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Abstract: The mild oxidative stress induced by low doses of gaseous ozone (O3) activates the
antioxidant cell response through the nuclear factor erythroid 2-related factor 2 (Nrf2), thus inducing
beneficial effects without cell damage. Mitochondria are sensitive to mild oxidative stress and
represent a susceptible O3 target. In this in vitro study, we investigated the mitochondrial response to
low O3 doses in the immortalized, non-tumoral muscle C2C12 cells; a multimodal approach including
fluorescence microscopy, transmission electron microscopy and biochemistry was used. Results
demonstrated that mitochondrial features are finely tuned by low O3 doses. The O3 concentration
of 10 µg maintained normal levels of mitochondria-associated Nrf2, promoted the mitochondrial
increase of size and cristae extension, reduced cellular reactive oxygen species (ROS) and prevented
cell death. Conversely, in 20 µg O3-treated cells, where the association of Nrf2 with the mitochondria
drastically dropped, mitochondria underwent more significant swelling, and ROS and cell death
increased. This study, therefore, adds original evidence for the involvement of Nrf2 in the dose-
dependent response to low O3 concentrations not only as an Antioxidant Response Elements (ARE)
gene activator but also as a regulatory/protective factor of mitochondrial function.

Keywords: medical ozone; reactive oxygen species; mitochondrial cristae; nuclear factor erythroid
2-related factor 2 (Nrf2); fluorescence microscopy; transmission electron microscopy

1. Introduction

Low doses of gaseous ozone (O3) applied as oxygen (O2)–O3 mixtures are successfully
administered as a complementary treatment for several diseases [1–4]. Consistently with
the principle of hormesis, i.e., “the beneficial effect of a low-level exposure to an agent that
is harmful at high levels” [5], the positive outcome of low O3 doses relies in the cascade of
molecular events that are triggered by an initially induced moderate oxidative stress which
activates an antioxidant cell response without causing damage [1,6]. Mild O3 treatment
stimulates the expression of the Antioxidant Response Elements (ARE)-driven genes via
the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated Kelch-like ECH-associated
protein1 (Keap1)-dependent pathway [7–9]. The Nrf2 protein stability is tightly regulated:
under basal conditions, Keap1 targets Nrf2 for continuous ubiquitination and proteasomal
degradation in the cytoplasm [10–12]. Keap1 is a critical sensor of oxidative stress [13],
and its chemical modification [14,15] or the direct disruption of the Keap1-Nrf2 binding
interface [16,17] prevents the degradation of Nrf2 that translocates to the nucleus [18],
where it promotes the transcription of ARE-driven genes [7,19]. Several lines of evidence
showed that, among its cytoprotective activities, Nrf2 mediates the maintenance of cell
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redox homeostasis by regulating and sustaining the structural and functional integrity
of the mitochondria [20]. Accordingly, Nrf2 has been demonstrated to associate with
mitochondria [21,22].

Mitochondria, essential cell organelles involved in more than just adenosine triphos-
phate (ATP) synthesis [23,24], are known to be sensitive to even mild oxidative stress [25],
thus representing a susceptible target for O3. However, studies focused on the effects of
low O3 concentrations on mitochondria are still scarce [26,27].

In the present study, we investigated the response of muscle cell mitochondria to
the mild oxidative stress induced by 10 or 20 µg O3/mL O2, as these concentrations
are widely used for medical treatments. Skeletal muscle represents a primary target
in the clinical application of O3, and we used the immortalized non-tumoral cell line,
C2C12 as an in vitro model suitable to apply refined techniques under strictly controlled
experimental conditions. An integrated multimodal approach including cytochemistry
and immunocytochemistry at fluorescence and transmission electron microscopy and
biochemical assays provided original information on the O3 dose-dependent modifications
of mitochondria’s fine morphological and molecular features.

2. Results
2.1. Cell Viability

C2C12 cells were treated with O2–O3 mixtures at concentrations of 10 µg or 20 µg O3;
pure O2 was also used to discriminate the effects of O3. Cell viability was evaluated at 24 h
and 48 h after treatment through the Crystal violet assay (Figure 1). Data are representative
of 3 independent experiments. 10 µg O3 did not affect cell viability at 24 h and 48 h post-
treatment, whereas 20 µg O3 induced a significant decrease in cell viability at 24 h (p = 0.04),
which became more substantial at 48 h (p = 0.01).
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Figure 1. Mean values ± standard error of the mean of cell viability at 24 h and 48 h after treatment
(n = 15). (*) indicates the statistically significant difference compared to the respective control (CTR).

Therefore, 10 µg O3 proved safe for murine myoblasts, whereas 20 µg O3 decreased
cell viability medium and long after gas exposure.

2.2. Reactive Oxygen Species (ROS) Production

The effect on the ROS production was evaluated at 24 h and 48 h after gas treatment
through the 2′,7′-dichlorofluorescin diacetate (DCF) probe (Figure 2). Data are representa-
tive of 3 independent experiments. At 24 h, a significant decrease in ROS production was
found in 10 µg O3-treated cells (p = 0.02). However, at 48 h, there was no change in the
amount of ROS in 10 µg O3-treated cells, whereas, in O2-treated cells, a significant increase
in ROS production was found (p = 0.04) that was even greater in 20 µg O3-treated cells in
comparison with control (p = 0.002).
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Figure 2. Mean values ± standard error of the mean of Reactive Oxygen Species (ROS) production
after 24 h and 48 h of treatment (n = 15). (*) indicates the statistically significant difference compared
to the respective control (CTR).

In sum, 10 µg O3 not only did not increase ROS production but even reduced their
amount, probable thanks to the well-known antioxidant response to eustress [5]. Con-
versely, 20 µg O3 induced a marked increase of ROS a long time after gas exposure, similar
to that induced by pure O2, maybe due to excessive oxidative stress that the cell could not
compensate for.

2.3. S-Phase Evaluation

5-Bromo-2′-deoxyuridine (BrdU) is a thymidine analogue incorporated into newly
synthesized DNA during the S-phase, thus labeling proliferating cells and allowing their
detection after specific immunostaining. BrdU-positive cell nuclei were green-fluorescing,
while nuclear DNA was counterstained in blue with Hoechst 33342 (Figure 3). Data
are representative of 3 independent experiments. 24 h after gas exposure, no significant
difference (p = 0.5) was observed in the percentage of BrdU-positive cell nuclei in the four
samples (control, O2-, 10 µg O3-, 20 µg O3-treated cells).
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Figure 3. Representative images of C2C12 cells immunolabelled for 5-Bromo-2′-deoxyuridine (BrdU)
(a), counterstained for DNA with Hoechst 33342 (b); merged image in (c). Bar: 50 µm. (d) Mean
values ± standard error of the mean of percentages of BrdU-positive cells 24 h after the treatment
(n = 30). No significant difference was found among the cell samples. CTR: control.

The absence of alteration in cell proliferation rate supports the notion that the decrease
in cell viability observed after treatment with 20 µg O3 using the Crystal violet assay is due
to increased cell death.
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2.4. Mitochondrial Membrane Potential Assay

Mitochondrial membrane potential, a key parameter to evaluate the mitochondrial
function, was monitored using JC-1 dye, which accumulates in mitochondria where it
emits either red or green fluorescence depending on the membrane potential: the red signal
indicates polarized (highly functional) mitochondria, the green signal the depolarized (less
functional) ones (Figure 4a). In addition, the green-to-red fluorescence ratio was evaluated
by digitally quantifying the fluorescent signal (Figure 4b). This method not only allowed
signal quantification but also gave information about cell morphology, mitochondrial
morphology, and intracellular distribution. Data are representative of 3 independent
experiments. No significant differences were detected in the cell samples at all time points
(2 h, 24 h and 48 h post-treatment, p = 0.9772, p = 0.127 and p = 0.7422, respectively).
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the mean of green/red fluorescence ratio at 2 h, 24 h and 48 h after treatment (n = 30). No significant
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This suggests that no significant alteration in mitochondrial respiratory activity was
induced by gas treatment under our experimental conditions.

The high variability found in all samples is likely due to the physiologically high intra-
and intercellular heterogeneity in mitochondrial activity.

2.5. Ultrastructural Analysis

The fine morphology of mitochondria was investigated through transmission electron
microscopy. All samples showed well-preserved elongated mitochondria rich in lamellar
cristae (Figure 5a–d).
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Morphometric analysis (data are representative of 2 independent experiments) showed
a significant increase of mitochondrial area in O2- (p = 0.014), 10 µg O3- (p = 0.049) and
20 µg O3- (p < 0.001) treated cells (Figure 5e) in comparison with the untreated controls.
No difference was found between O2- and 10 µg O3-treated cells (p = 0.88), but both
samples showed values significantly lower than 20 µg O3-treated cells (p = 0.01 and p = 0.03,
respectively). The cristae extension, expressed as the ratio between the inner and outer
mitochondrial membrane, increased in O2- (p = 0.001), 10 µg O3- (p < 0.001) and 20 µg O3-
(p < 0.001) treated cells compared to the control (Figure 5g). The aspect ratio, assessed
as an index of mitochondrial elongation, showed no significant difference among the cell
samples (Figure 5f).

In sum, all gas treatments increased mitochondrial size and cristae extension, prob-
ably due to the high amount of available O2, but 20 µg O3 caused a significantly higher
mitochondrial swelling compared to 10 µg O3. On the other hand, gas treatments did not
affect the mitochondrial shape.

2.6. Nrf2 Distribution

The mitochondrial localization of Nrf2 was evaluated by ultrastructural immuno-
cytochemistry, which revealed Nrf2 binding to the outer membrane (Figure 6). Data are
representative of 2 independent experiments. The Nrf2 immunolabelling density, expressed
as the number of gold grains per membrane length unit (µm), was significantly lower in
20 µg O3-treated cells compared to the control (p = 0.02). Moreover, 10 µg O3-treated cells
showed substantially higher immunolabelling density than O2-treated (p = 0.007) and 20 µg
O3-treated (p = 0.002) samples.
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Therefore, 20 µg O3 caused a marked reduction of mitochondria-associated Nrf2
compared with 10 µg O3, confirming the involvement of Nrf2 in mitochondrial protection
under oxidative stress conditions [20].

3. Discussion

In the present study, the effects of exposure to low O3 doses on the structural and
functional features of C2C12 cells were investigated with a focus on mitochondria as target
organelles for the mild oxidative stress induced by O3.

Ten µg O3 was safe for all time points, consistent with our previous data on other cell
types [9,18,28–30]. Conversely, 20 µg O3 induced a significant decrease in cell viability at
both 24 h and 48 h after treatment. Accordingly, after treatment with 20 µg O3 a decreased
cell viability characterized by a high level of lactic dehydrogenase (as necrosis marker)
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and increased caspase activity was described in peripheral blood mononuclear cells [26].
Twenty µg O3 was found to increase the death rate also in human adipose-derived adult
stem cells [30].

Consistently with similar findings obtained in other cell lines [4,18,28], low doses of
O3 did not affect the percentage of C2C12 cells in the S-phase, indicating that the decreased
viability observed in these cells was not due to O3-mediated alteration in cell proliferation.

It is known that impaired mitochondrial function and decreased ATP production
play a crucial role in cell death [26]. In C2C12 cells, the fine morphology of mitochondria
was affected by both O2 and O3 treatments. At 24 h after the exposure, a mitochondrial
area significantly increased in O2- and 10 µg O3-treated cells compared to untreated cells,
suggesting that the mitochondrial enlargement was due to the exposure to O2 rather
than to O3. Similarly, mitochondria swelling was observed in hyperoxia-injured alveolar
cells [31,32]. In 20 µg O3-treated cells, an even more significant enlargement of mitochondria
was observed (significantly higher than in 10 µg O3-treated cells), suggesting that in these
samples, the increase in size was also due to O3. It is known that mitochondrial swelling
may also occur following oxidative stress [33,34].

Interestingly, the mitochondrial enlargement was not associated with shape (aspect
ratio) alterations in all gas-treated samples. Therefore, although it has been reported that
oxidative stress can induce mitochondrial fragmentation [35], under our mild experimental
conditions, no mitochondrial modifications were found, which might suggest fusion or
fission events.

Independently of the mitochondrial size, cristae extension significantly increased in
C2C12 cells treated with O2 or both O3 doses. Such an increase in the inner membrane
length likely represents a response to the increased O2 availability. Furthermore, the cristae
density is considered a predictor of maximum oxygen uptake in relation to mitochondrial
volume [36]. However, the increase in length of mitochondrial cristae was not paralleled by
marked modifications of the mitochondrial membrane potential, i.e., the electrochemical
gradient generated by the electron transport chain driving ATP synthesis, considered an
index of mitochondrial function.

O3, when reacting with unsaturated fatty acids, leads to the production of ROS,
mainly hydrogen peroxide, accompanied by the formation of lipid ozonation products
(LOPs) [37]. The production of ROS should be counterbalanced by levels of antioxidant
enzyme activity sufficient to maintain cellular redox homeostasis. Interestingly, at 24 h
from the gas exposure, 10 µg O3-treated cells showed a significant decrease in ROS amount,
highlighting the rapid antioxidant response promoted by this O3 concentration. This
finding is consistent with the increased expression of Heme oxygenase 1 (Hmox-1) observed
in other cell types treated with the same O3 concentration [4,8,9]. Conversely, a significant
increase of ROS was found in 20 µg O3-treated and O2-treated cells 48 h after gas exposure.
This finding suggests that the concentration of 20 µg O3 and pure O2 promote oxidative
stress at longer times that the cell cannot fully compensate, as discussed below.

Nrf2 is a transcription factor regulating the expression of a network of antioxidant
enzymes [7]. Its activity is finely controlled by Keap1, which is a direct target of ROS [21,38].
Modifying Keap1 cysteine residues by oxidative signals prevent the continuous proteaso-
mal degradation of Nrf2, promoting immediate Nrf2 translocation to the nucleus where the
Nrf2-mediated transcription of ARE-driven antioxidant genes takes place [39]. Interestingly,
Nrf2 and Keap1 localize in the mitochondrial outer membrane forming a ternary complex
with the Keap1-binding protein phosphoglycerate mutase family member 5 [21,22]. This
finding, obtained by immunofluorescence [21] and mitochondria sub-fractionation [22],
was confirmed in the present study by ultrastructural immunolabelling, which specifically
detected the Nrf2 protein on the mitochondrial outer membrane of all cell samples. On this
membrane, Nrf2 has been proposed to directly impact mitochondria preservation [22], serv-
ing as a sensor of mitochondrial function and ROS production [38]. Mitochondrial function
is, in turn, closely related to the level of ROS [25]. Under stress conditions, the Nrf2-Keap1
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pathway is thus crucially involved in the functional modulation of mitochondria [20,40,41],
regulating both mitochondrial and cytosolic ROS production [40].

Interestingly, the density of Nrf2 immunolabelling on the mitochondrial outer mem-
brane was significantly reduced in 20 µg O3-treated cells in comparison with the control,
and 10 µg O3-treated cells and a similar reduction of Nrf2 immunolabelling was also
observed in O2-treated cells in contrast with 10 µg O3-treated cells. Previous evidence
showed that a lack of Nrf2 results in an increase of ROS [20] as well as an increased sensi-
tivity to mitochondrial membrane permeability transition and mitochondrial swelling [22].
Therefore, the decrease of mitochondria-associated Nrf2 in 20 µg O3-treated cells could
be related to the marked organelle swelling. However, this structural alteration does not
significantly affect the organelle function, as demonstrated by the absence of changes in
membrane potential. Therefore, it is likely that the mitochondrial alterations observed
in 20 µg O3-treated cells represent one of the oxidative stress-related impairments that
collectively lead to cell death.

4. Materials and Methods
4.1. Cell Culture and Treatment

C3H mouse muscle myoblasts C2C12 (ECACC 91031101) were grown in Dulbecco’s
modified Eagle’s medium (DMEM), supplemented with 10% heat-inactivated fetal bovine
serum (FBS), 2 mM L- glutamine, 1% penicillin/streptomycin, 0.5% amphotericin-B (all
reagents were purchased from Gibco, Waltham, MA, USA) at 37 ◦C in a 5% CO2 humidified
atmosphere in T75 flasks.

The cells were exposed to O2–O3 gas mixtures produced by an OZO2 FUTURA
apparatus (Alnitec, Cremosano, CR, Italy) from medical-grade O2; the apparatus allows
photometric real-time control of O3 concentration and gas flow rate. O3 was used at the
concentrations currently administered in the clinical practice for intramuscular injections,
i.e., 10 and 20 µg O3/mL O2. In addition, these concentrations proved to be non-toxic
for various cultured cells and tissues [4,8,9,18,28,29]. Pure O2 was administered to cells
to discern the effect elicited by O3 from O2, as gas treatment is dispensed as a mixture of
the two. Control cells underwent the same handling without exposure to the O2–O3 gas
mixture or pure O2.

When sub-confluent (80%), the cells were detached using 0.25% trypsin/EDTA (Gibco,
Waltham, MA, USA) and seeded for specific analyses. For Crystal violet cell viability assays
and ROS evaluation, samples of 4× 106 cells were suspended in a 10 mL medium in a 20 mL
polypropylene (O3 resistant) syringe (Terumo Medical Corporation, Somerset, NJ, USA).
An equal volume of gas (10 mL) was then collected into the syringe (so that the final gas
pressure corresponded to the atmospheric one) through a sterile filter (Alnitec s.r.l.) to avoid
contamination. The sample was gently and continuously mixed with the gas mixture for
10 min since it has been ascertained that during this period, cell samples react with the ozone
dose totally [42]. The cells were then seeded in a 96-multi-well plate after gas treatment
and analyzed. For the S-phase assessment, morphological and morphometrical analyses at
transmission electron microscopy, and the evaluation of mitochondrial membrane potential,
cells were seeded on glass coverslips (24 × 24 mm), allowed to adhere for 24 h and then
subjected to gas exposure by placing the coverslips into a 50 mL polypropylene syringe
containing 20 mL culture medium. The syringe was then connected to the OZO2 Futura
output valve, and an equal volume (20 mL) of gas was collected through a sterile filter
(Alnitec s.r.l.). After gently moving for 10 min to dissolve the gas in the medium, the
coverslips were taken out of the syringe, placed in wells containing fresh culture medium
and incubated for the appropriate times for the analyses.

4.2. Cell Viability Assay

C2C12 cells were plated in 96-well plates (1 × 104 cells/well) after the treatment. After
24 or 48 h the cells were washed with phosphate buffer saline (PBS) and stained with a
crystal violet solution (Sigma-Aldrich, St. Louis, MO, USA). The dye was solubilized in
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PBS containing 1% sodium dodecyl sulfate (SDS) and measured photometrically (A595 nm)
to determine cell viability.

4.3. Measurement of Reactive Oxygen Species (ROS) Production

The non-fluorescent 2′,7′-dichlorofluorescin diacetate (DCF) probe, which becomes
highly fluorescent in reaction with ROS, was used to evaluate cellular ROS production.
Briefly, C2C12 cells were plated in 96-well plates (1 × 104 cells/well) after treatment. After
24 or 48 h the cells were incubated in a culture medium without FBS with 10 µM DCF
(Sigma-Aldrich) at 37 ◦C for 20 min. The medium with DCF was removed, and the cells
were incubated with culture medium at 37 ◦C for 10 min. The cells were then washed
with Dulbecco’s PBS buffer (ThermoFisher, Waltham, MA, USA), and fluorescence was
measured by using a multimode plate reader at 485/535 nm (TECAN Infinite® M Nano
PLUS, Männedorf, Switzerland). The values were normalized on cell viability.

4.4. S-Phase Evaluation

The S-phase evaluation assessed the cell proliferation rate in C2C12 cells 24 h after
gas exposure. Cells (6 × 104 cells per 24 × 24 mm slides) were pulse-labelled with 20 µM
BrdU (Sigma-Aldrich) at 37 ◦C for 30 min and then fixed with 70% ethanol. To partially
denature DNA, cells were incubated with 2 N HCl for 20 min at room temperature, then
neutralized for 3 min with 0.1 M sodium tetraborate (pH 8.2) (Sigma-Aldrich), washed
with PBS and permeabilized for 15 min with PBS containing 0.1% bovine serum albumin
and 0.05% Tween-20 (Sigma-Aldrich). Cells were then incubated with a mouse monoclonal
antibody direct against BrdU (BD Diagnostics, Franklin Lakes, NJ, USA) diluted 1:20 in
PBS for 1 h, washed in PBS and incubated with Alexa Fluor 488-conjugated anti-mouse
secondary antibody (Molecular Probes, Invitrogen, Milan, MI, Italy) diluted 1:200 for 1 h,
washed with PBS twice and stained for DNA with 0.1 µg/mL Hoechst 33342 (Abcam,
Cambridge, UK) in PBS for 10 min. Samples were finally mounted with PBS/glycerol 1:1
solution. BrdU-positive cell percentage was assessed in 30 randomly selected fields (40×)
for each experimental condition. Observation of cell samples was performed using an
Olympus BX51 microscope (Olympus Italia S.r.l., Segrate, MI, Italy) equipped with a 100 W
mercury lamp under the following conditions: 450–480 nm excitation filter (excf), 500 nm
dichroic mirror (dm), and 515 nm barrier filter (bf) for Alexa Fluor 488; 330–385 nm excf,
400 nm dm, and 420 nm bf, for Hoechst 33342. Images were acquired with QICAM Fast
1394 Digital Camera (QImaging, Surrey, BC, Canada) and processed with Image-Pro Plus
software (Media Cybernetics, Inc., Rockville, MD, USA).

4.5. Mitochondrial Membrane Potential Assay

The mitochondrial membrane potential (∆Ψm) of C2C12 cells was assessed by using
the lipophilic cation JC-1 ((ThermoFisher). Cells (7 × 104 cells per slide) were stained
after 2 h, 24 h and 48 h from gas exposure with JC-1 (final concentration 2 µM) for 15 min
in a sterile incubator at 37 ◦C with 5% CO2 in the dark, and then briefly washed twice
with PBS. Cell samples were observed using an Olympus BX51 microscope (Olympus
Italia S.r.l., Segrate, MI, Italy) equipped with a 100 W mercury lamp, with the following
conditions: excitation filter (400–500 nm), emission (≥520 nm). Images were recorded
with an Olympus Camedia C-5050 digital camera (Olympus Italia S.r.l.). JC-1 fluorescence
was assessed in 20 randomly selected fields (20×) for each experimental condition. In
addition, a routine was written in MATLAB (2018b version, Mathworks) to quantify red
and green fluorescence-positive pixels and the ratio between green and red fluorescence
signals were expressed.

4.6. Transmission Electron Microscopy

Ultrastructural morphometric and immunocytochemical analyses were carried out
at transmission electron microscopy to investigate the effects of exposure to low O3
concentrations on mitochondria features and Nrf2 mitochondrial location. The cells
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(2 × 104 per 22 mm slides) were treated with the gas. After 24 h, the cells were fixed for 1 h
at 4 ◦C with 2.5% glutaraldehyde and 2% paraformaldehyde in 0.1 M phosphate buffer
pH 7.4, washed and post-fixed at 4 ◦C for 30 min with 1% OsO4. Cells were then dehydrated
with acetone and embedded in Epon resin as a monolayer [43] (all reagents were purchased
from Electron Microscopy Sciences, Hatfield, PA, USA). For ultrastructural morphology
and morphometry, ultrathin sections were collected and stained with Reynolds lead citrate
(Electron Microscopy Sciences) for 2 min. For immunocytochemistry, ultrathin sections were
collected and immunolabelled. Briefly, sections were floated on normal goat serum diluted
1:100 in PBS for 3 min, incubated overnight at 4 ◦C with the anti-Nrf2 antibody (Abcam
#ab62352, Cambridge, UK) diluted 1:2 with PBS containing 0.1% bovine serum albumin
(Fluka, Buchs, Switzerland) and 0.05% Tween 20. Sections were then floated on normal
goat serum as above and then incubated for 30 min with a goat anti-rabbit IgG secondary
antibody conjugated with 12-nm gold particles (Jackson ImmunoResearch Laboratories
Inc., West Grove, PA, USA), diluted 1:20 in PBS. After rinsing with PBS and water, the
sections were finally air-dried and weakly stained with Reynolds lead citrate for 1 min. As
immunostaining controls, some grids were incubated without the primary antibody and
then processed as described above. Observation of the samples was performed through a
Philips Morgagni transmission electron microscope (FEI Company Italia Srl, Milan, Italy)
operating at 80 kV; image acquisition was made with a Megaview III camera (FEI Company
Italia Srl, Milan, Italy). Morphometric analysis of the mitochondrial area, aspect ratio
parameter (calculated as the ratio of major mitochondrial axis and minor axis lengths) and
the ratio between inner and outer mitochondrial membrane (estimating the extension of
cristae independently of the mitochondrial size) was carried out on 20 randomly chosen
mitochondria per experimental condition. Quantitation of anti-Nrf2 immunolabelling was
performed by estimating the gold grain density on 30 randomly chosen mitochondria
(36,000×) per each experimental condition. The gold grains were counted, and the labeling
density was expressed as several gold grains/mitochondrial perimeter length (µm).

Based on our previous investigations [7], mitochondria morphometry and Nrf2 density
were evaluated at 24 h post-treatment to detect morphological changes and Nrf2 location
in mitochondria.

4.7. Statistical Analysis

Data for each variable were pooled according to the experimental condition and
presented as mean ± standard error of the mean. Statistical significance was assessed
by the one-way analysis of variance (ANOVA) test followed, in case of significance, by
the t test for pairwise comparison with Bonferroni correction. The significance was set at
p ≤ 0.05.

5. Conclusions

Altogether, the results of the present study demonstrate that mitochondrial features
are finely tuned by low O3 doses. In fact, under our experimental conditions, the O3 con-
centration of 10 µg maintained normal levels of mitochondria-associated Nrf2 (indicating
a stabilization of the Nrf2-Keap1 complex on the outer mitochondrial membrane), also
promoting the increase of size and cristae extension (which is suggestive of increased
mitochondrial respiration). Moreover, 10 µg O3 could sustain the balance between the
oxidative stress induced by the gas treatment and the antioxidant response, even reducing
cellular ROS and preventing cell death. Conversely, in 20 µg O3-treated cells, where the
association of Nrf2 with the mitochondria drastically dropped, mitochondria underwent
more significant swelling than after 10 µg O3-treatment, while ROS and cell death increased.

This study, therefore, adds original evidence for the involvement of Nrf2 in the dose-
dependent response of cells to low O3 concentrations, supporting the notion of its role
in ROS control not only as a transcription factor in ARE gene activation but also as a
regulatory/protective factor of mitochondrial function. Consistently, previous reports de-
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scribed an O3-mediated reduction of mitochondrial damage in rat hearts following ischemia-
reperfusion [44] and in rat cochlea and brain following noise-induced hearing loss [45].

The results of the present study have been obtained in an in vitro model, which was
especially appropriate for elucidating basic biological mechanisms but cannot fully mimic
the several complicating factors occurring in vitro. Moreover, O3 effects were investigated
in myoblasts, i.e., cultured muscle cells that did not reach the terminal differentiation as
the myofibers do in skeletal muscles. Despite such limitations, our findings unequivocally
demonstrate that even minor changes in O3 concentration differentially affect mitochondria
and provide a solid experimental background for further investigation of the molecular
mechanisms activated by low O3 doses in these organelles. Future research will especially
focus on the function of respiratory chain complexes and critical antioxidant enzymes, such
as superoxide dismutase and glutathione peroxidase. The knowledge of the relationship
between the concentration of the administered O3 and the mitochondrial function will be
crucial to improve the clinical efficacy of medical O3, especially for intramuscular applications.
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