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A B S T R A C T   

A clinical condition known as epilepsy occurs when the brain’s regular electrical activity is disturbed, resulting in 
a rapid, aberrant, and excessive discharge of brain neurons. The electroencephalogram (EEG) signal is the 
measurement of electrical activity received from the nerve cells of the cerebral cortex to make precise diagnoses 
of disorders, which is made crucial attention for treating epilepsy patients in recent years. The concentration on 
grid-like data has been a significant drawback of existing deep learning-based automatic epileptic seizure 
detection algorithms from raw EEG signals; nevertheless, physiological recordings frequently have irregular and 
unordered structures, making it challenging to think of them as a matrix. In order to take advantage of the 
implicit information that exists in seizure detection, graph neural networks have received a lot of attention. 
These networks feature interacting nodes connected by edges whose weights can be either dictated by temporal 
correlations or anatomical junctions. To address this limitation, a novel hybrid framework is proposed for 
epileptic seizure detection by using linear graph convolution neural network (LGCN) and DenseNet. When 
compared to previous deep learning networks, DenseNet achieves the model’s higher computational accuracy 
and memory efficiency by reducing the vanishing gradient problem and enhancing feature propagation in each of 
its layers. The Stockwell transform (S-transform) is used to preprocess from the raw EEG signal and then group 
the resulting matrix into time-frequency blocks as inputs for the LGCN to use for feature selection and after the 
Densenet uses for classification. The proposed hybrid framework outperforms the state-of-the-art in seizure 
detection tasks, achieving 98% accuracy and 98.60% specificity in extensive experiments on the publicly 
available CHB-MIT EEG dataset.   

1. Introduction 

A network of different nerve cells or neurons makes up the human 
nervous system. To communicate with nerve cells, brain cells produce 
electrical impulses. For a healthy brain, these impulses follow a typical 
pattern. The normal transmission of information throughout the body is 
disrupted by any injury or damage to this network of neurons. 

Neurological diseases are the general term used to describe these 
anomalies. Neurological disorders include common ones including epi-
lepsy, brain tumors, Parkinson’s disease, stroke, and others (Eftekhar, 
Juffali, El-Imad, Constandinou, Toumazou). Epilepsy ranks as the fourth 
most prevalent neurological condition affecting the brain’s central 
nervous system. Patients with epilepsy occasionally experience unex-
pected changes in their electrical impulses as a result of excessive 
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electrical discharge. Patients lose consciousness or awareness as a result 
of the brain becoming unstable. Seizures are characterized by this un-
steady state. A seizure may result in several different kinds of injury. 
Epilepsy is a condition that affects 1% of people worldwide. Some 
transient electric problems affect epileptic seizure patients. One or more 
strokes occur in a month for about 20–30 percent of people with epi-
lepsy. Physical harm could potentially result in the patient’s death 
during the duration of epileptic seizures (Sharif, Jafari). 

A variety of factors make EEG a potent method for examining brain 
activity. The ability of EEGs to detect changes over milliseconds is good 
given that an action potential can travel through a single neuron in 
anywhere between 0.5 and 130 ms depending on the type of neuron. 
Other methods used to study brain activity include fMRI, PET, and fUS, 
which have time resolutions ranging from seconds to minutes. Accord-
ing to accepted clinical recording methods, activity below or above this 
range is likely to be artifactual because this is where the majority of the 
brain signal detected by the scalp EEG lies. The majority of EEGs used in 
clinical practice are divided into waveform bandwidths designated 
alpha, beta, theta, and delta. Some people divide the bands into sub- 
bands to facilitate data analysis (Boonyakitanont, Lek-uthai, Chomtho, 
Songsiri). 

Manually observing and diagnosing epileptic convulsions by a 
neurologist is laborious, time-consuming, and prone to mistakes. In 
order to reduce the number of lengthy EEG recordings that need to be 
evaluated by neurologists, it is crucial to build an automatic computer- 
aided (CAD) system to assist neurologists and patients in identifying and 
detecting epileptic seizures. Signal acquisition, data preprocessing, 
feature extraction, channel selection, classification, and performance 
analysis/decision making are a few of the processes for epileptic seizure 
detection using EEG analysis that are required to construct an autono-
mous CAD system. It is necessary to extract appropriate and useful 
features for classifiers to distinguish and describe various epileptic sei-
zures due to the complicated morphology of the EEG data and the visual 
resemblance between epileptic and normal signals (Saminu et al., 2021). 
Table 1 Shows the various band frequency of EEG signals. 

The illustration in Fig. 1 shows the epileptic seizure stages, giving a 
visual picture of the chronological evolution and characteristics of each 
stage. To identify epileptic seizures, numerous machine learning tech-
niques have been created employing statistical, temporal, frequency, 
time-frequency domain, and nonlinear factors. In traditional machine 
learning techniques, features and classifiers are chosen through a pro-
cess of trial and error. To create a precise model, one needs a solid un-
derstanding of data mining and signal processing methods. For little 
amounts of data, these models work effectively. Machine learning ap-
proaches may not work well in the modern era due to the increased 
availability of data. In order to do this, cutting-edge Deep Learning (DL) 
algorithms have been used. Unlike traditional machine learning 
methods, DL models need a lot of data when training. This is due to the 
fact that these models include numerous feature spaces and encounter 
the overfitting issue in the absence of data. Deep learning models such as 
convolutional neural networks (CNNs), recurrent neural networks 
(RNNs), deep belief networks (DBNs), autoencoders (AEs), CNN-RNNs, 
and CNN-AEs have been extensively studied to identify epilepsy since 
2016. As new effective models are put forth, there are an increasing 
number of studies in this domain using deep learning (Shoeibi et al.). 

A new cross-domain topic of graph-based deep learning has emerged 
as a result of the adaption of deep learning from images to graphs. This 
field aims to learn end-to-end informative representations of graphs. 
Graph networks are part of an emerging field that has had a significant 
impact on numerous technological fields. Many pieces of information 
coming from fields like chemistry, biology, genetics, and medicine are 
more suited for complicated data structures than vector-based repre-
sentations. Since graphs naturally represent relationships between en-
tities, they could be a particularly helpful encoding method for 
relational data between variables in these applications. The general-
ization of graph neural networks (GNN) into non-structural and 

structural contexts has been a focus of research. The theory of signal 
processing on graphs has been expanded by graph convolutional net-
works (GCNs), allowing the representation learning capability of CNNs 
to be used for irregular graph data. Convolution is made generic to non- 
Euclidean graph data via graph convolutional networks (Ahmedt-Ar-
istizabal et al., 2021). By combining the properties of a given vertex with 
those of its neighbors, the graph convolutional operation seeks to pro-
vide representations for vertices. The discriminative power of CNN 
features is substantially increased by the relationship-aware represen-
tations produced by GCNs, and the improved model interpretability can 
assist doctors in identifying, for instance, the regions of the brain that 
are most active during a specific task. As a result of recent developments 
in deep learning, it is now possible to identify morphological, textural, 
and temporal representations of the brain from images and signals using 
only the data. This has improved the possibility of neural disease anal-
ysis. Due to their success in modeling unstructured and structured 
relational data, including brain signals in the identification and seg-
mentation of neural disorders such as epileptic seizures, Alzheimer’s, 
Dementia, Parkinson’s disease, etc., GNNs have experienced a rise in the 
application. 

In comparison to other deep learning networks, DenseNet is more 
efficient in terms of compute and memory. In order to improve accuracy, 
DenseNet is a good option for predicting epileptic seizures. Deeper CNN 
offers improved accuracy, since input data is processed through 
numerous convolutional processes to produce high-level features, ac-
cording to recent computer vision research. However, if the input data 
or gradient goes through multiple convolution layers, it can disappear at 
the top layer. The vanishing gradient problem was resolved using a 
dense convolutional network (DenseNet). Each layer in DenseNet re-
ceives features from all the levels below it to improve feature propa-
gation (Jana et al., 2019). 

A time-frequency decomposition technique that combines the ad-
vantages of the short-time Fourier transform (STFT) and wavelet 
transform (WT) is called the Stockwell transform (S-transform). Time- 
frequency analysis of EEG signals is useful for identifying seizures 
because of the non-stationarity characteristics of the EEG signal. 
Numerous time-frequency approaches have been used for EEG signal 
analysis, including the Short-time Fourier transform (STFT) and wavelet 
transform (WT). The Stockwell transform (S-transform), which enables 
multiresolution analysis with minimal computational cost, is thought to 
be a mixture of STFT and WT. The S-transform has been extensively used 
in a variety of industries, including medical imaging, power quality 
monitoring, and heart sound segmentation. The S-transform is used in 
the current investigation to represent the time-frequency characteristics 
of the EEG signals (Geng et al., 2020). 

In order to solve the aforementioned concerns, in this paper, we 
present a unique hybrid deep learning model termed LGCN-DenseNet for 
the identification of epileptic episodes to address those issues. To clas-
sify the output, the model includes a linear graph convolutional network 
(LGCN) with a DenseNet. A feature extracted from the raw EEG signals 
using the Stockwell transformation serves as the model’s input. The 
LGCN (Navarin et al., Sperduti) component of the model collects infor-
mation from each node’s neighborhood using a linear filter, allowing for 
a linear computational cost with respect to the number of edges in the 
graph. This enables the model to scale to extremely big graphs. Linear 
classifiers, such as the linear Graph Convolution Network (GCN), can 
prove useful for analyzing EEG data despite its nonlinearity, severe 
variability, and potential instability. Compared to nonlinear classifiers, 
linear classifiers are simpler to construct, more computationally effi-
cient, and can still achieve respectable accuracy for some types of data, 
including EEG signals. Furthermore, linear classifiers can identify linear 
correlations within the data, even if the data itself is nonlinear. This 
means that although EEG signals may not be linear, a linear classifier 
may still be able to detect linear relationships between different signal 
characteristics or components. The DenseNet (Huang et al. Weinber-
gera) component, on the other hand, is well-known for its capacity to 
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extract features from complicated and high-dimensional data, making it 
ideal for EEG signal processing. This model can benefit from the best 
features of both architectures by merging them, making them stronger 
and more expressive. Additionally, a more reliable representation of the 
data is made possible by the application of Stockwell transformation to 
extract features from the raw EEG signals. On the CHB-MIT dataset, we 
test the effectiveness of this model and demonstrate that it outperforms 
current state-of-the-art approaches for epileptic seizure identification. 
The suggested model has the potential to increase seizure detection 
precision, which could ultimately result in more effective epilepsy 
management and therapy. 

The following are the primary contributions of our work.  

1. We propose a hybrid deep learning model called LGCN-DenseNet for 
automatic seizure detection between inter-ictal and preictal with 
Stockwell transform as preprocessing technique. 

2. In order to fully examine the temporal and spatial relationship be-
tween multiple EEG channels, we design the model from the stand-
point of graph theory and integrate the properties of LGCN and 
DenseNet.  

3. We run numerous tests on the CHB-MIT dataset. The results revealed 
that the proposed strategy outperforms rival methods, offering re-
searchers and doctors fresh ideas. 

This paper is structured as follows. Section 2 discusses earlier 
research on seizure detection. Section 3 focuses on the suggested seizure 
detection approach, the preprocessing method, etc. Section 4 gives a 
brief overview of the dataset used. Section 5 provides the experimental 
setup with code and module-based discussions, Section 6 forces on result 
analysis and a comparison with earlier studies, and Section 8 provides 
this paper’s conclusion. 

2. Literature review 

Seizure prediction has been the subject of continuing study over the 
past few years. The fundamental tenet of seizure prediction is that the 
interictal and preictal phases differ from one another. Early seizure 
prediction studies frequently employed threshold-based approaches () 
or machine learning methods like Support Vector Machines (SVM) 
(Park, Luo, Parhi, Netoff), but more recently, deep learning techniques 
like CNN (Xu, Ren, Chen, Che) have received significant attention. Liang 
et al. (Liang, Pei, Cai, Wangb) were the first ones to suggest training a 
deep-learning classifier to recognize seizures in EEG images, like how 
doctors identify seizures through visual inspection. 

When EEG signals are acquired, noise is added, which lowers the 
signal-to-noise ratio of the EEG signals and makes it difficult to distin-
guish between interictal and preictal states (Veisi, Pariz, Karimpour). 
Bandpass filtering has been employed by Zandi et al. (Shahidi Zandi 
et al., 2013) for noise elimination. Fast Fourier transform (FFT) has been 
used by Chu et al. (Chu et al., 2017) to preprocess EEG signals in the 
frequency domain. Khan et al. (Khan et al., 2018) have applied wavelet 
transform for preprocessing. Other methods of noise removal from EEG 
signals include surrogate channels (Korff, Brunklaus, Zuberi) with the 
help of common spatial pattern filtering. There are two approaches to 
extracting features: manually creating the features or automatically 
extracting the features using deep learning techniques. 

CNN has received the greatest interest in seizure detection studies 
employing deep learning systems. Because seizure detection studies 
utilizing CNN typically require data in the form of images as input, the 
EEG signal is preprocessed into a two-dimensional format. Xu et al. (Xu, 
Ren, Chen, Che) offer a one-dimensional convolutional neural 
network-long short-term memory (1D CNN-LSTM) model for automatic 
seizure recognition using EEG signals. Using the public UCI epileptic 
seizure recognition data set, the suggested method achieves high 
recognition accuracies of 99.39% and 82.00% on the binary and 
five-class epileptic seizure recognition tasks. Truong et al. (Truong et al., 

2018) recommended separating the raw EEG signal by a window size of 
30 s, extracting spectrum information using the Short-Time Fourier 
Transform (STFT), and then feeding it into CNN. Using 64 seizures from 
13 patients in the CHB-MIT dataset, the experiment achieved a sensi-
tivity of 81.2% and an FPR of 0.16. To examine the various frequency 
bands of EEG, Khan et al. (Khan et al., 2018) transform an image into a 
time-frequency form using Continuous Wavelet Transform (CWT). The 
authors suggested a method for forecasting seizures that use modified 
data as input to CNN to learn the difference between interictal and 
preictal phases. The same dataset was used as before, and after testing 
18 seizures from 15 patients, the average FPR was 0.142, with three 
seizures being unpredictable. Using preprocessed features including 
spectral band power, statistical moment, and Hjorth parameters as in-
puts to a multi-frame 3D CNN model, Ozcan et al. (Ozcan & Erturk, 
2019) predict seizures with a sensitivity of 85.71% and FPR of 0.096 in 
the CHB-MIT dataset. In this paper similar work to ours, Ryu et al. (Ryu, 
Joea) develops a unique hybrid deep learning model that incorporates a 
Dense Convolutional Network (DenseNet) with Long Short-Term Mem-
ory (LSTM). The proposed method first transforms the EEG data into the 
time-frequency domain using Discrete Wavelet Transform (DWT) for use 
as model input. The experiment is carried out utilizing the CHB-MIT 
scalp EEG dataset for each preictal length of 5, 10, and 15 min to 
evaluate the performance of the proposed technique. When the preictal 
time was 5 min, we got an F1-score of 0.923 and a sensitivity of 92.92%, 
with a specificity of 93.65%. The false positive rate was 0.063 per hour, 
and the detection accuracy was 93.28%. Zeng et al. (Zeng et al., 2021) 
developed a novel GRP-DNet classification system to identify epilepti-
form EEG signals. The system takes a single-channel, long-term EEG 
signal and splits it into non-overlapping short segments using an FNSW. 
Then, the short segments are converted into GRPs and fed into a Den-
seNet. The final decision is made using a majority voting strategy. Zhou 
et al. (Geng et al., 2020) used Stockwell Transformation and bidirec-
tional long short-term memory (BiLSTM). Raw EEG segments are first 
subjected to the S-transform, and the resulting matrix is organized into 
time-frequency blocks and sent into the BiLSTM for feature selection and 
classification. Then postprocessing, which comprises the moving 
average filter, threshold judgment, multichannel fusion, and collar 
approach, is used to enhance detection performance. The experiment 
achieves a sensitivity of 98.09% and a specificity of 98.69%, according 
to segment-based assessment results. A sensitivity of 96.3% and a false 
detection rate of 0.24/h are produced for the event-based evaluation. 

Other neural network models, such as graph neural networks 
(GNNs), have been proposed for extracting deep spatial information on 
seizure detection tasks. Lian et al. (Lian et al.) have applied joint graph 
structure and representation learning network (JGRN) to classify be-
tween preictal and interictal. 

3. Proposed method 

3.1. System model 

System modeling is the process of creating abstract representations 
of a system. Through this process, various models are created, each of 
which offers a distinctive perspective on the system under study. This 
section breaks down the comprehensive system model into three parts: 
The Method, Data Preparation, and Preprocessing (see Fig. 1). 

3.1.1. Method 
Fig. 2 depicts the key points of the proposed approach. The raw EEG 

data is first divided into samples. The adjacency matrix produced by 
applying the Stockwell transformation and the graph structure data 
representing the connection between the signal data information and 
channels is then incorporated into the LGCN model. The retrieved fea-
tures are then fed into the algorithm’s DenseNet section, and the clas-
sification is completed by the sigmoid function. As a result, the proposed 
model trains the difference between interictal and preictal states. 
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3.1.2. Data Preparation 
To ensure an adequate amount of experimental data, continuous data 

is assumed to span a lengthy period. During the study of other state-of- 
the-arts methods for setup. U sing trial and error methods, we have set 
the parameters to get the best possible outcome based on our hardware 
specification. For instance, long-term EEG data is segmented into mul-
tiple smaller fragments. This is done by dividing the data into several 
time periods using a sliding window technique with a 1-s period and a 
0.5 overlap rate. As an example, a 60-s EEG signal with a sampling 
frequency of 1 Hz would be represented as a 60-s vector, divided into 
100 epochs. Once the data is segmented, a suggested method linearly 
examines and categorizes the labels of different periods. During the 
study of other state of the art methods about similar. 

Preictal time usually limits between 5 min and 1 hour before seizure 
happened (Chen et al., 2021; Zhang et al., 2020). For detecting preictal 
states properly, we have set the time 5,10 and 15 min based on trial and 
error methods similar to (Ryu, Joea; Lian et al.) for the best possible 
outcomes. 

To solve the issue of data imbalance, a data augmentation strategy is 
applied to the training set to reduce overfitting (Salamon & Bello, 2017). 
We choose one or two seizure episodes at random for each patient and 
count the number of normal EEG recordings that are 5 times as large as 
the seizure data in the training set. The seizure data is then augmented in 
such a way that each seizure episode is resampled five times. 

3.1.3. Preprocessing 
The suggested technique’s overall system model is shown in Fig. 2. 

The first step involves preprocessing the EEG signal before inputting it 
into the deep learning model. The raw EEG data is divided into channels, 
then into window sizes, and transformed into a time-frequency type 2D 
image using the S-Transform. The preprocessed data is then used as 
input data for the Linear Graph Convolution Network (LGCN), and the 
resulting feature map is used as input data for the DenseNet. 

3.2. Stockwell Transformation 

The Stockwell Transformation or S-transform was proposed by 
Stockwell et al. (Stockwell et al., 1996) by combining the merits of STFT 
(Short Time Fourier Transform) and WT (Wavelet Transform), which 
has gained considerable attention in several fields of science and engi-
neering including geophysics, optics, biomedical imaging, oceanology, 
bioinformatics, and signal processing. It is remarkable in that it gives 
frequency-dependent resolution while remaining directly related to the 
Fourier spectrum. Furthermore, the classical S-transform can be seen of 
as a phase-corrected WT, offering more precise information on a signal’s 
local features in a time-frequency analysis. This makes the S-transform 
more resistant to non-stationary signals and, in some cases, provides 
better time-frequency resolution. 

In Fig. 3, The EEG signal is initially divided into separate channels 
and segmented with a window size of 1 s. Subsequently, the Stockwell 
transform is individually applied to each channel to obtain a time- 
frequency representation of the signal. In addition, the short-time 
Fourier transform (STFT) is applied, resulting in a complex-valued ma-
trix that describes the signal’s frequency content at various time points. 
This process enables the extraction of multi-channel data by indepen-
dently applying the transformation to each channel. Take the natural 
logarithm of the result of the square of the STFT magnitude. This is 
known as the modulation step, and it makes the S-transform more sen-
sitive to changes in the frequency content of the signal over time. Now 
when we apply the inverse STFT to modulation step output, it will finally 
give us a two-dimensional image of the signal’s frequency content (see 
Fig. 4). 

Let ψεL1(R) ∩ L2(R) be such that 
∫∞
− ∞ ψ(t)dt = 1, the S-transform of a 

signal x(t) in L2(R) with respect to the window function ψ(t) is defined 
by, 

Fig. 1. Stages of epileptic seizure.  

Fig. 2. The system model of proposed method.  
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STx(t, f )= |f |
∫ ∞

− ∞
x(τ)ψ(|f |(τ − t))e− j2πτf dτ, tεR, (1)  

Where, f ∈ R/{0}. At zero frequency f = 0, the S-transform is equal to 
the average of the signal i.e., 

STx(t, 0)=
∫ ∞

− ∞
x(τ)dτ (2) 

The S-transform can also be defined in the frequency domain, i.e., 

STx(t, f )=
∫ ∞

− ∞
X(α+ f )Ψ

(
α
|f |

)

ej2παtdα, (3)  

Where, t ∈ R and f ∈ R/{0}. Ψ(f) is the Fourier spectrum of the signal x 
and the window function ψ , respectively. 

Each segment’s S-transform yields a 1024 × 128 time-frequency 
matrix, where 128 represents frequency from 1 to 128 Hz and 1024 
represents time points. Seizure activity often occurs at frequencies 
ranging from 3 to 30 Hz. As a result, the proposed S-transform spec-
trogram has a frequency range of 4–32 Hz. Furthermore, to reduce our 
system’s calculation complexity, the time-frequency matrix is parti-
tioned into 64 blocks in the time axis and 14 blocks in the frequency axis. 
By aggregating the power in each block, 896 blocks are formed. Finally, 
following the S-transform in this study, a 14 × 64 matrix is created, 
which will be used as the input of LGCN. 

3.3. Linear Graph Convolution Network (LGCN) 

It is clear that there are differences in the correlation between the 
various channels. The association between EEG waves recorded from 
nearby electrodes is stronger. As a result, the spatial information that the 
EEG signals provide will be crucial in the seizure detection process. Y. 
Zhao et al. provide a seizure detection model based on LGCN that is 
motivated by this idea (Zhao et al., 2021). 

A graph is used to model distinct EEG signals from different channels. 
The raw EEG data is represented by the graph’s nodes, which stand for 
the feature vector of EEG signals. Pearson correlation analysis is used to 
create the adjacency matrix, which is then binarized using a manually 
chosen threshold. The obtained adjacency matrix has elements that are 
either 0 or 1. The LCCN discussed here consists of two layers. Each node 
aggregates the first-order node characteristics in the first layer, updating 
its own node embeddings. Each node is embedded in a weighted sum 
average feature that keeps its own properties and superimposes all first- 
order neighbour data in the second layer. Each node continues to collect 
its own first-order node features in the same manner on the basis of 
superimposing information. The seizure detection is then made possible 
at the ReLU layer by combining the properties of two LGCN layers into 
one fully connected layer. The whole process of LGCN for seizure 
detection are shown in Figure 4. The convolution rules of LGCN are as 
follows: 

H(l+1) = σ
(

D̃
− 1
2 ÃD̃

− 1
2 H(l)W(l)

)
(4) 

Fig. 3. Steps of Converting Raw EEG signal into frequency image using Stockwell Transformation.  

Fig. 4. Linear graph convolutional network for seizure detection.  
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Where, Ã = A + IN represents the graph’s adjacency matrix, IN repre-
sents the identity matrix, and D̃ii =

∑
jÃij is the degree matrix, and W(l) is 

a trainable weight matrix. Furthermore, σ(•) denotes an activation 
function, and the activation function of Relu is used to add a nonlinear 
element. H(l) ∈ RN×D denotes the activation matrix of the L layer. H(0) =

x. This experiment’s initial inputs are node feature x and the adjacency 
matrix A. 

3.3.1. Graph Convolution Network (GCN) 
The proposed LGCN model investigated the relationship between the 

electrode pairs in the International 10–20 system in terms of physical 
position. Authors define raw EEG signals as x and the convolution kernel 
g_θ = diag(θ) in the fourier domain with parameters θ∈R^N. The spectral 
convolution on graphs x and gθ is calculated as follows: 

The proposed LGCN model investigated the relationship between the 
electrode pairs in the International 10–20 system in terms of physical 
position. Authors define raw EEG signals as x and the convolution kernel 
gθ = diag(θ) in the Fourier domain with parameters θ ∈ RN. The spectral 
convolution on graphs x and gθ is calculated as follows: 

gθ⋆x=UgθUT x (5)  

Where, U is the eigenvector matrix obtained by the symmetric normal-
ized Laplacian operator. 

L= IN − D− 1/2AD− 1/2 = UΛUT (6)  

Where, Λ and UTx denote the eigenvalue matrix and the Fourier trans-
form of x Calculating U is expensive. As a result, the k-order Chebyshev 
polynomials are used to approximate. 

gθʹ(Λ) ≈
∑K

k=0
θʹkTk(Λ̃) (7)  

Where, Λ̃ = 2Λ/λmax − IN and θʹ ∈ RK denote the Chebyshev coefficient 
vector. Tk(x) = 2xTk− 1(x) − Tk− 2(x), where T0(x) = 1,T1(x) = x is the 
Chebyshev polynomial. With these estimates, 

gθʹ⋆x ≈
∑K

k=0
θʹkTk(L̃)x (8)  

Where, L̃ = 2
λmax

L − IN and depicts the Chebyshev kth order approxima-
tion, which reduces model parameters and calculation complexity. 

3.3.1.1. Chebyshev’s linear model. When k = 1, above mentioned 
equation can be simplified as, 

gθʹ⋆x≈ θʹ0x+ θʹ1(L − IN)x= θʹ0x − θʹ1D− 1
2AD− 1

2x (9) 

Let, θ = θʹ0 − θʹ1, and we get the following approximation: 

gθ⋆x ≈ θ
(

IN +D− 1
2AD− 1

2

)
x (10) 

However, using the operation directly in a deep neural network 
model will result in gradient explosion or disappearance. As a result, the 
following normalization technique is introduced: 

IN +D− 1
2AD− 1

2→D̃
− 1

2ÃD̃
− 1

2 (11)  

Where, Ã = A + IN and D̃ii =
∑

jÃij. It is possible to obtain the layer-wise 
linear form GCN model 

H(l+1) = f
(
Hl,A

)
= σ

(
D̃

− 1
2ÃD̃

− 1
2H(l)W(l)

)
(12)  

3.4. DenseNet 

DenseNet is a type of convolutional neural network (CNN) that is 
designed to be efficient and effective for image recognition tasks. It was 
developed at the Chinese University of Hong Kong in 2016 (Huang et al., 
Weinbergerb). DenseNet’s key innovation is “dense connections,” with 
each layer receiving input from all previous layers. This enables more 
efficient learning and outperforms other CNNs in image classification. 
Advantages include reduced computation and parameters and address-
ing the issue of vanishing gradients. 

As illustrated in Fig. 5, dense connectivity is a means of continuously 
connecting the previous layer’s feature map with the input of the sub-
sequent layer to reinforce information flow between levels. 

DenseNet has Dense Blocks and Transition Layers. Dense Blocks have 
bottleneck layers and growth rates, and multiple layers are connected 
using channel-wise concatenation. This can increase network parame-
ters and decrease computation efficiency. 

To overcome this oversized parameter problem, the authors of 
DenseNet find a solution that is using the growth rate (=k) as a hyper-
parameter, and then apply the Batch Normalization (BN) - > Rectified 
Linear Unit (ReLU) - > Conv (1 × 1) - > Batch Normalization (BN) - >
ReLU - > Conv (3 × 3) nonlinear transformation to the DenseNet 
structure. The bottleneck layer is depicted in Fig. 6. Furthermore, as 
previously stated, it is utilized to reduce the amount of input feature 
maps and enhance calculation efficiency. 

As shown in Fig. 7, the transition layer is responsible for lowering the 
width and height of feature maps as well as the number of feature maps. 
It is linked behind the dense block and comprises of BN - > ReLU - >
Conv (1 × 1) - > Avg pool (2 × 2). The compression factor, which has a 
value between 0 and 1, is now used to specify how much the feature map 
should be shrunk. If this value is set to 1, the number of feature maps 
remains constant. Furthermore, DenseNet applied the composite func-
tion consisting of the order of BN - > ReLU - > Conv to the layer (see 
Fig. 8). 

3.5. Hybrid model 

This work presents a hybrid model that combines LGCN with Den-
seNet. The suggested model uses the LGCN algorithm to build its first 
half. It uses the feature map from this section as DenseNet input data to 
represent the spatial and structural information on the feature, and then 
propose a hybrid model that classifies using the sigmoid function. In 
particular, the input data are picture data that have been converted by 
applying S- transform to the raw EEG signal and consist of frequency, 
time, and channel. Then images are transformed into a graph repre-
sentation so that it can be used as an input graph. After processing 
through LGCN, the output of the feature is used as the input of DenseNet. 
The Conv layer creates an output feature map from the input data that is 
twice as fast as the growth rate. Following that, all dense blocks have the 
same number of layers, and Conv (3 × 3) in them does 1-pixel zero- 
padding to keep the size of the feature map constant. The transition 
layer is used after the dense block. Conv (1 × 1) and average pooling are 
used to minimize the size of the feature map in transition layers. Lastly, 
the features generated through DenseNet are categorized as interictal or 
preictal states using the Sigmoid function. 

4. Dataset 

Dataset is taken from Boston Children’s Hospital (CHB) and the 
Massachusetts Institute of Technology (MIT), which is publicly available 
in PhysioNet.org (Shoeb & Guttag, 2010), and contains scalp electro-
encephalogram (sEEG) data from 23 pediatric subjects. 

Scalp EEG waves were recorded with 23 electrodes at a sampling rate 
of 256 Hz. Fixed 23-electrode setups are employed in 15 tests, with some 
electrode configuration variations in the remaining measurements. The 
recordings are organized into 24 cases, with most of the 24 cases 
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segmenting the EEG signals into 1-h epochs, but epochs lasting 2–4 h can 
also be found. The overall length of the accessible EEG recordings is 
around 877.39 h. In all, 877.39 h of EEG data were used in this study, 
with 2.50 h used for training and 874.89 h used for assessing perfor-
mance. According to the database’s annotation files, most of the 24 cases 
have frequent changes in the EEG signal recording montage, with 
channels being added or removed from one epoch to the next during the 
recording process. There are 18 channels in total that are consistent 
across all 24 cases, including: {“FP1–F7”, “F7-T7”, “T7-P7”, “P7–O1”, 
“FP1–F3”, “F3–C3”, “C3–P3”, “P3–O1”, “FP2–F4”, “F4–C4”, “C4–P4”, 
“P4–O2”, “FP2–F8”, “F8-T8”, “T8-P8”, “P8–O2”, “FZ-CZ” and “CZ-PZ”}. 
The CHB-MIT dataset lacks preictal and interictal labels, however they 
can be retrieved using seizure timings from each patient’s meta-data file. 
This is applicable in all circumstances except Case 24, where the file’s 
start and end times are not stated. To identify interictal states, a specific 
distance from the ictal phase must be maintained, but this may vary 
among patients. Patients with small distances use interictal periods that 
are far from the ictal phase, while those with sufficient distance use 
periods further away. We assume the pre-ictal state lasts at least an hour 
based, and the interictal state occurs 4 h before or after the seizure. The 
model excludes the 5-min interval before the seizure onset, and prompt 
intervention is necessary for seizure control. 

5. Experiment 

5.1. Procedure 

Since 1 s of EEG signal for 18 channels is considered, the input im-
age’s dimensions are 192 × 256 × 18. The proposed DenseNet is made 
up of 5 dense blocks, each of which comprises 4 consecutive convolu-
tional layers (dense layers). In the dense block, a growth rate of 32 is 
applied. Each dense block increases dense layers by 12, transition layers 
use 1 × 1 conv and 2 × 2 pooling. A dropout operation (not displayed in 
the table) with a value of 0.25 is also included after each convolutional 
layer to prevent the network from over-fitting. Dense block, global 
average pooling, sigmoid classifier classify pre-ictal/inter-ictal states. 
The detailed configurations of DenseNet are shown in Table 2. 

The k-fold cross-validation approach is used in the experiment. The 
data is divided into k folds for K-fold cross-validation, which trains with 
k-1 and tests with the remaining k folds. The model’s verification result 
is the average of the result values acquired by repeating this method k 
times. 

Many characteristics, such as the number of channels, interictal 
period, preictal period, and record continuity, vary among all subjects. 
And for that a total of 22 electrode channels, we used 18 channels. The 
distance from ictal phase determines interictal period, with variations 
for each patient. Two cases: close distance uses far interictal, while 
sufficient distance uses beyond a specific distance. Pre-ictal state lasts an 

Fig. 5. DenseNet architecture.  

Fig. 6. Dense block.  

Fig. 7. Transition block.  
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hour, and interictal occurs 4 h before/after seizure. For seizure detec-
tion, the 5-min interval before seizure is excluded. If a seizure is pre-
dicted, 5 min are needed for immediate treatment. 

5.2. Ablation tests 

Using the LGCN model, the DenseNet model, and the suggested 
LGCN-DenseNet model, we conduct experimental comparisons to vali-
date the combined contribution of LGCN and DenseNet in our model. 

Fig. 8. Accuracy (a), sensitivity (b), specificity (c), false positive rate (d), F1-score (e), and ROC curve (f) averaged over preictal lengths of 5, 10, and 15 min.  

Table 1 
Band frequency of EEG signals (Saminu et al., 2021).  

Band Frequency (Hz) 

Delta 1–4 Hz 
Theta 4–7.5 Hz 
Alpha 7.5–13 Hz 
Lower Beta 13–16 Hz 
Higher Beta 16–30 Hz 
Gamma 30–40 Hz  
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The same model parameters are used throughout all experiments to 
guarantee consistency and reliability. Table 7, displays the outcomes. 
Table 3, shows that the suggested LGCN-DenseNet model outperforms 
the LGCN and DenseNet models using the same EEG characteristics in 
three different metrics, demonstrating the robustness and effectiveness 
of EEG signal processing. Incorporating the best features of both algo-
rithms into a single model greatly enhances its capacity for learning. 

6. Result analysis 

6.1. Productive setup 

Here we will discuss the setup of our workstations, the hyper-
parameters of our model of LGCN-Densenet, the methods we used to 
conduct our experiments, and the metrics we used to evaluate our results 
Table 4, shows that a 32 GB RAM and an Intel Core i7-12700 CPU were 
utilized. The suggested model was trained on a computer with a GPU 
(graphics processing unit) from Nvidia’s GeForce RTX 3060 Ti series. 
The software stack being tested consists of Python 3.9, Keras 2.3.1, and 
Tensorflow 2.6.0. 

As a hyperparameter of, the growth rate was set to 32 and the 
compression factor was set to 0.5, as shown in Table 5. Additionally, as 
indicated the optimizer that will be utilized is Adam, and the activation 
function will be Leaky ReLU. The learning rate will be 0.001, and it will 
be set to that value. 

6.2. Evaluation metrics 

The model’s effectiveness is measured in this study using five sta-
tistical measures: sensitivity, specificity, accuracy, F1-score, and area 
under the receiver operating characteristic curve (AUC). The formula for 

calculating sensitivity is as follows: 

Sensitivity=
TP

TP + FN
(13)  

In this context, TP refers to the total number of correctly detected 
epileptic seizure pieces. FN is an abbreviation for “false negatives,” 
which stands for the total number of misidentified seizure items. In all 
positive cases, sensitivity gives a precise representation of the propor-
tion. The recall number is identical to that one. 

Accurately determining a target’s specificity requires the following: 

Specificity=
TN

TN + FP
(14)  

where TN stands for “true negatives,” which refers to the total number of 
correctly detected non-epileptic components. The acronym FP, which 
stands for “false positives,” denotes the number of improperly detected 
seizure fragments. Precision is the frequency with which erroneous 
positives are ruled out. We use the following formula to determine 
accuracy: 

Accuracy=
TP + TN

TP + TN + FP + FP
(15) 

This indicates the proportion of valid predictions made throughout 
the whole set of samples. F1-score and precision may be computed as 
follows: 

F1 − Score =
2 ∗ precision ∗ recall

precision + recall
(16)  

Precision=
TP

TP + FP
(17) 

The F1-score is a measurement of how accurate a binary classifica-
tion model is by taking the harmonic mean of the precision and recall 
values. Precision and recall could be measured in their whole via the use 
of this approach since both aspects are also included. Precision may be 
described as the proportion of the actual number of positive samples to 
the total number of samples that were projected to be positive. The area 
under the ROC curve, often known as the AUC, is a model assessment 
indicator that is used for classification tasks. The integral value of the 
ROC curve is the approach that is used to calculate the AUC. 

7. Discussion 

Using the Stockwell transformation, time-frequency characteristics 
may be extracted, which is essential for capturing the dynamic changes 
in EEG data that take place during seizures. There is no universally 

Table 2 
The Configuration of DenseNet.  

Layer Operations Output 

Convolution 
Layer 

Convolution using 24 filters of 7 × 7 with stride 2 96 × 128 
× 24 

Pooling Layer Sub-sampling using max pooling of 3 × 3 filter 
with stride 2 

48 × 64 ×
24 

Dense Block 4 times convolution using 3 × 3 filter 48 × 64 ×
72 

Transition Layer Convolution using 1 × 1 filter, then average- 
pooling using 2 × 2 filter with stride 2 

24 × 32 ×
72 

Dense Block 4 times convolution using 3 × 3 filter 24 × 32 ×
120 

Transition Layer Convolution using 1 × 1 filter, then average- 
pooling using 2 × 2 with stride 2 

12 × 16 ×
120 

Dense Block 4 times 3 × 3 convolution 12 × 16 ×
168 

Transition Layer Convolution with 1 × 1 filter, then average- 
pooling using 2 × 2 filter with stride 2 

6 × 8 ×
168 

Dense Block 4 times convolution using 3 × 3 filter 6 × 8 ×
216 

Transition Layer Convolution using 1 × 1 filter, then average- 
pooling using 2 × 2 filter with stride 2 

3 × 4 ×
216 

Dense Block 4 times convolution using 3 × 3 filter 3 × 4 ×
264 

Classification 
Layer 

Global average pooling 1 × 1 ×
264 

2 output classes fully connected network with 
Sigmoid activation 

2  

Table 3 
Individual tests on each model.  

Method Accuracy Sensitivity Specificity 

LGCN 95.29% 93.62% 94.44% 
DenseNet 92.45% 85.65% 91.19% 
LGCN-DenseNet 98.00% 97.84% 98.33%  

Table 4 
Hardware setup.  

Software or Hardware Specification 

CPU Intel Core i7-12700 
GPU GeForce RTX 3060 Ti 
RAM DDR4 32 GB 
Python 3.9 
Tensorflow 2.6.0 
Keras 2.3.1  

Table 5 
Hyperparameter setup.  

Hyperparameters Values 

Growth rate 32 
Compression factor 0.5 
Activation function Leaky ReLU 
Optimizer Adam 
Learning rate 0.001  
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accepted duration for the preictal state. Based on the other studies 
available in the literature (Chen et al., 2021; Salamon & Bello, 2017; Li 
et al., 2022), in this study we choose a preictal duration of at least 5, 10 
or 15 min before seizure, as such period is supported in (Ryu, Joea; ). 
Fig. 8 depicts the average Acc, Sen, Spec, FPR, and F1-scores for preictal 
lengths of 5, 10, and 15 minutes. According to the experimental data, the 
model trained under the premise that a preictal length of 5 minutes 
assures greater sensitivity than preictal lengths of 10 and 15 minutes. In 
comparison to typical time-domain or frequency-domain features, this 
can offer a more robust and useful feature representation. LGCN effi-
ciently captures structural information in EEG signals. Given that sei-
zures frequently present as aberrant patterns in the underlying brain 
activity, this can be especially helpful in treating seizures. Combining 
LGCN and DenseNet creates an effective model that recognizes intricate 
patterns in data with many dimensions. The model can better detect 
seizures, being more resilient to noise, missing data, and outliers 
frequently present in EEG signals. Table 6 shows the accuracy results of 
our model. 

Table 6 presents the mean accuracy, sensitivity, specificity, false 
positive rate, and F1-score for each patient, categorized by the chosen 
preictal length. The model assuming a preictal length of 5 min demon-
strates the highest average sensitivity. However, it is worth noting that 
for patient 7, the sensitivity is lower for the 5-min model compared to 
the 10- and 15-min models. This indicates that the preictal character-
istics did not manifest prominently during the initial 0–5 min period for 
patient 4, but became more apparent after 5 min. Conversely, for patient 
23, the sensitivity of the trained model was relatively lower for the 10- 
and 15-min models compared to the 5-min model. This suggests that the 
preictal features were more distinct during the 0–5 min period for pa-
tient 24. Overall, the model assuming a preictal length of 5 min achieved 
the best average performance. However, the model assuming a preictal 
length of 15 min demonstrated a balanced outcome without signifi-
cantly compromising the results for each patient. 

This proposed method was compared to already-in-use algorithms in 
order to unbiasedly assess its efficiency (Khan et al., 2018; Truong et al., 
2018; Ozcan & Erturk, 2019; ). A method of transforming EEG signals 
into picture data by STFT and categorizing them through CNN was 
proposed by the authors of (Khan et al., 2018). In this paper (Truong 

et al., 2018), employs CWT to convert an EEG signal into picture data, 
and CNN is used for classification. The authors of (Ozcan & Erturk, 
2019) predicted seizures by feeding Hjorth parameters as input to 
3D-CNN. In (Zhao et al., 2021), EEG signal is transformed into image 
data using DWT and uses customized hybrid model (DenseNet-LSTM) to 
classify. As shown in Table 7, this proposed method outperforms the 
existing method in terms of performance. 

8. Conclusion 

This work’s experimental results and comparisons with previous 
studies shows that this proposed method is efficient and reliable. This 
method achieved 98% detection accuracy, 97.84% sensitivity, 98.60% 
specificity, 0.069 hourly FPR, and 0.967 F1-score. This suggests that it 
has the potential to be used as a seizure detection tool to effectively 
mitigate the risk of epilepsy patients. LGCN works very well with other 
deep learning architectures such as CNNs, RNNs and LSTMs to produce 
more potent models, which are especially helpful when dealing with 
time series data and sequential data. The DenseNet technique, which 
improves the existing CNN problem addressed in this study, improves 
information flow throughout the network and increases computational 
efficiency. DenseNets are well-known for their capacity to collect 
complicated features in images as well as perform well on image clas-
sification tasks. The proposed method has to be thoroughly evaluated 
with more EEG data because the majority of the CHB-MIT dataset’s 
patients are children. However, the results of this work and comparisons 
with other research demonstrate the effectiveness and dependability of 
the suggested approach. This demonstrates the possibility of using a 
seizure detection technology to successfully lessen the harm posed by 
epilepsy sufferers. In future work, we are planning to test our proposed 
model on additional datasets to further evaluate its performance and 
generalizability. We are also trying to improve our preictal detection 
system so that it can detect the exact start point of the preictal period. 
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Table 6 
Results of seizure detection based on preictal length in 24 patients from the CHB-MIT scalp EEG dataset.  

Patients Preictal Length: 5 min Preictal Length: 10 min Preictal Length: 15 min 

Acc. 
(%) 

Sen. 
(%) 

Spec. 
(%) 

FPR F1–S Acc. 
(%) 

Sen. 
(%) 

Spec. 
(%) 

FPR F1–S Acc. 
(%) 

Sen. 
(%) 

Spec. 
(%) 

FPR F1–S 

01 100 100 100 0 1 100 100 100 0 1 100 99.96 100 0 0.999 
02 95.94 97.97 95.91 0.109 0.989 95.89 98.79 98.98 0.01 0.977 97.89 98.86 98.99 0.01 0.897 
03 96.82 96.30 97.33 0.024 0.967 96.86 94.49 99.23 0.012 0.908 96.98 94.99 99.26 0 0.909 
04 98.26 95.46 96.06 0.062 0.977 98.46 99.80 96.11 0.093 0.98 98.46 99.86 96.09 0.098 0.991 
05 98.32 97.82 97.83 0.041 0.946 97.29 96.56 98.02 0.02 0.972 97.29 96.56 98.56 0.02 0.987 
06 94.20 98.61 99.78 0.004 0.902 96.60 95.41 97.79 0.052 0.963 96.60 95.79 97.68 0.058 0.961 
07 100 100 100 0 1 99.40 98.81 100 0 0.993 99.40 98.88 100 0.015 1 
08 100 100 100 0 1 100 100 100 0 1 100 100 100 0 1 
09 99.82 99.25 100 0 0.998 98.64 99.28 100 0 0.916 98.94 99.25 100 0 0.999 
10 98.52 98.11 98.24 0.13 0.916 97.58 90.45 99.72 0.096 0.913 97.58 90.98 99.72 0.096 0.985 
11 100 100 100 0 1 100 100 100 0 1 100 100 100 0 0.995 
12 97.07 96.99 99.16 0.008 0.879 95.91 94.39 99.43 0.025 0.953 95.91 94.97 99.43 0.036 0.961 
13 98.05 99.41 99.14 0.103 0.922 91.05 88.19 98.90 0.08 0.906 96.95 90.26 98.76 0.008 0.889 
14 95.32 97.20 98.03 0.115 0.901 95.19 90.66 98.93 0.012 0.931 97.79 90.66 98.82 0.019 0.974 
15 98.43 95.30 96.02 0.118 0.902 98.97 97.12 99.82 0.093 0.94 98.97 97.12 99.75 0.049 0.947 
16 99.03 91.20 90.86 0.091 0.778 97.33 91.40 98.27 0.087 0.97 97.33 93.90 98.27 0.087 0.972 
17 100 100 100 0 1 99.80 100 99.60 0.004 0.998 99.80 100 99.60 0 1 
18 97.03 98.06 99.64 0.003 0.92 95.23 95.72 90.73 0.092 0.936 95.23 95.72 92.06 0.098 0.967 
19 100 100 100 0 1 100 100 100 0 1 100 100 100 0 1 
20 99.96 100 99.93 0 0.999 99.86 100 99.72 0.002 0.998 99.89 100 99.89 0.004 0.998 
21 95.40 98.66 98.99 0.03 0.952 93.36 91.87 99.83 0.051 0.932 93.70 91.89 99.83 0.032 0.994 
22 97.31 97.04 96.68 0.3 0.836 91.61 98.43 98.79 0.112 0.928 91.83 98.59 98.79 0.106 0.988 
23 96.06 96.01 97.42 0.026 0.966 99.01 99.05 96.97 0.17 0.933 99.65 99.05 96.97 0.180 0.95 
24 96.46 94.76 98.96 0.11 0.825 98.93 97.47 99.38 0.076 0.955 98.93 97.76 99.38 0.076 0.878 
Mean 98.00 97.84 98.33 0.053 0.967 97.37 96.58 98.76 0.045 0.958 97.88 96.88 98.83 0.044 0.968  
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