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A B S T R A C T   

Issues linked to aerosol physics within school buildings and related infection risk still lack a proper recognition in 
school safety regulations. Limited spaces and limited available window-surfaces require to precisely investigate 
the seasonal airing factors and the occupancy/volume ratios in each classroom in order to assess the specific risk 
levels from viral loads of potentially infective sources. Moreover, most schools are still not provided with me-
chanical HVAC systems nor with air quality sensors. Fundamental questions are therefore: how the specific 
classroom volume and the specific airing cycle affects the long-range contagion risk in a given classroom? is 
linear social distancing the right way to assess a volumetric risk problem? We present here the results of an 
extended quantitative analysis based on the GN-Riley infection risk model applied to a real classroom scenario. 
The study discusses seasonality of the airing flow and the effectiveness of single and combined mitigation in-
terventions, such as limiting student groups, equipping teachers with microphones, increasing classroom vol-
umes, and equipping classrooms with CO2 sensors to safely drive airing intervals. Moreover, we show 
experimental CO2 concentrations as well as occupancy and airing factors monitored in real time in a real 
classroom scenario. In agreement with recent literature, the results emphasize the need for a dynamic evaluation 
of the complex risk function over the whole exposure time (and not just the monitoring of the istanteneous CO2 
concentration) in order to correctly control the infection risk from aerosolization.   

1. Introduction 

School classrooms are enclosed settings where students and teachers 
spend prolonged periods of time and therefore risky environments for 
airborne transmission of SARS-CoV2. 

Airborne infections originate from viral aerosol formation and the 
cumulative nature of air saturation. As stated by Morawska et al. in 
Ref. [1] and recently recognized by WHO, “inhaling small airborne 
droplets is a probable third route of infection” in addition to trans-
mission via larger respiratory droplets and direct contact with infected 
people or contaminated surfaces. Evidence of airborne transmission 
causing outbreaks in different enclosed environments was reported from 
the early stage of Covid-19 pandemics [2]. Outbreaks in schools have 
also been reported in different countries from the beginning of pan-
demics [3–5,6], albeit the definition of outbreaks may vary. In a study 
on Israeli schools based on extended slub-testing, however, the occur-
rence of airborne transmission as probable main cause of infection in 

crowded classes has been well documented [7]. 
In a school classroom, groups of students, usually between twenty 

and thirty individuals, share the same premises for hours with poten-
tially insufficient ventilation. This increases the likelihood of coming 
into contact with virus-loaded aerosol droplets generated by one infec-
tive source (student or teacher). This issue is of concern also when social 
distancing is correctly implemented because of the volumetric and cu-
mulative nature of aerosol clouds (Fig. 1). The hypothetical scenario of 
an infective asymptomatic source entering a school classroom should be 
carefully investigated for the potentially large consequences it carries 
and to define a comprehensive risk mitigation strategy. This approach is 
valid even if preventive countermeasures are applied to reduce the 
entrance probability of infective sources. In fact, this probability cannot 
be curbed to zero, particularly in densely populated areas, where higher 
density has been shown to correlate to an increase in epidemic curves 
[8]. As a further evidence, many school outbreaks were recently re-
ported in regions where preventive quarantine was in force after school 
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reopening, like e.g. in Veneto Region, Italy at the end of April 2021 [6]. 
Indirect oral transmission of SARS-CoV2 is believed to be effectively 

reduced through the frequent manual airing or by automated mechan-
ical HVAC systems [9,10]. Proper ventilation has already been proven to 
significantly lower oral transmission of other diseases like tuberculosis 
and influenza in confined environments (e.g. Refs. [9,11,12]). Very 
recent (although still unpublished) measurements of SARS-CoV2 air 
concentrations in ventilated and non-ventilated hospital rooms per-
formed by the Italian Regional Environmental Agency “ARPA Piemonte” 
further confirm this believe for the covid-19 case [13]. Besides natural 
ventilation, mechanical ventilation systems, when adequately config-
ured, could be equally or even more effective in mitigating the aerosol 
diffusion [9]. Unfortunately, unlike hospitals, the majority of schools 
worldwide are not equipped with such systems and will not be, at least 
for the foreseeable future (including the coming 2021/2022 school 
year). The present study focused on natural (manual) ventilation in 
schools combined with other mitigation factors, but the model within 
certain approximations could account for ventilation levels controlled 
by HVAC systems too. 

A comprehensive mitigation strategy for controlling the aerosol 
infection risk is presented here following a preliminary study in October 
2020 by the main author [14]. The revised strategy includes now the 
critical effect of splitting large class groups in critically small classrooms, 
the impact of voice reduction with microphones as well as a control 
strategy via CO2 sensors. 

In the present work we separately investigated both infective sources 
(infective student and infective teacher) as well as cold- and hot-season 
conditions on the window airflow. We introduced into the GN model the 
indoor/outdoor thermal gradient to model the through-windows airflow 
during the cold season. Moreover, an illustrative CO2 decay measure 
taken in a real classroom context in June 2021 is also presented, which 
has been used for the estimation of the effective airing factors in summer 
and for real time risk assessment. In appendix, the concept of cumulative 
risk is mathematically discussed for the specific circumstances of 
applying a GN-Riley approach with a cycled occupancy function. 

2. Methods 

2.1. Gammaitoni-Nucci model with thermal gradient airflow 

The infection risk model used in the present analysis implements the 
well-known Wells-Riley like approach [15] extended in the 
Gammaitoni-Nucci (GN) model [16], which considers time evolution of 
the viral charge. The GN as well as more recent models are all based on 
the Wells-Riley assumption, i.e. that a “quantum” of viral charge, once 
inhaled, is infecting 63.2% of homogeneously exposed hosts by defini-
tion. They are also based on the assumption that newly produced viral 
particles are instantly diluted over the whole ambient volume (per-
fect-mixing) and that the emission rate parameter ERq (i.e. the number 
of infective “quanta” generated per hour by each infective subject) is 
known, at least as an averaged ERq value over the exposure time. Past 
models based on Wells-Riley, although simplistic, have been proven 
sufficiently accurate to account for infections caused by measles, 
tubercolosi and influenza in confined and ventilated environments. A 
recent paper, authored by several experts in the field [1], elucidated 
how a possible mechanism for transmission of SARS-CoV2 in confined 
spaces would be the formation of “light” aerosol droplets (i.e. < 5 μm in 
diameter, unlike “heavy” droplets, over 5 μm) that diffuse in the envi-
ronment after being produced by an infected person. In the GN model, if 
the number of infective sources remains constant, the probability of 
infection for each subject at a given time t will only depend on the total 
concentration of viral particles supposed isotropically distributed in the 
volume V. This probability follows a well-known exponential law for 
increasing exposure time t, which strictly depends on the parameter ERq 

and the ventilation ratio p/AER, where p is the average inhalation flow 
(related to pulmonary capacity) and AER is the inflow of clean air pro-
vided by natural or mechanical ventilation. To account for the complex 
phenomenon of viral inactivation and gravitational deposition on sur-
faces [17], the air exchange rate (AER) in (2–4) is more properly 
substituted from an infective virus removal rate (IVRR = AER + λ + k) 
which adds to the AER a viral inactivation factor (λ) and a particle 
deposition factor (k). For the purpose of this demonstration the small 
contribution of particle deposition on surfaces has been neglected based 

Fig. 1. Evolution of cumulative collective risk and total viral load in a classroom of volume V with a positive teacher source (long breaks of 20 min after lectures of 
100 min). All presents are supposed to wear face masks with 80% effective filter efficiency. a) Situation at the beginning of the lesson, white markers indicate R (0) 
and n (0). b) Air change/dilution due to windows opening after the first break. c) Situation after 3 h with one probable infection. d) the same as in c) with less intense 
voicing preventing the contagion (teacher speaking through an amplified microphone). 
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on the fact that in winter heating systems in a classroom would tend to 
move air upward and in summer longer and almost continuous airing 
intervals can ensure a high level of ventilation. In addition, k values for 
standard non-heated environments are found in literature to be about 
0.25 vol/h [18]. 

According to the GN model and following the nomenclature pro-
posed by Buonanno [19], the risk of infection in a volume V, where one 
infective subject is present and the initial number of viral particles is n0, 
has an analytical solution which can be expressed by the formula: 

Rairborne(t)= 1 − e
−
∫T

0

IR*n(t)dt

= 1 − e

⎡

⎢
⎢
⎣– p ERq

V

IVRR⋅t + e− IVRR⋅t − 1 −
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)
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⎤
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[

−
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]

(3) 

In (3) the function ϕ(t) is also a function of source and ambient pa-
rameters, in particular of n0, ERq, AER: 

ϕ
(

t, n0, ERq,AER
)
= IVRR

(
AER

)
⋅ t+ e− IVRR(AER)⋅t − 1 

−

(
IVRR(AER)⋅n0
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)
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(
IVRR(AER)⋅n0
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(4) 

The total viral load n(t) in the environment volume (measured in 
viral quanta), is given by an exponential saturation/decay law: 

n(t)=
ERq

IVRR
+

[

n0 −
ERq

IVRR

]

e− IVRRt (5) 

Throughout a full school day, the AER function should be also a 
general function of time but here for simplicity was assumed as a step- 
function, constant within lesson and break intervals with two different 
time-averaged values, respectively. A low AERbackground value during all 
lessons (due to air leckages and a transom window supposed always 
open to ensure a minimum air exchange) and a higher AERbreak value 
during breaks. However, different forms of the airing-function for 
manual airing during the hot and the cold season were introduced with 
different AER values (see Table 1). The resulting step function of AER(t) 
simulated a scheduled airing plan. In the present model we consider only 
natural ventilation (manual windows opening in a classroom), but with 
seasonal difference for the exchange rate intensity and duration due to 
manual airing (AERwinter ∕= AERsummer; twinter

man. airing ∕= tsummer
man.airing) . Several fac-

tors influence natural ventilation in winter in a given classroom, the 
most important one beeing the temperature difference between the 
classroom and the outdoor space during windows opening. Other factors 
are wind direction and average wind speed, as well as geometric factors 
such as window size and position [17]. As for thermal effects, a high 
temperature difference |Ti − Te| between indoor and outdoor tempera-
tures is expected during the cold season. Typically, the indoor temper-
ature is maintained at Ti = +20◦C by the school heating system and an 
outdoor temperature of nearly 0 ◦C is usually taken as reference, so that 
|Ti − Te| = 20 ◦C. This impact the through-window natural ventilation 
flow (considered here as an average over the exposure-time value). 
According to the recently revised Euronorm 16798–7:2018 [20] the 
single-sided airflow Qw through an open windows with a given T-dif-
ference, is approximately estimated by the formula (valid for moderate 
wind velocities): Qw = 1800⋅ρa;ref

ρz
⋅Aw(0.0035⋅hw⋅|Ti − Te|)

0.5 with Aw, hw,

ρa;ref
ρz 

beeing the total open windows area, the windows height and the air 
density ratio between reference air density and density of the considered 
zone. This implies an AER through windows opening which becomes 
function of the internal-external temperature difference: 

AERwinter
windows =

1800
V

⋅
ρa;ref

ρz(Ti)
⋅Aw(0.0035⋅hw⋅|Ti − Te|)

0.5 (6) 

All curves were calculated for a typical classroom of volume 8 × 7 * 3 
≅ 170 m3, with an effective volume for aerosol diffusion of 150 m3. 
Hence, for such a standard classroom the resulting AER during windows 
opening results as: 

AERwinter
V=150 ≅ 1675 Aw(0.07⋅hw)

0.5 (7) 

Fig. 2 indicates the temperature dependence of AERV=150 assuming 
two typical values of (Aw, hw) in a high-school classroom where win-
dows are partially open. It is noted that geometrical windows parame-
ters may also change strongly in different school buildings, or even in 
different classrooms in the same building. Investigating specific cases, 
however, lies outside the scope of the present work. 

Windows opening implies a periodic activation of air exchanges per 
hour. Usually, they occur mainly during lesson breaks. In this case the 
IVRR function become also a periodic rectangular wave function over 
the full lesson time, with peaks influenced by higher values of the air 
exchange rate (AER) as due to partial windows opening (2 vol/h) or 
almost complete windows opening (up to 10 vol/h with high thermal 
gradient in winter as estimated according to EN 16798–7 [20] and up to 
5 vol/h in summer (as measured experimentally). Another factor to be 
considered is the effective volume to be considered to dilute the aerosol 
viral cloud under the perfect mixing approximation. According to recent 
CFD simulations of aerosol cloud in classrooms [22], aerosol particles 
from a student source would not be diluted over the entire volume even 

Table 1 
Model parameters and related value ranges. In brackets the controllable 
parameters.  

Parameters Description Units Range or 
value 

t exposure time h 0–5 
tbrk breaks duration min [5–30] 
tlec lecture duration min [30− 100] 
I number of infective sources persons 1 in all 

simulations 
S(t) = N(t)–I(t) 
+ 1 

number of susceptibles at time t persons 15–30 

S0 number of susceptibles at time 0 
N number of students per classroom persons 15,20,30 
C(t) number of infected persons at time t persons 0–30 
R(t) = C(t)/S0 infection risk - 0-100% 
ERq(t)  Instantaneous emission rate by 

infective source 
quanta 
h− 1 

[5–25] 

ERq  Time average emission rate (over 
exposure time) 

p  average inhalation flow m3h− 1 0.6 
V classroom volume m3 170 
Veff effective classroom volume m3 150 
Q(t) clean air inflow m3h− 1 85–1700 
AERwinter*  Full open windows h− 1 9.5 

only transom windows open h- 2.5 
*from EN16798–7:2018 @ΔT =
20◦C 

AERsummer**  Full open windows + open door h− 1 4.1–5.2  
transom windows open + open door h- 2.5–3.8  
**experimentally measured @ΔT =
0◦C, V = 150m3   

λ viral inactivation factor h− 1 0.5 [21] 
k particle deposition factor h− 1 0-0.25 [18] 
IVRR(t) infective virus removal rate h− 1 0–2.5 
n(t) viral quanta in ambient at time t quanta 0–50 
n0 viral quanta at t = 0 quanta ≥0 
fin mask reduction of inward viral load 

(susceptible person) 
- [15–30%] 

surgical 
[92%] FFP2 

fout mask reduction of outward viral 
load (source) 

- [45–90%] 
surgical 
[94%] FFP2  
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after a transient of 300s and the viral cloud volume during the first part 
of the emiss ion transient would be negligible compared to V. For these 
reasons an effective lower volume Veff = 0.85 V in equations (3) and (11) 
was considered for the present analysis. 

2.2. Air exchange rates from CO2 decay 

Besides providing theoretical values of AERwinter as driven mainly by 
thermal gradient, we preferred experimental estimations of the AER-
summer since predictions from equation (6) would in fact lead to unre-
alistic zero airflow (nearly zero outdoor/indoor thermal gradient in 
summer in ventilated school buildings). In order to estimate the airing 
factors in a classroom from a CO2 decay, one needs at least two condi-
tions to be satisfied: 1. a starting point for the CO2 concentration suffi-
ciently distant from background before starting the decay (from 
previous occupancy of a certain number of people or through a dry ice 
probe as suggested by Allan & co-workers in [23]) and 2. no emission 
sources i.e. ERq = 0 during the decay, i.e. from the starting point until 
(ideally) the end of the decay (although an estimation with emission 
sources inside room is theoretically possible but it would introduce 
additional uncertainty and complication due to required estimation of 
the average CO2 emission rate ERCO2). The simplified procedure sug-
gested by Allan is based on the identification of only two points of the 
exponential decay -and has the advantage to be simple and flexible (it 
works theoretically with any two points of the decay, provided a suitable 
time-distance is guaranteed). However, accuracy of the two-points 
method may be limited due to fluctuations of the CO2 signal (which is 
evident from the experimental curve reported in Fig. 3a) probably linked 
to the 3D nature of the airflow (so that a 3D sensor network in classroom 
would be the ideal setup for very accurate measurements). Even with a 
single detector point, however, the estimation of the average airing 
factor could be more precise through a multi-point regression fit 
approach, aiming at the identification of the exponential decay function 
CCO2 (t): 

CCO2 (t) =C0 + (Cstart − C0)e− AER⋅(t − tstart) (9)  

Fig. 2. a. Effect of indoor/outdoor temperature difference in winter on the air- 
exchange-rate by windows opening (blue curves) in a typical classroom ac-
cording to the EN 16798–7 (single-sided ventilation) [20]. Marked blue dots 
indicate AER values used in simulations at Ti − Te = 20 ◦C. Duration of breaks 
to achieve AER = 1 h− 1 volume are also shown. b. Effective area of openable 
windows (Aw) in a typical high school classroom of 150 m3. 

Fig. 3. a) CO2 concentration (black solid line), 
manual airing scheme (blue solid line), number of 
susceptibles S (orange line), ambient temperature and 
RU, monitored in real time in an Italian high-school 
classroom during a school day in June 2021 with an 
MCH3 detector with dual NDIR sensor and sampling 
resolution of 1 min (detector position is also shown 
on the top-right). The light-blue regions indicate the 
parts of the CO2 curve used for in-situ estimations: 
(a1) fitting of the total viral emission rate ERqviral and 
(a2) fitting of AERCR,OW, the airing factor during 
windows-opening for that classroom. b) Infection risk 
function calculated from equation 3 (red curve safely 
below the one-infection-threshold) and viral quanta 
evolution in ambient (blue curve) as estimated from 
input data in a) and equation 5.   
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from which an average AER could be derived using a “suitable” number 
of measured data-points. In (8), Cstart is the initial CO2 peak concentra-
tion reached just after all occupants left the classroom and the airing 
factors of interest have been activated (windows, door, etc). C0 is the 
measured background (outdoor) CO2 level. One may use equation (9) to 
account for the contribution of single or multiple (coupled) ventilation 
factors since the CO2 decay depends on all ventilation factors acting in a 
given time interval. It is also noted that such indirect estimations already 
contain the effect of background ventilation due to room leakages and 
unperfect airtightness of the building. 

In our experimental campaign, we aimed at measuring the combined 
effect of fully open side windows and fully open entrance door in a 
typical classroom. CO2 concentrations were obtained with a calibrated 
portable dual NDIR detector placed in a high school classroom in North 
of Italy at the beginning of June (volume:149,8 m3, maximum openable 
window area: 1.70 m2 plus 0.25 m2 central transom window) Three CO2 
curves were obtained in three different days (02–04.06.2021). One of 
these measurements is reported in Fig. 3, together with RU, T and oc-
cupancy curves. Although the entire school day was recorded, the useful 
time-windows for AER values fitting were during breaks (yellow region) 
and just after lessons’ end (blue region), when all occupants left class-
room (being instructed to leave both side windows and door open under 
surveillance of one author). The resulting values of AERwin+door from 
backfitting, however, were strongly sensitive to the number of consid-
ered data points. In supplementary Fig.S1 the fitted airing factor was 
equal to 3.88 h-1 taking all data points, whereas considering only the 
first part of the decay (12 data points) a +40% higher value was ob-
tained (5.40 h− 1). For comparison, values of 3.7–5.2 h− 1 were attained 
with the two-points method depending on the distance of the second 
point from the starting point. Notably, the experimental AER values 
were in-line with target value of 5 air exchanges per hour recommended 
by the Harvard Healthy Buildings program [23]. 

A slight but visible change in the exponential decay is indeed 
observable not only in these decay curves but also in those reported in 
Ref. [23], a phenomenon the authors cannot explain so far. 

As said, these AER estimations are representative for the summer 
season only and are affected by several uncertainties. Above all, probe 
positioning and distance of the sensor from individuals moving nearby. 
In particular, we observed a sudden decrease of CO2 concentration at 
around 12 a.m. on the measure taken on June 03, 2021 (clearly visible in 
Fig. 3a) as due to local air movement caused by a teacher staying close to 
the detector for at least 12 min during lesson. Other minor uncertainty 
factors were detector accuracy (±40 ppm @22 ◦C by detector manu-
facturer), resolution (1 ppm), temperature and R.U. variation upon 
average (26 ◦C ± 1 ◦C and 41% ± 4% respectively). 

2.3. Face masks modelling 

To account for the effect of PPE (personal protective equipment, in 
this case, face masks) in reducing both the number of viral particles 
generated by infective subjects, and also reducing the likelihood of 
inhalation of viral particles by exposed subjects, we introduced two 
scaling factors: 

(1- fout), which represents the fractional reduction of the generated 
viral load, and 
(1- fin), which represents the fractional reduction of inhaled viral 
load, 

Under the assumption that all subjects are wearing a mask. Eq. (3) 
can then be rewritten as: 

Rmask(t)= 1 − e

[

− (1− fout)(1− fin)
p ERq

V ϕ(t, n0, ERq , AER)

]

(10) 

If masks are not being worn, fin and fout are both zero. The extent of 

efficacy of face masks in reducing airborne transmission is the subject of 
still ongoing debate, although a general wide agreement on their 
importance as mitigation factor has been accepted. Some recent results 
[11] strongly supported the effectiveness of face masks in reducing the 
spread of infected aerosol droplets during exhalation, under the condi-
tion that the mask is correctly and permanently worn by both the 
infected and the susceptible subjects. The estimated efficacy of surgical 
masks in filtering the airborne viral load upon inhalation, represented by 
fin, varies in the available literature. Some authors (e.g. Ref. [24]) esti-
mate the value to be close to zero, claiming that masks can only filter 
“large” droplets (>5 μm), but more recent measurements suggest that 
surgical masks may actually be able to filter even “small”, i.e. 
sub-micrometric, droplets [25]. In the present analysis, we considered a 
possible range of values 0–0.3 for fin which is in line for surgical masks. 
As for the efficacy in filtering the exhaled viral load, the parameter f 
could have a value as high as 0.95 [11] in the case of a perfectly 
adhering surgical mask worn the whole time. In a classroom environ-
ment, however, it will be difficult to ensure complete and continuous 
compliance over the many hours of a typical school day. For instance, a 
recommendation by the italian local scientific committees as of October 
2020, is to wear masks for as long as possible, but to allow their occa-
sional removal as long as social distancing is respected. Since mask 
filtering effectiveness varies from person to person and over the total 
exposure time, a rather large variation interval (from 50% to 100%) was 
considered for the filtering effectiveness. 

2.4. Zero-infection condition 

For at least one infection to occur, the cumulative risk Rcum(t) = C(t)/ 
S0 must be greater than 1/S0. Therefore, the condition for zero infections 
to occur over the total exposure time (5h) is: 

Rcum(t= 5h)=R5h <
1
S0

⇔ Rairborne
0 < 1 (11)  

and not Rlec,i (t) < 1/S0. It is noted that in a classroom with one infective 
source the condition (13) corresponds to keeping the basic reproduction 
number R0

airborne below one, since, by definition R0
airborne = C/I––C and C 

= R5hS0. It is finally remarked that a conservative safety approach 
should aim at keeping the reproduction number below one at the end of 
each school day, even in case of an infective source entered a classroom. 

2.5. Average emission rate for SARS-CoV2 

A correct estimation for the emission rate parameter ERq is the most 
critical assessment in the GN-Riley approach. Firstly, this parameter 
varies over the exposure time so that one should better speak of an 
instantaneous ERq(t) and a time averaged ERq. Secondly, at a certain 
time point, ERq(t) could theoretically be computed from the size dis-
tribution of the emitted aerosol droplets at that particular time, by 
integrating over the emitted particle size up to a cut-off size value of 10 
μm: 

ERq(t)= p(t) ⋅ cRNA⋅ci

∫10μm

0

Nd(D, t)dVd(D) (12) 

Microdroplets populations in the emitted aerosol vary depending on 
the specific voice activity (voiced counting, whispered counting, un-
modulated vocalization, breathing). First a short note on the chosen cut- 
off value. It is now generally accepted that particles up to 100 μm can 
travel long distances in air and should also be considered aerosol par-
ticles [26,27]. This fact however, does not imply that such particles 
should be considered in the present study, since they are in fact gener-
ated in specific events like sneezing and coughing and not in the 
“every-day” average situation the present model is trying to represent. 
Secondly, because of the filtering effects of face masks supposed worn by 
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all students and teachers in the present model (section 2.4), the emitted 
particle distribution would not contain such large size aerosol droplets. 
Finally, even during a cough event, it has been well documented that 
such large size particles are an irrelevant percentage for aerosolization 
as stated in Ref. [28] “droplets of less than one-micron size represent 97% of 
the total number of measured droplets contained in the cough aerosol”). 

As proposed by Morawska [29], the emission rate of one specific 
expiratory activity can be well approximated with a 4-channel particle 
size distribution where the time dependent droplet distribution Nd(D, t)
is assumed constant during that specific activity (becoming Nj

d(D)). A 

time-independent average ERj
q for that emission activity j can then be 

computed as: 

ERj
q =

1
tj

∫tj

0

ERj
q(t)dt≈ cRNA ⋅ ci ⋅ pj ⋅

∑4

i=1
Nj

D,i⋅ Vj
D,i (13) 

In (14) the parameter cv is the viral load in the sputum (viral RNA 
copies mL− 1) to be estimated experimentally via clinical assessments of 
viral loads, ci is a conversion factor having units in quanta∙RNA copies− 1 

(ratio between one infective quantum and the infective dose), pj is the 
average pulmonary inhalation rate (m3 h− 1) related to a particular j-th 
body-activity (resting, standing, walking, etc). Nj

D,i⋅ V
j
D,i is the product 

between the average droplet density and the average droplet volume 
(mL m− 3) in one of the 4 channels of a typical droplet distribution 
expelled during voicing or breathing. For SARS-type viruses, experi-
mental estimations of all parameters in equation (13) are reported in 
Refs. [19,30,31]. 

In addition, while modelling the real behaviour of a teacher or a 
student during the whole exposure time, one should consider a further 
time-average of (13). The reason is that both potential sources (during 
teaching or while attending lesson) do not behave permanently in one 
fixed category of vocal activity and pulmonary rate over the emission 
time. Therefore, the overall effective emission rate ERq to be used in the 
differential GN model is in fact a double average integral (once over the 
size distribution and once over the emission time): 

ERq =
1
t

∫t

0

ERq(t)dt= cRNAci
1
t

∫t

0

p(t)

⎡

⎣
∫10μm

0

Nd(D, t)dVd(D)

⎤

⎦dt (14) 

One way to estimate ERq is to consider a student as a resting person 
and a teacher as a standing person, both involving three distinct major 
activities relevant for the emission process (breathing, speaking loud 
and speaking quietly) with weights depending on the specific “average” 
situation. Based on this rationale, equation (14) could be approximated 
as: 

ERq ≈
1
t

∑3

j=1
tjERj

q = (15)  

=
1
t

(

tbreathERbreath
q + tsp.loudERspeak.loud

q + tsp.quietERspeak.quiet
q

)

Calculation details of the ERq for the infective student and infective 
teacher cased used in all simulations are reported in appendix 
(Table A1). An alternative but more complex approach (which was not 
considered here) is that of introducing a normal probability distribution 
of ERq values instead of average constant values over the exposure time 
[32]. In our model, we derived values of ERj

q for specific emission ac-
tivities from Buonanno et al. [19] and estimated ERq based on the 
approximation of equation (15) for both cases (student and teacher). 
Three “voice activity” levels and their related effective times tj were 
considered (breathing without speaking, breathing during quietly 
speaking and loudly speaking). In fact, during teaching one may observe 
speaking periods of the teacher alternated with pauses and variation of 

the voice volume (which may vary considerably during lesson [33]). The 
same for students who may put questions or comments and randomly 
vary their voice activity and intensity. Although a precise estimation of 
such parameters would require a dedicated measurement campaign and 
may vary from different subjects, average values were selected from 
reported ranges in literature and justified assumptions on the different 
activity times are provided. Teachers spend usually one or 2 h only in a 
given classroom, and they are speaking most of this time. In primary and 
secondary schools, however, they may also speak loudly and sometimes 
screaming. This causes higher average values of ERteacher

q and makes 
teachers a potentially greater viral source compared to students. In the 
present analysis, the estimated value was about 32 quanta h− 1 for an 
infective teacher speaking at a moderately high volume, whereas a half 
value of 16 quanta h− 1 was supposed for the same subject speaking 
quietly through a microphone. For infective students sitting at their desk 
most of the time while attending lessons, lower values of ERstud

q were 
estimated, as they were considered resting persons speaking less 
frequently than teachers. 

2.6. Determination of infection risk from CO2 monitoring 

Tracking CO2 levels could in principle be used also for an indirect 
determination of the potential viral charge in ambient n(t) from equa-
tion (5) and hence for real time estimations of the risk function R(t) [34]. 
Measuring carbon dioxide in schools is not a novelty [35–37] but linking 
the measured concentrations to infection risk levels is matter of ongoing 
research [34,38,39]. At the basis of this rationale we make here two 
observations: 1. time evolution of n(t) and CCO2(t) as air components 
follows similar exponential laws and 2. the instantaneous emission rates 
ERq(t) and ERCO2 (t) also follow similar time-evolutions in a homoge-
neous group where all persons show the same average habits. Eventu-
ally, ERq(t) and ERCO2/S0 (t) are in principle generated by the same 
infective subject at the same time point t. And, if the source is not 
known, all the subjects are equally probable infective sources in a 
probabilistic sense. Furthermore, if one compares equations (5) and (8), 
it is clear that CO2 and n(t) saturate and decay in similar fashion, so they 
are certainly related, except for the k and λ factors (since viral quanta 
may inactivate whereas carbon dioxide does not). These factors, how-
ever, seem negligible compared to the much higher AER factors as due to 
ventilation, which act on both n(t) and CCO2(t) with the same values in 
equations (5) and (8). For the above-mentioned reasons, one could try to 
simplify their relation when considering the average effect of CO2 and 
quanta emission over time, introducing a fixed direct proportion (which 
obviously introduces an important approximation): 

ERqviral ≈ αERCO2

/

S0 (16) 

Equation (16) should be interpreted as follows: considering time- 
averages, the emission of viral quanta by an infective source can be 
related to the average CO2 emission rate over the "emission time" by the 
same subject, which is ERCO2/S0. In (10) the α parameter [quanta/lit-
erCO2] can be determined from a known situation where the viral and the 
CO2 emission rates are known. For a single “breathing resting person” 
reported SARS-CoV2 values are in the range of ERq = 10–15 quanta/h/ 
person [19] whereas ERCO2 = 0.0044 l/s/person (for healthy young ages 
<20 years old [40]) so that α ≅0.79±0.16 quanta/literCO2. 

Once ERCO2 has been derived from the CO2 saturation ramp of the 
first lesson, the viral charge n(t) could then be estimated from equation 

(3) and the risk function R(t) = 1 − e
− p
∫T

0
n(t)dt 

could be obtained as: 

R(t> t1) ∼ 1 − e

− p
∫T

0

⎧
⎨

⎩

αERCO2

/
S0

IVRR +

⎡

⎣n0 −

αERCO2

/
S0

IVRR

⎤

⎦e− IVRRt

⎫
⎬

⎭
dt

(17) 
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by inputting an approximated but “measured” ERqfrom (16). It is noted 
that ERCO2 is the result of what really happened after the first lesson in 
terms of group-average breathing/speaking activity and room ventila-
tion in that particular classroom. 

The whole procedure is illustrated in Fig. 3 with a real-time example 
measurement of CO2 concentration taken in a real classroom. The 
parameter ERCO2 was back-fitted from the increase of CO2 over time 
from t = 0 when all scholars entered classroom and lesson started. This 
estimation follows a previous AER fitting using equation (9) and 
monitoring the CO2 decay after all scholars exited classroom. In order to 
provide instantaneous risk predictions for the residual exposure time 
after the first hour, one could think to use AER values from literature for 
the first day and “learned” values for the next days, or alternatively 
deriving AER from the first CO2 ramp at the first hour (this approach 
however, introduces additional uncertainty because the CO2 ramp is 
used to derive two unknown parameters, whereas monitoring the decay 
after school-end has the advantage of no emission source and therefore 
no assumption on ERCO2 which is well known only for fixed activities like 
“normal breathing”). The main message of Fig. 3 is: an istant CO2 value 
(measured data in black) does not directly correpond to an infection risk 
level, nor the CO2 signal alone is enough for proper infection risk 
assessment (for instant by setting thresholds on the CO2 levels). One has 
to derive the whole Risk Function (red curve in Fig. 3b) after calculating 
n(t) for the remaining exposure time and verify that such function al-
ways satisfies the zero-infection condition (eq. 11). This can be done by 
monitoring also the number of susceptibles over time (S) and the airing 
factors (AER) over time to be used in eq. 17 (where IVRR ≈ AER + λ ). 

3. Results and discussion 

Calculated airborne risk curves in a classroom of 170 m3 with one 
infective source based on the thermally extended GN-Riley model are 
plotted in Fig. 4a–d while time evolution of the total viral charge in 
ambient is shown in Fig. 5. The infective teacher case is shown in Fig. 4a 
and b, while Fig. 4c and d shows the infective student case for com-
parison. Different risk levels after 5h are summarized in Table 2 for a 
fixed intermediate mask effectiveness of 75% whereas Fig. 4 shows the 
complete range of mask effectivness. 

3.1. Natural ventilation during the cold- and hot season 

In this study we explored the influence of 4 different airing cycles of 
the AER function (two for winter and two for summer conditions). Long 
and short winter cycles corresponding to 10/50 and 20/100 “break over 
lesson time ratio” (duration in minutes) were supposed for each simu-
lated scenario, giving rise to dashed and solid risk curve in Fig. 4. In 
summer, a constant AER value has been supposed due to the possibility 
to keep windows open throughout the school day. Remarkably, the 
deviation of the first curves (in red) from reference (“no mitigations”) 
highlights the significant impact of natural ventilation alone on risk 
mitigation (face masks were intentionally not included in the first sce-
narios to isolate the net contribution of air ventilation to the decrease of 
the infection risk). This reduction reads about 70–80% (in log scale) at 
lectures’ end. The additional mitigation effect of surgical masks (under 
the assumption they are worn by all subjects) causes a further risk 
mitigation of 35–45% from the previous vales (depending on the 
effective time they are properly worn). In winter, shorter (but more 
frequent) breaks perform better than longer ones in all risk curves 
(dashed lines lower than solid lines). Manual airing combined with 

Fig. 4. Mitigation of airborne risk in a classroom (Veff = 150 m3) through face masks and ventilation. a) Infective teacher standing and teaching. b) Infective teacher 
speaking more quietly with mask + microphone + amplifier (− 40% ERq). c) Normal infective student case. d) Infective student speaking at moderate voice volume. 
Partial ventilation (AER = 2 vol/h) was assumed during breaks (continuous plots refer to long ventilation cycles, dashed plots to short cycles). Please note FFP2 
masks were only considered for teacher according to recent Italian school regulation [41]. 
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protective mask perform better during the hot-season (yellow region) vs 
cold-season (blue region): in spite of lower AER values, summer airing 
cycles can be much more prolonged (windows in summer can in prin-
ciple stay open the entire school day). 

3.2. Infective teacher vs infective student 

Teacher risk curves increase more steeply in the first 2 h of exposure 
time when compared to infective student curves (Fig. 4a vs 4c). This is 
due to the higher average emission rate of a teaching person compared 
to a student sitting on a desk and speaking less frequently. In case a 
teacher is equipped with a microphone connected to a voice amplifier, a 
reduced emission rate by almost 40% lowers down the risk levels for the 
exposed group considerably. This decrease in the final infection risk 
value is about − 20% if considering natural ventilation as the only 
mitigation combined with teacher’s microphone, and up to − 40% when 
further adding the surgical masks (red and blue arrows in the middle of 
Fig. 4a and b). In case of a positive student source, one can still differ-
entiate between students speaking normally and students speaking at a 
moderate volume (Fig. 4d). Although a microphone passed from student 

to student must be excluded as possible direct infection source, a more 
feasible scenario could be that of scholars expressly required to speak 
quietly. In this case, the cumulative risk levels would decrease even 
more: a relative delta of − 50% can be observed for all curves after 5 h 
exposure time. This fact can be explained with a more prolonged 
exposure of individuals to the infective source (5h instead of 2h) and, at 
the same time, a larger timespan for the mitigation effect to act (voice 
reduction). After the teacher has left the room, the ERq in that room 
drops to zero, but the viral charge previously emitted by him/her will 
still be present for the next hours until the end of the lesson (although it 
will lower down after several ventilation cycles — as indicated from n(t) 
plots in Fig. 5). According to the GN risk model, thus, rest viral load is 
responsible for a further (although lower) increase of Rc during the next 
hours, even if the teacher source is no longer present. 

The case of an infective student shows some important differences in 
the shape and final level of risk curves. Higher levels are caused by the 
risk still increasing after half exposure time whereas teacher curves 
saturate earlier to lower levels (Fig. 4c and d). This fact is eventually due 
to the infective student source re-entering classroom after each break 
and emitting until the end of the lessons. On the other hand, the one- 

Fig. 5. Total viral load in classroom. a) teacher speaking for 2h at normal voice volume. b) teacher speaking more quietly through a microphone + voice amplifier. 
Partial and full windows opening scenarios in winter are also compared. 

Table 2 
Summary of airborne infection risk values at the end of a school day in different conditions. All individuals are wearing surgical masks and classroom volume V is fixed 
to 150 m3.  

Source Ventilation during breaks [Vol/h] Source emission timespan [h] Face-mask effectiveness ERqj range[quanta h-1]  ERq 
[quanta h-1]  

Rc (5h) 

Teacher 2 2h 75% 1–80 32 6.6%  
10 2h 75%   3.3% 

Teacher with microphone 2 2h 75% 0.5–30 16 3.3% 
10 2h 75%  1.6% 

Student 2 5h 75% 0.7–60 13 5.6%  
10 5h 75%   3.25% 

Student speaking quietly 2 5h 75% 0.2–20 6 3.1%  
10 5h 75%   1.8%  
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infection thresholds are reached earlier in case of an infective teacher 
(blue and black curves intersecting the dotted gray lines in Fig. 4a–c). 
This fact would confirm that crowded classes with 30 or more students 
are a more dangerous situation in case of an infective teacher source. 

3.3. Reducing the voice level of infective sources 

In case of overcrowded classes equipping the teacher with a micro-
phone plus amplifier system would be a valuable mitigation counter-
measure. Moreover, due to the lowering of one-contagion-threshold, 
crowded classes of 30 students in limited volumes (V < 170 m3) should 
be avoided. A recommended alternative would be the splitting of the 
class in smaller groups alternating in face-to-face mode (Fig. 6). As a 
rule, keep the number of students per classroom as low as possible helps 
reducing the contagion risk because obviously the infection threshold 
lowers as N increases. 

3.4. Classroom volume 

As illustrated in Figs. 6 and 7, the second most relevant factor after 
natural ventilation affecting the airborne risk is the classroom volume 
(which could actually be the first factor if one compares different 
classroom sizes with identical airing policy and identical Aw/V ratio). In 
classrooms of doubled volume (300 m3 instead of 150 m3 – see Fig. 7) 
with the same AER(t) function, the infection probability after 5h ac-
cording to the GN-model is almost the half with both source cases 
(infective teacher or infective student). Remarkably, this reflects a 

common situation in historical buildings, where the room height may 
increase considerably from standard 3 m height (Fig. 7a vs Fig. 7b). 

3.5. Class-splitting and voice reduction 

In authors’ view, the most important recommendation which should 
be considered in a risk mitigation strategy in schools is the splitting of 
large classes with unfavorable (i.e. too high) N/V ratio. The analysis of 
the risk graphs of previous Fig. 4a and c suggest a critical value of N/V at 
around 0.15. When an infective source has entered classroom (I = 1), the 
one-infection-threshold by aerosolization as plotted in Fig. 4a–c (dashed 
gray lines) is reached much earlier from the risk function R(t) in case of 
N––S=30 instead of N––S=15 susceptibles (intersections with the blue 
risk curves). This means that situations with 30 or more students in 
limited volumes causing an N/V ratio >0.15 should be avoided. To 
prevent this scenario, splitting the class group in two smaller groups, by 
alternating face-to-face and remote mode at every other day, would be 
recommended (Fig. 8). Moreover, considering a single school day, the 
probability of finding one (or more) infective students in a classroom at 
lesson’s start reduces by half with the half number of students per day. 
As a more general rule, keeping the number of students per classroom N 
as low as possible helps reducing both direct and indirect possible in-
fections at the end of the day. The reason is intuitive (although it cannot 
be accounted by the GN-Riley model): the aerosol cloud is expanding 
from source during the transient before diluting over the entire volume 
(and satisfying the perfect mixing hypothesis). During this expansion, it 
may reach earlier a higher number of people enclosed in the same 

Fig. 6. High-school classrooms of different types by height and volume located in Verona (Northern Italy): 
a. historical building b. standard school building. 
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volume in case of a higher N/V ratio (see Fig. 8 for a visual example). 
Secondly, the number of possible close-contact interactions would also 
decrease for lower N/V values. 

In case a high occupancy/volume ratio cannot be avoided, equipping 
the teacher with a microphone plus amplifier would be a valuable 
countermeasure to contain aerosolization risk and still try to meet the 
safety requirements in terms of reproduction number (Rairborne

0 < 1). This 
is due to a decrease in the emission rate from the potential viral source 
with the higher average emission rate (the teacher in a school or the 
lecturer in a university hall or the speaker in an auditorium). This 
reduction is readily visible comparing the final risk values in Fig. 4a with 
those of Fig. 4c (speaker with microphone and lower ERq). In the latter 
case and considering the worse scenario of 30 students (N/V = 0.17), the 
one-infection-threshold is practically never overcome by the risk func-
tion, also considering all possible effective wearing-time of protective 
masks (as different for the case without microphone). 

4. Conclusions 

Cumulative airborne risk is the key to understand indirect infections 
of SARS-CoV-2 in classrooms and possible outbreaks within a school 
building. The mitigation of the airborne risk in schools is linked to the 
main and larger goal of keeping most schools open and safe during the 
present and possible future pandemics, while pursuing at the same time 
a zero-infection strategy. Although the dynamic single-zone model 

employed here contains some important approximations and some un-
certainties in the parameter estimations, the general framework is 
robust as it was already tested for influenza and tuberculosis. Adapted to 
the Covid-19 case, the GN-Riley model provided clear indications for 
contagion risk minimization. Firstly, students and teachers are exposed 
in schools for relatively long time to viral aerosol and to rely only on 
sanitation/ventilation cycles cannot lower the residual viral load nor the 
risk to zero. On the other hand, airborne risk values can be mitigated to 
reasonable levels by a combination of several other mitigation factors. In 
the present situation where most schools are still not equipped with 
dedicated HVAC systems, nor dedicated sensors for controlling air 
ventilation and filtering at the classroom level, the regular opening of 
classroom windows at well-defined intervals can be an effective 
(although provisional) solution. Regular windows opening acts indeed 
as mitigation co-factor which alone almost halves the airborne risk. On 
the other hand, the numerical analysis confirms that only a combination 
of air exchange with protective masks properly worn by all exposed 
subjects can reduce the airborne transmission risk to acceptable safe 
levels. Splitting crowded classes of 30 students into smaller alternating 
groups of 15 has also a dramatic beneficial effect on the collective 
contagion risk. This is ultimately due to the volumetric nature of the 
aerosol cloud (Fig. 8). Concerning more specific countermeasures, it has 
been shown that equipping teachers with microphone and voice 
amplifier as well as requesting students to speak quietly during lessons 
are effective and feasible mitigation factors to keep the airborne risk 

Fig. 7. Effect of the classroom volume on the infection probability R5h calculated with the GN model with the same parameters except volume (75% face mask 
effectiveness, surgical masks, IVRR = 5.5 vol/h at each interval). Please note the infection risk (R5h) is mathematically independent of the starting number of 
susceptible (S0), which only influences the number of new infections at the end of the day C= S0 *R5h. 

Fig. 8. Half classes in face-to-face mode (with rotating subgroups) vs full classes on alternate days. In the latter (unrecommended) case one may note the increased 
number of students in contact with the viral cloud emitted by the infective source. 
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levels below safety thresholds. 
CO2 sensors combined with infection risk models could also play an 

important role in risk assessment providing precise real time adjustment 
of the airing times. Under certain hypothesis, the information provided 
by the sensor could be used to feed predictive infection risk models like 
the GN-Riley shown here or more sophisticated ones [27], with empir-
ical in-situ data and hence provide real-time feedback to control the 
SARS-CoV2 aerosolization risk in classrooms (as illustrated in Section 
2.9, also verifying that the condition on the reproduction number – 
R0

airborne < 1 - is satisfied during the whole exposure time – see Fig. 3c). 
In the theoretical scheme proposed by Stabile et al. [34] a CO2 sensor 
could feed a central unit with experimental AER measurement from the 
CO2 decay. The central unit, further instructed with external inputs like 
classroom volume, ERq values of SARS-CoV2 and the number of presents 
at a given time, could then calculate the risk function and dynamically 
control it by adjusting the airing schedule for that specific classroom. 
Such a feedback-based system could in principle be an interesting 
alternative to fixed a-priori scheduling of windows opening, since it 
could predict the time evolution of the risk function after the first airing 
cycle and alert the people for the next cycles when it is the right moment 
to manual air the room and for how long (adjusting both values, if 
required, to assure the zero-contagion condition is satisfied until lessons’ 
end). However, as stressed by the same authors and as confirmed by our 
in-situ live measurement illustrated in Fig. 3, some uncertainty factors 
may affect this methodology, which, on the other hand is intrinsically 
more powerful and accurate than direct thresholding on absolute CO2 
levels. The risk model approach feeded by CO2 monitoring requires to fit 
precise and affordable values for all the airing factors active in a real 
school situation (as discussed in section 2.3). This approach would also 
require some investment costs at the national scale [42] because all 
school classrooms should be provided with at least one CO2 sensor and a 
process unit. Investigating this promising approach, however, is of pri-
mary interest and further research as well as on-field practices are 
encouraged. Parallelly, investigating an optimum risk control strategy 
based on pre-determined fixed manual airing cycles, remains of interest 
to cover also those many schools worldwide lacking advanced sensor 
technology and HVAC systems. 

In this study we shown through mathematical models, how the 
desired goal of keeping the indirect infection risk from aerosolization 
safety below the one-infection-threshold during each school day, could 
in principle be achievable in any situation, provided a suitable combi-
nation of mitigation factors is implemented. However, it is also 
remarked that the illustrated strategy based on natural ventilation was 
suggested as a compromise emergency solution. For the middle and 
long-term future, equipping schools with dedicated HVAC systems 
driven by CO2 sensors and advanced risk models remains the n.1 to-be- 
preferred option concerning not only infection risk mitigation but also, 
in a wider sense, indoor air quality, energy efficiency and thermal 
comfort. 

Concerning safety regulations, the high sensitivity of the infection 
risk to classroom volume and the 3D nature of aerosol diffusion suggest a 
revision of social distancing norms in schools. There is a clear need for a 
new volumetric approach to ensure a minimum “volume per capita” for 
viral charge dilution (and lowering of infection risk). While linear social 
distancing (varying from 1 m to 2 m in different EU countries) could be 
maintained, new safety criteria based on the occupancy/volume ratio 
should be considered. For instance, higher minimum required classroom 
heights (and therefore larger minimum classroom volumes) based on 
target occupancy should be considered for new constructions and for 
major retrofitting works. Some historical buildings, indeed, already had 

larger classroom spaces compared to recent buildings due to higher in-
ternal walls (up to 50–80% higher than in standard modern school 
buildings, as clearly visible in Fig. 7). Classrooms compliant for linear 
social distancing but small in height, should be furtherly checked to 
guarantee a minimum height (and volume) in order to sufficiently dilute 
a viral aerosol cloud even in case of insufficient ventilation levels 
(typical of the winter season). To this regard, schools in historical 
buildings, while usually lacking the possibility to install HVAC systems, 
could more easily be compliant with the volumetric classroom 
requirement and hence be maintained as school seats with minor in-
terventions like the installation of air quality sensors in each classroom. 
Schools not provided with HVAC systems but with critically small 
classrooms (where the zero-infection-threshold could not be guaranteed 
event with frequent airing cycles) could adopt for those classrooms one 
of the illustrated additional mitigations: student group splitting alter-
nating face-to-face lessons and/or amplified audio systems for teachers. 

We conclude with a statistical remark. As previously noted, in re-
gions where the likelihood of one or more asymptomatic source seems 
particularly high or to increase steeply, a class splitting strategy would 
be highly recommended, particularly for large groups (≥25 students). 
However, to be more precise we should base this decision on the prob-
ability to have one or more asymptomatic sources in a classroom (the 
present study already assumes one asymptomatic source in a classroom). 
Therefore, there is a need to solve an open statistical problem: the 
estimation of the local probability function plocal (I ≥ 1 | Nage) of having 
at least one asymptomatic source (but they could be even more than 
one) in a classroom, i.e. in random ensemble of N students of given age 
located in a certain region, given the local epidemic situation in that 
particular area, city or district. 
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APPENDIX 

A.1 Cumulative risk 

Applying a Wells-Riley like approach to model a situation where susceptibles are cyclic leaving the environment during breaks, requires to clarify 
the concept of cumulative risk. It is firstly noted that no new source beside the initial one should be considered during the exposure time, even in case a 
new infection occurred in that time, since any new infected person needs an incubation time of some days before becoming infective. 

Let us consider now the total number of infections occurred in a classroom (after a certain number of classes and breaks): the variable of practical 
interest is not the single risk function during a single lecture, Rlec,i (t), (which starts from zero after each break), but rather the cumulative risk Rc,i (t) at 
the time t, which keeps into account the whole “history” of infection risk up to that time-point: 

Rcum,i(t) =
Ci
(
t − (i − 1)

(
tlec + tbrk))+

∑i− 1

j=1
Cj

(
tlec
j , n0j

)

S0
=

Ri
(
t − (i − 1)

(
tlec + tbrk))+

∑i− 1

j=1
Rj

(
tlec
j , n0j

)
(A.1) 

In (10), Cj(t) represents the number of infections in the previous hours and the index j spans all the “cycles” of lecture + break before the current i- 
lesson (j = 1 to i-1, assuming cyclic lecture + breaks of duration tlec + tbrk). Ri(t) is the infection probability during the i-cycle which is actually a dual 
function: 

Ri(t) =

⎧
⎪⎪⎨

⎪⎪⎩
Rlec,i(ti) = 1 − e

[

−
p ERq

V ϕi(ti , n0,i , ERq , AER)

]

if 0 ≤ ti ≤ tlec

Rbrk,i(ti) = 0 if tlec < ti < tlec + tbrk

(A.2) 

The same for the viral load in ambient: 

ni(t)=

⎧
⎪⎨

⎪⎩

nlec,i(ti) =
ERq

IVRR
+

[

n0 −
ERq

IVRR

]

e− IVRR⋅ti if 0 ≤ ti ≤ tlec

nbrk,i(ti) =
[
nlec,i

(
tlec
i

)]
e− IVRR(t+tlec

i ) if tlec < ti < tlec + tbrk

(A.3) 

Two python routines which implement equations (A.1-A.3) recursively were separately developed for the infective teacher as well as for the 
infective student case. 

When the infective source is removed from the environment, the ERq parameter in equations (A.2) and (A.3) turns zero. However, the overall 
infection risk Rcum(t) remains greater than zero. This because it must keep memory of previous contagions (as a probability measure linked to the total 
emitted viral charge). Mathematically, this is assured by the historical sum in (A.1) and by the multiplicative exponential factor ϕi(t, n0,i, 0, AER)
non-zero even if one source left room (ERq = 0) because of the residual cumulated viral load previously emitted in the same room (nlec,i(ti)∕=0) and 
because the residual viral charge cannot suddenly drop to zero (finitness of the airing factor AER).  

Table A1 
Estimations of ERq values adopted in simulations   

Voice Activity ERq,min ERq,max ERqj  tbr tsp,low tsp_normal ERq  ±σ   

(quanta/h)  (% time) (quanta/h) 

Teacher normal 1 80 40,5 15 10 75 32,1 ±6,2  
low 0,5 30 15,25       
breathing 0,1 2 1,05       

Teacher + microphone normal 1 80 40,5 15 75 10 15,4 ±3,0 
low 0,5 30 15,25      
breathing 0,1 2 1,05      

Student normal 0,7 70 35,35 65 0 35 13,1 ±2,5  
low 0,2 20 10,1       
breathing 0,1 2 1,05      

Student speaking quietly normal 0,7 70 35,35 65 35 0 6,0 ±1,2 
low 0,2 30 15,1      
breathing 0,1 2 1,05       
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