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Abstract: The advent of genomic big data and the statistical need for reaching significant results have led genome-wide

association studies to be ravenous of a huge number of genetic markers scattered along the whole genome. Since its very

beginning, the so-called genotype imputation served this purpose; this statistical and inferential procedure based on a

known reference panel opened the theoretical possibility to extend association analyses to a greater number of

polymorphic sites which have not been previously assayed by the used technology. In this review, we present a broad

overview of the genotype imputation process, showing the most known methods and presenting the main areas of

interest, with a closer look to the most up-to-date approaches and a deeper understanding of its usage in the present-

day genomic landscape, shedding a light on its future developments and investigation areas.

Introduction

Genotype imputation is a process to statistically infer missing
genotypes in target samples using local linkage disequilibrium
patterns from a reference panel of phased haplotypes. It is
used in modern genome-wide association studies (GWAS)
to extend the number of genetic variants from a set of
genotyping microarrays.

Imputation was first used on genetically isolated human
populations to identify ancestral haplotypes shared among
samples (Pilia et al., 2006; Scuteri et al., 2007). Following
the improvement of sequencing technologies, genotype
imputation was then applied to several research studies,
focused on human genetic diseases and complex traits
(Everest et al., 2022; Kember et al., 2022).

Genotype imputation consists of the application of the
homonym statistical technique for statistically measuring the
genotype in terms of allele dosage or genotype likelihood
probabilities. It reconstructs missing genotypes from a
sample of genotyped individuals at many markers, leveraging
on a large supportive dataset of fully characterized
haplotypes, known as a reference panel. Imputation
algorithms have been greatly improved over time and now

they can handle reference panels containing millions of
individuals who underwent whole genome sequencing.

Regarding the human genome, it is noteworthy that more
than 715′081′156 short sequence variants and 7′097′115
structural variants (https://www.ensembl.org/Homo_sapiens/
Info/Annotation) (Cunningham et al., 2022) have been
reported so far. These represent most of the so-called
genetic variability of human populations, and a part of them
is likely to be associated with the variability of rare and
common traits. Therefore, it would be very helpful to have
tools able to predict the genotype at these polymorphic sites.
This task could be accomplished using the proper reference
panels and efficient imputation algorithms.

Imputation is routinely applied to samples that
underwent genotyping microarray methodologies.
Genotyping arrays carry probes for hundreds of thousands
(or millions) of genetic loci widespread throughout the
human genome; therefore, genotyping array–based studies
cannot assay the whole set of polymorphic sites scattered
across the whole genome: for this reason, the reconstruction
of missing genetic loci turns out to be fundamental to
enrich downstream analyses and increase the chance to
detect true associations.

Thus, since its first applications, genotype imputation
increased the number of significant results on either
Mendelian or complex diseases (Li et al., 2006; Scott et al.,
2007; Mijatovic et al., 2012). Genotype imputation was not
only restricted to empower GWAS, but also to confirm or
correct genotyped markers based on their computed

*Address correspondence to: Giovanni Malerba,
giovanni.malerba@univr.it; Mirko Treccani, mirko.treccani@univr.it
Received: 19 November 2022; Accepted: 16 February 2023;
Published: 22 May 2023

BIOCELL echT PressScience
2023 47(6): 1225-1241

Doi: 10.32604/biocell.2023.027884 www.techscience.com/journal/biocell

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

https://www.ensembl.org/Homo_sapiens/Info/Annotation
https://www.ensembl.org/Homo_sapiens/Info/Annotation
mailto:giovanni.malerba@univr.it
mailto:mirko.treccani@univr.it
https://www.techscience.com/journal/BIOCELL
https://www.techscience.com/
http://dx.doi.org/10.32604/biocell.2023.027884
https://www.techscience.com/doi/10.32604/biocell.2023.027884


probabilities (Marchini and Howie, 2010), to fine-map
variants and confirm low evidence of association (Orho-
Melander et al., 2008) and combine multiple studies into
meta-analyses (Zeggini et al., 2008). With the improvements
in genotyping technologies and the advent of the sequencing
era, genotype imputation was effective also in the context of
the genotyping of highly polymorphic regions, such as the
major histocompatibility complex (MHC) region, the
human leukocyte antigen (HLA, chromosome 6p) system
(Meyer and Nunes, 2017; Naito and Okada, 2022) and the
genomic regions coding for immunoglobulin chains (on
chromosome 2 for kappa light chain, chromosome 22 for
lambda light chain and chromosome 14 for the heavy chain)
(McBride et al., 1982a, 1982b), to study low-quality sources,
such as ancient DNA (Razali et al., 2021), and to investigate
extremely rare variants (Sazonovs and Barrett, 2018).

In this review, we present an overview of genotype
imputation, focusing on its application in human genomics,
illustrating the major players of this inferential process,
showing the main methods and approaches to obtain good-
quality and reliable imputed data, and deeply exploring the
main areas of investigation and research. Finally, we preview
the future of genotype imputation, pointing out its major
limitations and the challenges that have been overcome and
that imputation is facing in the genomic big data and next-
generation sequencing era.

A Brief History of Imputation

At present, imputation is becoming a common habit in several
research designs, representing a standard procedure in
different pipelines for genomic analyses. However,
imputation has significantly got far from its original
conception, broadening its scope and applications.

First traces of imputation
The possibility to predict haplotypes and, therefore, alleles of
ungenotyped variant loci arose from the fundamental concept
in genetics that individuals of a given population share the
haplotype stretches that have descended from common
ancestors. This is evident when investigating the
transmission of alleles into families (Malerba et al., 2000).
Siblings share a higher number of identical stretches of
DNA, deriving from parents, than a randomly chosen group
of individuals. Therefore, individuals having a common
ancestor are expected to share haplotype stretches whose
extent depends on the temporal distance (number of
recombination events throughout generations) between the
individuals and the common ancestor.

The idea that individuals share identical genetic stretches
(defined as haplotypes) led researchers to explore and
implement imputation in genetic studies: genetic similarities
among individuals suggested they could share the same
ancestral haplotype and hence this turned out to be effective
in genotype reconstruction of missing genotypes in related
individuals. Since imputation is based on the linkage
disequilibrium structure of a given genomic region, it is
important to phase the alleles at different close variant loci
which is the process of addressing marker alleles to either
maternal or paternal haplotypes. This task can be

challenging in unrelated individuals whereas it could be
easier when performing family-based studies to infer
genotype distribution in pedigrees and test genetic models
of inheritance for traits and diseases (George and Elston,
1987; Fulker et al., 1999).

The theoretical imputation process
The general procedure behind imputation, originally
developed on pedigrees, was based on three main steps: (1)
some samples belonging to the same family were genotyped
on several thousands (or hundreds of thousands) of markers
distributed across the genome, (2) information on the
haplotype to which these markers belonged were arranged
and collected and (3) untyped markers of the remaining
samples (of the same family) were inferred, recognizing the
shared haplotypes with the fully characterized individuals
(Fig. 1). The whole process was entitled “in silico
genotyping” (Burdick et al., 2006), most likely because of its
ability to predict genotypes from missing genetic
information (Fig. 1).

Moving towards unrelated individuals
Sooner, research interest in imputation moved to samples of
unrelated individuals, which mostly build up the core of
case-control studies. Compared to pedigrees, unrelated
individuals did not share long haplotypes (as in the case of
family members), but shorter regions that, in any case,
could still be identical-by-descent, because of the presence
of common ancestors, albeit far distant in time. Because a
direct, informative comparison was not possible, as in the
case of consanguineous individuals, the imputation process
needed to be slightly revised from its original design.
Specifically, (1) a catalog of detailed haplotypes for the
genotyping of many individuals was set (reference panel);
(2) then, phasing of close markers and comparison of
phased haplotypes with the detailed haplotypes of the
reference panel was performed, and (3) finally missing
genotypes were predicted based on the haplotypes of the
reference panel matching the phased haplotypes of the
sample set.

The modern imputation
The analysis of unrelated samples started moving the focus of
imputation from close little groups of related samples, at most
made of tens of individuals (Marchani et al., 2012; Chen et al.,
2013), to higher amounts of individuals, not necessarily
related, and sharing at a certain point similar genetic
information, the so-called reference panel (Browning and
Browning, 2016). The modern imputation finally began.
Today, in the big data and next-generation sequencing era,
genotype imputation relies on enormous reference panels,
made of hundreds of thousands of samples and millions of
genome-wide markers (McCarthy et al., 2016). Since the
reference panels derive from individuals belonging to many
ethnic groups, imputation may be conducted using the
proper reference panels, even though it is not still clear what
is their most effective structure (for example, haplotypes
from the world-wide population or from the population
having the same ethnicity of the tested samples) (Roshyara
et al., 2016; Degenhardt et al., 2019; Kowalski et al., 2019).
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To handle these data, fast and efficient algorithms, as well as
powerful and performant computational resources, are
constantly improved, to keep up with the pace of present-
day needs.

The Imputation Workflow

Genotype imputation can be summarized as a comparative
process between a sample set and a known target set aimed
at filling missing gaps in the sample set using the
information retrieved in the target set. Here, we define as
“sample set” the input dataset, made of individuals who
have been sparsely genotyped along the genome and as
“reference panel” the set of individuals (haplotypes) who
have been assayed at the genome level and are used as the
template to impute retrieved information in the sample set.

General workflow
The sample set is commonly made of tens or hundreds of
individuals who have been genotyped for some thousands of
markers along the whole genome. The reference panel,
instead, is a set of several tens or hundreds of thousands of
individuals who have been genotyped at the genomic level
for several hundreds of thousands or millions of loci. In the
reference panel, the genetic information of all the markers is
well characterized and, for this reason, it acts as the

template for comparisons with the sample set. Indeed, the
typed markers in the sample set are matched with the
markers stored in the reference panel; the aim of this
comparison is to find matches between groups of markers,
the haplotypes. Hence, the matching markers are used as
seeds to reconstruct in every sample of the sample set the
genetic information (or genotypes) of the surrounding
markers.

A new perspective: Probabilistic genotypes
Following the proposed workflow, imputation can infer
intervals of imputed variants surrounded by stretches of
genotyped markers; imputed variants are generated from the
comparison between the sample set and the reference panel.
However, this inference does not generate results having
absolute certainty: imputed markers show a variable level of
uncertainty, depending on several factors (see section
Factors affecting imputation), and for this reason, cannot be
represented as standard genotypes. Indeed, each imputed
marker is reported not as a discrete genotype but as a
genotype probability (GP), that is to say giving two alleles 0
and 1, the probability of an individual in the sample set of
being homozygous for the reference allele (0/0),
heterozygous (0/1), and homozygous for the alternative
allele (1/1). To summarize these probabilistic values,
imputed data are mostly represented in terms of allelic

FIGURE 1. Genotype imputation process. On top (A), two distinct phased haplotypes (Phased Haplotype 1 and Phased Haplotype 2) from a
single individual are reported with missing genetic data. The middle section (B) shows the reference panel, made up of several haplotypes
(colored lines). The phased haplotypes (see A) are compared with each haplotype of the reference panel (see B); genotype imputation
infers the missing regions from the matching haplotypes of the reference panel (see B). Results (C) show the inferred haplotypes. The
first haplotype has been inferred as the product of recombination of the yellow and blue haplotypes of the reference panel; the second
haplotype has been inferred as the product of recombination of the pink, green and red haplotypes of the reference panel. For both
haplotypes, the missing information has been fulfilled with different levels of certainty.
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dosage (DS), a value between 0 and 2; allelic dosage, or dosage,
reports for every marker the number of alternative (or risk)
alleles carried by a single individual in the sample set.
Usually, a dosage equal to 0 corresponds to a probability of
1 of being homozygous for the reference allele, a dosage
equal to 1 to a probability of 1 of being heterozygous and a
dosage of 2 of being homozygous for the alternative alleles.
Because the allelic dosage is a continuous value, all the
possible values between 0 and 2 represent a probability of
being closer to one of the three playing genotypes.

Tools for Imputation

The advent of genotype imputation boosted an immediate
development of a great variety of tools and methodologies,
to facilitate the management if the increasing computational
load. Imputation software was initially clustered into two
main categories (Li et al., 2009): computationally intensive,
like IMPUTE (Marchini et al., 2007; Howie et al., 2009) and
MACH (Scott et al., 2007), which took into account every
genotyped marker when imputing each missing genotypes
and computationally efficient, like PLINK (Purcell et al.,
2007; Chang et al., 2015) and BEAGLE (Browning and
Browning, 2007), which focused on neighboring markers
when imputing each missing genotypes.

So far, among the many methods which have been
developed to achieve good imputation results, the
implementation based on Hidden Markov Models (HMMs,
Stephens and Donnelly, 2000) outperforms all the other
approaches. Most, if not all, of current imputation methods,
rely on HMMs: despite the different algorithmic
implementations, most imputation software shows similar
performances (Marchini and Howie, 2010). The main
features which mostly differentiate imputation methods
regard the way to handle the reference panels and data
storage compression, the input data and the computed
output values, and method-specific implementations, like
the ability to perform phasing and imputation in one or two
steps and the possibility to tweak parameters and set
exclusion criteria (Spencer et al., 2009).

Present-day imputation approaches
The first software implementations were extremely intensive
and required a huge amount of computational power,
memory, and data storage. During the past years, the
methods underwent considerable improvements, becoming
faster, more efficient, and more effective in every step of the
genotype imputation procedure. Today, software
implementation allows to impute not only bi-allelic SNPs
but also multi-allelic variants (either SNPs or small
INDELs); recent studies pointed out that all previously
developed tools performed well on bi-allelic variants, but
only new generation tools can handle multi-allelic variants,
producing reliable results (Hanks et al., 2022). Indeed,
current genotype imputation software is mostly categorized
into two significantly different methods: population-based
imputation (PBI) and family-based imputation (FBI) (Liu et
al., 2019). The PBI methods are the most used and well-
established approaches for genotype imputation; they
usually rely on a reference panel of unrelated samples and

make use of linkage disequilibrium and correlation between
close SNPs of a specific population to predict ungenotyped
markers. On the other hand, FBI methods are used to infer
genotypes of related individuals; they rely on familial
information, such as pedigrees and identity by descent, to
reconstruct allelic phases and infer unobserved genotypes
(Saad and Wijsman, 2014a). Different studies investigated
the strengths and weaknesses of these methods (Saad and
Wijsman, 2014b; Liu et al., 2019; Ullah et al., 2019). PBI
showed to be particularly suitable for the investigation of
common variants (frequency greater than 5%), having a
higher imputation accuracy when the investigated sample
set is closely related to the population of the reference panel;
moreover, the size of the reference panel showed to increase
imputation accuracy for rarer variants (frequency lower
than 5%), probably due to their higher frequencies in a
larger dataset. On the contrary, FBI methods are widely
used for the imputation of rare variants, due to their
increased frequencies in small and inbred populations, such
as in families, but seemed to perform poorly on common
variants; however, the use of study-specific reference panel
seems to increase imputation accuracy for common variants,
probably due to higher precision in the haplotypes of local
reference samples (Liu et al., 2019; Whalen et al., 2019). For
all these reasons, hybrid approaches have been explored (Liu
et al., 2013; Kreiner-Møller et al., 2015; Lent et al., 2016), to
make good use of the advantages of the two strategies,
showing a considerable increase in genotype imputation
performance (Ullah et al., 2019). Of note, nowadays most
used and standard software are Beagle 5.4 (Browning et al.,
2018, 2021), Eagle 2.4.1 (Loh et al., 2016, 2016) and
SHAPEIT4 (Delaneau et al., 2019) for phasing and Beagle
5.4 (Browning et al., 2018, 2021), IMPUTE5 (Rubinacci et
al., 2020) and Minimac4 (Das et al., 2016) for population-
based imputation, and GIGI (Cheung et al., 2013), Merlin
(Burdick et al., 2006) and cnF2freq (Nettelblad, 2012) for
family-based imputation. In the end, the most promising
hybrid approaches, taking advantage of both PBI and FBI
methods, are Fimpute (Sargolzaei et al., 2014), and the
combination of IMPUTE2 with Merlin (Liu et al., 2019) and
GIGI with Beagle (Saad and Wijsman, 2014a).

Online platform for imputation
The constant increase of computational load, mostly related to
the number of input markers and samples and the size of the
reference panels, pointed out the need for powerful
infrastructure to perform heavy computational tasks. Two
free next-generation genotype imputation servers have been
developed, respectively the Michigan Imputation Server and
the TOPMed Imputation Server (Das et al., 2016). The
platforms consist of a user-friendly interface in which the
user, upon registration, can input their sample data (as a
gzipped variant call format, one for each chromosome),
setting the desired parameters like choosing standard
reference panels (such as the 1000 Genomes Project phase 3,
the Haplotype Reference Consortium panel and the
TOPMed r2 panel; see section Reference panels) and an
optional subpopulation, quality filtering to apply on the
imputed data (see section Quality filtering for good
imputation results), and finally choosing to perform phasing,
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imputation or both the two procedures sequentially. Both
Michigan and the TOPMed Imputation Servers use Eagle
2.4 and Minimac4 to perform phasing and imputation,
respectively. Although the combination of Eagle 2.4 and
Minimac4 was assayed as one of the slowest approaches
when compared to other software (such as Beagle 5), it
turned out to be the most efficient in terms of
computational resources for every size of the input sample
set (Browning et al., 2018), representing the most suitable
solution for online queued platforms.

The computational load of imputation
In general, genotype imputation requires high amounts of
time and resources. State-of-the-art tools and algorithms
have boosted performances, not only in managing big data
but also in lowering the running time and computational
load. Moreover, computation time and sample size are
indirectly related: per-sample running time to perform
imputation increases together with the decrease in sample
size. This counterintuitive procedure is related to the fixed
computational cost of reading the reference panel, which is
shared among all the samples (Browning et al., 2018). Thus,
the imputation procedure focuses on groups rather than on
single individuals; this overview is confirmed not only from
a constitutive perspective (that is, the need to have a group
of individuals in both the sample and the reference panels,
to clarify as much as possible the frequencies of the
haplotypes in the working dataset), but also from a
computational perspective.

In the last couple of years, with the advent of cloud
computing services (such as Amazon Web Services,
Microsoft Azure, or Google Cloud), imputation pipelines
started to be optimized on pre-defined and suited virtual
machines, in order to dramatically reduce the cost of
imputation: a recent study pointed out the possibility to
perform imputation at a cost lower than 1 U.S. cent per
sample (Browning et al., 2018). The fact that imputation has
been implemented in the context of a global computation
indicates how much it is a fundamental tool in the most
current frontier research.

Reference Panels

Beyond the imputation software used, another key player is
the reference panel. The reference panel was originally
defined as a collection of individuals typed at a dense set of
SNPs (Li et al., 2009). With the advancements in genotyping
and sequencing technologies, it has been possible to type
several hundreds of thousands of individuals for hundreds
of thousands or millions of genetic loci at the genome-wide
level that can be included in the reference panels (Fig. 2).

A brief history of reference panels
Historically, the first reference panels for genotype imputation
came from international consortia: the International HapMap
project and the 1000 Genomes Project. Both projects aimed to
characterize the genetic variability of human populations.

FIGURE 2. The most relevant reference panels for the imputation of human populations. The picture shows the relevant features (number of
markers, samples, and ethnicity), and the year of release of the most important reference panels for genome-wide imputation of human
samples. The blue box reports the worldwide human population samples included into the different panels.
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The main differences among them were the number of
samples and genetic markers available as well as the number
of represented human populations and ethnicities. In
chronological order, the first two panels were the HapMap
phase I (International HapMap Consortium, 2005) and
phase II (International HapMap Consortium et al., 2007)
which comprised 269 samples across four populations
(Yoruba in Ibadan, Japanese in Tokyo, Han Chinese in
Beijing and U.S. Utah residence with northern and western
Europe ancestry) on 1 and 3 million of SNPs, respectively.
With the spreading of first- and second-generation
sequencing technologies, the 1000 Genomes Project (1000
Genomes Project Consortium et al., 2010) came to light
with its phase I (1000 Genomes Project Consortium et al.,
2012) and phase III (1000 Genomes Project Consortium et
al., 2015) panels, comprising 2504 individuals from 26
populations for over 88 million variants. In 2016, the 1000
Genomes Project established itself as the standard resource
for genomic analysis, superseding the HapMap panels.
However, in the last five years, alternative and more
powerful resources have been developed: a clear example is
the Trans-Omics for Precision Medicine (TOPMed)
reference panel (Das et al., 2016), made of around 180
thousand sequenced individuals (60% of non-European
ancestry) from more than 85 different studies for a total of
308 million variants (version r2).

Populations in the reference panels
One of the main features and concerns regarding the reference
panels is the structure of populations and/or subpopulations
included in the reference panel. The presence of a reference
panel equipped with a reliable reference population, having
a high number of markers and individuals (and hence, a
good picture of the most common haplotypes across the
population), is a fundamental step for good quality
imputation results (see section Factors affecting imputation).
During the comparison of samples of both unphased sample
set and reference panel, genotype imputation can lead to
stronger results when the two sets are highly similar (i.e.,
having a similar haplotype structure); on the contrary, when
the genetic background of the sample and reference sets is
quite distant, imputation is committed to a dramatical
increasing of false and/or weak signals. As a rule, in order to
increase the accuracy of imputation calls, a consensus
between the ancestries of the sample and reference sets is
fundamental (de Marino et al., 2022), but a suitable
reference panel is not always available. Indeed, recent
studies, which focused on sample sets of mixed ancestries or
low-represented subpopulations, pointed out the limits of
present-day reference panels. For this reason, several
researchers (Kowalski et al., 2019; O’Connell et al., 2021)
tried to manage this issue by setting reference panels
including individuals from different populations to ideally
mimic the ancestries of the mixed populations. As a result,
careful study designs together with a combination of
reference populations from different ancestries seemed to be
one of the most feasible approaches to overcome the bias of
low-represented populations.

Factors Affecting Imputation

The probabilistic nature of genotype imputation does not
permit to have absolute certainty of imputed calls. Studies
on genotype imputation all agreed on several factors
affecting imputation quality and results (Johnson et al.,
2013; Khankhanian et al., 2015; Shi et al., 2018; Geibel et al.,
2021a; Zhang et al., 2021). The most known causes are due
to the technology used for sample genotyping, the number
of markers and the minor allele frequency (MAF) values in
either the sample set or the reference panel and the selected
reference population.

Genotyping platforms
Genotyping technology (arrays or sequencing) plays a crucial
role in imputation performances. Since each genotyping
platform spans differently along the genome, it also
determines the different sets of markers that would be
inferred by the imputation process. The technology impacts
the number of variant sites that can be tested (Hanks et al.,
2022). Moreover, not only the sample set but also the
reference panels are affected by the genotyping techniques.
Depending on how the reference panel has been generated
(setup of variant sites included), imputation might achieve
different results (i.e., only the variant sites present in the
reference panel can undergo imputation). Panels of
hundreds of thousands of markers widespread throughout
the genome and representing different genomic locations
(for example, regions having different genomic complexity)
positively affect imputation, guaranteeing good-quality
results. On the contrary, panels having low SNP density or a
small population size would negatively impact imputation
results (Das et al., 2018).

Minor allele frequencies
Imputation is also influenced by minor allele frequencies (the
allele at a variant site having the lower frequency). Common
variants (>5%), which are usually well represented across
reference panels and present enough in sample sets, are
smoother to impute than rarer variants. Moreover,
imputation of low frequency (1%–5%) and rare (<1%)
variants faces several limitations (Yu et al., 2022).
Imputation can just infer known genetic information, which
is stored in the reference panel; low-frequent to ultrarare
(<0.1%) variants are usually not much represented in
reference panels and, for this reason, would be inferred with
low probabilities, resulting in unreliable calls (Zhang et al.,
2021). Rare variants are in strict dependency on the chosen
reference population: rare allelic frequencies are most of the
time specific to a precise population, and the usage of a
population not too close to the sample set may trigger a
huge number of false positives (Hanks et al., 2022).
However, several approaches have been developed to
increase imputation accuracy for rarer variants, such as
using imputation methods that combine population-based
and family-based approaches (see section Present-day
imputation approaches) and the usage of specific reference
panels (see section Reference populations).
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Reference populations
Despite the need for a reference panel, reference populations
can backfire on imputed results. The choice of an accurate
and sample-specific reference panel is crucial to ensure good
quality results. However, a perfect match between sampled
and reference individuals is only theoretically possible due
to the large number of admixed samples in modern-day
human populations (Hanks et al., 2022). Thus, the lower
amount of matches between samples and reference set may
increase the levels of uncertainty in imputed genotype calls,
prominently for admixed populations. However, the
application of state-of-the-art methodologies, together with
a fine phasing of genetic data and a deeper analysis of the
genetic background of samples, may mitigate population
biases, generating reliable imputed results (de Marino et al.,
2022). Several studies (Lin et al., 2018; Vergara et al., 2018;
Bai et al., 2019) have investigated how imputation accuracy
is affected by the presence of different human populations
in the reference panel when analyzing underrepresented
ethnic groups. The increasing distance between the sample
set and the reference population negatively affects the
imputation accuracy of common (>5%) and low-frequent
variants (>1%); however, a small fraction of diversity in the
reference panel seems to improve imputation performance
in rare variants (<1%): examples have been reported for
Han Chinese (Bai et al., 2019), Hawaiians (Lin et al., 2020),
Turkish (Kars et al., 2021) and Latin Americans (Jiménez-
Kaufmann et al., 2022). Nevertheless, genotype imputation
of non-European samples still represents a challenging task,
due to the predominance of European samples in most
reference panels. To answer this need, several research
projects started developing reference panels tailored to
underrepresented populations: notable examples are the
CAAPA reference panel for African Americans (O’Connell
et al., 2021) (developed by the homonymous Consortium on
Asthma among African-ancestry Populations in the
Americas) (Mathias et al., 2016), the GAsP reference panel
for Asian (GenomeAsia100K Consortium, 2019) (developed
by the homonymous Genome Asia Pilot project together
with the GenomeAsia 100K Project) and the ChinaMAP for
Chinese (Li et al., 2021).

Finer factors affecting imputation
Other than the main factors affecting imputation quality,
researchers identified finer and more specific parameters
that need to be considered as a source of unreliable results:
recombination rate, GC content, the distance between
genotyped markers, the presence of structural variants and
segmental duplications. Among these factors, a higher
recombination rate, a lower GC content, the presence of
structural variants, and segmental duplications have been
found to be associated with lower-quality imputation results
(Hanks et al., 2022), showing consistency and persistency
across every method.

Quality Filtering for Good Imputation Results

In order to overcome spurious results and obtain good quality
imputed data, several filtering thresholds for pre-imputation
and post-imputation quality controls are commonly applied.

Pre-imputation filtering
Before imputation, genotyped samples undergo several
exclusion criteria (Li et al., 2009; de Marino et al., 2022;
Hanks et al., 2022) to remove individuals having low call
rates (<95%) and high missingness (>2%), significantly
deviating from the Hardy-Weinberg Equilibrium (p-value <
10e-6) and duplicates. Moreover, allele labeling (reporting
allele names referring to the same DNA strand for all the
variant sites and all the sample sets, including the reference
panel) between sampled markers and reference panel is
checked, to avoid any comparison mistake, the harbinger of
unreal mismatches or wrong strand reading (as for the
markers where the two alleles are either A and T or C and
G). In the end, samples are analyzed for their genetic
background. Individuals are assayed through principal
component analysis (PCA) for their genetic origins, to
investigate the real ancestral background and to choose the
most suitable reference panel for imputation.

Post-imputation filtering
To assay imputation quality and reliability, it is necessary to
perform post-imputation quality control. Three main
methods have been developed to assess imputation
outcomes: concordance between genotypes, imputation
quality score (IQS) and correlation between best-guessed
genotypes (defined as R-squared or R2).

Assessing concordance between real and imputed
genotypes represents a method to determine imputation
quality. For every marker, genotype imputation infers a
probabilistic value (in terms of genotype probabilities or
alternative allele dosage), representing the probability of a
genotype of being homozygous for the reference (0/0) or the
alternative (1/1) allele or heterozygous (0/1). The
approximation of genotype probabilities to a discrete
genotypic value is far to be reliable and may lead to a higher
level of wrong calls. Indeed, such an approximative method
was previously tested (Abo et al., 2012) and benchmarked
(Marchini and Howie, 2010) in early imputation studies, but
was soon abandoned in favor of more functional metrics
(de Marino et al., 2022).

Rather than approximating the probabilistic information
to discrete genotypes, a more reliable way to evaluate
imputation is to look at genotype probabilities directly. The
first metric which was developed (Lin et al., 2010) was the
imputation quality score (IQS). IQS discriminates between
well-imputed and poorly imputed SNPs based on the
genotype posterior probabilities. This metric compares the
proportion of agreement between the haplotype-based and
randomly imputed genotypes, weighted by the allelic
frequencies of the imputed marker. Early usage of this
metric showed remarkable improvement compared to the
evaluation of the concordance approach (reported above),
but since it is strongly dependent on allele frequency values,
it is not suitable for rare variant sites.

Thus, the latest developed and most used metric is the R-
squared (R2), defined as the correlation between the variance
of the marker estimated from the counts of individual
imputed alleles for every sample and the expected variance
estimated from the overall allele frequencies. Hence, R2 is
generally expressed as the ratio between the variance of the
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imputed alleles probabilities divided by the variance of the
same alleles if they were perfectly imputed. In detail, R2 has
been conceived in at least two different ways. Methods like
MACH and Minimac express R2 values as the best
approximation between the observed dosage variants on the
expected dosage variants; instead, methods like Beagle and
IMPUTE calculate the R2 values as the best approximation
between the most likely genotype and the true unobserved
expected allelic dosage (Chanda et al., 2012; Ramnarine et
al., 2015).

The Current Applications

Since its very first usage on pedigrees inference and resolution
(George and Elston, 1987), genotype imputation has become a
standard procedure for downstream analysis pipelines in
routinary genomic studies. In the last decades, genotype
imputation usage had exponential growth, thanks to both
numerous advancements in genotyping and sequencing
technologies together with the improvement in algorithms
and methods, the empowerment of computational
infrastructures, and the public availability of genetic and
genomic data. Furthermore, imputation helped discover a
new power in genotyped data, enriching their genetic
information from their missingness. For all these reasons,
genotype imputation is continuously applied to different
genomic branches, such as data enrichment for genome-wide
association studies, research harmonization and meta-
analysis, analysis of regions of great complexity (such as
MHC and HLA) or markers with rare or ultra-rare allelic
frequencies. Indeed, recent studies pointed out the potential
of genotype imputation in low coverage whole-genome
sequencing (lcWGS) data, to confirm or discover rare and
ultra-rare variants but also to provide insights on our genetic
history, with the most recent application on ancient DNA
(aDNA).

A Successful Combination: Genome-Wide Association
Studies Empowered by Imputed Data

Genome-wide association studies are one of the most powerful
techniques adopted to increase the chances of discovering novel
variants and associated genes for a wide variety of traits and
diseases. A large number of individuals are genotyped at a
great number of polymorphic sites (ideally all the
polymorphic sites of the human genome; realistically for
hundreds of thousands or a few million markers), and then
every locus is tested individually for the association within
the trait under investigation. When, for a given polymorphic
site, an allele is observed to be more common in affected
individuals than in healthy individuals, the allele is reported
as associated with the investigated trait or disease. This kind
of analysis can be conducted at the allele or genotype level by
testing for the association on all the sampled polymorphic
sites (Fig. 3).

Data sampling: DNA samples and phenotypes are
collected according to different designs.

Genotyping: samples are genotyped using either
genotyping arrays or next-generation sequencing

technologies (WGS: whole-genome sequencing; WES:
whole-exome sequencing).

Data quality control: quality controls aim to filter out
genotypes that do not meet the inclusion criteria, to not
hamper imputation quality.

Haplotype phasing and imputation: unphased genotypes
(GT) are compared to the known haplotypes of the reference
panel, to infer the underlying haplotypes and therefore
missing information; imputed data (Imputation output) show
the phased genotypes (GT) together with the probabilistic
representations in term of allelic dosage (DS) and genotype
probabilities (GP), estimated by the comparison of the
unphased genotypes and the reference haplotypes.

Data quality control: low-quality imputed data are
filtered out (Final imputation output).

Association tests: final output undergoes association
analysis for the investigated phenotype (GWAS) (Turner,
2018).

Imputation and genomic scans
For several years, GWASs based solely on genotyped samples
which were at most assayed for tens of thousands of markers, a
small portion if compared to our genome. The increasing
interest in genotype imputation and the early work on
related and unrelated individuals showed researchers that
combining the discovery potential of GWAS together with
the ability of imputation to infer genetic data from missing
information would have led to an increase in the statistical
power of genomic scans (Quick et al., 2020). Early evidence
of this successful combination was pointed out in diseases,
such as type 2 diabetes in the Finnish population (Scott et
al., 2007) and familial cases affected by multiple sclerosis
(Dyment et al., 2008), and in complex traits (Newton-Cheh
et al., 2009), identifying novel loci explaining genetic
susceptibility, risk, or sample variance.

The possibility of combining genetic information coming
from genotyping techniques together with probabilistic inferred
data, immediately revealed the strengths and weaknesses of this
approach. On the one hand, enriching typed data for a great
number of markers that have not been previously genotyped
allowed to reach reliable association signals and to confirm
previously reported evidence, as for psoriasis (Nair et al.,
2009) but also to identify novel loci of understudied diseases,
as for eosinophilic granulomatosis with polyangiitis (Lyons et
al., 2019). However, on the other hand, the methods available
to study genetic signals did not support the probabilistic
perspective generated in the imputation process.
Approximating genotype probabilities or allelic dosages to
genotype was firmly discouraged (Li et al., 2009), and for this
reason, novel methodologies had to be developed.

Tools to study associations on imputed data
To overcome this initial bias in managing different
representations of genetic data, several models that were able
to account for probabilities and to handle uncertainty were
implemented and integrated into association pipelines
(Marchini and Howie, 2010). One of the first developed and
probably most used models is the frequentist model. This
model compares for every SNP a pre-determined model of
association (such as additive, dominant, recessive, and others)
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against a model of no association, considering the genetic
information as a likelihood probability. The frequentist model
was immediately implemented since the earliest snptest release
(Marchini et al., 2007; Wellcome Trust Case Control
Consortium, 2007). However, the model faced immediate
problems regarding spurious results, mostly due to small
sample sizes, low allelic frequencies, and high levels of
uncertainty in imputation calls (Lu et al., 2010). Novel
approaches were developed to overcome these issues, mostly
based on the Bayesian statistical method (Stephens and
Balding, 2009). As for the frequentist model, Bayesian methods
as well compare a model of association against a model of no
association but implement a more complex and parametrized
modeling. Despite the similarities and differences between
these two approaches, genetic data which underwent
imputation had to be considered as probabilistic, either in
terms of genotype probabilities or allelic dosage, to ensure
robust and unbiased association signals as demonstrated in
several studies spanning from computational benchmarking
(Song et al., 2018; Jørsboe and Albrechtsen, 2022) to genomic
analyses investigating either disorder (Vissers et al., 2019) or
traits (Tan et al., 2019).

Study Harmonization and Meta-Analysis

The ability of genotype imputation to infer genetic data from
missing values in the sample set turned out to be fundamental

for the study combination. Cohorts from different research
projects are rarely genotyped or sequenced with the same
technologies and instruments. Thus, the absence of markers
between two or more studies is a standard event, which
happens because of the great variety of approaches and
methodologies currently available. Moreover, a meta-analysis
of genomic studies may reveal important outcomes,
particularly related to complex traits and diseases. For
example, a study on sepsis (Hernandez-Beeftink et al., 2022)
conducted on more than six hundred samples from the GEN-
SEP network (Guillen-Guio et al., 2020) was able to enrich its
sampled dataset to over 7 million SNPs and combining it to
thousands of individuals from the MESSI (Reilly et al., 2018);
as a result, the study identified three independent low-
frequency variants associated with reduced 28-day sepsis
survival. A good example of data integration guided by
genotype imputation is represented by research consortia.
Consortia aims in integrating multiple results to empower
research on a particular topic or phenotypes, as in the case of
the CKDGen Consortium, an international collaboration for
the genetic investigation of kidney functions in health and
disease. In a study on chronic kidney disease (CKD) in
children (Wuttke et al., 2016), they successfully integrated
three pediatric CKD cohorts (Furth et al., 2006; ESCAPE Trial
Group et al., 2009; Querfeld et al., 2010) and identified ten
regions associated with creatinine clearance (GFRcrea), four
regions with proteinuria and six regions with CKD.

FIGURE 3. Genotype imputation in a genome-wide association study (GWAS) workflow.

A BROAD OVERVIEW OF GENOTYPE IMPUTATION 1233



Imputation of Highly Polymorphic Regions: The Example
of the Major Histocompatibility Complex Region

The human major histocompatibility complex (MHC) region
is also known as the human leukocyte antigen (HLA)
complex. It maps on the short arm of chromosome 6
(6p21.3) (Choo, 2007; Douillard et al., 2021), and it is
known to be the most gene-dense region along the human
genome (~260 genes in ~4 Mb of length) (Trowsdale and
Knight, 2013; Kennedy et al., 2017). The MHC genes can be
classified into three different groups by sequence similarity
and function: MHC class I, class II, and class III (Choo,
2007; Douillard et al., 2021).

A summary of the human leukocyte antigen region
The HLA complex presents the highest level of
polymorphisms in human genomes (Choo, 2007). The high
number of polymorphisms belonging to this region makes
its genotyping quite challenging because of the continuous
discoveries of new HLA alleles (Stefani et al., 2022; Naito
and Okada, 2022).

All known HLA alleles are reported in the IPD-
IMGT/HLA database (Robinson et al., 2013); so far, HLA-A
and HLA-C present more than 4000 known alleles each,
and HLA-B reports over 5000 different alleles (according to
the IPD-IMGT/HLA database release 3.50). Therefore, many
of these alleles have a very low frequency in the worldwide
population (Cook et al., 2021). It is noteworthy that the
complexity of the HLA region depends on the huge number
of variants mapping in the regions and that the variants
sites might have multiple complex alleles (indels and/or
more than one single nucleotide).

Thanks to several bioinformatic strategies, it was possible
to investigate short genomic sequences coming from whole
genome sequencing (WGS) or whole exome sequencing
(WES), pointing out the different HLA types (Erlich, 2015).
The knowledge of HLA variants and alleles makes it
possible to infer HLA patterns. However, the standard
WGS-based imputation estimates missing genotypes of the
HLA region inaccurately (Uffelmann et al., 2021).

Association studies on the major histocompatibility complex/
human leukocyte antigen region
With the advent of the Human Genome Project (Collins and
Fink, 1995), the MHC region started to be unraveled, stating
its complexity (Meyer and Nunes, 2017; Kennedy et al.,
2017). Many GWAS for complex traits, such as
cardiovascular, metabolic, and neurological diseases, have
reported several associations with markers of the MHC
region (Kennedy et al., 2017; Naito and Okada, 2022).

The extreme complexity of this region always makes
imputation quite difficult (Uffelmann et al., 2021). Due to
the high levels of linkage disequilibrium (several extended
haplogroups have been identified) and the great number of
polymorphisms, it is important that the imputation process
can use a good reference panel containing as many
haplotypes as possible (Erlich, 2015; Meyer and Nunes,
2017; Cook et al., 2021).

Imputation of the major histocompatibility complex/human
leukocyte antigen region
One of the major challenges to successfully performing
genotype imputation in this complex region is to find a
good and detailed reference panel. Thus, panels specific to
the MHC/HLA region need to be accurately fine-mapped
and comprise as many samples as possible, to overcome the
enormous number of polymorphisms (Cook et al., 2021).
When using sequencing, reliable imputation of the HLA
region does need high read (short sequences) coverage and
depth to call all the variability of the HLA region (Douillard
et al., 2021).

Tools for imputation of the human leukocyte antigen complex
Several tools for imputation on HLA can infer missing HLA
genotypes based on reference datasets and/or individual
SNPs (Douillard et al., 2021).

Over the years, many imputation algorithms able to
tackle LD features of the MHC region were developed
(Meyer and Nunes, 2017; Naito and Okada, 2022). All the
algorithms for HLA imputation are based on probabilistic
approaches. The most known and used are HLA*IMP
(Dilthey et al., 2011), specific to the European population,
which was subsequently improved in HLA*IMP:02 (Dilthey
et al., 2013), able to handle multiple populations; indeed,
SNP2HLA (Jia et al., 2013), based on Beagle, was
implemented to impute not only the HLA-specific alleles
but also the related aminoacidic sequence; finally,
CookHLA (Cook et al., 2021) improved SNP2HLA
algorithm, accounting better for linkage disequilibrium.
Due to the complexity of studying HLA regions with
imputed data, researchers developed HLA-TAPAS (Luo
et al., 2021), a three-in-one solution for reference panel
construction, imputation, and association studies on HLA
genetic data.

A reference panel for human leukocyte antigen imputation
As for all the genome regions and populations, imputation
accuracy is influenced by the choice of the reference panel.
At first, the HLA-specific reference panel was built for a
single ancestry, considering the haplotype structures (due to
the linkage disequilibrium in the region) of the European
population (Dilthey et al., 2011). Moreover, the advent of
NGS technologies boosted the construction of larger HLA-
specific reference panels, leading to a more accurate
investigation between HLA genotypes and diseases (Naito
and Okada, 2022). Most recent research suggested that
using multi-ethnic reference panels (Luo et al., 2021) could
guarantee a more accurate genotype imputation (Meyer and
Nunes, 2017; Douillard et al., 2021; Naito and Okada, 2022).
A multi-ethnic reference panel was built from a high-
coverage WGS dataset (Luo et al., 2021) and made available
on the Michigan Imputation Server, together with an
optimized procedure for HLA imputation. However, the
accuracy and the sensitivity of the method are a major
concern, as mixed populations can still lead to inaccurate
results even if better than the ones using the standard
reference panels (Douillard et al., 2021).
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Imputation of Low-Coverage Sequencing Regions

In the last two decades, a number of different genotyping
arrays, based on different sets of polymorphic sites, have
been used for several investigations, including the
assessment of genetic distance (i.e., similarity studies)
between individuals or populations, and GWAS for complex
traits. It is known that when polymorphic site data are not
obtained from a random sample of polymorphisms, the
results of genetic studies can be distorted because of
ascertainment biases (Geibel et al., 2021b). In this regard,
genotype imputation improves the statistical power of
GWAS (Das et al., 2018, Geibel et al., 2021a).

Compared to the whole set of possible detectable
genotypes in the genome, the arrays can assay only a
relatively small subset of pre-selected and fixed polymorphic
sites, allowing the calling of low-density array-based
genotypes.

With the emerging genotyping-by-sequencing
technology, marker discovery and genotyping occur
simultaneously, resulting in minimal ascertainment bias and
therefore improving the accuracy of the genetic studies (i.e.,
genetic-based similarity, genotype imputation, and
association studies) (Heslot et al., 2013).

However, despite the advancements in sequencing
technologies and platforms, a whole genome sequencing-
based study on several thousands of samples is still
prohibitively expensive for many laboratories. In general,
genotype imputation is used together with very large
reference panels to increase the number of accurately
imputed variants. To carry out a quality imputation, it is
necessary to have certain attention, according to the cases
under investigation. It may be possible that no large
reference panels exist for the studied population or that the
reference panel contains a too small number of individuals.

It has been suggested that to improve the accuracy of
imputation on small sample sets of individuals and on low-
frequency variants, it is crucial to maximize the genetics
similarity between the sample set and the reference panel
and to include in the reference panel as many polymorphic
sites as possible (Korkuć et al., 2019). Moreover, in smaller
populations, determining the optimal imputation strategy
would be extremely challenging when high-density
genotypes are not available. In non-human populations (for
instance, cattle or poultry), one of the most used strategies
is to sequence a subset of a population that is employed as
the reference panel to perform genotype imputation with
high accuracy (Jiang et al., 2022). Of note, according to the
context, the parameters of the imputation software must be
carefully fine-tuned, and the metrics to assess imputation
quality (either in terms of reliability or accuracy) must be
interpreted with caution, specifically if the genetic distance
between the sample set and reference population is elevated
(Roshyara and Scholz, 2015).

As a rule, it is recommended to use a large reference
panel (better if individuals present a very small genetic
distance from individuals of the investigated population) or,
if not possible, to use genetically best-matched reference
panels in which the individuals are of the same ethnicity of
the individuals of the studied population. Larger reference

panels are associated with higher computational costs and
longer computation times for phasing and imputation. The
need for new and more efficient software is therefore very
compelling in this field today.

Although it may sound bizarre, imputation can be used
not only within genotyping array-based studies but also in
sequencing-based association studies. Among the various
possible employment in the context of sequencing, it has
been shown that imputation can be a very useful tool in the
sequencing of low-coverage genomes and in the case of off-
target regions from exome sequencing. Imputation was
reported to be an efficient tool on extremely low-coverage
sequencing (0.1–0.5x) data to capture almost as much of the
common (>5%) and low-frequency (1%–5%) variation
across the genome with results that are very similar to the
ones from classical SNP arrays, in many different ethnic
groups (Pasaniuc et al., 2012). In this context, it was also
shown that imputation can be used to impute variants
mapping in the off-target regions of exome sequencing to
some extent to the whole genome. Indeed, imputation on
exome sequencing data is still under investigation; the first
evidence showed that regions with ~3000 rare and common
variants per 1 megabase, result in good quality imputed
data. More interestingly, low coverage WGS (lcWGS)
appears now to be an alternative technology to genotyping
arrays for common genetic variant assessment in the context
of genome-wide polygenic scores (PGS) calculation
(Homburger et al., 2019). Indeed, lcWGS proved to have
brilliant performance in imputation results and accuracy,
showing comparable capabilities to genotyping array and
overcoming ascertainment bias inherent to the variant
selection of genotype array.

Imputation of Ancient DNA

In the last decade, genotype imputation was employed in
ancient DNA (aDNA) investigation (Genome of the
Netherlands Consortium, 2014). The ability of genotype
imputation to infer and reconstruct genotypes of sampled
individuals seemed particularly suitable for ancient samples.
Indeed, DNA from ancient samples is totally subjected to
degradation processes, including cross-linking, deamination,
and fragmentation, which may lead to several difficulties in
extraction, sequencing, and clear genotyping results
(Allentoft et al., 2012). Although genotype imputation is
capable of enriching samples with novel imputed variants,
the technical difficulties in obtaining clear genetic signals as
well as the unavailability of a specific reference panel for an
ancient human genome, challenged modern methodologies
and techniques. Due to the great uncertainty that aDNA
analyses constantly face, new strategies seemed necessary.
Low-coverage ancient DNA sequencing seemed to mitigate
the quality issues of ancient samples; thus, it was a suitable
method to deal with the probabilistic representation of
genotypes, the core of the imputation process (Ausmees et
al., 2022).

To achieve good quality results, the great majority of
research on aDNA made use of low coverage (2X) and
ultra-low coverage (0.5X–1X) genotyping and sequencing
strategies combined with phasing and genotype imputation
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methods (Pasaniuc et al., 2012), particularly using Beagle4 and
Beagle5 (Hui et al., 2020). This combination of techniques
turned out to be particularly successful, confirming genomic
shifts and fluxes across ages in Hungarian samples from the
Neolithic, Copper, Bronze, and Iron Ages (Gamba et al.,
2014) and investigating ancient population substructures in
the Portuguese population from the Neolithic to the Bronze
Age (Martiniano et al., 2017).

Furthermore, several strategies were implemented to
overcome reference bias. The absence of an ancient
reference panel, whose development has become of great
interest in the most recent research (Ausmees et al., 2022;
Biddanda et al., 2022), forced the usage of reference panels
made of modern-day samples. A two-step strategy was
implemented on a modern reference panel using Beagle
software, which demonstrated to achieve good results of
imputation on low-coverage samples (Hui et al., 2020). This
two-step procedure works as follow: (1) imputation is
performed on a reference panel as similar as possible to the
sample set, in term of genetic background and admixture; in
this first step, the size of the reference panel is not taken
into account; then, (2) the computed genotype likelihoods
are added to the sample set and compared to a larger
worldwide reference panel. Applications of the approach
have been demonstrated to be successful, for example, in the
fine estimation of Iberian population ancestries (Villalba-
Mouco et al., 2019).

Past Achievements and Future Challenges

Genotype imputation is becoming increasingly common in
genomic research, being nowadays part of the standard
pipelines for genome-wide association studies. Since the
very first approach of imputation to genetic data, several
applications have been hypothesized, and numerous
questions and challenges have arisen. No more than fifteen
years ago, the imputation of HLA regions or the
development of large reference panels constituted enormous
limitations that may have stopped researchers from using
genotype imputation in the genomic investigation.

Thanks to the advancements in genotyping and
sequencing techniques as well as in computational
implementation, imputation has become capable of
combining cohorts to deeply investigate traits and diseases
through the usage of meta-analysis and empowering
genome-wide association studies by enriching samples with
new untyped markers to discover newly associated variants
and genes involved in traits and diseases.

Furthermore, the decreasing genotyping and sequencing
costs permitted the genotyping of several hundreds of
thousands of either markers or individuals. This enormous
boost in the amount of genetic data enabled researchers to
build up a larger reference panel, which could represent
world-wide populations and carry information on both
common and rare variants. However, population and
subpopulation representation remain biased, particularly in
terms of low-represented ancestries and ultra-rare variants,
which may be of crucial relevance for determining risks
related to modern-day diseases and for modeling polygenic
risk scores. To overcome reference limitations, several recent

studies proposed the combination of low-coverage whole
genome sequencing and imputation and the integration of
imputed samples into reference panels to lower per-sample
costs and generate more specific and performant reference
panels.

A powerful example of genotype imputation procedures
is represented by the online next-generation imputation
platforms, the Michigan Imputation Server and the
TOPMed Imputation Server. These platforms allow
standardization of phasing and genotype imputation
processes, providing state-of-the-art tools and curated
reference panels to answer either average or advanced needs
for genotype imputation.

To sum up, genotype imputation is an impressive
resource that can boost genetic and genomic research.
Imputation resolutions are at the sample level; however, its
perspective stands in the general sampled population as well
as in the matching reference panel. The uncertainty, which
is an intrinsic feature of this inferential technique, cannot be
explained at the individual level but have a sense from a
population perspective. Indeed, genotype probabilities and
allelic dosages are a new descriptive measurement in
genetics, mostly used for discrete genotype variables, and
must be managed carefully using proper tools and
parametrization. This specific probabilistic representation
would allow better modelling of traits and disease as well as
a better understanding of rare and ultra-rare variants, which
may be fundamental to investigate the causes and
hypothesize predictive models of present-day pathologies.
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