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Abstract: Currently, optical sensors based on molecularly imprinted polymers (MIPs) have been
attracting significant interest. MIP sensing relies on the combination of the MIP’s selective capability,
which is conveyed to the polymeric material by a template-assisted synthesis, with optical techniques
that offer exquisite sensitivity. In this work, we devised an MIP nanoparticle optical sensor for the
ultralow detection of serum albumin through time-resolved fluorescence spectroscopy. The Fluo-
nanoMIPs (∅~120 nm) were synthetized using fluorescein-O-methacrylate (0.1×, 1×, 10×mol:mol
versus template) as an organic fluorescent reporter. The ability of 0.1× and 1×Fluo-nanoMIPs to bind
albumin (15 fM–150 nM) was confirmed by fluorescence intensity analyses and isothermal titration
calorimetry. The apparent dissociation constant (Kapp) was 30 pM. Conversely, the 10× fluorophore
content did not enable monitoring binding. Then, the time-resolved fluorescence spectroscopy of
the nanosensors was studied. The 1×Fluo-nanoMIPs showed a decrease in fluorescence lifetime
upon binding to albumin (100 fM–150 nM), Kapp = 28 pM, linear dynamic range 3.0–83.5 pM, limit of
detection (LOD) 1.26 pM. Selectivity was confirmed testing 1×Fluo-nanoMIPs against competitor
proteins. Finally, as a proof of concept, the nanosensors demonstrated detection of the albumin
(1.5 nM) spiked in wine samples, suggesting a possible scaling up of the method in monitoring
allergens in wines.

Keywords: lifetime decay; molecularly imprinted polymers; time resolved fluorescence spectroscopy;
nanosensor; wine; optical sensor

1. Introduction

Optical sensing based on synthetic artificial chemosensors has led to promising results
and developments are foreseen [1–4]. Emphasis is on molecular probes that rely on a
variety of chemical structures, such as host–guest macrocycles, cavitands or nucleic acids,
which are exploited as chemosensors and share high affinity as a common signature. When
provided with optical-responsive reporters, a quantifiable optical signal change, such as
the emergence or disappearance of a spectroscopic feature, is measured upon their binding
to the targeted analyte [1]. Molecular probes are exploited as standalone, or combined
with nanoparticles, singly or in multiple copies, homo- or hetero-, leading to different
photophysical features, and falling under the broad definition of optical nanosensors.
Some polymeric biomimetics, which belong to the class of synthetic receptors, ought to
be also included among the alternative and emerging category of nanosensors. In par-
ticular, molecularly imprinted polymers (MIPs) [5] are a class of synthetic receptors that
provide tailor-made recognition toward a target analyte, that is conveyed by means of a
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template-assisted synthesis [6,7]. For the synthesis, functional monomers and crosslinkers
are solvated together with the targeted analyte, this latter acting as a molecular template.
Throughout the polymerization, molecular cavities stereo-chemically complementary to
the template are imprinted in the nascent polymeric network. The formed MIP is able to
selectively and specifically re-bind the analyte [8]. MIPs offer several advantages: they are
cheap and easy to produce, possess mechanical and thermal stability and are resistant to pH
extremes [9]. Recent advances in polymer synthesis permitted preparing nanometric sized
MIPs (nanoMIPs) [10,11], leading to recognition materials with a higher surface-to-volume
ratio. These materials were characterized by faster binding kinetics, which is a characteristic
that suits sensing. MIPs have been included in a variety of optical sensor designs, ranging
from optical fibers [12–14] to photonic structures [15] and spectroscopic readouts [16,17].
The combination of molecular imprinting, as a method for generating chemically selective
binding sites, to fluorescence, as a means of signaling the presence and the concentration
of a target analyte, is particularly attractive [18]. In fact, on one side, fluorescence is a
widespread technique in sensing due to the high sensitivity, the low detection limits, the
real-time response, and the simple format [19]. On the other side, MIP materials can easily
embed fluorescent functionalities through a variety of synthetic routes [20]. Both organic
fluorescent monomers, such as N-allyl-4-ethylenediamine-1,8-natphalimide, anthracene-
based monomers, or 3′-Methacryloxyspirobenzo[c]-furan [1,9′]xanthen-3-one, as well as
inorganics fluorescent materials, such as quantum dots (QDs), lanthanides, metal nanoclus-
ters and upconverting nanoparticles, have been combined to the MIPs, as widely described
in [17,18]. Indeed, when a fluorophore is integrated in the MIP polymer network, it effec-
tively reports upon the binding of the analyte by changing the overall optical response. In
one of the first examples, a polymerizable trans-4-[p-(N,N-dimethylamino)styryl]-N-vinyl-
benzylpyridinium chloride was used as an organic fluorescent monomer in the synthesis of
an MIP targeting adenosine 3′,5′ cyclic monophosphate (cAMP); the presence of cAMP was
detected in aqueous solutions in the range between 10 nM and 100 µM as a quenching of
the fluorescent emission [21]. Later, hybrid MIP/QDs materials were introduced [18,22–24].
In an example, composite nanospheres made of Mn2+-doped ZnS QD/MIP were prepared,
showing an ability to recognize the pesticide diazinon with a linear response in the range
50–600 ng/mL [22]. Another strategy proceeded through the polymerization of MIPs thin-
layer membranes, in which the fluorescence was entailed embedding L-cysteine-capped
Mn2+-doped ZnS QDs, as reported in the case of a lysozyme-templated MIP [23]. Upon the
binding of the lysozyme (100–1000 nM) to the MIP, the electron transfer between the QDs
and the protein resulted in a fluorescence quenching proportional to the concentration of
the analyte, addressing a limit of detection (LOD) of 10.2 nM [23].

In addition to the possibility of determining the target analyte via fluorescence ampli-
tude changes, fluorescence decay times, or fluorescence lifetime, is an additional tool for
optical sensing that is worth exploring. Lifetime measurements provide unique information
about the system under consideration and have the advantage, unlike amplitude, of being
considered as absolutes. In fact, for low concentration values, lifetime is a phenomenon
largely independent from fluorescence intensity and/or the fluorophore concentration [25].
Moreover, fluorescence lifetime can be considered as a state function, since it does not
depend on the initial perturbation conditions, such as excitation wavelength, duration of
light exposure, single- or multi-photon excitation, measurement method, nor it is affected
by photobleaching [26]. Despite the foreseen advantages, to date, sensing based on MIPs
and fluorescence lifetime seems seriously under-explored.

Wandelt and colleagues prepared a fluorescent MIP, integrating the polymerizable
trans-4-[p-(N,N-dimethylamino)-styril]-N-vinylbenzylpyridinium chloride moiety as a
fluorescent reporter and using cAMP as the template [27]. The bulk MIP was ground into mi-
croparticles and used as suspension; when challenged with cAMP (10−5 to
10−3 M), the MIP microparticles showed a decrease in the fluorescence lifetime from
2.79 to 2.70 ns [27]. Using a similar recipe, fluorescent MIPs were also prepared in the form
of sensing surfaces for the recognition of cAMP by the photopolymerization of an MIP thin
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film on a quartz support. Results showed a change in the fluorescence lifetime from 2.11 to
1.99 ns upon the binding of cAMP (10−3 M) [28]. Later, inorganic fluorophores based on
rare earths and QDs, characterized by the advantage of extended lifetimes, were integrated
into MIPs [25]. QDs were embedded into MIP silica-based microparticles of 25–30 µm in di-
ameter and imprinted for the recognition of malachite green. Challenging these micro-MIPs
with malachite green (10 µM) resulted in a decrease in the lifetime from 79 to 60 ns [29].
Quílez-Alburquerque and colleagues developed a sensor for tenuazonic acid mycotoxin
(TeA) using a tailored multifunctional Ru(II) complex as a fluorescent probe [30]. An MIP
nanolayer was polymerized onto 200 nm silica beads, using the trifunctional luminescent
acrylate-Ru(II)-biimidazole monomer. The MIP core–shell nanoparticles had a lifetime of
72 ns, while in the presence of TeA (0.5–400 µM), a 30% decrease in the average emission
lifetime was observed [30].

In the present work, we studied the effect of entailing an organic fluorescent moiety,
i.e., fluorescein methacrylate, to water-soluble MIP nanoparticles (Fluo-nanoMIPs) of
about 120 nm in hydrodynamic diameter that were selective for the protein human serum
albumin (HSA), with the aim of devising a lifetime-based nanosensor for the assessment of
protein traces. It is anticipated that Fluo-nanoMIPs nanosensors’ time-resolved fluorescent
spectroscopy enabled attaining an ultralow detection of proteins, suggesting the potential
for future applications in clinical, food and environmental areas.

2. Materials and Methods
2.1. Chemicals

Acrylamide (Aam), N-tert-butylacrylamide (tBAm), methacrylic acid (MAA), N,N′-
methylene bisacrylamide (BIS), N,N,N′,N′-tetramethyl ethylenediamine (TEMED), am-
monium persulfate (APS), fluorescein O-methacrylate (FluorMAA), human serum al-
bumin (HSA, Cat. No. A9731), human transferrin (HTR, Cat. No. T3705), bovine
serum albumin (BSA, Cat. No. A7906), lysozyme (Lyz, Cat. No. 10837059001), oval-
bumin (Cat. No. 05440), trypsin, phosphate buffer (PB), saline phosphate buffer (PBS),
tris(hydroxymethyl)-aminomethane (TRIS), 1-Ethyl-3-(3-dimethylaminopropyl) (EDC),
N-hydroxysuccinimide (NHS), 2-(N-morpholino)ethane-sulfonic acid (MES), ethanol, ace-
tonitrile and N-Cyclohexyl-2-aminoethanesulfonic acid (CHES) were from Sigma-Aldrich
(Darmstadt, Germany).

2.2. Synthesis of Fluo-nanoMIPs

The synthesis of the fluorescent nanoMIPs (Fluo-nanoMIPs) was carried out using a
total monomer concentration of 0.2% (w/v). The monomers Aam, MAA and tBAm were
used in a ratio 8, 8 and 4% moles, respectively, and admixed to 80% (moles) of BIS in
20 mM PB at pH 7.4, as described in [16]. Fluorescence was entailed adding fluorescein
methacrylate in a quantity of 1.3, or 13, or 130 nmol with respect to the total monomers.
The template, HSA, was 15 nmol. Vials were closed with rubber caps and bubbled with
N2 for 10 min. The catalysts, APS (0.04% w/v) and TEMED (0.03% w/v), were added and
the polymerization was carried out overnight at room temperature under mild stirring.
At the completion of the polymerization, the removal of the template was carried out by
enzymatic digestion with trypsin (100 µg) for 2 h at 37 ◦C, which was followed by dialysis
(M.W.C.O. 14.000 Da, Sigma-Aldrich, Darmstadt, Germany) with 3 × 3 L of MilliQ water.
Next, the Fluo-nanoMIPs were freeze-dried and stored. The yield of polymerization was
85%, as estimated from the weight of the lyophilized nanoparticles with respect to the total
weight of the monomers used in the synthesis.

2.3. Calibration Curve for FluorMAA

The fluorescence intensity of increasing concentrations of FluorMAA (81.25, 162.5,
325, 650 and 1300 nM) was measured using a spectrofluorometer (FP-8200, Jasco Ltd.,
Heckmondwike, UK) with an excitation wavelength at 488 nm and reading the emission in-
tensity at 514 nm, corresponding to the emission peak. The calibration curve for FluorMAA
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and the associated equation are reported in Supplementary Section S1. The fluorescence
intensities at the emission wavelength λem_max = 514 nm of the Fluo-nanoMIPs samples
(1 mg/mL) were measured, and the calibration was used to estimate the amount of fluo-
rophore incorporated within the polymeric network during the synthesis. Measurements
were in triplicate.

2.4. Dynamic Light Scattering (DLS)

Size distribution and the polydispersity index (PDI) were determined using a Zetasizer
Nano ZEN3600 (Malvern Instruments Ltd., Malvern, UK) equipped with a 633 nm He-Ne
laser at a detection angle of 173◦. Fluor-nanoMIPs were suspended in water to the final
concentration of 1 mg/mL. The material refractive index (RI) was 1.490 and the absorption
value was 0.01; the dispersant RI was 1.332 for water, while the viscosity was 0.89 cP as
reported by the Zetasizer V.6.32 software (Malvern instruments Ltd., Malvern, UK). The
temperature was set at 298◦ K. Measurements were in triplicate.

2.5. Scanning Electron Microscopy (SEM)

Images were collected with a secondary electron detector at 15 keV beam energies
on a Supra 40 Field Emission SEM (Zeiss, Oberkochen, Germany). Prior to SEM analysis,
samples were suspended in ultrapure water at 150 µg/mL final concentration and briefly
ultrasonicated. Then, 5 µL of the suspension were deposited on a silicon wafer substrate
mounted with carbon double tape on an aluminum stub, after which it was dried at 60 ◦C
for 24 h or 30 ◦C for 72 h. A platinum/palladium ultrathin coating (2 nm) was deposited
by means of plasma sputtering to ensure electrical conductivity.

2.6. Fluorescence Intensity of Fluo-nanoMIP

Fluo-nanoMIPs, respectively, synthetized with 1.3, 13 and 130 nmol of FluorMAA,
were dissolved at 0.2 mg/mL and incubated with increasing concentrations (from 15 fM
to 150 nM) of human serum albumin, or with the same concentrations of human serum
transferrin, i.e., a non-template protein chosen for selectivity tests. The equilibrium time,
previously tested over 60 min, was reached in 20 min. After 30 min of incubation, samples
were plated in triplicate on a 96-well plate hydroGrade (BRANDplates, Germany) with a
volume of 60 µL per well. Steady-state measurements of Fluo-nanoMIPs were carried out
using the microplate reader Infinite 200 PRO (Tecan Group Ltd., Männedorf, Switzerland)
at the emission wavelength of 522 nm. Emission intensities were measured as relative
fluorescent units (rfu). Isotherm was fitted with OriginPro 9.0 using the Langmuir model
equation: y = START + (END − START) × x/(k + x), where START and END were the
initial and final y values; x was the concentration of HSA; and k was the half-saturation or
apparent dissociation constant (EC50 or apparent dissociation constant Kapp).

2.7. Fluorescence Lifetime of Fluo-nanoMIP

The fluorescence lifetime of a population, measured in the time-domain, also called
fluorescence intensity decay, follows the equation:

I(t) = I0e−t/τ (1)

where I(t) is the intensity at time t; I0 is the intensity at t = 0; t is the time after the
absorption; and τ is the fluorescence lifetime. Time-resolved fluorescence intensities were
collected using a single photon counting spectrometer Nanolog/Fluorolog-3-2iHR320
(Horiba-Jobin Yvon, Kyoto, Japan) equipped with a NanoLED source with a wavelength
of 453 nm. The emission was monitored at the angle of 90◦ with respect to the excitation.
Data were collected in 1023 channels to 10,000 counts in the peak, while the calibration
time was 109.73 ps per channel. The voltage at the photomultiplier (PTM) was set to 950 V.
Measurements were performed in a 1 mL quartz cuvette, using a fixed concentration of
0.2 mg/mL of nanoMIPs in PBS (10 mM pH 7.4), adding increasing concentrations of HSA
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(100 fM–150 nM). To allow binding kinetics’ stabilization, a 20 min incubation was awaited
before performing each measurement.

A 0.2 mg/mL Fluo-nanoMIP suspension was excited at λexc = 453 nm to obtain the
instrumental response (prompt) for the deconvolution. The sample decays were recorded
at λem = 522 nm.

Data were elaborated with the Decay Analysis Software V. 6.8 (Horiba Scientific, Yvon,
Kyoto, Japan), choosing a biexponential fitting equation model:

I(t) = A + B1e−t/τ1 + B2e−t/τ2 (2)

The biexponential fitting was used to take into account the heterogeneity of the system
due to the random incorporation of the fluorophore in the Fluo-nanoMIPs polymeric
network during the synthesis. The two components, τ1 and τ2, are used to describe the
presence of two different populations of fluorophores: one integrated inside the stamped
molecular cavities and the other outside the binding cavities, randomly distributed in the
nanoMIP, according to [30,31].

2.8. Sensor Parameters

The lifetime values (τ2), plotted as a function of HSA concentration, described the
binding isotherm for the sensing system. Data were fitted with the Hill equation model
(OriginPro 9.0):

τ2 = τ2_max
xn

(K + xn)
(3)

where τ2 is the lifetime at concentration x of the ligand (i.e., HSA); τ2_max is the τ value at
binding saturation; n is the Hill parameter, which correlates with the number of binding
sites, and K is the apparent dissociation constant derived from the law of mass action,
which is represented by the following equation:

K =
[A]·[B]
[AB]

(4)

where [A] is the molar concentration of the receptor which in our case consists of the 1×Fluo-
nanoMIPs; [B] is the molar concentration of the analyte and [AB] is the concentration of
the complex between the 1×Fluo-nanoMIPs and the analyte.

2.9. Selectivity of 1×Fluo-nanoMIPs

Different competitor proteins were chosen for the selectivity of fluorescent nanoMIPs.
A solution of 1×Fluo-nanoMIPs at 0.2 mg/mL was incubated for 20 min in the presence of
18 pM of BSA, or 20 pM of HTR, or 11 pM of ovalbumin, or 17 pM of lysozyme. Fluorescence
lifetime was measured as explained above. Measurements were performed in triplicate.

2.10. Fluorescence Lifetime of 1×Fluo-nanoMIPs in Wine

Measurements were performed in a 1 mL quartz cuvette, using chardonnay white
wine, spiked with 1.5 nM of serum albumin, diluted 1:5 in PBS 10 mM pH 7.4 into which
1×Fluo-nanoMIPs were dispersed at a concentration of 0.2 mg/mL. In this case, the prompt
was prepared with the same wine dilution and nanoparticles but without the spike and
recorded according to Section 2.8. Selectivity was tested using the same concentration of
human transferrin. Measurements in triplicate were performed as described above.

2.11. Isothermal Titration Calorimetry (ITC)

Isothermal titration calorimetry (ITC) was performed on a MicroCal PEAQ-ITC
(Malvern Panalytical Ltd., Worcestershire, UK) instrument. All solutions were filtered
and degassed prior to use. The 1×Fluo-nanoMIPs, human serum albumin and human
serum transferrin (HTR) were solubilized in 10 mM PBS pH 7.4. Then, 1 µM of 1×Fluo-
nanoMIPs (200 µL) was titrated with 30 nM to 10 µM of serum albumin at 25 ◦C, and the
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heats of the interactions were recorded. Dilution heats were estimated from the titration of
the proteins in buffer. Raw heats were subtracted from the dilution heat and integrated.
Integrated heats were plotted as a function of the molar ratio between the titrand and the
titrant and fitted with one set of sites modeled with the MicroCal PEAQ-ITC Analysis Soft-
ware 1.22.1293 to estimate values for the binding constant (KD) and the enthalpy variation
associated with binding (∆H).

2.12. Atomic Force Microscopy (AFM)

For the AFM, nanoMIPs were covalently coupled to support surfaces with the protocol
reported in [14]. The surface topography of the of Fluo-nanoMIPs was studied using a
NT-MDT Solver Pro system equipped with a Nova scanner. Samples were imaged in
semi-contact mode using super sharp diamond-like carbon tips (NSG01_DLC, NT-MDT,
1 nm nominal tip radius, 150 kHz, force constant 5.5 N/m), collecting 1 × 1 µm, 512 points
resolution topography images. AFM data were analyzed with the support of Gwyddion
analysis software [32].

3. Results and Discussion
3.1. Effects on the Lifetime Due to Interaction between the Fluorophore and Albumin

Initially, the effects on the fluorophore lifetime due to the interaction between the
chosen organic fluorescent monomer (FluorMAA) and the target analyte was studied
by time-resolved fluorescent spectroscopy (SI Section S2). FluorMAA (155 pmol) was
incubated with increasing concentrations of albumin (15 fM–15 nM), and the lifetimes (τ)
were measured (Figure 1).
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Figure 1. (A) Fluorescence lifetime of FluorMAA as a function of albumin concentration (n = 3)
fitted with Hill model equation. (B) Fitting parameters of the fluorescent decays of FluorMAA in the
presence of albumin (monoexponential model, SI Section S2).

The lifetime increased with the albumin concentration following a sigmoidal profile,
with values shifting from 3.086 ± 0.018 to 3.457 ± 0.002 ns and plateauing for protein
concentrations around 10 pM (Figure 1; fitting parameters in the inset table). Such a behav-
ior was indicative of an interaction taking place between the fluorophore and the protein.
In line with previous observations, increments of τ values of the protein’s endogenous
reporters (tryptophans) were observed in the case of non-specific interactions with the en-
vironment, such as bovine serum albumin adsorbing to ZnO core–shell nanoparticles [33].

3.2. Synthesis and Characterization of Fluorescent NanoMIPs

A library of fluorescent nanoMIPs, herein called Fluo-nanoMIPs, was synthesized
using a total monomer concentration of 0.2% w/v. In particular, acrylamide (Aam), tert-
butylacrylamide (tBAm), and methacrylic acid (MAA) were admixed to N,N′-methylene
bis-acrylamide (BIS), used as a reticulating agent, as reported in [14]. Human serum
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albumin (15 nmol) was chosen as a model template and added to the pre-polymerization
mixture (Vfinal = 10 mL) [34]. According to the scheme reported in Figure 2, fluorescence
was entailed by using the fluorescein–methacrylate (FluorMAA) monomer, which was
added to the syntheses at 1.3, or 13, or 130 nmol to the final synthetic volume, in order to
study the effect of the molar ratio between the fluorescent-reporter (0.1×, 1×, 10×) and
the template on the fluorescent readouts (Table 1). At the completion of the syntheses, the
degree of incorporation of the fluorophore into the MIP nanoparticles was estimated by
means of the calibration curve: y (λem@522 nm) = 0.82 × ([FluorMAA], nM) − 0.12 (details
in SI Section S1 Calibration Curve). Results indicated the FluorMAA incorporation for the
0.1×, 1× and 10×FluorMAA was, respectively, 28, 23 and 52% (Table 1).
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Figure 2. Scheme of the polymerization conditions used to prepare the library of Fluo-nanoMIPs.

Table 1. Fluorescence and physical characteristics of the nanoMIPs.

Sample Name
FluorMAA Added to

Polymerization
(pmol/mg)

FluorMAA
Incorporated

(pmol/mg)
Zaverage (nm) PDI

0.1×Fluo-nanoMIP 65 20 ± 5 115.6 ± 0.8 0.20
1×Fluo-nanoMIP 650 155 ± 20 123.9 ± 0.1 0.22
10×Fluo-nanoMIP 6500 3380 ± 300 176.6 ± 0.4 0.34

The Fluo-nanoMIPs dimensions were characterized by means of dynamic light scat-
tering (DLS), and the estimated sizes are reported in Table 1. The hydrodynamic sizes
of the nanoparticles were about a hundred nanometers, while the polydispersity index
(PDI) indicated a homogeneous distribution. As a confirmation, Figure 3 reports the
scanning electron microscopy (SEM) and atomic force microscopy (AFM) images of the
Fluo-nanoMIPs, showing spherical nanoparticles with dimensions in agreement with
DLS data.
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Figure 3. (A) Exemplificative SEM image of Fluo-nanoMIPs; (B) AFM image of Fluo-nanoMIP
covalently coupled to silica supports.

3.3. Functional Characterization of the Fluo-nanoMIPs
Study of the Fluorescence Intensity of the Library of Fluo-nanoMIPs upon Binding

The functional characterization of the library of Fluo-nanoMIPs was assessed by means
of fluorescent intensity binding studies. Each batch of Fluo-nanoMIPs, i.e., 0.1×, 1× and 10×,
was incubated for 20 min with increasing concentrations of HSA (15 fM–150 nM), and the
fluorescence emission at 522 nm was monitored. Quenching of the emission intensities
was observed both for the 0.1× and the 1×Fluo-nanoMIPs challenged with increasing
concentrations of albumin (Figure 4A,B). Binding data were fit with a Langmuir equation
model, and the resulting parameters are reported in Table 2. Worth of note is the value
of the half saturation, EC50, which corresponds to the apparent dissociation constant
(Kapp), which was estimated in the pM range, indicating a remarkably high affinity of the
imprinted nanomaterial for its targeted protein. Both the tested quantities of fluorescent
reporter, i.e., 0.1× or 1×moles with respect to the moles of the template, yielded to Fluo-
nanoMIPs sensitive to binding events in the range between the fM and the pM, indicating
these nanosensors’ compositions were apt to detect traces of the protein template. In
contrast, in the case of the 10×Fluo-nanoMIPs, no variation in the emission intensity was
observed upon albumin addition (Figure 4C). This supported the hypothesis that a synthetic
condition, in which the fluorophore reporter is added in molar excess with respect to the
template protein, does result in several fluorescent labels per nanoparticle being randomly
distributed in the polymeric network. Such a condition likely includes the placement of
fluorophores outside of the formed binding sites, together with self-quenching effects,
making the overall fluorescence response non-sensitive to the binding events.
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Table 2. Fitting parameters of emission intensity measurements of Fluo-nanoMIPs 0.1×, 1× and 10×
incubated with increased concentrations of albumin.

Parameters 0.1×Fluo-nanoMIP 1×Fluo-nanoMIP 10×Fluo-nanoMIP

I0 (rfu) 33,578 ± 535 34,399 ± 476 25,805 ± 1175
Imin (rfu) 23,452 ± 547 23,103 ± 282 28,890 ± 573

EC50 (pM) 65 ± 20 30 ± 9.5 n.a. *
R2

adj 0.9690 0.9883 n.a.

* Fitting did not converge.

Therefore, 0.1× and 1×Fluo-nanoMIPs demonstrated the crucial effect of a careful
adjustment of the quantity of fluorescent reporter (in moles) with respect to the moles
of the template (i.e., 1:10 and 1:1). Both compositions relied on a restricted number of
fluorescent tags per molecule of albumin in the pre-polymerization mix, which was a
condition hypothesized to favor the fluorophore to albumin pairing during the pre-synthetic
stage, and ultimately leading to a superior control of the placement of the few fluorescent
reporters in, or close by, the binding cavity, in the formed nanomaterials. Yet, the best
fluorescent performance at binding was observed for the composition based on a one-to-
one fluorophore to albumin molar ratio, as shown by the steeper slope of the fitting curve
reported in Figure 4B when compared to 4A. It appears that the strategy to modulate the
number of fluorescent tags on the nanoMIPs as a function of the quantity of template used
in the synthesis is very straightforward and easy to perform yet lacking the fidelity that
can be achieved by the post-synthetic chemical tagging of MIPs with fluorescent probes, as
reported for the post-imprinting approach proposed by [35,36].

As an independent proof, the specific binding between albumin and the synthesized
1×Fluo-nanoMIPs was assessed by isothermal titration nanocalorimetry (ITC) [37]. The
interaction between the nanomaterial and its targeted analyte is reported in Figure 5. As
shown in Figure 5B, the integrated heats described a sigmoidal profile, which is typically
associated with interacting molecules. The steep transition is typical of a binding event
characterized by extremely high affinity; in fact, the dissociation constant was in the
pM range. The ITC confirmed the effective stamping of binding sites on the 1×Fluo-
nanoMIPs [37,38]. In contrast, when 1×Fluo-nanoMIPs were titrated with a non-template
protein, no interaction was observed (SI Section S4 Isothermal Titration Calorimetry).
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3.4. Fluorescence Lifetime of the Fluo-nanoMIPs

The feasibility of devising soluble nanosensors, based on Fluo-nanoMIPs, to moni-
tor the presence of serum albumin, as the target analyte, by fluorescence lifetime decay
was next investigated. The intensity decay curve of Fluo-nanoMIPs (0.2 mg/mL) was
recorded at λem = 522 nm, allowing the samples to equilibrate for 20 min. Data were fitted
with a biexponential fitting (τ1 and τ2). Indeed, this was an approximate, though accept-
able [33], model to represent and discriminate between the decay’s contributions given by
the fluorescent reporters randomly placed on the polymer backbone and the ones related
to effectively placed fluorescent reporters, i.e., located within, or nearby, the imprinted
binding site in the Fluo-nanoMIPs. In detail, a fixed τ1 was used as a global descriptor of
all the non-specific decays occurring outside the molecularly imprinted cavities, whereas
the binding-related interactions were observed as τ2. It appeared that both solvated 0.1×
and 1×Fluo-nanoMIPs in the absence of the analyte displayed very similar τ2 values, i.e.,
4.154 ± 0.015 and 4.183 ± 0.009 ns, respectively, which is in agreement with the theory of
lifetime decay that postulates the independence of the τ value from the concentration of
fluorophore at low concentrations. Additionally, we observed a significative difference
in the τ values of free FluorMAA (Figure 1) with respect to τ of the fluorophore incorpo-
rated in the nanoMIP (Table 3) due to the different environment surrounding the molecule
and accounting for its shielded integration within the nanoMIP. In contrast, the 10×Fluo-
nanoMIPs, characterized by evenly distributed reporters and/or self-quenching effects,
showed significantly lower values of τ. It can be expected that the more the fluorophores
on the nanoMIPs are freely exposed to the solvent, the more the τ value should approach
that of the free Fluor-MAA. Overall, the differences in fluorophore decays observed by
comparing the 0.1× and 1×, versus 10×Fluo-nanoMIPs, were evidence of the strong cor-
relation between the decay’s properties and the fluorescent reporter’s placement in the
nanoMIP’s backbone [26]. Next, Fluo-nanoMIPs (0.1×, 1×, and 10×) were solvated in
PBS at the concentration of 0.2 mg/mL and challenged with increasing concentrations
of albumin, from 100 fM to 150 nM. The results are reported in Figure 6. Characteristics
saturation binding isotherms were observed for 0.1× and 1×Fluo-nanoMIPs (Figure 6B,C),
whereas 10×Fluo-nanoMIPs did not report any response to binding events (Figure 6D).
Table 3 reports the data of the binding fitted with the Hill equation model.

Concerning 0.1× and 1×Fluo-nanoMIPs, the nanosensor’s half saturation was in the
pM range, which was a value that remained consistent with the observations reported for
the fluorescent intensity experiments (Table 2). Fitting parameters showed how an n value,
which in this case correlates with the number of optically active binding sites, increased
from 0.86 to 1.89 when nanoMIPs were prepared with 10 times more of the fluorescent
reporter. This suggested that the 1×Fluo-nanoMIPs should be preferred for sensing.

The sensor’s operational parameters in PBS, associated to the 1×Fluo-nanoMIP nanosen-
sors, were then extrapolated and are reported in Table 4, indicating that the nanomaterial
herein prepared can be exploited to determine serum albumin in the picomolar range.

Table 3. Fitting parameters of fluorescence lifetime measurements of Fluo-nanoMIPs 0.1×, 1× and
10× incubated with increased concentrations of albumin.

Parameters 0.1×Fluo-nanoMIP 1×Fluo-nanoMIP 10×Fluo-nanoMIP

τ2_0 (ns) 4.154 ± 0.015 4.183 ± 0.009 4.008 ± 0.018
τ2_max (ns) 3.944 ± 0.009 3.983 ± 0.006 4.000 ± 0.018
EC50 (pM) 28 ± 13 18 ± 4.2 n.a. *

n 0.86 1.89 n.a.
R2

adj 0.9678 0.9803 n.a.

* Fitting did not converge.
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trations of albumin. Fluorescence lifetime (τ2) of (B) 0.1×Fluo-nanoMIP, (C) 1×Fluo-nanoMIP and
(D) 10×Fluo-nanoMIP as a function of albumin concentration. Binding curves were fitted with Hill
model equation.

Table 4. Parameters for the 1×Fluo-nanoMIP lifetime nanosensor.

τ2_0 (ns) 4.183 ± 0.009
τ2_max (ns) 3.983 ± 0.006
Kapp (pM) 18 ± 4.2
Kaff (M−1) 1.4 × 1010 Kaff = 1/K (M−1)
LOD (pM) 1.26 3 × std.devblank/Sensitivitylow conc

Sensitivity at low concentration 7.14 × 109 |∆τ2_max − ∆τ2_0|/K
χ2

red 0.941
Linear dynamic range (pM) 3.0–83.5 10–90%

3.5. Selectivity of the 1×Fluo-nanoMIP Nanosensor

Finally, a selectivity test was carried out to confirm that the variations in lifetime
decays reported in Figure 6 were due to specific binding events. The selectivity test was
per-formed by choosing different proteins as interferents. Bovine serum albumin (BSA),
which is characterized by molecular weight (MW 66,000 g/mol) and isoelectric point (pI
6.8) similar to HSA, was selected to epitomize the ability of Fluo-nanoMIPs to bind with
other mammalian albumins. Hen egg ovalbumin (MW 42,700 g/mol, pI 5.1) was chosen for
testing the selectivity toward an albumin from a different species (Gallus gallus), whereas the
hen egg lysozyme that is characterized by a higher pI and a significantly smaller size (MW
14,400 g/mol, pI 9.36) was chosen for devising the effect of charge on the Fluo-nanoMIP
binding. Finally, another highly abundant serum protein, namely human serum transferrin
(HTR, MW 77,000 g/mol, pI 6.8), was also tested. As shown from the histogram chart
reported in Figure 7A, the incubation of the nanosensors with HSA (18 pM) produced a 40%
drop in the τ2 value. In contrast, the nanosensors in the presence of any of the non-template
proteins did not produce significant changes in the lifetime decays.
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bated with the competitor HTR. 

3.6. Fluo-nanoMIP Nanosensors for the Determination of Albumin Allergen in Wine Samples 
The sensitivity of the herein synthesized 1×Fluo-nanoMIP nanosensors supported 

their use in real scenarios in order to determine the albumin contamination at ultralow 
concentrations, such as in the case of protein allergen traces in wines [39]. In a preliminary 
experiment, we tested the use of the nanosensors in real wine samples (n = 2) that were 
spiked with albumin (1.5 nM), whereas control samples were both not spiked and spiked 
with the non-related protein HTR. All samples (final volume of 1 mL) were supplied with 
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Figure 7. (A) Selectivity of 1×Fluo-nanoMIPs studied by time-resolved fluorescence spectroscopy.
Orange bar reports τ2 of a sample with just 1×Fluo-nanoMIPs, in purple τ2 for 1×Fluo-nanoMIPs
incubated with HSA (18 pM) and compared with pink for τ2 of the same Fluo-nanoMIPs incubated
with bovine serum albumin (18 pM); white for τ2 of HTR (20 pM); light gray for τ2 of ovalbumin
(11 pM); or dark gray for τ2 of lysozyme (17 pM). (B) For a better comparison, the selectivity
of 1×Fluo-nanoMIPs was studied in terms of emission intensity at λmax= 522 nm. Open squares
represent 1×Fluo-nanoMIP incubated with the targeted HSA; solid circles represent 1×Fluo-nanoMIP
incubated with the competitor HTR.

In the case of BSA and of HTR, a slight increment in lifetime was observed, which
was possibly ascribed to non-specific interactions between the interferent protein and the
biomimetic nanomaterial [33]. As an independent proof, the specificity of the 1×Fluo-
nanoMIP nanosensors was also tested by comparative binding, in fluorescence emission,
indicating the effect of increasing concentrations of HSA (Figure 7B, open squares) or of
the HTR (Figure 7B, solid circles). Results confirmed quenching of the emission solely
associated to the binding of, or occurring nearby, the optical-responsive reporters of the
nanosensor, whereas no emission changes were observed when the HTR interferent was
tested. This confirmed the selectivity of the 1×Fluo-nanoMIPs and supported their use as
soluble nanosensors for albumin detection.

3.6. Fluo-nanoMIP Nanosensors for the Determination of Albumin Allergen in Wine Samples

The sensitivity of the herein synthesized 1×Fluo-nanoMIP nanosensors supported
their use in real scenarios in order to determine the albumin contamination at ultralow
concentrations, such as in the case of protein allergen traces in wines [39]. In a preliminary
experiment, we tested the use of the nanosensors in real wine samples (n = 2) that were
spiked with albumin (1.5 nM), whereas control samples were both not spiked and spiked
with the non-related protein HTR. All samples (final volume of 1 mL) were supplied
with a fixed quantity of nanosensors (0.2 mg/mL), incubated for 20 min and measured.
Figure 8 reports the measured lifetime decays. It was observed that the percentage of the τ2
value dropped exclusively when in the presence of albumin, confirming the selectivity of
the nanosensors.
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4. Conclusions

The fluorescence lifetime is an intrinsic property of fluorescent probes that is highly
sensitive to the microenvironment [40], while it is largely independent from both the
fluorescence intensity and the fluorophore concentration; therefore, it can be effectively
used as a reporter of molecular interactions. In the present work, we exploited an organic
fluorophore monomer (Fluor-MAA) to synthesize analyte-selective fluorescent polymeric
nanosensors by means of the MIP technology. A known nanoMIP composition, suitable to
recognize HSA [14], was entailed of the fluorescent reporter Fluor-MAA, and the binding
was studied through fluorescence decay, which was a yet not-investigated response for
the system. Valuable information about the binding event was reported as a decrease
in the lifetime decays. It was observed that sub- to stoichiometric quantities of Fluor-
MAA with respect to the albumin template, i.e., 0.1× and 1×Fluo-nanoMIPs, appear to
statistically guide the placement of the fluorescence probe within the imprinted binding
cavity, allowing to determine the presence of the target protein at picomolar levels, which
is a limit significantly improved over the current literature [30]. These achievements
contribute to the advancement of nanosensing by means of the MIP technology and to the
in-solution real-time determination of protein markers [4].

Currently, the interest in the use of nanoMIPs is mainly in clinical diagnostics, but
expected areas of application concern the detection of traces of proteins that are causative
agents of allergies in foods. Along the way to develop nanosensors for allergies, we
started by studying the Fluo-nanoMIP’s ability to monitor ultralow quantities of the model
protein HSA in the wine matrix. The results were positive, opening to the further synthesis
and to further lifetime interrogations of Fluo-nanoMIPs tailored to the specific allergenic
proteins found in wines (i.e., lysozyme, ovalbumin) [41]. From the present results, it
appeared that Fluo-nanoMIPs can constitute a general answer to the growing need for
ultralow sensitive analytical devices for the determination of protein contaminations in
beverages [42]. Additionally, we foresee the possibility to devise multiple Fluo-nanoMIPs,
each templated toward the recognition of a specific allergenic target, expanding the current
MIP sensing portfolio. In view of a multi-targeting nanosensing and to their translation to
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the market, it would be beneficial to explore the solid-phase synthesis approach, which is
compatible to mass production of the Fluo-nanoMIPs [11,43].

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bios13070745/s1, Figure S1: Calibration curve of FluorMAA; Table S1:
Equation parameters of the FluorMAA calibration curve; Figure S2: Examples of DLS measurements
of (A) 0.1× and (B) 1×Fluo-nanoMIPs; Figure S3: Isothermal titration nanocalorimetry data of
1×Fluo-nanoMIP titrated with the non-template protein human serum transferrin and expressed as
raw heats over time.
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