

Review Article

Newly engineered nanoparticles as potential therapeutic agents for plants to ameliorate abiotic and biotic stress

Malika Sharma

Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun-248002 (Uttarakhand), India

Pallavi Singh*

Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun-248002 (Uttarakhand), India

*Corresponding author. E-mail: pallavisingh.bt@geu.ac.in

Article Info

https://doi.org/10.31018/ jans.v15i2.4603 Received: March 29, 2023 Revised: May 27, 2023 Accepted: June 2, 2023

How to Cite

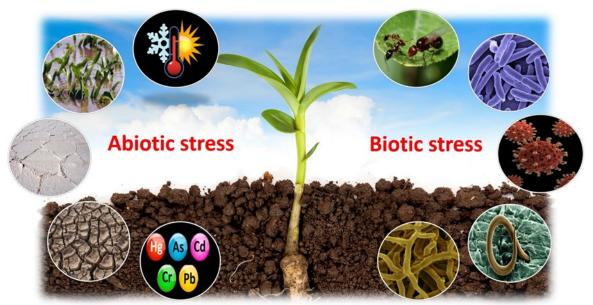
Sharma, M. and Singh, P. (2023). Newly engineered nanoparticles as potential therapeutic agents for plants to ameliorate abiotic and biotic stress. *Journal of Applied and Natural Science*, 15(2), 720 - 731. https://doi.org/10.31018/jans.v15i2.4603

Abstract

Food scarcity is a global concern that is growing every year. Biotic stress factors like pathogenic fungi, bacteria, viruses, and nematode pests aggravate the situation by imparting detrimental effects on crops by unfavourably affecting their growth and yield. Abiotic stress factors include extreme heat and cold, drought, high salinity, floods, and heavy metal toxicity. Annually, millions of hectares of agricultural land worldwide are lost to these stress elicitors. To combat these stress factors, plants have developed strong defense mechanisms, including protective physical barriers, the overexpression of certain genes, and the production of secondary metabolites. Nanotechnology offers numerous novel and sustainable substitutes for conventional agriculture due to its potential uses in this field. Newly engineered nanoparticles (NENPs) are synthesized nanoparticles that are 1-100 nm in size and possess unique properties that help plants combat abiotic and biotic stress factors efficiently. NENPs are designed to ameliorate stress, alleviate nutrient inadequacy in soil, improve plant nutritional value, and overall boost crop productivity. This review illustrates the applications of various NENPs, which help plants cope with biotic and abiotic stresses. It highlights the effective induced changes that develop in the morphology, physiology, and biochemistry of different plants under stress and the role of NENPs. This review also highlights the toxic and deleterious effects of NENPs on the soil when used in higher doses and concludes with the prospects of NENPs in agriculture.

Keywords: Applications, Newly engineered nanoparticles, Plant abiotic stress, Plant biotic stress, Toxicity

INTRODUCTION


Plants are exposed to various hostile and harsh environmental stresses as sessile organisms. Environmental stress is an unfavourable circumstance that impairs a plant's growth and development abilities. It can be categorized as biotic or abiotic. Biotic stress is any stress a biological organism brings, whether it takes the form of an infection or some other type of attack. The organisms that generate biotic stress include microorganisms like bacteria, fungi, parasites, viruses, and some higher organisms like insects and pests. On the other hand, abiotic stress refers to environmental conditions that are extreme and detrimental to plant growth. These include environmental conditions like high and low temperatures, high salinity, droughts, floods, nutritional imbalances, and heavy metal toxicity (Gull et al., 2019). Either type of stress causes atypical, suboptimal growth conditions for plants, adversely affecting crop yield, quality, and quality, thereby presenting a significant challenge to the agriculture sector. In addition to endangering the farmers' livelihoods, this loss of crop productivity also threatens food security. Furthermore, the nation incurs financial losses because the agriculture and food industries are the lifeblood of any developing country's economy. To feed the world's population, it is anticipated that agricultural production ought to increase by 35-50% between 2012 and 2050 (FAO, 2019). According to a report from the Food and Agricultural Organization of the United Nations (FAO), dated June 2021, 40% of the world's crops alone are lost to pests every year, costing billions of dollars to the countries. Almost 147 million hectares of land are affected by soil disintegration, comprising 94 million hectares due to water erosion, 23 million hectares owing to salinity, alkalinity, or acidification, 14 million hectares due

This work is licensed under Attribution-Non Commercial 4.0 International (CC BY-NC 4.0). © : Author (s). Publishing rights @ ANSF.

to flooding, 9 million hectares due to wind erosion, and 7 hectares due to a combination of variables brought on by many forces. India has 6.74 million acres of saltaffected land. According to estimates, around 10% more land every year becomes salinized, and by 2050, about 50% of the world's agricultural land will be affected by salinity (Kumar and Sharma, 2020). All these figures suggest that biotic and abiotic stresses pose a daunting challenge to all nations worldwide.

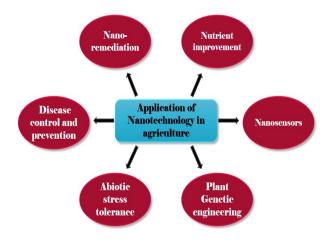
Although plants cannot escape hostile conditions, they are not completely vulnerable to stressful environmental conditions. They have evolved to develop defense mechanisms over time to cope with various factors that threaten their survival. Any environmental stress triggers a response in plants to adapt to the condition. Depending on the type of crop, the type of stress, and the extent of stress, the stress response can be physiological, morphological, or a modification in the biochemical process (El-Saadony et al., 2022). The stress-tolerance response displayed by plants, for instance, involves the production of secondary metabolites and expressing specific genes (Ashapkin et al., 2020). Nonetheless, they are insufficient to protect the plants from the damage that the stress factors cause. Over the years, science and technology have developed to find ways to help plants better adapt to their ever-changing environment. The use of chemical pesticides and insecticides became prevalent to protect plants against predators, and some plants were even genetically modified to become resistant to biotic and abiotic stress (Dormatey et al., 2020). However, the drawbacks outweigh the advantages. Some of these methods are expensive and not always successful in attaining the desired effect, while others raise ethical issues and pose health hazards (Giudice *et al.*, 2021; Dormatey *et al.*, 2020). These reasons encouraged the researchers to continue their search for more efficient and effective solutions. Nanotechnology is a multifaceted emerging field that finds its application in several areas and has caught the attention of researchers in the past few decades to employ its use in plant biotechnology.

Nanotechnology involves using nano-sized particles, ranging from 1-100 nm in size that are engineered depending on their intended use. Recently, newly engineered nanoparticles (NENPs) have gained popularity due to their distinctive physiochemical, mechanical, and thermal properties, making them a preferred usage choice (Ahmad et al., 2022). Newly engineered nanoparticles are purposefully engineered, as opposed to naturally occurring nanoparticles like montmorillonite (MMT), kaolinite, saponite, etc. (Khan et al., 2021). NENPs can be inorganic, organic, or combined depending on their chemistry (He et al., 2019). The majority of nanoparticles in use are metals and metal oxide complexes (inorganic nanoparticles), with silver (Ag) being the most popular type. (Ahmad et al., 2022). Other inorganic nanoparticles with prevalent use in agriculture are titanium dioxide (TiO₂), zinc (Zn), zinc oxide (ZnO), cesium (Ce), copper (Cu), copper oxide (CuO), selenium (Se), silver (Ag), silicon (Si), silicon oxide (SiO₂), iron oxide (FeO), calcium (CaCO₃), magnesium (Mg), magnesium oxide (MgO), and manganese (Mn) nanoparticles (Khalid et al., 2022). In agriculture, nanoparticles are used as nanoremediators, nanosensors, nanofertilizers, nanopesticides, nanofungicides, nanocarriers of plant growth regulators (PGR), and nanomaterials for seed germination and plant genetic engineering (Singh et al., 2021; Ahmad et al., 2022).

Fig. 1. Pictorial representation of different abiotic and biotic stresses affecting the growth of plants. Abiotic stress factors include extreme heat and cold, floods, high salinity, drought, and heavy metal toxicity. Biotic factors include pest attacks, bacterial, viral, and fungal infections, and nematode invasions

NENPs offer a more sustainable form of agricultural practice by increasing the uptake of nutrients, providing crops with higher nutritional value, improving the quality of soil, preventing plant diseases, and resulting in high crop yield (Ahmad *et al.*, 2022). They outperform existing methods and procedures regarding effectiveness, safety, convenience, and their environmentally friendly nature. Because of the factors mentioned earlier, NENPs are widely used to protect plants from biotic and abiotic stress and increase crop growth and yield.

NENPs IN PLANT ABIOTIC STRESS


Abiotic stresses have catastrophic consequences for the growth and yield of crops each year. Most of these unfavourable situations can be ascribed to both anthropogenic and natural causes (Manzoor et al., 2022; Shahzad et al., 2018). Whatever the cause, these environmental factors have a negative impact on the plants and cause morphological, physiological, and biochemical changes, such as alterations in cellular membranes, reactions to phytohormones, photosynthetic efficiency, the deposition of toxic substances, the closing of stomas, the generation of small molecules and reactive oxygen species (ROS), and reduced antioxidant enzyme activity, that affect their health and growth (Ansari et al., 2022; Husen, 2022; Mondal et al., 2022). High salinity, drought, heavy metal toxicity, and temperature extremes are a few of the numerous abiotic stresses that substantially impact agricultural yield. In response, the concentrations of phytohormones like abscisic acid (ABA) and indole-3-acetic acid (IAA) increase. Furthermore, in stressful situations, salicylic acid (SA), ethylene (ET), and jasmonates (JAs) also play an integral role. (Husen et al., 2018, 2019; Mishra et al., 2016; Mondal et al., 2022; Siddiqi & Husen, 2019). Newly engineered nanoparticles can be employed to further enhance the stress tolerance of crops and protect them from loss. Some of the NENPs that demonstrate efficiency in combating abiotic stress are summarized in Table 1.

NENPs for plants under salt stress

Salinity is an abiotic factor that significantly impacts agricultural yield, causing cultivated and irrigated areas to disappear by 20% and 33%, respectively (Kumar & Sharma, 2020; Shrivastava & Kumar, 2015). Physiological changes brought on by high salt levels include reduced photosynthesis, osmotic inhibition, nutritional imbalance, and the uptake of toxic ions. Morphological changes brought on by high salt levels include reduced shoot growth, succulence, and an enlarged palisade. Biochemical changes include alterations in gene expression, phytohormone levels, protein synthesis, and decreased enzymatic activity (Roșca *et al.*, 2023). By altering the metabolic processes and improving the nutritional balance, NENPs intervene with the processes that cause these changes in the plant and assist it to survive its stress (Khalid et al., 2022; Zulfigar & Ashraf, 2021). This has been demonstrated and validated by several research studies conducted on a variety of plants with diverse NENPs. One such experimental study (Gohari et al., 2021) demonstrated that the use of cerium oxide nanoparticles (CeO2NPs) significantly mitigated the damages that salt stress caused to grapevine chlorophyll and also reduced levels of MDA and electrolyte leakage (EL). By accelerating photosynthesis, zinc oxide nanoparticles, potent NENPS, show encouraging efficacy in barley, wheat, and pea plants under salt stress (Adil et al., 2022; Ali et al., 2022; Elshoky et al., 2021). Similarly, numerous studies have shown that NENPs have a beneficial effect on salt stress tolerance. Manganese-doped graphene quantum dots (GQD-Mn) used on Capsicum annuum (Ye et al., 2022), titanium dioxide nanoparticles (TiO₂ NPs) on Stevia rebaudiana (Sheikhalipour et al., 2021), copper nanoparticles (CuNPs) on Zea mays (Noman et al., 2021), CaO NPs on Triticale callus (Yazıcılar et al., 2021), SiO2-NPs on Trigonella foenum -graecum (Ivani et al., 2018), and Chitosan nanoparticles (CsNPs) in general, improved the ability of plants to withstand salt stress in general (Gohari et al., 2023).

NENPs for plants under drought stress

Every year, drought conditions get worse due to climate change and seasonal variations, which inevitably reduce crop productivity. It is estimated that drought leads to the loss of 70% of the crop yield worldwide (Yadav *et al.*, 2020). Drought elicits morphological, physiological, and biochemical changes in plants, such as turgor loss, decreased antioxidant enzyme activity, ion accumulation, decreased photosynthesis and leaf growth, and the production of reactive oxygen species

Fig. 2. Various applications of nanotechnology in the field of agriculture

Abiotic stress	NENPs	Plant species	Effects	Reference (s)	
Salinity	ZnO-NPs	Triticum aes- tivum (wheat)	Reduced electrolyte leakage, malondialdehyde, and hydrogen peroxide. Accumulation of abscisic acid, photosynthetic pig- ments, hormone, osmolytes, and antioxidant en- zymes	Chattha <i>et al.</i> , 2022; Adil <i>et al</i> ., 2022	
	manganese-doped graphene quantum dots (GQD-Mn)	Capsicum annuum	Increased photosynthetic rate	Ye <i>et al</i> ., 2022	
	TiO ₂	Zea mays L	Improved seed viability, leaf hydration status, and antioxidant enzyme activity	Shah <i>et al</i> ., 2021	
	Mn-NPs	Capsicum annuum L.	Regulated molecular response modulated by high salt content	Ye <i>et al</i> ., 2020	
	Si-NPs	Musa acu- minata	Decreased oxidative stress	Mahmoud <i>et al</i> ., 2020	
	SiO ₂	Lycopersi- cum esculen- tum	Enhanced seed germination, weight gain, and development of root	Haghighi <i>et al</i> ., 2012	
	AgNPs	<i>Pennisetum glaucum L.</i> (pearl millet)	Decreased oxidative stress, enhanced plant height, water content, and proline contents	Khan <i>et al</i> ., 2020	
Drought	Fe ₃ O ₄	<i>Glycine</i> <i>max</i> L. (Soybean)	Reduction in oxidative stress due to increased chlo- rophyll and protein content, hydration status, and seed oil	Dola <i>et al</i> ., 2022	
	Ca-NPs	Brassica napus (canola)	Enhanced plant biomass and nutrient uptake, im- proved photosystem II efficiency and enzymatic and non-enzymatic antioxidants, as well as gas ex- change.	Ayyaz <i>et al</i> ., 2022	
	Zu-NPs	<i>Zea mays</i> (maize)	Enhanced grain biomass	Van Nguyen <i>et al</i> ., 2021	
	TiO ₂	Triticum aestivum L.	Enhanced photosynthetic performance, antioxidant defense, and growth	Faraji, & Sepehri, 2020	
	ZnO	Solanum melongena L	Improved growth traits and higher fruit yield	Semida <i>et al</i> ., 2021	
	SwCNTs (Single-walled carbon nanotubes)	Glycine max	Improved resistance to drought during germination	Wenli <i>et al</i> ., 2020	
	Si-NPs	Hordeum vulgare	Altered antioxidative properties, and synthesis of certain compounds	Ghorbanpour <i>et al</i> ., 2020.	
Osmotic stress	Thiourea-capped apatite nanostructure (TU–ANP)	Zea mays (maize)	Increase the generation of osmolytes and the activi- ty of antioxidant enzymes while preserving photo- synthetic pigments.	Faryal <i>et al</i> ., 2022	
Heat	Si NP	Triticum aes- tivum	Repair of the chloroplast and nuclear ultrastructure- induced aberrations and improved photochemical performance of the photosystem II	Younis <i>et al</i> ., 2020	
	Ag-NP	Triticum aes- tivum	Promoted heat resistance	lqbal <i>et al</i> ., 2019	
Cold	ZnO-NP	Oryza sati- va L	Regulated transcription factors for the freezing re- sponse and the antioxidant system	Song <i>et al</i> ., 2021	
	Ag-NP	Arabidopsis thaliana	Stimulate the expression of the genes that produce antioxidants	Kohan-Baghkheirati and Geisler-Lee, 2015	
Cadmium toxicity	TiO ₂ NP	Zea mays L	Elevated activity of glutathione S-transferase (GST) and superoxide dismutase (SOD)	Lian <i>et al</i> ., 2020	
	ZnO NPs	<i>Linum usita- tissimum</i> (Linseed)	Reduced electrolyte leakage, malondialdehyde, and hydrogen peroxide. Accumulation of antioxidant enzymes	Ramzan <i>et al</i> ., 2022	
	CaO NPs	Hordeum vulgare (Barley)	Improved plant biomass, activities of anti-oxidative enzymes, the content of non-enzymatic antioxidants and expression of anti-oxidative enzymes genes, reduced malondialdehyde (MDA)	Nazir <i>et al</i> ., 2022	
	Fe_3O_4 and ZnO- NPs	<i>Nicotiana tabacum</i> (tobacco)	Enhanced plant growth, especially root growth	Zou <i>et al</i> ., 2022	
	Fe ₂ O ₃ -NPs	(rice)	Regulated phytohormones, phytochelatin, inorganic homeostasis, and the expression of genes associat- ed with Cd uptake and transport and reduced Cd- induced oxidative stress	Zhou <i>et al</i> ., 2023	
	Si NPs	Zea mays L.	Early growth and enhanced physio-biochemical.	Hussain <i>et al</i> ., 2019	

Table 1. Different NENPs used to combat different abiotic stress factors

(ROS) (El-Saadony et al., 2022). Through boosting photosynthetic activity, encouraging root development, and re-establishing ionic equilibrium, NENPs are vital in alleviating the effects of drought stress. (Khalid et al., 2022). For instance, iron-NPs (Fe3O4) improved the response to arid conditions in Glycine max L as demonstrated by Dola et al., 2022, and ZnO NPs have been recognized as efficacious against drought stress in Coriandrum sativum L and Triticum aestivum (Ahmed et al., 2023; Raeisi Sadati et al., 2022). Another research study investigated how calcium nanoparticles (Ca-NPs) assisted hydroponically cultivated Brassica napus plants in coping with drought stress. (Ayyaz et al., 2022). In response to drought stress, selenium nanoparticles (Se-NPs) have also positively affected pomegranate plants. (Zahedi et al., 2021).

NENPs for plants under stress from heavy metal toxicity

The ecosystem is gravely endangered by the excessive, improper, and reckless disposal of heavy metals by industries, and this is a growing concern for the entire world. Heavy metals like cadmium (Cd), chromium (Cr), lead (Pb), and mercury (Hg) are not only toxic to the plants exposed to them but are also hazardous to any other organism that consumes them. Heavy metals enter the body through the intrinsic transport system of an organism and make their way into the deepest tissues when they build up and obstruct the flow and exchange of vital molecules, which can endanger the life of the organism or, at the very least result in some form of impairment (Khalid et al., 2022). Hazardous levels of heavy metals impair several metabolic processes, including photosynthesis and respiration, affect enzymatic activity, cause protein structure breakdown, disruption of the cytoplasmic membrane integrity, and cause the formation of reactive oxygen species (ROS) (El-Saadony et al., 2022). When it comes to heavy metal toxicity, NENPs step in to save the plants. One such instance is ZnO NPs, which have been demonstrated to be a successful method for reducing chromium stress in Zea mays while also being environmentally beneficial (Ramzan et al., 2023). Moreover, iron oxide nanoparticles (nFe₂O₃) have demonstrated effectiveness in mitigating the stress brought on by cadmium ions in Oryza sativa L by reducing oxidative stress and modulating phytohormones. (Zhou et al., 2023)

NENPs for plants under temperature stress

Another hostile circumstance that disturbs plants is the temperature extremes that emerge as a result of global warming. Drought accompanies this stress, making it much more difficult for plants to develop in their environment. The rate of photosynthesis, water content, gas exchange, and enzyme activity in plants are all severely influenced by extreme heat and cold (Khalid *et al.*, 2022). In order to combat heat stress, NENPs help

plants increase the expression of genes that produce heat proteins (Khalid *et al.*, 2022). When *Zea mays* is under heat stress, CeO_2 nanoparticles increase the synthesis of H_2O_2 and upregulate the HSP70 gene (Wang *et al.*, 2022). Silver nanoparticles (Ag-NPs) and Selenium nanoparticles (Se-NPs) have also proven to be effective against heat stress in *Triticum aestivum* and Sorghum, respectively, by providing protection and improving the growth of the plant (Djanaguiraman *et al.*, 2018; Iqbal *et al.*, 2019). Likewise, chitosan nanoparticles help *Musa acuminata var*. Baxi resists the effects of cold stress by encouraging the formation of osmoprotectants. (Wang *et al.*, 2021).

NENPS IN PLANT BIOTIC STRESS

Plants are equally at risk from phytopathogens and herbivory infection as from the severe environment. In addition to endangering crop life, they also reduce crop productivity, which adds to a food crisis. According to figures, plant diseases are accountable for 16% of crop growth and yield losses worldwide. (Ficke et al., 2018; Mondal et al., 2022). Invasions by bacteria, fungi, viruses, pests, and insects are examples of the biotic stress that plants experience. Like any other organism, plants have an advanced immune system to fend off these invaders. In addition to the physical barriers like wax. cuticle, and trichome that act as passive immunity to drive away pathogens and pests, plants also synthesize secondary metabolites that can be lethal to predators (Ahmad et al., 2022). NENPs can be employed as a preventive and therapeutic measure to give an additive effect against these pathogens. Nano-fertilizers, nanopesticides, and nano-herbicides are synthesized using NENPs that offer a more sustainable, safer, costeffective, and eco-friendly means of preventing plant biotic stress as a precautionary strategy as opposed to the conventional techniques (Ahmad et al., 2022). Some of the NENPs that demonstrate efficiency in combating abiotic stress are summarized in Table 2. To enhance soil nutrients, a variety of NENPs are used as nano fertilizers to improve grain quality, blooming, and fruit quality and increase the photosynthetic rate, germination, plant development, and crop production. For instance, ZnO-NPs improve the general development and output of wheat, maize, coffee, and squash. Similarly, it has been found that ZnS, MnO, Fe/SiO2, FeS2, FeO, MnSO4, and TiO2 all function as nanofertilizers (Guleria et al., 2023).

NENPs against fungal, bacterial, and viral infections As potential biotic stress relievers, NENPs provide a safer alternative to chemical compounds that have been in use for a long time. Many metal nanoparticles have antimicrobial potential, and this property is utilized to engineer nano fungicides and nano bactericides either alone or in conjunction with other compounds. Fol-

Biotic stress	NENPs	Target species	Plant Species	Effect	Reference(s)
Bacterial infection	Silica nanopar- ticles (SNPs)	Ralstonia solanacea- rum	Solanum lycoper- sicum (tomato)	Preserve ROS equilibrium and stimulate genes associ- ated with salicylic acid dur- ing disease stress	Wang <i>et al</i> ., 2022
	zinc oxide quantum dots (ZnO QDs)	Acidovorax citrulli	<i>Cucumis melo</i> (melon)	Increased the expression of oxidative stress-related genes after producing hy- droxyl radicals.	Wang <i>et al</i> ., 2023
	MgO-NPs	Ralstonia solanacea- rum	Solanum lycoper- sicum (tomato)	Upregulation of genes asso- ciated with salicylic acid, jasmonic acid, and ethylene	Imada <i>et al</i> ., 2016
	thymol-loaded chitosan nano- particles (TCNPs)	Xanthomo- nas cam- pestris pv campestris	brassica crops	Bactericidal activity causes cell membrane damage and variation in membrane po- tential.	Sreelatha <i>et al</i> ., 2022
Fungal infection	Mesoporous Silica (MoS ₂) encapsulated with pesticides	Rhizoctonia solani, Fusarium graminearum	<i>Triticum aestivum</i> (wheat)	Antifungal	Dong <i>et al</i> ., 2021
	Cu-doped ZnO NPs, Cu-NPs	B. cinerea, S.sclerotioru m	<i>Lactuca sativa</i> (Lettuce)	Enhance antioxidant activity and influence photosynthet- ic factors.	Tryfon <i>et al</i> ., 2022
	TiO ₂ NPs	Puccinia striiformis	<i>Triticum aestivum</i> (wheat)	Induce the up- and down- regulation of proteins that improve defense and dis- ease resistance.	Satti <i>et al</i> ., 2022
	Ag NPs	R. solani F. monili- forme	Oryza sativa	Antifungal activity	Manikandaselvi <i>et al</i> ., 2020
Viral infection	Ag-NPs	Cucumber mosaic virus (CMV)	<i>Cucurbita</i> pepo L (cucumber)	Increase in antioxidant en- zymes total phenolic and flavonoid content, upregula- tion of pathogenesis-related genes and polyphenolic pathway genes	Abdelkhalek <i>et al.</i> , 2022
Nematode infection	Cu-doped ZnO NPs, Cu-NPs	Meloidogyne javanica	<i>Lactuca sativa</i> (Lettuce)	Enhance antioxidant activity and has an impact on photo- synthetic factors.	Tryfon <i>et al</i> ., 2022
Pests	Chitosan- based rote- none NPs	Solenopsis invicta	Agricultural crops	Reduced the red fire ant venom's alkaloid content	Zheng <i>et al</i> ., 2022
	Silica NP	Eurygaster integriceps	<i>Triticum aestivum</i> (wheat)	Reduced oviposition and larval populations of the Sunn-pest	Alizadeh <i>et al</i> ., 2022
	Ag-NPs, Au-NPs	Pericallia Ricini	<i>Ricinus communis</i> (Castor bean)	Reduced the body weight of larva, increased mortality of pest.	Sahayaraj <i>et al</i> ., 2016
	Ag-NPs	Earias insulana	Gossypium sp.	Reduced invasion of the green ball caused by <i>E.</i>	Al Shater <i>et al</i> ., 2020

Table 2. Different NENPs used to combat different biotic stress factors

lowing this discovery, numerous experiments were conducted to see how well these NENPs work against fungi, bacteria, and viruses that are detrimental to plants (Ahmad *et al.*, 2022). CuNPs and CeO₂ provide protection to plants against fungal diseases caused by *Fusarium* species, like Root fungal disease caused by *Fusarium* oxysporum (Adisa *et al.*, 2018; Brahmanwade *et al.*, 2016; Borgatta *et al.*, 2018). Likewise, MoS₂ (Mesoporous Silica) or Cyclodextrin show antifungal activity against *Rhizoctonia solani* and *Fusarium* graminearum that cause rice sheath blight and wheat sheath blight (Dong *et al.*, 2021). Xanthomonas campestris pv campestris (Xcc), a bacterium that causes black rot disease in brassica crops, is susceptible to thymol-loaded chitosan nanoparticles' (TCNPs) bactericidal activity (Sreelatha et al., 2022). MgO-NPs are effective against Ralstonia solanacearum, a bacterium responsible for causing bacterial wilt disease, as (Imada et al., 2016) demonstrated in tomato plants. A scientific study illustrated that zinc oxide quantum dots (ZnO QDs) improved the growth of melon seedlings infected with Acidovorax citrulli which causes bacterial Fruit Blotch Disease (Wang et al., 2023). Another study explored the antiviral effects of biosynthesized silver nanoparticles (Ag-NPs) against the cucumber mosaic virus (CMV) (Cucurbita pepo in squash L.) (Abdelkhalek et al., 2022).

NENPS as nano pesticides and nano insecticides

Chemical and biological pesticides and insecticides each have drawbacks, and because NENPs offer a better option than the other two, they are growing in popularity. Unlike chemical and biopesticides, where off -targeting, toxicity and slower results are frequently a problem, nano pesticides are quick, environmentally safe, and typically do not damage organisms that are not their target. These nanoparticles, efficient against harmful pests and insects, are used to create nanopesticides and nano insecticides. A few examples of metal oxides used as nanopesticides and nano insecticides are silicon dioxide (SiO2 NPs), magnesium hydroxide (MgOH NPs), copper oxide (CuO NPs), zinc oxide (ZnO NPs), and magnesium oxide (MgO NPs) (Rankic et al., 2021; Thabet et al., 2021). Chitosanbased rotenone NPs are effective insecticides against Solenopsis invicta (red fire ants) that cause loss of crops (Zheng et al., 2022). Deltamethrin-loaded KIT-6 Mesoporous Silica NPs found by (Alizadeh et al., 2022) are effective against Eurygaster integriceps (shield bug) that spoil wheat and barley crops.

TOXICITY ISSUES WITH NENPs

Due to their diverse utility and effective results, NENPs are being increasingly used in the agriculture sector, which will inevitably lead to their accumulation in soil. At lower concentrations, nanoparticles usually pose no threat to the environment but several studies have stated the toxic effects of NENPs on crops when used in higher concentrations. Their prevalence in the soil even substantially impacts the soil microbiota. Moreover, they affect vital microbial mechanisms, including nitrogen fixation, mineralization, and processes that encourage plant growth and overall development (Khan et al., 2021). These NENPs are responsible for causing both favourable and unfavourable morphological, physiological, and genetic variations in plants, as depicted in Fig. 3. Different concentrations of the same metal nanoparticles demonstrate different effects in different species of plants (Ranjan et al., 2021). For instance, treatment of 500 mg/L of Ag-NPs reduced the length of shoot and root of *R.sativus* sprouts to almost half in a study (Zuverza-Mena et al., 2016). Similarly, Wang in his study illustrated that 100 mg/L or more of Ag-NPs affected root elongation in Arabidopsis thaliana. (Wang et al., 2020)

A scientific study revealed that *Oryza sativa* when treated with a range of concentrations of CuO-NPs had effects on its photosynthetic rate in a dose-dependent manner (Da Costa, & Sharma, 2016). Another study elaborated on the positive effects of TiO2-NPs on *Coriandrum sativum* when used in lower concentrations and devastating effects on the root cell membrane and growth when used in higher concentrations (Hu *et al.*, 2020). Apart from the effects NENPs have on plants, they are more harmful to soil and the microorganisms

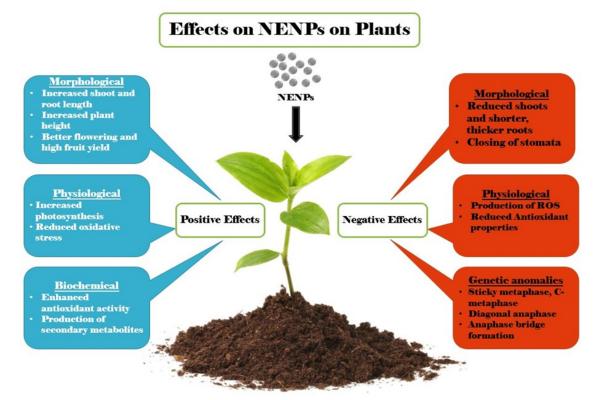


Fig. 3. Effects of Newly engineered nanoparticles on plants

inhabiting the soil when they release metal ions upon degradation. Consequently, both the biotic and abiotic components of the ecosystem are affected. Further studies on the toxicological effects of NENPs are required to be conducted to decide the permissible doses of these and devise proper ways of using them on plants to minimize their hazardous effects.

FUTURE PROSPECTS

Catering to the food needs of the population in a world with a growing population is already challenging, and it is further exacerbated by environmental issues that adversely affect crop yield. NENPs are the solution to the problems that the agriculture sector is now facing concerning plant stress management, nutrient deficiencies, poor soil quality, and crop production. Nanoparticles have the potential to entirely replace the obsolete, hazardous, and ineffective techniques that have long prevailed in agriculture and the food sector. There is a considerable amount of research data to support the efficacy of nanoparticles in various crops with a high rate of efficacy. To further investigate the potential of nanoparticles, there are still several areas where comprehensive and accurate data are lacking. To begin with, studies need to be conducted to determine the concentrations at which these NENPs can be employed safely to provide their highest output while causing the least amount of environmental hazard. (García-Ovando et al., 2022). This is strongly influenced by the target organism and the kind of nanoparticles being employed. Furthermore, research to comprehend NENPs' mode of action, their interaction with the plant system, and all expected implications and genetic alterations will aid in the study of NENPs' intricate details. Lastly, a critical evaluation of the threat to human health and biodiversity will aid in developing more effective usage protocols for these nanoparticles (García-Ovando et al., 2022).

Conclusion

NENPs have the potential to revolutionize research in agriculture. They can be used in various ways to promote the sustainable development of agricultural crops. These particles protect the plants from stress factors and encourage their development and production. Each NENP type mentioned in the review has demonstrated effectiveness against various stress factors. They are a better alternative to conventional plant protection methods due to their high efficiency, even when used in controlled doses. In conclusion, NENPs have a bright future in the agricultural sector. The appropriate efforts will prove to be a boon in addressing global food problems due to the loss of crops to abiotic and biotic factors.

Conflict of interest

The authors declare that they have no conflict of interest.

REFERENCES

- Gull, A., Lone, A. A. & Wani, N. U. I. (2019). Biotic and abiotic stresses in plants. *Abiotic and biotic stress in plants*, 1-19. http://dx.doi.org/10.5772/intechopen.85832
- Food and Agriculture Organization of the United States (FAO) statistical yearbook (2021). Food & Agricultural Organization, 2021
- El-Saadony, M. T., Saad, A. M., Soliman, S. M., Salem, H. M., Desoky, E. M., Babalghith, A. O., El-Tahan, A. M., Ibrahim, O. M., Ebrahim, A. A. M., Abd El-Mageed, T. A., Elrys, A. S., Elbadawi, A. A., El-Tarabily, K. A, & AbuQamar, S. F. (2022). Role of nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review. *Frontiers in plant science*, *13*, 946717. https:// doi.org/10.3389/fpls.2022.946717
- Ashapkin, V. V., Kutueva, L. I., Aleksandrushkina, N. I. & Vanyushin, B. F. (2020). Epigenetic Mechanisms of Plant Adaptation to Biotic and Abiotic Stresses. *International Journal of Molecular Sciences*, 21(20), 7457. https:// doi.org/10.3390/ijms21207457
- Giudice, G., Moffa, L., Varotto, S., Cardone, M. F., Bergamini, C., De Lorenzis, G., Velasco, R., Nerva, L. & Chitarra, W. (2021). Novel and emerging biotechnological crop protection approaches. *Plant biotechnology journal*, *19*(8), 1495-1510. https://doi.org/10.1111/pbi.13605
- Dormatey, R., Sun, C., Ali, K., Coulter, J. A., Bi, Z. & Bai, J. (2020). Gene Pyramiding for Sustainable Crop Improvement against Biotic and Abiotic Stresses. *Agronomy*, *10* (9), 1255. https://doi.org/10.3390/agronomy10091255
- Kumar, P. & Sharma, P. K. (2020). Soil salinity and food security in India. *Frontiers in sustainable food systems*, 4, 533781. https://doi.org/10.3389/fsufs.2020.533781
- He, X., Deng, H. & Hwang, H. M. (2019). The current application of nanotechnology in food and agriculture. *Journal of Food and Drug Analysis*, 27(1), 1-21. https://doi.org/10.1016/j.jfda.2018.12.002
- Khan, S. T., Adil, S. F., Shaik, M. R., Alkhathlan, H. Z., Khan, M. & Khan, M. (2021). Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health. *Plants (Basel, Switzerland)*, *11*(1), 109. https:// doi.org/10.3390/plants11010109
- Singh, R. P., Handa, R. & Manchanda, G. (2021). Nanoparticles in sustainable agriculture: An emerging opportunity. *Journal of controlled release*, 329, 1234-1248. https://doi.org/10.1016/j.jconrel.2020.10.051
- Shrivastava, P. & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. *Saudi Journal of biological sciences*, 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
- Manzoor, N., Ali, L., Ahmed, T., Noman, M., Adrees, M., Shahid, M. S., Ogunyemi, S.O., Radwan, K.S., Wang, G. & Zaki, H. E. (2022). Recent Advancements and Development in nano-Enabled Agriculture for Improving Abiotic Stress Tolerance in Plants. *Frontiers in plant science*, *13*, 951752. https://doi.org/10.3389/fpls.2022.951752

- Shahzad, B., Tanveer, M., Che, Z., Rehman, A., Cheema, S. A., Sharma, A., Song, H., ur Rehman, S. & Zhaorong, D. (2018). Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. *Ecotoxicology and environmental safety*,147, 935–944. https://doi.org/10.1016/ j.ecoenv.2017.09.066
- Ansari, S., Ansari, M.A. & Husen, A. (2022). Augmenting Crop Productivity in Stress Environment Vol. 11. Springer Nature, Switzerland.
- 15. Husen, A. (2022). Environmental pollution and medicinal plants. CRC Press.
- Mondal, R., Dam, P., Chakraborty, J., Paret, M. L., Katı, A., Altuntas, S., Sarkar, R., Ghorai, S., Gangopadhyay, D., Mandal, A. K. & Husen, A. (2022). Potential of nanobiosensor in sustainable agriculture: the state-ofart. *Heliyon*, 8(12), e12207. https://doi.org/10.1016/ j.heliyon.2022.e12207
- Husen, A., Iqbal, M., Sohrab, S. S. & Ansari, M. K. A. (2018). Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (*Brassica carinata* A. Br.). *Agriculture & Food Security*, 7(1), 1-14. https://doi.org/10.1186/s40066-018-0194-0
- Mishra, S., Kumar, S., Saha, B., Awasthi, J., Dey, M., Panda, S. K. & Sahoo, L. (2016). Crosstalk between salt, drought, and cold stress in plants: toward genetic engineering for stress tolerance. *Abiotic stress response in plants*, 57-88. https://doi.org/10.1002/9783527694570.ch4
- Siddiqi, K. S. & Husen, A. (2019). Plant response to jasmonates: Current developments and their role in changing environment. *Bulletin of the National Research Centre*, 43(1), 1-11. https://doi.org/10.1186/s42269-019-0195-6
- Roşca, M., Mihalache, G., & Stoleru, V. (2023). Tomato responses to salinity stress: From morphological traits to genetic changes. *Frontiers in plant science*, *14*, 1118383. https://doi.org/10.3389/fpls.2023.1118383
- Zulfiqar, F. & Ashraf, M. (2021). Nanoparticles potentially mediate salt stress tolerance in plants. *Plant Physiology* and *Biochemistry: PPB*, 160, 257–268. https:// doi.org/10.1016/j.plaphy.2021.01.028
- Khalid, M. F., Iqbal Khan, R., Jawaid, M. Z., Shafqat, W., Hussain, S., Ahmed, T., Rizwan, M., Ercisli, S., Pop, O. L. & Alina Marc, R. (2022). Nanoparticles: The Plant Saviour under Abiotic Stresses. *Nanomaterials (Basel, Switzerland)*, *12*(21), 3915. https://doi.org/10.3390/ nano12213915
- Gohari, G., Zareei, E., Rostami, H., Panahirad, S., Kulak, M., Farhadi, H., Amini, M., Martinez-Ballesta, M. D. C. & Fotopoulos, V. (2021). Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L.) cv. Flame Seedless under salt stress conditions. *Ecotoxicology and EnvironmentalSsafety*, 220, 112402. https:// doi.org/10.1016/j.ecoenv.2021.112402
- Elshoky, H. A., Yotsova, E., Farghali, M. A., Farroh, K. Y., El-Sayed, K., Elzorkany, H. E., Rashkov, G., Dobrikova, A., Borisova, P., Stefanov, M., Ali, M. A. & Apostolova, E. (2021). Impact of foliar spray of zinc oxide nanoparticles on the photosynthesis of Pisum sativum L. under salt stress. *Plant physiology and Biochemistry: PPB*, *167*, 607 –618. https://doi.org/10.1016/j.plaphy.2021.08.039

- Adil, M., Bashir, S., Bashir, S., Aslam, Z., Ahmad, N., Younas, T., Asghar, R. M. A., Alkahtani, J., Dwiningsih, Y. & Elshikh, M. S. (2022). Zinc oxide nanoparticles improved chlorophyll contents, physical parameters, and wheat yield under salt stress. *Frontiers in plant science*, *13*, 932861. https://doi.org/10.3389/ fpls.2022.932861
- Ali, B., Saleem, M. H., Ali, S., Shahid, M., Sagir, M., Tahir, M. B., Qureshi, K. A., Jaremko, M., Selim, S., Hussain, A., Rizwan, M., Ishaq, W. & Rehman, M. Z. (2022). Mitigation of salinity stress in barley genotypes with variable salt tolerance by application of zinc oxide nanoparticles. *Frontiers in Plant Science*, *13*, 973782. https:// doi.org/10.3389/fpls.2022.973782
- Ye, Y., Landa, E. N., Cantu, J. M., Hernandez-Viezcas, J. A., Nair, A. N., Lee, W. Y., Sreenivasan, S. T., & Gardea-Torresdey, J. L. (2022). A double-edged effect of manganese-doped graphene quantum dots on salt-stressed Capsicum annuum L. *The Science of the total environment*, 844, 157160. https://doi.org/10.1016/j.scitotenv.2022.157160
- Sheikhalipour, M., Esmaielpour, B., Gohari, G., Haghighi, M., Jafari, H., Farhadi, H., Kulak, M. & Kalisz, A. (2021). Salt Stress Mitigation via the Foliar Application of Chitosan-Functionalized Selenium and Anatase Titanium Dioxide Nanoparticles in Stevia (*Stevia rebaudiana* Bertoni). *Molecules (Basel, Switzerland)*, *26*(13), 4090. https://doi.org/10.3390/molecules26134090
- Noman, M., Ahmed, T., Shahid, M., Niazi, M. B. K., Qasim, M., Kouadri, F., Abdulmajeed, A. M., Alghanem, S. M., Ahmad, N., Zafar, M. & Ali, S. (2021). Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. *Ecotoxicology and Environmental Safety*, *217*, 112264. https://doi.org/10.1016/j.ecoenv.2021.112264
- 30. Yazıcılar, B., Böke, F., Alaylı, A., Nadaroglu, H., Gedikli, S. & Bezirganoglu, I. (2021). In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress. *Plant Cell Reports*, 40(1), 29–42. https:// doi.org/10.1007/s00299-020-02613-0
- Ivani, R., Sanaei Nejad, S. H., Ghahraman, B., Astaraei, A. R. & Feizi, H. (2018). Role of bulk and Nanosized SiO₂ to overcome salt stress during Fenugreek germination (Trigonella foenum- graceum L.). *Plant Signaling & Behavior, 13*(7), e1044190. https:// doi.org/10.1080/15592324.2015.1044190
- 32. Gohari, G., Farhadi, H., Panahirad, S., Zareei, E., Labib, P., Jafari, H., Mahdavinia, G., Hassanpouraghdam, M. B., Ioannou, A., Kulak, M. & Fotopoulos, V. (2023). Mitigation of salinity impact in spearmint plants through the applicachitosan-melatonin nanopartition of engineered cles. International Journal of BiologicalCacromolecules, 224, 893-907. https://doi.org/10.1016/ j.ijbiomac.2022.10.175
- Yadav, S., Modi, P., Dave, A., Vijapura, A., Patel, D., & Patel, M. (2020). Effect of abiotic stress on crops. Sustainable crop Production, 3. http:// dx.doi.org/10.5772/intechopen.88434
- 34. Ahmed, S., Khan, M. T., Abbasi, A., Haq, I. U., Hina, A., Mohiuddin, M., Tariq, M. A. U. R., Afzal, M. Z., Zaman, Q. U., Ng, A. W. M. & Li, Y. (2023). Characterizing stomatal

attributes and photosynthetic induction in relation to biochemical changes in *Coriandrum sativum* L. by foliarapplied zinc oxide nanoparticles under drought conditions. *Frontiers in Plant Science*, *13*, 1079283. https:// doi.org/10.3389/fpls.2022.1079283

- 35. Raeisi Sadati, S. Y., Jahanbakhsh Godehkahriz, S., Ebadi, A., & Sedghi, M. (2022). Zinc Oxide Nanoparticles Enhance Drought Tolerance in Wheat via Physio-Biochemical Changes and Stress Genes Expression. *Iranian Journal of biotechnology*, 20(1), e3027. https://doi.org/10.30498/ijb.2021.280711.3027
- 36. Dola, D. B., Mannan, M. A., Sarker, U., Mamun, M. A. A., Islam, T., Ercisli, S., Saleem, M. H., Ali, B., Pop, O. L., & Marc, R. A. (2022). Nano-iron oxide accelerates growth, yield, and quality of *Glycine max* seed in water deficits. *Frontiers in plant science*, *13*, 992535. https:// doi.org/10.3389/fpls.2022.992535
- Ayyaz, A., Fang, R., Ma, J., Hannan, F., Huang, Q., Athar, H. U., Sun, Y., Javed, M., Ali, S., Zhou, W. & Farooq, M. A. (2022). Calcium nanoparticles (Ca-NPs) improve drought stress tolerance in *Brassica napus* by modulating the photosystem II, nutrient acquisition, and antioxidant performance. *NanoImpact*, 28, 100423. https:// doi.org/10.1016/j.impact.2022.100423
- Zahedi, S. M., Hosseini, M. S., Daneshvar Hakimi Meybodi, N. & Peijnenburg, W. (2021). Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. *Journal of the Science of Food and Agriculture*, 101 (12), 5202–5213. https://doi.org/10.1002/jsfa.11167
- Ramzan, M., Naz, G., Shah, A. A., Parveen, M., Jamil, M., Gill, S. & Sharif, H. M. A. (2023). Synthesis of phytostabilized zinc oxide nanoparticles and their effects on physiological and anti-oxidative responses of Zea mays (L.) under chromium stress. *Plant Physiology and Biochemistry: PPB*, *196*, 130–138. https://doi.org/10.1016/ j.plaphy.2023.01.015
- 40. Zhou, P., Zhang, P., He, M., Cao, Y., Adeel, M., Shakoor, N., Jiang, Y., Zhao, W., Li, Y., Li, M., Azeem, I., Jia, L., Rui, Y., Ma, X. & Lynch, I. (2023). Iron-based nanomaterials reduce cadmium toxicity in rice (Oryza sativa L.) by modulating phytohormones, phytochelatin, cadmium transport genes and iron plaque formation. *Environmental pPollution (Barking, Essex: 1987)*, *320*, 121063. https:// doi.org/10.1016/j.envpol.2023.121063
- Wang, S., Fu, Y., Zheng, S., Xu, Y. & Sun, Y. (2022). Phytotoxicity and Accumulation of Copper-Based Nanoparticles in *Brassica* under Cadmium Stress. *Nanomaterials* (*Basel, Switzerland*), 12(9), 1497. https://doi.org/10.3390/ nano12091497
- 42. Iqbal, M., Raja, N. I., Mashwani, Z. U. R., Hussain, M., Ejaz, M., & Yasmeen, F. (2019). Effect of silver nanoparticles on growth of wheat under heat stress. *Iranian Journal* of Science and Technology, Transactions A: Science, 43, 387-395. https://doi.org/10.1007/s40995-017-0417-4
- Djanaguiraman, M., Belliraj, N., Bossmann, S. H. & Prasad, P. V. (2018). High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS omega, 3(3), 2479-2491. https://doi.org/10.1021/acsomega.7b01934
- 44. Wang, A., Li, J., Al-Huqail, A. A., Al-Harbi, M. S., Ali, E. F., Wang, J., Ding, Z., Rekaby, S. A., Ghoneim, A. M. & Eis-

sa, M. A. (2021). Mechanisms of Chitosan Nanoparticles in the Regulation of Cold Stress Resistance in Banana Plants. *Nanomaterials (Basel, Switzerland)*, *11*(10), 2670. https://doi.org/10.3390/nano11102670

- 45. Chattha, M. U., Amjad, T., Khan, I., Nawaz, M., Ali, M., Chattha, M. B., Ali, H. M., Ghareeb, R. Y., Abdelsalam, N. R., Azmat, S., Barbanti, L. & Hassan, M. U. (2022). Mulberry based zinc nano-particles mitigate salinity induced toxic effects and improve the grain yield and zinc biofortification of wheat by improving antioxidant activities, photosynthetic performance, and accumulation of osmolytes and hormones. *Frontiers in Plant Science, 13*, 920570. https://doi.org/10.3389/fpls.2022.920570
- 46. Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A. A., Jan, S. & Ahmad, P. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. *Journal of King Saud University-Science*, *33*(1), 101207. https://doi.org/10.1016/ j.jksus.2020.10.004
- 47. Mahmoud, L. M., Dutt, M., Shalan, A. M., El-Kady, M. E., El-Boray, M. S., Shabana, Y. M.B. & Grosser, J. W. (2020). Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata 'Grand Nain') under simulated water deficit or salinity stress. *South African Journal of Botany*, *132*, 155-163. https://doi.org/10.1016/ j.sajb.2020.04.027
- Haghighi, M., Afifipour, Z.& Mozafarian, M. (2012). The effect of N-Si on tomato seed germination under salinity levels. *Journal of Biological and Environmental Scienc*es, 6(16).
- 49. Khan, I., Raza, M. A., Awan, S. A., Shah, G. A., Rizwan, M., Ali, B., Tariq, R., Hassan, M. J., Alyemeni, M. N., Brestic, M., Zhang, X., Ali, S., & Huang, L. (2020). Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. *Plant physiology and biochemistry: PPB, 156,* 221–232. https://doi.org/10.1016/j.plaphy.2020.09.018
- Van Nguyen, D., Nguyen, H. M., Le, N. T., Nguyen, K. H., Nguyen, H. T., Le, H. M., Nguyen, A.T., Dinh, N.T.T., Hoang, S.A., & Van Ha, C. (2021). Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. *Journal of Plant GrowthRregulation*, 1-12. https://doi.org/10.1007/s00344-021-10301-w
- 51. Faraji, J. & Sepehri, A. (2020). Exogenous nitric oxide improves the protective effects of TiO 2 nanoparticles on growth, antioxidant system, and photosynthetic performance of wheat seedlings under drought stress. *Journal* of Soil Science and Plant Nutrition, 20, 703-714. https:// doi.org/10.1007/s42729-019-00158-0
- Semida, W. M., Abdelkhalik, A., Mohamed, G. F., Abd El-Mageed, T. A., Abd El-Mageed, S. A., Rady, M. M. & Ali, E. F. (2021). Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (*Solanum melongena* L.). *Plants*, *10*(2), 421. https://doi.org/10.3390/plants10020421
- 53. Wenli, S., Shahrajabian, M. H. & Huang, Q. (2020). Soybean seeds treated with single walled carbon nanotubes (SwCNTs) showed enhanced drought tolerance during

germination. International Journal of Advanced Biological and Biomedical Research, 8, 9-16. https:// doi.org/10.33945/sami/ijabbr.2020.1.2

- 54. Ghorbanpour, M., Mohammadi, H. & Kariman, K. (2020). Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. *Environmental science: Nano*, 7(2), 443-461. https://doi.org/10.1039/C9EN00973F
- Faryal, S., Ullah, R., Khan, M. N., Ali, B., Hafeez, A., Jaremko, M. & Qureshi, K. A. (2022). Thiourea-capped nanoapatites amplify osmotic stress tolerance in *Zea mays* L. by conserving photosynthetic Pigments, Osmolytes Biosynthesis and Antioxidant Biosystems. *Molecules* (*Basel, Switzerland*), 27(18), 5744. https:// doi.org/10.3390/molecules27185744
- 56. Younis, A. A., Khattab, H. & Emam, M. M. (2020). Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings. *Biol. Plant*, 64, 343-352. https:// doi.org/10.32615/bp.2020.030
- 57.
- Song, Y., Jiang, M., Zhang, H., & Li, R. (2021). Zinc oxide nanoparticles alleviate chilling stress in rice (Oryza Sativa L.) by regulating antioxidative system and chilling response transcription factors. *Molecules*, *26*(8), 2196. https://doi.org/10.3390/molecules26082196
- Kohan-Baghkheirati, E. & Geisler-Lee, J. (2015). Gene expression, protein function and pathways of *Arabidopsis thaliana* responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. *Nanomaterials*, 5(2), 436-467. https:// doi.org/10.3390/nano5020436
- Lian, J., Zhao, L., Wu, J., Xiong, H., Bao, Y., Zeb, A., Tang, J. & Liu, W. (2020). Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). *Chemosphere*, 239, 124794. https:// doi.org/10.1016/j.chemosphere.2019.124794
- Ramzan, M., Ayub, F., Shah, A. A., Naz, G., Shah, A. N., Malik, A., Sardar, R., Telesiński, A., Kalaji, H. M., Dessoky, E. S. & Elgawad, H. A. (2022). Synergistic effect of zinc oxide nanoparticles and *Moringa oleifera* leaf extract alleviates cadmium toxicity in Linum usitatissimum: Antioxidants and Physiochemical Studies. *Frontiers in plant science*, *13*, 900347. https://doi.org/10.3389/ fpls.2022.900347
- 62. Nazir, M. M., Noman, M., Ahmed, T., Ali, S., Ulhassan, Z., Zeng, F. & Zhang, G. (2022). Exogenous calcium oxide nanoparticles alleviate cadmium toxicity by reducing Cd uptake and enhancing antioxidative capacity in barley seedlings. *Journal of Hazardous Materials, 438*, 129498. https://doi.org/10.1016/j.jhazmat.2022.129498
- Zou, C., Lu, T., Wang, R., Xu, P., Jing, Y., Wang, R., Xu, J. & Wan, J. (2022). Comparative physiological and metabolomic analyses reveal that Fe3O4 and ZnO nanoparticles alleviate Cd toxicity in tobacco. *Journal of Nanobiotechnology, 20*(1), 302. https://doi.org/10.1186/s12951-022-01509-3
- 64. Hussain, A., Rizwan, M., Ali, Q. & Ali, S. (2019). Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. *Environmental science and pollution research international*, 26(8), 7579–7588. https://

doi.org/10.1007/s11356-019-04210-5

- Ficke, A., Cowger, C., Bergstrom, G. & Brodal, G. (2018). Understanding yield loss and pathogen biology to improve disease anagement: Septoria Nodorum Blotch - A Case study in wheat. *Plant Disease*, *102*(4), 696–707. https:// doi.org/10.1094/PDIS-09-17-1375-FE
- Ahmad, Z., Tahseen, S., Wasi, A., Ganie, I. B., Shahzad, A., Emamverdian, A., Ramakrishnan, M. & Ding, Y. (2022). Nanotechnological Interventions in Agriculture. *Nanomaterials (Basel, Switzerland)*, *12*(15), 2667. https://doi.org/10.3390/nano12152667
- 67. Guleria, G., Thakur, S., Shandilya, M., Sharma, S., Thakur, S. & Kalia, S. (2023). Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity. *Plant Physiology and Biochemistry: PPB*, 194, 533– 549. https://doi.org/10.1016/j.plaphy.2022.12.004
- Borgatta, J., Ma, C., Hudson-Smith, N., Elmer, W., Plaza Perez, C. D., De La Torre-Roche, R., Zuverza-Mena, N., Haynes, C.L., White, J.C. & Hamers, R. J. (2018). Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior. ACS Sustainable Chemistry & Engineering, 6(11), 14847-14856. https:// doi.org/10.1021/acssuschemeng.8b03379
- Brahmanwade, K., Shende, S., Bonde, S., Gade, A. & Rai, M. (2016). Fungicidal activity of cu nanoparticles against Fusarium causing crop disease. *Environ Chem Lett*, 14, 229-235. https://doi.org/10.1007/s10311-015-0543-1
- Adisa, I. O., Reddy Pullagurala, V. L., Rawat, S., Hernandez-Viezcas, J. A., Dimkpa, C. O., Elmer, W. H., White, J.C., Peralta-Videa, J.R. & Gardea-Torresdey, J. L. (2018). Role of cerium compounds in Fusarium wilt suppression and growth enhancement in tomato (Solanum lycopersicum). *Journal of Agricultural and Food Chemistry*, *66*(24), 5959-5970. https://doi.org/10.1021/ acs.jafc.8b01345
- Dong, J., Chen, W., Qin, D., Chen, Y., Li, J., Wang, C., Yu, Y., Feng, J. & Du, X. (2021). Cyclodextrin polymervalved MoS2-embedded mesoporous silica nanopesticides toward hierarchical targets via multidimensional stimuli of biological and natural environments. *Journal of Hazardous Materials*, 419, 126404. https:// doi.org/10.1016/j.jhazmat.2021.126404
- 72. Sreelatha, S., Kumar, N., & Rajani, S. (2022). Biological effects of Thymol loaded chitosan nanoparticles (TCNPs) on bacterial plant pathogen *Xanthomonas campestris pv. campestris. Frontiers in Microbiology*, *13*, 1085113. https://doi.org/10.3389/fmicb.2022.1085113
- Imada, K., Sakai, S., Kajihara, H., Tanaka, S. & Ito, S. (2016). Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. *Plant Pathology*, 65(4), 551-560. https://doi.org/10.1111/ ppa.12443
- 74. Wang, H., Qian, C., Jiang, H., Liu, S., Yang, D. & Cui, J. (2023). Visible-Light-Driven Zinc Oxide Quantum Dots for the Management of Bacterial Fruit Blotch Disease and the Improvement of Melon Seedlings Growth. *Journal of Agricultural and Food Chemistry*, 71(6), 2773–2783. https:// doi.org/10.1021/acs.jafc.2c06204
- 75. Abdelkhalek, A., El-Gendi, H., Alotibi, F. O., Al-Askar, A.

A., Elbeaino, T., Behiry, S. I., Abd-Elsalam, K. A. & Moawad, H. (2022). *Ocimum basilicum*-Mediated Synthesis of Silver Nanoparticles Induces Innate Immune Responses against Cucumber Mosaic Virus in Squash. *Plants (Basel, Switzerland)*, *11*(20), 2707. https://doi.org/10.3390/plants11202707

- Rankic, I., Zelinka, R., Ridoskova, A., Gagic, M., Pelcova, P. & Huska, D. (2021). Nano/microparticles in conjunction with microalgae extract as novel insecticides against Mealworm beetles, Tenebrio molitor. *Scientific Reports*, *11*(1), 17125. https://doi.org/10.1038/s41598-021-96426-0
- 77. Thabet, A. F., Boraei, H. A., Galal, O. A., El-Samahy, M. F., Mousa, K. M., Zhang, Y. Z., Tuda, M., Helmy, E.A., Wen, J. & Nozaki, T. (2021). Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. *Scientific reports*, *11*(1), 1-13. https://doi.org/10.1038/s41598-021-93518-9
- Zheng, Q., Qin, D., Wang, R., Yan, W., Zhao, W., Shen, S., Huang, S., Cheng, D., Zhao, C. & Zhang, Z. (2022). Novel application of biodegradable chitosan in agriculture: Using green nanopesticides to control Solenopsis invicta. *International Journal of Biological Macromolecules*, 220, 193–203. https://doi.org/10.1016/ j.ijbiomac.2022.08.066
- Alizadeh, M., Sheikhi-Garjan, A., Ma'mani, L., Hosseini Salekdeh, G. & Bandehagh, A. (2022). Ethology of Sunnpest oviposition in interaction with deltamethrin loaded on mesoporous silica nanoparticles as a nanopesticide. *Chemical and Biological Technologies in Agriculture*, 9(1), 1-13. https://doi.org/10.1186/s40538-022-00296-1
- Wang, L., Pan, T., Gao, X., An, J., Ning, C., Li, S, & Cai, K. (2022). Silica nanoparticles activate defense responses by reducing reactive oxygen species under *Ralstonia solanacearum* infection in tomato plants. *NanoImpact*, 28, 100418. https://doi.org/10.1016/j.impact.2022.100418
- Tryfon, P., Kamou, N. N., Ntalli, N., Mourdikoudis, S., Karamanoli, K., Karfaridis, D., Menkissoglu-Spiroudi, U.,& Dendrinou-Samara, C. (2022). Coated Cu-doped ZnO and Cu nanoparticles as control agents against plant pathogenic fungi and nematodes. *NanoImpact, 28*, 100430. https://doi.org/10.1016/j.impact.2022.100430
- Satti, S. H., Raja, N. I., Ikram, M., Oraby, H. F., Mashwani, Z. U., Mohamed, A. H., Singh, A. & Omar, A. A. (2022). Plant-Based Titanium Dioxide Nanoparticles Trigger Biochemical and Proteome Modifications in Triticum aestivum L. under Biotic Stress of Puccinia striiformis. *Molecules* (*Basel, Switzerland*), 27(13), 4274. https:// doi.org/10.3390/molecules27134274

- Manikandaselvi, S., Sathya, V., Vadivel, V., Sampath, N. & Brindha, P. (2020). Evaluation of bio control potential of AgNPs synthesized from *Trichoderma viride*. *Advances in Natural Sciences: Nanoscience and Nanotechnology*, *11* (3), 035004. https://doi.org/10.1088/2043-6254/ab9d16
- Sahayaraj, K., Madasamy, M. & Radhika, S. A. (2016). Insecticidal activity of bio-silver and gold nanoparticles against *Pericallia ricini* Fab. (Lepidaptera: Archidae). *Journal of biopesticides*, 9(1), 63
- 85. Al Shater, H., Moustafa, H. Z. & Yousef, H. (2020). Synthesis, phytochemical screening, and toxicity measuring against Earias insulana (Boisd.) (Lepidoptera: Noctuidae) of silver nano particles from Origanum marjorana extract in the field. *Egyptian Academic Journal of Biological Sciences, f.Toxicology & Pest control, 12*(1), 175-184. https:// doi.org/10.21608/eajbsf.2020.88534
- Ranjan, A., Rajput, V. D., Minkina, T., Bauer, T., Chauhan, A., & Jindal, T. (2021). Nanoparticles induced stress and toxicity in plants. *Environmental nanotechnology, monitoring & management*, *15*, 100457. https://doi.org/10.3390/plants11050692
- Zuverza-Mena, N., Armendariz, R., Peralta-Videa, J. R. & Gardea-Torresdey, J. L. (2016). Effects of Silver Nanoparticles on Radish Sprouts: Root Growth Reduction and Modifications in the Nutritional Value. *Frontiers in Plant Science*, 7, 90. https://doi.org/10.3389/fpls.2016.00090
- Wang, L., Sun, J., Lin, L., Fu, Y., Alenius, H., Lindsey, K. & Chen, C. (2020). Silver nanoparticles regulate Arabidopsis root growth by concentration-dependent modification of reactive oxygen species accumulation and cell division. *Ecotoxicology and Environmental Safety*, *190*, 110072. https://doi.org/10.1016/j.ecoenv.2019.110072
- Da Costa, M. V. J. &Sharma, P.K. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in *Oryza sativa*. *Photosynthetica* 54, 110–119. https://doi.org/10.1007/s11099-015-0167-5
- 90. Hu, J., Wu, X., Wu, F., Chen, W., White, J. C., Yang, Y., Wang, B., Xing, B., Tao, S. & Wang, X. (2020). Potential application of titanium dioxide nanoparticles to improve the nutritional quality of coriander (Coriandrum sativum L.). *Journal of Hazardous Materials*, 389, 121837. https:// doi.org/10.1016/j.jhazmat.2019.121837
- 91. García-Ovando, A. E., Piña, J. E. R., Naranjo, E. U. E., Chávez, J. A. C. & Esquivel, K. (2022). Biosynthesized nanoparticles and implications by their use in crops: effects over physiology, action mechanisms, plant stress responses and toxicity. *Plant Stress*, 10. https:// doi.org/10.1016/j.stress.2022.100109