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Abstract
In the era of massive sharing of information, the term social provenance is used to denote
the ownership, source or origin of a piece of information which has been propagated through
social media. Tracking the provenance of information is becoming increasingly important
as social platforms acquire more relevance as source of news. In this scenario, Twitter is
considered one of the most important social networks for information sharing and dissemi-
nation which can be accelerated through the use of retweets and quotes. However, the Twitter
API does not provide a complete tracking of the retweet chains, since only the connection
between a retweet and the original post is stored, while all the intermediate connections are
lost. This can limit the ability to track the diffusion of information as well as the estimation
of the importance of specific users, who can rapidly become influencers, in the news dis-
semination. This paper proposes an innovative approach for rebuilding the possible chains of
retweets and also providing an estimation of the contributions given by each user in the infor-
mation spread. For this purpose, we define the concept of Provenance Constraint Network
and a modified version of the Path Consistency Algorithm. An application of the proposed
technique to a real-world dataset is presented at the end of the paper.

Keywords Data provenance · Information discovery · Constraint propagation · Path
consistency algorithm

1 Introduction

The amount of information shared through social media is increasing in recent years, since
they are becomingmore popular than traditionalmedia as source of news.Online newspapers,
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social networks, and content-sharing platforms are everyday flooded by multimedia content
describing the world events of major interest. In this context Twitter is certainly one the
mostly used source of information. It counts about 330 million monthly active users which
span from individuals to official institutional accounts.

One of the main benefits introduced by this kind of media is that information can be shared
and disseminated all over the network very easily. However, this introduces new problems
related to the tracking of the information diffusion [1, 2] and the origin (provenance) of the
information. For this reason, beside to the concept of data provenance [3–5], the term social
provenance [6] has been introduced to inform about the ownership, source or origins of a
given piece of information that propagates in a social network.

Twitter provides two important means for increasing the spread of information shared
through a post (called tweet): retweets and quotes. The difference between the two is essen-
tially the fact that the former simply reposts a previous tweet without any modification, while
the latter adds some specific comments to the original content. For this reason, a retweet is
considered an endorsement of the original post, while a quote can both provide support or
express a different idea.

In this scenario it is crucial to track the diffusion of information [1, 2] as well as to
estimate the importance of specific users in spreading the original message, for example
with the aim of recommending friends and followers, or to infer users’ interests, needs, and
political leaning [7]. However, the Twitter API does not provide a complete description of a
retweet propagation path: the only information carried by a retweet is a link to the original
tweet, whereas possible intermediate steps are lost, since no information are stored about
them [8]. In other words, second-order retweets are treated as retweets of the original tweet
and the retweet chains are not represented.

In this paper we propose a method for rebuilding the complete retweet chain by consid-
ering both temporal relations between posts and social connections between users. It uses
a methodology inspired by the Temporal Constraint Network [9], for the construction of
the interaction graph, and a modified version of the Path Consistency Algorithm [10], for
the constraint propagation. More specifically, we introduce the concept of Provenance Con-
straint Network (PCN) where nodes represent tweets (or retweets) and edges are authorship
constraints. An authorship constraint is used to track the complete possible provenance of
a retweet. It not only specifies the set of users which likely contribute to the current post
through a previous tweet or retweet, but also assigns to each of them a degree of ownership.
In other words, all possible contributions are estimated and weighted based on the temporal
relations between posts and the social relations between users. The basic idea is that if a user
u1 posts a retweet RT1 of a tweet T created by u, but the social connection between u1 and
u is weaker than the connection with the author u2 of another retweet RT2 of T older than
RT1, then it is more likely that RT1 originated from RT2 rather than T .

Several techniques have been proposed in literature in order to generate retweet cascade
graphs. However, all of them concentrate in the identification for each retweet of the most
probable source connection, discarding all the other ones. Moreover, these approaches are
not able to prevent the loss of important connections and this can be worsen by the absence of
real benchmarks on which the proposed techniques can be validated and refined. Conversely,
in this paper we propose a different approach, because we try to reconstruct all possible
connections and weight them on the basis of temporal and social relations. In addition,
the use of a constraint propagation approach allows us to propagate derived provenance
information inside the network.

The overall contribution of the paper is manifold: (i) we introduce a formalism, called
Provenance Constraint Network, for modeling the social and temporal connections among
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tweets, (ii) we propose amodified version of the propagation operations used by the PathCon-
sistency Algorithm which deals with provenance information, (iii) we define a MapReduce
implementation of the propagation algorithm which takes care of the semantical characteris-
tics of a PCN in order to reduce the computational cost, and (iv) we introduce a set of metrics
for evaluating the goodness of the obtained results in absence of a ground truth.

The remainder of the paper is organized as follows: Sect. 2 discusses some previous contri-
butions about information propagation on Twitter, Sect. 3 provides a complete formalization
of the addressed problem, Sect. 4 introduces the proposed solution from the construction of
a PCN to the definition of a MapReduce version of the Path Consistency Algorithm, Sect. 5
reports some experiments performed on a real-world Twitter dataset about COVID posts, and
finally Sect. 6 summarizes the obtained results and discusses some future extensions.

2 Related work

The problem of social provenance or information diffusion has been investigated only at
conceptual level in [11]: the authors propose PROVE-SAID, a unified conceptual model
that provides concepts and definitions to deal with information diffusion and provenance
in heterogeneous environments. In [12] the authors propose a social provenance framework
for Twitter data, modeled in the NoSQL graph database Neo4j, but they do not provide an
algorithm to translate data produced by Twitter API into their model.

In [13, 14] the authors propose mathematical models for predicting the retweet dynamics
based on both temporal and social network information. In particular, in [13] the joint use
of these two kinds of information is the one that produces the most reliable predictions
about cascade dynamics, whereas in [14] the authors examine dynamics of tie strength,
in terms of reciprocity, temporality, and context-awareness through social networks and
propose a generalmodel to predict the repliers and retweeters of a particular tweet considering
friendship dynamics. For this reason, this paper proposes an approach based on both temporal
and social information for deriving social provenance in retweet chains.

Themethod proposed in [8] formodeling retweet cascade graphs is based on the estimation
of the interaction strength between each couple of users. Suchmetric is measured on the basis
of the analysis of previous retweets, quotes and replies, as well as the consideration of the
friend and follower sets. However, this method requires to retrieve for each group of retweets
the most recent timeline of all involved users, and this can be a little cumbersome in extensive
analysis. Other alternative techniques which consider the impact of the social relationships
in the reconstruction of the retweet chains are described in [15, 16]. However, these methods
measure the strength of social relationships only in terms of retweet dynamics, but this is not
a complete measure, since no intermediate steps are registered in a chain of retweets.

At the best of our knowledge, given an original tweet and a set of its retweets, the main
objective of the techniques proposed in literature is to identify for each retweet its actual
source (the original tweet or another retweet) by using some heuristics based on the time and
social interaction between the users. However, all these techniques are prone to errors and
some important connections can be lost, also due to the absence of a base truth. Conversely,
in this paper we define a technique which tries to estimate the likelihood of each possible
connection and maintain a complete network of them.

The proposed technique is sufficiently generic to be enriched with other criteria or
approaches for defining the interaction strengths between pairs of users, such as location
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information [17], or tweeting behavior [18]. In other words, any sophisticated formula for
computing the interaction strengths can be easily plugged in the propagation algorithm.

A related but inverse problem, is the identification of the source of a rumor in an online
social network. In this case, we have to track of the information spread andwewant to identify
the common source of information that originates the rumor [19–21]. Conversely, in our case,
we do not want to identify the source of the information, since it is the only knowledge that
we have (i.e., the original tweet) and we want to identify the possible chain of spread (i.e.,
the network of transmission) which is lost in Twitter. However, the adopted approaches
share some similarities with the one proposed in this paper, which is the application of a
probabilistic approach and the use of additional contextual information, like the network
topology (i.e., social connections) and the speed of spreading (i.e., temporal aspects).

An approach similar to the one proposed in this paper can be found in [22], in this case
the aim was to identify and track the provenance of data and the ownership of information in
the archaeological context. In this scenario, we do not have a spread of an identical piece of
information among different network nodes, but we have an evolution of the original data or
the combination of several knowledge in order to obtain a new one. Moreover, some degrees
of vagueness are added and depend on the kind of data to be managed, not on the kind of
connections in the network. Anyway, the idea to track all possible connections and give them
a certain level of confidence are common to both approaches.

3 Problem formulation

This section provides a rigorous description of the considered problem. First of all, the
concepts of tweet and user are formalized, then some observations are made about their
possible connections, and finally the notion of authorship is introduced.

The term tweet is generically used to denote different kinds of posts, in particular: general
tweets, retweets and the quotes.1 While a general tweet is an original content produced by a
well recognized user, retweets and quotes are twoways to re-post the content of another tweet.
The difference between a retweet and a quote is that the latter allows to add a comment to the
mentioned tweet. For the purposes of this paper, we can safely neglect this last distinction,
so anytime we use the term retweet, we can refer to either a retweet or a quote without
distinction.

Definition 1 (Tweet) A tweet T can be briefly represented as a tuple 〈id, user, timestamp,
text, retweet_of〉, where id is a unique identifier for the tweet T , user is the identifier of
the user who posted T , timestamp is post timestamp, text is the tweet content, and finally
retweet_of is the identifier of the source tweet, if T is a retweet of another tweet T ′, or the
empty value otherwise.

Notice that the last property is what allows us to distinguish a general tweet from a retweet:
a tweet T is a retweet if and only if the property T .retweet_of is not empty.

Throughout the paper, the set of all tweets will be denoted as T , the set of all retweets as
R, with R ⊂ T . Given a tweet T ∈ T , the set of retweets of T is denoted as T .R.

Definition 2 (User) A user u can be synthetically represented by a tuple 〈id, username,
Followers, Friends〉, where Followers is the set of users that are following u, while Friends
is the set of users that u is following.

1 https://help.twitter.com/en/using-twitter/types-of-tweets.
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Fig. 1 Example of connection between a general tweet T and two of its retweets RT1 and RT2. In the tuple
〈T , u, t〉, T is the tweet identifier, u is the user identifier and t is the tweet timestamp. The solid arrows
represent connections stored in the Twitter API, while the dashed arrow is a derived one

The set of all users will be denoted as U . Given a user u ∈ U , u.Followers ⊆ U
and u.Friends ⊆ U . Moreover, given two users u, w ∈ U , four different scenarios can
be recognized: (i) w ∈ u · Followers ∧ w /∈ u · Friends, w is following u but not vice
versa, (ii) w ∈ u · Friends ∧ w /∈ u · Followers, u is following w but not vice versa,
(iii) w ∈ u · Followers ∧ w ∈ u · Friends, u and w are following each other, finally (iv)
w /∈ u · Followers ∧ w /∈ u · Friends, u and w are not following each other at all.

Let us consider the situation depicted in Fig. 1; in this case we have a general tweet T
with two retweets RT1 and RT2. Each tweet is represented by a node and an edge connects a
retweet RTi to its original tweet T , so the edge represents the property RTi .retweet_of. The
label of the node 〈T , u, t〉 includes only the id, user and timestamp of the tweet, respectively.
In accordance to what is stored by the Twitter platform, both RT1 and RT2 are connected
only to the original general tweet T (see the two solid arrows from the retweets to the general
tweet T ). However, the following observations can be made.

Observation 3.1 Given two retweets RT1 and RT2 of the same general tweet T , if the author
u2 of RT2 is a follower of the user u1, who is the author of RT1, and the timestamp t2 of
RT2 is greater than the timestamp t1 of RT1, then it is possible that RT2 is a retweet of RT1,
rather than a retweet of the original general tweet T .

∀RT1, RT2 ∈ R (∃T ∈ T
(RT1 ∈ T · R ∧ RT2 ∈ T · R ∧
u2 ∈ u1.followers ∧ t2 > t1) ⇒ RT2 ∈ RT1.˜R)

where RT .˜R is the estimated set of retweets of a retweet RT .

In Fig. 1, RT1.˜R is represented by the dashed edge connecting the node RT2 with RT1.
In the attempt to identify chains of retweets, previous proposals typically adopt strategies

based on social network information (i.e., friends and followers) in conjunctionwith temporal
information [23]; in particular they exploited the fact that users tend to interact more often
with newer tweets [18], and thus, a user is more likely to retweet the last tweet of a friend
[14].

Observation 3.2 Given a retweet RT2 performed by a user u2 at timestamp t2 and related to
an original general tweet T , and a set S of users such that

S = {s ∈ U | u2 ∈ s.Followers ∧
∃RTi ∈ T .R (RTi .user = s ∧
RTi .timestamp < t2)}

namely the set of users which are followed by u2 and have posted a retweet of T prior to u2.
Then, the likelihood that RT2 is a retweet of any RTi ∈ S depends on the cardinality of S
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and the distance between the timestamp of RT2 and RTi . The rationale is that if more than
one followed users have performed a retweet of the same tweet, it is more likely that u2 has
taken the last of them as source of RT2.

Another aspect to be considered is that the Twitter platform has recently changed its
policies: it does not show content based on a simple reverse chronological order, but it also
considers trend topics and their importance. More specifically, the likelihood that a retweet
is a source of another retweet could depend on the connection (social interaction) between
the two users.

Observation 3.3 Given a user u and the set of her friends F = u.Friends, the interaction
strength (IS) between u and ui ∈ F is directly proportional to the amount of mutual social
activities, measured as the number of retweets, quotes and replies performed by one w.r.t.
the tweets of the other one, or vice-versa:

∀ui , u j ∈ u.Friends (I S(u, ui ) > I S(u, u j ) ⇐⇒
|connections(u, ui )| > |connections(u, u j )|) (1)

where connections(u, ui ) is the set composed of all retweets, quotes and replies performed
by u towards tweets from ui , and vice-versa.

Given the above three observations, we can define the concept of Provenance Constraint
Network (PCN), which represents the first contribution of the paper.

Definition 3 (Provenance Constraint Network)A Provenance Constraint Network (PCN)N
is a tuple 〈X , C〉, where X is a set of nodes representing tweets, and C is a set of edges
defining binary constraints between pair of nodes. In particular, each edge in C from a tweet
node Ti to a tweet node Tj defines an authorship constraint for Ti deriving from its relation
with Tj . Each edge in C is represented as a tuple: 〈Ti , Tj ,Ci j 〉, where Ci j is an authorship
constraint as defined below.

Definition 4 (Authorship Constraint) Given two tweet nodes Ti and Tj , an authorship con-
straint Ci j from Ti to Tj is represented as a set of tuples {(uh, [sh, eh]), . . . }, called authorship
statements, where uh ∈ U is a user involved in the authorship of Ti and [sh, eh] ∈ R

2 is the
corresponding degree of ownership. Each degree of ownership is represented as an interval
of likelihood which extends from a minimum of sh to a maximum of eh .

The following constraints are defined on the authorship statements composing an author-
ship constraint C = {(u1, [s1, e1]), . . . , (un, [sn, en])}:

∀C ∈ C :
∀i = 1, . . . n (si ≥ 0) ∧ (2)

∀i = 1, . . . n (si ≤ ei ) ∧ (3)
n

∑

i=1

ei = 1 (4)

In other words, the minimum likelihood of each authorship statement has to be greater than
or equal to 0 (Eq.2); the degree of ownership has to be a valid interval (Eq. 3), while the sum
of the maximum likelihood has to be equal to 1 (Eq.4).

123



Tracking social provenance in chains of retweets

Table 1 Details of the tweets
represented in Fig. 2

ID User Timestamp Retweet-of

T1 u 90 –

RT1 u1 110 T1
RT2 u2 120 T1
RT3 u3 100 T1
RT4 u4 95 T1
T2 u2 150 –

RT5 u3 170 T2

4 Proposed solution

This section illustrates the three algorithmic contributions of the paper: (i) the definition
of a procedure for building a PCN given a set of general tweets and retweets (Sect. 4.1),
(ii) the constraint propagation algorithm together with the customization of the operations
on authorship constraints (Sect. 4.2), and finally (iii) a MapReduce implementation of the
proposed propagation technique (Sect. 4.3).

In the next sections, we will refer to the following running example in order to better
illustrate the PCN construction procedure and the constraint propagation operations.

Example 1 Let us consider a set T containing two general tweets, T1 and T2, and five retweets,
RT1, RT2, RT3, RT4 and RT5. Their details are summarized in Table1 where ID is the tweet
identifier, user is the identifier of the user who posted the tweet, timestamp is the tweet
timestamp, and retweet-of contains the identifier of the original tweet, if the current tweet
is a retweet, or is left empty otherwise. In this case, RT1, RT2, RT3 and RT4 are retweets of
T1, while RT5 is a retweet of T2.

4.1 Construction of a PCN

Given a collection T including both general tweets and retweets regarding a considered
period of time, a PCN N can be built by performing the operations summarized in Alg.1.
The definition of the following transformation rules is the second contribution of the paper
and is an essential preparatory step for all the other operations. First of all, the setX of nodes
for the network N is initialized (see line4).

Definition 5 (PCN Node) Given a collection T of tweets, a node n is created and added to
the network N for each T ∈ T .

Given the situation introduced in Ex.1, a node is created for each row of Table1, as
depicted in Fig. 2.

Once the set of nodes X of N has been built, we connect them by considering: (i) the
link between a retweet and its original tweet, (ii) the temporal and social relations among the
retweets of the same tweet, and (iii) the temporal connections among the tweets of the same
authors.

Before proceeding with the edge definition, we introduce the notion ofCandidate Retweet
Sources (CRS) as the set of all tweets which can be considered a valid source for a current
retweet R.
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Fig. 2 Example of PCN containing the tweets in Table1

Definition 6 (Candidate retweet sources)Given a retweet R ∈ R, the set of candidate retweet
sources (CRS) S is defined as:

S = {R.retweet_of} ∪
{S ∈ R | S.retweet_of = R.retweet_of ∧
S.user ∈ R.Friends ∧
S.timestamp < R.timestamp} (5)

In other words, besides to the original tweet T = R.retweet_of, the CRS contains all the
other retweets of T which can be considered a source for R based on their social and temporal
relations.

Given a retweet R, each connection between R and an element S in S can be weighted
based on (i) the number of elements in S and (ii) the temporal distance between R and S.

Definition 7 (Interaction weight) Given a retweet R and its set of candidate retweet sources
S, the interaction weights between R and any element S ∈ S is computed in the following
way: (i) for each S ∈ S the relative temporal distance between R and S is determined as:

urs = (R.timestamp − S.timestamp)
∑

U∈S(R.timestamp −U .timestamp)
(6)

then (ii) urs is transformed in order to obtain a weight which is inversely proportional to the
computed temporal distance and such that the sum of all the weights is equal to 1:

wrs = 1/urs
∑

u∈S 1/uru
(7)
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Table 2 Constraint labels for the
edges in Fig. 2

Edge Source Target Constraint

A RT2 T {(u, [0.18, 1])}
B RT1 T {(u, [0.33, 1])}
C RT2 RT1 {(u1, [0.55, 1])}
D RT2 RT3 {(u3, [0.27, 1])}
E RT3 T {(u, [0.33, 1])}
F RT1 RT3 {(u3, [0.67, 1])}
G RT3 RT4 {(u4, [0.67, 1])}
H RT4 T {(u, [0, 1])}
I RT5 T2 {(u2, [0.43, 1])}
L RT5 RT6 {(u6, [0.57, 1])}
M RT6 T2 {(u2, [1, 1])}
X T2 RT2 {(u2, [1, 1])}
Y RT5 RT3 {(u3, [1, 1])}

The interaction weights have been normalized for using it as components of authorship
statements, as we will see in the following definitions.

The first kind of edge to be built is the one connecting each retweet RT to its original
tweet T (see Alg. 1 line 9).

Definition 8 (R-T Edge)Given a general tweet T ∈ T \R and the set T .R of its retweets, for
each R ∈ T .R an edge is added from R to T and labeled with the authorship constraint:

Crt =
{ {(T · user, [wr t , 1])} if |S| > 1

{(T · user, [0, 1])} otherwise
(8)

where the value wr t is computed as in Eq.7 of Def. 7.

As you can notice, in case more than one possible sources are available for R, the initial
minimum likelihood is set equal to the interaction weight between R and T . Indeed, in line
to what has been mentioned in Observation 3.1, the likelihood interval associated to each
edge has to be inversely proportional to the temporal distance between the two nodes, so that
the tweet, which is temporally closest to R, has a greater value for the minimum likelihood.
Conversely, in case the only possible source for R is represented by the original tweet T , the
initial minimum likelihood is set equal to 0 with the aim to promote the following constraint
propagation process. Finally, the initial value for the maximum likelihood is set equal to 1 at
the beginning, since no additional information is available and we need to satisfy Eq.4.

Relatively to the network in Fig. 2, we have five edges of this kind. They are depicted with
a solid line (i.e., A, B, E , H and I ), and their constraint labels are reported in Table2.

The second kind of edge is the one connecting each retweet R to its CRS set, excluded
the original tweet (see Alg. 1 lines 11-20). In particular, in Alg. 1 line 10, function
CRS(T , R.user, R.timestamp) returns the CRS set S for R as in Def. 6.

Definition 9 (R-R Edge) Given a tweet T ∈ T \R and the set T .R of its retweets, an edge is
added from Ri ∈ T .R to R j ∈ T .R if and only if R j ∈ Ri .Friends and R j .timestamp <

Ri .timestamp. The label associated to this edge will contain the authorship constraint:

Cri r j = {(R j .user, [wri r j , 1])} (9)
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Algorithm 1 Construction of a PCN N starting from a set of tweets T .
1: function PcnConstruction(T )
2: N ←− 〈∅, ∅〉
3: for T ∈ T do
4: N .X ←− N .X ∪ buildNode(T )
5: end for
6: for R ∈ T do
7: if R.isRetweet then
8: T ←− R.retweet_of
9: N .C ←− N .C ∪ {〈R, T , {(R.user, [wr t , 1])}〉}
10: S ←− CRS(T , R.user, R.timestamp)\{T }
11: if S �= ∅ then
12: for S ∈ S do
13: if |S| = 1 then
14: m ←− 0
15: else
16: m ←− wrs
17: end if
18: N .C ←− N .C ∪ {〈R, S, {(S.user, [m, 1])}〉}
19: end for
20: end if
21: end if
22: end for
23: for Ti , Tj ∈ T do
24: if Ti .user = Tj .user ∧ Tj .timestamp < Ti .timestamp then
25: N .C ←− N .C ∪ {〈Ti , Tj , {(Ti .user, [wti t j , 1])}〉}
26: end if
27: end for
28: return N
29: end function

where the value wri r j is computed as in Eq.7 of Def. 7.
The same considerations made in Def. 8 relatively to the authorship constraint are also

valid here. This kind of edges are depicted with dashed lines in Fig. 2 (i.e., C , D, F , G, L)
and the constraint values are reported in Table2.

The set of edges introduced until now has the effect to build a set of independent sub-
networks, one for each original tweet T . The last kind of edge is the one which provides a
link between different sub-networks, since it connects tweets performed by the same author
and could be useful in order to strengthen the social relationships between users (see Alg.1
lines23-27).

Definition 10 (T-T Edge) Given two tweets Ti , Tj ∈ T , an edge is added from Ti to Tj if
and only if Ti .user = Tj .user and Tj .timestamp< Ti .timestamp. The edge will be labeled
with the following constraint:

Cti t j = {(Tj .user, [1, 1])} (10)

This last kind of edge is depicted in Fig. 2 as red dot-dashed lines (i.e., X , Y ), while
the associated constraints are reported in Table2. As you can notice, the resulting PCN is
composed of different sub-networks, each one originating from a different source tweet,
which are connected with each other through T-T edges.
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Given a PCN, some constraint propagation operations can be performed in order to reduce
the uncertainty associated to the degree of ownership of each user appearing in a constraint.
More specifically, the Path Consistency Algorithm [10] can be applied; it relies on the con-
junction and compositions operations, which are redefined on authorship constraints in the
following section.

4.2 Constraint propagation

The Path Consistency Algorithm [10] is a classical technique used for constraint propagation
with the main aim to reduce the variable domains after the arc-consistency is performed.
In a PCN, such algorithm can be used to propagate the authorship and restrict the interval
of likelihood associated to each user inside a constraint, namely to provide a more precise
measure of their degree of ownership. The idea behind the Path Consistency Algorithm is
very simple, given three nodes xi , x j and xk , such that there exists a constraint Ci j between
xi and x j , a constraint Cik between xi and xk , and a constraint Ckj between xk and x j
that completes the triangle, a new constraint can be derived between xi and x j by properly
combining them.

Definition 11 (Path Consistency Algorithm) Given three nodes xi , xk and x j of a PCN N , a
new constraint between xi and x j can be derived from the existing constraints by the path
consistency algorithm as follows:

C ′
i j = Ci j ⊗ (Cik ◦ Ckj ) (11)

where Ci j is the constraint existing between xi and x j , Cik ◦ Ckj is the composition of two
constraints, and Ci j ⊗ C is the conjunction.

In order to actually apply the path consistency algorithm to a PCN N , it is necessary to
define the operations of inversion, conjunction and composition between authorship con-
straints. The definition of these operations is the third contribution of the paper: they are
essential for applying the constraint propagation and the derivation of new provenance knowl-
edge.

Definition 12 (inversion) Given an authorship constraint Ci j = {(u1, [s1, e1]), . . . (un,
[sn, en])} between two nodes xi and x j of a PCN, the constraintC−1

i j represents the equivalent
constraint holding between x j and xi . Such constraint can be obtained bymaking the inversion
of intervals in each authorship statement:

C−1
i j = {(u1, [−e1,−s1]), . . . , (un, [−en,−sn])} (12)

The inversion operation could be particularly useful during the constraint propagation
task, since in order to identify a possible reduction triangle, the inverse of a constraint can
be required, as illustrated in the following example.

Example 2 Let us consider the network in Fig. 2, an update constraint C can be obtained
as C = C ⊗ (D ◦ F−1), in this case the inverse of the constraint F is necessary and
F−1 = {(u3, [−1,−0.67])}. The inverse of a single constraintmay seemnot to be particularly
meaningful, but its importance appears when the complete propagation is performed.

Definition 13 (composition ◦) Given two authorship constraints Cik = {(x1, [a1, b1]),
. . . , (xn, [an, bn])} and Ckj = {(y1, [c1, d1]), . . . , (ym, [cm, dm])}, their composition Cik ◦
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Ckj is defined as follows:

Cik ◦ Ckj = {(u, [s, e]) |
∃c ∈ Cik(c.user = u ∧ ∃d ∈ Ckj (d.user = c.user∧
(s = c.s + d.s) ∧ (e = c.e + d.e)))∨
∃c ∈ Cik(c.user = u ∧ �d ∈ Ckj (d.user = c.user∧
(s = c.s ∧ e = c.e)))∨
∃d ∈ Ckj (d.user = u ∧ �c ∈ Cik(c.user = d.user∧
(s = d.s ∧ e = d.e)))} (13)

In other words for each user appearing in both the original constraints, the degree of
ownership in the composed constraint is the sum of the two degrees of ownership; otherwise,
for each user appearing in only one of the two constraints, denoted as c (or d), the degree of
ownership in c (or d) becomes the degree of the composed constraint.

Example 3 Let us consider again the situation in Fig. 2 and the propagation of the constraint
C in Ex.2. The composition of the constraints D and F−1 produces the following constraint:

D ◦ F−1 = {(u3, [0.27, 1])} ◦ {(u3, [−1,−0.67])}
= {(u3, [−0.73, 0.33])}

In this case, the two authorship statements regard the same author and their degrees of
ownership are summed.

Definition 14 (conjunction ⊗) Given two authorship constraints Cik = {(x1, [a1, b1]), . . . ,
(xn, [an, bn])} andCkj = {(y1, [c1, d1]), . . . , (ym, [cm, dm])}, their conjunctionCik ⊗Ckj is
defined as follows (ui is the user associated to the source node xi , involved in the constraint
Cik):

Cik ⊗ Ckj = {(u, [s, e]) | u ∈ ui .friends.∧
(∃c ∈ Cik(c.user = u ∧ ∃d ∈ Ckj (d.user = c.user∧
s = max{0,max{c.s, d.s}} ∧ e = max{0,min{c.e, d.e}})) ∨
∃c ∈ Cik(c.user = u ∧ �d ∈ Ckj (d.user = c.user∧
s = max{0, c.s} ∧ e = max{0, c.e})) ∨
∃d ∈ Ckj (d.user = u ∧ �c ∈ Cik(c.user = d.user∧
s = max{0, d.s} ∧ e = max{0, d.e})))} (14)

In other words, the conjunction operation computes, for each user u belonging to the set of
friends of the source user ui , the corresponding degree of ownership as follows: if u appears
in both the considered constraints, their degrees of ownership are summed; otherwise, if u
appears only in one of the two constraints, its original degree of ownership is taken.

Example 4 Let us consider again the situation in Fig. 2 and the propagation of the constraint
C in Ex.3. The conjunction of C with the result of (D ◦ F−1) produces the following result:

C ⊗ (D ◦ F−1) = {(u1, [0.55, 1])} ⊗ {(u3, [−0.73, 0.33])}
= {(u1, [0.55, 1]), (u3, [0, 0.33])}

Since both u1 and u3 belong to the set of friends of u2, the author of the source tweet for
constraint C , the conjunction maintains both of them, and for u3 the left extreme of the
interval becomes 0.
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Example 5 Let us consider again the situation in Fig. 2 and the propagation of the constraint
E as E = E ⊗ (G ◦ H):

E = {(u, [0.33, 1]} ⊗ ({(u4, [0.67, 1])} ◦ {(u, [0, 1])})
= {(u, [0.33, 1]} ⊗ {(u4, [0.67, 1]), (u, [0, 1])}
= {(u, [0.33, 1], (u4, [0.67, 1])}

In this case the user u appears in both constraints, so the intersection between their degrees
of ownership is taken in the result.

Example 6 Let us consider again the situation in Fig. 2 and the propagation of the constraint
B as B = B ⊗ (F ◦ E) after the update of E as in Ex.5:

B = {(u, [0.33, 1])} ⊗ ({(u3, [0.67, 1])} ◦ {(u, [0.33, 1], (u4, [0.67, 1])})
= {(u, [0.33, 1]), (u3, [0.67, 1]), (u4, [0.67, 1])}
= {(u, [0.33, 1]), (u3, [0.67, 1])}

In this case the authorship statement related to u4 has been removed, since u4 is not a friend
of u1.

Example 7 Let us consider again the situation in Fig. 2 and the propagation of the constraint
A as A = A ⊗ (C ◦ B), after update of constraint B in Ex.6:

A = {(u, [0.18, 1])}⊗
({(u1, [0.55, 1]), (u3, [0, 0.33])} ◦
{(u, [0.33, 1], (u3, [0.67, 1])})

= {(u, [0.18, 1])} ⊗ {(u, [0.33, 1]), (u1, [0.55, 1]), (u3, [0.67, 1.33])}
= {(u, [0.33, 1]), (u1, [0.55, 1]), (u3, [0.67, 1.33])}

The previous examples bring out the fact that the resulting constraint could not satisfy
Eq.4. Therefore, the following normalization operation is needed in order to complete the
propagation and produce the final result.

Definition 15 (normalization) Given an authorship constraint C = {(u1, [s1, e1]), . . .

(un, [sn, en])} between two nodes x and y of a PCN, the normalization normali ze(C) is
the operation that properly modifies the degree of ownership associated to each author in
such a way that the constraint in Eq.4 is satisfied:

normali ze(C) =
{

c′ | ∃c ∈ C (c′.user = c.user ∧

c′.s = c.s
∑

d∈C d.e
∧ c′.e = c.e

∑

d∈C d.e

)}

Example 8 Let us consider the result of the propagation obtained in Ex.7, the final value for
constraint A, after normalization, becomes:

A = {(u, [0.09, 0.30]), (u1, [0.16, 0.30]), (u3, [0.20, 0.40])} (15)

As you can notice from the PCN in Fig. 2, we can identify triangles for the application of
the Path Consistency Algorithm only inside the same sub-network. Conversely, T-T edges
(like X and Y ) which connect two distinct sub-networks are never part of an interesting
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triangle. Indeed, possible triangles could involve: (i) nodes contained inside the same sub-
network, or (ii) nodes contained in different sub-networks and connected through only T-T
edges. In the last case, the nodes are related to the same user u and the constraints have all
the form (u, [1, 1]), so no actual propagation can be performed. However, T-T edges can be
useful for identifying the strength of the social connection between authors. Let us consider
the situation in Fig. 2, we can observe that edges X and Y connect two sub-networks by
linking two nodes related to u2 and two nodes of u3, respectively. Moreover, u2 and u3 are
connected in both sub-networks, creating together a loop. This situation identifies a stronger
connection between u2 and u3, because there is more than one case in which they are socially
connected.

In order to exploit such kind of connections, we need to formalize the notion of PCN
sub-network and PCN loop.

Definition 16 (PCN sub-network) Given a PCN N = 〈X , C〉, a sub-network M = 〈Y,D〉
of N can be defined as follows:

Y ⊆ X (16)

D ⊆ C ∧ ∀d ∈ D(d is of kind R-T or R-R) (17)

With reference to the PCN depicted in Fig. 2, two sub-networks can be identified:
M1 = 〈{T , RT1, RT2, RT3, RT4}, {A, B,C, D, E, F,G, H}〉 andM2 = 〈{T2, RT5, RT6},
{I , L,M}〉. These two sub-networks are connected through two T-T edges forming a loop
composed of the nodes RT2, RT3, T2 and RT5.

Definition 17 (PCN loop) Given a PCN N in which we can identify two sub-networks Mi

and M j , a loop is a tuple

〈xh, xk, xm, xn〉 ∈ X 4 (18)

such that:

xh, xk ∈ Mi ∧ xm, xn ∈ M j ∧
xh .user �= xk .user∧
xh .user = xm .user ∧ xk .user = xn .user∧
((xh, xk) ∈ Mi .C ∨ (xk, xh) ∈ Mi .C)∧
((xm, xn) ∈ M j .C ∨ (xn, xm) ∈ M j .C)∧
(xh, xm) ∈ N .C ∧ (xk, xn) ∈ N .C (19)

InFig. 2 nodes 〈RT2, RT3, RT5, T2〉 forma loop, indeed (i) RT2, RT3 ∈ M1 are connected
through an R-R edge in M1, (ii) RT5, T2 ∈ M2 are connected through an R-T edge in M2,
(iii) while T2 and RT2 have the same author (i.e., u2) and are connected through a T-T edge,
and finally, RT5 and RT3 have the same author (i.e., u3) and are connected through a T-T
edge.

We can use the presence of a loop for increasing the degree of ownership of the referenced
user inside the constraints of each sub-network, as described below.

Definition 18 (enhancement) Given a network N and two users ui , u j ∈ U such that Li j is
the set of loops involving ui and u j :

Li j = {〈xh, xk, xm, xn〉 |
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xh, xk ∈ Mi ∧ xm, xn ∈ M j∧
xh .user = xm .user = ui∧
xk .user = xn .user = u j } (20)

where Mi and M j are two sub-networks of N . For each constraint C ∈ N · C from node
xi to node x j such that the author of xi is ui and the author of x j is u j (or vice versa), the
degree of ownership associated to u j in C can be enhanced by a weight ei j computed as:

ei j = 1 + |Li j |
|N · Ci | (21)

where N · Ci is the set of edges in N which involve the node xi .

Example 9 Let us consider the situation in Fig. 2 and the updated constraint A computed in
Ex.7, in this case the statement regarding u3 can be enhanced due to the presence of a loop
involving u2 (the source user) and u3. The weight is equal to e23 = 1 + 1/4 = 1.25 and the
updated constraint (after the enhancement and normalization) becomes:

A = {(u, [0.09, 0.30]), (u1, [0.16, 0.30]), (u3, [0.25, 0.50])}
= {(u, [0.08, 0.27], (u1, [0.15, 0.27]), (u3, [0.23, 0.46])}

Given the above definitions, a constraint propagation algorithm can be applied inside and
outside the sub-networks of N . Once the propagation has been done, the resulting network
contains in each R-T edge an authorship constraint describing all the possible source of
authorship for the source node. More specifically, with reference to the situation in Ex.9,
after the application of the constraint propagation algorithm, the edge A will finally contain
the following constraint:

A = {(u, [0.16, 0.24], (u1, [0.20, 0.29]), (u3, [0.28, 0.47])}
which means that as regards to the retweet RT2 posted by u2, the users involved in its social
provenance are: u, u1 and u3. The greater degree of ownership is associated to u3, even if
the temporal distance between RT2 and RT1 is less than the temporal distance between RT2
and RT3. This is also due to their social interaction provided by the presence of the PCN
loop. Conversely, u1 has a degree of ownership greater than to u, due to the smaller temporal
distance between the two retweets.

Given all these considerations, the following section presents a MapReduce implemen-
tation of the constraint propagation procedure which includes both the computation of the
enhancements and the parallel application of the Path Consistency Algorithm.

4.3 MapReduce constraint propagation

The classical Path Consistency Algorithm is characterized by a high computational com-
plexity which makes its application unpractical in many real-world problems. Indeed, its
theoretical complexity is equal to O(n3k5), where n is the number of nodes and k is the
number of edges. However, as we have already observed in the previous section, a PCN is
typically composed of several highly-connected sub-networks which can be linked together
by T-T edges which do not directly participate to the constraint propagation. This particular
structure of a PCN suggests that the constraint propagation can be actually performed by
considering each sub-network alone in a parallel way.
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Algorithm 2 Job for the computation of the enhancement weights starting from the set of
loops L ∈ N .
1: function EnhancementMR(L)
2: job ←− MRJob()
3: job.setMapper(EnMapper, {L1, . . . ,Ln})
4: job.setReducer(EnReducer)
5: end function
6: procedure EnMapper
7: function setup( )
8: E ←− ∅
9: end function
10: function map(id, 〈xh , xk , xm , xn〉)
11: v ←− E .get(〈xh .user, xk .user〉)
12: E ←− E .put(〈xh .user, xk .user〉, v + 1)
13: end function
14: function cleanup( )
15: for (〈ui , u j 〉, v) ∈ E do
16: write(〈ui , u j 〉, v)
17: end for
18: end function
19: end procedure
20: procedure EnReducer
21: function reduce(〈ui , u j 〉, {v1, . . . , vn})
22: w ←− 0
23: for v ∈ {v1, . . . , vn} do
24: w ←− w + v

25: end for
26: write(〈ui , u j 〉, w)

27: end function
28: end procedure

Therefore, we assume that the overall network N produced by Alg. 1 has been stored as
two separated outputs: (i) one containing the subnetworks that will become the input of the
path consistency job in Alg. 3 as we will discuss later, and (ii) one containing the loops L
which connect the distinct subnetworks. This last output is useful for computing the social
interactions between pairs of users, and we use them inside the MapReduce job in Alg.2.

Algorithm 3 Job providing a MapReduce implementation of the Constraint Propagation
Algorithm on a PCN.
1: function ContraintPropagationMR({M1, . . . ,Mm }, E,L)
2: job ←− MRJob()
3: job.conf ←− {E}
4: job.setMapper(CpMapper, {Mi , . . .Mm })
5: job.setReducer(CpReducer)
6: write(L)
7: end function

In more details, in the job of Alg. 2, each mapper receives and processes a subset Li of
the network loops L and essentially counts the user interactions contained in it (lines6-18).
This counter is stored into an auxiliary data structure E , which is initialized in the setup
method. Each Li represents a split in the MapReduce terminology (see Alg.2 line3). Each
mapper has a complexity equal to O(|Li |), namely equal to the number of loops contained
inside the same split Li .
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Algorithm 4Mapper class implementing the operations to be performed in parallel on each
sub-network Mi ∈ N .
1: procedure CpMapper
2: function setup( )
3: M ←− ∅
4: end function
5: function map(id, 〈xi , x j ,C〉)
6: M ←− M .put(〈xi , 〈x j ,C〉〉)
7: M ←− M .put(〈x j , 〈xi ,C−1〉〉)
8: end function
9: function cleanup( )
10: Q ←− triangles(Mi ,M)

11: while Q �= ∅ do
12: 〈xi , xk , x j 〉 ←− dequeue(Q)

13: C ′
i j ←− Ci j ⊗ (Cik ◦ Ckj )

14: if C ′
i j �= Ci j then

15: Q ←− Q ∪ {〈xi , xk , x j 〉}
16: replace(Mi ,Ci j ,C

′
i j )

17: end if
18: end while
19: for 〈xi , x j ,C〉 ∈ Mi do
20: w ←− E .get(〈ui , u j 〉)/|M .get(xi )|
21: E ←− E .put(〈ui , u j 〉, w)

22: write(〈xi , x j ,C〉)
23: end for
24: end function
25: end procedure

Algorithm 5 Function for the computation of the triangles involving nodes in a network N .
function triangles(N ,M)

Q ←− ∅
for 〈xi , x j ,Ci j 〉 ∈ N do

for xk ∈ M .get(xi ).keys() do
if x j ∈ M .get(xk ).keys() then

Q ←− 〈xi , xk , x j 〉
return Q

end if
end for

end for
end function

The reducer (line20–27) simply combines the partial results by summing-up the partial
counters produced by the mappers for each pair of users. The final output is an associative
array which returns for each pair of users a value representing the number of loops involving
them. The reducer has a complexity equal to O(|U | × |U |), namely equal to the number of
possible pairs of users, since it has to process each of them for computing the final result.

Given the computation of the enhancement weights, we can proceed with the definition of
the MapReduce job for the constraint propagation. The overall job is reported in Alg. 3 and
assumes that the networkN has been subdivided into a set of splits {M1, . . .Mm}, each one
representing a distinct subnetwork, by using an appropriate partitioning technique [24, 25].
The job is also aware of the associative array E which has been computed by the previous
job and has been stored as a configuration parameter for latter uses inside the reduce phase.
Finally, the set of loops L is given in order to finally reconstruct the overall network.
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The implementations of the map and reduce phases of the job are illustrated in Alg. 4 and
6, respectively. The mappers assume that a sub-network is represented as a set of records
with the form 〈xi , x j ,Ci j 〉where xi is the source node, x j is the target node andCi j ∈ N .C is
the constraint between xi and x j . Alg. 4 illustrates the operations performed by the mappers
on each sub-network Mi ∈ N . During a preliminary setup, an auxiliary data structure
M is initialized: it will be populated inside the map method by storing each edge in Mi

as well as its inverse in an associative way. This data structure is particularly useful for the
application of the path consistency algorithm, which is actually performed inside the cleanup.
An auxiliary function, called triangles, is used to identify the possible triples of nodes on
which the constraint propagation can be performed. Notice that at the end of the map phase,
the computation of the enhancement weights is completed by dividing the value stored in E
during the previous task by the number of edges involving the source node as in Eq.21. The
complexity of each mapper is dominated by the application of the classical Path Consistency
Algorithm during the cleanup phase. Even if its complexity remains O(n3i k

5
i ), we can observe

that in real-world applications ni � n and ki � k, namely the number of nodes and edges
contained in each sub-network is typically much less than the number of nodes and edges
in the overall network. This has also some consequences on the scalability of the approach:
an eventual increment in the network size is usually due to an increment of the number of
sub-networks rather than an increment of their respective sizes.

Algorithm 6Reducer class implementing the operations necessary to recombine the updated
sub-networks and properly enhancing the user connections.
procedure CpReducer( )

function reduce(〈xi , x j ,C〉)
for c = (uh , [sh , eh ]) ∈ C do

w ←− E .get(xi .user, uh)
c ←− enhance(c, w)

end for
C ←− normalize(C)

write(〈xi , x j ,C〉)
end function

end procedure

The reducer is illustrated in Alg.6; it is responsible for rebuilding the overall network
starting from the partial results produced by the maps. More specifically, it writes back the
updated edges contained inside each subnetwork (i.e., the output produced by the mappers),
after having properly enhanced them through the weights contained in the map E (see Alg. 6
line5). After the enhancement of each authorship statement, a normalization of the overall
constraint is performed in order to guarantee the satisfaction of Eq.4. Notice that more than
one reducer can be executed in parallel in order to produce the final result. The complexity of
each reducer is O(

∑ |Mi .C|/r), where r is the total number of instantiated reducers: each
reducer receives a portion of the edges computed by all the mappers (i.e., a portion of the
edges contained in the sub-networks).
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Table 3 General metadata about
the considered datasets

DS Timespan # Rows # Users

D1 2 days 565,478 246,374

D2 3 days 747,197 375,247

D3 4 days 864,759 492,130

D4 8 days 1,226,996 668,488

D5 10 days 1,369,578 739,350

Table 4 Metadata about the obtained PCNs

DS # Nodes # Edges # Subnetworks

Tweets Retweets RT RR TT

D1 6,033 32,038 32,038 240 82,959 32

D2 9,272 54,890 54,890 408 165,807 48

D3 11,345 70,373 70,373 563 224,880 62

D4 18,048 113,304 113,304 1,122 498,284 120

D5 21,883 132,464 132,464 1,547 770,066 148

The last operation to be performed for completing the network reconstruction is the output
of the T-T edges which connect different subnetworks and are not processed by the mappers.
This is performed at the end of the main job (see Alg. 3 line6) after the reducers completion.

5 Case study

For the experimental phase, we consider a portion of dataset provided in [26] which contains
a large collection of COVID-19 related tweets collected starting from January 2020. Since
this dataset contains only synthetic data, it has been properly enriched (hydrated) to retrieve
the necessary information, such as the indication of whether a post is a retweet or not, its
timestamp and the reference to the original tweet, the user id and the list of her followers.

Given the mentioned set of tweets, we have extrapolated five different datasets with
increasing sizes, in order to test the performances of the proposed approach. Table3 reports
the overall characteristics of these datasets such as the spanning time, the number of rows
and the number of users.

Given the five datasets reported in Table3, the procedure illustrated in Alg.1 has been
applied in order to obtain the corresponding PCNs. Table4 reports some characteristics of the
obtained networks, in particular: the number of nodes, the number of edges and the number
of contained subnetworks. Notice that in the identification of the sub-networks, those with
less than three nodes have been discarded, since they cannot contain any triangle useful for
the propagation.

Finally, Table5 reports some summary information about the subnetworks and the HDFS
splits containing them. As discussed in [24], in order to better exploit the advantages induced
by a MapReduce approach, it is necessary that the applied partitioning technique creates
balanced splits, which means having a uniform amount of work to be done in parallel by each
mapper. In our case, this can happen only if the identified sub-networks have substantially a
similar size.
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Table 5 Statistics about the
sub-network splits regarding the
considered datasets

DS Min edges Max edges Avg. edges Avg. %RSD

D1 5 2,169 226.16 173%

D2 5 4,571 383.46 209%

D3 5 5,322 398.39 151%

D4 5 5,455 320.23 203%

D5 5 5,467 282.80 196%

For this reason Table5 reports some statistics about the obtained splits, such as the min-
imum, maximum and average number of edges (rows in the splits) as well as the relative
standard deviation between the split sizes. From the obtained results, we can observe that at
first glance the subnetworks are not well balanced. There are some very small subnetworks
(i.e., with very few edges) and others that are very big. However, the average size and the
average relative standard deviation indicate us that on average the size of the various subnet-
works (i.e., the split sizes) does not differ more than 4 times. In other words, the number of
sub-networks containing the minimum or the maximum amount of edges (outliers) is very
small, while the others have a comparable size (i.e., the same order of magnitude), even if
not exactly the same.

5.1 Evaluationmetrics

Evaluating the correctness of the derived information about social provenance is not a trivial
task: as already highlighted in previous works, the absence of ground truth information
prevents the use of standard evaluation metrics. In this paper we use an approach similar
to the one applied in [8, 27], which consists in the definition of a set of metrics. However,
in this case since we try to identify and evaluate all the possible provenances of a given
post, the defined metrics cannot be directly applied and we have to slightly modify them.
The definition of the following evaluation metrics is the last contribution of the paper. They
represent an important tool for evaluating the performances of the approach in absence of a
base truth.

Definition 19 (Average constraint size) Given a PCN N = 〈X , C〉 the Average Constraint
Size (ACS) measures the average number of authorship statements contained in the authorship
constraints C.

ACS(〈X , C〉) =
∑

K∈C |K |
|C| (22)

where for each constraint C ∈ C the value |C | is the number of authorship statements in C .

In the proposed approach, the network obtained after the constraint propagation has an
ACS higher than the one of the original network. Indeed, at the beginning, the network will
contain only one authorship statement for each constraint. Conversely, after the application
of the constraint propagation, more statements should be added in each constraint, meaning
that additional information is now available.

Definition 20 (Sparse node incidence)Given a PCNN = 〈X , C〉 the Sparse Node Incidence
(SPI) is the number of retweets whose constraint size (i.e., number of statements in the
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constraint) is equal to one, divided by the overall number of retweets:

SPI(〈X , C〉) = |{x ∈ X | x .type = RT ∧ |Cx,x .retweet_of | = 1}|
|{x ∈ X | x .type = RT}| (23)

where x · type returns the type associated to a node x ∈ X , namely RT in case of a retweet
or T in case of a general tweet.

Sparse nodes are essentially nodes with only a connection to the original tweet, without
any other possible connection derivable from temporal and social relationships. Since the
objective of the proposed technique is estimating possible chains of retweets starting from
the partial information provided by the Twitter API, decreasing the incidence of the sparse
node means increasing the amount of available information.

Definition 21 (Retweet source incidence) Given a PCN N = 〈X , C〉, the Retweet Source
Incidence (RSI) is the number of constraints in which the degree of ownership associated to
a retweet source (i.e., derived connection) is greater than the degree of ownership associated
to the original tweet, divided by the overall number of retweets. Given the set RT defined as:

RT = {〈Ti , Tj ,Ci j 〉 ∈ C | Ti .type = RT ∧ Tj .type = T ∧
∃(xh, [sh, eh]) ∈ Ci j (xh = Tj .user ∧
∃(xk, [sk, ek]) ∈ Ci j (xk �= T .user ∧
sk > sh))}

which contains the set of R-T edges such that the minimum degree of ownership associated
to a user different from the original tweet author u, is greater than the degree of ownership
associated to u. The metric RSI can be computed as

RSI (〈X , C〉) = |RT |
|{x ∈ X | x .type = RT}| (24)

This last metric is used to identify the number of cases in which the proposed technique
is able to identify an alternative source for a retweet which is more likely than the original
tweet.

5.2 Result evaluation

Given the datasets described in Table3 and the PCNs illustrated in Table4, the proposed
constraint propagation technique has been applied and the evaluation metrics introduced in
Sect. 5.1 have been computed on the resulting networks. The source code has been made
publicly available.2 and the tests have been performed on a Hadoop Cluster composed of
10 slaves nodes and 1 master node. The results are reported in Table6 where each column
reports the value of the corresponding metric.

The results in Table6 show that even if in the obtained networks some sparse nodes remain
(i.e., SPI metric), namely some retweets continue to be connected only to the original tweet,
the average constraint size becomes greater than one (i.e., ACS metric). In other words,
each non-sparse retweet has been associated to at least another possible source, beside to the
original tweet, and the number of cases in which such additional sources have a minimum
degree of ownership greater than the original one exceeds the 50%, reaching in some cases
the 74% (i.e., RSI metric).

2 https://github.com/smigliorini/pcn.
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Table 6 Evaluation metrics
computed on the obtained PCNs

Dataset ACS SPI RSI

D1 1.67 0.47 0.74

D2 1.72 0.38 0.54

D3 1.72 0.32 0.59

D4 1.87 0.30 0.70

D5 1.92 0.29 0.69

Table 7 Execution statistics Dataset Tot. time Map time (s) Iterations

(s) Min Max Avg Min Max Avg

D1 40 11 15 12 2 6 3.16

D2 60 11 18 12 2 6 3.23

D3 75 11 18 12 2 6 3.18

D4 144 12 20 14 2 9 3.13

D5 251 12 26 16 2 9 3.78

Finally, the results in Table7 report some information about the performances of the
proposed algorithm: the total time taken by the job to complete, some statistics about the
execution time of the map tasks, and some statistics about the number of iterations. As
regards to the amount of time taken by map tasks, we can observe that even if the splits are
not completely balanced, the difference between their minimum and maximum execution
time is reasonable and very near to the average. The columns labeled as Iterations report the
number of iterations performed by the Path Consistency Algorithm to achieve convergence.
This number is small and on average three or four iterations are sufficient to complete the
constraint propagation.

5.3 Comparison and possible applications

As already discussed, the main difference between the proposed solution and the state of the
art resides on the fact that the former tries to identify all the possible connections and assigns
them a different likelihood measure based on temporal and social relations. Conversely, the
latter ones search for only the most likely source, eventually missing possible important
connections.

Despite this difference, we can observe that given the PCN resulting from the execution of
Alg. 3, it is always possible to retrieve a single chain of retweet by considering for each retweet
only the connection induced by the authorship statement with the greatest minimumdegree of
ownership. More specifically, as highlighted in Sect. 4.3, after the constraint propagation, the
edge between a retweet R and its original tweet T is characterized by an authorship constraint
containing an authorship statement for each possible source with the corresponding degree
of ownership. Starting from these R-T edges and considering only the authorship statements
with the greatest minimum degree of ownership, it is possible to identify the most likely
connection and build a simple chain of retweet as the one proposed in [8]. In other words,
the proposed solution is not only more informative than the existing ones, since it provides
a more complete description about the situation, but it is also flexible enough to be reduced
to a classical graph.

123



Tracking social provenance in chains of retweets

Table 8 R-T edges for the PCN in Fig. 2 after the application of the constraint propagation algorithm

Edge Constraint

A {(u, [0.16, 0.24], (u1, [0.20, 0.29]), (u3, [0.28, 0.47])}
B {(u, [0.17, 0.50]), (u3, [0.34, 0.5])}
E {(u, [0.33, 0.50]); (u4, [0.34, 0.5])}
H {(u, [0.66, 1.00])}
I {(u2, [0.22, 0.5])}, (u6, [0.28, 0.50])}
M {(u2, [0.86, 1.0])]}

Fig. 3 Single chain of retweets obtained from the derived authorship constraints of R-T edges

Example 10 Let us consider the authorship constraints in Table8 which have been obtained
after the application of the constraint propagation to the PCN in Fig. 2. By considering the
obtained R-T edges and by identifying inside them the most likely authorship statement, we
can identify the chain of retweet highlighted in Fig. 3. We take as more likely authorship
statement the one with the greatest lower bound in the degree of ownership.

The provided solution can be a more suitable starting point for subsequent analysis. Let
us consider for instance the identification of the so called influencer for a given topic, namely
the set of users whose contents are the most followed with reference to a given argument.
Similarly, given a certain user u who retweeted many posts regarding a certain arguments, we
can identify that even if the original tweets came from several different sources, u actually
may take them from only one friend. If we consider only the most likely connection, these
analysis can be compromised, because in some cases the identification of the influencers
can pass through connections which are not the most likely, as illustrated in the following
example.

Example 11 Let us consider the portion of PCN depicted in Fig. 4 where we have 4 tweets
regarding the same topic and the set of their retweets. For not cluttering the notation we have
labeled only the R-T edges, since after the constraint propagation we will consider only their
constraints in order to reconstruct the possible retweet sources.

Suppose that we are interested in discovering the behavior of user ur2. At first glance,
we could observe that ur2 has performed several retweet activities by considering various
sources of information, and in particular user u1, u2, u3 and ur3. Conversely, if we apply
the constraint propagation algorithm, we obtain the following authorship constraints for the
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Fig. 4 Example of PCN for analyzing u2 behavior

ur2’s retweets:

A = {(u1, [0.11, 0.33]), (ur1, [0.34, 0.34]), (ur3, [0.25, 0.30])}
E = {(u2, [0.35, 0.50]), (ur3, [0.33, 0.50])}
H = {(u3, [0.17, 0.5]), (ur3, [0.46, 0.50])}
I = {(ur3, [0.0, 1.0])}

and we can observe that there is a user in common in all the authorship constraints, namely
ur3. Therefore, it is more likely that ur2 actually takes as his/her source of information ur3,
instead of several sources. This connection could be missed in case we apply a traditional
reconstruction approach, since ur3 is not associated to the authorship statement with the
greatest degree of ownership (due to the relative temporal distance the most likely connection
is the RT3), so this connection will be likely discarded.

6 Conclusion

As social media becomes more and more important as source of information, the need for
tracking and providing a complete description of social provenance of news becomes a cru-
cial activity. The Twitter platform is considered one of the most important social sources
of news, thanks also to the presence of mechanism able to easily and rapidly share them,
such as retweets, quotes and reply posts. However, the Twitter API does not provide com-
plete information about chains of retweets yet, since it only stores the connection between a
retweet and its original post. This can significantly reduce the ability to provide a complete
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inference of the social provenance and also further analysis about user interactions and the
mutual influence among users. For all these reasons, this paper provides an innovative solu-
tion for generating a complete retweet cascade graph, which differs from the other available
approaches since it tries to reconstruct all possible connections between tweets and assigns
them a weight proportional to their temporal and social relationship. This approach is based
on the notion of Provenance Constraint Network (PCN), a data structure inspired by the
well-known Temporal Constraint Network, and an adapted version of the Path Consistency
Algorithm for authorship constraint propagation. A MapReduce implementation of the pro-
posed technique is provided and an experimentation on a real-world dataset is presented. The
obtained results highlight the potentiality of the proposed approach in particular as regards
to the possibility to apply more refined analysis. As future work we plan to investigate our
approach combined with sentiment analysis techniques, in order to consider their potential-
ities in the analysis of textual contents of tweets and quotes and for refining the concept of
social interaction between users.
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