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Introduction 
The use of the human gaze to interact with machines or 

software has become a viable alternative to traditional 
means of input. Compared to mouse control, gaze-based 
interaction techniques can be faster and particularly useful 
in situations where both hands are needed to perform a task 

(Sibert & Jacob, 2000) or in hygiene-critical situations, 
such as surgery (Mewes et al., 2017).  

Especially smooth pursuit movements have proven 
suitable to provide a range of unobtrusive interaction 
methods, that allow a broad range of users to interact ef-
fectively with gaze-controlled interfaces. Applications 
range from novel takes on gaze-spelling that let users se-
lect their target letter by simply following its’ movement 
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with their eyes (Cymek et al., 2014; Khamis et al., 2016; 
Lutz et al., 2015) to controlling smart-phone applications 
by observing the movement speed of icons for applica-
tions, that, after surpassing a specific matching-criterion, 
will then be opened (Esteves et al., 2015). The ease of use 
and usage of very natural gaze movements make these in-
teractions also suitable for interactions in public spaces 
(Khamis et al., 2015; Vidal et al., 2013) and have shown 
promising results when tested with large databases of users 
(Freytag, 2020). 

One of the great advantages of employing smooth-pur-
suit for interaction is the reduction of the Midas touch 
problem, which states that for interactions that require 
dwell-time-based approaches, a distinction between a rest-
ing gaze that indicates the intention to select and one that 
was evoked by the wish to examine cannot sufficiently be 
made (Huckauf & Urbina, 2008; Vidal et al., 2012). 

All these applications use one of two algorithms to 
compare the eye movements of the user with the move-
ment patterns of the UI elements: a correlation-based algo-
rithm, using the Pearson’s product-moment correlation, 
and an algorithm based on vectors using the Euclidean dis-
tance. These algorithms are well-researched for interac-
tions on a 2D-plane. In addition to these, Drewes et al. 
(2019b) introduced a novel slope approach, using the slope 
of a linear regression line for object detection, showing a 
possible detection for up to 160 individual objects, based 
on circular movement on several rings of objects. How-
ever, this approach was tested in 2D as well. 

Since the introduction of the Oculus Rift DK1 at the 
end of 2012 (Kickstarter.com, 2012), the technological 
progress as well as the availability of Head-Mounted Dis-
plays (HMDs) for the consumer market have skyrocketed 
(Gamesradar, 2022). The integration of eye-tracking tech-
nology into HMDs followed suit. In only a span of a few 
years the solutions developed from research editions pro-
vided by eye-tracking manufacturers over clip-in solutions 
to, finally, the mass-production of consumer-level hard-
ware with eye-tracking integrated by default (VIVE, 
2022). This widespread availability of eye-tracking data 
during usage of HMDs opens the door for integrating gaze-
based interactions by default into consumer media. It also 
provides researchers with an abundance of opportunities to 
investigate the transferability of what is known to work in 
2D to 3D virtual reality applications. 

The natural navigation of the visual space provided by 
HMDs suggests that the observed gaze behavior would be 
close to natural, with no artificial affordances of control 
disrupting the visual exploration of the virtual world Due 
to this, VR could potentially overcome shortcomings of 
lab experiments by providing a semi-realistic experience 
that surpasses artificial lab settings (Clay et al., 2019; 
Lappi, 2015). However, there also are challenges unique 
to experiences of VR via HMDs. One is the users' potential 
ability to physically move across the 3D environment. 
Khamis et al. (2018) investigated the influence of user 
movement, target size, the distance to targets, and the ra-
dius of circular object trajectories on the performance of a 
correlation-based algorithm, showing that, while still 
yielding sufficient results, movement reduced the accuracy 
of selections and negatively impacting the performance. 
For our study, we chose to keep all of these parameters 
except for distance constant and our participants stationary 
across all conditions to control for possible effects.  

Another challenge is the Vergence-Accomodation con-
flict. When focusing on an object in a natural setting, the 
focal distance of the eye and the vergence align. While 
viewing a scene via a HMD however, the vergence of the 
users’ eyes is set to the virtual distance of the focused ob-
ject behind the screen of the HMD – while the focal dis-
tance is set to the screen. This creates a mismatch which 
does not exist in the natural world and might lead to eye 
strain (Dörner et al., 2013) and possibly slightly influence 
the individual vergence response itself (Neveu et al., 
2012). However, the additional gaze information along the 
third axis remains available over the course of the interac-
tion in VR. Can this information be useful to improve 
smooth-pursuit algorithms in 3D?  

While previous studies investigated the performance of 
smooth-pursuit algorithms in 3D VR, either correlation-
based (Khamis et al., 2018) or based on the Euclidian dis-
tance (Piumsomboon et al., 2017), the depth information 
of a third axis was not yet included in the calculations. 
Breitenfellner et al. (2019) conclude that so far there was 
no extension to the existing 2D smooth pursuit algorithms 
for the use in VR. While Khamis et al. (2018) found no 
significant effect of distance on the correlation-based al-
gorithms' performance, we assume that distance will affect 
the performance once the third dimension is included and 
providing additional information to the detection algo-
rithms. 
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The aim of the study was to systematically examine the 
potential of incorporating gaze information along the 3rd 
dimensional axis into the two currently most-widely used 
algorithms typical for 2D-smooth-pursuit interaction. One 
correlation-based algorithm and one distance-based algo-
rithm were adapted to 3D. In a first experiment, the perfor-
mances of both algorithms were examined by systemati-
cally varying parameters of distance and trajectory of ob-
ject movement. During this experiment, only one object 
was visible at all times, allowing for the assessment of se-
lection performance under ideal conditions. 

The second experiment focused on the performance of 
the algorithms while additional objects to choose from 
were visible. The number of additional objects to choose 
from, as well as the configuration within the 3D space was 
varied systematically to test the algorithms under ecologi-
cally valid conditions.  

The following section introduces the algorithms, fol-
lowed by the methods, and a description of the virtual en-
vironment, which were used for both experiments. After 
that, details and outcomes of both experiments are pre-
sented individually, followed by a critical discussion and 
outlook. 

Algorithms and dependent variables 
While 2D smooth-pursuit algorithms often use screen 

coordinates to match targets and gaze, a 3D environment 
requires adjustments. Instead of x-, y- and z-coordinates, 
we defined the center of the HMD as the origin of a spher-
ical coordinate system and matched its position to the 
origin of the world-space in our virtual environment. Dis-
tances were calculated as radial distance r with positions 
being defined by the radius r and the angles theta θ and phi 
φ for pitch and yaw respectively (Figure 1).  

The 3D Point of Regard (3D-POR) was used for gaze 
estimation and defined as the mid-point between the re-
spective points on the gaze vectors of each eye where the 
distance between both vectors reached its minimum. Both 
of the following algorithms were initially tested against a 
variable threshold. Determining the ideal threshold level 
for both algorithms respectively was part of experiment 1. 

 
Figure 1. Illustration of the HMD-based coordinate system with 
radius r, pitch θ, and yaw φ. 

A correlation-based algorithm was adapted from the 
correlation-based algorithm for 2D smooth-pursuit as de-
scribed by Vidal et al. (2013). This algorithm calculates 
the product-moment correlation between gaze coordinates 
and the coordinates of the moving target. Instead of x and 
y-coordinates, the 3D-adapted algorithm uses r, θ and φ for 
the calculations.  

The difference-based algorithm was based on the ap-
proach by Lutz et al. (2015). The authors calculate the dif-
ference between the movement vector of targets and gaze 
as well as the difference in angle of the movement vectors 
in relation to the x-y plane. Targets are selected when both 
criteria fall below a selection threshold. This algorithm 
was adapted to 3D by using the radial distance r as well as 
θ and φ of the moving targets to calculate the difference to 
the gaze path. 

Workflow 
For each new frame, first the validity of the gaze data 

was assessed (see Figure S1). Next, a 3D-POR was calcu-
lated and added to a Vector3-field storing the last x amount 
of samples, with x being defined as the size of a moving 
window. Upon reaching the maximum sample size, the 
currently oldest sample would be removed upon adding the 
new sample. Simultaneously, the object coordinates of 
each target object were stored in an identical manner in re-
spective Vector3 fields. After updating the 3D-POR 
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coordinates in the described manner, the respective algo-
rithms started calculating as follows:  

The correlation-based algorithm iterates over all 
possible interaction objects and calculates product-mo-
ment correlations between the gaze and object coordinates 
for each object respectively. The calculations are per-
formed for each dimension (radius, θ, φ). In contrast to the 
approach in 2D, where individual correlations are com-
pared to a threshold directly, we chose to calculate the av-
erage of all correlation coefficients for each object. While 
this potentially introduces an uncorrelated parameter, the 
effect will be the same for all respective samples which 
remain distinguishable via the remaining parameters. A 
lowering of the correlation threshold during these situa-
tions will be tested, akin to the Algorithm tested by 
Khamis et al. (2018). 

Upon calculating the correlation coefficients of all ob-
jects, the algorithm searches for the highest overall coeffi-
cient. If this correlation surpasses the particular threshold, 
the respective item is marked as selected by the participant.  

The difference-based algorithm first splits the gaze 
data Vector3 field in half based on timestamps. The pa-
rameters of the halves containing the oldest and newest 
gaze vectors respectively are averaged. The most recent 
averaged gaze coordinates refer to the end point of the gaze 
vector, the averaged coordiantes of the other half consti-
tute the origin of the gaze vector. By averaging the gaze 
data over several samples, we smooth the data and prevent 
obtaining false correlation values due to outliers. The end-
point of each averaged half of the Vector3 field is sub-
tracted from the respective starting point in order to obtain 
a movement vector ranging from start to finish of the 
movement as recorded by the field interval, resulting in 
∆""⃗ _"#$#%.   

These steps are performed for the gaze data as well as 
for the positional coordinates of each object. In order to 
achieve a relation between the object and gaze movement 
vectors, the difference coefficients for r, θ and φ are cal-
culated as follows: 

(1) ∆$#&'()= %
∆++⃗ !"#$%&(()*+,-	)

∆++⃗ !"#$%&(()*+,-	)-	∆++⃗ !"#$%&(0"1+	)
− 0.5% 

(2) ∆/=	 %
∆++⃗ 2(()*+,-	)

∆++⃗ 2(()*+,-	)-	∆++⃗ 2(0"1+	)
− 0.5% 

(3) ∆0=	 %
∆++⃗ 3(()*+,-	)

∆++⃗ 3(()*+,-	)-	∆++⃗3(0"1+	)
− 0.5% 

The obtained coefficients illustrate the difference be-
tween gaze radius r, gaze angle theta θ and gaze angle phi 
φ and the respective object parameters. The coefficients lie 
within the range of [0; ∞]. A coefficient of 0 indicates a 
perfect fit between gaze and object parameters.  

The calculated difference coefficients can be graph-
ically expressed on a logarithmic scale based on the loga-
rithm of ten. For example, if the object difference vector is 
kept constant at 10, a symmetrical image results for a var-
iable gaze difference vector for positive numbers (see Fig-
ure 2). The difference coefficient would reach its mini-
mum of 0 at a gaze vector of 10 and its maximum of 0.5 at 
a gaze vector of 0. Likewise, at high positive deviations, 
approximately 0.5 is reached. If the gaze moves in the op-
posite direction to the object, differential coefficients of > 
0.5 are always achieved. Except in the special case that the 
gaze difference value should reach exactly the negative ob-
ject difference value, no calculation of the difference coef-
ficient is possible by a division by 0. This case should 
hardly occur practically. 

 
Figure 2. Visualization of the relation between the ratio of gaze 
to object movement and the resulting difference coefficient (for 
one dimension). 

In order to account for different distances and to correct 
the 3D POR error, the three coefficients r, θ and φ are av-
eraged over all samples within the moving window. The 
algorithm then compares the sum with the threshold. The 
threshold level itself is adaptable and the determination of 
the ideal threshold level part of experiment 1. 

 

Dependent Variables 
The following section explains the parameters that 

were analyzed as dependent variables in both experiments. 

Detection rate (DR). A true positive (TP) detection 
was defined by the target object surpassing the selection 
threshold for the respective algorithm. A false positive 
(FP) was defined as the algorithm detecting any other 
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object but the currently visible one as selected. No detec-
tion (ND) took place if the threshold was not surpassed for 
any of the objects. The detection rate relates these param-
eters akin to the assessment of a binary classificator: 

(4) 𝐷𝑅 =	 ∑23
∑23-	∑43-∑56

 

The rates of false positives (FPR) and non-detections 
(NDR) were calculated likewise. 

Efficiency. The efficiency expresses the ratio of true 
detections to overall detections: 

(5) 𝐸𝑓𝑓 = 	 ∑23
∑23-	∑ 43

 

Duration until selection. As long durations until de-
tections can invoke frustration in users (Khamis et al., 
2018), the duration until the algorithm was able to select 
any object was introduced as additional criterion for com-
paring the performance of the algorithms. The duration is 
expressed both in frames per second (fps) and in s. 

Further Variables. To indicate the participants’ focus 
on the task, the task performance of the participants, meas-
ured as the sum of points related to the given task, and av-
erage reaction time per condition, was tracked. 

Methods 
The following section describes the material used in 

both experiments. Differences between both settings are 
pointed out where applicable. 

Virtual Environment. A virtual environment was cre-
ated with the Unity Game Engine (Unity, 2017). The envi-
ronment is seen from the viewpoint of a person standing 
on a small planet of 2m diameter (Zehm, 2017) in front of 
a starry sky. The environment was kept intentionally plain 
to reduce the influence of head movements on the task 
(Anderson & Bischof, 2019). An X on the planet marked 
the ideal position for the subjects. A light source was 
placed above and slightly behind the subject to prevent 
blinding. A chicken inside a semi-transparent spherical 
spaceship was introduced as a moving target (“Vertex 
Cat”, 2017). The target was kept visually plain to prevent 
sustained scanning of the details while hopefully being 
sufficiently entertaining to maintain subjects’ motivation. 
A high contrast to the backdrop was chosen to facilitate 
visual detection (see Figure 3). The target had a diameter 
of 0.07m, equaling to 10° visual angle in the close 

condition and 2.9° visual angle in the far condition. The 
size was chosen based on the results of a pre-test, consti-
tuting a compromise between identifiability over different 
distances and simplicity. 

 
Figure 3. Virtual environment displaying the users' position. 
Lower right corner: the target object "space chicken" in a close-
up. 

Number of objects. A maximum number of 26 indi-
vidual objects being present at once was chosen in order to 
prevent possible ceiling effects regarding the performance 
of the algorithms. The high number allowed for the testing 
of a variety of unique movement directions within the 3D 
space and was therefore increased, comparing to similar 
studies in 2D (e.g. Zeng et al., 2020). During the first ex-
periment, only one of the objects was visible while the oth-
ers remained hidden to the user, but were taken into ac-
count during the analysis. This approach was chosen to fa-
cilitate sustained and ideal smooth-pursuit movements on 
one target, without other distractions. With this approach, 
the algorithms could be tested under an idealized, highly 
standardized smooth pursuit movement performed by the 
participants. The second experiment introduced visibility 
of a systematically varied number of distractors in order to 
retest the resulting ideal performance as it would occur “in 
the field” with a natural ecological validity (see experi-
ment 2). 

Distances. Two distances (near / far) were imple-
mented after having been selected for optimal usability and 
prevention of eye strain in a pre-test. In the “near” condi-
tion the center of a spawn sphere was set to an origin at 
0.4m distance (with the sphere spanning from 0.2 - 0.6m) 
to provide a substantial vergence of the eyes, while simul-
taneously being far enough to prevent eyestrain or irrita-
tion and disorientation due to too large portions of the vis-
ual field moving. The “far” condition set the center of the 
spawn sphere at 1.4m distance (spanning from 1.2m to 
1.6m) to test the performance of the algorithm near the 
limit of depth detection due to parallelization of the eyes. 
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Based on the 0.2° error as assumed for the SMI eye-
tracker, this results in an error margin of 0.02m in the near 
condition and of 0.22m in the far condition. The distances 
were slightly adapted in experiment 2 (see experiment 2). 

Movement patterns. Movement was performed in ei-
ther a circular motion or in a linear motion originating 
from the center of the subject’s field of view. The object 
starting positions of the circular motions were distributed 
across the surface of a sphere with a radius of 0.2m, being 
projected from landmarks of the enclosed cube onto the 
sphere’s surface. Each of the eight corners, each of the 
mid-points between the 12 edges and the center point of 
each side of the cube were projected onto the sphere, re-
sulting in 26 target spawn points overall. Seven trajectories 
on the surface of the sphere were determined, each con-
taining 2-6 starting positions (see Figure 4, left). For linear 
motions, the object spawned in the origin of the coordinate 
system and moved linearly to and beyond the points de-
scribed for the circular starting positions (see Figure 4, 
right). Velocities of each object were kept constant to min-
imize the occurance of potential artifacts due to anticipa-
tory changes in pursuit movements (Wende et al., 2016). 

 
Figure 4. Movement patterns and arrangement of the 26 objects. 
The labels indicate the starting positions for circular movements 
(left) or the movement direction after spawning in the center for 
linear movements (right). 

Object velocities were set to 45°/s for the circular 
movement and to 0.15m/s for linear movement. The veloc-
ities in degrees visual angle were dependent on movement 
type and distance (see Table 1). The velocities were results 
of a pre-test in which we determined the usability for the 
subjects as well as the amount of smooth-pursuit move-
ment as opposed to saccades (as indicators of a too fast 
movement) and fixations (indicating too low velocities). 

 

Table 1. Overview of the spawnpoints of targets in the circular 
move-ment condition, as well as the directional vector for linear 
movement, and their velocity relative to the observer.  

Movement 
pattern 

Distance of 
the object 

group 

Targets °/s 

Circular Near rt, rb, b, lb, l, lt 22.5 
  f 15.0 
  n 45.0 
 Far rt, rb, b, lb, l, lt 6.4 
  f 5.6 
  n 7.5 

Linear Near rt, rb, b, lb, l, lt, t, r 21.5 
  f, n 0.0 
 Far rt, rb, b, lb, l, lt, t, r 6.1 
  f, n 0.0 

Note: The letters indicate left (l), right (r), near (n), far (f), top (t). 

Task. In order to provide an incentive for sustained fo-
cus on the moving target, subjects were asked to press the 
trigger button on the Vive Controller as soon as they de-
tected a fogging of the space capsule surrounding the 
chicken to prevent it from flying blindly by clearing the 
fog. The reaction via the trigger button on the controller 
was tested in a pre-study and rated as non-distractive by 
users. The trigger button was specifically chosen due to 
being underneath the users' index finger, allowing for a 
quick reaction without any visual or haptic search.  The 
fogging was timed randomly, with an average of one inci-
dent each 7.8s in the experimental blocks and of 8.4s in the 
practice block. A swift reaction was rewarded by an af-
firmative sound and the award of points (3 points for a rt ≤ 
0.5s, 2 points for 0.5s < rt ≤ 1s and 1point for 1s < rt ≤1.5s). 
A rt > 2.5s or lack of a reaction resulted in a reduction of 
3 points and a dismissive sound being played. The points 
were not indicated on the screen to prevent visual distrac-
tion, but participants were informed beforehand about the 
effects of hits and misses, and that the game would keep 
track of their score.  After 2.5s, if no reaction occurred, the 
object was returned to the non-foggy state. After each 
block, the achieved points were displayed for the respec-
tive participant. 

Technical Setup. We used the HTC Vive with inte-
grated Eye Tracking by SMI (250 Hz) with a resolution of 
1080 px x 1200 per eye. The refreshment rate of the 
screens was 90 Hz. The field of view (FOV) was 110°. The 
typical error of the eye tracker was 0.2° (Schiavullo, 2016). 
The experiments were run on an Alienware 17 R4 Laptop 
with an Intel Core i7 processor, 32GB RAM and a 
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GeForce GTX 1080 with 8GB RAM. The VR-environ-
ment, run via Unity Play Mode, was displayed via 
SteamVR (Built May 24, 2018). 

Both experiments took place in a laboratory setting. A 
desk was assigned at which participants filled out ques-
tionnaires testing for Simulator Sickness and assessing 
technical issues after the VR experience. One third of the 
laboratory was segmented via a cardboard divider and con-
tained a desk with the laptop running the experiment, the 
VR-setup and a space of approx. 9m² for the subjects to 
stand freely during the interaction with the VR. 

Experiment 1 
As described above, testing the reliability of the two 

adapted algorithms in relation to a) distance and b) move-
ment pattern were the aim of this experiment. Furthermore, 
suitable thresholds for both algorithms, depending on dis-
tance and object movement patterns were to be evaluated. 

Hypotheses 
Movement Patterns: Based on findings for 2D-exper-

iments (Vidal et al., 2013, Estevan, 2015) and recent find-
ings in 3D (Khamis, 2018) we assumed that circular move-
ment patterns would be associated with a better perfor-
mance for both algorithms compared to linear movement: 

H1.1 The correlation-based algorithm performs, aver-
aged over all distances, better on circular movement pat-
terns compared to linear movement paths. 

H1.2 The difference-based algorithm performs, aver-
aged over all distances, better on circular movement pat-
terns compared to linear movement paths. 

Distances: Due to the increased estimation errors for 
the radius in larger distances as described in Methods, we 
assume a better performance at close distances for both al-
gorithms: 

H2.1: The correlation-based algorithm performs, aver-
aged over linear and circular movement patterns, better in 
the near condition compared to the far condition. 

H2.2: The difference-based algorithm performs, aver-
aged over linear and circular movement patterns, better in 
the near condition compared to the far condition. 

Interaction: We assume that the impact of increased 
eye tracking errors in larger distances and its’ effect on the 
calculation of the radius is inequal for linear and circular 
movement patterns due to the different proportion the ra-
dius calculation has for the overall algorithm: 

H3.1: The change in detection rate (DR) between the 
near and the far condition differs between circular and lin-
ear movement patterns for the correlation-based algorithm. 

H3.2: The change in DR between the near and the far 
condition differs between circular and linear movement 
patterns for the difference-based algorithm. 

No previous assumptions were made for the optimal 
detection threshold level to be used for the algorithms. In-
stead, the threshold levels (TL) were analyzed iteratively 
to find the optimal threshold for each algorithm. The com-
parison of the performance levels of both algorithms to 
each other were of interest as well. Due to the multitude of 
possible factors influencing the performance, no general 
hypothesis about the superiority of any of both algorithms 
was stated beforehand. 

The task performance, as indicated by the amount of 
points received in the detection task, was used as indica-
tion of the attention users directed to the interaction, and 
with that, served as an indicator of the quality in which the 
smooth-pursuit task was performed. 

Experiment plan 
The experiment encompassed one practice block, four 

experimental blocks and one additional block. The 
timespan of initiating and completing one singular object 
movement was defined as one trial. One object movement 
translates to the spawning of the target object, the space-
chicken remaining at rest for 1s and then moving along one 
of the pre-defined paths for 4s.  

The practice block contained four trials with linear 
movement patterns in a pre-defined order and prolonged 
movement durations (20s), taking approx. 1.5 minutes in 
total. The subsequent four experimental blocks were pre-
sented latin square randomized and contained 78 trials 
each. Each block represented one combination of the inde-
pendent variables (near/circular, near/linear, far/circular, 
far/linear). The 78 trials were presented in three rounds, 
with each round presenting all 26 possible object varia-
tions of the respective condition in a randomized manner. 
Each block had a duration of 6.5 minutes. 
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The additional block displayed a variation of the move-
ment patterns and collected data for another research ques-
tion and will be discussed in a different work. It took 7.5 
minutes to complete. 

Experimental procedure 
Subjects: N = 12 participants (6 ♀, 6 ♂) aged between 

23 to 30 years (M = 27.4, SD = 1.8) took part in the first 
experiment. Five persons had corrected to normal vision, 
with three using contact lenses and two taking part without 
corrective measures (-1 and -2 dpt). Half of all participants 
were novice to interacting with a VR environment. 

Participants were greeted, prompted to read the partic-
ipant information informing about the procedure and vol-
untary nature of the studies. Upon agreement, they filled 
out a demographic questionnaire and were then handed the 
instructions for the trial. If no questions remained, they put 
on the HMD and were assisted if necessary. They were 
then handed a Vive Controller to be used with their domi-
nant hand. The controller was not depicted within the VR. 
Participants were standing during the whole experiment. 

 Participants were then asked to physically walk onto 
the marking of a cross on the planet and turn until they 
were facing an orientation dot visible in front of them. A 
5-point calibration was then performed. Afterwards, they 
could start the practice block via a press on the side button 
of the controller. Then, they were asked if they had any 
questions, and if none remained, the five blocks were 
started and run in the afore described randomized manner.  

Afterwards, they filled out surveys assessing Simulator 
Sickness and technical issues. Upon completion, the par-
ticipants were thanked, compensated with student credit 
hours if applicable, and snacks if not, and were then given 
the option to ask questions about the experiment and to re-
ceive a detailed description of the experiments’ purpose. 

Analysis 
The gaze data was obtained using the SMI Unity plug-

in. The 3D POR was calculated using an adaptation of the 
Math3d class (Kolkmeier, 2013). The product-moment 
correlation was calculated using the Math.NET Numeric 
library (Ruegg et al., 2018). The algorithms were imple-
mented within the Unity development environment, using 
C#. All further analyses for experiment 1 were done of-
fline. 

The time window and starting point for the algorithms 
were specified based on previous literature. For the corre-
lation-based algorithm recommendations ranged from 0.5s 
with ~20 data points (Vidal et al., 2013) to 1s with ~30 
data points (Esteves et al., 2015). Our goal was to achieve 
an optimal spot between a high number of data points, in-
creasing the detection rate, and a short time frame, lower-
ing reaction times for later online use (Esteves et al., 2015, 
Khamis et al. 2018). We chose to include 40 samples into 
the testing window. With an average fps of 60Hz as meas-
ured in a pre-test, this resulted in a duration of 0.67s. The 
same time window was implemented for the difference-
based algorithm. 

Thus, analyses started 40 frames after the onset of 
movement. 

Calculation of the optimal threshold. The optimal 
threshold (OT) for both algorithms was tested iteratively. 
For the correlation-based algorithm, we iterated over 
thresholds of correlation values between 0 and .95 in steps 
of .05. For the difference-based algorithms, we iterated 
over thresholds between .20 and .01 in increments of .01, 
resulting in 20 data sets with linearly increasing thresholds 
for each algorithm. 

Efficiency, TP, FP and ND were each averaged over all 
trials for the respective algorithms. The residues for the 
data sets with the threshold resulting in the best perfor-
mance were tested for normal distribution via QQ-Plots 
and a subsequent Shapiro-Wilk Test and then further ana-
lyzed via an Analysis of Variance.  

To gain further insights into the non-significant results 
we performed a sensitivity analysis with G*Power. 

For directional analysis, the DRs of each of the 26 lin-
early moving objects were calculated for the near and far 
condition. Afterwards the DRs of the objects moving in 
one of the six base directions (left, right, up, down, near-
ing, distancing (far)) were averaged. Thus, per base direc-
tion the DRs of nine objects were averaged. 

Comparison of the algorithms. We employed a sign 
test to compare the performance of the two algorithms 
(Bölte, 1994). This non-parametric test allows for a com-
parison on trial-level. Therefore, both data sets were com-
bined, depicting the results of both algorithms (TP, FP, 
ND). All entries with equal decisions were omitted, leav-
ing only the rows with diverging entries. For the remaining 
trials, a “+” or “-“ was assigned, depending on a correct or 
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incorrect decision made by the respective algorithm. The 
sum of the resulting “+”s was calculated for each algo-
rithm and a Binomial test was performed, testing if the 
likelihood of a “+” appearing was distinct from the likeli-
hood or random appearance (p = .5). 

Results 
Hypotheses. The ANOVA yielded a confirmation of 

the main effect for movement type for the correlation-
based algorithm (F(1,11) = 24.27, p < .001, η² = .29), but 
not for the difference-based one (F(1,11) = 0.98, p = .344, 
η² = .01), confirming H1.1 and refuting H1.2. A main ef-
fect for object distance was discovered for both the corre-
lation-based algorithm (F(1,11) = 190.77, p < .001, η² = 
.75) and the difference-based one (F(1,11) = 148.20, p < 
.001, η² = .42), confirming hypotheses 2.1 and 2.2.  

Interaction effects for distances x movement types 
were found for both the correlation-based algorithm 
(F(1,11) = 9.00, p = .012, η² = .22) and the difference-
based one (F(1,11) = 5.94, p < .033, η² = .01), see Figure 
5, confirming H3.1 and H3.2. 

 
Figure 5. Interaction Plots for the correlation-based (left) and 
difference-based (right) algorithms for close and far distances, in 
interaction with the movement type (circular or linear). 

As the main effect concerning movement type for the 
difference-based algorithm was not significant we 
performed a post-hoc sensitivity analysis. With the sample 
size of N = 12, the test would have revealed effects of at 
least η² = 0.09 with a probability of .90. Thus, for 
hypothesis H1.2, we assumed that there was either a very 
small effect or no effect.  

Optimal threshold. The correlation-based algorithm 
presented its’ best detection rate (M = .31, SD = .46) at a 
threshold interval of between .65 to .80 (M = .28, SD = .45) 
with a rapid decrease of detections for higher thresholds. 
The rate of false detections has a maximum at a threshold 
of .69 (SD = .46) and decreases for thresholds ≥ .75 (M= 

.65, SD = .48). The ND rate remains M = 0 (SD = 0) for 
lowest thresholds and remains low for thresholds between 
.45 to .65 (M < .01, SD <.10). At a threshold of .70, the 
ND rate begins to increase (M = .02, SD = .14). The Effi-
ciency follows the curve for the detection rate up to the 
threshold of .70 where first NDs take place. We selected 
an optimal threshold of .75 for the correlation-based algo-
rithm which equals an Efficiency value of .31. After that 
point, the FP rate begins to decrease while the detection 
rate remains close to its’ maximum. The average detection 
time from the beginning of the movement is 1.18s (SD = 
.69) or M = 70 frames (SD = .41), see Figure 6 (top). 

 

 
Figure 6. Performance graphs for the correlation-based (top) and 
difference-based algorithm (bottom), based on detection rates, 
false-positives, non-detections and efficiency averaged over all 
trials. The chosen threshold level (OT) is indicated by the 
respective vertical line. 

The difference-based algorithm shows a pattern similar 
to the correlation-based algorithm. The detection rate in-
creases from the initial .20 up to a threshold of .10 (M = 
.50, SD = .50), followed by a decrease. The rate of false 
detections sinks continuously while the ND rate remains 
less than or equal .05 until it increases rapidly for thresh-
olds smaller than .08 (M = .08, SD = .03). The Efficiency 
curve is similar to the detection rate for thresholds larger 
than .10, but further increases while reaching a maximum 
at the most restrictive threshold of .02 (M = .74). A 
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threshold of .07 was selected as optimal, as it resulted in, 
all parameters combined, the best overall performance (see 
Figure 6, bottom).  

Therefore, the thresholds of .75 for the correlation-
based algorithm and of .07 for the difference-based algo-
rithm were used for all following comparisons. 

 

Comparison of the Algorithms. Averaged over all tri-
als, the difference-based algorithm achieved a higher DR 
compared to the correlation-based algorithm (M = .49, SD 
= .49 vs. M = .29, SD = .49). The Binomial test revealed a 
significantly higher DR of the difference-based algorithm 
compared to the correlation based one (p <0.001, with 
1124 of 1516 trials showing a higher DR for the differ-
ence-based algorithm).  

Directional movements of the objects. The perfor-
mance of the correlation-based algorithm showed the low-
est averaged DR for objects that performed a linear move-
ment along the vector f (“far”) away from the observer in 
both the near (M = .21, SD = .08) and the far condition (M 
= .10, SD = .08). Objects with a linear movement along the 
vector n (“near”), approaching the observer, yielded the 
highest averaged DR (near M = .47, SD = .10, far M = .28, 
SD = .09). The difference-based algorithm showed the 
highest averaged DR for objects with a linear movement 
towards the observer (vector n) as well, with considerably 
higher averaged DRs (near M = .80, SD = .07, far M = .74, 
SD = .20, see Figure 7). 

 
Figure 7. Detection performance of the two algorithms for linear 
movements averaged over the six basic directions towards the 
end point of the movement vector (left (l), right (r), top (t), 
bottom (b), near (n), far (f)). 

RT-Task. On average, 138.46 (SD = 8.24) of 150 
achievable points per condition were scored by the partic-
ipants. No subject achieved less than 116 points (77%) in 

any condition. With 50 reaction stimuli per condition, 
2400 reaction stimuli occurred across all trials, with 2385 
of them (99%) being responded to by the participant within 
2.5 s. The average reaction time was 0.44 s (SD = 0.16). 

Discussion of experiment 1 
As predicted, the correlation-based algorithm showed 

a better performance for circular movements compared to 
linear movement patterns (H 1.1). This difference was not 
established for the difference-based algorithm, which 
showed no significant difference between both movement 
types, with a sensitivity test suggesting either no or a very 
small effect (H 1.2). This ties into the overall higher DRs 
of the difference-based algorithm that were obtained 
across all trials. The exploratory analysis of the influence 
of directional movements suggests a higher robustness to-
wards linear types of movement for the difference-based 
algorithm. Interestingly, the difference-based algorithm 
performs highest for movements along the z-axis, i.e., to-
wards or away from the observer, in which the rate of 
change would be lowest. 

Overall, both algorithms performed better if objects 
were shown within a close range compared to displaying 
the objects in larger distances, independent of movement 
patterns (H2.1 and H2.2). Movements virtually closer to 
the eyes of the observer benefit from a lower estimation 
error, which accumulates along the third axis. Further-
more, the further away the movement, the smaller the vis-
ual distance covered. Combined with additions of estima-
tion errors, inaccuracies increase. The confirmation of the 
interaction effect between distance x movement type 
(H3.1, H3.2) supports this assumption. The higher DRs in 
closer distances would suggest adopting a design principle 
in which it was recommended to set stimuli to be selected 
via smooth pursuit within the near plane of the virtual en-
vironment. However, only one object was shown at all 
times. While this was done to create ideal conditions for 
sustained smooth pursuit movements, it also created an ar-
tificial setup which kept eye strain due to different visible 
stimuli at minimum. One of the goals of the second exper-
iment therefore was to evaluate in a pre-study if the addi-
tion of further visible objects would have any adverse ef-
fects on the observer. 

The high rates for successful reactions of participants 
during the reaction task indicate sustained attention to-
wards the object. Together with the aforementioned dis-
play of one singular visible stimulus (with the other 25 
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stimuli being represented mathematically), ideal condi-
tions for testing the algorithms were created. The optimal 
threshold level for both algorithms were therefore selected 
within a setup that allowed to test the optimum perfor-
mance. How would the achieved results hold up under eco-
logically more valid conditions? To answer this was the 
scope of experiment 2. 

Experiment 2 
Having identified an optimal threshold level for both 

algorithms under artificially optimal selection conditions, 
we could now test the performance under a systematically 
varying number of visible objects for the participant to 
choose from. Due to the interaction effects of distance and 
movement types found in experiment 1, experiment 2 in-
cluded these parameters, too with the aim to a) test perfor-
mance levels of both algorithms under a selection of typi-
cal setups that might be present in VR applications using 
smooth-pursuit object selection and b) ideally allow for 
recommendations of the maximum numbers of objects, 
movement types and distances, including performance 
data as well as user feedback. 

Additionally, based on the findings of experiment 1, 
we assume that the optimal threshold level for detections 
by each algorithm varies, depending on the interaction of 
distance, movement pattern and, as introduced in this sec-
tion, the number of objects present. We aimed to derive a 
formula that could indicate the optimal threshold for each 
algorithm under these varying conditions, taking into ac-
count the rate of non-detections, detections, and false pos-
itives.  

Adjustments to the experimental setting 
The main difference to experiment 1 is the presence of 

non-target objects: objects in varying quantity that moved 
within the same plane of distance and movement pattern 
as the target object. These non-targets kept the shape of the 
spherical shape ships but were colored in green and lacked 
the target chicken (see Figure 8).  

 
Figure 8. Left: target object; Middle: clouded target object while 
reaction time task; Right: non-target. 

Number of visible objects. In order to determine the 
number of non-targets to be tested, the logfiles of experi-
ment I were re-evaluated. Subsets of the original 26 objects 
were created, iteratively reducing the number of objects 
taken into account for the gaze-object-comparison by the 
algorithms. DRs were calculated for these subsets to deter-
mine the performance of the two algorithms for different 
amounts of objects. Based on these re-evaluations, the 
number of distractors for experiment II was set to an inter-
val from two to eleven, resulting in a maximum object 
count of twelve, including the target object. An object 
count of less than three was likely to generate ceiling ef-
fects, reducing the informative value of these conditions. 
More than twelve objects displayed at the same time would 
create a substantial amount of overlap between objects in 
the start position or during the object movement within this 
setup and were therefore excluded.  

Table 2. Overview of object configurations and their respective 
spawn points (circular) or target point of movement (linear).  

Object config. spawn point of objects (circular) / end-
point of movement vector (linear) 

3 A lnt, rnt, f 
3 B lnb, t, rfb 
4 A lt, lb, rb, rt 
4 B lnb, rnt, lft, rfb 
5 A l, b, r, t, f 
5 B lnb, rnt, lft, rfb, f 
6 lnb, l, b, r, t, rft 
7 lnb, rnt, l, b, r, lft, rfb 

8 A l, b, r, t, lft, lfb, rfb, rft 
8 B lnt, lnb, rnb, rnt, lf, fb, rf, ft 
9 A lt, l, lb, b, rb, r, rt, t, f 
9 B rnb, rn, rnt, lt, l, lb, ft, f, rb 

10 A lnt, lnb, rnb, rnt, t, b, lf, fb, rf, ft 
10 B nb, nt, lt, l, lb, rb, r, rt, ft, fb 
11 rnt, rn, rnb, lt, l, lb, b, t, rfb, rft, f 

12 A lnt, lnb, rnb, rnt, l, b, r, t, lft, lfb, rfb, rft 
12 B ln, nb, rn, nt, lt, lb, rb, rt, lf, fb, rf, ft 

Note: abbreviations: left (l), right (r), near (n), far (f), top (t), bot-
tom (b). See Figure 4 for the spatial distributions of points. 
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The spatial distribution of the non-targets was created 
by omitting objects from the original invisible, but simu-
lated 26 objects. The remaining configurations were dis-
tributed evenly across the volume extending in front of the 
participant (see Figure 4). In total, 17 different object con-
figurations were tested, including ten different object 
counts (3-12), of which seven were tested in different ar-
rangements (A/B, see Table 2).  

Distances. The distance of the “near” condition was 
adjusted to 0.8m (before: 0.4m) because pre-tests with the 
adapted number of visible objects revealed a high eye-
strain for the participants, due to having various objects in 
their immediate field of view in such a close proximity. 
This adjustment limits the maximum vergence of the eyes 
and with that reduces the range of additional information 
added to the algorithm on the third dimension, but was de-
cided to be necessary to ensure optimal and strain-free 
conditions for the participants. Due to the distance of the 
“far” condition having been set to 1.4m in experiment 1 in 
order to test the maximum viable distance, this distance 
was not increased further. With the radius of the sphere on 
which the spawn points were distributed remaining at 
0.2m, this results in effective spawn distances of 0.6-1.0m 
(centered at 0.8m) in the near condition and 1.2m to 1.6m 
(centered at 1.4m) in the far condition. Further implica-
tions are discussed in the overall discussion. 

Task. The feedback from pre-test participants led to 
the adjustment of the point-system in the reaction-time 
task. To prevent demotivating the participants by a low 
score at the end of each experimental block, wrong reac-
tions only led to a point reduction of -1 in experiment 2.   

Object visibility duration. The objects were shown 
immobile for 2 seconds after spawning before starting their 
movement, which continued for 4 seconds. The time of 
visibility in the initial resting phase was prolonged to 2 
seconds (before: 1 second) to allow enough time for iden-
tification of the target. Hence, the overall duration of the 
experiment slightly increased.  

Starting position of objects in linear conditions. 
While the target object was rendered directly in the center 
of the visual field in experiment 1, the presence of various 
objects in experiment 2 required a slight adjustment of the 
start position to avoid overlap. The objects started slightly 
set off from one another, each slightly moved in the re-
spective direction of the following movement. 

Hypotheses 

Based on the previous results, we derived the hypothe-
ses for experiment 2 as follows: 

Movement pattern 

H1.1 The correlation-based algorithm performs, averaged 
over all distances, better on circular movement pat-
terns compared to linear movement paths. 

H1.2 The difference-based algorithm performs, averaged 
over all distances, equally for circular movement pat-
terns and linear movement paths. 

Distance 

H2.1: The correlation-based algorithm performs, aver-
aged over linear and circular movement patterns, bet-
ter in the near condition compared to the far condi-
tion. 

H2.2: The difference-based algorithm performs, averaged 
over linear and circular movement patterns, better in 
the near condition compared to the far condition. 

Number of non-targets 

H3.1: The correlation-based algorithm performs better 
the fewer objects are present. 

H3.2: The difference-based algorithm performs better the 
fewer objects are present. 

 

Comparison of algorithms 

H4: The difference-based algorithm performs, on aver-
age, better than the correlation-based algorithm. 

Further research questions: 

Optimal thresholds. We aimed to derive a formula for the 
OT, integrating the different performance parameters (DR, 
FP, ND). Selection time: As the aim of this study is to fa-
cilitate the application of online smooth-pursuit-based se-
lection in 3D VR, the reaction times of both algorithms 
were recorded. No hypotheses were stated regarding a pos-
sible impact of movement pattern, distance and object 
count on the selection time of both algorithms. Instead, the 
reaction times across all conditions were tested explora-
tively. To allow for design recommendations from the us-
ers’ point of view as well, the preference of participants 
for movement types as well as object distance and numbers 
were assessed.  
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Experiment plan  
The experiment consisted of one practice block and 

four randomized experimental blocks. As in experiment I,, 
one experimental block represented one unique combina-
tion of object distance (near/far) and movement pattern 
(linear/circular). In each of the experimental blocks, the 
number of displayed objects progressively increased from 
three to twelve. Since some of the object numbers were 
tested in two different arrangements, the resulting 17 ob-
jects variants (see Table 2) were completed one after the 
other. Each of these object variants were repeated three 
times in a row, with an object selected by random as the 
target object. One trial consisted of a 2 second phase, 
where the objects were presented in the center of the visual 
field, followed by a 4 second phase of object movement. 

In total, 51 trials constituted one experimental block, 
resulting in 204 trials in total. Each block took 5.1 minutes 
to complete. 

Participants. N = 30 participants (15 ♀, 14 ♂, 1 di-
verse) aged between 20 to 35 years (M = 26.6, SD = 3.7) 
took part in the second experiment. 13 reported corrected 
to normal-vision, with six individuals using contact lenses, 
five glasses and two without corrective measures. The test 
procedure was identical to experiment I. 

Analysis 
The dependent variable mainly used for the analysis 

was the detection rate DR, which is defined as the propor-
tion of true positive detections from all trials (see Formula 
4). The analysis process was equivalent to experiment 1 
regarding 3D POR calculation and the moving window of 
40 frames for calculation. 

An ANOVA was performed to test the impact of vary-
ing object numbers on the DR under the four test condi-
tions (near/linear, near/circular, far/linear and far/circular) 
for both algorithms.  

For each object configuration, an optimal threshold 
was determined by using the same method as described in 
the previous experiment. For the correlation-based algo-
rithm, we iterated over thresholds between 0 and .95 in in-
crements of .05. For the difference-based algorithm, values 
between .20 and .01 were tested in steps of .01.  

The configuration yielding the optimal threshold for 
the respective object variant was further analyzed. In order 
to perform an Analysis of Variance to test H3.1, the data 

was tested for normal distribution of the residuals with a 
Shapiro-Wilk-Test and a Mauchly-Test for sphericity. Due 
to the amount of data, exemplary object counts (with 4, 6, 
8, 10 and 12 objects) were tested for their specific main 
effects. 

Since the data of some of the tested object configura-
tions violated the normal-distribution of residuals, addi-
tional QQ-Plots were used. Based on Lix, Keselman & 
Keselman (1996), who refer to the ANOVA as robust re-
garding violations of the normal distribution of residuals 
and on Villasenor et al. (2009, p. 1874) who say, that the 
Shapiro-Wilk-Test is “too strict”, a two factor ANOVA 
was chosen as test measure, although not all requirements 
were met. 

To test H4, the selected object counts of 4, 6, 8, 10 and 
12 objects were each individually tested for the differences 
in detection rates between the correlation-based and differ-
ence-based algorithms. The requirements to perform a t-
test include normal distribution of the difference variable. 
Since this was not given and the t-test is more vulnerable 
to undesired impacts, the non-parametric test alternative 
Wilcoxon-sign rank test was performed. 

We investigated if an ideal threshold could be deter-
mined for each object configuration. We therefore defined 
a formula for Efficiency_1 based on their DR, FP and ND. 
In terms of application, ND are preferred over FP because 
the trial can be repeated while corrective measures needed 
to be taken for a false selection. More FP are likely to have 
a worsening impact on user satisfaction. The formula used 
is: 

(6) 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_1 = 1 − 6 67
67-43

− 7
45

45678
45

45678-56
86 

67
67-43

 represents the proportion of correctly detected 
objects (DR) out of all the trials where an object exceeds 
the pre-defined threshold – in the following, this term will 
be referred to as “effectiveness”. In the second part of the 
term, the ND rate is additionally taken into account, calcu-
lating the proportion of the “effectiveness” out of all trials. 
The absolute value of the “effectiveness” was used and 
subtracted from 1. 

This formula reaches its’ maximum value when the ND 
exceeds the FP, favoring repeats over false selections. The 
formula therefore is able to determine for which range of 
threshold values the FP are decreasing, which is desirable.  



Journal of Eye Movement Research Freytag, S.-C., Zechner, R., & Kamps, M. (2023) 
15(3):9 A systematic performance comparison of two Smooth-Pursuit Algorithms in VR 

14 

  

Efficiency_2 is also based on what we previously de-
fined as “effectiveness” ( 67

67-43
) and the ND, but focuses 

on the rate of change from one threshold value to the next.  

(7) 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦	2 = 	 :;	 67
67-4389$:)9;<&	=	

−

	𝑁𝐷89$:)9;<&	=	= − ;	
67

67-4389$:)9;<&	=>?	
−

	𝑁𝐷89$:)9;<&	=>?	=: 

With this approach we investigated if a rapid increase 
in ND and decrease in DR emerged, indicating a specific 
threshold as ideal, as represented by a high slope of the 
graph for Efficiency_2. 

Results 
Movement pattern and distance. On average, circu-

lar object movements resulted in a trend towards a higher 
DR for both algorithms (H1.1/1.2), but the main effect 
only surpassed the significance threshold for 4 and 6 ob-
jects for the correlation-based algorithm (p = .003, 𝜂@A =
.06 and p = .001, 𝜂@A =	 .13) and for 4 objects for the dif-
ference-based algorithm (p = .043, 𝜂@A=.03). We hypothe-
sized an effect for all object counts for the correlation-
based algorithm but none for the difference-based algo-
rithm. The general tendency suggests that the difference-
based algorithms had higher DRs for circular movements, 
but for both algorithms the differences in DRs were lower 
than in experiment 1. 

The impact of distance was found to be much smaller 
than in experiment 1. Only for the trials with all 12 objects 
visible, both algorithms performed better in the “near”-
condition (corr.-b. A. p = .004, 𝜂@A = .08, diff.-b. A. p = 
.021, 𝜂@A =	 .04), which is compliant with H2.1 and H2.2. 
Additionally, the correlation-based algorithm detected 
more objects in the near-conditions in the variants with 8 
objects (p = .027, 𝜂@A=.03).  

Object count. The ANOVA yielded a confirmation of 
H3.1 and H3.2, regarding the main effect of object count 
for both the correlation-based (p < .001, 𝜂@A  = .61) and the 
difference-based algorithm (p < .001, 𝜂@A =	 .27). Addi-
tionally, an interaction effect between the object counts 
and the test condition was found to be significant for the 
correlation-based algorithm (p = .007), but only with a 
comparably low effect of 𝜂@A  = .05.  

Figure 9. Detection rates of both algorithms for movement 
patterns (linear, circular) distance (near, far) and number of 
visible objects.   

Comparison of algorithms. The difference-based al-
gorithm outperformed the correlation-based algorithm in 
nearly all of the tested trials, in alignment with H4 (see 
Figure 10). Four out of the five selected object counts for 
further investigation (4, 6, 8, 10 and 12 objects) resulted in 
higher detection rates for the difference-based algorithm (4 
objects: p= .418, r= .02; 6 objects: p= <.001, r= .48; 8 ob-
jects: p= <.001, r =.41; 10 objects: p= <.001, r= .58; 12 
objects: p= <.001, r = .35). 

 
Figure 10. Detection rates of both algorithms for all numbers of 
simultaneously visible objects, averaged over all experimental 
conditions. 

Optimal threshold. The difference-based algorithm 
produced a lower FP rate than the correlation-based one. 
Therefore, the maximum value of Efficiency_1 is achieved 
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at a comparatively low threshold value (see Table S1; e. g. 
.13 for object variants with 3 objects; .1 for object variants 
with 6 or 9 objects; .06 for object variants with 12 objects). 
For the correlation-based algorithm, which has on average 
a higher FP rate, the maximum of Efficiency_1 is achieved 
for higher thresholds, therefore leading to more conserva-
tive selections. Using the Efficiency_2 formula, optimal 
thresholds for most numbers of visible objects for the cor-
relation-based algorithm were identifiable due to the im-
pact of increasing DR and decreasing ND. For the differ-
ence-based algorithm, Efficiency_2 painted a less clear 
picture, as NDs were already low. 

Table 3: Overview of durations for and detections for both 
algorithms, averaged, and for exemplary numbers of objects. 

objects correlation-based difference-based 
 select. detection select. detection 

M (all) 1.23 1.18 1.53 1.53 
3 1.03 0.99 1.12 1.10 
6 1.05 0.98 1.26 1.33 
9 1.34 1.30 1.62 1.62 
12 1.13 1.05 1.54 1.61 

Note: Duration is provided in seconds. Selections are defined as 
true positives and false positives. Detections are defined as true 
positives only. 

Detection time. Overall, the correlation-based algo-
rithm performed selections (including true and false posi-
tives) after an average of 1.23s, averaged over all condi-
tions (see Table 3). If only detections (true positives) were 
considered, the duration shortened to 1.18s. In contrast, the 
difference-based algorithm needed 1.53s for selections as 
well as true positive detections and showed an overall 
higher time for both selections and detections.  

Subjective results. 17 out of 26 participants indicated, 
across all conditions for movement type and distance, that 
on average, seven objects were the most comfortable to in-
teract with (M = 7.18, SD= 1.67, “What number of objects 
was the most comfortable for you?”). The remaining nine 
participants, were comfortable to interact with any number 
of objects between three and 12. Asked which number of 
objects were too many to complete the primary task unhin-
dered, the majority (18) of participants indicated that there 
were no hindrance for the maximum number of objects 
shown simultaneously (12). Participants voiced that the 
clear visual distinction between target and non-targets 
helped in completing the task.  Eight participants felt dis-
rupted by the increasing number of objects at an average 
threshold of M = 9.86 (SD = 1.55) objects. 

No clear preference for either linear (favored by 11 par-
ticipants) or circular movement types (favored by 10) 
emerged. Five participants had no preference at all. Asked 
why they preferred their chosen type of movement, the rea-
sons for linear movement were stated, with number of par-
ticipants in braces, as “high predictability of continuation 
of the movement” (4), “less coverage between objects” (4), 
and “less straining for the eyes” (1). For circular move-
ment, the reasons were “less eye movement needed/less 
visual angle covered” (5), “aesthetics of the movement 
pattern” (3), “better resolution of the objects on the HMD” 
(2) and “ease of interaction” (1). 

A preference for the far display condition (15 partici-
pants) over the near display of objects (6 participants) 
emerged. Five participants indicated no preference. Rea-
sons for favoring the far distance (1.4m) were “less head 
movement needed” (6), “better overview” (5) and “less 
eye movement needed/smaller visual angle covered by the 
objects” (4), but also “a better resolution” (1). The near 
condition was favored due to “a better resolution” (3), for 
“no particular reason” (2) or because of the “bigger object 
size” (1). 

Discussion 
Performance. Across both experiments, the differ-

ence-based algorithm provided a better performance com-
pared to the correlation-based one, if performance is oper-
ationalized by high detection rates. However, as experi-
ment 2 has shown, the higher reliability comes at a cost, as 
both overall selection times and detection times were 
slower, compared to the correlation-based algorithm. The 
latter, on the other hand, provides faster interaction for the 
user. The impact of different movement patterns was 
higher for the correlation-based algorithm as well, with 
circular types of movement increasing DRs for this algo-
rithm, but not for the difference-based algorithm which 
performed more homogenously across both conditions.  

Distances. While experiment 1 showed a clear ad-
vantage in detection for close distances (0.4m) for both al-
gorithms, experiment 2 could not establish a significant 
difference in performance between both conditions. This 
might have been due to the adaptation of distance in the 
near condition, setting the spawn point to 0.8m. This was 
required by the results of pre-tests after introducing addi-
tional visible objects. It is very likely that the decrease in 
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distance between both near and far condition reduced dif-
ferences in detection rates, as the original distance between 
both conditions was nearly halved. Furthermore, both dis-
tances were indicated by the center of a sphere on the sur-
face of which objects could spawn, adding a radius of 
0.2m., resulting in a distance of only 0.4m between spawn 
points on the back side of the sphere in the near condition 
(centered at 0.8m) and spawn points on the front side of 
the sphere (1.2m, centered at 1.4m) in the far condition. 
However, the rationale behind the exact location of the 
spawn center in the far condition was to test the limits of 
the algorithm and the usefulness of including the third axis 
into calculations close to a point where parallelization of 
the eyes would hinder depth detection. While trends to-
wards better detection in the near condition were still de-
tectable, experiment 2 showed that both algorithms work 
reasonably well within both distances.  

User Experience. The adaptation of spawn distances 
took place because the introduction of additional objects in 
close proximity caused eye-strain that did not occur while 
only one object was present. We assume that the increased 
amount of movement in a comparatively large portion of 
the visual field had contributed to the discomfort. After ex-
periment 2, individuals who preferred the far condition in-
dicated that they liked not having to perform large eye 
movements, further supporting that assumption. This ties 
into a limitation of the usefulness of the third spatial axis 
for any kind of gaze analysis compared to the other axes: 
not all distances are equally feasible, depending not only 
on physical and technical limitations but also on the num-
ber of stimuli present in the visual field. Drewes et al. 
(2022) have demonstrated that user preferences corre-
sponded to optimal detection rates in 2D smooth pursuit 
tasks with constant target velocities. We therefore assume 
that, by having adapted the speed to the users' preferences 
in our prestudy, the chosen speed parameters would ap-
proach optimal settings to investigate the algorithms per-
formances. In 3D, the perceived speed of the targets might 
vary due to targets moving away or towards the user. We 
encourage further researching the relationship between 
user preference and detection rates specifically when in-
cluding the third dimension.    

Number of visible objects. While experiment 1 inves-
tigated the optimum performance of both algorithms under 
ideal conditions, the introduction of visible objects al-
lowed to test both algorithms in an ecologically more valid 
setup. Hypotheses H3.1 and H3.2 of experiment 2 were 

confirmed, showing that smaller numbers of objects in-
crease the performance of both algorithms. The addition of 
feedback from participants allow to balance affordances of 
the algorithm with user preferences. While not all partici-
pants showed a preference for specific object numbers, the 
majority did and indicated that seven objects were prefer-
able. Additionally, we found that for object counts ≤ 6 the 
FP rates of the difference-based algorithm were lower than 
the ND rates. This is desirable, as trials without a detection 
can be repeated, while trials with a false detection can lead 
to a worse user experience and increase the overall inter-
action time. We therefore recommend limiting the number 
of simultaneously shown objects to choose from via 
smooth-pursuit to 6, and suggest to not surpass a number 
of 9 objects at a time, as this was indicated as being per-
ceived as too much by almost a third of participants. 

Number of participants. For this study, two experi-
ments were conducted. The first experiment was to test 
both algorithms under ideal conditions with only one target 
being shown to a comparatively low number of twelve par-
ticipants, but with a high number of trials. To account for 
this number, a sensitivity analysis was performed for the 
non-significant results, revealing that effects of at least η² 
= 0.09 would have been revealed with a probability of .90. 
The second experiment introduced an ecologically valid 
variation in the number of visible objects as described 
above and was therefore considered as much closer to real-
world applications, which is why we allocated a compara-
bly higher number of 30 participants to this experiment.  

Calibration. One of the great advantages of smooth-
pursuit based interaction is the option to be used for spon-
taneous interaction without (Vidal et al., 2013) or only 
minimal (Lutz et al., 2015) calibration. While we aimed 
for ecological validity in the second study, we still in-
cluded a calibration for this experiment to control for po-
tential sources of error. The additional calibration time was 
feasible due to the experimental conditions, but might pose 
a hindrance for applications. We suggest to compare using 
different calibration procedures, e.g., smooth-pursuit 
based (e.g. Pfeuffer et al, 2013, Blignaut, 2017) or regres-
sion-based (Drewes et al., 2019b) and calibration-free per-
formances to provide further references for application. 

Optimal threshold. The idea to introduce a formula to 
indicate the optimal threshold provided helpful support in 
threshold selection, but ultimately needs more fine tuning. 
For both algorithms, the Efficiency_1 tends to favor more 
conservative thresholds when a higher number of objects 
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is shown (> 6 objects). This inherently results from trying 
to prevent false positives, of which the likelihood to occur 
increases with each additional distractor, as the distance to 
other selectable objects is reduced.  In most cases, this con-
servative threshold results in DRs close to the maximum 
of the algorithm. However, we suggest an adjustment for 
object counts larger than six, as detection loss might oth-
erwise occur. 

The approach of calculating the optimal threshold 
seems promising, but not perfect. For some object variants, 
Efficiency_2 failed to suggest a clear threshold as a steady 
slope emerged, with no significant maximum. This oc-
curred more often for the difference-based algorithm than 
for the correlation-based algorithm. As the difference-
based algorithm was generally more reliable than the cor-
relation-based algorithm, the lower variance of DRs and 
NDs led in turn to a lower change in Efficiency_2.  For our 
analyses, we used a hybrid approach, taking into consider-
ation the thresholds suggested by Efficiency_1 (for the dif-
ference-based algorithm) and Efficiency_2 (for the corre-
lation-based algorithm) and a visual inspection of the de-
velopment of DR to determine individual thresholds for 
each of the tested object configurations. The aim was to 
choose a threshold which would produce a high DR and 
prefers ND over FP. However, this threshold was selected 
manually. A further development would be the further re-
finement of the developed formulae, and in a second step, 
with a previous calibration, the integration into an online 
algorithm.  

However, the derivation of a formula that supported the 
identification of the ideal threshold was an exploratory en-
deavor with the ultimate goal to facilitate threshold selec-
tion. The optimal thresholds for both tested algorithms 
were still selected manually upon inspection of the result-
ing values.  We hope that both the results of experiment 1 
and experiment 2 can contribute to the growing body of 
references for best-practices in gaze interaction in 3D Vir-
tual Reality. 

Conclusion 
Our study systematically compared the effects of both 

distance and number of objects in a smooth-pursuit selec-
tion task in Virtual Reality. Overall, performance was 
higher for the difference-based algorithm, suggesting that 
tasks relying on high reliability would benefit from the 

slightly higher time needed. The 3D difference-based al-
gorithm also showed a higher robustness across all varia-
tions regarding object size and trajectory. Seeing that the 
influence of distance and therefore benefit of adding the 
third axis to the algorithms was mostly notable in very 
close proximity (0.4m). With close distances being advan-
tageous for 3D algorithms, there is a trade-off between 
high detection rates user experience, as too many visible 
objects in close distances create discomfort for the user, as 
seen in the need for adaptations. Hence, we recommend to 
use closer distances if visible objects are limited in num-
ber, and further distances elsewise, as our experiments 
have shown that the decrease in detection performance 
seems to be stable for distances larger than 0.8m. As 
Khamis et al. (2018) have shown, target size did not influ-
ence performance. We therefore recommend to keep tar-
gets as small as convenient to reduce the amount of visual 
flow in closer distances. However, while effects of larger 
distances than 1.4m should be neligible due to the parallel-
ization of the eyes, further research to find the best possi-
ble range for depth tracking along the third axis is encour-
aged.  

While our approach was based on a correlation-based 
and a difference-based algorithm, future research could 
further investigate the possible benefit of integrating the 
third axis into currently novel algorithms such as the slope 
method by Drewes et al. (2019).  

Furthermore we investigated the idea of an ideal 
threshold based on parameters of the environment. Future 
approaches could be refined to include additional factors 
either into design decisions or by adding to the threshold 
algorithm. Drewes et al. (2022) demonstrated that optimal 
detection rates correspond to the individual user's target 
speed preference in 2D smooth pursuit tasks. The target 
speed in our study was selected based on the overall sub-
jective preferences of users in a pre-study, but varied de-
pending on object trajectory. Therefore, for interaction set-
tings that require best possible detection rates, adapting to 
the users preferred speed might be beneficial.  

While our study involved a constant task to be per-
formed by the participants over all conditions, applications 
would have different levels of engagement and demands 
of the user. Kosch et al. (2018) have used the variation in 
deviations within gaze trajectories during smooth pursuit 
movements to successfully predict cognitive workload. 
Aside from using the workload information for adaptive 
experiences, the results of an online-classification could be 



Journal of Eye Movement Research Freytag, S.-C., Zechner, R., & Kamps, M. (2023) 
15(3):9 A systematic performance comparison of two Smooth-Pursuit Algorithms in VR 

18 

  

used to inform the detection threshold as well, thus possi-
bly further improving the algorithm performance. 
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