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Abstract
We tackle the problem of learning state-variable relationships in Partially Observable Markov Decision
Processes to improve planning performance on mobile robots. The proposed approach extends Partially
Observable Monte Carlo Planning (POMCP) and represents state-variable relationships with Markov
Random Fields. A ROS-based implementation of the approach is proposed and evaluated in rocksample,
a standard benchmark for probabilistic planning under uncertainty. Experiments have been performed
in simulation with Gazebo. Results show that the proposed approach allows to effectively learn state-
variable probabilistic constraints on ROS-based robotic platforms and to use them in subsequent episodes
to outperform standard POMCP.
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1. Introduction

Planning under uncertainty is a crucial problem in sequential decision making and it widely
pervades artificial intelligence and robotics. In many real-world applications, agents act in
partially unknown environments and they know only the model of the dynamics of these
environments. However, in several applications there exist properties which can be used to
improve planning performance. For instance, in this work we focus on problems in which
the state is representable by a set of variables whose values are probabilistically related to
each other. An example is the rocksample domain [1] in which an agent moves through a grid
containing valuable and valueless rocks. The agent knows the rock locations but it cannot
observe rock values (hidden part of the state). At each step, the agent performs one action
among 𝑚𝑜𝑣𝑖𝑛𝑔 (up, down, left, right), 𝑠𝑒𝑛𝑠𝑖𝑛𝑔 a rock (i.e., checking its value) or 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 a
rock (i.e., collecting its value) and its goal consists in maximizing the discounted reward. When
a sensing action is performed the true value of the rocks is observed with a probability inversely
proportional to the distance between the agent and the rock. Knowing in advance rock value
relationships (e.g., the fact that rocks in a given area have higher probability of having the same
value) the agent can collect valuable rocks faster. This can improve planning performance, on
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average, by reducing the number of execution steps needed to obtain the reward. The problem
we tackle in this work is, in particular, that of learning the state-variable relationships (e.g., rock
value relationships, in our example) as the robot acts in the first episodes to use this knowledge
in the following episodes and to get an improvement of planning performance.

Partially Observable Markov Decision Processes (POMDPs) [2, 3] provide a sound and com-
plete framework for planning under uncertainty. To tackle partial observability they consider
all possible states of the (agent-environment) system and assign to each of them a probability
value expressing its likelihood of being the true state. These probabilities, considered as a whole,
constitute a probability distribution over states, called belief. A solution for a POMDP is a policy
that maps beliefs into actions. Finding optimal policies is unfeasible in general [4], therefore
approximated policies are typically used. The most recent approaches mainly rely on the use of
point-based value iteration [5, 6, 7] or Monte-Carlo Tree Search (MCTS) based solvers [8, 9] to
deal with large state spaces. Here, among the main MCTS-based solvers [9, 10], we consider
a particular method for learning POMDP policies, called Partially Observable Monte Carlo
Planning (POMCP) [11]. Standard POMCP does not consider any kind of prior knowledge about
state-variable relationships. An extended version of POMCP has recently been proposed [12]
which considers state-variable constraints, expressed as Constraint Networks (CNs) or Markov
Random Fields (MRFs). This approach improves planning performance while keeping the time
complexity unchanged. In [13] authors show how mobile robots can exploit prior knowledge
about task similarities to improve their navigation performance in an obstacle avoidance context
using a Turtlebot3. However, in [12, 13], state-variable relationships are assumed to be known
in advance (e.g. by experts). Here, instead, we explain how to learn these relationships and
in particular we introduce an architecture to do this on ROS-based robotic platforms. Other
works related to ours concern the problem of adding constraints to planning and the problem
of Bayesian adaptive learning in POMDPs. Regarding the first topic, in [14] MCTS is used
to generate policies for constrained POMDPs and in [15] the multi-agent structure of some
specific problems is explored to decompose the value function. Instead, we constrain the state
space on the basis of state-variable relationships to refine the belief during execution. In the
literature, dealing with planning under uncertainty there are also factored POMDPs and their
applications [16, 17]. In our approach the performance improvement does not come from a
factorization of the POMDP, but from the introduction in POMDP of prior knowledge about
the domain. Such knowledge is learnt from previously collected data and represented as a
MRF. On the second topic, [18, 19, 20] propose approaches to learn the transition and reward
models. Our goal is instead to learn probabilistic relationships between hidden state-variable
values, an information affecting the belief. Methodologies to reduce uncertainty on the true
state in the belief have been proposed in [21, 22, 23, 24, 25, 26, 27]. They mainly focus, however,
on introducing the belief into the reward function to allow the definition of goals related to
information gain.

The contribution of this work is twofold: a ROS-based architecture to learn state-variable
relationships and the evaluation of this architecture in a Gazebo simulation of rocksample.
A criterion based on the convergence of MRF potentials is also proposed to decide when the
learning phase can be stopped and the MRF can be used by POMCP to obtain performance
improvement. If the learning process is ended too early we could have a performance decrease
due to a over specialized MRF on the relationships of few episodes. On the other hand, stopping



the learning process too late, last episodes could be non informative for further improving
the MRF. This case limits the possibility of exploiting the learnt MRF to obtain a significant
performance improvement despite its higher accuracy using it only in few episodes. Results
show that the learning phase can be performed on a ROS-based robotic platform and that the
usage of the learnt MRF yields a statistically significant performance improvement compared to
the standard POMCP.

2. Method

We first present a method for learning the MRF during POMCP execution. It is based on the
information present in the belief and, in particular, it uses information from the state having
maximum probability. Then, we describe the ROS-based architecture designed to directly learn
the MRF on mobile robots.

2.1. MRF-Learning

Learning the MRF is here meant as learning the potentials of pairwise MRF representing state-
variable relationships. Our approach learns the MRF in 𝑁𝐸 episodes, where 𝑁𝐸 is determined
by a stopping criterion described in the following. We initialize the MRF with uninformative
priors and then update it at the end of each episode. In particular, given two state-variables 𝑋𝑖

and 𝑋𝑗 having 𝑘 possible values each, we need to learn the potential 𝜓𝑋𝑖,𝑋𝑗 (𝑙, ℎ) for each pair
(𝑙, ℎ) with 𝑙 ∈ {1, . . . , 𝑘} and ℎ ∈ {1, . . . , 𝑘}, where variable equality occurs only when 𝑙 = ℎ.
We assume that the true state-variable configuration, the hidden part of the state, changes
only when a new episode starts. To keep track of state-variable values in different episodes
we use three data structures. First, a vector 𝒱𝑒(𝑖) in which we store the state-variable values
extracted from the belief in episode 𝑒. Second, a four-dimensional array ℳ𝑒(𝑖, 𝑗, 𝑙, ℎ), used
to count equalities and inequalities among pairs of state-variables in each episode 𝑒. Third, a
matrix 𝒫𝑒(𝑖, 𝑗) in which we store the equality probabilities among state-variables until episode
𝑒, namely, the percentage of times variables𝑋𝑖 and𝑋𝑗 had the same value in the first 𝑒 learning
episodes.

At the end of each episode 𝑒, we first populate 𝒱𝑒(𝑖) with the value of state-variable𝑋𝑖 in the
state having maximum likelihood in the belief. Then we update matrix ℳ (which is initialized
to zero in the first episode) according to the following formula:

ℳ𝑒+1(𝑖, 𝑗, 𝑙, ℎ) =

{︃
ℳ𝑒(𝑖, 𝑗, 𝑙, ℎ) + 1 if 𝒱𝑒(𝑖) = 𝑙 ∧ 𝒱𝑒(𝑗) = ℎ

ℳ𝑒(𝑖, 𝑗, 𝑙, ℎ) otherwise
(1)

Afterwards, we compute MRF potentials 𝜓 by normalizing the counts in ℳ as

𝜓𝑒
𝑋𝑖,𝑋𝑗

(𝑙, ℎ) =
ℳ𝑒(𝑖, 𝑗, 𝑙, ℎ)∑︀

𝑤,𝑦=1,...,𝑘 ℳ𝑒(𝑖, 𝑗, 𝑤, 𝑦)
. (2)

Finally, equality probabilities are computed from MRF potentials, for each (𝑖, 𝑗) ∈ 𝐸, as

𝒫𝑒(𝑖, 𝑗) =
∑︁

𝑙=1,...,𝑘

𝜓𝑒
𝑋𝑖,𝑋𝑗

(𝑙, 𝑙). (3)



Namely, we compute the sum of potentials corresponding to equal values of variables 𝑋𝑖 and
𝑋𝑗 .

The end of the learning process is determined by a stopping criterion based on the convergence
of the MRF. The learning phase ends when each state-variable probability 𝒫𝑒(𝑖, 𝑗) does not
change of a value higher than a predefined threshold for at least 3 episodes. In that case, we
consider the learnt MRF informative enough to be used.

2.2. Architecture to integrate learning algorithms on robotic platforms

We use three ROS nodes, namely environment, agent and planner. The environment discretizes
the real world, exploiting a task-specific representation, e.g., a grid for the rocksample domain.
The agent node holds information about odometry, and it interfaces the ROS-based robotic
platform with the environment and with the planner. Finally, the planner runs the learning
process and the POMCP algorithm to act optimally. If the agent performs a sensing action, it will
interface with the environment or with sensors mounted on the robotic platform. If the action is
moving, the agent node will send the desired goal to the ROS Navigation Stack [28], which will
output velocity commands to the real mobile robot. After each action performed by the agent
in the real environment, the belief is updated using the collected observation, and at the end
of each episode the MRF is updated accordingly to the learning procedure. The implemented
architecture is compatible with all mobile platforms that support the ROS Navigation Stack.

3. Results

We perform our tests on the open-source multi-robot simulator Gazebo [29], in which a Turtle-
bot3 acts in rocksample on a grid with 5 rows and 5 columns with 8 rocks placed in fixed
positions (see Figure 1.a). When the turtlebot performs a sensing action, the true value of the
rocks is inferred from readings of a sensor. The reward obtained by moving and sensing is 0,
while sampling a rock gives a reward of 10 if the rock is valuable, -10 if it is valueless. Finally,
the discount factor used is 𝛾 = 0.95.

We have first defined the set of true relationships, with related probabilities, among rock
values to be learnt (see Figure 1.b). We call them true MRF. This is the ground truth against
which we then evaluate the performance of our approach. Then we start learning the MRF using
at each episode a rock value configuration generated accordingly to the distribution defined
by the true MRF. To evaluate our methodology we perform 10 runs, each composed of 100
episodes, and every episode is composed of 60 steps. In each episode a Turtlebot3 acts in the
Gazebo simulator of rocksample described above. POMCP always performs 100000 simulations
and initializes the particle filter with the same number of particles. The topology of the MRF
is assumed to be know. Our method only learns the MRF potentials and the related equality
probabilities. In Figure 1.d we show how equality probabilities between rock values change
during a run of the learning process (in the x-axis the episode is displayed). The incremental
differences in probability values of all edges start to be lower than 0.01 (the threshold used
in the stopping criterion) at episode 20. This condition is verified for the next three episodes,
thus the stopping criterion ends the learning phase at the end of episode 23. To evaluate the
performance of the proposed learning approach, we compute the MRF distance between the true



Figure 1: a) Instance of rocksample environment. Green and red rocks represent respectively valuable
and valueless rocks. The number near the rocks is their id. b) True MRF to learn (ground truth). c)
Average (and standard deviation) of the learnt MRFs across the 10 runs. d) Evolution of the equality
probability values for each edge of the MRF. The convergence is reached ad episode 23. e) Distribution
of the difference in discounted return between POMCP with the learnt MRF and standard POMCP.

MRF 𝒫*(𝑖, 𝑗), assumed to be known, and the matrix 𝒫(𝑖, 𝑗) obtained at the end of the learning
phase. We call this measure 𝑑𝑀 and it is computed as the Euclidean distance normalized by the
number of edges in the MRF ‖𝒫* − 𝒫‖2/|𝐸| between the two matrices. The average of this
difference over all learning stages of different runs is called 𝑑𝑀 . The average MRF across the
10 runs is displayed in Figure 1.c. Its high accuracy it’s clearly visible and confirmed by the
MRF distance of 𝑑𝑀 = 0.01. The proposed learning strategy used in tandem with the stopping
criterion has a time complexity of 𝒪((|𝑆| + 2|𝐸|) · 𝑁𝐸), where |𝑆| is the number of states
(needed to scan the belief), |𝐸| is the number of edges (needed to update ℳ and to check if the
learning process could be ended) and, finally, 𝑁𝐸 is the number of learning episodes.

The introduction of the learnt MRF in POMCP provides a statistically significant improvement
with respect to the standard POMCP. We empirically show it by computing, at episode 𝑒 of
the evaluation runs, the difference between the discounted return 𝜌𝑒 obtained using the learnt
MRF and the discounted return obtained with standard POMCP, namely, ∆𝜌𝑒 = 𝜌𝑀𝑅𝐹

𝑒 − 𝜌𝑆𝑇𝐷
𝑒 .

Then, we compute the average of these values across all (100) episodes and all (10) runs. We
call this average ∆𝜌𝑒 and show it with the related distribution in Figure 1.e. Notice that the
difference is computed episode by episode to reduce the randomness of the measure. The
average difference in discounted return we achieved is 1.28 and to verify that it is statistically
different from zero, we used the Student’s t-test obtaining a p-value lower than 0.05. The usage
of the learnt MRF produces a statistically significant performance improvement (5.88%) without
any additional overhead in terms of time complexity.



4. Conclusions and future work

We have presented a methodology for learning state-variable relationships in POMDPs and a
ROS-based architecture to perform the learning on robotic platforms. Moreover we introduce a
converge based criterion to decide whether to stop the MRF learning process and to start using
it without performance loss. The proposed approach has been tested on a Gazebo simulation of
rocksample and results show that it allows to obtain a MRFs informative enough to achieve
performance improvement. A limitation of the proposed approach is that the policy used during
the MRF-learning phase is the standard POMCP policy, which aims to maximize the reward
but it does not optimize the exploration-exploitation tradeoff considering also the information
acquired in the MRF. This could slow down the learning process. Future research directions aim
to solve this problem. Furthermore, we are developing a method able to adapt the learnt MRF to
the specific episode characteristics during the application phase. Moreover, we are investigating
the possibility to test our approach on other domains.
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