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1. Introduction

Octopuses have a fully boneless body and as well distributed
intelligence, the ability to stretch, change the stiffness, and sense
perception in all the body. This makes them the perfect source of
inspiration for soft robotics technologies.[1] The abilities of

octopuses have been imitated in robotics
to develop artificial suckers[2–4] and soft
robotic arms.[5–8] Chemotactile sensing
and the adhesion of suckers are used in
combination with arm movements to
explore environments, manipulate objects,
and capture prey, as well as for anchoring
and locomotion.[9–14]

An octopus can feel a slight touch in any
part of its body since it is covered with
mechanoreceptors, and the sense of touch
is at its most sensitive in the suckers.[15]

The sucker consists of two main regions
connected by an orifice: the infundibulum,
an exposed disk-like portion of the
sucker, and the acetabulum, a spheroidal
cavity with a protuberance at the base
(Figure 1B). These regions have radial
and meridional muscles (used for attach-
ment) and circular muscles (used for active
detachment).[14] Octopuses distinguish the
shape and texture of objects using suckers
with mechanoreceptors (Figure 1A).[16,17]

Imitating these abilities in soft arms can
lead to the development of a new generation of manipulators
for blind exploration and manipulation in environments where
there are no visual clues.

Bioinspiration from octopus’ suckers can provide artificial
solutions for manipulating, grasping, and transferring objects
of different dimensions, weight, and textures with no damage
in both agriculture and industrial applications.

Artificial suction cups can be classified based on their
actuation method.[17] Passive suction cups mimic the natural
structure of an octopus and exploit external preloads to adhere
and attach to objects. They are effective at different scales, in both
wet and dry environments.[2,4] On the other hand, active suction
cups exploit soft actuators to create an inner negative pressure
(Figure 1C). Fluidic actuation is the most used in suction
cups[7,8,18–20] but there are also solutions that exploit shape
memory alloys,[21,22] electrohydrodynamic pumps,[23] or dielec-
tric electroactive polymers.[24,25]

Going beyond open-loop control entails integrating sensors
into a soft body to provide sensory feedback. Ideally, to develop
sensory suction cups (and soft robots), sensors should be:
compliant to avoid negatively impacting on the mechanical prop-
erties of the body; sufficiently small to not hinder movement;
resilient and robust to resist to mechanical stimulation; and
repeatable.[26,27]

The sensing technologies used to replicate human touch capa-
bilities range from resistive, capacitive, optical to magnetic and
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The octopus has unique capacities are sources of inspiration in developing soft
robotic-enabling technologies. Herein, soft, sensorized, suction cups inspired by
the suckers of Octopus vulgaris are presented. The suction cups using direct
casting are fabricated, so that materials with different mechanical properties can
be combined to optimize sensing and grasping capabilities. The artificial suckers
integrate four embedded strain sensors, individually characterized and placed in a
90° configuration along the rim of the suction cup. Based on this arrangement,
how well the sensory suction cup can detect 1) the direction and 2) the angle (from
30° to 90°) of a touched inclined surface and 3) the stiffness of a touched flat object
(shore hardness between 0010 and D50) both in air and underwater is evaluated.
Data processing on neural networks is based using a multilayer perceptron to
perform regression on individual properties. The results show a mean absolute
error of 0.98 for angles, 0.02 for directions, and 97.9% and 93.5% of accuracy for
the material classification in air and underwater, respectively. In view of the results
and scalability in manufacturing, the proposed artificial suckers would seem to be
highly effective solutions for soft robotics, including blind exploration and object
recognition.
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barometric, and progress is also being made with force feedback
sensors and texture recognition systems.[28–31] One popular
approach is to create resistive-based sensors by embedding
conductive fluids into the channels distributed in the soft bodies.
When external forces or pressures are applied, a variation in
resistance is obtained due to change in the channel
geometry.[32–34] Capacitive sensors measure the changes in
capacitance caused by changes in geometry due to the body
deformation caused by an external force or pressure.[35–37]

Optical strain sensors normally measure light intensity variation
from a light source and a photoreceptor due to the deformation of
the optical waveguide in between them.[38–40] Magnetic strain
sensors embed a magnetic source and a magnetic field sensor
into a soft body. As a result of an external load, this soft body
deforms, causing a change of reading due to the change of
the position and orientation of the sensor, with respect to the
permanent magnet.[41] Barometric sensing canmeasure the pres-
sure change in hydraulic or pneumatic circuits due to strain or
compression for tactile sensing.[42]

To detect the proximity, contact, direction, imbalance, and
weight of the object to grasp, sensory suction cups have been
developed at varying scales and using different sensing

solutions[43–49] (Table S1, Supporting Information). Sareh
et al.[43] developed an artificial sensorized sucker using fiber
Bragg grating as a sensor which enables the sucker to understand
whether it is in contact with an object. Huh et al.[44] integrated a
set of pressure sensors into the suction cup to discern whether the
contact is full or not. Lee et al.[45] used thin layers of carbon nano-
tubes as conductive materials to sensorize the artificial suction
cup, enabling the detection of the relative position and imbalance
of the object when grasped, as well as the estimation of the weight
of the lifted body. Aoyagi et al. used PEDOT:PSS for adding sens-
ing to an artificial suction cup, which can recognize the orienta-
tion of the object.[46] To enable the sucker to automatically identify
its relative distance from the base plate to the surface of a suction
cup, Doi et al. implemented a capacitive proximity sensor.[47]

All these studies highlight how sensorized suckers operate in
harsh environments as grippers to recognize the objects.
However, most of them only work in the air, and due to techno-
logical constraints, their sizes make them difficult to integrate
into a soft arm. Moreover, none of them can identify the level
of stiffness of an object, which is a feature of increasing interest
in the scientific community for object detection[50–52] and medi-
cal applications.[31]

Figure 1. A) An overview of the “blind grasping” task. The octopus uses chemotactile receptors to locate, identify, and catch prey. With their suckers,
octopuses can perceive tactile information and have a localized grasping capacity. B) A histological slice of the octopus suction cup taken from another
study.[14] The sucker is composed of two main parts: the acetabulum (AR, acetabular roof, and AW, acetabular wall) and the infundibulum (IN). RS is a
rough surface located on the infundibulum surface. C) Comparison of the artificial sucker. For the proposed artificial sucker to replicate the same mor-
phology and function as a natural sucker, the following sections are included: the (AW) vacuum channel to create pressure changes within the suction
cup, the (IN) artificial infundibulumwall that creates a sealed environment and provides tactile feedback, and the (RS) as a contact layer with the object. D,
E) Artificial suckers. The sucker is made of soft materials that allow a passive adaptation to any object shape thereby improving suction (a vacuum pump is
used to activate the sucker). The sucker also embeds four independent strain sensors that are used to acquire information on the stiffness of the touched
object and the applied force.
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In this study, we developed a sensorized, active suction cup
that morphologically resembles an octopus sucker. The sucker
embeds four strain sensors, made up of microfluidic channels
filled with conductive materials in a 90° configuration that allows
the sucker to sense contact with objects (Figure 1D–E).

Based on extensive testing and validation, we proved that the
proposed artificial suction cup can be used to classify a variety of
materials with varying stiffness, both in air and in water. The
suction cup can also identify the angle and direction of the con-
tact using multilayer perceptron classification and regression,
respectively. In addition, we evaluated the performance of differ-
ent combinations of materials to cast the sucker, while keeping
the whole system soft and adaptable to the surrounding environ-
ment. Our results show that the approach is consistent and
repeatable, thus paving the way for the development of artificial

suction cups with embedded and localized sensing capabilities
for blind exploration and grasping applications.

2. Results and Discussion

2.1. Mechanical Characterization of the Artificial Suction Cup

The proposed artificial suction cup consists of two independent
parts, which are merged to create a unique, soft structure
(Figure 2A). To integrate sensing, we designed the top layer
to host four microfluidic channels. These channels were filled
with carbon grease (MG Chemicals) to act as four strain sensors
embedded in the suction cup. The bottom layer is similar to the
infundibulum of the natural sucker and its outer part has a series

Figure 2. A) The artificial suction cup. It is made up of two parts: the top, which provides support for the vacuum channel and hosts the conductive
material used for sensing; and the bottom, which is softer to ensure good adaptation and sensitivity with any substrate. B) Top and bottom parts when
assembled into the soft artificial sucker. The bottom part also contains additional groves that allow for better grasping of the object. Both the top and
lower parts havemicrofluidic channels that allow the material used to be injected for sensing purposes: carbon grease. C) Stress–strain characterization of
three suckers with different combinations of materials for the top and bottom parts. D) Force-reading characterization of the embedded strain sensor
considering the same sucker presented in (C). E) Repeatability evaluation of the sensor over 26 000 cycles with highlighted portions of the signal.
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of radial grooves which, like the biological counterpart, help in
the passive adhesion to objects.[3] The suction cup has a diameter
of 19mm and is 10mm in height. Each of the internal micro-
fluidic channels has a cross-section of 600 μm, and the resulting
sensor elements have a resistance in the range of 100–200 kΩ. A
final version of the artificial sucker is presented in Figure 2B.

We first evaluated the performance of the proposed suction cup
by varying the materials used in the casting of both the top and
bottom parts (Figure S1 and S2, Supporting Information, show
the complete manufacturing steps and the suction cup dimen-
sions). The difference in the material composition means that dif-
ferent levels of sensitivity and compliance can be obtained when
contacting an object. The purpose of this analysis is to find a good
trade-off between the softness of the suction cup (which helps to
achieve adaptability on different surfaces and therefore good seal-
ing performance) and the dynamics of the sensor output (i.e., the
ability to generate a signal variation for any deformation of the
suction cup). We used a combination of Dragon Skin 10 (D10),
Dragon Skin 20 (D20), Dragon Skin 30 (D30), and polydimethyl-
siloxane (PDMS). By combining the materials, we manufactured
six suction cups (top-bottom): D10-D10, D20-D10, D30-D10,
PDMS-D10, PDMS-D20, and PDMS-D30.

We applied a fixed displacement of 2 mm to each of these
combinations and measured the reaction force when the suction
cup was in contact with a hard substrate (Video S1, Supporting
Information). When we used a soft material –such as D10– for
both the top and lower parts, we obtained a highly adaptable
sucker that can easily conform to any shape. However, the high
compliance of the materials does not ensure a repeatable change
in the cross section of the microchannel; thus, it is not possible to
linearly map the resistance change in the strain sensors
(Table S2, Supporting Information) because of the applied
force/displacement. Instead, using hard materials—such as
PDMS-D30—the sucker is rigid and less prone to deformations
(Figure 2C contains three selected cases, the whole set is avail-
able in Figure S3, Supporting Information).

In order to correlate the sensor signal variation with the force
exerted on the objects, we characterized the suction cups by eval-
uating their mean response to a force in the range of 0–3 N.
When the suction cup is soft (D10–D10 combination), a small
force (less than 1.5 N) is enough to achieve full suction cup defor-
mation, and above that value the sensors do not work (red line in
Figure 2D). On the other hand, a suction cup made of a combi-
nation of hard and soft materials (PDMS-D10) is less sensitive in
a low force range but achieves a good level of sensitivity above 1 N
(green line in Figure 2D). The stiffer one (PDMS-D30) provides
wide signal variations, but their averaged readings were not suit-
able for mapping theΔR\R0 relationship (blue line in Figure 2D).
Depending on the working range of the force required the most
suitable materials can be selected.

Based on the results of the two validation tests, we selected the
PDMS-D10 sucker because the combination of a “hard” sucker
body (shore A50) and a “soft” interfacing layer (shore A10)
enables an easy conformation of the sucker to any surface, while
providing sufficient support for a repeatable change in the micro-
channel cross section, thus for a reliable change in the sensor
readings. We tested the suction cup both in air and in water, actu-
ating it at different vacuum pressure on several substrates with
variable stiffness to evaluate the holding force. Results show

holding forces up to 8.7 N in air and 9.4 N in water (more details
in Figure S4, Supporting Information).

To evaluate the suction cup durability, we further tested the
selected sucker by acquiring the resistivity readings of the sensor
in 26 000 cycle tests. In each test, the sucker was connected to a
vertical slider which was set to move in the vertical direction with
a fixed displacement of 2mm performed at constant speed
(Figure 2E). As in the previous experiment, we used a rigid plate
as a substrate to ensure that all the displacement applied was
transferred to the deformation of the sucker and not to the under-
lying structure. The results show that the sensorized sucker
maintains its sensing capabilities with a variability of 0.05% over
time (results of individual sensors are presented in Figure S5,
Supporting Information). After 27 h of continuous testing, the
suction cup cracked at the interface between the vacuum channel
and the inner wall (inset Figure 2E). Nevertheless, the suction
cup continued to function properly until the end of the experi-
ment. A similar durability is expected in water, since it depends
mostly on what the suction cup is made from. In fact, in this
experiment, the artificial sucker is simply deformed without acti-
vating the suction. In contrast, in the case of suction, thanks to
the better seal in water, the suction cup could be subjected to
greater forces and therefore to higher stresses, causing a
decrease in the working life.

2.2. Contact Positions and Angles Based on Embedded Sensors

In real environments, the suction cup can contact objects in any
direction. If the rim of the suction cup does not adhere
completely to the objects, the attachment cannot be achieved.
Contact direction and angle help orient the suction cup toward
the object so that it can be retrieved. Following the initial char-
acterization tests, we evaluated the performance of the embedded
sensors to detect independent contacts acting on each sensor and
the relationship between the sensor readings and the contact
angle. To better control and fix the experimental parameters,
the suction cup was attached to a load cell (Nano17, ATI) con-
nected to a linear stage (M-111 Compact Micro-Translation
Stage, PI).

In an initial series of measurements, the slider moved the
sucker vertically (2 mm) at constant velocity (0.5 mm s�1) toward
an object placed perpendicular to the motion direction. In each
test, only one of the sensors actively touched the object. Video S2,
Supporting Information, shows an example of the data acquired
during the stimulation of each of the embedded sensors. This
was possible by positioning the artificial sucker with a contact
area of 25% above the object. We also acquired a set of measure-
ments when the suction cup was in the air with no contact with
any object. These are used to reference the signal and for a
clearer understanding of the sensor readings. Figure 3A shows
the sensor readings (means over 15 repeated measurements)
plotted as a sequence of single events. In fact, it is possible to
identify which sensor is active by simply using thresholding,
but it is not possible to generalize a unique model to relate sensor
readings to the applied force. In each test, we applied a fixed force
profile, as shown in Figure 3B.

The graph highlights that a simple thresholding approach
might be sufficient to identify which sensor is involved in the
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contact since its reading is the one that changes the most.
However, due to the manufacturing, even if the same force pro-
file is applied, the sensors respond in different ways, thus pre-
venting a linear relationship between the sensor reading and the
applied force. The different response of the sensors is due to a
combination of factors: the manufacturing process, which
requires several manual steps, can result in small differences
in the realization of the sensor’s channels; the carbon grease
is not completely homogeneous and can have variable properties
and its distribution in the channels may vary; and the perfect
alignment of the suction cup with the target object is difficult
to achieve and this can result in a different indentation between
the four sensors.

Using the same experimental protocol, we replaced the object
underneath the sensor with four different ones with angles of
30°, 45°, 60°, and 90° (Video S3, Supporting Information). We
moved the sucker (2mm) down at a constant speed (0.5 mm s�1)
and acquired the sensor readings (Figure 3C shows only the read-
ings of the sensor that touched the object. The full dataset is pre-
sented in Figure S5, Supporting Information). We repeated the
measurements 150 times for each sensor following the displace-
ment profile plotted in Figure 3D. The experimental setup is
shown in Figure 4A. As in the previous set of measurements,
if we consider the maximum value of ΔR/R0, there is a clear
change in the readings when the contact is considered as a single
event, that is, when a contact happens under one of the sensors,
its ΔR/R0 changes irrespectively of the angle. However, although
in many cases there is a clear trend, due to inaccuracies in the
fabrication of the sensors, it is not always possible to distinguish
between the angle of the touched object and which sensor was
involved in the contact.

2.3. Contact Position and Angles Based on Regression

As shown in Figure 3, the signal profiles of each sensor have a
similar trend when referenced to their no-touch readings. In fact,
there is a clear resistance variation at increasing angles for the
touched sensor, while all the nontested sensors slightly change.
However, the amount of the change and the response/recovery
time differs for each sensor. Consequently, classical approaches
such as simple thresholding are not possible. We thus applied
machine learning to the raw sensor data to examine the relation-
ship between the contact position and angle and the sensor read-
ings. To do this, we implemented a neural network architecture
that combines all the four sensor readings into a multidimen-
sional input and then applied multilayer perception regression[50]

in a supervised manner.
For the training of the network, we used the whole sequence of

measurements of the four sensors acquired over time (i.e., dur-
ing the downward and upward movement of the slider). The
whole sequence means we can detect deformation on the suction
cup for each sensor at a time. We trained a single-input, single-
output model of a multilayer perceptron regression to predict the
value of deformation for angles and contact directions and inde-
pendent events. To predict the two values simultaneously, we
used a single-input, multiple-output model of a multilayer per-
ceptron regression. The algorithm applies layer normalization
to every layer of the neural network. All neural network layers
are activated by rectified linear units (ReLU), except the final layer
which uses tanh to calculate the regression value. Both the mod-
els were trained, again using an 80–20 factor between training
test sets (1920 samples) and validation test sets (480 samples),
to reduce the chance of overfitting.

Figure 3. A) Variation of the signal upon a vertical displacement of 2 mm over a rigid surface. In each case, identified by the change in the background,
only one sensor is touching the surface. Using simple thresholding, it is possible to identify which sensor is active, but it is not possible to generalize a
unique model to relate the applied force to the sensor readings. B) Force profile followed during the measurements plotted in (A). C) Changes in the
ΔR/R0 for each sensor when in contact with obstacles with different angles. For each case (30°, 45°, 60°, and 90°) only the readings of the sensor that was
directly touching the object are plotted. As in (A), by considering the change in ΔR/R0, it is clear which sensor is active (all the other sensors have a lower
ΔR/R0 compared to the active one). However, a unique model cannot be created that relates any type of sensor reading to a specific change in the object
slope. D) Displacement profile of the measurements plotted in (C).
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To evaluate the effectiveness of the approach, we considered a
set of seven cases (Figure 4B) containing a combination of angle
and direction like the one used in the training and validation
phase (samples 1, 2, 4, 7) but also three new cases of angle values
(samples 3, 5, 6 with values 43°, 54°, and 32° respectively).
Figure 4C,D shows the results for the regression considering
two independent models, one for the angle and one for the direc-
tion. A popular measure is the mean absolute error (MAE), which
is defined as the number of errors versus the target value.
Additionally, MAE changes are linear and therefore intuitive.
The results with MAE values are 0.98 for angles, and 0.02 for
directions.

We considered a merge of the two pieces of data into a single
model that can predict, simultaneously, the direction and contact
angle (Figure 4E). As in previous cases, using this model, the
results show a rate of correctness of 2.72 MAE for the

simultaneous prediction of angle and direction. The results
plotted in Figure 4C–E were obtained by considering blocks of
signals with fixed dimensions (ten points) and they show the pre-
dictions of the expected final angle after a 2mm displacement.

2.4. Material Characterization Based on Embedded Sensors

We tested the proposed sensory artificial sucker on samples with
different shore hardness so that different materials could be
classified. We selected a set of eight materials that ranged from
0010 to D50 shore hardness (Figure S6, Supporting
Information). For each one, we manufactured 50� 50� 25mm3

blocks, which were first mechanically characterized to identify
their stress–strain curves (Figure S7, Supporting Information)
and then used to test the artificial sucker and its sensors. We first
applied a vertical displacement of 2mm on the sucker when in

Figure 4. A) Experimental setup used in both the characterization and evaluation phases. The sensorized suction cup is connected to a load cell attached
to a slider that enables precise vertical movements. Each sensor is connected to the acquisition unit by a voltage divider. Data is collected in real time.
B) Tested scenarios as a combination of single events with a direction and angle varying within the range of the trained samples (from 30° to 90°).
1) direction: 4, angle: 30°; 2) direction: 1, angle: 60°; 3) direction: 3, angle: 43°; 4) direction: 2, angle: 90°; 5) direction: 1, angle: 54°; 6) direction: 4, angle:
32°; 7) direction: 3, angle: 45°. C) Results of the regression using MLP considering a model that computes the contact angle only given the four sensor
readings as an input, D) only the direction of contact, and E) simultaneously both the contact angle and the direction of contact given the four sensor
readings as an input.
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contact with one of the selected materials, and we recorded the
corresponding resistance variation. We repeated each test 15
times keeping the speed of the vertical displacement constant
and holding in the sucker position for 1 s before moving it
upward. Figure 5A shows the average signal for each of the sen-
sors, and the standard deviation is below 0.02. Details on the
experimental setup are presented in Figure S8, Supporting
Information, while the computed standard deviation for each
signal and material is summarized in Table S3, Supporting
Information. The results suggest that with the increase in stiff-
ness, the maximum resistance variation increases—consider the
variation in the M-shaped signal—and all the sensors follow a
similar trend. However, the range of change is not always linear
with the increase in stiffness—consider the case of A50 vs. A80
—and not uniform among the sensors.

Averaging the signal acquired from the sensors gives a clearer
trend and a more regular change in the ΔR\R0 (Figure 5B). We
further subdivided the materials into four categories—soft, semi-
soft, semihard, and hard—to better identify common trends in

the signal and thus to simplify their identification. From the
results, the soft and semisoft materials show a change in the
ΔR\R0 that ranges from 0.05 to 0.4, with a mean variation of 0.2.

Although similar, due to their compliance, the soft materials
produced a maximum change of 0.1 when the sucker was attach-
ing/detaching itself from the material, while the semisoft ones
reached a peak of 0.3. Similarly, semihard and hard materials
shared the same change in ΔR\R0, around 0.6; however, the
measurements acquired during the “holding” stage varied. For
semihard materials, the resistance variation reached up to 0,
meaning that the material fills the inside wall of the sucker
and pushes it to its original configuration; while in the hard
materials this cannot happen and thus the sucker flattens on
the surface limiting the change in resistance.

To assess the reliability of our sensing solution in different
working environments, we repeated the same experiments both
in the air and underwater. We compared the results considering
the clustering in the four categories (Figure 5C,D) by averaging
the signals of each group of materials (details on the standard

Figure 5. Material characterization based on the sensor readings. A) Individual strain sensor readings for each of the tested materials (from the softest,
0010 to the hardest, D50). The signal average is computed over 10 independent measurements. The changes in each strain sensor follow a similar trend,
but they differ in the range of changes. B) Averaged strain sensor reading computed over the individual readings. Results are clustered according to larger
categories—such as: soft, semisoft, semihard, and hard—based on the stiffness of the tested materials. This information reveals the same trend as in (A)
together with a more defined and material-specific change in the measurement range. C) Comparison of the sensor readings for the four classes of
materials. There is a clear, increasing change in the ΔR\R0 as the materials become harder. D) Similar results are obtained when the sucker is tested in an
underwater scenario. The main difference when compared to the tests in air (C) isΔR\R0 which decreases up to 0.4. Using machine learning, the trends in
the signal change and its variation (ΔR\R0) can be used to classify the different materials.
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deviation are presented in Table S4 and S5, Supporting
Information, for air and water, respectively). In air, the signal
output from the embedded sensors has a regular behavior thanks
to the direct interaction between the sucker, its sensor, and the
material underneath. In water, instead, due to the change of
medium, the readings and the trends change. The lower sensi-
tivity of the suction cup in water is because the sensors become
deformed to a lesser extent. This can be related to the water
incompressibility (differently from air) and to the different fric-
tion on the substrates that result in a lower reaction force acting
on the suction cup and consequently a reduced signal on the
sensors (Figure S9, Supporting Information). Given that the
results did not reveal a simple trend to enable a clear identifica-
tion of the different materials, we used an approach based on
machine learning to better identify any trends (Video S4 and
S5, Supporting Information).

2.5. Material Classification Based on Machine Learning

The most common applications of machine learning are for solv-
ing classification problems requiring complex input signals,
identifying features automatically from the data, and handling
complex preprocessing workflows using well-known algorithms,
such as k-nearest neighbor (KNN), feed-forward neural networks,
or classical naive Bayesian methods. For more complex prob-
lems, such as object identification and recognition,[53] support
vector machine (SVM) is one of the most effective supervised

learning models,[54] while the multilayer perceptron is most
effective when little is known about the structure of the prob-
lem.[55] In this application, we used multilayer perceptron as a
standard algorithm to classify the materials both in air and in
water. To assess performance, we repeated the vertical displace-
ments test 120 times for each case (materials in air or water)
keeping all the parameters constant.

First, we considered the air and water scenarios independently
and trained the model by separating the data (Figure 6A). We
kept the ratio constant between the training and the validation
set by fixing it to 80–20 of the data as in the previous analysis.
A total of 195 data values of individually recorded signals were
considered for each contact with an object. The preprocessing of
the data was filtered with a moving average (window size 10 sam-
ples). In all the cases, 195 data points are considered as the input
to the network which outputs the body stiffness. We trained the
model and computed the confusion matrices first considering
the two scenarios separately with four classes each (Figure 6B
and S11, Supporting Information, for the confusion matrix of
the training and test sets, respectively). We then used the whole
dataset to create a unique model that merged all the eight possi-
ble classes (Figure 6C and S12, Supporting Information, for the
confusion matrix of the training and test sets, respectively).

The results show that the use of one single model improves
the overall accuracy in the classification reducing the errors only
in a few cases related to the underwater scenarios. In addition,
considering the future integration of the model in an embedded

Figure 6. A) Comparison of the accuracy of the multilayer perceptron for the classification of the material in air or in water. Both the cases have compa-
rable, promising results (>93%) with classification in air having a slightly better performance with 97.5% of accuracy in mean over the 97.1% in water.
B) Confusion matrices, considering two independent models to classify the materials when the contact happens in air or in water. It is not surprising that
the water classification model has more errors than the air classification model. This could be related to the presence of bubbles trapped between the
artificial infundibulum and the object surface, which acts as an additional and variable interface between the material and the sensorized suction cup that
affects the sensors readings (Figure S10, Supporting Information). C) Confusion matrix when a single model is used to classify both cases in air and
water. By increasing the number of trained data, the overall performance improves slightly and in addition, it simplifies the model deployment in future
applications.
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decision system, a single model simplifies the deployment and
the execution time when implemented in an ML-enabled
microcontroller.

3. Conclusions

We have developed a soft artificial suction cup with integrated
tactile sensing for detecting the angles, direction, and stiffness
of differently shaped objects (Figure 1). While angle and direc-
tion are useful for orienting the suction cup toward the object to
be grasped, the stiffness works particularly well for tissue palpa-
tion in medicine[31] and for ripeness assessment in precision
agriculture.[56,57] Our solution is scalable (suction cup diameter
19mm), thus enabling future integration in a soft octopus-like
robotic arm. We studied how the design and the choice of the
materials used to manufacture the artificial sucker affect its
mechanical properties and sensing capabilities (Figure 2).

After selecting the final combination, we tested the sensorized
suction cup in a wide range of stiffnesses (range from 0010 to
D50) of different objects (Figure S6, Supporting Information).
When the sensors are configured at a 90° angle to each other,
it is also possible to detect the direction of contact with the object
as well as the angle of contact. This was made possible by apply-
ing a machine learning (ML) approach to the acquired data. In
fact, our initial analysis showed that the interaction between the
artificial sucker and the different materials did not generate a
clear trend in the sensor data (Figure 5). Thus, it was not possible
to use a simple threshold cue-based classification to discriminate
between the different materials. In addition, the test performed
in water provided different trends in the sensors with respect to
the test in air. This was due to a reduced sensibility of the suction
cup in water caused by a lower reaction force. For this reason, the
use of ML was considered.

We evaluated the accuracy of the method by acquiring 120
samples for each configuration (i.e., single material in air/water)
and then selected the best one for the application. Two indepen-
dent models were first trained to identify the materials both
when the contact is in air or in water.

The models predicted the class of the material touched in the
air with a 97.9% accuracy and underwater with a 93.5% accuracy.
By combining the two pieces of information, we created a third
model that categorizes all possible cases where we detect air and
water simultaneously. Again, the results were promising with
95.8% accuracy (Figure 6A–C). Unlike the application that
detected the stiffness of material, it was not possible to identify
a single, reliable model that comprises all the features. We thus
used regression to identify the contact position or angle that can
find the specific value for the contact position or angle. Our
results showed a correctness of 0.98, 0.02, and 2.72 for the
MAE value for angles, directions, and both angles and directions
at the same time; see Figure 4C–E.

Although our results are promising even though they derive
from a simplified case (flat objects and suction cup indentation
perpendicular to that surface). Identifying real objects in life will
require further development in sensing technology and a longer
training process. However, we believe that our solution opens the
path for the development of novel technologies based on suction
cups to be used for complex manipulation. The absence of rigid

parts and the scalability of the manufacturing process make the
proposed suction cup a possible candidate for future integration
in artificial arms inspired by octopuses that can locate and
manipulate complex objects in environments where other senses
are not available.

4. Experimental Section

Design and Fabrication of the Artificial Suction Cup: Designs for the
sucker and required molds were created using 3D CAD (Solid Works
2019, Dassault Systems SolidWorks Corp, USA). The suction cup was
composed of a top part with embedded microfluidic channels (the diame-
ter of the channels was 600 μm) and the bottom part with the eight
grooves (Figure 2B). A polylactic acid (PLA) filament was used to print
the molds (Prusa MK3Sþ, filament diameter 1.75mm, nozzle diameter
0.4mm). During the first step of the casting, a fixed amount (4 mL) of
PDMS (Sylgard 184) was poured into the mold, followed by 10min degass-
ing of the silicone rubber in a vacuum chamber. An internal mask was then
laser cut from a Kapton sheet (50 μm) and placed on the sucker’s surface
after curing to aid in the placement of the sensors. Eight electric wires were
placed to contact the microfluidic channels that were filled with carbon
conductive grease (MG Chemicals, 846–80 G) and then the lower part
of the suction was molded (Figure 2B). The second part of the casting
was done to encapsulate the carbon conductive grease avoiding contact
with environment.

Design and Fabrication of the Material Samples: The material samples
were fabricated in blocks of 50� 50� 25mm with the following techni-
ques and materials (Figure S6, Supporting Information) (Table 1).

Characterization of the Suckers and Material Samples: Vertical indenta-
tion tests on the materials and on the artificial sucker were performed
using a linear stage (M-111 Compact Micro-Translation Stage, PI). A
6-DOF load cell (Nano17, ATI), with the þX axis pointing upward, was
fixed to the slider and used to acquire the measurements. In the material
characterization case, a rigid square probe (3� 3 cm) was connected to
the load cell and the slider moved at constant speed (0.5mm s�1) for
2 mm. In the artificial sucker case, instead, the sucker was fixed to a holder
connected to the load cell and it moved toward a rigid plane at the same
speed and for the same displacement as in the previous case. Before each
measurement, the readings of the load cell were offset to provide a com-
mon reference. For all the experiments, the measurements were repeated
at least 15 times.

Sensor Data Acquisition and Processing: The four resistive strain sensors
on the artificial suction cup were connected to a dedicated voltage divider
with a fixed resistor (ranging from 100–200 kΩ). Data was then sampled at
100 Hz by a data acquisition board (USB-6218, National Instruments,
USA) and stored on a computer. Prior to further processing, raw data
was filtered with a moving average (window size ten samples).
Measurements recorded in air and underwater for each object and stored
in CSV format. Acquired data was processed using MATLAB (MATLAB
2021a, MathWorks Inc.).

Table 1. Shore hardness and manufacturing process.

Shore hardness Fabrication technique Material

0010 Casting Ecoflex 00-10, Smooth-On Inc.

0030 Casting Ecoflex 00-30, Smooth-On Inc.

0050 Casting Ecoflex 00-50, Smooth-On Inc.

A-10 Casting Dragon Skin 10, Smooth-On Inc.

A-30 Casting Dragon Skin 30, Smooth-On Inc.

A-50 SLA printing Elastic 50 A Resin, Formlabs

A-80 SLA printing Flexible 80 A Resin, Formlabs

D-50 FFF printing PLA, Prusa Research a.s.
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Machine Learning: The multilayer perceptron neural network consists of
an input layer with a size equal to the feature vector, two hidden layers that
have ten and six neurons, and an output layer containing one neuron per
result considered. Each layer of the neural network uses ReLUs, except for
the final layer, which uses tanh for regression or softmax for classification.
To train categorical classifiers, 120 sample tests, which each included 195
points, were collected during data acquisition and processing of the
selected suction cup, while 2400 sample tests that included 232 points
were used for training the regression.

Repeatability and Durability Tests: The artificial suction cup was tested
for repeatability and durability using the measurement setup shown in
Figure S8, Supporting Information. The suction cup was attached to a
six-axis torque sensor (Nano 17, ATI) connected to a linear stage
(M-111 Compact Micro-Translation Stage, PI). In the repeatability tests,
the linear stage was programmed to go up and down (with a stroke of
2 mm and a speed of 0.5 mm s�1) until suction cup breakage, which pro-
vides information not only on the repeatability but also on the durability of
the suction cup.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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