ax. x=n.y + y , T + x

Since every sort or operator i n E c o l has a prefix meo that

i s distinct from neN—O it is easy to see that or is a
signature isomorphism and that 0'1 is its inverse, implying

that E and p(n,B‚Z) are isomorphic in SIG. T h e functions p

1 correspond exactly t o a and 0 - 1 by taking intoand p-

account that the arities o f the operators have to be

changed according to the newly added resp. removed prefix
1n, implying that p and p‘ are inverse to each other in the

sense of condition (3) above.

I n o r d e r t o p r o v e t h e s e c o n d c o n d i t i o n f o r a prefix

function we show t h a t E c o l together with the signature
inclusions {imlmsO} is a (SIG-)colimit of intoCOH as well.
Obviously, it is a cocone of intoCOH. Now let (E’,{om|meo})

b e any cocone o f intoCOH. L e t (J: E c o l + 2” be given by

otx) :=_lg£ x = m.y ig
0mm)

w h e r e 0 is w e l l defined since every'x e E c o l h a s a unique

p r e f i x m e o a n d for e v e r y such x w e h a v e e (m) . ' r h u s ‚ w e

have aoim = a m for every mac , and since there isru)o¢her a
with this property we conclude that E c o l is a colimit o f

intoCOH. T h u s we have s h o w n that p is a prefix function,

thereby completing the proof of Fact 7.1.

Fact 7.1 implies that SIG with subcategory SfG and the prefix

function p are suitable for the language introduced in Sec. 7.1.

6 5

We just have to define the two functions

(1) Sth: something + SOMETHING
(2) build-object: 2|SIGI x SOMETHING + IS IG I

(1) sthzz- sorts sl, „., s r

023 fl: 51 ,1 „„ s l , n 1 + 5 1

. . . S " Sf ' s m,nm mm m‚1

where r‚m‚n, " i > 0

Let SOMETHING be the s e t o f pairs (S‚F) such that S is-a

set and F is an S‘* x S’ - i ndexed family of sets with

SES“ .
Let sth be as above, then:

S t h [S t h] = l e t s = { S l ' . . . , S r } 32

$23 Fws = {filfi‘ “*3 ' W='-"’i,1"°"si,n:'u' 5‘51} 32

(SrF)

(2) For B = {El. „.. E n } . E i = = (S i ‚ Fi), define:

build—object (B , (S‚F)) =

lg; S’ = 81 u ... u Sn u S 35
lg; F ’ = F1 u ... u Fn u F in

(S'IF').

7 .2 .2 Hierarchically structured signatures

W e w i l l n o w g i v e a n ' e x a m p l e o f a s p e c i f i c a t i o n f o r a

hierarchically structured signature. Again we will not define the

s y n t a x o f a p p l i c a t i o n s t e r m s i n d e t a i l , b u t w e w i l l u s e

the mathematical notation.as we did in'LJ„ A c o m p l e t e formal

66

treatment with a special syntax for application t e r m s should

pose no difficulties and could be done similarly to the

formalizations above. We will define signatures for booleans,

arbitrary elements, natural numbers, stacks and sets over

_arbitrary elements. I n the last object declaration we give a
signature for various stack and s e t instances in order to

illustrate the different aspectsiof-parameterization—by-use n1

hierarchical objects.

The hierarchy specification is:

object BOOL =
sorts bool

' 925 true: + bool
false: + bool

not: bool + bool

and: bool bool + bool

endobject

o b j e c t 'ELEM =

use BOOL

sorts elem

endobject

o b j e c t NAT =

use BOOL

sorts nat _
Egg O : + n a t

s u c c : n a t + na t

le: nat nat + RO0L.bool

endobject

object LIMIT =

_u_s_g NAT
925 limit: + NNT.nat

endobject '

67

object MAX =

u s e NAT

oEs maxl: + Nmr;nat
maxz: + N N T . n a t

endobject

object STACK =

ggg_BOOL‚ NAT, LIMIT, ELEM
52535 stack
925 empty: + stack

push: ELEM.e1em stack + stack
pop: stack + stack
top: stack + ELEM.elem_
depth:stack + NNT.nat

endobject

object- SET = .

Egg ELEM
§2££§ set
925 create: + set

insert: ELEM.e1em set + set

remove: ELEM.e1em set + set
has : ELEM.elem set + BO0L.bool

endobject ”

object STACKS&SETS

EEE SET {(ELEM;a2,STACK_)}{(ELEM‚a1‚Nnr)}‚
SET-{(ELEM‚01,NAT)},
STACK {(ELEM,02‚STACK)}{(ELEM,01,NNT)}

STACK {(LIMIT,a3,MAX)}
92g convert: STACK{(ELEM,01,NNT)}.stack

+ SEI'{(ELEM‚01,NAT)}.set
endobject'

STACKS&SETS

' 68

The signature morphisms used in STACKS&SETS are given by the
identity except for:

a l (E L E M . e l e m) N E T . n a t

0 2 (E L E M . e l e m) = S T A C K . s t a c k

o q (L I M I T . l i m i t) = M A x . m a x 2

Figure 7.1 s h o w s a section o f the closed hierarchy generated by

this specification. If HS is the hierarchy specification and n:
AO+SfG is the hierarchy generated by H S , then the semantics o f

HS is given by

P[HS] = “I{STACKS&SETS}
fine. the hierarchy of Figure 7.1 restricted to the nodes n having

a path to STACKSSSETS.

7.2.3 Evaluating signature agplication terms

A s a n example for the evaluation o f application terms, we will

take the first use clause element of STACKS&SETS

(1) SET{(ELEM‚02‚STACK)}{(ELEM‚01‚NAT)}

and show that it evaluates to the same node in the hierarchy as

(2) SET{(ELEM,04,STACK{(ELEM,01,NNT)})}

where 0 4 is given by the identity except for

04(ELEM.elem) = STACKf(ELEM,01NHT)}.stack

Let.T be the direct application term

69

STACKS&SETS

/ T[\]
STACK{(ELEM,,a4, SEF{(FLFM,‚04,
STACK{(ELEM‚01‚NHT)})} STACK{(ELEM, a1‚NMr)})}

STACK{(LIMIT, a3,MAX)} FTACK{(FLFM,01,NMT)}

SET{(ELFM‚01,NHT)}
' STACK{(ELEM,02‚STACK)} -

SET { (ELEM,02 ‚STACKH’

. STACK

. c//////, SET

_ LIMIT /////,//”

ELE/

\/

Figure 7 .1 : The hierarchy of signatures with STACKS&SETS

70

T = SET{(ELEM,02‚STACK)}.

Then (1) can be written as

(3) T{(ELEM,01,NNT)}

which according to Definition 5.3 (3) evaluates to

(4) direct(T) o direct(evaln(T){(ELEM‚01‚NAT)})_

Since direct('I') = T and evaln(T) = ‚"T", (4) is equivalent to

(5) T o direct('T"{(ELEM,01‚NNT)}).

"T"{(ELEM,a1,NAT)} is an indirect application term since no

actual parameter is given for STACK which is used by ”T" =
"SET{(ELEM,02,STACK)}" (c.f. Fig. 7.1). Thus,

between("T",{ELEM},HO) = {STACK}.
and according to Fact 5.2

TSTACK = STACK{(ELEM,01,NAT)}
. i s a direct application term. Let °5 be the colimit injection

as: n(9rACK) + application—objectcrgrACK)

which is the obvious extension of ° l to STACK b y sending the sort

and operation names introduced in STACK identically to the sort
and operation names in SEACK{(ELEM,01,NAT)} where only the new

prefix has to_be taken into account. Furthermore, we have

evaln(TSTACK) = "STACK{(ELEM‚61‚NNT)}"
and according to Fact 5.3

(6) T o "T“{(ELEM‚01‚NAT)‚ (STACK‚65,“STACK{(ELEM,01‚NNT)}")}

is an application t e r m w h i c h is equivalent to (5) according t o

Def. SJL In Fact 4.4 the composition of direct application terms

is introduced and Fact 6.1 says that the evaluation function
evaln respects direct application composition. T h u s , (6) is

equivalent to

71

(7) SET{(ELEM,05 O 01, "STACK{ (ELEM‚01 ‚NAT) }") } .

But composing the signature morphisms al and as yields

so that (7) is equivalent to

(8) SET{(ELEM,04‚ "STACK{(ELEM‚01‚NNr)PW}

which in turn is equivalent to

(9) SETHELEMNM STACK{(ELF:M,01,NAT)})}

due to the definition of application terms in-Defi.EL3 (4) . Since

(9) is exactly the t e rn l (2) given above , w e have shown that bo th

(1) and (2) evaluate to the same node in the hierarchy.

The equivalence of (1) and (2) in the sense that they evaluate to

t h e s a m e node in t h e h i e r a r c h y . i s a n e x a m p l e s h o w i n g t h e :

associativity of a p p l i c a t i o n s (c.f. Fact 4 .5) : f i r s t

instantiating the elements ELEM of SET by STACK and t hen

instantiating the elements of STACK by NN? yields the same

result a s instantiating the elements of SET b y t h e result o f

instantiating the elements of STACK by NAT. Similar associativity

results in a non-hierarchical framework are given in [Eh 82] ,
[EKTWW 80b] , [Ga 81]. In such a framework a non-hierarchical
semantics a s in Fact 5.4 would be sufficient, whereas our

hierarchical approach of taking indirect to direct application
t e r m s g u a r a n t e e s t h a t t h e o b j e c t s d e n o t e d by (1) and (2) a r e

identical even when viewed as hierarchical objects.

72

7 .3 . Non-proliferic semantics for specification languages

In Clear ([BG'T7]‚[BG 80]) non-parameterized and parameterized
objects are distinguished, namely theories and theory procedures.

The Clear equivalent to an application term like

(10) STACK{(ELEM,01,NHT)}

denotes a corresponding instantiation object. However, writing
down the same Clear term twice at two different places yields two

distinct copies of that object; each timera theory procedure is

applied to actual parameters a new object is generated. T h i s

proliferation problem of Clear ([BG 81], [Sa 81]) can be avoided
by the use of canonically closed hierarchies since in all

contexts the term (10) evalutes to the same node in the

hierarchy. .

This solution to Clearfs proliferation problem goes further t han
[Sa 81]. In [Sa 81], a term corresponding to (10) would always
yield the same object in different contexts. But the terms

(11) STACK{(ELEM,01,NNT)} { (L I M I T , o 3 , M A x) }

(12) STACK{(LIMIT,03'MAX)} {(ELEM:°1‚NHT)}

(13) STACK{(ELEM,01,NAT), (LIMIT,03,MAX)}

womkiyield‘three different copies of actually the same
instantiation object. In a canonically closed hierarchy, however,

(11), (12) and (13) all evaluate to the same node , namely

"S‘I'ACK{(F:LEM‚01‚NAT)‚ (LIMIT‚03‚MAx)}"

and thus all three terms (11) — (13) denote the same object.

Furthermore, the evaluation o f indirect application terms by

73

transforming them into direct application t e r m s also avoids

unnecessary duplications of instantiation objects. As an example,

consider the indirect application t e r m s in STACKS&SETS’s use

clause. Similarly'to the evaluation process shown in 7.2.3. we

conclude that the use clause element of STACKS&SETS

(14) STACK{(ELEH‚02‚STACK)} {(ELEM,01,NNT)}

evaluates to the same node as

(15) STACK{(ELEM‚c4,STACK{(ELEM‚01‚NNT)})}'

Thus both the objects denoted by (l) and (14) are based on the

same object

(16) STACK{(ELEM‚01.NNT)}

and consequently, STACKS&SETS includes only one copy of (16).

Apparently} this reflects exactly the intuition one m i g h t have
“ w h e n writing a hierarchical specification based on bo th terms (1)

and (14L.Instantiating the elements ELEM of both SET and STACK

by STACK , and instantiating the elements ELEM of both the

resulting objects by NAT should be equivalent to instantiating

t h e e l e m e n t s E L E M o f b o t h S E T and S T A C K b y t h e r e s u l t o f

instantiating E L E M of S T A C K by NAT. T h u s , t h e f i n a l

instantiations of SET and STACK should be based upon the same‘

instantiation o f STACK. As demonstrated above, this m a y be

achieved by the use of canonically closed hierarchies._

T h e examples given in this section show that in the hierarchy

specification language for signatures introduced in 7u2 a Clear-

like proliferation is avoided since the occuring hierarchies can

be canonically closed. However, following the general development

of parameterization—by—use for hierarchically structured objects_

in an arbitrary appropriate category it was possible to prove

74

that mixed pushouts and a prefix function suffice to guarantee

the existence of the canonical closure of a hierarchy (Fact 6A”.

T h e s e two conditions m a y easily be m e t by a specification

language: '

— m i x e d p u s h o u t s : m a n y s p e c i f i c a t i o n languages for the

definition of abstract data types (amp [BG 80] , [BA 81])
are based o n a notion of signature a s defined in 7JL In

Fact 7.1 w e showed that (SfG, SIG) is an appropriate

category with mixed pushouts. As already pointed out in [BG
80] and further developed in the framework of institutions

in [GB 83] the existence of pushouts and colimits carry over

f r o m a c a t e g o r y o f s i g n a t u r e s t o a c a t e g o r y o f

specifications (called theories in [GB 83]). It is easy to

prove that the s a m e is true for the existence of mixed

pushouts.

— prefix function: the pmefix function given in 7.2 for

hierarchies of signatures guarantees the existence of the

canonical closure of signature hierarchies. Again, since in

the f r a m e w o r k of institutions colimits of signatures and

also mixed pushouts carry over to colimits and mixed

pushouts in a category of specifications (or theories), the „
e x i s t e n c e o f t h e c a n o n i c a l c l o s u r e for s p e c i f i c a t i o n

hierarchies is guaranteed as well.

T h e concepts of parameterization-by—use and canonically closed

hierarchies are incorporated in the specification language ASPIK

[BV 83] that allows for axiomatic and algorithmic specifications
o f abstract data types; several examples demonstrating these

concepts are also given in [BGV 83].

75

References

[Ba 81]

[BGV 83]

[BV 83]

[BDPPW 80]

[BG 77]

[BG 80]

[EG 81]

[Eh 82]

Bauer, FRL. et al.: Report on a wide spectrum language

for program specification and development. TU München,

Inst.f.Informatik, Report TUM—I8104, May 1981.

Beierle, Ch., Gerlach, M., Voß, A.: Parameterization

without parameters - in: the history of a hierarchy of

specifications. SEKI-Projekt, Univ. Kaiserslautern, FB

Informatik (in preparation).

Beierle, Ch., Voß, A.: Canonical term functors and

parameterization-by-use for the specification of

abstract data type&.SEKI-Projekt, MEMO SEKI-83—07,

Universität Kaiserslautern FB Informatik May 1983.

Broy, M., Dosch, W., Partsch, H., Pepper, P., Wirsing,

bh: On hierarchies of abstract data types, TU München,
Inst. für Informatik, TUM-I8007, May 1980.

B u r s t a l l , R.M., G o g u e n , JLA.: P u t t i n g T h e o r i e s

together to Make Specifications. Proc. 5 t h IJCAI,

1977, PP. 1045-1058.

Burstall, R.M., Goguen, J.A.: T h e semantics o f Clear,“

a specification language. Proc. of Advanced Course on

Abstract Software Specifications, Copenhagen. LNCS

Vol.86, pp. 292-332. '

Burstall, R.M., Goguen, J.A.: An informal introduction

to specifications using Clear. in: T h e Correctness

problem in Computer Science (Eds. R.S. Boyer, J.S.

Moore). Academic Press 1981.

E h r i c h , H.-D.: O n t h e t h e o r y o f s p e c i f i c a t i o n ,

76

Implementation and Parametrization o f Abstract Data

Types. JACM Vo l . 29 , No . 1 , Jan . 1982 , pp . 206-227.

[Eh 81] Ehrig, H. : Algebraic Theory o f Parameterized
Specification with Requirements, Proc. 6 th CAAP,
Genova , 1981 .

[EKTWW 80] Eh r i g , H . , Kreowskj „ H . - J . , ' r ha t che r - J . , Wagner, E . ,
Wr igh t , J . : Pa rame te r i zed da ta t ypes i n algebraic

specification languages, Proc. 7 th ICALP , LNCS Vo l .
85 , 1980 , pp. 157 -168 .

[EKTWW 80b] Ehrig, M., Kreowski, H.—J., Thatcher, J . , Wagner, E . ,
Wr igh t , J . : Pa ramte r ‘Passing ill Algebraic
Specification languages. Draft version, TU Berlin,

March 1980. '

[Ga 81] Ganz inge r , H . : Pa rame te r i zed specifications: parameter

passing and optimizing implementation. TU München ,
I ns t i t u t f . I n f o rma t i k , Repor t TUM—IB l lO , Augus t 1981 .

[GB 83] Goguen , JQA. , Bu rs ta l l , R.M. : I ns t i t u t i ons : Abs t rac t
Mode l Theo ry for Program Specification. Draft version.

SRI I n te rna t i ona l and Un i ve rs i t y o f Ed inbu rgh , January
1983 .

[GT 79] Goguen, J.A., Tardo, J . : An Introduction t o OBJ: A
L a n g u a g e f o r W r i t i n g and T e s t i n g S o f t w a r e

S p e c i f i c a t i o n s . I n : S p e c i f i c a t i o n (If R e l i a b l e

Software, IEEE 1979 , pp . 170 -189 .

[HS 73] He r r l i ch , H . , S t recke r , GJm, Ca tego ry Theo ry . A l l yn
and Bacon , Bos ton 1973 .

[JW 76] Jensen, K. Wirth,‘Na Pascal User Manual and Report.
LNCS 18 , Sp r i nge r Ver lag 1976 .

77

[L1 82]

[LSAS 77]

[McL 71]

[Na 63]

[Sa 81]

[SB 83]

[TWW 82]

[WLS 76]

L i p e c k , U.: E i n a l g e b r a i s c h e r K a l k ü l f ü r e i n e n

s t r u k t u r i e r t e n E n t w u r f v o n D a t e n a b s t r a k t i o n e n .

Dissertation. Forschungsbericht Nr. 148,1küyersität

Dortmund, 1983.

Liskov, B., Snyder, A., Atkinson, Ru, Schaffert, C.:

Abstraction Mechanisms in CLU. CACM Vol 20, No. 8 ,

August 1977, pp. 564-576.

MacLane, S n Categories for the Working Mathematician.

Springer Verlag, 1971.

Naar, P. (ed): Revised Report (n1 the Algorithmic

Language ALGOL 6 0 . CACM 6 , 1 9 6 3 , pp. 1 — 1 7 .

Sannella, D A L : A.new semantics for Clear; Report CSR

-79—81, Dept. of Computer Science, Univ. of Edinburgh,

1981.

Sannella, ILT., Burstall, ILM.: Structured theories in

LCF. Proc. CAAP 1983.

Thatcher, J.W., Wagner, E.G., W r i g h t , J.B.: Data Type

Specification: Parameterization and the Power o f

Specification Techniques. ACM TOPLAS V01. 4 , No. 4 ,

Oct. 1982, pp. 711—732.

W u l f , W.A., L o n d o n , R.L S h a w , M.: An I n t r o d u c t i o n to

the Construction and Verification of Alphani Programs.

I E E E T r a n s a c t i o n s on S o f t w a r e Engineering, vol. S E — 2 ,

N o . 4 , December 1 9 7 6 .

78

