

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE:

Ingeniero Civil

AUTORES:

Mercedes Fernandez, Daniela Paola (orcid.org/0000-0003-4802-4733)

Yupangui Chang, Francisco Fernando Tito (orcid.org/0000-0001-5078-6791)

ASESORA:

Dr. Panduro Alvarado, Elka (orcid.org/0000-0003-4866-8707)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LÍNEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA:

Desarrollo económico, empleo y emprendimiento

TRUJILLO - PERÚ

2022

DEDICATORIA

A Dios por iluminarme día a día y permitirme lograr mis metas.

A mi querida madre que desde el cielo me ilumina para seguir adelante con mis objetivos.

A mi familia por su apoyo incondicional a lo largo de la carrera profesional.

Francisco F. Yupanqui Chang.

A Dios y al universo por brindarme inteligencia y sabiduría durante cada etapa de mi vida, gracias a ellos he logrado cumplir con mis primeros objetivos.

A mis padres, por el apoyo incondicional a lo largo de mi vida, muchos de mis logros se los debo a ellos.

A mi hermano Sergio que desde el cielo me ilumina para seguir adelante con mis proyectos.

Daniela P. Mercedes Fernández.

AGRADECIMIENTO

A mi querido Dios por darme la vida y permitirme vivir un momento inolvidable mientras realizaba esta investigación.

A mi asesor Mg. Ing. Villar Quiroz, Josualdo Carlos, quien me orientó y me brindó conocimientos para que consiguiera desarrollar la investigación antes mencionada.

A mi familia por siempre apoyarme incondicionalmente.

A mis profesores de la Facultad de Ingeniería Civil de la Universidad César Vallejo, cuya tarea fue brindarme sus conocimientos para luego implementarlos en mi investigación.

Francisco F. Yupanqui Chang.

A Dios por brindarme vida, salud y permitirme lograr mis objetivos día a día.

A mis padres quienes me brindaron su apoyo incondicional y motivaron mi formación académica. Así mismo a mis familiares en general que siempre me orientaron con buenos consejos y apoyo moral.

Daniela P. Mercedes Fernández.

ÍNDICE DE CONTENIDOS

DEDICATORIAii
AGRADECIMIENTOiii
ÍNDICE DE CONTENIDOSiv
ÍNDICE DE TABLASvi
ÍNDICE DE FIGURASvii
RESUMENix
ABSTRACTx
I. INTRODUCCIÓN1
II. MARCO TEÓRICO8
III. METODOLOGÍA26
3.1. Enfoque tipo y diseño de investigación:
3.2. Operacionalización de variable
3.3. Población, muestra, muestreo y unidad de análisis29
3.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad
3.6. Método de análisis de datos
3.7. Aspectos éticos
4.1. Levantamiento topográfico
4.2. Estudio de Mecánica de Suelos:
4.3. Estudio de Tráfico 47
4.4. Diseño de Pavimento Flexible
V. DISCUSIÓN
VI. CONCLUSIONES
VII. RECOMEDACIONES69

REFERENCIAS	70
ANEXOS	74

ÍNDICE DE TABLAS

Tabla 1. Matriz de clasificación de variables	29
Tabla 2. Instrumentos y validaciones	30
Tabla 3. Coordenadas UTM	37
Tabla 4: Cuadro de coordenadas de punto de estaciones	39
Tabla 5. Número de Calicatas en exploraciones de suelos	43
Tabla 6: Tabla de Coordenadas de calicatas	43
Tabla 7: Ensayos de Laboratorio	43
Tabla 8: Tabla de contenido de humedad (%)	44
Tabla 9: Tabla de Análisis Granulométrico	44
Tabla N°10: Tabla de Clasificación de AASHTO y SUCS	45
Tabla 11. Resumen de los estratos con sus principales propiedades	46
Tabla 12. Propiedades físicas y valores de CBR para el diseño del	
pavimento	47
Tabla 13. Resumen del índice Medio Diario Semanal	48
Tabla 14. índice Medio Diario Anual	49
Tabla 15. Factor Vehículo Pesado	50
Tabla 16. Número de ejes equivalentes	51
Tabla 17. Numero de Repeticiones de Eies Equivalentes de 8.2 tn	52

ÍNDICE DE FIGURAS

Figura 1. Ecuación general	.17
Figura 2. Número estructural	.17
Figura 3. Gráfico de coeficiente estructural de la mezcla asfáltica (a1)	.18
Figura 4. Diagrama de Diseño de Investigación	. 27
Figura 6. Plano de Kilometraje	.36
Figura 7. Plano de ubicación del lugar de estudio	37
Figura 8. Ubicación del lugar de estudio	.38
Figura 9. Estudio en campo	.40
Figura 10. Personal técnico	. 41
Figura 11. Diseño de carretera	. 41
Figura 12. Extracción de muestras	.42
Figura 13. Tabla estadística índice Medio Anual	. 49
Figura 14. Factores de distribución Direccional y de Carril para determinar el	
Transito en el Carril de Diseño	. 51
Figura N°15. Número de repeticiones acumuladas de ejes equivalentes de	
82t, en el carril de Diseño	53
Figura 16. Categoría de sub rasante	54
Figura 17. Valores de nivel de confiabilidad	. 55
Figura 18. Coeficiente Estadístico de la Desviación Estándar Normal	. 56
Figura 19. Índice de serviciabilidad inicial	57
Figura 20. Índice de Serviciabilidad Final	. 58
Figura 21. Diferencial de Serviciabilidad	59
Figura 22. Cálculo de Ecuación AASHTO 93	.60
Figura 23. Coeficientes Estructurales de las Capas	. 61
Figura 24. Calidad de Drenaje	. 62
Figura 25. Valores recomendados del Coeficiente de Drenaje	.62

Figura 26. E	Espesores mínimos en función de los ejes equivalentes	63
Figura 27. [Diseño de pavimento Flexible	64

RESUMEN

La presente investigación se elaboró en Chicama, donde se determinó el diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93, Distrito de Chicama, La Libertad 2022. Para el desarrollo de la tesis se utilizó un diseño no experimental de tipo transversal, la muestra es toda la carretera, para la recolección de datos se realizó con la técnica de análisis documental, los instrumentos utilizados fueron la ficha de recolección de datos y fichas de resumen, para analizar los datos se emplearon softwares, el problema es que la carretera en el acceso a Chicamita se encuentra en un estado precario ya sea por el mismo diseño geométrico y diversas condiciones climatológicas, en consecuencia, esto genera riesgos a los conductores que circulan durante el día con sus vehículos; es por ello que se logró determinar un diseño de pavimento flexible de la carretera con parámetros según norma, empleando diferentes softwares de dibujo y calculo tales como Auto Cad, Civil 3D, Microsoft, entre otros programas relacionados a la ingeniería, de este modo se determinó una carretera de tercera clase, así mismo se realizó el estudio de suelos y se analizó el estudio de tráfico.

Palabras Clave: Diseño, pavimento flexible, Metodología AASHTO, estado de condición.

ABSTRACT

The present investigation was carried out in Chicama, where the design of the flexible pavement of the access road to Chicamita was determined using the AASHTO 93 method, District of Chicama, La Libertad 2022. For the development of the thesis, a non-experimental design of the type cross-sectional, the sample is the entire highway, for data collection it was carried out with the documentary analysis technique, the instruments used were the data collection sheet and summary sheets, software was used to analyze the data, the problem is that the road in the access to Chicamita is in a precarious state due to the same geometric design and different weather conditions, consequently, this creates risks for drivers who circulate during the day with their vehicles; That is why it was possible to determine a flexible pavement design for the road with parameters according to the standard, using different drawing and calculation software such as Auto Cad, Civil 3D, Microsoft, among other programs related to engineering, in this way it was determined a third class highway, likewise the soil study was carried out and the traffic study was analyzed.

Keywords: Design, flexible pavement, AASHTO Methodology, state of condition.

I. INTRODUCCIÓN

A nivel mundial la infraestructura vial es de vital alcance debido a que dicha infraestructura acepta la conexión entre diferentes lugares del mundo para el transporte de las personas, desarrollando así un desarrollo socioeconómico esencialmente para proteger las carencias de salud, alimentación, educación y trabajo. Sin embargo, sabemos que hoy en día aún existe carencia de vías debidamente pavimentadas es por ello que en esta investigación se busca a profundidad conocer el diseño de pavimento flexible de la carretera mediante el método AASHTO 93 para una vía que se encuentra en mal estado de tal manera que se pueda actuar con rapidez ante cualquier variedad de fallas que se presenten en la estructura de la vía. Por otro lado, el transporte en Colombia es una variable de mucha importancia ya que afecta en toda la economía de las regiones rurales y urbanas, de igual forma es necesario una buena planificación en la infraestructura vial para garantizar y asegurar en dar a la ciudadanía una calidad de vida mejorada. (Bernal, Marín y Poveda, 2014).

En la presente investigación se desarrollan tres objetivos de **desarrollo sostenible**, que si bien es cierto se enfoca en la industria, innovación e infraestructura desempeñando un papel importante al momento de promover tecnologías nuevas, proporcionar el comercio internacional y permitir el uso óptimo de los recursos apoyando a las pequeñas industrias con la finalidad de que el desarrollo sostenible se vaya incrementando de tal manera que se pueda lograr la consolidación de ciudades y comunidades sostenibles para garantizar una vida sana a los pobladores promoviendo la salud y bienestar común.

A nivel internacional, en **Colombia**, los estudios señalan que la infraestructura vial, tiene una planificación de competitividad, movilidad, desarrollo y comunicación, adquiriendo un reconocimiento como país en vía de desarrollo generando así que la inversión en infraestructura vial reactive la economía en diferentes departamentos, incrementando de cierta manera en producción agropecuaria disminuyendo los precios de transporte, duración de traslado y facilidad de entrada. Así mismo, la zona de estudio con más del 88% está sin pavimentar y en mal estado generando así un plan de recuperación, el cual aceptará un incremento de economía agrícola, considerando las vías y los caminos a tomar cartas en el asunto que corresponden a una red terciaria del

país. Así mismo, se propone utilizar el procedimiento INVIAS en el diseño de estructuras en pavimento flexible con la finalidad en volúmenes de tránsito moderado y alto, AASHTO 93 E INSTITUTO DEL ASFALTO para la vía la YE - SANTA LUCIA BARRANCA LEBRIJA entre las abscisas K 19+250 A K25+750, (Salamanca y Zuluaga, 2014)

En **Ecuador** el estado de condición de su infraestructura vial implica en el nivel de desarrollo, ya que generalmente las vías en excelente estado mejoran la circulación de vehículos, la comunicación y el transporte en general, en efecto, la máxima prioridad, apunta a efectuar proyectos de pavimentación que cumplan con las solicitaciones requeridas de algunas vías, de tal manera que se pueda asegurar un aceptable índice de serviciabilidad en el tiempo de vida del servicio estimado. (Sánchez, 2016)

En **México**, conservar el estado de condición del **pavimento flexible** es muy crucial para no generar sobrecostos en el transporte de bienes y personas. Por otro lado, una nación que deja pasar por alto el deterioro de su transporte vial obtendrá un sobrecosto de intervención vehicular en una trayectoria que puede alcanzar entre 1% y 3% del producto interno bruto. Asimismo, la operatividad que ofrecen las carreteras de un país es importante para la comodidad y seguridad al momento de viajar. De igual manera, el interés de la gestión de pavimentos, noción que nació al finalizar los años setenta y que ha desarrollado de forma rápida al pasar de los años, juntando diversas actividades para administrar y proveer las carreteras. (Macea, Morales y Márquez, 2015)

En Argentina, el diseño de la articulación en las carreteras de hormigón es el encargado del registro de su estado de condición, así mismo de preservar la calidad de servicio en los niveles mayores al menor costo y su capacidad estructural de las carreteras. La obligación de tener un sistema de articulación es la consecuencia del afán de examinar el agrietamiento longitudinal y transversal. Este agrietamiento se manifiesta por la conjugación de diferentes efectos: la reducción por secado del concreto, las alteraciones de temperatura y de humedad, la aplicación de las cargas de la circulación, terreno de apoyo, las limitaciones de la subrasante y asimismo por algunas particularidades de los materiales utilizados. (Quispe y Sota, 2013)

En el **Perú**, gran cantidad de vías a nivel nacional se encuentran muy deterioradas debido al alto nivel de transitabilidad vehicular y escaso mantenimiento, es por ello que se considera mejorar el estado de condición de las carreteras. Por otro lado, en la ciudad de Huancayo existe más de 396 vías de circulación a nivel nacional, el cual tiene un aproximado de 3,907.54 km son vías pavimentadas y 20,674.62 km que no están pavimentadas; tienen una referencia de una totalidad de 24,582.16 km de acuerdo al registro que se determinó para los estudios designados. La red vial nacional tiene un porcentaje de 15.90% en carreteras asfaltadas y un porcentaje de 84.10% de carreteras sin pavimentar. En dicho proyecto se optó por mejorar la pavimentación flexible de la ciudad de Huanchos, Churcampa, Huancavelica, debido a las malas condiciones de tránsito. (Arias y Velásquez, 2021).

Por otra Parte, el viceministro del MTC señaló que, en el Foro Anual de infraestructuras, Energías y Minería, que han destinado cerca de 9.868 millones de dólares para la mejora del estado de condición de la Red Vial Nacional Peruana que alcanza 4.936 Km, que traspasa las cumbres de los Andes peruanos y abarca la Amazonía del Perú (Chacha y Córdova, 2021)

A nivel local en la provincia de Ascope el mejoramiento del estado de condición en la infraestructura vial de la carretera acceso Chicamita Distrito de Chicama, ocurre la urgente necesidad de mejorar y diseñar la red de vías, por lo que se tiene la urgente necesidad de mejorar la infraestructura en términos de carreteras, que conlleven a un mayor desarrollo de la transitabilidad vial de manera progresiva, aunque por otro lado aún haya deficiencias que urge abordar. (Ayala y Valderrama, 2020).

La presente investigación determinará el diseño de pavimento flexible de la carretera acceso Chicamita mediante el método AASHTO 93, Distrito de Chicama, La libertad 2022; siendo respaldada con la aplicación de método AASHTO y Manual DG - 2018 para el mejoramiento de carreteras donde se especifican los requisitos mínimos para que cumpla con los parámetros indicados, el mejoramiento, clasificación, el análisis y métodos de ensayos.

(Hallasi, 2019), encontró un trabajo de estudio a nivel de subrasante donde se observó que el mantenimiento de vía en el tramo 07+226 Km. y el comienzo de 4+813.38 Km. en la carretera del lugar denominado sector de retiro del Carmen,

donde señalan que hicieron labores de cuneteo, desbroces, recuperación de plataforma y ensanchamiento, para obtener un mejoramiento en su estado de condición y facilitar el crecimiento de la zona con todas las etapas que van desde su inicio a fin del proyecto, de acuerdo con las condiciones actuales en el parque automotor en conjunto con las sugerencias y recomendaciones válidas por las Normas Peruanas de Diseño de Carreteras.

(Fernández, 2019), encontró que es valioso y muy conveniente determinar las características físicas de la superficie y la conducta de los suelos que se utiliza en un proyecto de diseño de carreteras de pavimento flexible. Una de tantas particularidades de las infraestructuras viales que nos proporciona el tránsito vehicular, pero en cambio hoy en día encontramos las calles con un estado de deterioro por no realizar un estudio de suelo bueno o por no utilizar en la ejecución de los proyectos los materiales de calidad.

(Arias y Velásquez, 2021), Encontró que en Barranca con el aporte del método Índice de Condición del Pavimento (PCI) se logró establecer la clase de intensidad de durabilidad en el pavimento flexible el cual osciló entre 47% y 49% el cual demuestra que en la vía se encuentra en condiciones normales porque detecta defectos como la piel de cocodrilo, baches, agrietamientos en secciones, agujeros, agrietamientos longitudinales y transversales. En efecto el investigador optó por implementar una intervención de restauración de conservación en las aceras de la ciudad de Barranca debido a su **mal diseño** y precarias condiciones donde se presentan diferentes patrones de hundimiento extremo.

En conclusión, con las tesis recaudadas nos señalan que **el estado de condición** de la carretera va a depender del mejoramiento del pavimento mediante un diseño a través de la metodología AASHTO 93 con el objetivo principal de dar solución a las malas condiciones en la que se encuentra el tránsito vial.

La empresa CALEB CONSTRUCTORES S.A.C (2018), se ejecutaron trabajos de mejoramiento y ampliación de carreteras en la Provincia de Ascope, se llegó a realizar con una inversión de S/ 235,601.84 teniendo como finalidad lograr el mejoramiento y ampliación de carreteras del sector 1 Ascope. Las labores a

realizar son compactación de terreno, rellenar afirmado, restauración en baches, etc.

En la actualidad la carretera acceso Chicamita - Chicama - Ascope, cuenta con un acceso a nivel de trocha carrozable, dicha carretera no cumple con las normas y parámetros requeridos para el servicio de transporte, debido a que no se encuentra construida en su totalidad de acuerdo a las normas. De acuerdo con las regulaciones del ministerio de transporte, en este caso la longitud de la carretera inicialmente es de 6 m, luego se reduce a 3.50 m presentando reducción de calzadas y curvas, esta vía presenta huecos muy pronunciados, además de ello carece de obras de arte necesarias para la misma operación.

Otro problema de gran importancia es el incumplimiento en la norma DG-2018 por el mal diseño de los radios y el mal estado en el que se encuentran, generando así frecuentes accidentes vehiculares, así como colisiones y ahuellamiento en terrenos contiguos por el limitado espacio de paso entre vehículos ya que la vía tiene un promedio de 5.50 metros de ancho sin veredas ni zanjas, también carecen de señalética tránsito y sistemas de control.

Unas de las causas por el cual el pavimento se encuentra en un estado precario es por la falta de un mantenimiento, el cual ha ocasionado que el pavimento se encuentre en bajas condiciones y el factor que afectó drásticamente fue el deterioro de la carretera en los años 2017 por el fenómeno del niño provocando inundaciones por las aguas pluviales ocasionando que el agua filtre por la estructura del pavimento así generando las patologías ya mencionadas.

Por último, una de las causas por el cual ocurren los percances al volante y desperfectos en los automóviles son la presencia de las grietas en el pavimento, socavones, baches entre otras diferentes deformaciones que podrían incrementar el riesgo de accidentes como pérdida de control del volante, fatiga al conductor por la cantidad de baches, tramos arenosos que ocasionan hundimientos, etc.

Por lo tanto, lo que se busca enfatizar con este proyecto de investigación es un diseño de pavimento flexible consiguiente a que esta vía se encuentra en **mal estado** y es usada como principal acceso entre el pueblo Chicamita y la

panamericana que conecta a Cascas, siendo necesario que esta vía debería mantenerse en estado óptimo y de forma operativa en todo el año de tal manera que los pobladores de Chicama usen este medio para su desarrollo, ya sea económico o agrícola. Es por ello que frente a esta situación se conlleva a proyectar el diseño de pavimento flexible en la trocha carrozable existente adecuándose al manual (DG-2018) teniendo como efecto positivo mejorar la capa de rodadura.

De no realizarse el diseño de la carretera se podrían generar que los vehículos de los conductores se deterioren de manera rápida debido a los diferentes daños existentes en esta vía y esto en efecto puede llevar a ocasionar choques vehiculares debido a que los conductores por el intento de evitar pasar por los huecos o arenamientos en la carretera realicen una maniobra peligrosa generando accidentes.

Debido a la situación presentada, nos formulamos la siguiente interrogante: ¿Cuál es el diseño de pavimento flexible de la carretera acceso a Chicamita mediante el Método AASHTO 93, Distrito de Chicama, La Libertad 2022?

El presente proyecto de investigación, se origina debido a la necesidad de poder mejorar y diseñar una carretera que se encuentra en mal estado con deficiencia a nivel de diseño geométrico, falta de señales en todo el tramo, daños a nivel de trocha ya que a la vez es afectada por los cambios climáticos, transporte con carga pesada y escaso mantenimiento en todo el tramo de la vía.

Ante ello, la solución de la problemática nos sirve para que se pueda diseñar la carretera hasta el pavimento flexible cumpliendo con los diferentes parámetros y estudios según normativas de tal manera que genere la necesidad de mejorar y satisfacer la calidad de diseño.

La presente investigación se realizó con el objetivo de lograr el diseño de la carretera mediante la metodología AASHTO 93 para el tránsito vehicular con la finalidad de disminuir los riesgos generados por las vías en mal estado.

La presente investigación sirve como ayuda hacia la población de la provincia de Ascope, donde facilita una vía con un nuevo diseño bajo estudios y análisis del manual DG-2018 y metodología AASHTO 93 mejorando a la composición

de la capa de rodadura para asegurar el buen desempeño de la carretera abriendo paso a la producción no solo social sino también económica.

Esta investigación consiste en el mejoramiento de la carretera aplicando los parámetros de diseño de pavimento flexible en una implementación de la nueva vía a nivel de la base utilizando como agregado principal el afirmado basándose en temas teóricos, condiciones del lugar y cumpliendo con las normas técnicas según el manual DG-2018 en busca de dar solución a la problemática existente. La justificación práctica de este estudio busca una solución a los problemas en el mejoramiento y diseño de la vía apoyando a que la situación de las condiciones actuales en las que se encuentra la carretera se pueda resolver brindando resultados necesarios como mejor transitabilidad peatonal y vehicular generando la mejor calidad de vida para el bienestar de la ciudadanía. La presente investigación se justificó de manera metodológica debido a eso se empleó la ficha de observación para el análisis de las transformaciones que tuvo la carretera en su estado físico-mecánico ya sea por el deterioro de vías y el mal tránsito brindando una propuesta de mejoramiento a través de un nuevo diseño.

El objetivo general de la presente tesis es Determinar el diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93, Distrito de Chicama, La libertad 2022.

Como objetivos específicos se presentó:

- Realizar el levantamiento topográfico de la carretera acceso a Chicamita,
 Distrito de Chicama, La libertad 2022.
- Realizar el estudio de mecánica de suelos de la carretera acceso a Chicamita, Distrito de Chicama, La libertad 2022.
- Determinar el estudio de trafico de la carretera acceso a chicamita, Distrito de Chicama, La Libertad 2022.
- Elaborar el diseño de pavimento flexible mediante el método AASHTO 93
 en la carretera acceso a Chicamita, Distrito de Chicama, La Libertad 2022.

El estudio es de tipo propositiva por lo tanto no requiere hipótesis.

II. MARCO TEÓRICO

Antecedentes

"Diseño de Pavimento asfáltico por el método AASHTO-93 empleando el software DISAASHTO-93".

García, Andrés (2015). Determinó el diseño de pavimento asfáltico por el método AASHTO 93 empleando el software DISAAHTO 93 (p.4). Se desarrolló mediante el método AASHTO 93 para el diseño del pavimento asfáltico, donde muestra una guía donde se logra obtener la variable nombrado (SN) además el valor tomado de ser un indicador del grosor en su totalidad estimado de la carretera, es función de confiabilidad y tránsito (p.12). Por otra parte, de acuerdo a la base de datos nos permite cambiar los parámetros de inicio y volver a calcular la estructura sin la necesidad de volver a ingresar los datos y así poder observar y examinar la incidencia en los cambios de variables dentro de la guía lo que permite conseguir distintos resultados de manera más eficiente. Esto significa que es un aspecto muy importante ya que el programa brinda la posibilidad de que el programa calcule el SN sin diseñar por completo la estructura, entre ellos, si se requiere conseguir el número estructural de la capa lo alcanzamos de manera rápida (p. 21).

Según el autor García en su presente investigación nos orienta a seguir un diseño o ecuación en el cual podamos obtener parámetros que faciliten hallar el valor indicativo para el espesor, en función del tránsito y la confiabilidad de manera rápida.

"Modelación del envejecimiento de los pavimentos asfálticos con la metodología de la superficie de respuesta".

Chávez, L; Hernández, C y Manzano A. (2011). Determinó el error de modelación del deterioro del pavimento asfaltico con el método de la superficie de respuesta (p. 374). Se desarrolló con una metodología que sugiere proponer el diseño experimental de tal manera que pueda originar una guía lineal, por lo que en efecto se pone en marcha un diseño experimental factorial con la que podamos comprobar la selección correcta de los niveles y sus factores (p. 375). Por otro lado, los resultados son el promedio de los cambios en la estabilidad

Marshall, material y flujo volátil, así como el comparativo del valor pronosticado y existente que presentan respectivamente la diversidad entre el valor pronosticado y el existente que son 18% y 20% dichas referencias pueden estar conectadas con las deficiencias en la construcción, tránsito excesivo y posiblemente con los factores ambientales que no llegaron a ser tomados en cuenta al principio de la investigación (p. 381). Como el modelo presentó una confusión de modelación en 3%, en efecto el procedimiento de una apariencia de envejecimiento colocado en este estudio representa que las condiciones de tiempo y la temperatura real pueden tener el mayor resultado de la porción del material que se volatiliza en el agregado de la capa de rodadura (p. 382).

La investigación nos hace mención que el pavimento está formado por diversas capas constructivas que se encuentran expuestas al medio ambiente generando efectos precarios y envejecimiento, así como también las deficiencias en la construcción.

"Consideraciones, procedimientos y conceptos para la realización de un proyecto geométrico de carreteras".

Montaño, Jorge; Zúñiga, David y Rodríguez, Alberto (2007). Determinó los procedimientos, conceptos y consideraciones para la realización de un proyecto geométrico de carreteras (p. 42). Este trabajo se realizó bajo diferentes fuentes de literatura, en particular a aquellas que han servido aportando a la integración de los diferentes conceptos para la validación de proyectos geométricos de carreteras los cuales fueron empleados como guía para dar forma y justificar los procesos y consideraciones del mencionado proyecto (p. 46). Dependiendo de los resultados, se describen los proyectos que incluyen colocación horizontal y vertical, se entiende por alineación en planta alcance el eje corto de la calzada encima del plano que está formado por líneas rectas y curvas que definen la longitud del camino y el potencial de intersección con otros caminos o estructuras (p. 47). Una vez despejado el derecho de vía de la obra vial se procede a realizar el proyecto ejecutivo, en el cual toma en cuenta el proyecto geométrico vertical y horizontal. Por otro lado, el diseñador en la actualidad cuenta con una cantidad considerable de

información que en efecto siempre tiene que estar en constante comunicación con los responsables de las otras fases (p. 50).

En la presente investigación nos da a conocer que para lograr una mejor calidad de carreteras es necesario basarse en un proyecto bajo investigaciones y parámetros estandarizados con la finalidad de realizar una óptima ejecución.

"Diseño geométrico de trochas carrozables según norma DG-2014: Análisis de casos".

Yancce, Jony (2019). Determinó el diseño geométrico en trochas carrozables conforme a la normativa DG-2014 (p. 5). Se elaboró los diseños empleando la programación AutoCAD Civil 3D la versión 2018, con la ayuda de este software y la recopilación de los apuntes de terreno del estudio de topografía se ocasionará el perímetro de la trocha, con la que se delineará la coordenada de la carretera planteada, así mismo el software nos mostrará el perfil vertical, conforme con la coordenada planteada, con la que podamos delinear curvas verticales y más adelante las secciones transversales (p. 32). De acuerdo con el manual DG-2014, los procedimientos y técnicas utilizados en el diseño geométrico de las trochas, existen informes basados sobre los diversos métodos en la creación de diseño geométrico de los proyectos del mismo tipo (p. 86). Para seleccionar un proyecto de diseño geométrico de trochas, hay aspectos importantes a considerar, como la obtención de información de los estudios básicos, de los cuales lograremos detallar los siguientes; la disposición del IMDA, la selección de vía conforme a su demanda y orografía de la superficie, definir la velocidad del proyecto en oficio de la topografía y definir el vehículo de diseño (p.87)

Según el autor Yancce en su presente investigación nos menciona que es muy importante seguir la normativa DG-2014 para mejorar las carreteras y de futuras ejecuciones, con la finalidad de prevalecer la seguridad de la población.

El Ministerio de Transporte y Comunicaciones (2001) declaró que se ha publicado oficialmente un manual de diseño geométrico de carreteras en el nos cubre los procedimientos y métodos que son muy necesarios para la

planificación de rutas de carreteras. Así mismo, todos los puntos de vistas argumentados en el manual de diseño de carreteras son recomendaciones geométricas extraídas de modelos estándares a nivel internacional como la normativa AASHTO. Aparte de eso, la importancia del manual en relación a los senderos transitables se enfoca en los factores generales y generales de la red vial del Perú.

Según el MTC en la presente publicación nos indica que el manual de diseño geométrico de carreteras el cual nos facilita procedimientos y métodos para las planificaciones de carreteras con algunas recomendaciones de la normativa AASHTO.

"Formulación de políticos públicas de seguridad vial referidos a transportes alternativos "Motos y Bicicletas" Recomendaciones para la gestión local".

Flores, Marlon (2014). Determinó la formulación de políticos públicos de seguridad vial para regularizar los transportes alternos (bicicletas y motos) (p.5). La investigación realizada en la zona metropolitana se trató de recolectar datos a través de análisis de documentación, entrevistas, encuestas, Ordenanzas Municipales, proyectos, trabajos, decisiones de coaliciones, estadísticas entre otros imprescindible para comprender el problema y esforzarse en fomentar la utilización de las bicicletas como transporte más seguro y sostenible (p. 23). Debido a la mala infraestructura vial o la falta de poseer un sistema vial para dar razón del transporte no motorizado, establece un dilema público común que los altos mandos del Gobierno Central y local tienen que dar resultados, delante la penuria de tener rutas o vías únicas y certeras que reduzcan los peligros contra la vida de las personas y la integridad física que ansíen en beneficiarse al utilizar los diversos tipos de transporte (p. 64). La infraestructura de transporte opcional que no son motorizado esencialmente el utilizar la bicicleta es muy eficaz, carece de expansión y la red vial demasiado más densa de ciclistas para incentivar y motivar a los habitantes para que escojan intensivamente esta solución que proporciona la Municipalidad Provincial de Lima Metropolitana, facilite la interconexión de todos sus distritos (p. 69).

Según el autor Flores en su presente investigación nos indica que como transporte alternativo para el caos vehicular sería factible utilizar bicicletas, triciclos y otros vehículos individuales no motorizados con el objetivo de regular el transporte.

"Diseño de infraestructura vial urbana, centro poblado San José de Moro - distrito de Pacanga, departamento La Libertad"

Fernández, Segundo y Román, José (2020). Determinó diseñar la carretera, en la comunidad de San José de Moro - distrito Pacanga - La Libertad (p. 2). Se elaboró para el proyecto la recopilación de apuntes, así como la examinación de datos de todas las pruebas realizadas utilizando el diseño geométrico en vías urbanas y la norma CE.010 de pavimentos urbanos (p. 13). Se realizó un levantamiento y estudio topográfico de pavimentos urbanos con el apoyo de una estación total, donde la planificación de pavimentación contiene 3 pasajes y 21 calles, con una superficie 358229.0 m2 (35.8 hectáreas), y cuenta con 3919.0 ml de perímetro, por ende, se elaborará 7.448 km de carpeta asfáltica y veredas en la comunidad. (p. 14).

La presente investigación presenta una base teórica de transporte vial donde indica que es muy importante no solo para la circulación vehicular y peatonal sino también para la economía y necesidades básicas de la sociedad.

"Diseño de infraestructura vial pistas y veredas, centro poblado Pacanguilla, distrito de Pacanga – Chepén".

Carrión, Álvaro y Olascoaga, Othoniel (2020). Determinó diseñar la infraestructura vial en las pistas y veredas, en la comunidad de Pacanguilla, distrito de Pacanga – Chepén (p. 3). Las capacidades de recaudación de apuntes y los dispositivos utilizados en su procesamiento, los estudios y evaluaciones básicas son mecánica de suelos, topografía, estudio impacto ambiental, estudio hidrológico, daños a la propiedad, facilidad de uso y daños de vulnerabilidad y riesgo. Los métodos de diseño y de análisis de datos utilizados en este trabajo se relacionan principalmente con los programas especializados y tutorizados en la industria como varios programas

importantes: Civil 3D, AutoCAD, S10 y MS Project, costos y presupuestos (p.14). Se ha consumado en base al crecimiento de la investigación con el estudio impacto ambiental, acercará impactos positivos en su economía generando puestos de trabajos. También se ha trabajado un proyecto de gestión ambiental con el objetivo de encomendar las disposiciones preventivas de rigurosidad para asegurar su factibilidad, desde el contrato de servicio de equipos, materiales, mano de obra y maquinaria pesada hasta su retirada (p. 27).

Según los autores Carrión y Olascoaga en su presente investigación aporta que en las investigaciones se emplea las técnicas e instrumentos de recolección y que los datos trabajados en gabinete sean llevados al expediente de tal manera ayude a desarrollar la formulación de pavimentos y así tener un diseño óptimo.

"Diseño de la carretera entre los caseríos José Gálvez - Pachín Alto, Distrito de Otuzco - Provincia de Otuzco - La Libertad".

Marín, Julia y Montenegro, Reiner (2021). Determinó diseñar una carretera a través de los caseríos José Gálvez - Pachín Alto, Distrito de Otuzco, Provincia de Otuzco, Región La Libertad (p. 2). El Manual de monitoreo también se utiliza para el procesamiento integrado de la recopilación de los datos precisos como el estudio de tráfico, estudio topográfico y canteras, la mecánica de suelos y demás suplementarios para después del procedimiento de apuntes. La información se obtiene visitando por el área de estudio, después se utilizan los equipos y herramientas topográficas, lo que permitió realizar el levantamiento topográfico de las aldeas pequeñas (p. 18). El proyecto se identifica como una ruta de inicio, con una distancia de 18936.75 metros lineales, también puede comprobar graves problemas de circulación de vehículos como el ancho de vía muy estrecho, curvas con radios menores, curvas con radios menores, pendientes superiores al 10%, falta de señalización y en caso de lluvia se vuelve poco práctico (p. 20). El proceso de estudio de campo proporciona una estimación integral del sistema de drenaje vial existente, que incluye principalmente instalaciones de drenaje superficial como canales subterráneos

y cunetas laterales que a menudo son temporales, están en malas condiciones y tienen una presión hidráulica insuficiente.

La presente investigación aporta el planteamiento de una base teórica que avala estudio de suelos, estudio topográfico, estudio de tráfico y demás generalidades del proyecto, por otro lado, presenta los resultados de un proyecto donde nos mencionan el diagnóstico situacional que beneficia a una población determinada.

"Diseño de Infraestructura Vial para mejorar la transitabilidad entre caseríos Ugás y Nuevo Horizonte (km.0+000 al km.12+720), Chepén, La Libertad".

Coello, Luis y Yen, Jorge (2020). Determinó diseñar la infraestructura vial para mejorar la transitabilidad a través de los caseríos Ugás y Nuevo Horizonte (12.72 km), Chepén, La Libertad año 2020 (p. 3). Se utilizará el Método de Análisis Causal, el cual permita comparar las causas y efectos que tendrá el proyecto sobre el área dañada de la carretera. Con los datos recopilados para el proyecto serán procesados de acuerdo con el orden de los objetivos predefinidos, y de acuerdo con las variables establecidas por la norma (DG-2018) proporcionando en el MTC (p. 9). Al realizar un levantamiento topográfico de la ruta de transporte, pudimos determinar que el punto de partida está en km 0+000 del caserío de Ugás y su punto finalización en km 12+720 del caserío de Nuevo Horizonte. Se utilizaron 26 BM, manteniendo como resultado cota mínima de 33.34 m.s.n.m. y cota máxima de 72.06 m.s.n.m. también nos accedió a conocer que tenemos una superficie plana con una pendiente de 2.10% a 8.00% (p. 12). Basándonos en los resultados obtenidos, sabemos que la autopista en el tramo Ugás - Nuevo Horizonte, no se encuentra en las condiciones físicas adecuadas y no se encuentra en pleno funcionamiento para el tránsito vehicular y peatonal. Los estudios nos permitirán diseñar la infraestructura vial acorde a las necesidades actuales.

Según los autores Coello y Yen en su presente investigación nos aporta que empleando softwares nos facilitan tener el diseño de planta y perfil cumpliendo con los parámetros y a su poder lograr tener planos característicos de la carretera.

Antecedentes locales

"Mejoramiento de pavimento flexible de la avenida Manuel Soane, distrito de Víctor Larco Herrera, Trujillo 2021".

Arias, A. y Velásquez, L (2021). Determinó en el mejoramiento de pavimento flexible en la Av. Manuel Seoane, Distrito de Víctor Larco Herrera - Trujillo 2021 (p. 9). Este estudio es aplicado y utiliza teorías y normativas para determinar las mejoras aplicadas a la avenida Manuel Soane, brindando así una alternativa de solución para realizar la exploración de calles y beneficiaran a los pobladores, basado en método de AASHTO 93 para el boceto del pavimentos flexibles (p. 26). La puntuación finalista del pavimento (PCI) fue de 22,88, lo que clasificó al pavimento flexible como "muy malo". Ya que se ha realizado una nueva operación del espesor del pavimento flexible va de 10 a 25 y tiene un valor de 22,88, que se clasifica como "muy malo" (p. 65). En conclusión, se ejecutó un diseño de pavimento flexible en la Av. Manuel Seoane con el manual de carreteras DG-2018, sección: pavimentos y suelos, alcanzando un grosor de la capa de rodadura igual a 8 cm, el grosor de la base igual de 30 cm y el grosor de la subbase igual de 40 cm (p. 77).

La presente investigación aporta los resultados donde nos mencionan la estructura del pavimento que de cierta manera sirven para realizar una rehabilitación de pavimento con el objetivo de tener un mantenimiento rutinario.

"Determinación del deterioro del pavimento flexible de la avenida Indoamérica del distrito de La Esperanza – La Libertad - 2019 propuesta de mejora".

Campos, L y Chihuala G (2019). Tienen el objetivo determinar el envejecimiento del pavimento flexible en la Av. Indoamérica distrito de La Esperanza – La Libertad (p. 2). Los métodos de recopilación de datos se realizan de acuerdo con las normas de procedimientos nacionales e internacionales en este caso, no se solicita la aprobación o evaluación de seguridad, ya que lo realiza un conjunto que está claramente enfocado en el tema ellos definieron "ASTM, AASHTO", se ha establecido un método estandarizado e importante a nivel nacional e internacional (p. 20). La apreciación superficial de una carretera

flexible se realiza ejecutando las variables del método PCI a la Avenida Indoamérica. Cabe señalar que el área de estudio corresponde a las vías urbanas con el fin de lograr los primeros objetivos específicos implementados por el método del PCI, de igual forma se puede diagnosticar el estado en la superficie de pavimento flexible en la Av. Indoamérica (p. 23). De acuerdo con la metodología del PCI, la superficie de la Avenida Indoamérica en la zona se evaluó con los tramos 01, 02, 03 en estado "malo" y el tramo 04 en estado "suficiente", por lo que la mayor parte de los daños en las fallas más importantes son grietas y picaduras longitudinales y transversales (14,94%), grietas límite (13,79%), ondulaciones y vacíos (8,05%), grietas en masa, grietas, picaduras, grietas y separación de capas de agregados (5,75%). , hinchamiento y sedimentación, pulido e hinchamiento sintético (4,60 %), exudado (3,45 %) (p. 46).

Según los autores Campos y Chihuala en su presente investigación aporta que las vías principales son afectadas por el aumento de vehículos y que los pavimentos sean propensos a tener múltiples fallas a lo largo de su periodo.

Bases teóricas

(Rodríguez, 2018) señala que los estudios se realizan mediante procedimientos que cumplen los parámetros los cuales presentan una secuencia de estudios tales como: determinar el estudio de levantamiento topográfico del terreno, determinar el estudio mecánica de suelos, determinar el estudio de tráfico y determinar el diseño de pavimento flexible de la carretera para análisis y ejecución de una estructura.

Método AASHTO 93

(García, 2015) señala en metodología AASHTO 93 un diseño del pavimento asfaltico emplean un patrón único o una ecuación por lo que se logra el criterio llamado número estructural (SN) el cual es primordial para disponer el espesor de las diferentes capas que componen la superficie de la carretera son la capa sub base, la capa base y la capa asfáltica. Por otro lado, esta ecuación comprende algunas variaciones del diseño están como, la desviación estándar, la confiabilidad, el tráfico, el índice de serviciabilidad, entre otros (p. 2).

$$Log(W) = ZR.So + 9,36.Log(SN + 1) - 0.20 + \frac{Log(\frac{\Delta PSI}{4.2-1.5})}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2,32.Log(MR) - 8.07$$
 (1)

Figura 1. Ecuación general

Dónde:

W: número estimado de ejes equivalente en el periodo de diseño.

ZR: Desviación estándar normal

So: Error estándar de la predicción del tráfico y comportamiento estructural.

ΔPSI: Diferencia entre índice de servicio inicial y final

MR: Módulo resiliente

SN: Número estructural

$$SN = a1.D1 + a2.m2.D2 + a3.m3.D3$$
 (2)

Figura 2. Número estructural

Dónde:

ai : Coeficiente estructural de la capa i.

Di : Espesor de la capa i en pulgadas.

mi : Coeficiente de drenaje de la capa i.

Para obtener el coeficiente estructural en la mezcla asfáltica se utiliza el siguiente cuadro

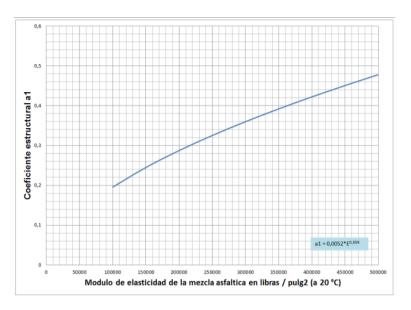


Figura 3. Gráfico de coeficiente estructural de la mezcla asfáltica (a1)

Levantamiento Topográfico

(Arias y Velásquez, 2021). Los levantamientos topográficos son actividades que consisten en determinar el resultado de las características geográficas y geológicas en el plano, y esta actividad se realiza en campo para recolectar datos del terreno como coordenadas, curvas de nivel, secciones transversales de cada punto y perfil longitudinal (p.20).

Estudio de Suelos

(Arias y Velásquez, 2021). El estudio de suelos es de vital importancia porque es fundamental a la hora de diseñar una vía, estos estudios nos proporcionan las condiciones y limitaciones actuales en la superficie donde se localiza la vía. Así mismo las evaluaciones más fundamentales en el diseño de una vía son: Ensayo CBR, Granulometría y Límites de consistencia (p. 22).

Estudio de Tráfico

(Hernández y Pérez, 2021). El estudio de tráfico se ejecuta con la meta de estimar el nivel de tránsito que soportan las vías de circulación durante una etapa de 10 y 20 años de tal forma que el valor es utilizado en diferentes exámenes económicos, de operación y estructurales.

Diseño Geométrico y Estructural

MTC (2018), nos menciona que el diseño geométrico y estructural también son conocidos por algunos autores como alineamientos horizontales y de espesores de las capas de rodadura, tiene como intención, implantar las características y propiedades geométricas horizontales en la vía y las estructurales. De tal significado, los parámetros más cruciales al considerar son: alineamiento, espesores, nivel de confiabilidad, diseño de curvas transversales y la clase de cambio de curvatura: los parámetros aprueban que los vehículos tengan un tránsito cómodo y completamente seguro para los usuarios (p.15).

Por otro lado, el MTC clasifica las carreteras de la siguiente manera: por orografía y demanda.

Clasificación por Demanda

Autopistas de Primera Clase

Son las de un IMDA superior a 6000 vehículos diarios, con calzada aisladas, dos a más carriles, presentan un ancho de 3.6 m. como mínimo, ingresos y salidas que proporcionan una red vehicular continua (MTC, 2018, p. 12).

Autopistas de Segunda Clase

Son aquellas que muestran IMDA de 6,000 a 4001 unidades de vehículos diarios, calzadas aisladas de 1 m. de ancho, sistema de contención vehicular, dos o más carriles de 6.3 m de ancho e ingresos y salidas para mejorar el flujo vehicular (MTC, 2018, p.12).

Carreteras de Primera Clase

Son las carreteras que muestran IMDA de 4,000 a 2001 unidades, donde la calzada considera 2 carriles como mínimo de 3.6 m de ancho, puentes peatonales en la zona urbana y tecnología de seguridad vial que nos da un buen control de seguridad y velocidad (MTC, 2018, p.12).

Carreteras de Segunda Clase

Estas vías que presentan IMDA entre 2000 y 400 veh/dia, cuentan con un asfaltado de dos carriles con un ancho de 3.30 m., además considerando cruces y puentes peatonales de manera complementaria para influir en la seguridad vial (MTC, 2018, P.12).

Carreteras de Tercera Clase

Son vías que presentan IMDA inferior a 400 unidades veh/dia, donde dicho asfaltado deberá incluir 2 carriles con un ancho mínimo de 3 m adicionando también que dichas vías pueden presentar 2 carriles con 2.5 m de ancho. Considerando diseños básicos que usan micro pavimentos, emulsiones asfálticas o algún estabilizador que influya en la capa de rodadura si en caso se tratase del material de afirmado (MTC, 2018, P.12).p

Trochas Carrozables

Señaladas como vías de poco tráfico que contienen una circulación de unidades vehiculares inferior a 200 por día, por lo cual presentan calzadas como mínimo de 4 m de ancho (MTC, 2018, P.13).

Clasificación de Orografía

El MTC (2018), según su orografía nos presenta las siguientes clasificaciones:

Terreno Plano (Tipo 1)

Presentan una pendiente horizontal con el eje central de la vía menor o igual al 10%, mientras que por otro lado la pendiente longitudinal es menor al 3%, que es el mínimo requerido para el movimiento de tierra y no es en modo alguno más difícil de planificar (p.14).

Terreno ondulado (Tipo 2)

Tiene más de una pendiente horizontal con el eje vial 11 % mayor y menor a 50 %, mientras que la pendiente longitudinal mayor de 3 % y menor a 6%, requiere menor movimiento de terreno y no lo dificulta para su trazado, ya que permite una alineación relativamente recta (p. 14).

Terreno accidentado (Tipo 3)

Tiene una pendiente horizontal con eje vial mayor al 51 % y menor al 100 %, mientras que su pendiente longitudinal es mayor a 6 % y menor a 8%, requiere mayor levantamiento de terreno, en efecto genera mayor dificultad para su trazado (p. 14).

Terreno escarpado (Tipo 4)

Tiene una mayor pendiente horizontal con el eje de la vía, superando el 100%, mientras que su pendiente longitudinal es superior al 8%, lo que requiere más movimiento del terreno, por lo que implica mucho. Es difícil de arreglar (p. 14).

Diseño geométrico en planta, perfil y sección transversal Diseño Geométrico en planta

Según el MTC (2018), la carretera debe tener un diseño geométrico en planta que es denominado línea horizontal que consta de curvas en forma de círculos y grados de curvatura variable, tal como una trayectoria recta que resulta en una transición gradual de una línea recta inclinada a una curva circular o viceversa; O incluso entre dos círculos de diversas curvaturas. La alineación transversal debe permitir el acceso ininterrumpido de vehículos, procurando obtener igual velocidad de diseño en la superior longitud posible de la vía. Por lo general, la flotabilidad topográfica es el factor que tiene el control del radio de las curvas transversales y la velocidad de diseño y, por lo tanto, inspecciona la distancia de visualización. En los planes de vías con calzadas separadas, se toma en cuenta de manera posible disponer calzadas a diferente nivel a lo largo de distintos ejes, según las peculiaridades del terreno. La definición de una conexión plana hace referencia a un eje que define un cierto puesto en cada sección transversal. En su totalidad, a excepción de casos bien fundamentados, se utilizará para determinar el eje (p. 125).

Diseño Geométrico en perfil

Según el MTC (2018), está sujeto por una sucesión de líneas conectadas por curvas de parábola perpendiculares a las cuales estas líneas son tangentes; en un desarrollo donde la dirección de la pendiente se determina sobre la base de la dirección del kilometraje, las tendencias positivas significan un aumento en la elevación y las tendencias negativas provocan una disminución en la elevación. Así mismo el empuje longitudinal debe permitir que los vehículos operen continuamente, con la finalidad de sostener igual la velocidad de diseño la longitud mayormente posible de la carretera. En término global, la flotabilidad topográfica es el factor que tiene la verificación en radio de las curvas verticales probablemente son convexas o cóncavas, la velocidad de diseño y, por ende, tiene el control de la diferencia de visualización. Las curvas verticales a través de los dos taludes sucesivos aprueban conseguir una transición gradual entre taludes de diferente tamaño y/o dirección, descartando la falla de los taludes. Su diseño preciso asegura la línea de visión requerida por lo planificado. El sistema de estadios del proyecto será

restaurado y conectado a B.M. Poblamiento Instituto Geográfico Nacional. La sección longitudinal está controlada esencialmente por el terreno, la alineación, la horizontal, el espacio de visualización, la velocidad de diseño, la seguridad, el costo de construcción, la clase de camino, el valor estético y el saneamiento (p.169).

Diseño Geométrico de la sección transversal

Según el MTC (2018), el diseño se centra en representar los elementos de la línea en el plano en que la sección longitudinal corresponde a la sección transversal, lo que dan en determinar las dimensiones y disposición de elementos anteriores, corresponde a cada punto de sección y a cada punto de su conexión con el área natural.

El factor imprescindible de la sección transversal es el área destinada a la carrera o pista, y sus dimensiones deben acceder al nivel de servicio esperado en la planificación, sin afectar la importancia de estos factores a hombros y aceras, cunetas, rampas y elementos complementarios. Por otro lado, forman senderos específicos que corresponden a puentes, balsas, túneles, extensiones de plataforma y más en zonas densamente pobladas, tránsito de vehículos pequeños y/o comercio, animales, maquinaria agrícola, etc. (p. 183).

Características del tránsito

Según el MTC (2018), el diseño y las características de la vía se basan, expresamente, en la consideración del volumen del tránsito y bajo la condición necesaria para transitar por ella, con una confiabilidad vial debido a que le servirá de utilidad en el tiempo de la ejecución de carreteras y planificación vehicular (p.92).

Índice medio anual (IMDA)

Indica el tráfico vehicular promedio diario calculado para todo el año, estimado o actual para un determinado tramo de vía. Además de ello, es un valor cuantitativo que refleja la importancia de la ruta evaluada, lo que ayuda a calcular la navegación principalmente a nivel económico. Value in Road Parts de IMDA proporciona a los profesionales los datos necesarios para reconocer las características del diseño de carreteras y los tipos de carreteras y desarrollar procedimientos de mejora y mantenimiento.

El valor del vehículo/día es importante para la evaluación y revisión de programas de seguridad y medir los servicios proporcionados por camiones. Las carreteras se diseñan para adaptarse a volúmenes de tráfico específicos, que se construyen en función de las necesidades diarias de las unidades hasta que se completa el diseño (final del período), determinando el número promedio de vehículos utilizados en las vías y el número de incrementos en comparación con la tasa de crecimiento anual (p.92).

Distancia de Visibilidad

Distancia de visibilidad de parada

Según el MTC (2018), el distanciamiento de visibilidad de cada parada se considera como la distancia mínima entre unidades vehiculares que depende de su velocidad diseñado, antes de llegar un componente estacionario en su camino; la respuesta de los frenos es el período de tiempo entre la ocasión o momento en que el conductor llega a reconocer un objeto o peligro en la carretera, antes de que se apliquen los frenos. Considerando un obstáculo a aquello que tenga una altura de 0,15 m desde el nivel visual del conductor y superior a 1,07 m. Si no es posible alcanzar la distancia mínima de frenado de la vista correspondiente a la velocidad de diseño en una parte de la vía, entonces esa parte de la vía se marcará con la velocidad máxima permitida, ya que es una técnica especial que tiene la necesidad de ser aprobado por la autoridad correspondiente. Además, la pendiente afecta a la distancia de frenado que es imprescindible para la práctica de valores, así mismo la pendiente arriba o abajo debe ser mayor al 6% y para velocidad de diseño mayor a 70 km/h (p.103).

Distancia de visibilidad de paso o adelantamiento

La distancia es el mínimo exigido de manera el conductor de un automóvil pueda adelantar con comodidad y seguridad a otro vehículo que circula a baja velocidad y sin modificar el velocímetro del tercer automóvil que circula en el sentido contrario. Las diferencias de tráfico visible sólo deben considerarse para carreteras de dos carriles donde el carril está en el carril contrario (p. 106).

La distancia de visibilidad de cruce

Consiste en tener intersecciones juntas donde se generan diferentes tipos de complicaciones entre los vehículos que se transportan por una vía con otra. El potencial de estas complicaciones se puede reducir al proporcionar una distancia adecuada para los peatones y equipos de control. La distancia mínima visible para cruzar la vía que se considera segura, según ciertos supuestos sobre la condición física de intersección y conducta del conductor, en relación con velocidad del vehículo y la distancia recorrida en el tiempo de respuesta del sensor y el frenado correspondiente (p. 111).

Vehículos de Diseño

Características Generales

Las características físicas y proporciones de los automóviles de diferentes tamaños en la carretera son factores clave en su definición de ingeniería. Por lo tanto, es necesario revisar todos los diversos tipos de compuestos, formar grupos y seleccionar tamaños representativos en cada uno de los grupos para su uso en la planificación. Dichos automóviles seleccionados, con sus pesos, dimensiones y características operativas representativas, empleados para determinar los juicios para proyectos de vías, se denominan vehículos de diseño. La composición del tráfico que usa o usará la carretera debe ser considerada al seleccionar los vehículos del proyecto. La colaboración de vehículos pesados suele ser suficiente para calificar las características de un proyecto vial. Por lo tanto, el vehículo de diseño suele ser un vehículo comercial sólido (camión y/o autobús). Las características del tipo de vehículo indicado determinan varios aspectos de las dimensiones estructurales y de ingeniería de la carretera.

El ancho de vehículo utilizado afecta el ancho de calzada, de acera, de arcén, de sección transversal, como mínimo el radio de giro, la intersección y la silueta. El espacio a través de los ejes afecta el ancho y al radio mínimo interior y exterior del carril. La relación peso/potencia total está relacionada con el valor de pendiente aceptable.

Según las leyes nacionales de transporte, los vehículos ligeros son vehículos que pertenecen a la clase L (vehículos que contienen menos de cuatro ruedas)

y M1 (vehículos que contienen seis ruedas destinadas al transporte de los usuarios con nueve plazas o menos, excluido el asiento del chofer) (p. 24).

Vehículos ligeros

El ancho y la longitud de los automóviles livianos no afectan el proyecto a menos que sea una carretera sin camiones, lo cual es poco probable en un proyecto vial. Como referencia se han citado tamaños representativos de vehículos norteamericanos, que por lo general son más grandes que los del resto de fabricantes de vehículos: (Department of Transportation, 2014). Ancho: 2,10 metros. Longitud: 5,80 metros. Para el cálculo de la diferencia de frenado y rebasamiento a simple vista, es necesario determinar las diferentes altitudes, para vehículos livianos, incluidas las posiciones de visualización más favorables (p. 25).

Vehículos pesados

Las dimensiones máximas del vehículo utilizadas en la definición de ingeniería son las especificadas por los reglamentos de vehículos nacionales aplicables. Para calcular las distancias de frenado y adelantamiento a simple vista, es necesario determinar las diferentes altitudes, para vehículos livianos, incluidas las posiciones de visualización más favorables. (p. 25).

La sección transversal de diseño en la carretera es variable es por ello que necesita la velocidad en el diseño, ya que cada tipo de vía y diseño tiene una sección transversal típica, el ancho de rango finito. Casos limitados y en ciertos casos únicos. (p.25).

Los estándares de construcción de carreteras, que cumplen el proyecto de acuerdo con los lineamientos y límites reglamentarios establecidos aquí, están determinados por:

- Categoría correspondiente.
- Velocidad de diseño.
- Sección transversal definida.

III. METODOLOGÍA

3.1. Enfoque tipo y diseño de investigación:

Enfoque de la investigación

Esta investigación se determinó a través del método deductivo iniciando de lo global a lo particular, de la misma manera este método está concurrente con una posición cuantitativa por consiguiente los resultados conseguidos fueron netamente numéricos debido a que se puede mediar de manera sencilla y eficaz.

Tipo de investigación

Tipo de Investigación por el propósito

El propósito es la metodología descriptiva por medio de los estudios bibliográficos, esta investigación implica en examinar la indagación mediante el uso de bases teóricas, normas y manuales donde se requiera la observación y la comprensión relacionada al diseño geométrico de carreteras que cumplan los parámetros en calidad y en beneficio de la población.

Tipo de investigación por el diseño (Descriptiva – propositiva)

Esta investigación es de modelo no experimental porque no hay manejo en la variable y al mismo tiempo es descriptiva - Propositiva debido a eso se ejecutará un diseño que implique diversos estudios a realizar tales como: levantamiento topográfico, estudio del tráfico, estudio de los suelos y diseño de pavimento flexible para la elaboración de dicha calzada.

Tipo de Investigación por el nivel

Esta investigación por su nivel descriptiva, enfocará en la conducta de la variable en relación a otras variables mediante la observación en el punto de estudio para lo cual se recopilará los diversos tipos de estudio correspondientes.

Diseño de Investigación

El proyecto de diseño No Experimental, porque no hubo manejo en las variables de estudio, además es de diseño Transversal, donde se medirá las variables a lo largo de un tiempo determinado, de la misma manera que el diseño Descriptivo porque se describen y observan los fenómenos tal como ocurren en forma normal.

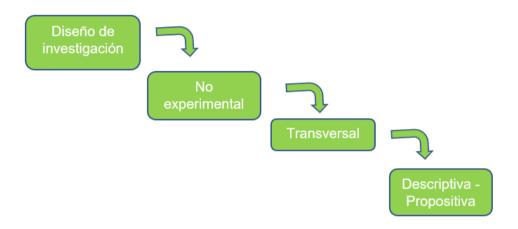


Figura 4. Diagrama de Diseño de Investigación

Diseño no experimental - transversal – descriptiva - propositiva, cual aplicará el siguiente esquema:

M: Hace referencia a el área donde se realizará la investigación necesaria para llevar a cabo la planificación de investigación, y a la población beneficiaría.

O: Hace referencia a los datos que se recolectará de la muestra escogida.

3.2. Operacionalización de variable

Variable Fáctica.

Estado actual

Según la RAE (2001), nos menciona que es la situación en la que se encuentra algo o alguien en especial cada uno de los que viene inmediatamente detrás de otro en otras palabras el modo de ser o estar y en el caso de nuestra variable sería saber el estado actual de la infraestructura de la carretera acceso Chicamita, para así proponer un diseño de dicha vía.

Eje temático.

Metodología AASHTO

Mediante esta preferencia lograremos crear un diseño perfecto de una estructura de carretera ingresando los criterios previamente considerados de forma adecuada empezando del lado izquierdo hacia el lado derecho así obtener una excelente organización y comprensión en el ingreso en los apuntes. (García, 2015)

Eje Propositivo

Diseño de pavimento Flexible

El presente diseño es una modificación de las propiedades geométricas y técnicas de una carretera con el objetivo de mejorar los ejes horizontales y verticales, las curvas y ajustar el desgaste y la estructura de la carretera, de acuerdo con el diseño original de la vía. (El Peruano, 2006)

Matriz de clasificación de variables.

La variable de estudio nos posibilitó el desarrollo del actual proyecto, continuamente presentamos una tabla donde nos muestra la clasificación y la identificación de variables dependiente e independiente en la investigación.

Tabla 1. Matriz de clasificación de variables.

IDENTIFICACIÓN Y CLASIFICACIÓN DE LAS VARIABLES							
Variables	ables Relación Naturaleza Escala de Dimensión Forma de medición						
Diseño de pavimento flexible	independiente	Cuantitativa	Razón	Multidimensional	Indirecta		

Fuente: Elaboración Propia

Matriz de operacionalización de Variable (Anexo 3)

3.3. Población, muestra, muestreo y unidad de análisis.

Población.

La población de la presente investigación es la vía distrital en el acceso Chicamita Distrito de Chicama, La libertad 2022.

Muestra

El tramo ejecutado es de 9 km de carretera ubicado en el acceso a Chicamita, Distrito de Chicama, La Libertad 2022.

Muestreo.

El muestreo para la planificación de investigación será no probabilístico, debido a que la carretera será sometida a cambios de propiedades porque esta vía presenta características precarias y desfavorables.

3.4. Técnicas e instrumentos de recolección de datos, validez y confiabilidad.

Técnica de recolección de datos.

Esta planificación de indagación empleará como técnicas la revisión documental, observación directa y encuesta de métodos, ya que los apuntes que se recauden en el terreno serán por medio de la observación donde está el sitio a estudiar, la revisión documental será de las normas DG-2018 y MTC para extraer datos de la encuesta que se hará a la población de Chicama.

Un método de recopilación de datos está destinado a sustituir empíricamente los conceptos teóricos y/o preguntas que inicialmente se plantearon para la investigación. (Arias y Velásquez, 2021).

Instrumento de recolección de datos

En referencia a los métodos de observación, el instrumento a usar en la recolección de información será apuntes en las observaciones y también un reporte de técnico de la existencia del área a estudiar, empleando instrumentos tecnológicos, que nos proporcionen el poder adquirir unas topografías siendo innecesariamente de exponer el equipo o el personal de trabajo, en objeción al decreto de emergencia hecho público por el estado y el cual admitirá obtener los datos brindados. Tales resultados cuentan con un nivel de confiabilidad y validez según los métodos estandarizados por el reglamento de la norma MTC.

Ficha resumen N°1 (anexo 4) nos proporciona recaudar datos sobre el levantamiento topográfico en la carretera acceso a Chicamita, la ficha de recolección de datos 1 (anexo 7) nos proporciona recopilar datos sobre el estudio de suelos, la ficha de recolección de datos N°2 (anexo 11) nos proporciona recolectar información sobre el estudio de tráfico de la carretera acceso a Chicamita, la ficha recolección de datos (anexo 12) nos proporciona recolectar datos para el diseño estructural y geométrico para la carretera acceso a Chicamita.

Tabla 2. Instrumentos y validaciones

Etapas de la investigación	Instrumentos	Validación
Levantamiento	Global Mapper	Norma técnica Geodésica
Topográfico Ficha resumen N°1	Juicio de expertos	
Estudio de Suelos	Ficha de recolección de datos N°01	Manual de Suelos, Geología, Geotecnia y Pavimentos o Norma E-050 Suelos y Cimientos
		Juicio de Expertos
Estudio de Trafico	Ficha de recolección de datos N°02	Manual de carreteras DG - 2018

Diseño geométrico	Software AutoCAD Y Civil 3D	Manual de carreteras DG - 2018
----------------------	-----------------------------------	-----------------------------------

Fuente: Elaboración Propia

Validación del instrumento de recolección de datos

Los instrumentos de recopilación de apuntes que se emplearán en la presente indagación, tendrán la validación por medio del juicio de expertos; es decir, por ingenieros civiles colegiados especializados del tema. Las fichas de recolección de datos N°01 y N°02 tendrán validación por el ing. Eduardo Gianpier Tejada Abanto con CIP 247057 (Anexo 14) y el Magister Ing. Josualdo Villar Quiroz con CIP 106997 (Anexo 13).

De igual manera, se trabajará con el Manual en Suelos, pavimentos, Geología y Geotecnia, Norma Técnica Geodésica y el Manual en Carreteras (DG - 2018), las cuales señalaron los parámetros para comprobar si el mejoramiento de la carretera cumple con lo solicitado.

Confiabilidad de los instrumentos de recolección de datos

La ficha resumen N°1 del levantamiento topográfico, su credibilidad será avalado por un experto en el tema. (Anexo 4).

La ficha de recolección de datos Nº1 del estudio de suelos, su credibilidad lo avalará a la persona especializada y encargada del laboratorio de suelos donde haremos las pruebas (Anexo 7). La ficha de recolección de datos N°2 del estudio de tráfico, será avalado por el MTC. (Anexo 11).

El diseño geométrico de la carretera y su credibilidad estarán avaladas por la Norma DG-2018. (Anexo 12).

3.5. Procedimiento

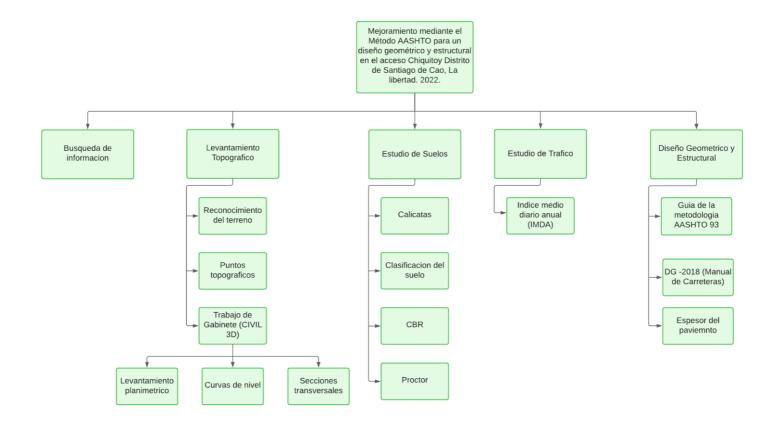


Figura 5. Mapa conceptual del procedimiento

Búsqueda de información

En esta investigación lo primero que se realizará, es la búsqueda de información de la carretera, donde se podrá evidenciar los puntos a tomar de la carretera, de tal manera se recolectarán los datos que ayudan a determinar el estado de condición en las que se encuentre el lugar a estudiar, después de obtener los resultados se propone pasarlo a un Excel para verificar su nivel de condición.

Levantamiento topográfico

Se ejecutará un levantamiento para poder ubicar el lugar de indagación, el procedimiento se ejecutará en el campo y en el gabinete, se utilizará el GPS y Teodolito para la recolección de coordenadas los cuales serán anotados en la guía de observación, luego se procederá a elaborar el plano respectivo con el programa Civil 3D que obtendrán el levantamiento planimétrico, curvas de nivel, secciones transversales y vista en planta.

Reconocimiento de terreno

Al momento de ejecutar el levantamiento topográfico del proyecto de carretera se va a seleccionar los mejores lugares para las estaciones el cual podremos tener una gran exactitud en la precisión y la economía del trabajo a realizarse para así ejecutar de manera rápida el levantamiento topográfico.

- Fijar el método apropiado para el levantamiento.
- Los dispositivos necesarios para llevar a cabo.
- Organizar el trabajo de campo.
- Accesibilidad de las estaciones.

Puntos Topográficos

Los puntos topográficos se utilizarán con el objetivo de georreferenciar con la más alta precisión el relieve del terreno, también se logrará obtener información de las irregularidades topográficas ya sea de forma natural o artificial, independiente por la carretera que vamos a ejecutar.

Levantamiento Planimétrico

Son las operaciones que se realizará la presentación de una proyección horizontal de los puntos que se ejecutarán a detalle, lo cual podrían ser: Levantamiento por radiación simple, levantamiento por base medida y levantamiento por poligonal cerrada y levantamiento por cinta y jalón.

Curvas de Nivel

Son líneas que conectan una ubicación de igual valor y las líneas muestran cambio de valores a través de una superficie que representan fenómenos continuos: temperatura, elevación, precipitación, contaminación o presión atmosférica.

Secciones Transversales

Las secciones transversales de la vía están constituidas por los elementos: taludes, carriles, cunetas, bermas y superficie de rodadura, que se ejecutarán dentro de los parámetros de vía de lo planificado.

Estudio de Suelos

Se ejecutará una indagación del análisis de suelos, se realizarán calicatas de 1.5 metros las muestras se llevarán a los laboratorios para poder obtener diversos datos que ayudan clasificarlos con el tipo de suelo, el Proctor y su CBR correspondientes, los cuales nos ayudaran a saber el límite de líquidos y de su plasticidad del suelo a estudiar.

Estudio de Tráfico

Se realizará un estudio de tráfico, ya que es importante y nos ayuda a saber que tipos de automóviles circulan por el sitio de estudios y la frecuencia con la cual circulan en la carretera, en el estudio se puede evidenciar los índices diarios, medio semanal y medio anual, después se procede a colocar los datos alcanzados en un Excel para calcular el porcentaje mayor de transporte que transitan por el área.

Estructura del Pavimento

La estructuración de una carretera flexible nos guiaremos metodológicamente con el método AASHTO 93, que nos facilita en definir los criterios imprescindibles para adecuar el diseño de una carretera flexible, la guía nos ayuda a poder saber el espesor que tendrá la estructura de pavimento flexible.

También tendremos en consideración lo que concierne todo al método AASHTO 93 como son: niveles de confiabilidad, módulo resiliente, índice de serviciabilidad, desviación estándar y el número estructural, teniendo en cuenta el tipo de camino o de tránsito para elegir los respectivos valores del diseño del pavimento flexible.

3.6. Método de análisis de datos.

Técnica de análisis de datos.

La actual investigación tiene como modelo no experimental, por la falta de manipulación de variable independiente y es delineación transversal ya que la actual indagación se desarrollará dentro de una duración determinado, razón por la cual; se emplea un procedimiento estadístico descriptivo, adjuntando cuadros estadísticos que van a ejecutar el análisis de apuntes con la indagación recopilada.

3.7. Aspectos éticos

La ética es muy primordial en todos los profesionales, por lo que en este proyecto de investigación se ha estimulado muchas planificaciones de tesis, investigación y artículos de fuentes netamente fiables para que el jurado esté cualificado para su composición y posterior verificación. Es por esto que la moral y la ética pueden ir de la mano conjuntamente, se documenta y refleja en este análisis, citando de manera correcta el Manual ISO 690 y 690-2, así como un de análisis de semejanza de la investigación con la programación TURNITING.

IV. RESULTADOS

Delimitación del lugar de Estudio

Ubicación: El tramo a estudiar es la carretera acceso a Chicamita, Distrito de Chicama, Provincia de Ascope, La Libertad, el cual tiene 9.070 km, donde se tomó como muestra para la presente investigación.

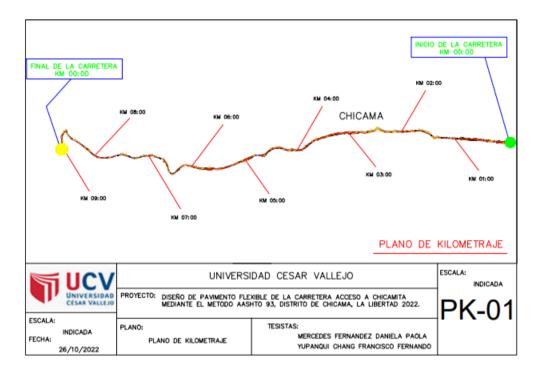


Figura 6. Plano de Kilometraje

Punto Inicial:

- Latitud: 7º 48' 27.13"S

- Longitud: 79° 08' 10.68"O

- Elevación: 127 m.s.n.m.

Punto Final:

- Latitud: 7º 46' 22.39"S

- Longitud: 79° 07' 39.67"O

- Elevación: 172 m.s.n.m.

Coordenadas UTM

Tabla 3. Coordenadas UTM

PUNTOS	COORDENADAS NORTE	COORDENADAS ESTE
PI	9132690.65	704218.17
PF	9140228.79	706701.76

Fuente: Elaboración propia

Ubicación política:

El lugar de estudio del proyecto está localizado en:

- **Departamento**: La Libertad

- **Provincia:** Ascope

- Distrito: Chicama

- Centro Poblado: Chicamita

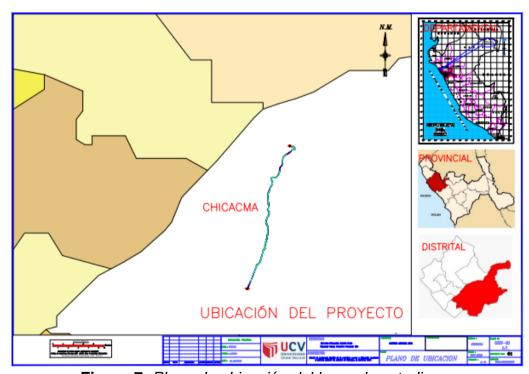


Figura 7. Plano de ubicación del lugar de estudio

4.1. Levantamiento topográfico

a) Generalidades

Dentro de este estudio de desarrollo de proyecto para evaluar la carretera se consideraron estudios esenciales, los cuales son visita a campo, ubicación del lugar de la zona de estudio de suelo, levantamiento topográfico siendo estos esenciales para generar una representación gráfica de la carretera, así mismo dar a conocer la clasificación de suelo que predomina.

Figura 8. Ubicación del lugar de estudio.

Para conseguir la ubicación del lugar de estudio del proyecto, se inició con las visitas técnicas las cuales fueron 04, donde nos permitió ver el estado de condición de la carretera y así mismo ver a ubicación de acuerdo a las coordenadas UTM a través del software Google Earth.

siendo este estudio el principal punto para el desarrollo de la carretera, nos presentara los puntos y coordenadas topográficas del lugar para realizar de forma gráfica y a escala la carretera plasmándolos en nuestros respectivos planos, usando softwares especializados como el Civil 3D y AutoCAD.

Tabla 4: Cuadro de coordenadas de punto de estaciones.

Е	ESTE	NORTE	ALTURA	ВМ	Е	ESTE	NORTE	ALTURA	ВМ
1	704218.174	9132690.65	147.986	E-1	46	705324.242	9137395.02	175.894	BM
2	704242.108	9132731.7	147.702	REF	47	705311.181	9137646.28	177.313	BM
3	704270.561	9132802.32	147.521	BM	48	705309.729	9137754.03	176.676	BM
4	704333.122	9132949.32	147.655	BM	49	705401.804	9138024.08	176.075	BM
5	704343.405	9132972.93	147.687	BM	50	705414.487	9138090.47	177.412	BM
6	704448.899	9133221.16	148.107	BM	51	705509.276	9138218.95	178.568	BM
7	704437.991	9133193.99	147.912	BM	52	705508.424	9138210.92	178.493	ВМ
8	704494.194	9133352.69	147.99	BM	53	705551.798	9138316.48	178.097	BM
9	704503.967	9133368.91	147.951	ВМ	54	705556.137	9138328.33	178.216	BM
10	704685.217	9133847.79	153.961	BM	55	705557.826	9138387.77	178.41	ВМ
11	704689.296	9133859.93	154.292	ВМ	56	705499.126	9138508.89	180.176	BM
12	704709.778	9133944.97	155.298	BM	57	705491.266	9138521.96	180.085	BM
13	704711.861	9133957.05	155.512	BM	58	705518.854	9138444.79	180.278	BM
14	704918.94	9134212.38	162.632	BM	59	705473.154	9138593.27	180.286	BM
15	704921.671	9134223.63	162.662	BM	60	705473.139	9138593.27	180.284	BM
16	705000.491	9134517.34	167.543	ВМ	61	705535.499	9138633.8	179.86	BM
17	705007.832	9134536.14	167.746	ВМ	62	705545.338	9138636.46	179.951	BM
18	705068.153	9134742.96	166.728	ВМ	63	705722.117	9138641.35	181.459	BM
19	705056.517	9134718.24	166.957	ВМ	64	705741.365	9138648.57	181.316	BM
20	705158.487	9134833.33	169.085	BM	65	705741.370	9138648.58	181.317	BM
21	705160.287	9134837.09	169.265	BM	66	705813.737	9138716.11	181.873	BM
22	705151.439	9135007.84	166.695	ВМ	67	705819.838	9138725.18	182	BM
23	705150.492	9134996.37	166.82	ВМ	68	705901.774	9138845.73	183.473	BM
24	705202.039	9135186.69	169.828	BM	69	705910.255	9138858.08	183.184	BM
25	705200.293	9135171.67	169.897	BM	70	705939.802	9138981.99	183.909	BM
26	705263.865	9135448.95	171.287	BM	71	705940.838	9138996.62	184.015	BM
27	705270.508	9135441.82	171.887	BM	72	705940.689	9138995.98	183.95	BM
28	705305.801	9135805.73	173.221	BM	73	705952.036	9139170.2	184.068	BM
29	705300.869	9135807.19	173.017	BM	74	705951.463	9139163.28	184.2	BM
30	705300.266	9135731.42	174.547	BM	75	706047.095	9139290.29	183.832	BM
31	705302.893	9135738.48	174.52	BM	76	706052.716	9139297.14	183.752	BM
32	705301.319	9135998.51	175.17	BM	77	706085.366	9139370.61	183.866	BM
33	705296.49	9136004.97	175.069	BM	78	706086.406	9139363.89	183.969	BM
34	705223.915	9136344.08	175.667	BM	79	706105.788	9139646.09	185.306	BM
35	705223.918	9136344.1	175.668	BM	80	706114.127	9139659.59	185.665	BM
36	705225.935	9136352.12	175.642	BM	81	706199.308	9139810.78	186.46	BM
37	705272.719	9136499.4	174.813	BM	82	706167.522	9139789.03	186.275	BM
38	705274.846	9136504.51	174.737	BM	83	706328.447	9139901.12	187.784	BM
39	705345.309	9136852.64	174.501	BM	84	706328.449	9139901.12	187.784	BM
40	705337.895	9136870.71	174.686	BM	85	706337.746	9139906.23	187.71	BM
41	705328.412	9137229.4	176.496	BM	86	706536.598	9140134.18	188.279	BM
42	705323.849	9137235.28	176.201	BM	87	706543.889	9140087.78	187.932	BM
43	705323.856	9137235.28	176.194	BM	88	706754.545	9140197.63	189.621	BM
44	705328.414	9137229.4	176.497	BM	89	706701.767	9140228.79	189.204	BM
45	705320.209	9137407.69	175.954	BM					

b) Organización para la recolección de datos

INSTRUMENTOS:

- 01 wincha (7" 1/2)
- 01 estación total (Leyca)
- 02 prismas (leyca y topcon)
- GPS (marca)
- 02 Radios
- Cámara fotográfica (celular)

PERSONAL TÉCNICO:

- 2 tesistas (topógrafo primero)
- 1 ayudante (prismero)
- 1 fotógrafo

c) Trabajo de campo

El presente trabajo de campo se realizó en 8 días hábiles en el cual se trabajó 7 horas diarias, donde se identificó los puntos de referencias y coordenadas necesarias para el desarrollo de trabajo.

Figura 9. Estudio en campo

Figura 10. Personal técnico

d) Trabajo de gabinete

El presente proyecto se ejecutó a través de los diversos softwares tales como: Global Mapper, Google Earth Pro para conseguir la ubicación del proyecto, así mismo se empleó el software AutoCAD y Civil 3D para realizar curvas de nivel y lograr conseguir los planos tanto de topografía como el de ubicación.

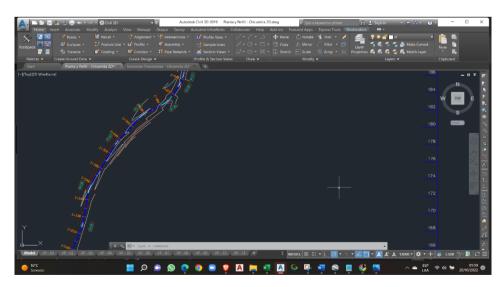


Figura 11. Diseño de carretera

4.2. Estudio de Mecánica de Suelos:

En el siguiente estudio se efectuó el reconocimiento de la zona y se realizó la extracción de material de cada muestra de toda la carretera de estudio para su análisis correspondiente, las cuales se realizaron a una distancia de 1 Km en punto inicial - punto final de la carretera de tercera clase, ubicando cada calicata con sus respectivas coordenadas.

Equipos y Herramientas

- 02 Palanas
- 01 Wincha de 10 m
- 10 Sacos grandes
- 02 Barreta
- 01 picota

Procedimiento

- Se examinó y evaluó el área de estudio.
- Se delimitó las dimensiones de las calicatas, con una medida de
 1.50m como mínimo de profundidad.
- Después de realizar las calicatas, se procedió a retirar las muestras en los sacos 10 kg para los respectivos ensayos de Proctor y CBR.
- Se llevaron las muestras al laboratorio para su posterior ensayo.

Figura 12. Extracción de muestras

> Determinación de Ubicación y Numero de calicatas

N° de calicatas : 10 calicatas

Ubicación : 1 calicata por Km

Tabla 5. Número de Calicatas en exploraciones de suelos.

Tipo de Carretera	Profundidad	N° de Calicatas
Carretera de bajo volumen de tránsito: IMDA ≤ 200 veh/día	1.50 m de profundidad	1 calicata por kilómetro

Fuente: Elaboración Propia

Tabla 6: Tabla de Coordenadas de calicatas

CALICATA	COORDENADAS NORTE	COORDENADAS ESTE
C1 - 00+100	9132650.648	704250.000
C2 - 01+100	9133400.000	704550.000
C3 - 02+100	9134100.000	704950.000
C4 - 03+100	9134850.000	705200.000
C5 - 04+100	9136400.000	705400.000
C6 - 05+100	9137200.000	705200.000
C7 - 06+100	9138000.000	705350.000
C8 - 07+100	9138600.000	706000.000
C9 - 08+100	9139950.000	706250.000
C10 - 09+070	9140400.000	706450.000

Fuente: Elaboración propia

Ensayos de Laboratorio

Se desarrollaron los ensayos de Laboratorio

Tabla 7: Ensayos de Laboratorio

Contenido de Humedad	NTP 339.127
Análisis Granulométrico	NTP 339.128
Clasificación Unificada de Suelos	
(AASTHO)	NTP 339.134
Descripción Visual-Manual	NTP 339.150
Contenido de Sales Solubles Totales en	
Suelos y Agua Subterránea	NTP 339.152
Proctor Modificado	ASTM D-1557
CBR	MTC 132

Contenido de Humedad:

Según la norma NTP 339.127 del manual de suelos y cimentaciones, este ensayo nos muestra la cantidad de agua lo cual posee cada muestra extraída de las calicatas de estudio, obteniendo el resultado en porcentaje (%).

Tabla 8: Tabla de contenido de humedad (%)

MUESTRA	Prof.	Cont. De humedad (%)
C-1,M-1	0.00 -1.50	6.02
C-2,M-1	0.00 -1.50	8.39
C-3,M-1	0.00 -1.50	1.59
C-4,M-1	0.00 -1.50	0.31
C-5,M-1	0.00 -1.50	7.25
C-6,M-1	0.00 -1.50	5.8
C-7,M-1	0.00 -1.50	2.02
C-8,M-1	0.00 -1.50	3.9
C-9,M-1	0.00 -1.50	4
C-10,M-1	0.00 -1.50	5.2

Fuente: Elaboración Propia

Análisis granulométrico:

Según la norma NTP 339.128, este estudio granulométrico nos da a conocer las medidas y diámetros de las partículas y los sedimentos presentes en nuestras muestras de estudio, las cuales pasan un análisis de tamizado según las mallas correspondientes que son: 2", 1½", 1", ¾", 1/2", 3/8", N°4, N°8, N°10, N°16, N°30, N°40, N°50, N°100 y N°200, donde nos muestran el peso retenido, porcentaje acumulado y el porcentaje que pasa de cada una de las muestras de estudio.

Tabla 9: Tabla de Análisis Granulométrico.

MUESTRA	Porcentaje de Muestra de:					
MUESTRA	Grava(%)	Arena(%)	Finos (%)			
C-1,M-1	0.27%	15.96%	83.78%			
C-2,M-1	0.22%	26.95%	72.84%			
C-3,M-1	0.40%	28.57%	71.03%			
C-4,M-1	31.10%	41.41%	27.49%			
C-5,M-1	0.53%	30.03%	69.45%			
C-6,M-1	0.13%	15.65%	84.23%			
C-7,M-1	0.33%	30.73%	68.95%			
C-8,M-1	0.18%	16.39%	83.43%			
C-9,M-1	0.53%	19.34%	80.13%			
C-10,M-1	1.30%	23.68%	75.03%			

> Clasificación Unificada de suelos (AASHTO / SUCS)

La clasificación SUCS Y AASHTO, según el informe correspondiente a la mecánica de suelos arrojó los siguientes datos de cada muestra de calicata, en el cual se señala el tipo y clasificación de suelo de cada estrato.

Tabla N°10: Tabla de Clasificación de AASHTO y SUCS

MUESTRA	AASHTO	CLASIFICACIÓN AASHTO	sucs
C-1,M-1	A-6 (10)	Arcilla plastica	CL
C-2,M-1	A-4 (8)	Limo /arena/grava	ML
C-3,M-1	A-4 (7)	Limo /arena/grava	ML
C-4,M-1	A-2-4 (0)	Arena limosa	SM
C-5,M-1	A-4 (7)	Limo /arena/grava	ML
C-6,M-1	A-6 (10)	Arcilla plastica	CL
C-7,M-1	A-4 (7)	Limo /arena/grava	ML
C-8,M-1	A-6 (10)	Arcilla plastica	CL
C-9,M-1	A-6 (10)	Arcilla plastica	CL
C-10,M-1	A-6 (10)	Arcilla plastica	CL

Perfil estratigráfico: Con respecto a la base en los registros únicos de las calicatas, ensayos de laboratorio e información recopilada, se han realizado los perfiles estratigráficos:

Tabla 11. Resumen de los estratos con sus principales propiedades

MUESTRA	AASHTO	Prof.	Cont. De	Porcenta	aje de Mues	stra de:	Límites	de Cons	istencia
MUESTRA	ААЗПІО	Pioi.	humedad (%)	Grava(%)	Arena(%)	Finos (%)	LL(%)	LP(%)	IP(%)
C-1,M-1	A-6 (10)	0.00 -1.50	6.02	0.27%	15.96%	83.78%	35.15%	21.63%	13.51%
C-2,M-1	A-4 (8)	0.00 -1.50	8.39	0.22%	26.95%	72.84%	31.38%	21.04%	10.34%
C-3,M-1	A-4 (7)	0.00 -1.50	1.59	0.40%	28.57%	71.03%	31.60%	21.87%	9.73%
C-4,M-1	A-2-4 (0)	0.00 -1.50	0.31	31.10%	41.41%	27.49%	21.60%	18.17%	3.43%
C-5,M-1	A-4 (7)	0.00 -1.50	7.25	0.53%	30.03%	69.45%	31.75%	21.71%	10.04%
C-6,M-1	A-6 (10)	0.00 -1.50	5.8	0.13%	15.65%	84.23%	35.30%	20.86%	14.45%
C-7,M-1	A-4 (7)	0.00 -1.50	2.02	0.33%	30.73%	68.95%	31.28%	21.86%	9.42%
C-8,M-1	A-6 (10)	0.00 -1.50	3.9	0.18%	16.39%	83.43%	35.28%	20.86%	14.43%
C-9,M-1	A-6 (10)	0.00 -1.50	4	0.53%	19.34%	80.13%	35.33%	20.22%	15.12%
C-10,M-1	A-6 (10)	0.00 -1.50	5.2	1.30%	23.68%	75.03%	35.36%	20.33%	15.02%

> CBR:

En base al número de puntos de CBR mostrados en la tabla 0.0 se rebelan los datos correspondientes del diseño del pavimento obtenidos de los datos de campo.

Tabla 12. Propiedades físicas y valores de CBR para el diseño del pavimento.

Muestra	a (DSM g/cm3)	OCH (%)	CBR (%) - 95%
C-2,M-1		2.026	8.75	8.20
C-4,M-1		2.055	9.50	16.00
C-9,M-1		2.014	8.75	7.80

Fuente: Elaboración Propia

Donde:

OCH = Optimo contenido de humedad

MDS = Máxima Densidad Seca

CBR = California Bearing Ratio

4.3. Estudio de Tráfico

a) Generalidades

La realización del cálculo de tráfico se hizo de acuerdo al índice vehicular tomado en campo en la semana, para obtener los índices (diario, semanal, mensual y anual), para ello realizamos un conteo vehicular en ambos puntos por 24 horas y los 7 días de la semana, donde conseguimos determinar los datos necesarios para el tipo de vía, en el cual se consideró un 5% de factor de crecimiento anual.

b) Metodología de trabajo

Esta metodología se contempla en tres etapas

Recopilación de la información

Se ha definido la ubicación de la estación de control, el propósito de ejecutar en conteo del tráfico vehicular con el objetivo de precisar el volumen vehicular en un lugar específico de la vía.

La información fue recopilada distingue la composición del vehículo, la dirección y los ciclos de conteo.

La medición se realizado un mínimo de 7 días durante 24 horas, los días fueron: martes (11/10/2022), miércoles (12/10/2022), jueves

(13/10/2022), viernes (14/10/2022), sábado (15/10/2022), domingo (16/10/2022) y lunes (17/10/2022).

Procesamiento de la información

El desarrollo de datos correspondiente en gabinete fue realizado de acuerdo a la extracción de datos tomados en campo. Siendo procesados en software especializados (Excel).

Análisis de Tráfico

Según la DG-2018 el estudio vehicular es primordial en el desarrollo del trabajo de estudio en la planificación y operación de la circulación vehicular, entender la variabilidad de todos los volúmenes del tránsito vehicular dentro de las horas de correspondientes, horas diarias, días de la semana y meses del año.

Índice Medio Diario Semanal

Se recolecto en los 7 días de la semana, mostrados en la tabla N° 13 se logra ver el volumen de vehículos por tipo durante toda una semana, esto se puede visualizar detallado el informe del estudio de tráfico.

Tabla 13. Resumen del índice Medio Diario Semanal.

Vehículos	Domingo	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Total
Moto	154	205	187	191	195	211	228	196
Auto	33	18	30	23	25	33	33	28
station wagon	9	9	14	21	9	19	22	15
Moto Lineal	33	20	42	38	40	33	55	37
Pick up	33	13	37	23	22	24	42	28
Rural Combi	5	5	8	7	4	5	10	6
Camión (2E)	7	7	11	9	9	6	13	9
Camión (3E)	7	7	8	7	5	9	12	8
Total	281	284	337	319	309	340	415	326

Fuente: Elaboración propia.

Índice Medio Diario Anual

Para encontrar IMDA, se opta por multiplicar el IMD del Factor de Corrección Estacional (FDCE), Ubicado desde el peaje

más cercano al sitio del proyecto u otra área con el mismo patrón de comportamiento, que en nuestro caso es un valor diferente para pesado y liviano. transportación.

Transito Liviano FCE: 1.0118 **Tránsito Pesado FCE:** 1.0055

Tabla 14. índice Medio Diario Anual.

TIPO DE VEHÍCULO	I.M.D	FCE	I.M.D.A
Moto	196	1.0118	198
Auto	28	1.0118	28
station wagon	15	1.0118	15
Moto Lineal	37	1.0118	38
Pick up	28	1.0055	28
Rural Combi	6	1.0118	6
Camión (2E)	9	1.0055	9
Camión (3E)	8	1.0055	8
TOTAL	326		330

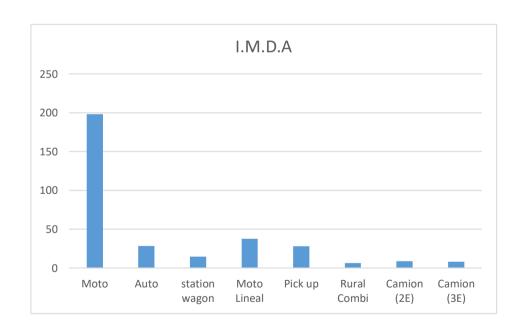


Figura 13. Tabla estadística índice Medio Anual

Factor camión o Factor vehículo pesado (Fvpi)

Se desarrollo un estudio para comprender los daños causados por los ejes cargado de 8.2 Tn. encima del pavimento, son extraídos del Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos.

Tabla 15. Factor Vehículo Pesado.

CÁLCULO D	E EJES E	QUIVALENTE	S (ESAL)
TIPO DE VEHÍCULOS	PESO	FACTOR	FACTOR CAMION
	(Tn)	(E.E.)	CAMION
Autos y Camionetas	-	-	-
De 2 ejes, 4	7	1.265	3.477
ruedas	10	2.212	0.477
De 2 ejes, 6	7	1.273	3.529
ruedas	10	2.256	0.020
De 3 ejes o mas	7	1.265	2.526
De o ejes o mas	16	1.261	2.020
Somit do 1 sign	15	2.212	3.270
Semi t. de 4 ejes	16	1.058	3.270
Semi t. de 5 ejes	10	1.273	3.407
Serii t. de 5 ejes	21	2.134	3.407
	7	1.265	
Semi t. de 6 ejes	16	1.261	3.758
	23	1.232	

Fuente: Ministerio de Transporte y Comunicaciones.

Numero de ejes equivalentes

El desarrollo se midió del IMDA se multiplica Factor carril, Factor direccional, Factor de veh. pesado y Factor neumático, conseguidas en el Manual de Carreteras Suelos, Geología, Geotecnia y Pavimentos.

$$EE_{dia-carril} = IMDpi \ x \ FD \ x \ Fc \ x \ Fvpi \ x \ Fpi$$

Número de calzadas	Número de sentidos	Número de carriles por sentido	Factor Direccional (Fd)	Factor Carril (Fc)	Factor Ponderado Fd x Fc para carril de diseño
	1 sentido	1	1.00	1.00	1.00
-	1 sentido	2	1.00	0.80	0.80
1 calzada	1 sentido	3	1.00	0.60	0.60
(para IMDa total de la calzada)	1 sentido	4	1.00	0.50	0.50
	2 sentidos	1	0.50	1.00	0.50
-	2 sentidos	2	0.50	0.80	0.40
2 calzadas con	2 sentidos	1	0.50	1.00	0.50
separador central	2 sentidos	2	0.50	0.80	0.40
(para IMDa total de las dos calzadas)	2 sentidos	3	0.50	0.60	0.30
	2 sentidos	4	0.50	0.50	0.25

Figura 14. Factores de distribución Direccional y de Carril para determinar el Tránsito en el Carril de Diseño.

Tabla 16. Número de ejes equivalentes.

TIPO DE VEHÍCULOS	IMD pi	Fd	Fc	Fvpi	Fpi	EE. (día- carril)
Autos y Camionetas	303	0.50	1.00	0	1.00	0
De 2 ejes, 4 ruedas	6	0.50	1.00	3.477	1.00	10.4310
De 2 ejes, 6 ruedas	9	0.50	1.00	3.529	1.00	15.6284
De 3 ejes o mas	8	0.50	1.00	2.526	1.00	9.9236
Semi t. de 4 ejes	0	0.50	1.00	3.270	1.00	0
Semi t. de 5 ejes	0	0.50	1.00	3.407	1.00	0
Semi t. de 6 ejes	0	0.50	1.00	3.758	1.00	0
		TOTAL				35.983

Factores de Crecimiento Acumulado (Fca)

Se logro tomar una porcentaje de crecimiento promedio del mínimo que es un 2% y del máximo que es un 10% conforme con el manual de carreteras en su tabla de Factores de crecimiento acumulado el cual nos dio como resultado del 5%.

$$Fca = \frac{(1+r)^n - 1}{r}$$

$$Fca = \frac{(1+0.05)^{20} - 1}{0.05} = 33.066$$

ESAL de Diseño

Datos recopilados que se llegó a medir el N° de repeticiones de ejes equivalentes en la siguiente formula.

EE día carril: (Ejes equivalentes) por tipo de vehículo.

Fca: Factor de crecimiento acumulado.

365: Número de días del año.

Nrep de EE 8.2 $tn = [EEdia - carril \times Fca \times 365]$

Tabla 17. Numero de Repeticiones de Ejes Equivalentes de 8.2 tn.

Configuración Vehicular	EE (día- carril)	Fca	días	Nrep de EE 8.2 tn
Autos y Camionetas	0.0000	33.07	365	0
De 2 ejes, 4 ruedas	10.4310	33.07	365	125892.503
De 2 ejes, 6 ruedas	15.6284	33.07	365	188620.6492
De 3 ejes o mas	9.9236	33.07	365	119768.3104
Semi t. de 4 ejes	0	33.07	365	0
Semi t. de 5 ejes	0	33.07	365	0
Semi t. de 6 ejes	0	33.07	365	0
TOTA	L (E.E)			434281.46

4.4. Diseño de Pavimento Flexible

> Tipo de tráfico

Conforme el Manual de Carreteras el tipo de tráfico pesado es Tp2.

	TIPOS TRÁFICO PESADO EXPRESADO EN EE	RANGOS DE TRÁFICO PESADO EXPRESADO EN EE
	T _{P1}	> 150,000 EE ≤ 300,000 EE
\rightarrow	Т _{Р2}	> 300,000 EE ≤ 500,000 EE
	Трз	> 500,000 EE ≤ 750,000 EE
	T _{P4}	> 750,000 EE ≤ 1'000,000 EE

Figura N°15. Número de repeticiones acumuladas de ejes equivalentes de 82t, en el carril de Diseño.

Según el tipo de tráfico se encuentra en Tp2 en el rango de:

> Categoría Sub Rasante

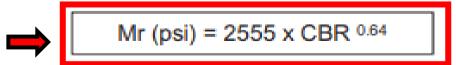
Las características del subsuelo y/o subrasante donde descansa el pavimento se definen en seis (06) categorías de subsuelo y/o subrasante según su suficiencia de CBR.

	CATEGORÍAS DE SUBRASANTE	CBR
	S ₀ : Subrasante Inadecuada	CBR < 3%
	S ₁ : Subrasante Pobre	De CBR ≥ 3% A CBR < 6%
	S ₂ : Subrasante Regular	De CBR ≥ 6% A CBR < 10%
,	S ₃ : Subrasante Buena	De CBR ≥ 10% A CBR < 20%
	S ₄ : Subrasante Muy Buena	De CBR ≥ 20% A CBR < 30%
	S ₅ : Subrasante Extraordinaria	CBR ≥ 30%

Figura 16. Categoría de sub rasante.

Periodo de Diseño

Se emplea como dato el diseño de pavimentos flexibles que se forman en 2 etapas de 10 y 20 años. El profesional a cargo puede encajar el periodo de diseño de acuerdo al lugar de localización del proyecto. Por los cual nosotros optamos el uso mínimo de años que se emplea para una carretera de primera clase el cual es 20 años de periodo.


$$n = 20 a \tilde{n} o s$$

Variable => SNEjes equivalentes

$$W18 = 434,281.46$$

Módulo de resiliencia

Es la rigidez del subsuelo y/o subrasante para un CBR 7.80 %, se aplica la siguiente formula:

Tenemos un CBR de 7.80%

 $MR = 2555 \times CBR^{0.64}$

 $MR = 2555 \times 7.80^{\circ}064$

MR = 9513.3056

Confiabilidad (%R)

La confiablidad representa el procesamiento de una estructura dada en el transcurso del diseño. Es una función de la variabilidad de su comportamiento y afecta la estructuración del pavimento.

En el Manual de Carreteras para un Tp2 de confiabilidad de 75%.

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALEN	NIVEL DE CONFIABILIDAD (R)	
	T _{P0}	100,000	150,000	65%
Caminos de Bajo	T _{P1}	150,001	300,000	70%
Volumen de	T _{P2}	300,001	500,000	75%
Tránsito	T _{P3}	500,001	750,000	80%
	T _{P4}	750 001	1,000,000	80%
	T _{P5}	1,000,001	1,500,000	85%
	T_{P6}	1,500,001	3,000,000	85%
	TP7	3,000,001	5,000,000	85%
	T _{P8}	5,000,001	7,500,000	90%
	T _{P9}	7,500,001	10'000,000	90%
Resto de Caminos	T _{P10}	10'000,001	12'500,000	90%
	T _{P11}	12'500,001	15'000,000	90%
	T _{P12}	15'000,001	20'000,000	95%
	T _{P13}	20'000,001	25'000,000	95%
	T _{P14}	25'000,001	30'000,000	95%
	T _{P15}	>30'0	00,000	95%

Figura 17. Valores de nivel de confiabilidad

Tp2 = > 75%

Coeficiente estadístico de desviación estándar normal (Zr)

Este valor que tiene en consideración las diferencias esperadas en los pronósticos de tráfico y de los diferentes factores el cual influyen en su procesamiento en el pavimento.

En el Manual de Carreteras tiene un Tp2, el Coeficiente Estadístico De Desviación Estándar (Zr) nos da -0.674

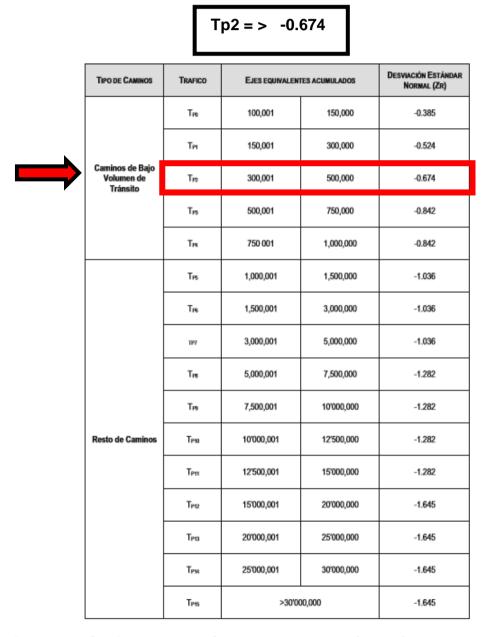


Figura 18. Coeficiente Estadístico de la Desviación Estándar Normal

Desviación estándar combinada (So)

La (So), en la guía AASHTO en pavimentos flexibles nos propone utilizar valores dentro de 0.40 y 0.50. Acordado en el Manual de Carreteras que nos brinda el dato de 0.45.

Índice de serviciabilidad presente (Psi)

Es el nivel de bienestar proporcionada al cliente. Su valor va de 0 a 5. El valor de 5 nos muestra su recientemente construcción y por el contrario el valor de 0 refleja que necesita reconstrucción o rehabilitación. A medida que las condiciones de las carreteras disminuyen debido al estado de condición precario, el PSI también disminuye consecutivamente.

Serviciabilidad inicial (PI) PI = 3.80

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALENTES ACUMULADOS		INDICE DE SERVICIABILIDAD INICIAL (PI)	
	Тн	150,001	300,000	3.80	
Caminos de Bajo Volumen de Tránsito	T _{P2}	300,001	500,000	3.80	
	T _{P3}	500,001	750,000	3.80	
	T _{P4}	750 001	1,000,000	3.80	
	T _{P5}	1,000,001	1,500,000	4.00	
	T _{P6}	1,500,001	3,000,000	4.00	
	TP7	3,000,001	5,000,000	4.00	
	Трв	5,000,001	7,500,000	4.00	
	T _{P9}	7,500,001	10'000,000	4.00	
Resto de Caminos	T _{P10}	10'000,001	12'500,000	4.00	
	T _{P11}	12'500,001	15'000,000	4.00	
	T _{P12}	15'000,001	20'000,000	4.20	
	T _{P13}	20'000,001	25'000,000	4.20	
	Тры	25'000,001	30'000,000	4.20	
	T _{P15}	>30%	>30'000,000		

Figura 19. Índice de serviciabilidad inicial

Serviciabilidad Final (PT)

Pt = 2.00

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALENTES ACUMULADOS		INDICE DE SERVICIABILIDAD FINAL (PT)
	T _{P1}	150,001	300,000	2.00
Caminos de Bajo Volumen de	Trz	300,001	500,000	2.00
Tránsito	T _{P3}	500,001	750,000	2.00
	Тм	750 001	1,000,000	2.00
	Tes	1,000,001	1,500,000	2.50
	T _{P6}	1,500,001	3,000,000	2.50
	197	3,000,001	5,000,000	2.50
	Tes	5,000,001	7,500,000	2.50
	Тю	7,500,001	10'000,000	2.50
Resto de Caminos	Tres	10'000,001	12'500,000	2.50
	T _{P11}	12'500,001	15'000,000	2.50
	T _{P12}	15'000,001	20'000,000	3.00
	T _{P13}	20'000,001	25'000,000	3.00
	Три	25'000,001	30'000,000	3.00
	TP15	>30'000,000		3.00

Figura 20. Índice de Serviciabilidad Final

Variación de Serviciabilidad (∆PSI)

Es resultado en la variabilidad dentro de serviciabilidad inicial y la serviciabilidad final tomada por el proyecto.

TIPO DE CAMINOS	TRAFICO	EJES EQUIVALEN	DIFERENCIAL DE SERVICIABILIDAD (APSI)	
	T _{P1}	150,001	300,000	1.80
Caminos de Bajo Volumen de Tránsito	T _{P2}	300,001	500,000	1.80
	Трз	500,001	750,000	1.80
	T _{P4}	750 001	1,000,000	1.80
Resto de Caminos	T _{P5}	1,000,001	1,500,000	1.50
	T _{P6}	1,500,001	3,000,000	1.50
	TP7	3,000,001	5,000,000	1.50
	Трв	5,000,001	7,500,000	1.50
	Трэ	7,500,001	10'000,000	1.50
	T _{P10}	10'000,001	12'500,000	1.50
	T _{P11}	12'500,001	15'000,000	1.50
	T _{P12}	15'000,001	20'000,000	1.20
	T _{P13}	20'000,001	25'000,000	1.20
	TP14	25'000,001	30'000,000	1.20
	TP15	>30'000,000		1.20

Figura 21. Diferencial de Serviciabilidad

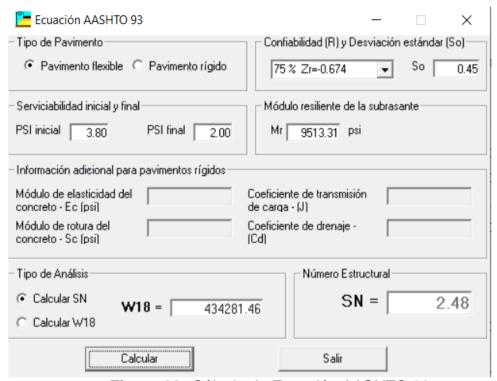
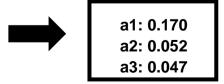


Figura 22. Cálculo de Ecuación AASHTO 93

Determinación de las capas (espesores)

Los resultados se emplean en la ecuación AASHTO logramos obtener el (SN) Numero Estructural, que significara la medida del espesor del pavimento que se va a emplear, para ser trasladado al efectivo espesor de las capas que lo confirmaran.

$$SN = a_1 x d_1 + a_2 x d_2 x m_2 + a_3 x d_3 x m_3$$


Donde:

- a₁, a₂, a₃ = coeficientes estructurales de las capas: superficial, base y subbase, respectivamente
- d₁, d₂, d₃ = espesores (en centímetros) de las capas: superficial, base y subbase, respectivamente
- m₂, m₃ = coeficientes de drenaje para las capas de base y subbase, respectivamente

Coeficientes estructurales (a1, a2, a3)

	COMPONENTE DEL PAVIMENTO	COEFICIENTE	VALOR COEFICIENTE ESTRUCTURAL a _i (cm)	OBSERVACIÓN
	CAPA SUPERFICIAL			
\Longrightarrow	Carpeta Asfáltica en Caliente, módulo 2,965 MPa (430,000 PSI) a 20 oC (68 oF)	a ₁	0.170 / cm	Capa Superficial recomendada para todos los tipos de Tráfico
	Carpeta Asfáltica en Frío, mezcla asfáltica con emulsión.	a ₁	0.125 / cm	Capa Superficial recomendada para Tráfico ≤ 1'000,000 EE
	Micropavimento 25mm	aı	0.130 / cm	Capa Superficial recomendada para Tráfico ≤ 1'000,000 EE
	Tratamiento Superficial Bicapa.	a ₁	0.250 (*)	Capa Superficial recomendada para Tráfico ≤ 500,000EE. No Aplica en tramos con pendiente mayor a 8%; y, en vías con curvas pronunciadas, curvas de volteo, curvas y contracurvas, y en tramos que obliguen al frenado de vehículos
	Lechada asfáltica (slurry seal) de 12mm.	a ₁	0.150 (*)	Capa Superficial recomendada para Tráfico ≤ 500,000EE No Aplica en tramos con pendiente mayor a 8% y en tramos que obliguen al frenado de vehículos
	(*) Valor Global (no se considera el espesor)			
_	Base			
\Longrightarrow	Base Granular CBR 80%, compactada al 100% de la MDS	a 2	0.052 / cm	Capa de Base recomendada para Tráfico ≤ 5'000,000 EE
	Base Granular CBR 100%, compactada al 100% de la MDS	a ₂	0.054 / cm	Capa de Base recomendada para Tráfico > 5'000,000 EE
	Base Granular Tratada con Asfalto (Estabilidad Marshall = 1500 lb)	a2a	0.115 / cm	Capa de Base recomendada para todos los tipos de Tráfico
	Base Granular Tratada con Cemento (resistencia a la compresión 7 días = 35 kg/cm²)	a _{2b}	0.070 cm	Capa de Base recomendada para todos los tipos de Tráfico
	Base Granular Tratada con Cal (resistencia a la compresión 7 días = 12 kg/cm²)	a _{2c}	0.080 cm	Capa de Base recomendada para todos los tipos de Tráfico
	SUBBASE			
	Sub Base Granular CBR 40%, compactada al 100% de la MDS	a ₃	0.047 / cm	Capa de Sub Base recomendada para Tráfico ≤ 15'000,000 EE
	Sub Base Granular CBR 60%, compactada al 100% de la MDS	a ₃	0.050 / cm	Capa de Sub Base recomendada para Tráfico > 15'000,000 EE

Figura 23. Coeficientes Estructurales de las Capas

Coeficientes de Drenaje (m2 y m3)

Calidad de drenaje: BUENO

	CALIDAD DEL DRENAJE	TIEMPO EN QUE TARDA EL AGUA EN SER EVACUADA	
	Excelente	2 horas	
	Bueno	1 día	
	Mediano	1 semana	
	Malo	1 mes	
	Muy malo	El agua no evacua	

Figura 24. Calidad de Drenaje

Drenaje bueno

$$P = \frac{1 \text{ día}}{365 \text{ días}} \times 100\%$$

$$P = 0.274\%$$

	CALIDAD DEL	P=% DEL TIEMPO EN QUE EL PAVIMENTO ESTA EXPUESTO A NIVELES DE HUMEDAD CERCANO A LA SATURACIÓN.				
	Drenaje	MENOR QUE 1%	1% - 5%	5% - 25%	MAYOR QUE 25%	
	Excelente	1.40 – 1.35	1.35 - 1.30	1.30 – 1.20	1.20	
	Bueno	1.35 – 1.25	1.25 – 1.15	1.15 – 1.00	1.00	
•	Regular	1.25 – 1.15	1.15 – 1.05	1.00 - 0.80	0.80	
	Pobre	1.15 – 1.05	1.05 - 0.80	0.80 - 0.60	0.60	
	Muy pobre	1.05 – 0.95	0.95 - 0.75	0.75 - 0.40	0.40	

Figura 25. Valores recomendados del Coeficiente de Drenaje

$$m2 = 1.35$$

$$m3 = 1.25$$

Espesores Mínimos

Tránsito (ESAL's) En	Carpetas De Concreto	Bases
Ejes Equivalentes	Asfáltico	Granulares
Menos de 50,000	1,0 ó T.S.	4,0
50,001 - 150,000	2,0	4,0
150,001 - 500,000	2,5	4,0
500,001 - 2'000,000	3,0	6,0
2'000,001 - 7'000,000	3,5	6,0
Mayor de 7'000,000	4,0	6,0

Figura 26. Espesores mínimos en función de los ejes equivalentes

Carpeta
$$\Rightarrow$$
 2.5" x 2.54 =6.35
Base \Rightarrow 4" x 2.54 =10.16

Espesores Máximos

Máximo = 2 (Base)

✓ Primer tanteo

$$SN = (a1 \times D1) + (a2 \times D2 \times m2) + (a3 \times D3 \times m3)$$

$$SN = (0.17 \times 5) + (0.052 \times 12 \times 1.35) + (0.047 \times 24 \times 1.25)$$

$$2.48 = (0.17 \times 5) + (0.052 \times 12 \times 1.35) + (0.047 \times 24 \times 1.25)$$

$$3.1024 = (0.85) + (0.8424) + (1.41)$$

√ Segundo tanteo

$$SN = (a1 \times D1) + (a2 \times D2 \times m2) + (a3 \times D3 \times m3)$$

$$SN = (0.17 \times 5) + (0.052 \times 12 \times 1.35) + (0.047 \times 12 \times 1.25)$$

$$2.48 = (0.17 \times 5) + (0.052 \times 12 \times 1.35) + (0.047 \times 12 \times 1.25)$$

$$2.397 = (0.85) + (0.842) + (0.705)$$

✓ Tercer tanteo

$$SN = (a1 \times D1) + (a2 \times D2 \times m2) + (a3 \times D3 \times m3)$$

$$SN = (0.17 \times 5) + (0.052 \times 12 \times 1.35) + (0.047 \times 12 \times 1.25)$$

$$2.48 = (0.17 \times 5) + (0.052 \times 12 \times 1.35) + (0.047 \times 12 \times 1.25)$$

$$2.397 = (0.85) + (0.842) + (0.705)$$

✓ Cuarto tanteo

$$SN = (a1 \times \frac{D1}{D1}) + (a2 \times \frac{D2}{D2} \times m2) + (a3 \times \frac{D3}{D3} \times m3)$$

$$SN = (0.17 \times 5) + (0.052 \times 15 \times 1.35) + (0.047 \times 15 \times 1.25)$$

$$2.48 = (0.17 \times 5) + (0.052 \times 15 \times 1.35) + (0.047 \times 15 \times 1.25)$$

$$2.784 = (0.85) + (1.053) + (0.881)$$

Diseño de pavimento Flexible

Figura 27. Diseño de pavimento Flexible

En base al pavimento proyectado se eligió usar el método AASTHO 93. Siendo este proceso apoyado en modelos que han sido generados de acuerdo a cargas vehiculares obteniendo como resistencia de sub - rasante para los cálculos de espesores correspondientes.

El objetivo de diseño es hallar el Número estructural requerido (SN), en base a un conjunto de espesores por cada capa en la estructura de la carretera, que serán construidas encima de sub rasante para sostener cargas vehiculares con una serviciabilidad aceptable.

Así mismo, tenemos los diversos valores de los coeficientes estructurales a1, a2, a3 extraídos de la guía AASHTO 93 en el cual de acuerdo a los parámetros requeridos determinamos que a1 = 0.170. a2= 0.052, a3 = 0.047. Para obtener los datos de m2 y m3 recurrimos a la tabla de coeficiente de Drenaje donde se determinó la calidad de drenaje como bueno asumiendo así los siguientes datos: como m2=1.35 y m3 = 1.25.

Con los valores obtenidos del Diseño, CBR igual a 7.8%, EAL de 434821.46 y un clima de 20° centígrados, el valor indicado que se utilizará para el espesor total del pavimento, será considerado a nivel del terreno natural, el cual según los ensayos del laboratorio fue identificado como Arcilla ligeramente Plástico.

La base y la sub base deben efectuar con los requisitos mínimos, los que fueron aceptados en el cálculo de espesores del pavimento, donde el SN Resultante tiene que ser mayor al SN Requerido. Según la guía del AASHTO-93 en los cuadros consultados nos da los valores de D1 = 5 cm y D2 = 15 cm, continuamente se tiene que encontrar el D3 variando el espesor hasta que cumpla con lo requerido, D3 = 15, cumpliendo así con nuestro diseño de pavimento flexible.

V. DISCUSIÓN

El mejoramiento de un diseño en una infraestructura vial se sustenta en la elaboración de planos que cumplen los requisitos de diseño en la carretera de tercera clase a nivel del pavimento flexible, que esté de acuerdo a la normativa presentada en la DG-2018 del MTC, este trabajo está localizado en el Acceso Chicamita, Distrito de Chicama, provincia de Ascope, La Libertad, donde muestra una topografía llana con presencia de pendientes transversales a la vía entre 1% y 4.2% siendo actualmente una trocha carrozable; con el presente mejoramiento del diseño a nivel de pavimento flexible de la trocha carrozable existente pretende adoptar una vía de tercera clase a nivel de pavimento flexible cumpliendo los parámetros especificados en la DG-2018 obteniendo como resultado el nuevo diseño plasmado de manera grafica en planos acorde a lo estipulado en la DG-2018.

Del estudio topográfico en campo y gabinete mediante softwares especializados, se obtuvo como resultado el análisis de puntos y coordenadas extraídos de la data de los equipos utilizados, presentando las curvas de nivel, orografía y las equidistancias que se presentan en las tablas de puntos topográficos. Por otra parte, el estudio de suelos arroja datos de CBR con un valor de 7.8% lo que indica según norma que es una subrasante regular porque se encuentra en el rango de 6% a 10%. Así mismo, se determinó un periodo de 20 años en el diseño de la carretera pavimento flexible. Esta estructura mejorada contiene una sub base con un grosor de 15 cm, base con un grosor de 15 cm y carpeta asfáltica con un grosor de 5 cm. Por último, esta investigación contiene la señalización de toda la vía describiendo las señales horizontales y verticales, así mismo también indica los efectos positivos y negativo que se genera en el tiempo de la construcción del proyecto, el cual es una forma de control ambiental en base al cuidado del medio ambiente.

Los resultados logrados del presente trabajo de investigación es similar al estudio que se propone utilizar el procedimiento INVIAS al diseñar las estructuras en pavimento flexible con la finalidad en volúmenes de tránsito moderado y alto, AASHTO 93 E INSTITUTO DEL ASFALTO para la vía la SANTA LUCIA BARRANCA LEBRIGA a través de las abscisas K 19+250 A K25+750, (Salamanca y Zuluaga, 2014), debido a que el procesamiento de desarrollo del trabajo de investigación cumple los mismos trabajos para la obtención de datos específicos necesarios tomados in situ, corroborando que el trabajo de campo pueda determinar el estado actual del área de estudio.

Del mismo modo, el trabajo efectuado en campo arrojó un estudio de 10 calicatas, dentro de las cuales se llegaron a extraer los estratos de muestras en sus exámenes correspondientes en los laboratorio, determinando así que la calicata N° 01 a la N°10 muestran los resultados en sus tablas correspondientes identificando su clasificación SUCS, limites líquidos, limite plástico, granulometría, contenido de humedad, índice de plasticidad y AASHTO además del Proctor necesario para el diseño y el tipo de suelo. Otro de los resultados obtenidos según el desarrollo de investigación afirma un contexto similar al estudio realizado por Chávez, L; Hernández, C y Manzano A. (2011). En su estudio "Modelación de envejecimiento de carpeta asfáltica con una metodología de la superficie de respuesta", Donde el diseño de pavimento flexible en el mejoramiento vial tendrá un efecto positivo en la localidad, mediante un mejoramiento en el transporte de los productos de cultivos. Este nuevo mejoramiento de pavimento flexible muestra características que cumplen los parámetros requeridos por el MTC especificados en la Norma AASHTO 93, el cual determinó como resultado los siguientes datos de diseño que es la capa subrasante, la subbase con un espesor de 15 cm equivalente a 6", la base con un grosor de 20 cm equivalente a 8" y la carpeta asfáltica con un espesor de 5 cm equivalente a 2".

VI. CONCLUSIONES

- Se elaboro el levantamiento topográfico del proyecto de investigación obteniendo la orografía, curvas de nivel y el tipo de terreno del lugar de estudio la cual manifiesta durante todo el tramo de recorrido de la carretera una pendiente menor al 10% comprobando que es una topografía llana.
- Se han ejecutado 10 calicatas de 1.50 m a lo largo de toda el área de estudio con fines de pavimentación y retirar las muestras de calicata para su análisis de laboratorio (Ver Plano de Ubicación de Calicatas en Anexos).
- El terreno cuenta con un perfil del tipo homogéneo, donde el material orgánico se encuentra por encima de los suelos finos de leve plasticidad parcialmente saturado y partículas alargadas (Ver Perfil Estratigráfico), además el material de subrasante obtuvo un valor de CBR de diseño igual a 7.8%, el cual NO necesita mejoramiento o estabilización.
- El cálculo del estudio vehicular se realizó a través de un conteo especializado de acuerdo a las Tablas del ministerio de transportes arrojando un número de vehículos que transitan de lunes a domingo donde el día lunes transitan 284 vehículos, martes 331 vehículos, miércoles 313 vehículos, jueves 303 vehículos, viernes 321 vehículos, sábado 327 vehículos y finalmente domingo 362 vehículos.
- El diseño de pavimento flexible según los parámetros estipulados en la norma AASHTO 93 nos arrojó como resultados una subbase con un grosor de 15 cm, una base con un grosor de 20 cm y una carpeta asfáltica de 5 cm acotando que la subrasante según el estudio de suelos no necesita una estabilización o un refuerzo para mejorar la calidad del suelo natural.

VII. RECOMEDACIONES

- Como primera recomendación se hace mención referente a las diferentes canteras donde se realiza la separación de materiales, los cuales se emplearán en esta investigación, estas necesitarán complacer de manera general, los resultados señalados en los distintos recuadros que se adjuntan en este informe, los cuales serán corroborados antes de emplear las diversas partidas en el proyecto.
- Como segunda recomendación en la opción de planificarse un sistema de drenaje, se optaría por fijar que marche de manera adecuada de tal modo que el pavimento tenga proyectada su vida útil. Así mismo, se debe hacer un estudio hidrológico de la zona en donde deberá proyectarse un diseño con una pendiente necesaria de tal manera que el agua pluvial discurra y no se estanque encima del pavimento proyectado.
- Como tercera recomendación para el relleno de algunas partes de la infraestructura en un posible desarrollo se recomienda emplear un material extraído de cantera comprende un suelo gravoso, debidamente compactado por las capas en 95% de la Máxima Densidad Seca del Proctor Modificado.
- Como cuarta recomendación se deberá tener en cuenta que las especificaciones de estudio deben estar acorde con los parámetros requeridos por la norma AASHTO 93 u otra norma especializada de acuerdo al estudio que se realiza para el desarrollo de la infraestructura vial.

REFERENCIAS

ARIAS, Alex y VELASQUEZ, Luis. Mejoramiento del pavimento flexible de la avenida Manuel Seoane, distrito de Víctor Larco Herrera, Trujillo 2021. Repositorio UCV [en línea]. 2021. [Fecha de consulta de 5 de julio del 2022]. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/85508

BARREDA, M; NABER, M; QUISPE, I y SOTA, J. Fisuras de contracción en pavimentos de hormigón y el aserrado de juntas. Revista Redalyc [en línea]. 2013. [Fecha de consulta 5 de julio del 2022].

Disponible en: https://www.redalyc.org/articulo.oa?id=427639592003

CAMPOS, Luis y CHIHUALA, Gianfranco. Determinación del deterioro del pavimento flexible de la avenida Indoamérica del distrito de La Esperanza – La Libertad - 2019 propuesta de mejora. Repositorio UCV [en línea]. 2019. [Fecha de consulta de 5 de julio del 2022].

Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/51417

CARRION, Alvaro y OLASCOAGA, Othoniel. Diseño de infraestructura vial pistas y veredas, centro poblado Pacanguilla, distrito de Pacanga - Chepén. Repositorio UCV [en línea]. 2021. [Fecha de consulta de 5 de julio del 2022].

Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/65847

CHACHA, Miguel y CÓRDOVA, Bruno. Mejoramiento de la infraestructura vial entre el Desvío Frontón Bajo y Caserío Frontón Bajo, Virú, La Libertad, 2021. Repositorio UCV [en línea]. 2021. [Fecha de consulta de 5 de julio del 2022]. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/79096

COELLO, Luis y YEN, Jorge. Diseño de Infraestructura Vial para mejorar la transitabilidad entre caseríos Ugás y Nuevo Horizonte (km.0+000 al km.12+720), Chepén, La Libertad. Repositorio UCV [en línea]. 2020. [Fecha de consulta de 5 de julio del 2022].

Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/70329

ESPINOZA, Noly. Nivel de exactitud en el diseño geométrico de una carretera de segunda clase, utilizando modelo digital de terreno de Dron y método convencional, tramo Ambo-Huácar. Repositorio UNHEVAL [en línea]. 2020. [Fecha de consulta 5 de julio del 2022].

Disponible en: https://repositorio.unheval.edu.pe/handle/20.500.13080/6226

FERNANDEZ, Daniela. Mejoramiento de la infraestructura vial en el Jirón Lima cuadras del 01 al 08, en el distrito de Tarapoto 2019. Repositorio UCV [en línea]. 2019. [Fecha de consulta de 5 de julio del 2022].

Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/36032

FERNANDEZ, Segundo y ROMAN, José. Diseño de infraestructura vial urbana, centro poblado San José de Moro - distrito de Pacanga, departamento La Libertad. Repositorio UCV [en línea]. 2020. [Fecha de consulta de 5 de julio del 2022].

Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/58326

FLORES, Marlon. Formulación de políticas públicas de seguridad vial referidos a transportes alternativos (motos y bicicletas): recomendaciones para la gestión local. Repositorio PUCP [en línea]. 2016. [Fecha de consulta 5 de julio del 2022]. Disponible en: https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/7210

GARCIA, Andrés. Diseño de pavimento asfáltico por el método AASHTO 93 empleando el software DISAASHTO 93. Repositorio UMNG. [en línea]. 2015. [Fecha de consulta de 5 de julio del 2022].

Disponible en: https://core.ac.uk/download/pdf/143451539.pdf

HALLASI, Ángel. Mejoramiento de las trochas carrozables en la Comunidad de Retiro del Carmen Distrito de Yanatile – Provincia de Calca - Cusco. Repositorio UNSAAC [en línea]. 2019. [Fecha de consulta de 5 de julio del 2022].

Disponible en: https://repositorio.unsaac.edu.pe/handle/20.500.12918/4944

HERANDEZ, Camilo y PÉREZ, Wilson. Evaluación del comportamiento de terreno natural con adiciones de escoria de acería de Gerdau Diaco como capa

de mejoramiento de la sub-rasante en el suelo de Nemocón. Repositorio USTA [en línea]. 2022. [Fecha de consulta de 5 de julio del 2022].

Disponible en: https://repository.usta.edu.co/handle/11634/39999

HERNANDEZ, C; MANZANO, A y CHÁVEZ, L. Modelación del envejecimiento de los pavimentos asfálticos con la metodología de la superficie de respuesta. Revista Redalyc [en línea]. 2011. [Fecha de consulta 5 de julio del 2022]. Disponible en: https://www.redalyc.org/articulo.oa?id=40421268002

MACEA, Luis; MORALES, Luis y MÁRQUEZ, Luis. Un sistema de gestión de pavimentos basado en nuevas tecnologías para países en vía de desarrollo. Revista de Ingeniería [en línea]. 2016. [Fecha de consulta de 5 de julio del 2022]. Disponible en: https://doi.org/10.1016/j.riit.2016.06.007

MARIN, Julia y MONTENEGRO, Reiner. Diseño de la carretera entre los caseríos José Gálvez - Pachin Alto, Distrito de Otuzco - Provincia de Otuzco - La Libertad 2019. Repositorio UCV [en línea]. 2021. [Fecha de consulta de 5 de julio del 2022].

Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/73126

MONTAÑO, Jorge; ZUÑIGA, David y RODRIGUEZ, Manuel. Consideraciones, procedimientos y conceptos para la realización de un proyecto geométrico de carreteras. Revista Dialnet [en línea]. 2015. [Fecha de consulta 5 de julio del 2022].

Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7137425

POVEDA, Manuel; BERNAL, Fausto y MARIN, Andrés. Diseño de un pavimento para la estructura vial, de la vía conocida como "El Kilómetro 19", desde el K2+000 al K2+500, que comunica a los municipios de Chipaque - Une, en el departamento de Cundinamarca. Repositorio Católica Colombia [en línea]. 2014. [Fecha de consulta 5 de julio del 2022].

Disponible en: https://repository.ucatolica.edu.co/handle/10983/2574

RODRIGUEZ, Juan. Diseño para el mejoramiento de la trocha carrozable entre los pueblos de Santiago y Guzmango, distrito de Guzmango, Contumazá, Cajamarca. Repositorio UCV [en línea]. 2018. [Fecha de consulta de 5 de julio del 2022].

Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/32606

SALAMANCA, María y ZULUAGA, Saieth. Diseño de la estructura de pavimento flexible por medio de los métodos INVIAS, AASHTO 93 e Instituto del Asfalto para la vía La Ye - Santa Lucía Barranca Lebrija entre las abscisas K19+250 A K25+750 ubicada en el departamento del Cesar. Repositorio Católica Colombia [en línea]. 2014. [Fecha de consulta 5 de julio del 2022].

Disponible en: https://repository.ucatolica.edu.co/handle/10983/2569

YANCCE, Jony. Diseño geométrico de trochas carrozables según norma DG-2014: Análisis de Casos. Repositorio UPECEN [en línea]. 2019. [Fecha de consulta 5 de julio del 2022].

Disponible en: https://repositorio.upecen.edu.pe/handle/UPECEN/175

ANEXOS

Anexo 1. Matriz de operacionalización e indicadores de variables Matriz de Convergencia

Va	riable	Dimensiones	indicadores	
Variable fáctica	Estado de condición	Evaluación del diseño geométrico	Diseño en planta	
			velocidad de diseño	
		Diseño estructural para el mejoramiento	espesor	
		Método de PCI	evaluación de Fallas	
		Eje tematico	Sub Ejes temáticos	
		Periodo de diseño	10 años 20 años	
		Ejes equivalentes	W18	
		Nivel de confiablidad	porcentaje de confiabilidad	
l icc		Deguioción	Tipo de camino	
πát	Metodología AASHTO	Desviación – estándar normal –	trafico	
Eje temático			Ejes equivalentes	
Eje		Desviación estándar combinada	0.4	
			0.5	
		Numero	Coeficiente de estructura	
		estructural	espesor	
		Drenaje	calidad de drenaje	
Pro	puesta	Eje propositivo	Sub Ejes propositivos	
	Diseño de pavimento flexible		coordenadas de terreno	
		Estudio	Curvas de nivel	
		topográfico	Secciones transversales	
0			Perfil longitudinal	
jŧį.		Estudio de suelos	Granulometría	
sod			peso especifico	
Eje propositivo			contenido de humedad	
			C.B.R	
		Estudio de Trafico	Índice medio diario	
			índice medio diario semanal	
			índice medio diario anual	
<u> </u>			maio modio didito diladi	

Anexo 4. Instrumentos de recolección de datos Topográficos.

FICHA DE RESUMEN PARA EL LEVANTAMIENTO TOPOGRÁFICO

1. Datos Generales

Nombre el Proyecto	Diseño de pavimento Flexible de la carretera acceso a Chicamita mediante el método AASHTO 93, Distrito de Chicama, La Libertad 2022.
Lugar	Distrito de Chicama
Fecha	OCTUBRE - 2022

2. Programa para conseguir imagen Satelital con fecha de acceso al programa

Google Earth

Fecha de acceso: SEPTIEMBRE - 2022

3. Coordenadas UTM del punto inicial y punto final

Coordenadas UTM	P. I. (Cruce Llaray)	P. F. (caserio las Pajillas)
Este:	704222.95	706481.12
Norte:	9132690.26	9140366.41
Altitud:	127 m.s.n.m.	172 m.s.n.m.

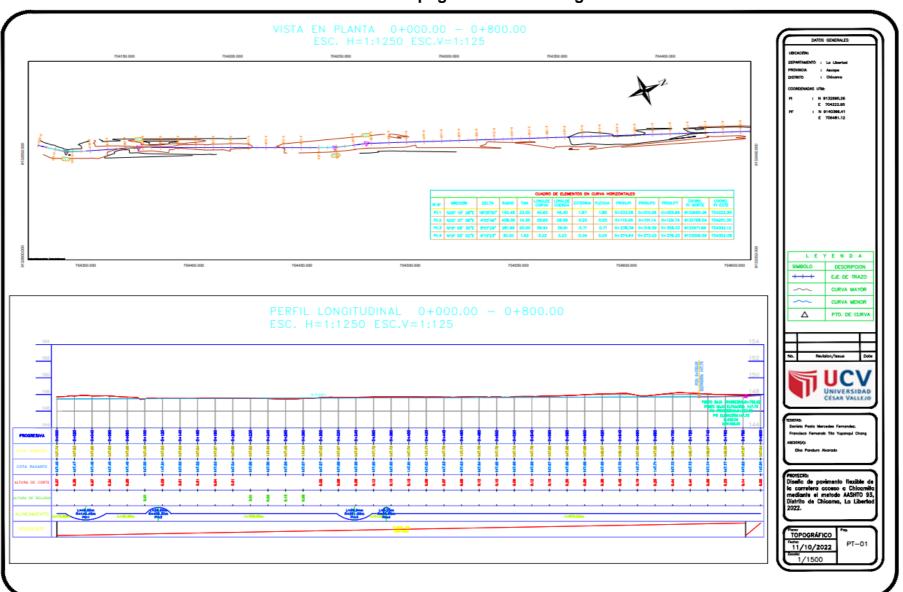
4. Puntos de referencia

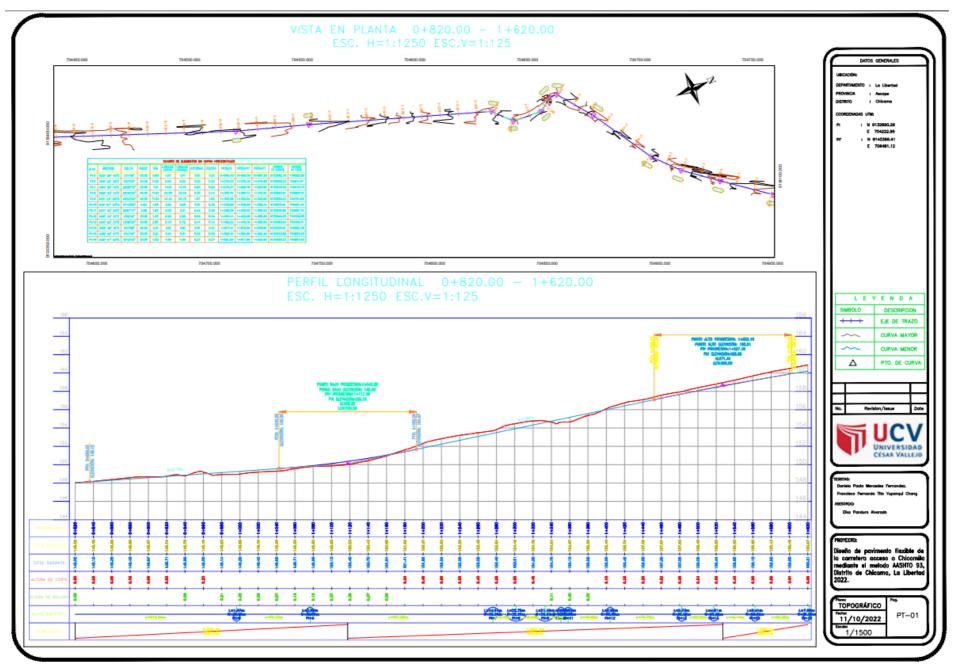
Descripcion	Este	Norte	Altitud
E-1	704218.174	9132690.65	147.986
E-2	704685.217	9133847.79	153.961
E-3	705158.487	9134833.33	169.085
E-4	705300.266	9135731.42	174.547
E-5	705337.895	9136870.71	174.686
E-6	705414.487	9138090.47	177.412
E-7	705473.139	9138593.27	180.284
E-8	705939.802	9138981.99	183.909
E-9	706114.127	9139659.59	185.665
E-10	706701.767	9140228.79	189.204

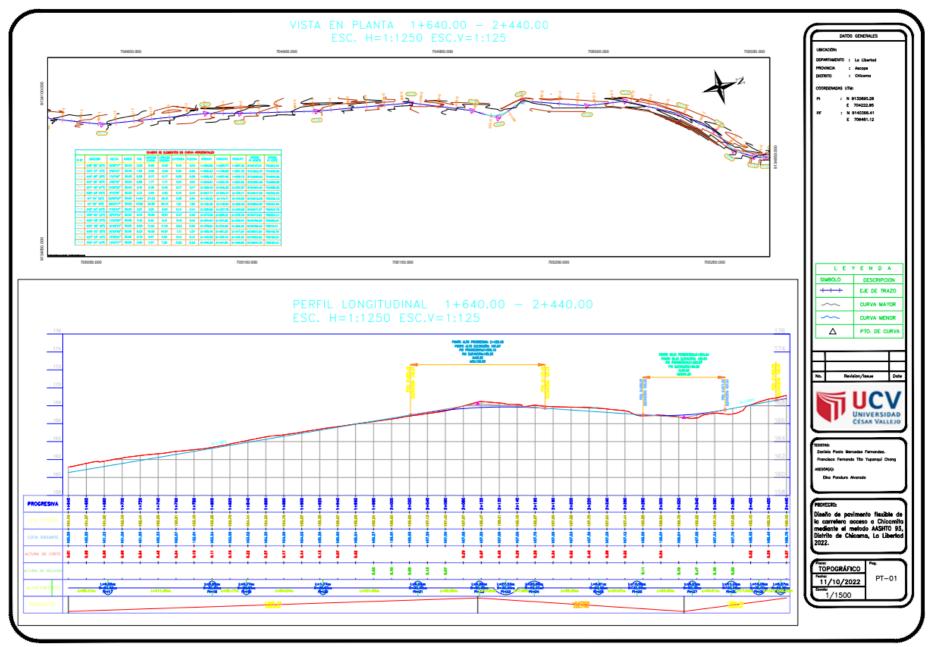
5. Programa para obtener Curvas de nivel

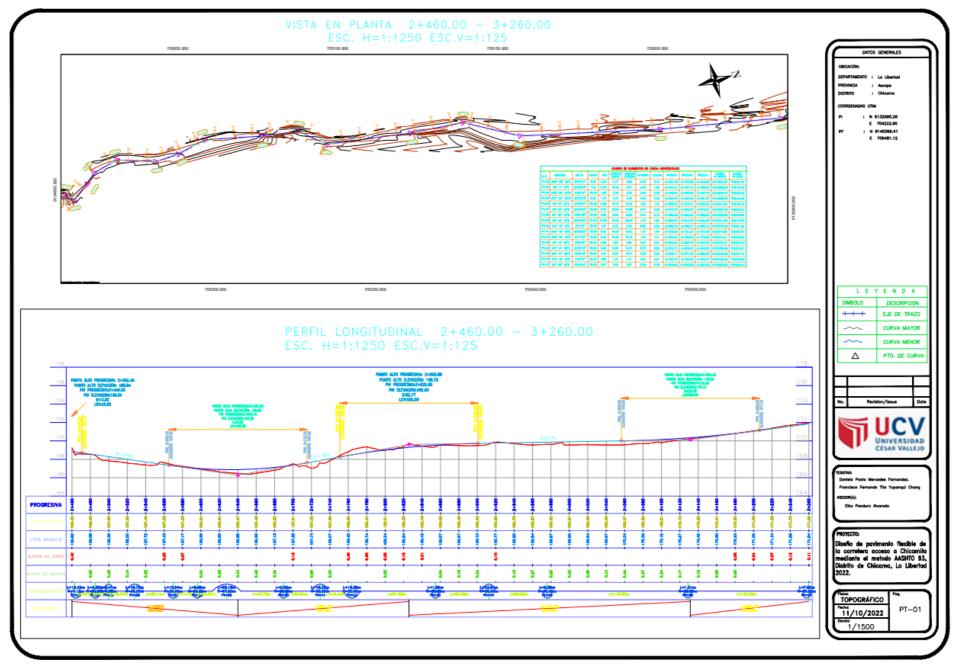
Civil 3D.

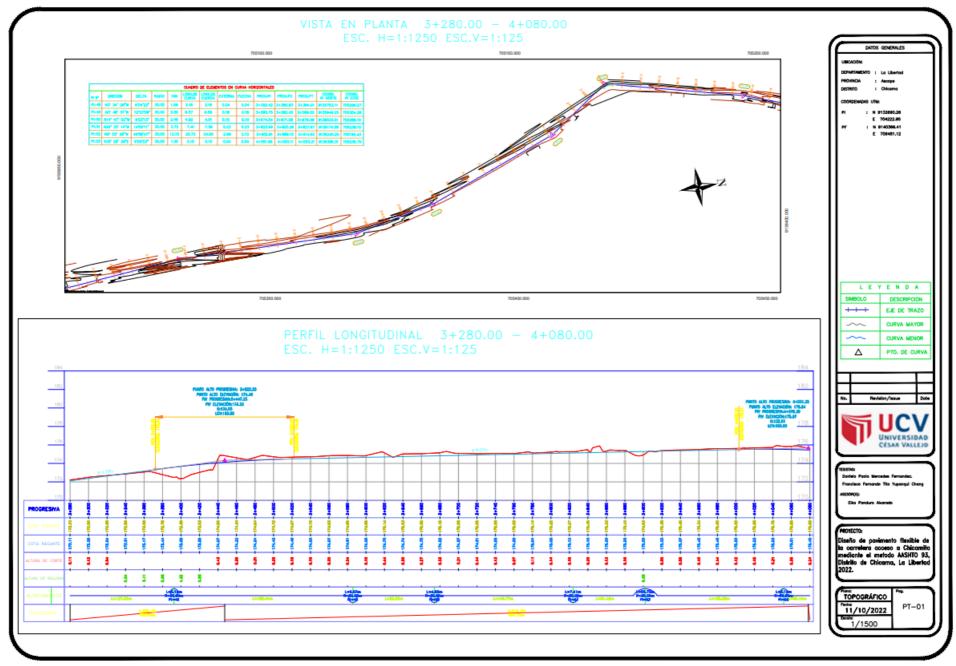
7. Programa de procesamiento de datos:

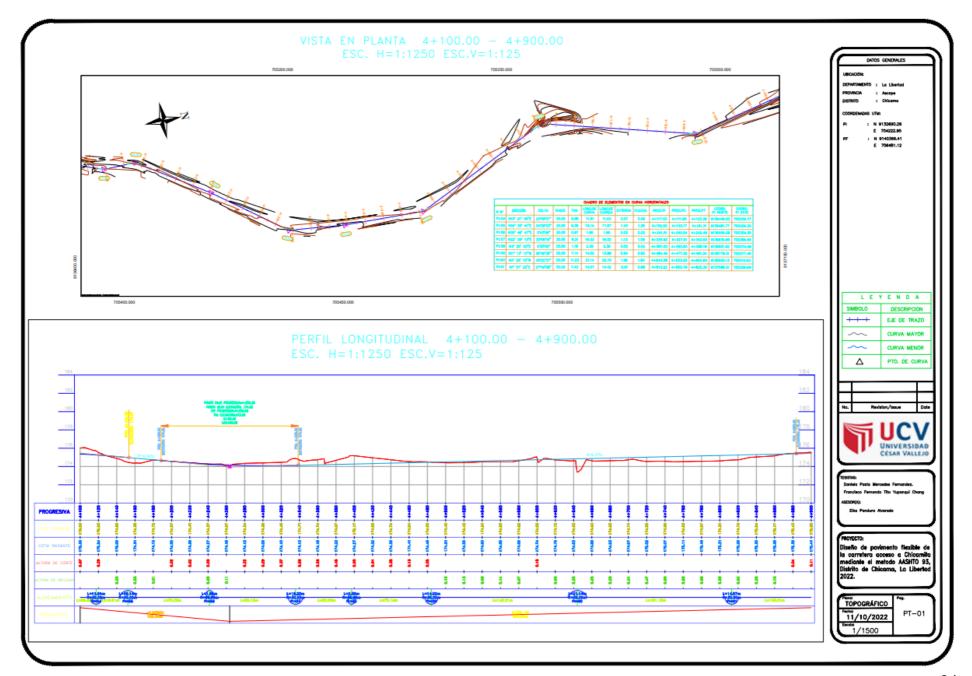

Excel, Civil 3D, Google EATRH

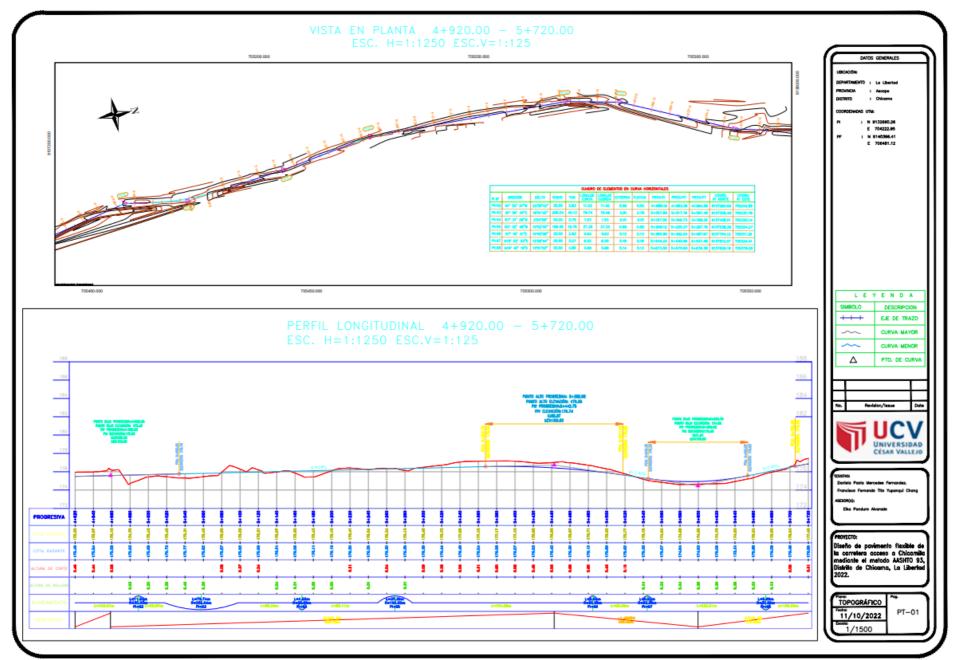

8. Escala de planos

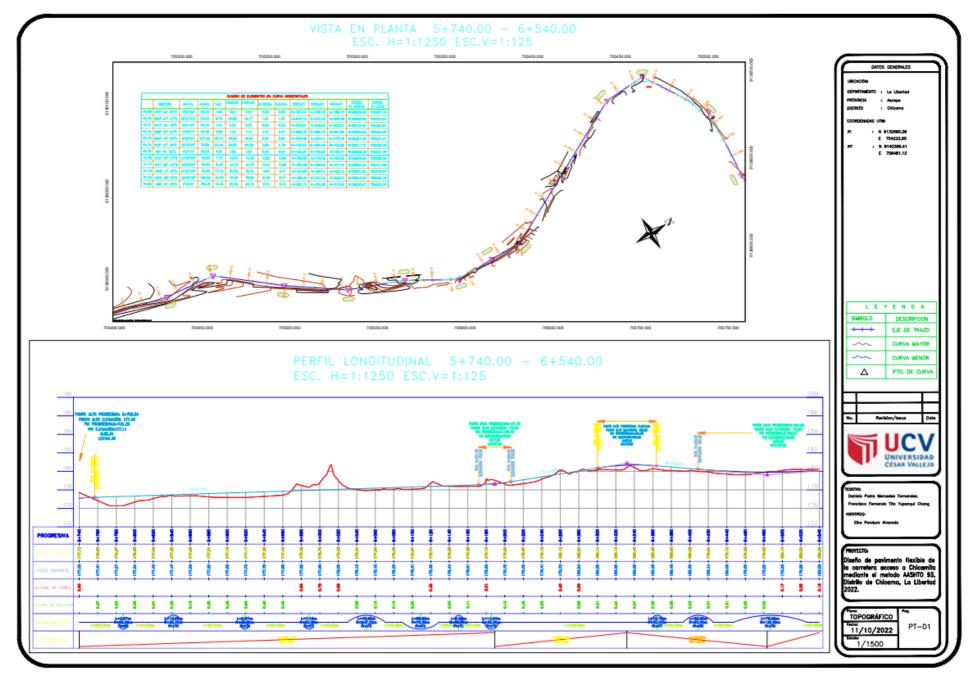

Plano	escala
VP-01	1/75
ST-01	1/25

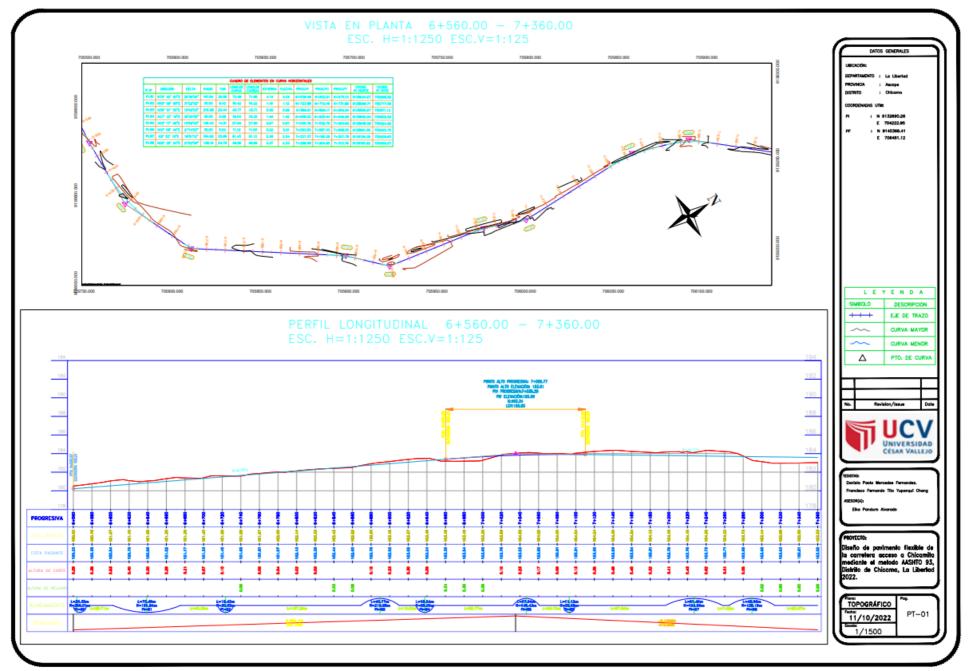

Validacion:

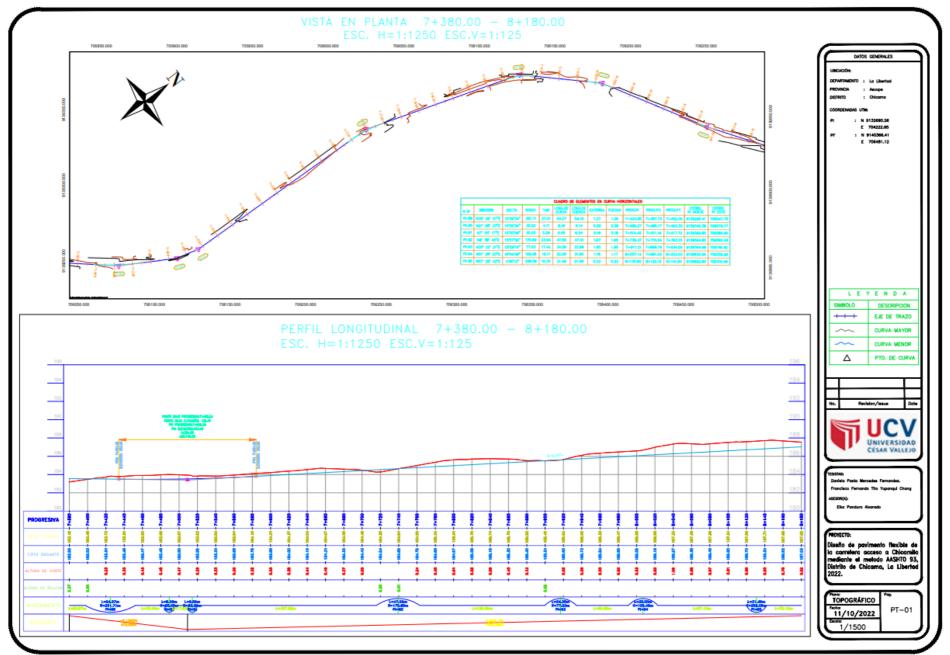

Anexo 5. Plano topográfico: Perfil Longitudinal.

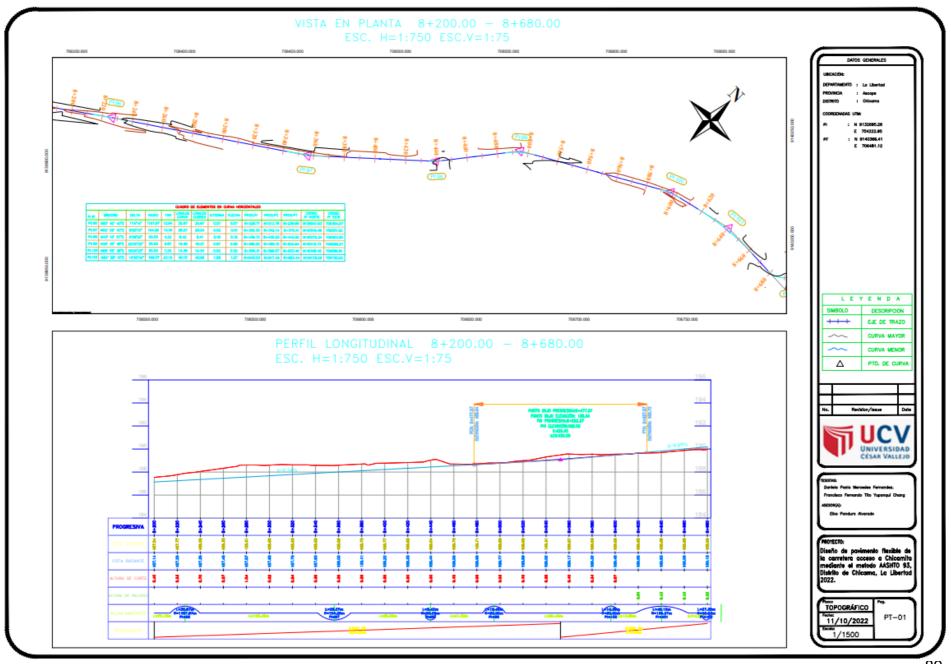


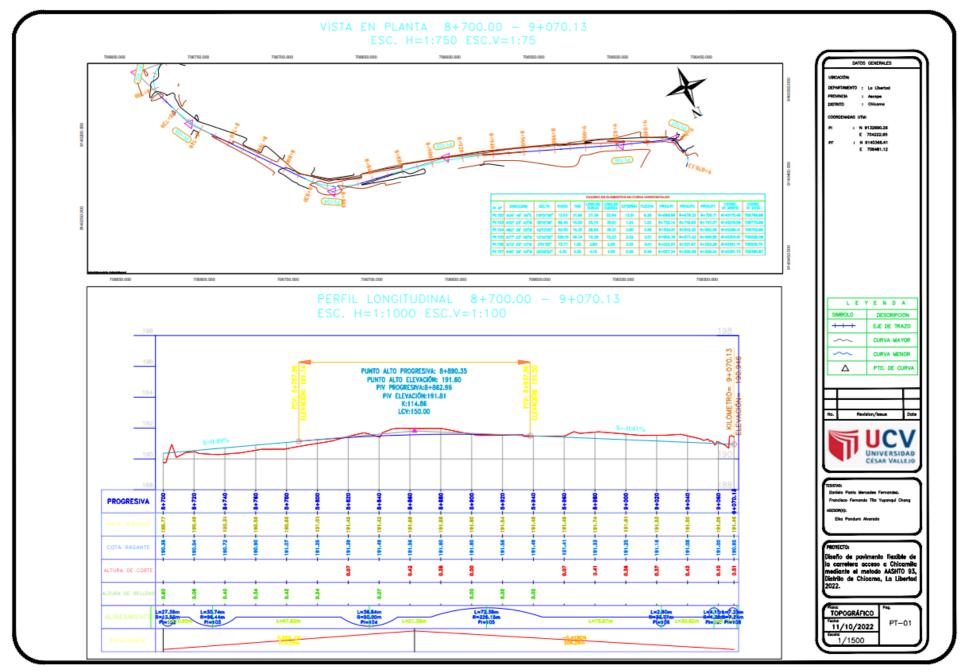


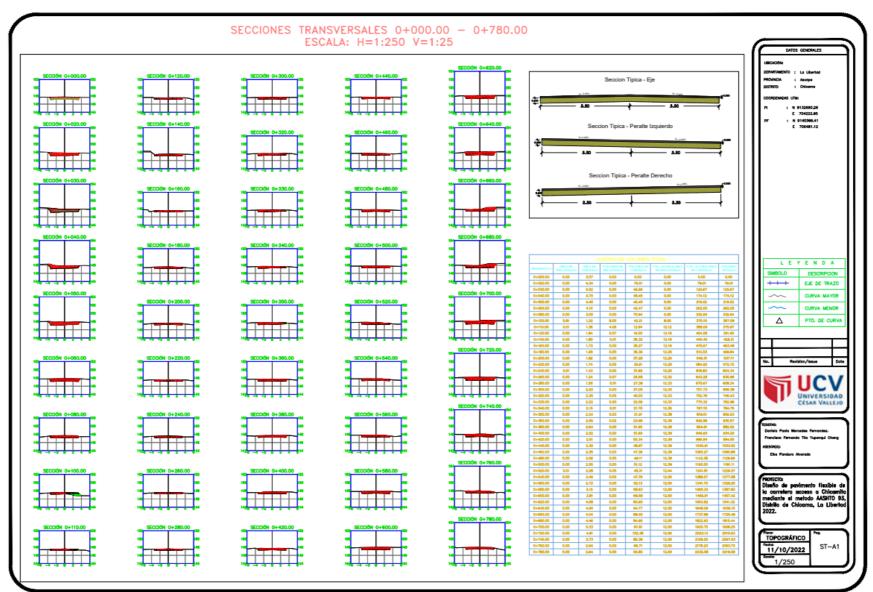


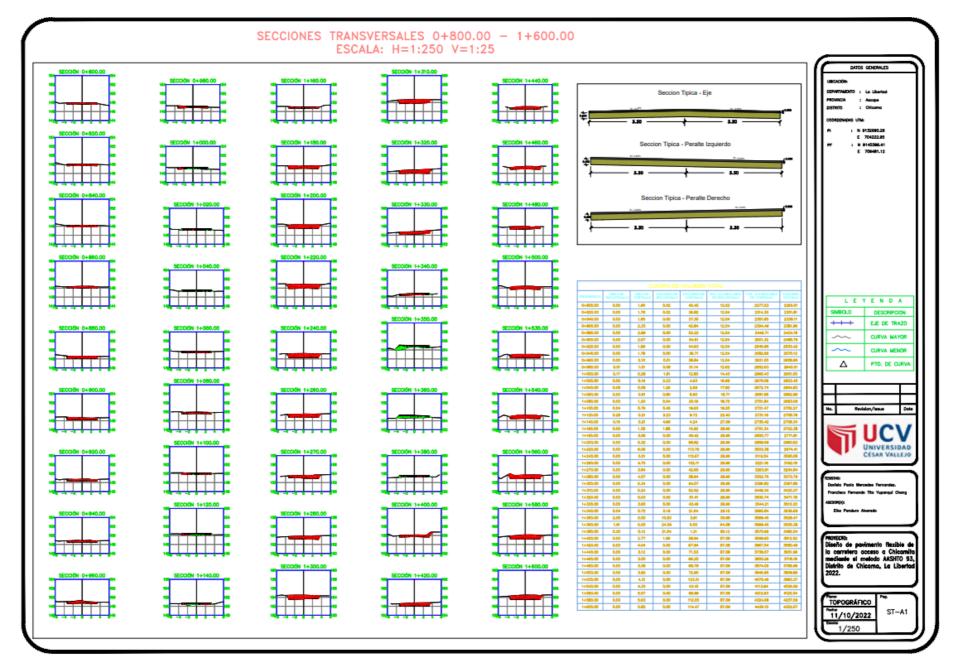


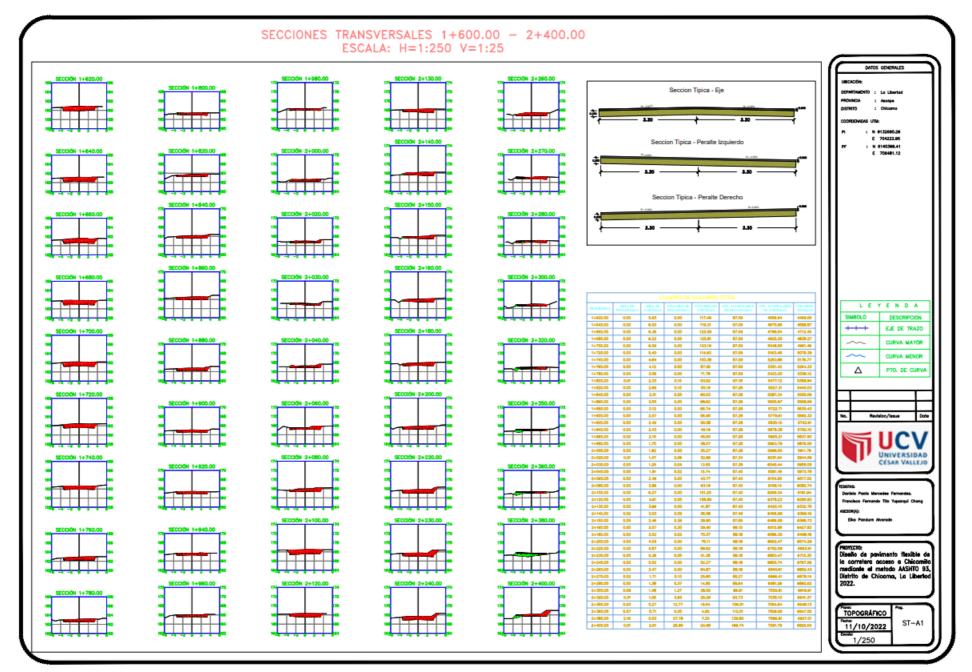


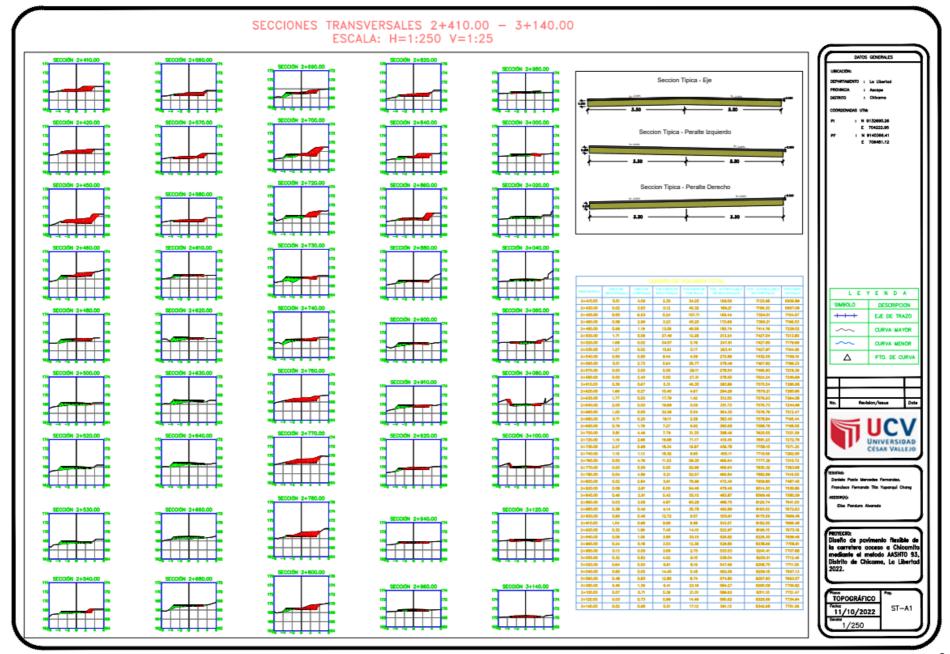


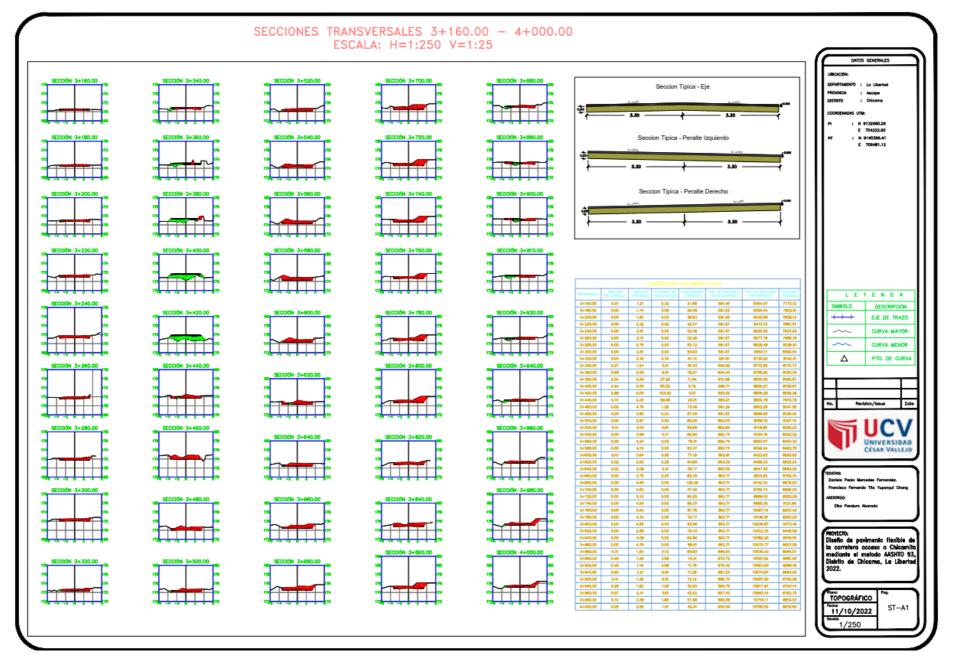


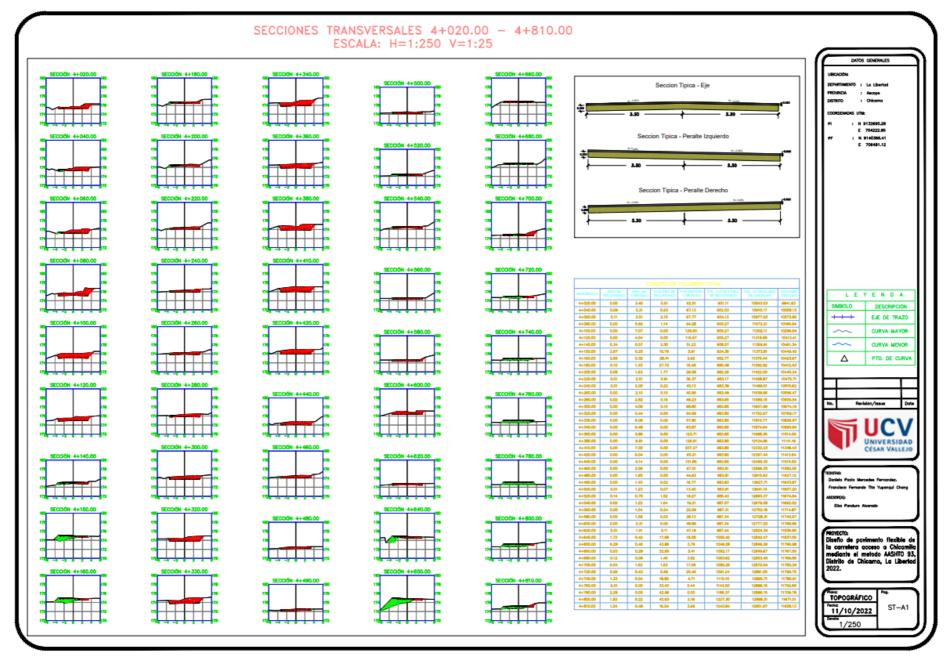


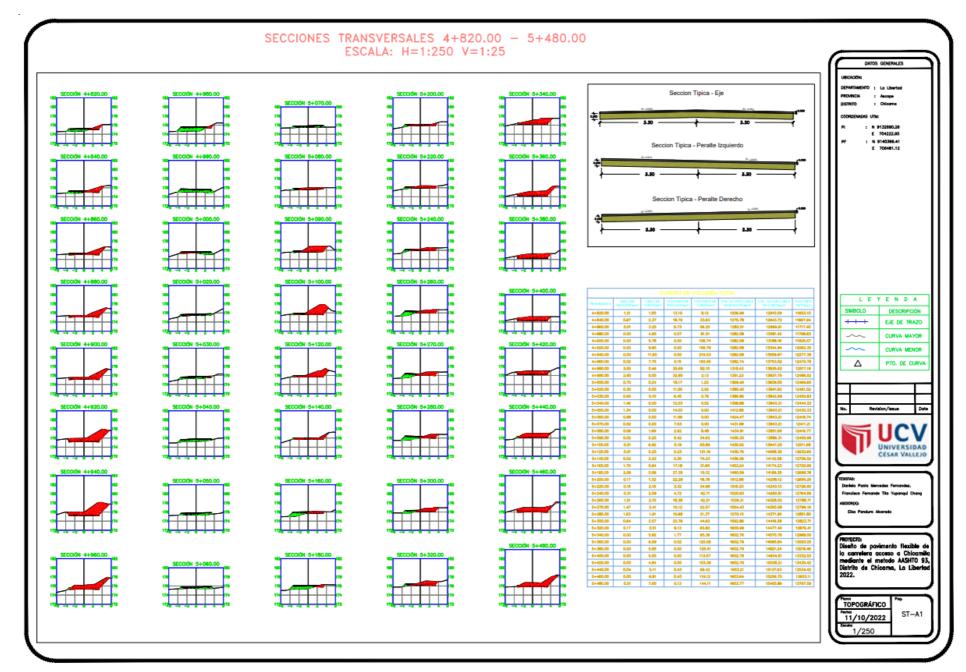


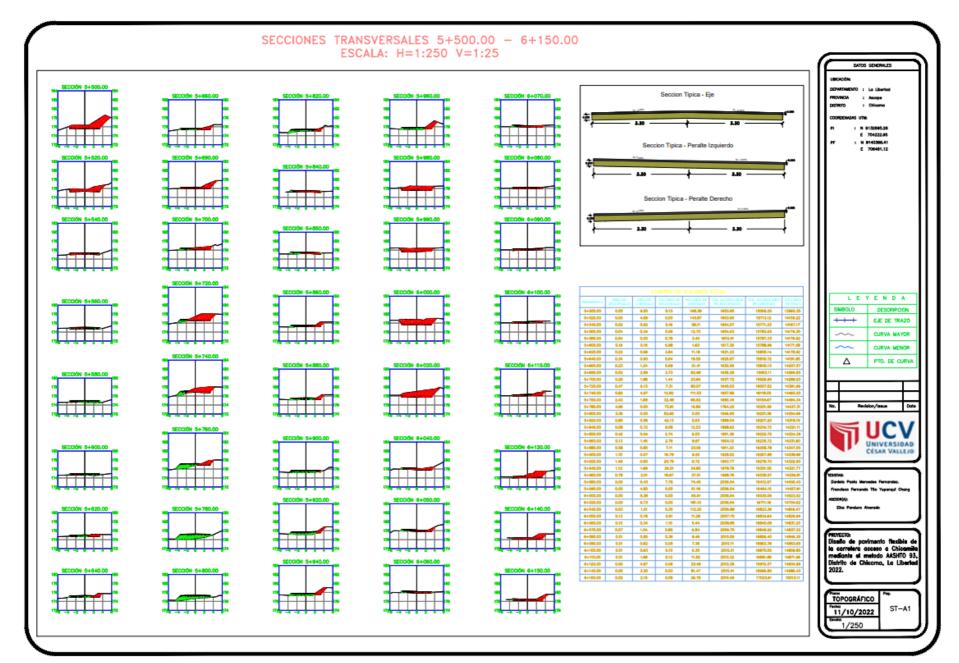


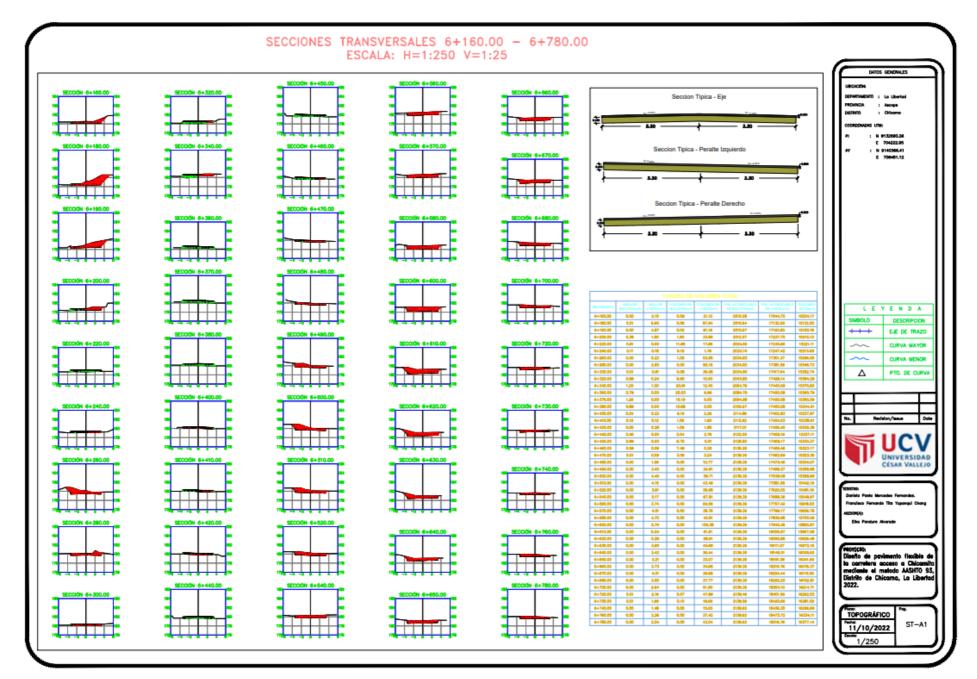


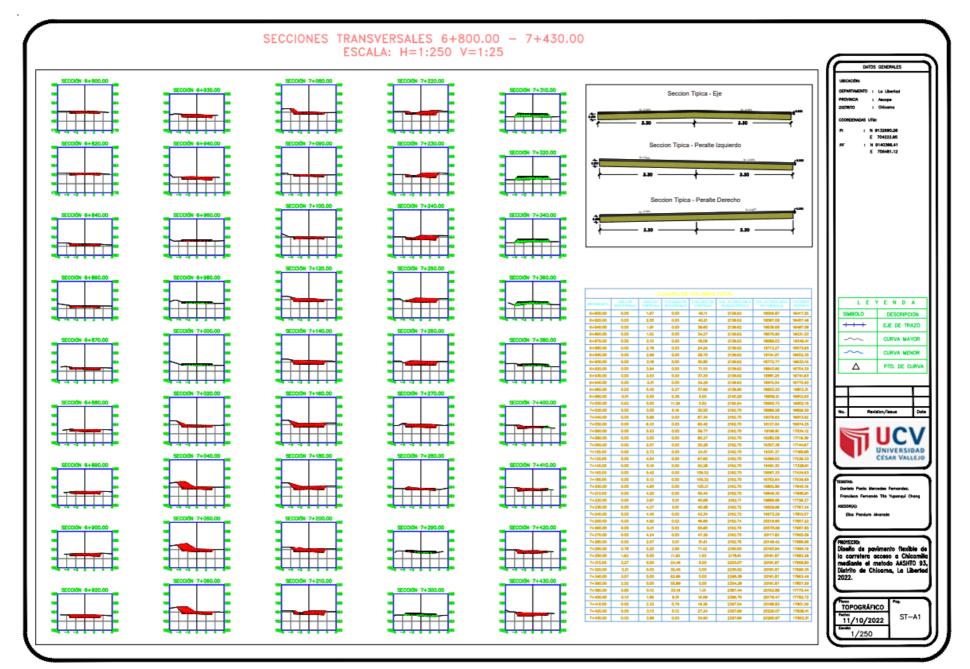

Anexo 6. Plano topográfico: Secciones Transversales

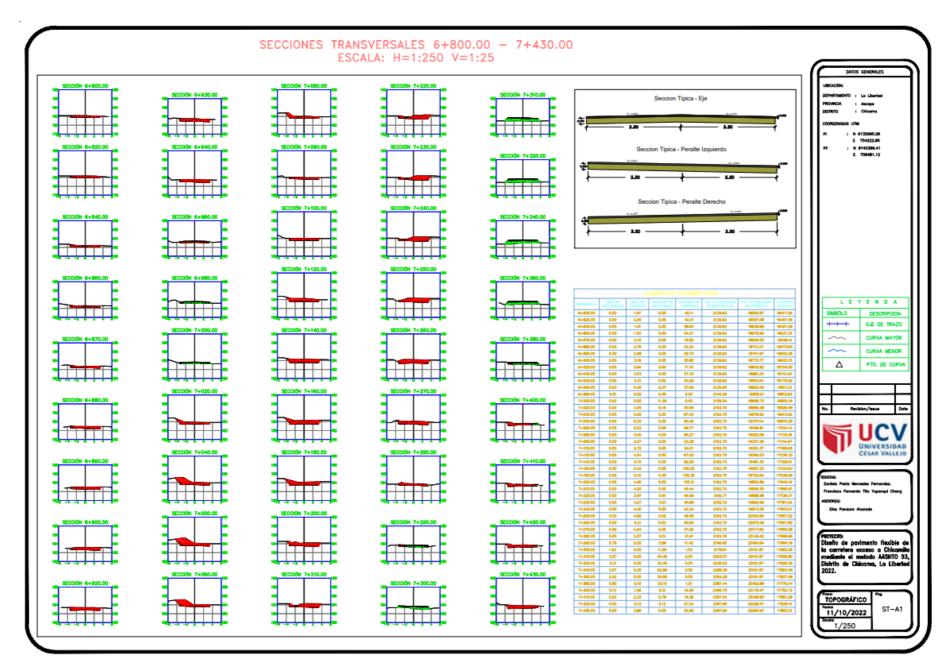


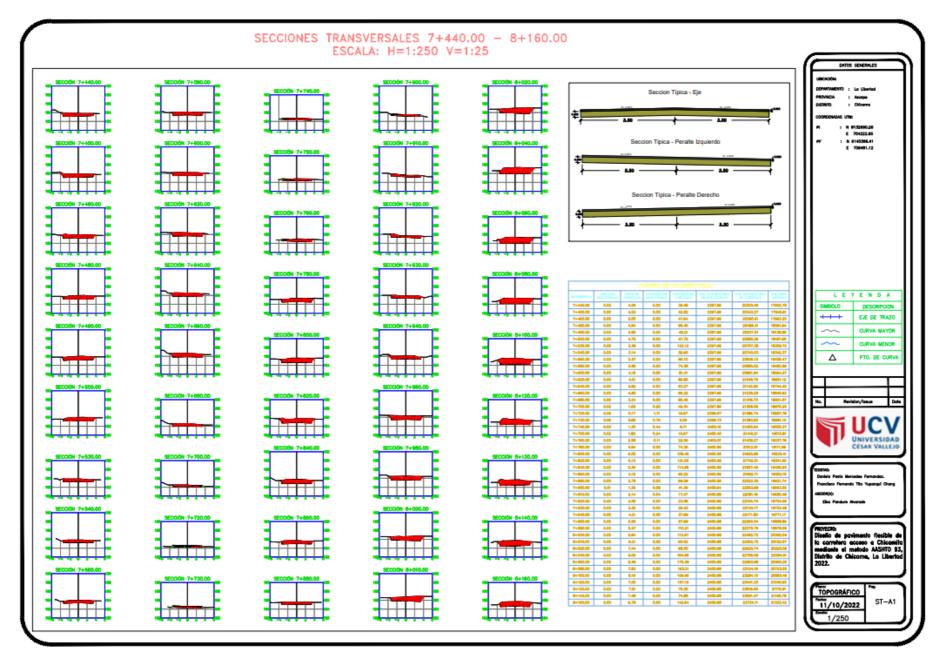


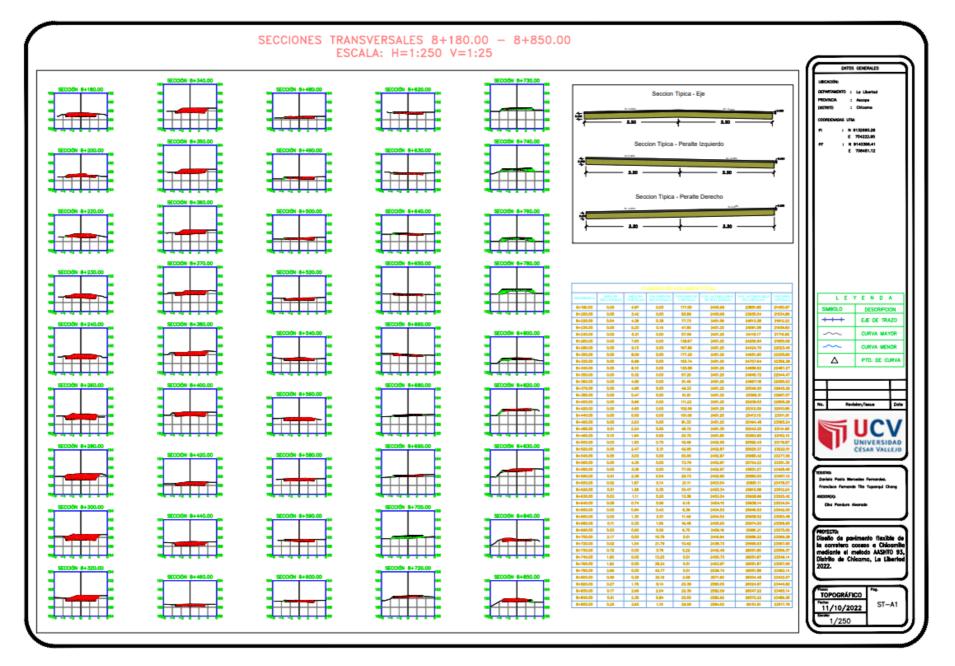


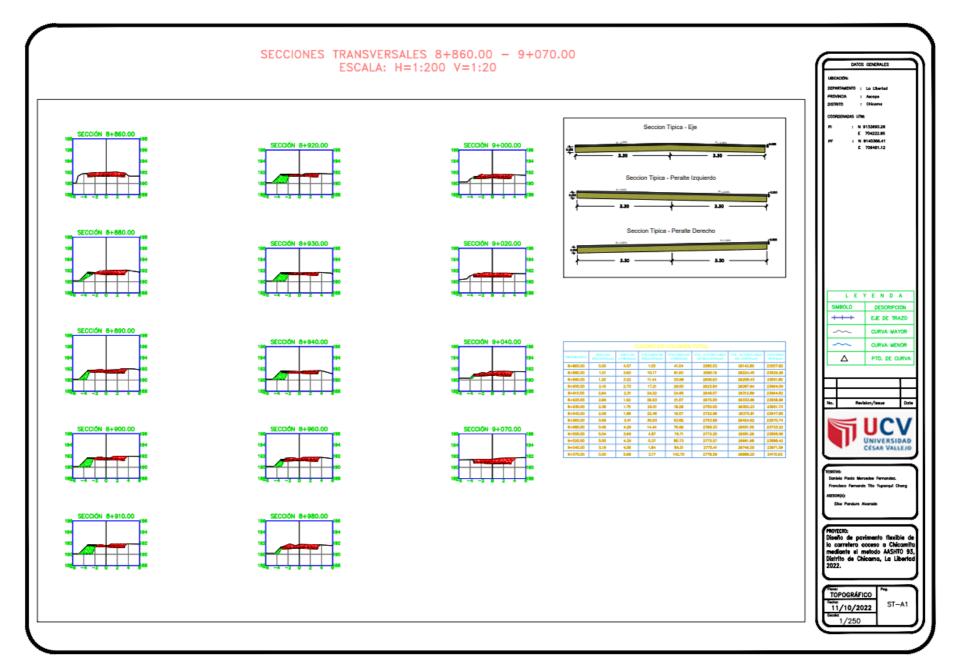


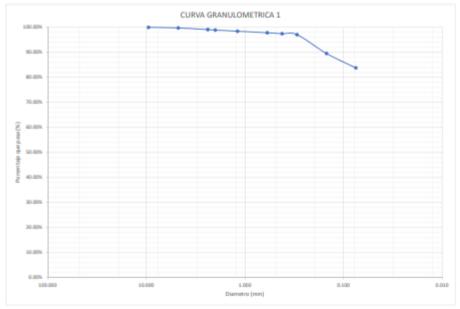










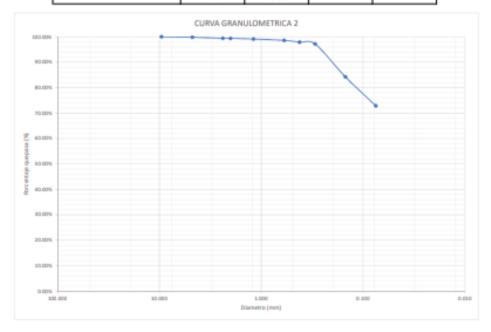


Anexo 7. Ficha de recolección de datos 1 de Estudio de Suelo: Granulometría

GRANULOMETRIA N° 1

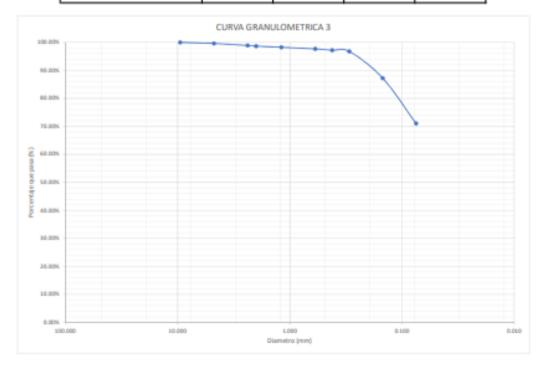
UCV ENTYPE BOADO CÉTANI WARRENO	Diseño de pavim		a carretera acceso rito de Chicama, L		liante el método
	•	GRANULOMET	RIA CALICATA 1		
Peso Ori	iginal (gr)		200	0.00	
Perd. Por	lavado (gr)		167	.56	
Peso Tan	nizado (gr)		32	.44	
Tamices ASTM D6913	Abertura (mm)	Masa Retenida	Masa Retenida Retenido parcial Retenido Que F		
2"	50.800				
1 1/2"	38.100				
1*	25.400				
3/4"	19.050				
1/2"	12.700				
3/8"	9.525	0	0.00%	0.00%	100.00%
N°4	4.750	0.53	0.26%	0.26%	99.74%
N°8	2.381	1.28	0.64%	0.90%	99.10%
N°10	2.000	0.37	0.19%	1.09%	98.91%
N°16	1.191	0.94	0.47%	1.56%	98.44%
N*30	0.595	1.25	0.62%	2.18%	97.82%
N°40	0.420	0.76	0.38%	2.56%	97.44%
N*50	0.296	0.75	0.38%	2.94%	97.06%
N°100	0.149	15.01	7.50%	10.44%	89.56%
N°200	0.075	11.55	5.78%	16.22%	83.78%
PI	ato	167.56	83.78%	100.00%	0.00%
Sum	atoria	200	100.00%		

Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.

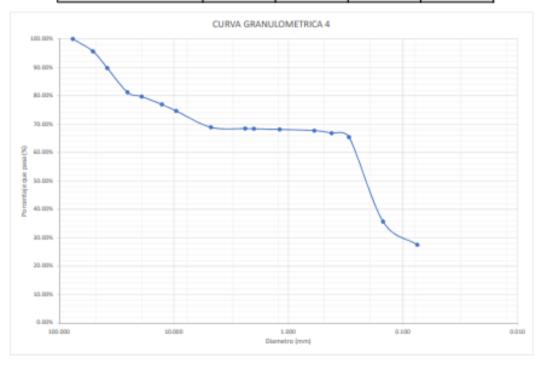

GRANULOMETRIA CALICATA 2

Peso Original (gr) 200.00

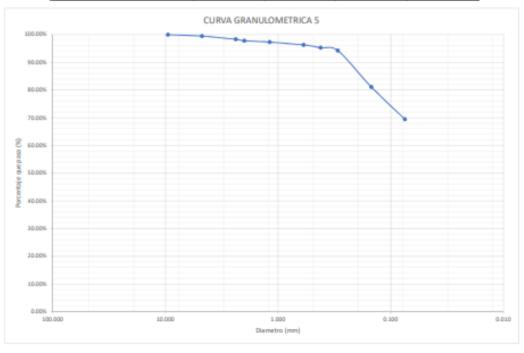
Perd. Por lavado (gr) 145.67


Peso Tamizado (gr) 54.33

Peso Original (gr)		200.00			
Perd. Por	lavado (gr)	145.67			
Peso Tam	vizado (gr)		54.	.33	
Tamices ASTM D6913	Abertura (mm)	Masa Retenida	Retenido parcial (%)	Retenido Acumulado (%)	Que Pasa (%)
2*	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				
1/2"	12.700				
3/8"	9.525	0	0.00%	0.00%	100.00%
N*4	4.750	0.44	0.22%	0.22%	99.78%
N"8	2.381	0.78	0.39%	0.61%	99.39%
N°10	2.000	0.11	0.05%	0.66%	99.34%
N*16	1.191	0.5	0.25%	0.91%	99.09%
N"30	0.595	1.06	0.53%	1.44%	98.56%
N*40	0.420	1.37	0.69%	2.13%	97.87%
N*50	0.296	1.41	0.70%	2.83%	97.17%
N°100	0.149	25.9	12.95%	15.78%	84.22%
N°200	0.075	22.76	11.38%	27.16%	72.84%
Pl	ato	145.67	72.84%	100.00%	0.00%
Sumi	atoria	200	100.00%		



	GRANULOMETRIA CALICATA 3					
Peso Ori	ginal (gr)	200.00				
Perd. Por	lavado (gr)		142	.06		
Peso Tam	izado (gr)		57.	.94		
Tamices ASTM D6913	Abertura (mm)	Masa Retenida	Retenido parcial (%)	Retenido Acumulado (%)	Que Pasa (%)	
2"	50.800					
1 1/2"	38.100					
1"	25.400					
3/4"	19.050					
1/2"	12.700					
3/8"	9.525	0.00	0.00%	0.00%	100.00%	
N*4	4.750	0.80	0.40%	0.40%	99.60%	
N*8	2.381	1.43	0.71%	1.11%	98.89%	
N°10	2.000	0.42	0.21%	1.32%	98.68%	
N°16	1.191	0.85	0.43%	1.75%	98.25%	
N*30	0.595	1.17	0.58%	2.33%	97.67%	
N°40	0.420	0.95	0.48%	2.81%	97.19%	
N*50	0.296	0.81	0.40%	3.21%	96.79%	
N*100	0.149	19.11	9.56%	12.77%	87.23%	
N*200	0.075	32.40	16.20%	28.97%	71.03%	
Pi	ato	142.06	71.03%	100.00%	0.00%	
Sum	atoria	200.00	100.00%			

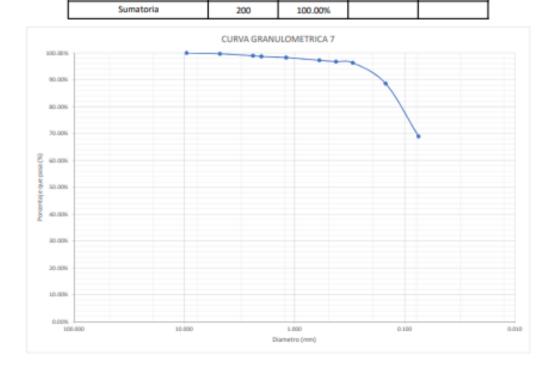


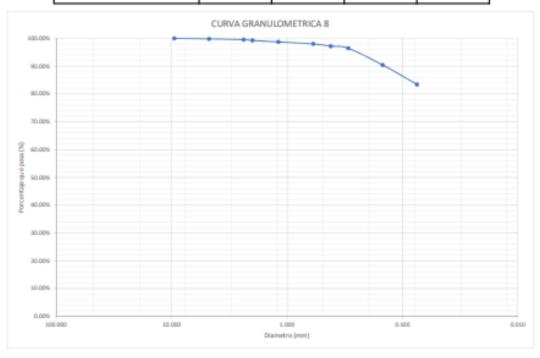
UCV UNIVERSIONS CENIN VIOLESO

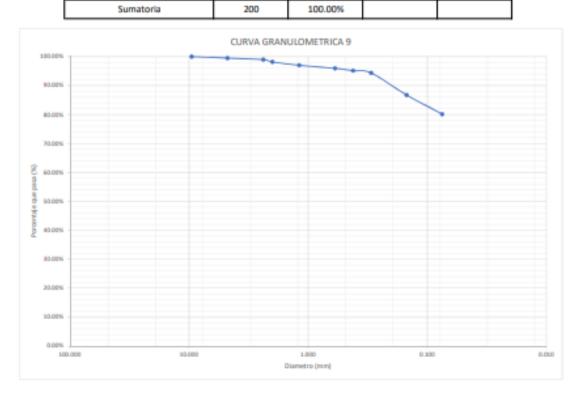
	GRANULOMETRIA CALICATA 4				
Peso Ori	Peso Original (gr) 4000.00				
Perd. Por I	avado (gr)	1099.68			
Peso Tam	izado (gr)		290	0.32	
Tamices ASTM D6913	Abertura (mm)	Masa Retenida	Retenido parcial (%)	Retenido Acumulado (%)	Que Pasa (%)
3"	76.200	0.00	0.00%	0.00%	100.00%
2"	50.800	174.20	4.36%	4.36%	95.64%
1 1/2"	38.100	235.49	5.89%	10.25%	89.75%
1"	25.400	340.86	8.52%	18.77%	81.23%
3/4"	19.050	61.07	1.53%	20.30%	79.70%
1/2"	12.700	110.65	2.77%	23.07%	76.93%
3/8"	9.525	92.17	2.30%	25.37%	74.63%
N°4	4.750	229.62	5.74%	31.11%	68.89%
N*8	2.381	18.24	0.46%	31.57%	68.43%
N°10	2.000	2.81	0.07%	31.64%	68.36%
N°16	1.191	9.2	0.23%	31.87%	68.13%
N°30	0.595	16.92	0.42%	32.29%	67.71%
N°40	0.420	35.22	0.88%	33.17%	66.83%
N*50	0.296	56.61	1.42%	34.59%	65.41%
N°100	0.149	1190.13	29.75%	64.34%	35.66%
N°200	0.075	327.13	8.17%	72.51%	27.49%
Pla	ito	1099.68	27.49%	100.00%	0.00%
Suma	itoria	4000.00	100.00%		

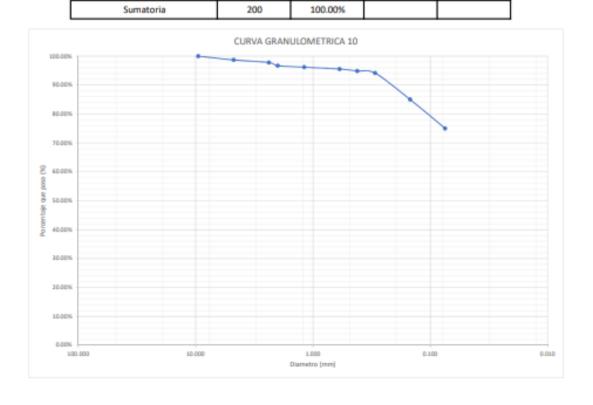


		GRANULOMET	RIA CALICATA 5		
Peso Ori	ginal (gr)	inal (gr) 200.00			
Perd. Por	lavado (gr)		138	1.89	
Peso Tam	nizado (gr)		61.	11	
Tamices ASTM D6913	Abertura (mm)	Masa Retenida	Retenido parcial (%)	Retenido Acumulado (%)	Que Pasa (%)
2"	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				
1/2"	12.700				
3/8"	9.525	0.00	0.00%	0.00%	100.00%
N°4	4.750	1.05	0.52%	0.52%	99.48%
N*8	2.381	2.31	1.16%	1.68%	98.32%
N*10	2.000	1.02	0.51%	2.19%	97.81%
N°16	1.191	1.02	0.51%	2.70%	97.30%
N*30	0.595	2.03	1.01%	3.71%	96.29%
N°40	0.420	2.02	1.01%	4.72%	95.28%
N*50	0.296	2.02	1.01%	5.73%	94.27%
N°100	0.149	26.32	13.16%	18.89%	81.11%
N*200	0.075	23.32	11.66%	30.55%	69.45%
PI	ato	138.89	69.45%	100.00%	0.00%
Sum	atoria	200.00	100.00%		




Peso Original (gr) 200.00 Perd. Por lavado (gr) 168.46 Peso Tamizado (gr) 31.54								
Perd. Por lavado (gr) Tamices ASTM D6913 Abertura (mm) Masa Retenida (%) 2" 50.800 1 1/2" 38.100 1" 25.400 3/4" 19.050 1/2" 12.700 3/8" 9.525 0 0.00% 0.00% 100.00% N*4 4.750 0.25 0.12% 0.12% 99.88% N*8 2.381 0.69 0.35% 0.47% 99.53% N*10 2.000 0.55 0.27% 0.74% 99.26% N*16 1.191 0.98 0.49% 1.23% 98.77% N*30 0.595 1.25 0.63% 1.86% 98.14% N*40 0.420 1.32 0.66% 2.52% 97.48% N*50 0.296 1.25 0.62% 3.14% 96.86% N*100 0.149 12.25 6.13% 9.27% 90.73% N*200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%		GRANULOMETRIA CALICATA 6						
Peso Tamizado (gr) 31.54		0 107		200.00				
Tamices ASTM D6913 Abertura (mm) Masa Retenida (%) Retenido parcial (%) Retenido Acumulado (%) Que Pasa (%) 2" 50.800	Perd. Por	lavado (gr)						
D6913 Abertura (mm) Masa Retenida (%) Acumulado (%) Que Pasa (9 2" 50.800	Peso Tam	izado (gr)		31.	.54			
11/2" 38.100 1" 25.400 3/4" 19.050 1/2" 12.700 3/8" 9.525 0 0.00% 0.00% 100.00% N*4 4.750 0.25 0.12% 0.12% 99.88% N*8 2.381 0.69 0.35% 0.47% 99.53% N*10 2.000 0.55 0.27% 0.74% 99.26% N*16 1.191 0.98 0.49% 1.23% 98.77% N*30 0.595 1.25 0.63% 1.86% 98.14% N*40 0.420 1.32 0.66% 2.52% 97.48% N*50 0.296 1.25 0.62% 3.14% 96.86% N*100 0.149 12.25 6.13% 9.27% 90.73% N*200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%		Abertura (mm)	Masa Retenida			Que Pasa (%)		
11/2" 38.100 1" 25.400 3/4" 19.050 1/2" 12.700 3/8" 9.525 0 0.00% 0.00% 100.00% N*4 4.750 0.25 0.12% 0.12% 99.88% N*8 2.381 0.69 0.35% 0.47% 99.53% N*10 2.000 0.55 0.27% 0.74% 99.26% N*16 1.191 0.98 0.49% 1.23% 98.77% N*30 0.595 1.25 0.63% 1.86% 98.14% N*40 0.420 1.32 0.66% 2.52% 97.48% N*50 0.296 1.25 0.62% 3.14% 96.86% N*100 0.149 12.25 6.13% 9.27% 90.73% N*200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%								
1" 25.400	2"	50.800						
3/4" 19.050 1/2" 12.700 3/8" 9.525 0 0.00% 0.00% 100.00% 100.00% N°4 4.750 0.25 0.12% 0.12% 99.88% N°8 2.381 0.69 0.35% 0.47% 99.53% N°10 2.000 0.55 0.27% 0.74% 99.26% N°16 1.191 0.98 0.49% 1.23% 98.77% N°30 0.595 1.25 0.63% 1.86% 98.14% N°40 0.420 1.32 0.66% 2.52% 97.48% N°50 0.296 1.25 0.62% 3.14% 96.86% N°100 0.149 12.25 6.13% 9.27% 90.73% N°200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%	1 1/2"	38.100						
1/2" 12.700 3/8" 9.525 0 0.00% 0.00% 100.00% N*4 4.750 0.25 0.12% 0.12% 99.88% N*8 2.381 0.69 0.35% 0.47% 99.53% N*10 2.000 0.55 0.27% 0.74% 99.26% N*16 1.191 0.98 0.49% 1.23% 98.77% N*30 0.595 1.25 0.63% 1.86% 98.14% N*40 0.420 1.32 0.66% 2.52% 97.48% N*50 0.296 1.25 0.62% 3.14% 96.86% N*100 0.149 12.25 6.13% 9.27% 90.73% N*200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%	1"	25.400						
3/8" 9.525 0 0.00% 0.00% 100.00% N*4 4.750 0.25 0.12% 0.12% 99.88% N*8 2.381 0.69 0.35% 0.47% 99.53% N*10 2.000 0.55 0.27% 0.74% 99.26% N*16 1.191 0.98 0.49% 1.23% 98.77% N*30 0.595 1.25 0.63% 1.86% 98.14% N*40 0.420 1.32 0.66% 2.52% 97.48% N*50 0.296 1.25 0.62% 3.14% 96.86% N*100 0.149 12.25 6.13% 9.27% 90.73% N*200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%	3/4"	19.050						
N°4 4.750 0.25 0.12% 0.12% 99.88% N°8 2.381 0.69 0.35% 0.47% 99.53% N°10 2.000 0.55 0.27% 0.74% 99.26% N°16 1.191 0.98 0.49% 1.23% 98.77% N°30 0.595 1.25 0.63% 1.86% 98.14% N°40 0.420 1.32 0.66% 2.52% 97.48% N°50 0.296 1.25 0.62% 3.14% 96.86% N°100 0.149 12.25 6.13% 9.27% 90.73% N°200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%	1/2"	12.700						
N°8 2.381 0.69 0.35% 0.47% 99.53% N°10 2.000 0.55 0.27% 0.74% 99.26% N°16 1.191 0.98 0.49% 1.23% 98.77% N°30 0.595 1.25 0.63% 1.86% 98.14% N°40 0.420 1.32 0.66% 2.52% 97.48% N°50 0.296 1.25 0.62% 3.14% 96.86% N°100 0.149 12.25 6.13% 9.27% 90.73% N°200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%	3/8"	9.525	0	0.00%	0.00%	100.00%		
N°10 2.000 0.55 0.27% 0.74% 99.26% N°16 1.191 0.98 0.49% 1.23% 98.77% N°30 0.595 1.25 0.63% 1.86% 98.14% N°40 0.420 1.32 0.66% 2.52% 97.48% N°50 0.296 1.25 0.62% 3.14% 96.86% N°100 0.149 12.25 6.13% 9.27% 90.73% N°200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%	N°4	4.750	0.25	0.12%	0.12%	99.88%		
N°16 1.191 0.98 0.49% 1.23% 98.77% N°30 0.595 1.25 0.63% 1.86% 98.14% N°40 0.420 1.32 0.66% 2.52% 97.48% N°50 0.296 1.25 0.62% 3.14% 96.86% N°100 0.149 12.25 6.13% 9.27% 90.73% N°200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%	N°8	2.381	0.69	0.35%	0.47%	99.53%		
N°30 0.595 1.25 0.63% 1.86% 98.14% N°40 0.420 1.32 0.66% 2.52% 97.48% N°50 0.296 1.25 0.62% 3.14% 96.86% N°100 0.149 12.25 6.13% 9.27% 90.73% N°200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%	N°10	2.000	0.55	0.27%	0.74%	99.26%		
N°40 0.420 1.32 0.66% 2.52% 97.48% N°50 0.296 1.25 0.62% 3.14% 96.86% N°100 0.149 12.25 6.13% 9.27% 90.73% N°200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%	N°16	1.191	0.98	0.49%	1.23%	98.77%		
N°50 0.296 1.25 0.62% 3.14% 96.86% N°100 0.149 12.25 6.13% 9.27% 90.73% N°200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%	N°30	0.595	1.25	0.63%	1.86%	98.14%		
N*100 0.149 12.25 6.13% 9.27% 90.73% N*200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%	N°40	0.420	1.32	0.66%	2.52%	97.48%		
N*200 0.075 13 6.50% 15.77% 84.23% Plato 168.46 84.23% 100.00% 0.00%	N*50	0.296	1.25	0.62%	3.14%	96.86%		
Plato 168.46 84.23% 100.00% 0.00%	N°100	0.149	12.25	6.13%	9.27%	90.73%		
	N*200	0.075	13	6.50%	15.77%	84.23%		
Sumatoria 200 100.00%	Pl	ato	168.46	84.23%	100.00%	0.00%		
	Sum	atoria	200	100.00%				


Diseño de pavimento fiexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.					
		GRANULOMET	RIA CALICATA 7		
Peso Ori	ginal (gr)		200).00	
Perd. Por	lavado (gr)		137	.89	
Peso Tam	izado (gr)		62	.11	
Tamices ASTM D6913	Abertura (mm)	Masa Retenida	Retenido parcial (%)	Retenido Acumulado (%)	Que Pasa (%)
2"	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				
1/2"	12.700				
3/8"	9.525	0	0.00%	0.00%	100.00%
N*4	4.750	0.65	0.32%	0.32%	99.68%
N*8	2.381	1.44	0.72%	1.04%	98.96%
N°10	2.000	0.52	0.26%	1.30%	98.70%
N°16	1.191	0.86	0.43%	1.73%	98.27%
N°30	0.595	2.01	1.01%	2.74%	97.26%
N°40	0.420	1.02	0.51%	3.25%	96.75%
N°50	0.296	0.89	0.44%	3.69%	96.31%
N°100	0.149	15.36	7.68%	11.37%	88.63%
N°200	0.075	39.36	19.68%	31.05%	68.95%
Pla	ito	137.89	68.95%	100.00%	0.00%


	GRANULOMETRIA CALICATA 8					
Peso Ori	iginal (gr)		200.00			
Perd. Por	lavado (gr)		166	5.86		
Peso Tam	nizado (gr)		33	.14		
Tamices ASTM D6913	Abertura (mm)	Masa Retenida	Retenido parcial (%)	Retenido Acumulado (%)	Que Pasa (%)	
2"	50.800					
1 1/2"	38.100					
1"	25.400					
3/4"	19.050					
1/2"	12.700					
3/8"	9.525	0	0.00%	0.00%	100.00%	
N°4	4.750	0.36	0.18%	0.18%	99.82%	
N°8	2.381	0.55	0.27%	0.45%	99.55%	
N°10	2.000	0.6	0.30%	0.75%	99.25%	
N°16	1.191	1.05	0.53%	1.28%	98.72%	
N°30	0.595	1.45	0.72%	2.00%	98.00%	
N°40	0.420	1.55	0.78%	2.78%	97.22%	
N°50	0.296	1.56	0.78%	3.56%	96.44%	
N°100	0.149	12.02	6.01%	9.57%	90.43%	
N°200	0.075	14	7.00%	16.57%	83.43%	
PI	ato	166.86	83.43%	100.00%	0.00%	
Sum	atoria	200	100.00%			

	T				
UCV UNINTERSIBAD CESAM VOLLES	Diseño de pavin		a carretera acceso rito de Chicama, L		liante el método
		GRANULOMET	RIA CALICATA 9		
Peso Ori	iginal (gr)		200	.00	
Perd. Por	lavado (gr)		160	.26	
Peso Tarr	nizado (gr)		39.	.75	
Tamices ASTM D6913	Abertura (mm)	Masa Retenida	Masa Retenida Retenido parcial Retenido Acumulado (%) Que Pasa		
2"	50.800				
1 1/2"	38.100				
1"	25.400				
3/4"	19.050				
1/2"	12.700				
3/8"	9.525	0	0.00%	0.00%	100.00%
N*4	4.750	1.06	0.53%	0.53%	99.47%
N*8	2.381	1.02	0.51%	1.04%	98.96%
N°10	2.000	1.56	0.78%	1.82%	98.18%
N°16	1.191	2.32	1.16%	2.98%	97.02%
N*30	0.595	2.14	1.07%	4.05%	95.95%
N°40	0.420	1.6	0.80%	4.85%	95.15%
N*50	0.296	1.6	0.80%	5.65%	94.35%
N°100	0.149	15.24	7.62%	13.27%	86.73%
N°200	0.075	13.2	6.60%	19.87%	80.13%
Pİ	ato	160.26	80.13%	100.00%	0.00%
-					

T UCV Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022. **GRANULOMETRIA CALICATA 10** Peso Original (gr) 200.00 Perd. Por lavado (gr) 150.05 49.95 Peso Tamizado (gr) Tamices ASTM Retenido parcial Retenido Abertura (mm) Masa Retenida Que Pasa (%) D6913 (%) Acumulado (%) 50.800 2" 1 1/2" 38.100 1" 25.400 3/4" 19.050 1/2" 12.700 3/8" 9.525 0.00% 0.00% 100.00% 0 N°4 4.750 2.6 1.30% 1.30% 98.70% N°8 2.381 1.8 0.90% 2.20% 97.80% N°10 2.000 3.30% 2.2 1.10% 96.70% N°16 1.191 1.02 0.51% 3.81% 96.19% N*30 0.595 0.65% 4.46% 95.54% 1.3 0.66% 94.88% N°40 0.420 1.33 5.12% 0.296 0.73% 5.85% 94.15% N*50 1.45 N°100 0.149 18.25 9.12% 14.97% 85.03% N°200 0.075 20 10.00% 24.97% 75.03% Plato 150.05 75.03% 100.00% 0.00%

Anexo 8. Ficha de recolección de datos 1 de Estudio de Suelo: Limite líquido y plástico.

UCV UNIVERSIDAD CÉSAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.				
ENSAYO N°	LIMITE LIQUIDO CALICATA 1 ENSAYO N° 1 2 3 4				
	1			4	
Tara + suelo humedo	84.64	54.36	53.81	64.04	
Tara + suelo seco	66.32	44.25	45.07	52.8	
Agua	18.32	10.11	8.74	11.24	
Peso de la tara	20.2	17.6	20.03	18.6	
Peso del suelo seco	46.12	26.65	25.04	34.2	
% humedad	39.73%	37.94%	34.90%	32.87%	
N° golpes	12	16	26	36	
Limites		35.1	15%		

UCV UNIVERSIDAD CESAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.				
	LIMITE PLASTICO CALICATA 1				
ENSAYO N°	1	2			
Tara + suelo humedo	29.13	17.86			
Tara + suelo seco	28.53	17.23			
Agua	0.6	0.63			
Peso de la tara	25.9	14.15			
Peso del suelo seco	2.63	3.08			
% humedad	22.81% 20.45%				
Limites	21.63%				

LIMITE LIQUIDO	35.15%
LIMITE PLASTICO	21.63%
LIMITE DE CONTRACCION	17.41%
LIMITE DE PLASTICIDAD	13.52%

UCV UNIVERSIDAD CÉSAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022. LIMITE LIQUIDO CALICATA 2			
ENSAYO N°	1	1 2 3 4		
Tara + suelo humedo	72.56	53.84	54.82	71.38
Tara + suelo seco	58.11	45.82	46.41	60
Agua	14.45	8.02	8.41	11.38
Peso de la tara	20.2	23.03	19.61	18.6
Peso del suelo seco	37.91	22.79	26.8	41.4
% humedad	38.11%	35.19%	31.38%	27.48%
N° golpes	14	18	25	35
Limites	31.38%			

UCV UNIVERSIDAD CÉSAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.		
	LIMITE PLASTICO CALICATA 2		
ENSAYO N°	1	2	
Tara + suelo humedo	25.92 22.05		
Tara + suelo seco	25.32 21.48		
Agua	0.6 0.57		
Peso de la tara	22.48	18.76	
Peso del suelo seco	2.84	2.72	
% humedad	21.13% 20.96%		
Limites	21.04%		

LIMITE LIQUIDO	31.38%
LIMITE PLASTICO	21.04%
LIMITE DE CONTRACCION	17.74
LIMITE DE PLASTICIDAD	10.34%

UCV UNIVERSIDAD CESAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022. LIMITE LIQUIDO CALICATA 3			
ENSAYO N°	1	1 2 3 4		
Tara + suelo humedo	65.53	54.6	58.81	62.48
Tara + suelo seco	53.1	45.97	49.07	52.8
Agua	12.43	8.63	9.74	9.68
Peso de la tara	20.2	21.21	17.6	18.6
Peso del suelo seco	32.9	24.76	31.47	34.2
% humedad	37.79%	34.85%	30.95%	28.29%
N° golpes	12	17	27	37
Limites	31.60%			

UCV UNIVERSIDAD CÉSAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.		
	LIMITE PLASTICO CALICATA 3		
ENSAYO N°	1 2		
Tara + suelo humedo	17.14 22.86		
Tara + suelo seco	16.52 22.29		
Agua	0.62 0.57		
Peso de la tara	13.76 19.61		
Peso del suelo seco	2.76 2.68		
% humedad	22.46% 21.27%		
Limites	21.87%		

LIMITE LIQUIDO	31.60%
LIMITE PLASTICO	21.87%
LIMITE DE CONTRACCION	18.58
LIMITE DE PLASTICIDAD	9.73%

UCV UNIVERSIDAD CESAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.			
	LIMITE LIQUID	O CALICATA 4		
ENSAYO N°	1	2	3	4
Tara + suelo humedo	70.54	50.45	52.8	62.84
Tara + suelo seco	58.2	43.92	46.07	56.6
Agua	12.34 6.53 6.73 6.24			
Peso de la tara	20.2	18.76	14.15	18.6
Peso del suelo seco	38	25.16	31.92	38
% humedad	32.48%	25.95%	21.08%	16.41%
N° golpes	11	18	26	37
Limites	21.60%			

UCV UNIVERSIDAD CESAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.		
	LIMITE PLASTICO CALICATA 4		
ENSAYO N°	1 2		
Tara + suelo humedo	29.15 38.76		
Tara + suelo seco	28.63 38.21		
Agua	0.52 0.55		
Peso de la tara	25.9 35.03		
Peso del suelo seco	2.73 3.18		
% humedad	19.05% 17.30%		
Limites	18.17%		

LIMITE LIQUIDO	21.60%
LIMITE PLASTICO	18.17%
LIMITE DE CONTRACCION	17.12
LIMITE DE PLASTICIDAD	3.43%

UNIVERSIDAD CÉSAR VALLEIO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.			
ENSAYO N°	1	1 2 3 4		
Tara + suelo humedo	75.3	53.85	54.81	67.01
Tara + suelo seco	60.2	45.81	46.4	56.3
Agua	15.1	8.04	8.41	10.71
Peso de la tara	20.2	23.03	19.61	18.6
Peso del suelo seco	40	22.78	26.79	37.7
% humedad	37.76%	35.29%	31.39%	28.40%
N° golpes	13	17	26	36
Limites	31.75%			

UCV UNIVERSIDAD CÉSAR VALLEIO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.		
	LIMITE PLASTICO CALICATA 5		
ENSAYO N°	1	2	
Tara + suelo humedo	25.91	22.06	
Tara + suelo seco	25.31 21.46		
Agua	0.6 0.6		
Peso de la tara	22.48	18.76	
Peso del suelo seco	2.83	2.7	
% humedad	21.20% 22.22%		
Limites	21.71%		

LIMITE LIQUIDO	31.75%		
LIMITE PLASTICO	21.71%		
LIMITE DE CONTRACCION	18.37		
LIMITE DE PLASTICIDAD	10.04%		

UCV UNIVERSIDAD CÉSAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022. LIMITE LIQUIDO CALICATA 6			
ENSAYO N°	1	1 2 3 4		
Tara + suelo humedo	86.71	54.35	53.8	72.98
Tara + suelo seco	68.2	44.26	45.06	59.3
Agua	18.51	10.09	8.74	13.68
Peso de la tara	20.2	17.6	20.03	18.6
Peso del suelo seco	48	26.66	25.03	40.7
% humedad	38.56%	37.85%	34.92%	33.62%
N° golpes	13	15	27	35
Limites	35.30%			

UCV UNIVERSIDAD CESAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.			
	LIMITE PLASTICO CALICATA 6	LIMITE PLASTICO CALICATA 6		
ENSAYO N°	1 2			
Tara + suelo humedo	29.12	17.85		
Tara + suelo seco	28.54 17.24			
Agua	0.58 0.61			
Peso de la tara	25.9 14.15			
Peso del suelo seco	2.64	3.09		
% humedad	21.97% 19.74%			
Limites	20.86%			

LIMITE LIQUIDO	35.30%	
LIMITE PLASTICO	20.86%	
LIMITE DE CONTRACCION	16.59	
LIMITE DE PLASTICIDAD	14.44%	

UCV UNIVERSIDAD CÉSAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022. LIMITE LIQUIDO CALICATA 7			
ENSAYO N°	1	1 2 3 4		
Tara + suelo humedo	61.39	54.61	58.8	66.88
Tara + suelo seco	50.2	45.96	49.06	56.3
Agua	11.19	8.65	9.74	10.58
Peso de la tara	20.2	21.21	17.6	18.6
Peso del suelo seco	30	24.75	31.46	37.7
% humedad	37.31%	34.95%	30.96%	28.06%
N° golpes	12 16 26 37			
Limites	31.28%			

UCV UNIVERSIDAD CÉSAR VALLEIO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022. LIMITE PLASTICO CALICATA 7		
ENSAYO N°	1 2		
Tara + suelo humedo	17.15	22.85	
Tara + suelo seco	16.51 22.3		
Agua	0.64 0.55		
Peso de la tara	13.76 19.61		
Peso del suelo seco	2.75 2.69		
% humedad	23.27% 20.45%		
Limites	21.86%		

LIMITE LIQUIDO	31.28%
LIMITE PLASTICO	21.86%
LIMITE DE CONTRACCION	18.66
LIMITE DE PLASTICIDAD	9.42%

UCV Universidad César Vallejo	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.			
ENSAYO N°	1 2 3 4			
Tara + suelo humedo	69.39	54.35	53.84	67.75
Tara + suelo seco	55.55	44.3	45.06	55.41
Agua	13.84	10.05	8.78	12.34
Peso de la tara	20.2	17.6	20.03	18.6
Peso del suelo seco	35.35	26.7	25.03	36.81
% humedad	39.16%	37.64%	35.08%	33.51%
N° golpes	12	16	26	35
Limites	35.28%			

UCV UNIVERSIDAD CÉSAR VALLEIO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.		
	LIMITE PLASTICO CALICATA 8		
ENSAYO N°	1 2		
Tara + suelo humedo	29.12	17.85	
Tara + suelo seco	28.54 17.24		
Agua	0.58 0.61		
Peso de la tara	25.9 14.15		
Peso del suelo seco	2.64 3.09		
% humedad	21.97% 19.74%		
Limites	20.86%		

LIMITE LIQUIDO	35.28%
LIMITE PLASTICO	20.86%
LIMITE DE CONTRACCION	16.60
LIMITE DE PLASTICIDAD	14.42%

UCV UNIVERSIDAD CESAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022. LIMITE LIQUIDO CALICATA 9			
ENSAYO N°	1	1 2 3 4		
Tara + suelo humedo	72.92	54.36	53.84	70.17
Tara + suelo seco	58.1	44.31	45.05	57.2
Agua	14.82	10.05	8.79	12.97
Peso de la tara	20.2	17.6	20.03	18.6
Peso del suelo seco	37.9	26.7	25.02	38.6
% humedad	39.10%	37.63%	35.13%	33.60%
N° golpes	12	16	26	35
Limites	35.33%			

UCV UNIVERSIDAD CESAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.		
	LIMITE PLASTICO CALICATA 9		
ENSAYO N°	1 2		
Tara + suelo humedo	29.1	17.86	
Tara + suelo seco	28.55 17.25		
Agua	0.55 0.61		
Peso de la tara	25.9 14.15		
Peso del suelo seco	2.65 3.1		
% humedad	20.75% 19.68%		
Limites	20.22%		

LIMITE LIQUIDO	35.33%
LIMITE PLASTICO	20.22%
LIMITE DE CONTRACCION	15.96
LIMITE DE PLASTICIDAD	15.11%

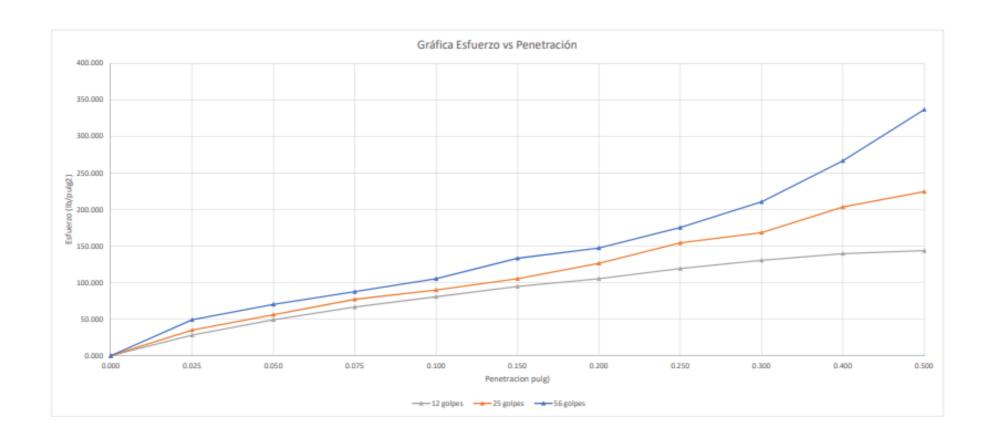
UCV UNIVERSIDAD CESAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022. LIMITE LIQUIDO CALICATA 10					
ENSAYO N°	1	2	3	4		
Tara + suelo humedo	80.14	54.37	53.86	84.9		
Tara + suelo seco	63.3	44.32	45.06	68.2		
Agua	16.84	10.05	8.8	16.7		
Peso de la tara	20.2	17.6	20.03	18.6		
Peso del suelo seco	43.1	26.72	25.03	49.6		
% humedad	39.07%	37.61%	35.16%	3.66%		
N° golpes	12	12 16 26 35				
Limites		35.3	36%			

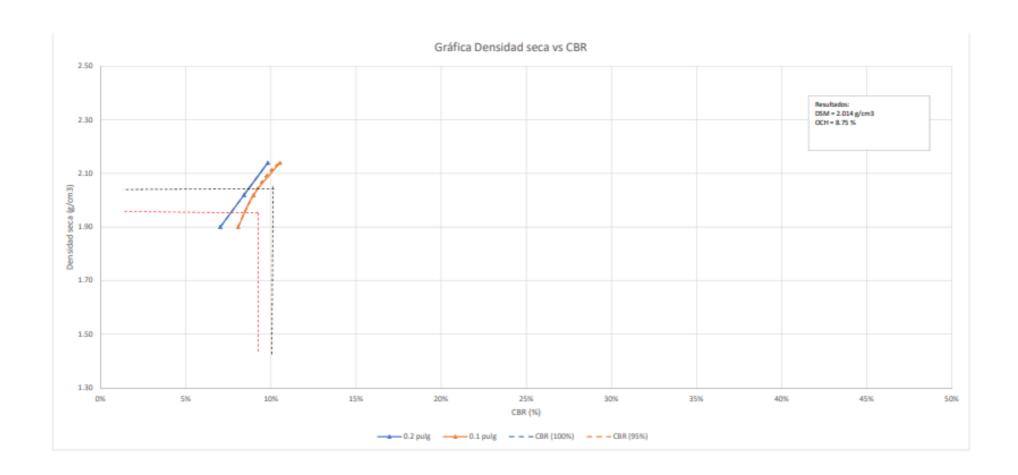
UCV UNIVERSIDAD CESAR VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022. LIMITE PLASTICO CALICATA 10			
ENSAYO N°	1 2			
Tara + suelo humedo	29.12	17.87		
Tara + suelo seco	28.56	17.26		
Agua	0.56	0.61		
Peso de la tara	25.9	14.15		
Peso del suelo seco	2.66	3.11		
% humedad	21.05% 19.61%			
Limites	20.3	33%		

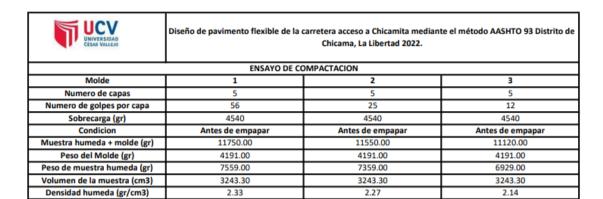
LIMITE LIQUIDO	35.36%
LIMITE PLASTICO	20.33%
LIMITE DE CONTRACCION	16.07
LIMITE DE PLASTICIDAD	15.03%

Anexo 9. Ficha de recolección de datos 2 de Estudio de Suelo: Ensayo de compactación, humedad y expansión.

UCV UNIVERSIDAD CESAR VALLED	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.					
	ENSAYO DE CO	OMPACTACION				
Molde	1	1 2 3				
Numero de capas	5	5	5			
Numero de golpes por capa	56	25	12			
Sobrecarga (gr)	4540	4540	4540			
Condicion	Antes de empapar	Antes de empapar	Antes de empapar			
Muestra humeda + molde (gr)	11700.00	11300.00	10850.00			
Peso del Molde (gr)	4191.00	4191.00	4191.00			
Peso de muestra humeda (gr)	7509.00	7509.00 7109.00 6659.00				
Volumen de la muestra (cm3)	3243.30 3243.30 3243.30					
Densidad humeda (gr/cm3)	2.32	2.19	2.05			

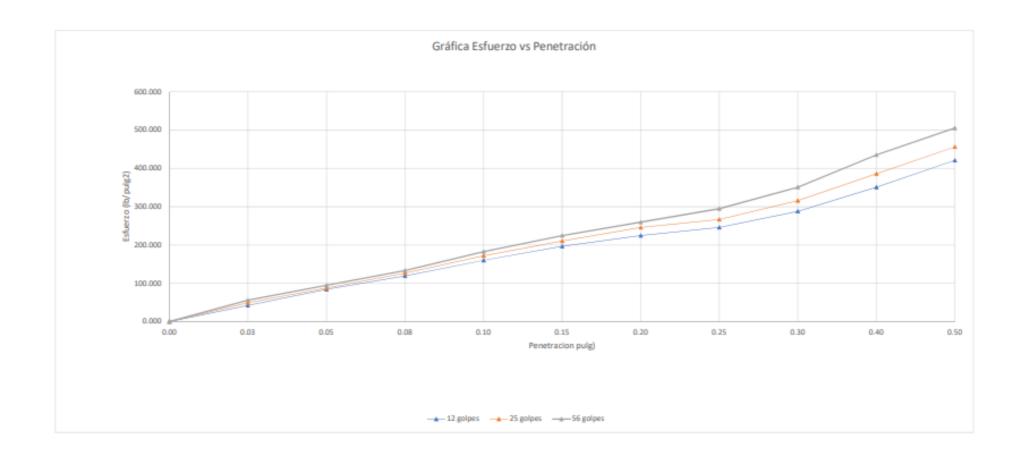

UCV UNIVERSIDAD CÉSAN WALLEIO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.				
	CONTENIDO	DE HUMEDAD			
Tara N°	1	2	3		
Muestra humeda + tara (gr)	58.25	59.65	58.32		
Muestra seca + tara (gr)	55.25	56.50	55.30		
Peso del agua (gr)	3.00	3.15	3.02		
Peso de la tara (gr)	19.00	20.20	18.76		
Muestra seca (gr)	36.25	36.30	36.54		
Contenido de humedad (%)	8.28 8.68 8.26				
Densidad seca (gr/cm3)	2.14	2.02	1.90		

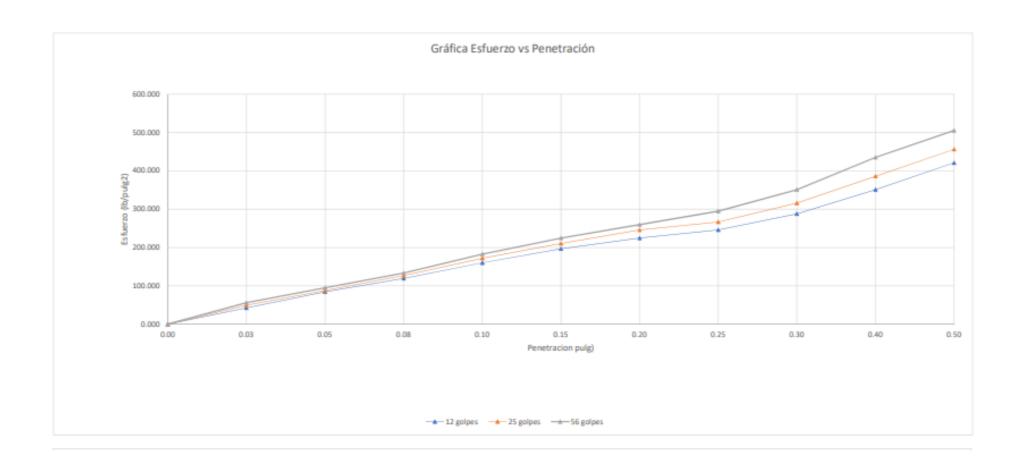

UNIV	ERSIDAD I VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito d Chicama, La Libertad 2022.					ITO 93 Distrito de	
			ENSAYO DE	EXPANSION				
Mo	lde		ı		2		3	
Sobreca	arga (gr)	45	40	45	4540		4540	
Numero de go	olpes por capa	5	6	25		12		
Fecha	Tiempo (h)	Lectura del dia	Hincham.(mm)	Lectura del dia	Hincham.(mm)	Lectura del dia	Hincham.(mm)	
8/11/2022	0	0.00	0.00	0.00	0.00	0.00	0.00	
9/11/2022	24	65.20	1.66	205.20	5.21	247.50	6.29	
10/11/2022	48	142.50	3.62	285.50	7.25	325.30	8.26	
11/11/2022	72	158.50	4.03	296.30	7.53	330.00	8.38	
% de Ex	pansion	2.2	6%	4.2	3%	4.7	1%	

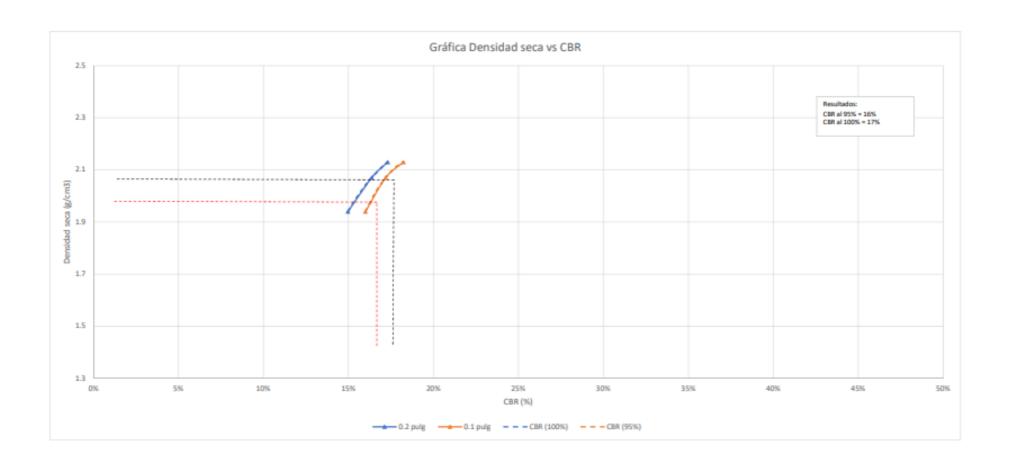


	ENSAYO DE CARGA - PENETRACION									
Mo	olde		1			2			3	
Numero de g	olpes por capa		56			25			12	
Penetracion (pulg)	Patron (kgf/cm2)	Carga (kg)	Esfuerzo (kgf/cm2)	Esfuerzo (lb/pulg2)	Carga (kg)	Esfuerzo (kgf/cm2)	Esfuerzo (lb/pulg2)	Carga (kg)	Esfuerzo (kgf/cm2)	Esfuerzo (lb/pulg2)
0.000		0	0.000	0.000	0	0.000	0.000	0	0.000	0.000
0.025		70	3.454	49.123	50	2.467	35.088	40	1.974	28.070
0.050		100	4.934	70.175	80	3.947	56.140	70	3.454	49.123
0.075		1	6.167	87.719	110	5.427	77.193	95	4.687	66.666
0.100	70.31	150	7.401	105.263	128	6.315	89.824	115	5.674	80.701
0.150		190	9.374	133.333	150	7.401	105.263	135	6.661	94.736
0.200	105.46	210	10.361	147.368	180	8.881	126.315	150	7.401	105.263
0.250		250	12.335	175.438	220	10.854	154.385	10	8.387	119.298
0.300		300	14.801	210.525	240	11.841	168.420	186	9.177	130.526
0.400		380	18.748	266.665	290	14.308	203.508	199	9.818	139.648
0.500		480	23.682	336.840	320	15.788	224.560	205	10.114	143.859

UCV UNIVERSIDAD CESAR WALLEAD	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.					
CALCULO DE CBR						
Molde	:	1	1	2		3
Numero de golpes por capa	5	6	25		12	
Penetracion (pulg)	0.10	0.20	0.10	0.20	0.10	0.20
Patron (kgf/cm2)	70.31	105.46	70.31	105.46	70.31	105.46
Fuerzo ensayo (kgf/cm2)	7.401	7.401 10.361		8.881	5.674	7.401
CBR (%)	10.53%	9.82%	8.98%	8.42%	8.07%	7.02%



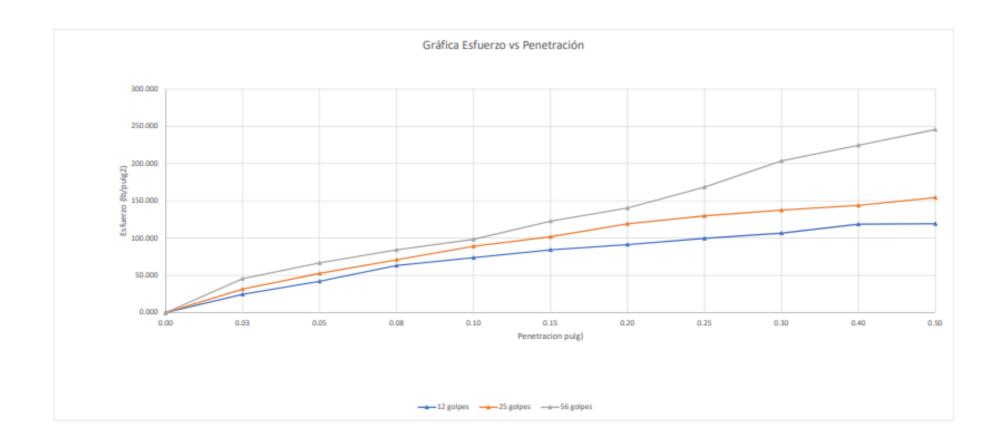


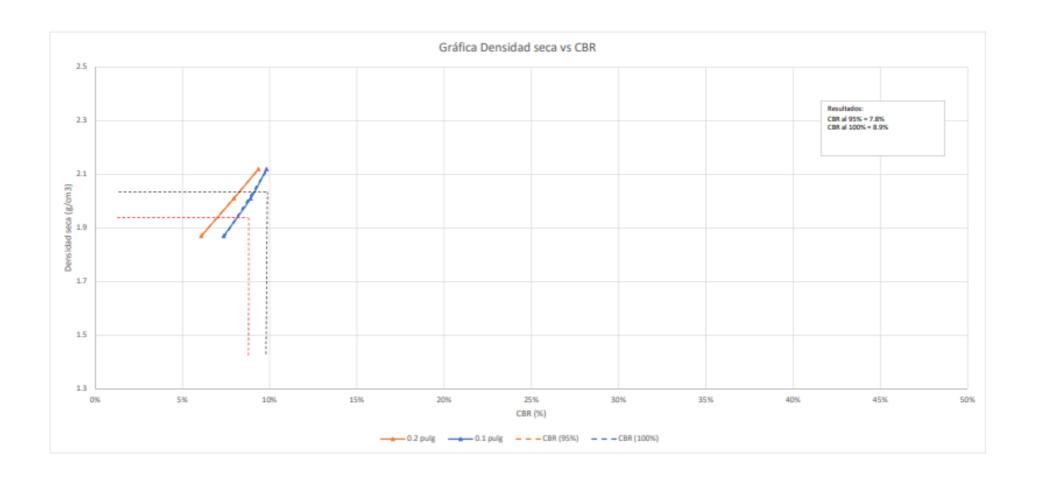


UNIVERSIDAD CESAR VALLED	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.				
	CONTENIDO	DE HUMEDAD			
Tara N°	1	2	3		
Muestra humeda + tara (gr)	58.56	59.23	58.22		
Muestra seca + tara (gr)	55.23	55.80	54.66		
Peso del agua (gr)	3.33	3.43	3.56		
Peso de la tara (gr)	19.00	20.20	18.76		
Muestra seca (gr)	36.23	35.60	35.90		
Contenido de humedad (%)	9.19% 9.63% 9.92%				
Densidad seca (gr/cm3)	2.13	2.07	1.94		

Univ	ERSIDAD VALLEJO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito o Chicama, La Libertad 2022.					ITO 93 Distrito de
			ENSAYO DE	EXPANSION			
Mo	lde		1	2		3	
Sobreca	irga (gr)	4540		4540		4540	
Numero de go	olpes por capa	5	6	25		12	
Fecha	Tiempo (h)	Lectura del dia	Hincham.(mm)	Lectura del dia	Hincham.(mm)	Lectura del dia	Hincham.(mm)
8/11/2022	0	0.00	0.00	0.00	0.00	0.00	0.00
9/11/2022	24	25.50	0.65	52.20	1.33	81.80	2.08
10/11/2022	48	62.50	1.59	75.50	1.92	96.60	2.45
11/11/2022	72	66.30	1.68	76.00	1.93	97.00	2.46
% de Ex	pansion	0.9	5%	1.0	9%	1.3	9%

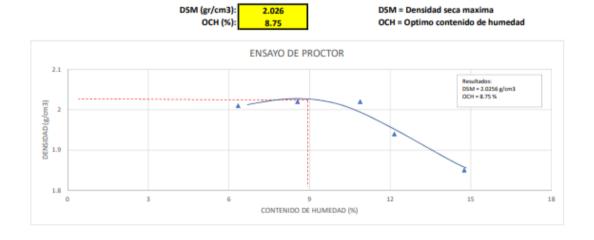
UCV UNIVERSIDAD CESAR VALLERO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.				
	ENSAYO DE CO	OMPACTACION			
Molde	1	2	3		
Numero de capas	5	5	5		
Numero de golpes por capa	56	25	12		
Sobrecarga (gr)	4540	4540	4540		
Condicion	Antes de empapar	Antes de empapar	Antes de empapar		
Muestra humeda + molde (gr)	11680.00	11250.00	10750.00		
Peso del Molde (gr)	4191.00	4191.00	4191.00		
Peso de muestra humeda (gr)	7489.00	7059.00	6559.00		
Volumen de la muestra (cm3)	3243.30 3243.30 3243.30				
Densidad humeda (gr/cm3)	2.31	2.18	2.02		


UNEVERSIONAL CESANS VINLEIO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.				
	CONTENIDO	DE HUMEDAD			
Tara N°	1	2	3		
Muestra humeda + tara (gr)	68.02	61.44	60.10		
Muestra seca + tara (gr)	64.00	58.20	57.00		
Peso del agua (gr)	4.02	3.24	3.10		
Peso de la tara (gr)	19.00	20.20	18.76		
Muestra seca (gr)	45.00	38.00	38.24		
Contenido de humedad (%)	8.93% 8.53% 8.11%				
Densidad seca (gr/cm3)	2.12	2.01	1.87		


	CV ERSIDAD L WALEZO	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.							
ENSAYO DE EXPANSION									
Molde		1		2		3			
	Sobrecarga (gr)		4540		4540		4540		
Numero de go	Numero de golpes por capa		56		25		12		
Fecha	Tiempo (h)	Lectura del dia	Hincham.(mm)	Lectura del dia	Hincham.(mm)	Lectura del dia	Hincham.(mm)		
8/11/2022	0	0.00	0.00	0.00	0.00	0.00	0.00		
9/11/2022	24	66.32	1.68	208.25	5.29	250.50	6.36		
10/11/2022	48	152.50	3.87	288.25	7.32	326.30	8.29		
11/11/2022	72	161.20	4.09	299.30	7.60	329.30	8.36		
% de Expansion		2.30%		4.28%		4.70%			

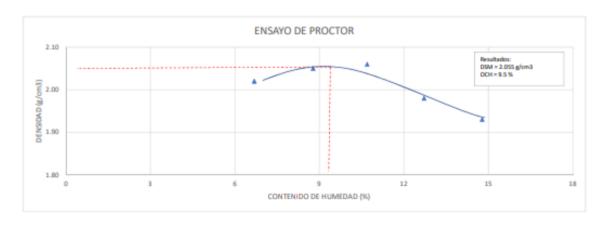
ENSAYO DE CARGA - PENETRACION										
Molde		1			2			3		
Numero de golpes por capa		56			25			12		
Penetracion (pulg)	Patron (kgf/cm2)	Carga (kg)	Esfuerzo (kgf/cm2)	Esfuerzo (lb/pulg2)	Carga (kg)	Esfuerzo (kgf/cm2)	Esfuerzo (lb/pulg2)	Carga (kg)	Esfuerzo (kgf/cm2)	Esfuerzo (lb/pulg2)
0.000		0	0.000	0.000	0	0.000	0.000	0	0.000	0.000
0.025		65	3.207	45.614	45	2.220	31.579	35	1.727	24.561
0.050		95	4.687	66.666	75	3.700	52.631	60	2.960	42.105
0.075		120	5.921	84.210	101	4.983	70.877	90	4.440	63.158
0.100	70.31	140	6.907	98.245	127	6.266	89.122	105	5.181	73.684
0.150		175	8.634	122.806	145	7.154	101.754	120	5.921	84.210
0.200	105.46	200	9.868	140.350	170	8.387	119.298	130	6.414	91.228
0.250		240	11.841	168.420	185	9.128	129.824	142	7.006	99.649
0.300		290	14.308	203.508	196	9.670	137.543	152	7.499	106.666
0.400		320	15.788	224.560	205	10.114	143.859	169	8.338	118.596
0.500		350	17.268	245.613	220	10.854	154.385	170	8.387	119.298

UCV UNIVERSIDAD CESAR WALES	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.								
CALCULO DE CBR									
Molde	1		2		3				
Numero de golpes por capa	56		25		12				
Penetracion (pulg)	0.10	0.20	0.10	0.20	0.10	0.20			
Patron (kgf/cm2)	70.31	150.46	70.31	105.46	70.31	105.46			
Fuerzo ensayo (kgf/cm2)	6.907	9.868	6.266	8.387	5.181	6.414			
CBR (%)	9.82%	9.36%	8.91%	7.95%	7.37%	6.08%			

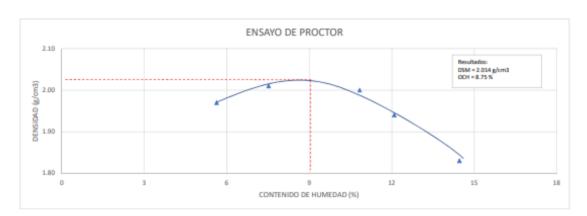


Anexo 10. Ficha de recolección de datos 2 de Estudio de Suelo: Contenido de humedad.

UCV UNIVERSIGNO CENTA VOLLEDO	Diseño de pavi	mento flexible de l AASHTO 93 Dist	la carretera acceso trito de Chicama, L		iante el método
DETE	RMINACION DEL CO	ONTENIDO DE HUN	MEDAD		
MUESTRA N°	1	2	3	4	5
Tara N°	1	2	3	4	5
Peso Tara + Suelo Humedo (gr)	70.82	68.43	67.46	68.42	51.63
Peso Tara + Suelo Seco (gr)	68.07	65.23	63.61	36.71	46.82
Peso del Agua (gr)	2.75	3.2	3.85	4.71	4.81
Peso Tara (gr)	24.69	27.79	28.22	24.94	14.21
Peso Suelo Seco (gr)	43.38	37.44	35.39	38.77	32.61
Contenido de humedad (%)	6.34	8.55	10.88	12.15	14.75


UCV UNIVERSIDAD CESAA VALLED	Diseño de pavi	mento flexible de l AASHTO 93 Dist	a carretera acceso rito de Chicama, L		iante el método
	DETERMINACION	DE LA DENSIDAD			
MUESTRA N°	1	2	3	4	5
Peso Molde + Peso Suelo Humedo (gr)	4031	4082	4125	4071	4019
Peso Molde (gr)	2004	2004	2004	2004	2004
Peso Suelo Humedo (gr)	2027	2078	2121	2067	2015
Volumen Suelo Humedo (gr)	947.85	947.85	947.85	947.85	947.85
Densidad Humedad (gr/cm3)	2.14	2.19	2.24	2.18	2.13
Densidad Seca (gr/cm3)	2.01	2.02	2.02	1.94	1.85

UCV UMIVVESIZAD CÉSAS VANCEJO	Diseño de pavi	mento flexible de l AASHTO 93 Dist	a carretera acceso rito de Chicama, L		ante el método							
	DETERMINACION	DE LA DENSIDAD										
MUESTRA N* 1 2 3 4 5												
Peso Molde + Peso Suelo Humedo (gr)	4050	4170	4170	4120	4100							
Peso Molde (gr)	2004	2004	2004	2004	2004							
Peso Suelo Humedo (gr)	2046	2116	2166	2116	2096							
Volumen Suelo Humedo (gr)	947.85	947.85	947.85	947.85	947.85							
Densidad Humedad (gr/cm3)	2.16	2.23	2.29	2.23	2.21							
Densidad Seca (gr/cm3)	2.02	2.05	2.06	1.98	1.93							


DSM (gr/cm3): 2.055 OCH (%): 9.5 DSM = Densidad seca maxima OCH = Optimo contenido de humedad

UCV UNIVERSIDAD CESAR VALLEUD	Diseño de pavi	mento flexible de l AASHTO 93 Dist	la carretera acceso trito de Chicama, L		iante el método
DETE	RMINACION DEL C	ONTENIDO DE HUN	MEDAD		
MUESTRA N°	1	2	3	4	5
Tara N*	1	2	3	4	5
Peso Tara + Suelo Humedo (gr)	85.25	74.25	65.66	86.32	64.33
Peso Tara + Suelo Seco (gr)	81.8	71	62	79.7	58
Peso del Agua (gr)	3.45	3.25	3.66	6.62	6.33
Peso Tara (gr)	20.5	27.79	28.22	24.94	14.21
Peso Suelo Seco (gr)	61.3	43.21	33.78	54.76	43.79
Contenido de humedad (%)	5.63	7.52	10.83	12.09	14.46

UCV UNIVERSIDAD CESAA VALLEUD	Diseño de pavi	mento flexible de l AASHTO 93 Dist	la carretera acceso trito de Chicama, L		iante el método					
	DETERMINACION	DE LA DENSIDAD								
MUESTRA N°	1	2	3	4	5					
Peso Molde + Peso Suelo Humedo (gr)	3980	4050	4100	4060	3990					
Peso Molde (gr)	2004	2004	2004	2004	2004					
Peso Suelo Humedo (gr)	1976	2046	2096	2056	1986					
Volumen Suelo Humedo (gr)	947.85	947.85	947.85	947.85	947.85					
Densidad Humedad (gr/cm3) 2.08 2.16 2.21 2.17 2.1										
Densidad Seca (gr/cm3)	1.97	2.01	2	1.94	1.83					

DSM (gr/cm3): 2.014 OCH (%): 8.75 DSM = Densidad seca maxima OCH = Optimo contenido de humedad

Anexo 11. Ficha de Recolección de Datos N°2: Estudio de Trafico

	T UCV		Diseño de	paviment	o flexible	de la carret	tera acceso			ite el méto	do AASHT	O 93 Distrit	to de Chica	ma, La Libertad	
TRAMO DI	Other eventure	ETERA			Δεει	eso a Chica	mita		2022.	ESTACION			1		
SENTIDO	E LA CANN	ETERA	 			oble sentic				DIA	•		Lunes	s	
UBICACIÓ	N					Chicama				FECHA			10/10/2	2022	
	мото	AUTO	STATION	MOTO LINEAL			MICRO	_							
1 1	MOTO	AUTO	WAGON	MOTOLINEAL	PICK UP	RURAL COMBI	MICKO	2E	US 3E	2E	CAMION	4E	ł		
HORA	0			646		-0-0	GT U.			- P	- A		TOTAL	OBSERVACIÓN	
0-1	22	3	0	2	1	0				0	0		28	7:20-8:20	
1-2	11	1	1	2	1	0				0	0		16	8:20-9:20	
2-3	11	1	1	3	2	1				1	1		21	9:20-10:20	
3-4	15	0	0	2	1	1				1	1		21	10:20-11:20	
4-5	20	0	0	3	1	1				1	1		27	11:20-:12:20	
5-6	17	3	2	0	2	0				1	0		25	12:20-13:20	
6-7	18	1	1	0	0	0				0	0		20	13:20-14:20	
7-8	12	0	0	0	0	1				0	1		14	14:20-15:20	
8-9	15	0	2	2	2	1				1	1		24	15:20-16:20	
9-10	13	4	2	3	1	0				2	2		27	16:20-17:20	
10-11	15	3	0	1	1	0				0	0		20	17:20-18:20	
11-12	12	0	0	1	0	0				0	0		13	18:20-19:20	
12-13	6	2	0	0	0	0				0	0		8	19:20-20:20	
13-14	7	0	0	0	0	0				0	0		7	20:20-21:20	
14-15	4	0	0	0	0	0				0	0		4	21:20-22:20	
15-16	0	0	0	1	0	0				0	0		1	22:20-23:20	
16-17	0	0	0	0	0	0				0	0		0	23:20-00:20	
17-18	0	0	0	0	0	0				0	0		0	00:20-01:20	
18-19	0	0	0	0	0	0				0	0		0	01:20-02:20	
19-20	1	0	0	0	0	0				0	0		1	02:20-03:20	
20-21	0	0	0	0	0	0				0	0		0	03:20-04:20	
21-22	0	0	0	0	1	0				0	0		1	04:20-05:20	
22-23	2	0	0	0	0	0				0	0		2	05:20-06:20	
23-24	4	0	0	0	0	0				0	0		4	06:20-07:20	
TOTALES	205	18	9	20	13	5				7	7		284		

UCV By Villa Villa di Signa Villa di		Diseño de pavimento flexible de la carretera acceso a Chicamita median	te el método AASHTO	93 Distrito de Chicama, La Libertad
CENT AND THE SECOND		2022.		
TRAMO DE LA CARRET	ERA	Acceso a Chicamita	ESTACION	1
SENTIDO		Doble sentido	DIA	Martes
UBICACIÓN		Chicama	FECHA	11/10/2022

	мото	AUTO	STATION	MOTO LINEAL	CAMIC	ONETAS	MICRO	В	us		CAMION			
	THE		WAGON		PICK UP	RURAL COMBI		2E	3E	2E	3E	4E]	
HORA	O STATE	(Carried		8		-0-0	WITE W.		G	- G	- A	100	TOTAL	OBSERVACIÓN
0-1	15	4	1		3	0				1	1		25	7:20-8:20
1-2	11	3	2	4	2	0				1	1		24	8:20-9:20
2-3	15	1	2	3	3	0				2	0		26	9:20-10:20
3-4	18	1	1	2	3	1				1	0		27	10:20-11:20
4-5	14	2	0	3	4	1				1	0		25	11:20-:12:20
5-6	16	2	0	3	1	0				1	0		23	12:20-13:20
6-7	17	1	0	1	4	0				0	2		25	13:20-14:20
7-8	11	2	0	3	2	0				0	2		20	14:20-15:20
8-9	19	4	1	4	2	2				2	0		34	15:20-16:20
9-10	15	1	2	4	3	3				2	2		32	16:20-17:20
10-11	13	4	1	6	3	1				0	0		28	17:20-18:20
11-12	13	3	2	5	5	0				0	0		28	18:20-19:20
12-13	0	0	1	0	1	0				0	0		2	19:20-20:20
13-14	7	0	0	0	0	0				0	0		7	20:20-21:20
14-15	0	1	0	1	0	0				0	0		2	21:20-22:20
15-16	3	1	0	0	0	0				0	0		4	22:20-23:20
16-17	0	0	0	1	0	0				0	0		1	23:20-00:20
17-18	0	0	0	0	1	0				0	0		1	00:20-01:20
18-19	0	0	0	0	0	0				0	0		0	01:20-02:20
19-20	0	0	0	0	0	0				0	0		0	02:20-03:20
20-21	0	0	0	0	0	0				0	0		0	03:20-04:20
21-22	0	0	0	0	0	0				0	0		0	04:20-05:20
22-23	0	0	0	0	0	0				0	0		0	05:20-06:20
23-24	0	0	1	2	0	0				0	0		3	06:20-07:20
TOTALES	187	30	14	42	37	8				11	8		337	

UCV Bertraling	Diseño de pavimento flexible de la carretera acceso a Chicamita median	te el método AASHTO	93 Distrito de Chicama, La Libertad
CENTRAL PORTO	2022.		
TRAMO DE LA CARRETERA	Acceso a Chicamita	ESTACION	1
SENTIDO	Doble sentido	DIA	Miercoles
UBICACIÓN	Chicama	FECHA	12/10/2022

	мото	AUTO	STATION	MOTO LINEAL	CAMIC	ONETAS	MICRO	8	US		CAMION			
HORA	June		WAGON		PICK UP	RURAL COMBI	(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2E	3E	2E	3E	4E	TOTAL	OBSERVACIÓN
I HORA	O CONTRACT			646		-0-0	GTT W.		9 94	~ ·	***	000	IOIAL	OBSERVACION
0-1	17	3	0	2	0	1				0	0		23	7:20-8:20
1-2	12	2	0	5	2	1				2	2		26	8:20-9:20
2-3	17	2	0	4	2	0				1	0		26	9:20-10:20
3-4	15	2	2	2	0	0				2	1		24	10:20-11:20
4-5	12	0	2	2	1	1				0	0		18	11:20-:12:20
5-6	13	1	5	1	4	1				0	0		25	12:20-13:20
6-7	13	1	2	1	2	0				2	2		23	13:20-14:20
7-8	15	3	3	3	2	0				0	2		28	14:20-15:20
8-9	12	2	1	2	3	1				1	0		22	15:20-16:20
9-10	18	1	2	0	2	2				0	0		25	16:20-17:20
10-11	15	1	2	5	2	0				1	0		26	17:20-18:20
11-12	12	2	1	4	3	0				0	0		22	18:20-19:20
12-13	8	0	0	2	0	0				0	0		10	19:20-20:20
13-14	5	1	0	2	0	0				0	0		8	20:20-21:20
14-15	5	1	0	0	0	0				0	0			21:20-22:20
15-16	1	0	0	0	0	0				0	0			22:20-23:20
16-17	0	0	0	0	0	0				0	0			23:20-00:20
17-18	0	0	0	0	0	0				0	0			00:20-01:20
18-19	0	0	0	0	0	0				0	0			01:20-02:20
19-20	0	0	1	0	0	0				0	0			02:20-03:20
20-21	0	0	0	0	0	0				0	0			03:20-04:20
21-22	0	0	0	0	0	0				0	0			04:20-05:20
22-23	0	0	0	0	0	0				0	0			05:20-06:20
23-24	1	1	0	3	0	0				0	0			06:20-07:20
TOTALES	191	23	21	38	23	7				9	7		319	

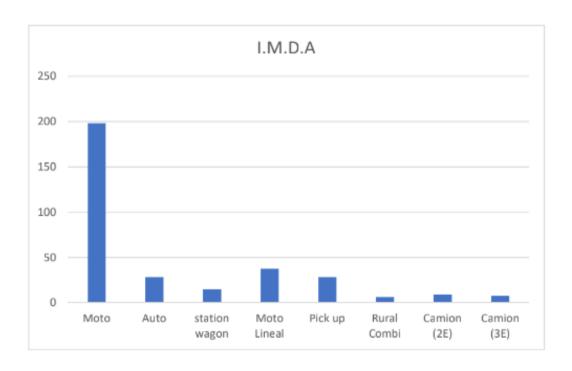
UCV BYSTALOGO BYSTALOGO	Diseño de pavimento flexible de la carretera acceso a Chicamita median	te el método AASHTO	93 Distrito de Chicama, La Libertad
DESCRIPTION OF THE PROPERTY OF	2022.		
TRAMO DE LA CARRETERA	Acceso a Chicamita	ESTACION	1
SENTIDO	Doble sentido	DIA	Jueves
UBICACIÓN	Chicama	FECHA	13/10/2022

	мото	AUTO	STATION	MOTO LINEAL	CAMIC	ONETAS	MICRO	В	us		CAMION			
	-		WAGON		PICK UP	RURAL COMBI		2E	3E	2E	3E	4E	1	
HORA	de la constant de la			646		-0-0	WITE W.			÷ -	- A		TOTAL	OBSERVACIÓN
0-1	18	4	1	1	1	0				1	0		26	7:20-8:20
1-2	11	2	0	2	1	0				1	0		17	8:20-9:20
2-3	13	1	0	3	2	0				0	1		20	9:20-10:20
3-4	15	1	1	2	2	0				0	1		22	10:20-11:20
4-5	16	2	0	3	0	0				2	0		23	11:20-:12:20
5-6	21	1	1	2	3	2				2	2		34	12:20-13:20
6-7	15	1	0	2	0	2				0	0		20	13:20-14:20
7-8	13	0	0	2	1	0				0	1		17	14:20-15:20
8-9	16	2	2	5	2	0				0	0		27	15:20-16:20
9-10	12	2	2	5	3	0				1	0		25	16:20-17:20
10-11	12	1	2	4	3	0				1	0		23	17:20-18:20
11-12	10	3	0	3	2	0				1	0		19	18:20-19:20
12-13	3	1	0	1	0	0				0	0		5	19:20-20:20
13-14	8	2	0	1	0	0				0	0		11	20:20-21:20
14-15	8	0	0	0	1	0				0	0		9	21:20-22:20
15-16	1	0	0	0	0	0				0	0		1	22:20-23:20
16-17	0	0	0	0	0	0				0	0		0	23:20-00:20
17-18	0	0	0	0	0	0				0	0		0	00:20-01:20
18-19	0	0	0	0	0	0				0	0		0	01:20-02:20
19-20	0	0	0	0	0	0				0	0		0	02:20-03:20
20-21	0	0	0	0	0	0				0	0		0	03:20-04:20
21-22	0	0	0	0	0	0				0	0		0	04:20-05:20
22-23	0	1	0	0	0	0				0	0		1	05:20-06:20
23-24	3	1	0	4	1	0				0	0		9	06:20-07:20
TOTALES	195	25	9	40	22	4				9	5		309	

l	WCV Want was	iseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad						
l	SEASON AND ASSAULT OF THE PERSON ASSAULT OF TH							
ı	TRAMO DE LA CARRETERA	Acceso a Chicamita	ESTACION	1				
ı	SENTIDO	Doble sentido	DIA	Viernes				
ı	UBICACIÓN	Chicama	FECHA	14/10/2022	.			

	мото	AUTO	STATION	MOTO LINEAL	CAMIC	ONETAS	MICRO	В	us	CAMION				
	JUNE		WAGON		PICK UP	RURAL COMBI	-	2E	3E	2E	3E	4E]	
HORA	O Company			646		-0-0	WI W.			3-6	- F	- COO - CO	TOTAL	OBSERVACIÓN
0-1	15	2	1	2	2	1				1	1		25	7:20-8:20
1-2	15	2	1	3	2	0				0	0		23	8:20-9:20
2-3	17	3	3	4	0	0				1	1		29	9:20-10:20
3-4	11	1	0	4	1	0				0	1		18	10:20-11:20
4-5	13	4	1	1	1	1				1	0		22	11:20-:12:20
5-6	15	1	1	3	2	0				1	2		25	12:20-13:20
6-7	14	5	2	5	2	2				0	0		30	13:20-14:20
7-8	18	1	3	3	2	0				0	2		29	14:20-15:20
8-9	17	3	1	2	1	1				0	0		25	15:20-16:20
9-10	20	5	5	2	3	0				2	2		39	16:20-17:20
10-11	14	2	0	1	4	0				0	0		21	17:20-18:20
11-12	15	0	0	1	2	0				0	0		18	18:20-19:20
12-13	10	0	0	0	0	0				0	0		10	19:20-20:20
13-14	5	1	0	0	0	0				0	0		6	20:20-21:20
14-15	5	1	0	0	0	0				0	0		6	21:20-22:20
15-16	2	0	0	0	0	0				0	0		2	22:20-23:20
16-17	0	0	0	0	0	0				0	0		0	23:20-00:20
17-18	0	0	0	0	0	0				0	0		0	00:20-01:20
18-19	0	0	0	0	0	0				0	0		0	01:20-02:20
19-20	0	0	0	0	0	0				0	0		0	02:20-03:20
20-21	0	0	0	0	0	0				0	0		0	03:20-04:20
21-22	0	0	0	0	0	0				0	0		0	04:20-05:20
22-23	0	0	0	0	1	0				0	0		1	05:20-06:20
23-24	5	2	1	2	1	0				0	0		11	06:20-07:20
TOTALES	211	33	19	33	24	5				6	9		340	

	UCV PER MINISTRE	Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad						
2022.								
	TRAMO DE LA CARRETERA	Acceso a Chicamita	ESTACION	1				
	SENTIDO	Doble sentido	DIA	Sabado				
	UBICACIÓN	Chicama	FECHA	15/10/2022				


	мото	AUTO	STATION	MOTO LINEAL	CAMIC	ONETAS	MICRO	В	us		CAMION			
HORA			WAGON	646	PICK UP	RURAL COMBI	QTI Q.	2E	31	2E → ♣	3E	4E	TOTAL	OBSERVACIÓN
0-1	23	2	2		4	1				1	2		35	7:20-8:20
1-2	18	2	3	7	3	0				2	0		35	8:20-9:20
2-3	23	1	3	4	5	1				0	2		39	9:20-10:20
3-4	14	1	1	3	5	1				1	1		27	10:20-11:20
4-5	16	1	2	2	4	3				1	0		29	11:20-:12:20
5-6	25	0	0	1	3	0				0	1		30	12:20-13:20
6-7	18	2	0	1	2	1				2	2		28	13:20-14:20
7-8	15	2	0	3	5	1				1	1		28	14:20-15:20
8-9	15	3	2	5	3	2				2	2		34	15:20-16:20
9-10	14	1	1	5	2	0				3	1		27	16:20-17:20
10-11	14	1	3	5	3	0				0	0		26	17:20-18:20
11-12	15	2	3	4	3	0				0	0		27	18:20-19:20
12-13	10	2	0	3	0	0				0	0		15	19:20-20:20
13-14	0	2	0	3	0	0				0	0		5	20:20-21:20
14-15	3	0	0	3	0	0				0	0		6	21:20-22:20
15-16	0	0	0	0	0	0				0	0		0	22:20-23:20
16-17	0	0	0	0	0	0				0	0		0	23:20-00:20
17-18	0	0	0	0	0	0				0	0		0	00:20-01:20
18-19	0	0	0	0	0	0				0	0		0	01:20-02:20
19-20	0	0	0	0	0	0				0	0		0	02:20-03:20
20-21	0	0	0	0	0	0				0	0		0	03:20-04:20
21-22	3	5	0	0	0	0				0	0		8	04:20-05:20
22-23	2	3	0	3	0	0				0	0		8	05:20-06:20
23-24	0	3	2	3	0	0				0	0		8	06:20-07:20
TOTALES	228	33	22	55	42	10				13	12		415	

UCV BY TANGOOD	Diseño de pavimento flexible de la carretera acceso a Chicamita median	camita mediante el método AASHTO 93 Distrito de Chicama, La Libertad			
GRANTO DE ALTERNA					
TRAMO DE LA CARRETERA	Acceso a Chicamita	ESTACION	1		
SENTIDO	Doble sentido	DIA	Domingo		
UBICACIÓN	Chicama	FECHA	16/10/2022		

	мото	AUTO	STATION	MOTO LINEAL	CAMIC	ONETAS	MICRO	В	us		CAMION			
1	Total		WAGON		PICK UP	RURAL COMBI		2E	3E	2E	3E	4E		
HORA	O TO	The same of		646		-0-0	THE WAY			2 G		- F	TOTAL	OBSERVACIÓN
0-1	6	3	0	2	2	0				0	0		13	7:20-8:20
1-2	11	1	1	2	3	0				0	0		18	8:20-9:20
2-3	11	1	1	3	3	1				1	1		22	9:20-10:20
3-4	12	2	0	0	2	1				1	1		19	10:20-11:20
4-5	7	2	0	3	1	1				1	1		16	11:20-:12:20
5-6	12	2	2	1	0	0				1	0		18	12:20-13:20
6-7	8	1	1	1	5	0				0	0		16	13:20-14:20
7-8	11	4	0	2	1	1				0	1		20	14:20-15:20
8-9	12	3	2	2	2	1				1	1		24	15:20-16:20
9-10	15	4	2	5	4	0				2	2		34	16:20-17:20
10-11	12	3	0	6	3	0				0	0		24	17:20-18:20
11-12	14	4	0	3	4	0				0	0		25	18:20-19:20
12-13	5	0	0	0	1	0				0	0		6	19:20-20:20
13-14	5	0	0	0	1	0				0	0		6	20:20-21:20
14-15	3	0	0	0	1	0				0	0		4	21:20-22:20
15-16	0	0	0	0	0	0				0	0		0	22:20-23:20
16-17	0	0	0	0	0	0				0	0		0	23:20-00:20
17-18	0	0	0	0	0	0				0	0		0	00:20-01:20
18-19	0	0	0	0	0	0				0	0		0	01:20-02:20
19-20	0	0	0	0	0	0				0	0		0	02:20-03:20
20-21	0	0	0	0	0	0				0	0		0	03:20-04:20
21-22	0	0	0	0	0	0				0	0		0	04:20-05:20
22-23	5	2	0	0	0	0				0	0		7	05:20-06:20
23-24	5	1	0	3	0	0				0	0		9	06:20-07:20
TOTALES	154	33	9	33	33	5				7	7		281	

INDICE MEDIO DIARIO ANUAL

TIPO DE VEHICULO	I.M.D	FCE	I.M.D.A
Moto	196	1.0118	198
Auto	28	1.0118	28
station wagon	15	1.0118	15
Moto Lineal	37	1.0118	38
Pick up	28	1.0055	28
Rural Combi	6	1.0118	6
Camion (2E)	9	1.0055	9
Camion (3E)	8	1.0055	8
TOTAL	327		330

NUMERO DE EJES EQUIVALENTES

TIPO DE VEHICULOS	IMD pi	Fd	Fc	Fvpi	Fpi	EE. (dia-carril)	
Autos y Camionetas	304	0.50	1.00	0	1.00	0	
De 2 ejes, 4 ruedas	6	0.50	1.00	3.477	1.00	10.4310	
De 2 ejes, 6 ruedas	9	0.50	1.00	2.320	1.00	10.2743	
De 3 ejes o mas	8	0.50	1.00	2.526	1.00	9.9236	
Semi t. de 4 ejes	0	0.50	1.00	2.316	1.00	0	
Semi t. de 5 ejes	0	0.50	1.00	3.270	1.00	0	
Semi t. de 6 ejes	0	0.50	1.00	3.758	1.00	0	
TOTAL							

NUMERO DE REPETICIONES DE EJES

Configuracion Vehicular	EE (dia-carril)	Fca	dias	Nrep de EE 8.2 tn
Autos y Camionetas	0.0000	33.07	365	0
De 2 ejes, 4 ruedas	10.4310	33.07	365	125892.503
De 2 ejes, 6 ruedas	10.2743	33.07	365	124001.1069
De 3 ejes o mas	9.9236	33.07	365	119768.3104
Semi t. de 4 ejes	0	33.07	3652	0
Semi t. de 5 ejes	0	33.07	365	0
Semi t. de 6 ejes	0	33.07	365	0
	369661.92			

RESUMEN DEL INDICE MEDIO DIARIO

Vehiculos	Domingo	Lunes	Martes	Miercoles	Jueves	Viernes	Sabado	Total
Moto	154	205	187	191	195	211	228	196
Auto	33	18	30	23	25	33	33	28
station wagon	9	9	14	21	9	19	21	15
Moto Lineal	33	20	42	38	40	33	55	37
Pick up	35	13	37	23	22	24	42	28
Rural Combi	5	5	8	7	4	5	10	6
Camion (2E)	7	7	11	9	9	6	13	9
Camion (3E)	7	7	8	7	5	9	12	8
Total	283	284	337	319	309	340	414	327

Anexo 12. Ficha de Recolección de datos N°02: Diseño geométrico y Estructural

PROYECTO: Diseño de pavimento flexible de la carretera acceso Chicamita mediante el metodo AASHTO 93, Distrito de Santiago de Cao, La Libertad, 2022.

UBICACIÓN: DISTRITO DE CHICAMA - ACCESO CHICAMITA

FECHA:	NOVIEN	∕IBRE -	2022
--------	--------	---------	------

TECHA: NOVIEWBILE - 2022		
Cargas de trfico vehicular impuesto al pavimento	ESAL (W18)	434,281.46
Suelo de la subrasante	CBR	7.80%
Modulo de resiliencia de la subrasante	$M_{R (psi)}$	9513.3056
Tipo de trafico	Tipo	Tp2
Numero de estapas	Etapas	2 etapas
Nivel de confiabilidad	Conf.	75%
Coeficiente estadistico de desviacion estandar normal	ZR	-0.674
Desviacion estandar combinado	So	0.45
Indice de serviciabilidad inicial según rango de trafico	Pi	3.80
Indice de serviciabilidad final según rango de trafico	Pt	2.00
Diferencia de serviciabilidad según rango de trafico	Δ PSI	1.80

Coeficientes estructurales de las etapas

CAPA SUPERFICIAL	BASE	SUBBASE
a1	a2	a3
Capa asfaltica en caliente, modulo 2.965 Mpa (430.00 PSI) a 20°C (68 oF)	Base Granular CBR 80%, compactada al 100% de las MDS	Sub Base Granular CBR 40%, compactada al 100% de la MDS
Capa Superfial recomendada para todos	Capa de Base recomenadada	Capa de Sub Base recomendada para trafico
los tipos de trafico	para trafico ≤5'0000,000 EE	≤15'000,000 EE

Coeficiente de drenajes para Bases y Subbases granulares no tratadas en pavimento flexible

m2	m3
1.35	1.25

Anexo 13. Validez y Confiabilidad de los instrumentos: Validez de la ficha de observación 1.

MATRIZ DE EVALUACIÓN DE EXPERTOS			
Título de la Investigación: Mejoramiento mediante la metodología AASHTo mejorar el estado de condición en el acceso Ch Distrito de Santiago de Cao, La Libertad, 2022.			
Línea de Investigación:	Construcción Sostenible - Diseño de Infraestructura Vial		
Apellidos y Nombres del Experto:	Ing. Josualdo Carlos, Villar Quiroz		
CIP:	106997		
El Instrumento de medición pertenece a la variable: Estado de Condición			

Mediante la matriz de evaluación de expertos, Ud. Tiene la facultad de evaluar cada una de las preguntas marcado con una "x" en las columnas de SI o NO. Asi mismo, la exhortamos en la corrección de los items, indicando sus observaciones yo sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

items	PREGUNTAS		ecia	Observaciones	
items	PREGUNTAS	SI	NO	Observaciones	
1	¿El instrumento de medición presenta el diseño adecuado?	х			
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	Х			
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	Х			
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	Х			
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	Х			
6	¿Cada una de los items del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?	X			
7	¿El diseño del instrumento de medición facilitará el análisis y el procesamiento de datos?	x			
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	x			
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	х			

Sugerencias:		

Firma del experto:

Anexo 14. Validez de la ficha de observación 2

MATRIZ DE	EVALUACIÓN DE EXPERTOS			
Título de la Investigación:	Mejoramiento mediante la metodología AASHTO 93 para mejorar el estado de condición en el acceso Chiquitoy, Distrito de Santiago de Cao, La Libertad, 2022.			
Línea de Investigación: Construcción Sostenible - Diseño de Infraestructura V				
Apellidos y Nombres del Experto:	Ing. Eduardo Gianpier Tejada Abanto			
CIP:	247057			
El Instrumento de medición pertenece a la variable:	Estado de Condición			

Mediante la matriz de evaluación de expertos, Ud. Tiene la facultad de evaluar cada una de las preguntas marcado con una "x" en las columnas de SI o NO. Así mismo, la exhortamos en la corrección de los items, indicando sus observaciones yo sugerencias, con la finalidad de mejorar la medición sobre la variable en estudio.

items PREGUNTAS	PRECUNTAG	Aprecia		Observasiones
items	PREGUNTAS	SI	NO	Observaciones
1	¿El instrumento de medición presenta el diseño adecuado?			
2	¿El instrumento de recolección de datos tiene relación con el título de la investigación?	X		
3	¿En el instrumento de recolección de datos se mencionan las variables de investigación?	X		
4	¿El instrumento de recolección de datos facilitará el logro de los objetivos de la investigación?	X		
5	¿El instrumento de recolección de datos se relaciona con las variables de estudio?	X		
6	¿Cada una de los items del instrumento de medición se relaciona con cada uno de los elementos de los indicadores?	X		
7	¿El diseño del instrumento de medición facilitará el análisis y el procesamiento de datos?	x		
8	¿El instrumento de medición será accesible a la población sujeto de estudio?	x		
9	¿El instrumento de medición es claro, preciso y sencillo de manera que se pueda obtener los datos requeridos?	x		

Sugerencias:		
Firma del experto:		
	Eduardo G. Teiada Abanto	
	ING. CIVIL R. CIP. 247957	

HUERTAS ESTRUCTURAS & GEOTECNIA SRL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

INFORME TÉCNICO

ESTUDIO DE MECANICA DE SUELOS (EMS) CON FINES DE PAVIMENTACION SEGÚN EL MANUAL DE CARRETERAS DEL PERU

PROYECTO:

MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022

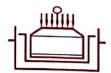
TESISTAS:

MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO

RESPONSABLE:

ING. JOSE CRISTHIAN HUERTAS MARTELL - CIP 148105

UBICACIÓN:


DISTRITO

CHICAMA

PROVINCIA : DEPARTAMENTO :

ASCOPE LA LIBERTAD

NOVIEMBRE del 2022

HUERTAS ESTRUCTURAS & GEUTECNIA SEL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

INDICE

1.0	Resumen de las condiciones de pavimentación	3
1.1	Criterios de Proyecto	3
1.2	2. Características de la sub rasante	3
1.3		
1.4		5
1.5		6
2.0	Generalidades	7
2.1	. Objetivo Del Estudio	7
2.2		7
2.3	3. Ubicación y descripción del Área de Estudio	7
2.4		8
2.5		9
2.6		10
3.0	Exploración de Campo	10
3.1	. Justificación de la Cantidad de Exploraciones	10
3.2		
3.3	. Sondajes realizados	
4.0	Ensayos de Laboratorio	13
5.0	Interpretación de los Resultados	13
5.1		
5.2		
6.0	Diseño Estructural de Pavimentos	
6.1		
6.2		
6.3		
6.4		
6.5		
6.6	. Espesores del pavimento	18
6.7	. Especificaciones Técnicas	19
7.0	Conclusiones y Recomendaciones	22
7.1.	Conclusiones	22
7.2.	Recomendaciones	23
	Recomendaciones	THERTHE PASS GER SOM OF

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 044-603601 7974960020 943721150 947510463

HUERTAS ESTRUCTURAS A GEOTECNIA SEL

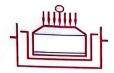
Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

INFORME TECNICO

1.0 Resumen de las condiciones de pavimentación

El terreno estudiado arroja los siguientes valores para ser considerados en los planos de proyecto; los cuales son los temas principales del presente informe técnico:

1.1. Criterios de Proyecto


Según lo indicado en la Memoria Descriptiva del proyecto: Para la estructuración de una carretera flexible nos guiaremos metodológicamente con el método AASHTO 93, que nos facilita en definir los criterios imprescindibles para adecuar el diseño de una carretera flexible, la guía nos ayuda a poder saber el espesor que tendrá la estructura de pavimento flexible. También tendremos en cuenta lo que concierne todo al método AASHTO 93 como son: niveles de confiabilidad, módulo resiliente, desviación estándar, índice de serviciabilidad y el número estructural, teniendo en cuenta el tipo de camino o de tránsito para elegir los respectivos valores del diseño del pavimento flexible.

Por lo que se esta considerando la construcción de un pavimento flexible, los cuales estarán constituidos por las capas de mejoramiento de BASE Y SUB BASE los cuales serán sustentadas en capítulos posteriores.

1.2. Características de la sub rasante

La sub rasante es la capa superficial de terreno natural. Su capacidad de soporte en condiciones de servicio, junto con el tránsito y las características de los materiales de construcción de la superficie de rodadura, constituyen las variables básicas para el diseño del pavimento, que se colocará encima.

Además, en base al número de puntos de CBR se obtuvieron los siguientes resultados para el diseño de pavimento.

HUERTAS ESTRUCTURAS & GEOTECNIA SRI

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Tabla 1.1 Propiedades físicas y valores de CBR para el diseño del pavimento

Muestra	DSM (g/cm3)	OCH (%)	CBR (%) - 95%	
C-2,M-1	2.026	8.75	8.20	
C-4,M-1	2.055	9.50	16.00	
C-9,M-1	2.014	8.75	7.80	

Aplicando como criterio de diseño tomar el menor CBR encontrado se tiene las siguientes características para el CBR de diseño de la sub rasante:

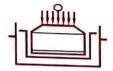
Tabla 1.2 Modulo Resilente para diseño del pavimento

I debid 1.2 1	Tabla 1.2 Modulo Residente para alcene				
Muestra	CBR (%)	MR (Klb/pulg2)			
C-9.M-1	7.80	9.51			

1.3. Características del transito

Se realizó el cálculo del tráfico de diseño, en base al conteo realizado por el solicitante, considerando un factor de crecimiento anual del 5%, se obtuvieron los siguientes resultados:

CALCULO DEL EAL:


Tipo de Vehiculo	Veh/día	Veh/año	Factor camión	F. de crec. para tasa anual de crec. de 5%	EAL
Livianos		The same of	THE PERSON	H. Hilliam .	4
Autos y camionetas	307	112055	0.00004	33.06	148
De 2 ejes, 4 ruedas	6	2190	0.002	33.06	145
The second secon	9	3285	0.24	33.06	26065
De 2 ejes, 6 ruedas De 3 ejes o más	8	2920	1.02	33.06	98466
Pesados					
Semi t. de 4 ejes	0	0	0.48	33.06	0
The second secon	0	0	1.17	33.06	0
Semi t. de 5 ejes	0	0	1.19	33.06	0
Semi t. de 6 ejes o más				Total	124823

EAL (diseño): 1.25 E+05

TWELVE ENTSTHAN HUESTAS MARTELL CIP 14610b

4

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 (044-603601 [974960020 943721150 947510463

HUERTAS ESTRUCTURAS & GEOTECNIA SRL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

TIPOS TRAFICO PESADO EXPRESADO EN EE	RANGOS DE TRÁFICO PESADO EXPRESADO EN EE
Īm	> 75.000 EE
I po	≤ 150,000 EE
	> 150 000 EE
TP1	≤ 300,000 EE
	> 300,000 EE
T _{P2}	≤ 500,000 EE
	> 500,000 EE
Tes	≤ 750,000 EE
	> 750,000 EE
Tee	≤ 1'000,000 EE

Fuente Elaboración Propia

Nota: Tie, T = Trafico pesado expresado en EE en el camil de diseño.

PX = Pavimentada, X = numero de rango (1, 2, 3, 4).

Figura 1.1 Tipo de Trafico según el tráfico expresado en Eje Equivalentes (EE) (Fuente: Cuadro 12.1 del manual de Carreteras del Perú)

1.4. Estructura del pavimento

Con los valores de Diseño obtenidos, C.B.R. igual a 8%, un EAL de 124823 y clima de 20 grados centígrados en promedio, se obtiene el siguiente diseño para una pavimentación tipo flexible exige que tenga los siguientes espesores:

Tabla 1.3 Espesores del Pavimento Flexible proyectado (fuente: propia)

Pavimento	Espesor (cm)	Observación		
Carpeta Asfáltica	5.00	Pavimento en caliente		
Base	20.00	Ver especificaciones técnicas		
Sub base	15.00	Ver especificaciones técnicas		
Total	40.00			

THO ASSOCIATION AND HUBITAS MARTELL CIP 146105

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 🔾 044-603601 🗍 974960020 947510463

HUERTAS ESTRUCTURAS & GEOTECNIA SRL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

1.5. Recomendaciones

- La pendiente mínima recomendada para proveer un área de circulación de rápido drenaje y secado y libre de charcos es del 1.0%. Los cambios en pendientes deben ser graduales para evitar que los vehículos dañen el pavimento.
- Se recomienda que la clave del tubo de desagüe (si existiera) tendrá que ir profundizada como mínimo a una altura de 1.20 metros, desde la superficie de la sub rasante considerada en el proyecto, dado que, a ese nivel, los incrementos de los esfuerzos producidos por las capas externas son prácticamente nulos.
- Para el relleno de las zanjas, luego de colocado las tuberías se recomienda emplear un material de préstamo consistente en un suelo gravoso, debidamente compactado por capas al 95% de la Máxima Densidad Seca del Proctor Modificado.
- Las canteras de extracción de materiales que se utilizarán en este proyecto deberán satisfacer en su totalidad (previo ensayo de laboratorio), los requerimientos indicados en los diferentes cuadros que se anexan en el presente informe, los mismos que serán verificados antes de la colocación en las diferentes partidas de este proyecto.

NIGO SESTIMAN PUERTAS MARTELE CIP 142105

2.0 Generalidades

2.1. Objetivo Del Estudio

El objetivo del presente Informe Técnico, es realizar un Estudio de Suelos con fines de pavimentación para la obra denominada: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022.

El proceso seguido para los fines propuestos, fue el siguiente:

- Inspección y evaluación visual del área de estudio.
- Exploraciones de campo.
- Ensayos de laboratorio.
- Determinación de la resistencia de los suelos (Ensayo de CBR).
- Determinación de espesores del pavimento a proyectar.
- Conclusiones y recomendaciones.

2.2. Normatividad

Los trabajos de investigación se han realizado según el Manual de Carreteras del Perú, la cual se basa en la aplicación de la Mecánica de Suelos que indica ensayos fundamentales y necesarios para predecir el comportamiento de un suelo bajo la acción de sistemas de carga.

2.3. Ubicación y descripción del Área de Estudio

El área de estudio está ubicada en el distrito de Chicama, provincia de Ascope, departamento de La libertad, donde se proyecta el mejoramiento de la Carretera de Acceso.

HIGH CASHANNUSTAS WATELL CIP 145105

HUERTAS ESTRUCTURAS & GEOTECNIA SRL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PUNTOS	COORDENADAS NORTE	COORDENADAS ESTE
PI	9132690.26	704222.95
PF	9140366.41	706481.12

Figura 1.1 Vista satelital de la zona en estudio (fuente: SOLICITANTE)

2.4. Características generales de la obra

Se proyecta pavimentar la zona señalada en el proyecto general, para lo cual realizaron los trabajos correspondientes.

HAN NUETTAS MARTELL IP 148105

8

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 © 044-603601 [] 974960020 947510463

HUERTAS ESTRUCTURAS & GEOTECNIA SRI

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Tabla 2.1 Características generales de la obra proyectada (Fuente: Solicitante)

Dato	Condición
Γipo de Pavimento proyectado	Flexible
Topografía de la zona	Llana
Estado de vía existente	A nivel de afirmado

2.5. Clima y Temperatura en la zona en estudio

Chicama, los veranos son cortos, calurosos, bochornosos y nublados; los inviernos son largos, cómodos y parcialmente nublados y está seco durante todo el año. Durante el transcurso del año, la temperatura generalmente varía de 16 °C a 26 °C y rara vez baja a menos de 15 °C o sube a más de 28 °C.

En base a la puntuación de turismo, la mejor época del año para visitar Chicama para actividades de tiempo caluroso es desde mediados de abril hasta finales de Setiembre.

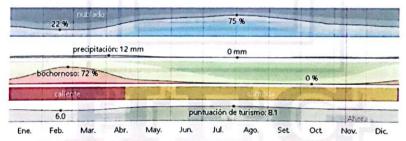


Figura 2.1a Clima anual en Chicama (fuenteWEATHERBASE)

La temporada templada dura 2.6 meses, del 17 de enero al 4 de abril, y la temperatura máxima promedio diaria es más de 25 °C. El mes más cálido del año en Chicama es Febrero, con una temperatura máxima promedio de 26 °C y mínima de 20 °C. La temporada fresca dura 4.3 meses, del 1 de julio al 10 de noviembre, y la temperatura máxima promedio diaria es menos de 22 °C. El mes más frío del año en Chicama es Setiembre, con una temperatura mínima promedio de 16 °C y máxima de 21 °C.

Calle Paísajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 © 044-603601 [] 974960020 943721150 947510463

HUERTAS ESTRUCTURAS & GEOTECNIA SEL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Figura 2.1b Temperatura anual en Chicama (fuenteWEATHERBASE)

2.6. Alcance y limitaciones del informe Técnico

Las conclusiones y recomendaciones contenidas en el presente estudio se basan en los datos obtenidos en la ejecución de las pruebas de campo y de laboratorio realizados. Los resultados de este estudio podrán ser utilizados única y exclusivamente para los fines del informe tecnico y zona de estudio.

3.0 Exploración de Campo

3.1. Justificación de la Cantidad de Exploraciones

El alcance de las investigaciones de campo debería ser apropiados para el tamaño e importancia de la obra a proyectar, además de satisfacer la complejidad de las características locales. El programa de exploración, así como la determinación de los ensayos de laboratorio, se han guiado por los requerimientos y condiciones específicos del sitio, así como las normativas que se señalaran a continuación.

WG 2 CASTER A GEORGE WATELL CAP 148 105

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 © 044-603601 🗍 974960020 943721150 947510463

HUERTAS ESTRUCTURAS & GEOTECNIA SAL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Tipo de Carretera	Profundidad (m)	Número mínimo de Calicatas	Observación	
Autoristas carretoras de IAIOA mayor de 6000 verhidia de celzadas separadas cada una con dos o mas carriles		Calzada 2 carriles por sentido 4 calicatas a km a sentido Calzada 3 carriles por sentido 4 calicatas a km a sentido Calzada 4 carriles por sentido 6 calicatas a km a sentido	Las calicatas se ubicarán	
Carreteras Duales o Multicarril carreteras de (MDA entre 6000 y 4001 vehídia, de calzadas separadas, cada una con dos o más carriles.	1.50 m respecto al nivel de sub rasante del proyecto	Calzada 2 carnies por sentido 4 calicatas x km x sentido Caizada 3 carnies por sentido: 4 calicatas x km x sentido Caizada 4 carnies por sentido 6 calicatas x km x sentido	r sentido 4 longitudinalmente y en forma alternada r sentido: 4 sentido: 6	
Carreteras de Primera Clase carreteras con un IMDA entre 4000-2001 vehídia, de una calzada de dos carries	1 50 m respecto al nivel de sub rasante del proyecto	el de		
Carreteras de Segunda Clase carreteras con un IMDA entre 2000-401 vehidia, de una calzada de dos carriles	1.50 m respecto al nivel de sub rasante del proyecto	3 calicatas x km	Las caficatas se ubicarán	
Carreteras de Tercera Clase carreteras con un If.OA entre 400-201 vehidia, de una caizada de dos carriles	1 50 m respecto al nivel de sub rasante del proyecto	2 calicatas x km	longitudinalmente y en forma alternada	
Carreteras de Bajo Volumen de Transito. carreteras con un IMDA s 200 vehídia, de una calzada	1 50 m respecto al nivel de sub rasante del proyecto	1 calicata x km	· ·	

Figura 3.1 Número mínimo de puntos de investigación (Fuente: tabla 4.1 del Manual de Carreteras del Perú)

Tipo de Carretera	Nº May CBR
Autopotas carreteras de IMDA mayor de 6000 vehidia, de calzadas separadas, cada una con dos o más carriles	Calzada 2 carries por senido: 1 Ms cada 3 km a senido: 0 CBR cada 1 km x senido: Calzada 3 carries por senido: 1 Ms cada 2 km a senido; 1 CBR cada 1 km x senido; Calzada 4 carries por senido: 1 Ms cada 1 km y 1 CBR cada 1 km x senido;
Carreteras Duáes o Nutricarril carreteras de IMDA entre 6000 y 4001 vehida, de calzadas separadas, cada una con dos o más carriles	Calzada 2 carnies por sentido 1 Me cada 3 km x sentido y 1 CBR cada 1 km x sentido Calzada 3 carnies por sentido 1 Me cada 2 km x sentido y 1 CBR cada 1 km x sentido Calzada 4 carnies por sentido 1 Me cada 1 km y 1 CBR cada 1 km s sentido y 1 CBR cada 1 km x sentido Calzada 4 carnies por sentido 1 Me cada 1 km y 1 CBR cada 1 km z sentido
Carreteras de Primera Clase: carreteras con un IMDA entre 4000 - 2001 vehídia, de una calzada de dos carrilos	1 Me cada 3 km y 1 CBR cada 1 km
Carreteras de Segunda Clase: carreteras con un IMDA entre 2000 - 401 véridia, de una calzada de dos carriles.	Cada 1.5 km se realizará un CBR (*)
Carrideras de Tercera Claser carreteras con un IMDA entre 400 - 201 vehídia, de una calzada de dos carries	Cada 2 km se realizará un CBR (*)
Carreteras con un IMCA ≤ 200 vehídia, de una calzada.	e Carta 3 km se malizara ne CBR

Figura 3.2 Número mínimo de ensayos de CBR (Fuente: tabla 4.2 del Manual de Carreteras del Perú)

ERTAS MARTELL

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 📞 044-603601 🗍 974960020 943721150 947510463

HUERTAS ESTRUCTURAS & GEOTECNIA SEL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Debido al tipo de vía y el tráfico proyectado, se realizaron 10 puntos de investigaciones, siendo 03 el número mínimo de exploraciones recomendados por la norma.

3.2. Profundidad mínima de investigación

La profundidad mínima de las investigaciones de campo estará de acuerdo a las disposiciones de la normativa peruana para este tipo de estudios, los cuales se muestran a continuación.

Con el objeto de determinar las características físico-mecánicas de los materiales de la sub rasante se llevarán a cabo investigaciones mediante la ejecución de pozos exploratorios o calicatas de 1.5 m de profundidad mínima; el número mínimo de calicatas por kilómetro, estará de acuerdo al cuadro 4.1.

Las calicatas se ubicarán longitudinalmente y en forma alternada, dentro de la faja que cubre el ancho de la calzada, a distancias aproximadamente iguales; para luego, si se considera necesario, densificar la exploración en puntos singulares del trazo de la vía, tal como se mencionan en el <u>numeral 4.1</u> del presente manual.

Figura 3.3 Profundidad mínima de investigación para el caso de pavimento (fuente: Capítulo 4.2 del Manual de carreteras del Perú)

3.3. Sondajes realizados

Se realizaron 10 sondajes de exploración subterránea, distribuidos a lo largo de la zona en estudio.

Tabla 3.1 Resumen de sondajes realizado en la zona en estudio

SONDAJE	TIPO DE SONDAJE	PROFUNDIDAD (m)	MUESTRAS EXTRAÍDAS	PROG.	FINALIDAD
C-1	Calicata	1.50	1	0+100	Pavimentación
C-2	Calicata	1.50	1	1+100	Pavimentación
C-3	Calicata	1.50	1	2+100	Pavimentación
C-4	Calicata	1.50	1	3+100	Pavimentación
C-5	Calicata	1.50	1	4+100	Pavimentación
C-6	Calicata	1.50	1	5+100	Pavimentación
C-7	Calicata	1.50	1	6+100	Pavimentación
C-8	Calicata	1.50	1	7+100	Pavimentación
C-9	Calicata	1.50	1	8+100	Pavimentación
C-10	Calicata	1.50	1	9+100	Pavimentación

HUERTAS ESTRUCTURAS A GEOTECNIA SEL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

4.0 Ensayos de Laboratorio

Se realizaron los siguientes ensayos de Laboratorio

Contenido de Humedad	NTP 339.127
Análisis Granulométrico	NTP 339.128
Clasificación Unificada de Suelos (ASTHO)	NTP 339.134
Descripción Visual-Manual	NTP 339.150
Contenido de Sales Solubles Totales en Suelos y Agua Subterránea	NTP 339.152
Proctor Modificado	ASTM D-1557
CBR	MTC 132

5.0 Interpretación de los Resultados

5.1. Perfiles estratigráficos

Sobre la base de los registros de calicatas, ensayos de laboratorio e información recopilada, se han elaborado los perfiles estratigráficos:

Tabla 5.1 Resumen de los estratos encontrados con sus principales propiedades

WEST AND			Cont. De	Porcen	taje en Mues	tra de:	Límite	es de Consis	tencia
MUESTRA	AASHTO	Prof. (m)	Humedad (%)	Grava (%)	Arena (%)	Finos (%)	LL (%)	LP (%)	IP (%)
C-1,M-1	A-6 (10)	0.00 - 1.50	6.02	0.27%	15.96%	83.78%	35.15%	21.63%	13.51%
C-2,M-1	A-4 (8)	0.00 - 1.50	8.39	0.22%	26.95%	72.84%	31.38%	21.04%	10.34%
C-3,M-1	A-4 (7)	0.00 - 1.50	1.59	0.40%	28.57%	71.03%	31.60%	21.87%	9.73%
C-4,M-1	A-2-4 (0)	0.00 - 1.50	0.31	31.10%	41.41%	27.49%	21.60%	18.17%	3.43%
C-5,M-1	A-4 (7)	0.00 - 1.50	7.25	0.53%	30.03%	69.45%	31.75%	21.71%	10.04%
C-6,M-1	A-6 (10)	0.00 - 1.50	5.80	0.13%	15.65%	84.23%	35.30%	20.86%	14.45%
C-7,M-1	A-4 (7)	0.00 - 1.50	2.02	0.33%	30.73%	68.95%	31.28%	21.86%	9.42%
C-8,M-1	A-6 (10)	0.00 - 1.50	3.90	0.18%	16.39%	83.43%	35.28%	20.86%	14.43%
C-9,M-1	A-6 (10)	0.00 - 1.50	4.00	0.53%	19.34%	80.13%	35.33%	20.22%	15.12%
C-10.M-1	A-6 (10)	0.00 - 1.50	5.20	1.30%	23.68%	75.03%	35.36%	20.33%	15.02%

Además, en base al número de puntos de CBR mostrados en la figura 3.2 se obtuvieron los siguientes resultados para el diseño de pavimento.

Tabla 3.2 Propiedades físicas y valores de CBR para el diseño del pavimento?

Muestra	tra DSM (g/cm3) OCH (%)		CBR (%) - 95%		
C-2,M-1	2.026	8.75	8.20		
C-4,M-1	2.055	9.50	16.00		
C-9,M-1	2.014	8.75	7.80		

HUERTAS ESTRUCTURAS A GEOTECNIA SEL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

donde

OCH = Optimo Contenido de humedad

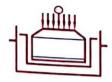
MDS = Máxima Densidad Seca

CBR = California Bearing Ratio

5.2. Nivel Freático

No se encontró a la profundidad estudiada de -1.50 metros del nivel del terreno natural, el cual fue medido en la fecha indicada en el informe.

6.0 Diseño Estructural de Pavimentos


6.1. Análisis del Trafico

Se realizó el cálculo del tráfico de diseño, en base al conteo realizado por el solicitante, considerando un factor de crecimiento anual del 5%, se obtuvieron los siguientes resultados:

CALCULO DEL EAL:

Tipo de Vehículo	Veh/día	Veh/año	Factor camión	F. de crec. para tasa anual de crec. de 5%	EAL
Livianos	d like and	2 All 2000	10 1 40	1000	
Autos y camionetas	307	112055	0.00004	33.06	148
De 2 ejes, 4 ruedas	6	2190	0.002	33.06	145
De 2 ejes, 6 ruedas	9	3285	0.24	33.06	26065
De 3 ejes o más	8	2920	1.02	33.06	98466
Pesados					
Semi t. de 4 ejes	0	0	0.48	33.06	0
Semi t. de 5 ejes	0	0	1.17	33.06	0
Semi t. de 6 ejes o más	0	0	1.19	33.06	0
				Total	124823

EAL (diseño): 1.25 E+05

HUERTAS ESTRUCTURAS & GEOTECNIA SRL

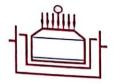
Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

TIPOS TRAFICO PESADO EXPRESADO EN EE	RANGOS DE TRAFICO PESADO EXPRESADO EN EE
Tec	> 75,000 EE
Tec	≤ 150,000 EE
Tps	> 150.000 EE
IP1	≤ 300,000 EE
	> 300,000 EE
Te ₂	≤ 500,000 EE
	> 500,000 EE
Tes	≤ 750,000 EE
	> 750,000 EE
Tpe	≤ 1'000,000 EE

Pueme Elaboración Propia Nota: T_{PK} T = Trafico pesado expresado en EE en el camil de diseño

Figura 6.1 Tipo de Trafico según el trafico expresado en Eje Equivalentes (EE) (Fuente: Cuadro 12.1 del manual de Carreteras del Perú)

6.2. Capacidad de Soporte de la sub-rasante


La sub rasante es la capa superficial de terreno natural. Su capacidad de soporte en condiciones de servicio, junto con el tránsito y las características de los materiales de construcción de la superficie de rodadura, constituyen las variables básicas para el diseño del pavimento, que se colocará encima.

Se considera como materiales aptos para las capas de la sub-rasante suelos con CBR mayor o igual 6%. En caso de ser menor se procederá a la estabilización de los suelos, para la cual se analizarán alternativas de solución, de acuerdo a la naturaleza del suelo, como estabilización mecánica, el reemplazo del suelo, estabilización química, estabilización con geo sintéticos, elevación de la rasante, cambiar trazo entre otros.

Según lo encontrado en campo se puede concluir lo mostrado en la tabla 4.1

Tabla 6.1 Capacidad de Soporte de la Sub-rasante

Muestra	CBR (%)	Categoría	Mejoramiento
C-9,M-1	7.8	Regular	No necesita

HUEBTAS ESTRUCTURAS & GEOTECNIA SEL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Categorías de Sub rasante	CBR	
So: Sub rasante Inadecuada	CBR < 3%	
S ₁ : Sub rasante insuficiente	De CBR ≥ 3% A CBR < 6%	
S₂. Sub rasante Regular	De CBR ≥ 6% A CBR < 10%	
S ₃ : Sub rasante Buena	De CBR ≥ 10% A CBR < 20%	
S4 : Sub rasante Muy Buena	De CBR ≥ 20% A CBR < 30%	
S ₅ : Sub rasante Excelente	CBR ≥ 30%	

Figura 6.2 Categoría de la sub-rasante en función al CBR (Fuente: Cuadro 4.11 de la sección de Suelos y Pavimentos del manual de Carreteras del Perú)

El diseño del pavimento de un pavimento a nivel de Solución de Ingeniería, se efectuará con los resultados idóneos obtenidos en los ensayos de Laboratorio y en las muestras representativas tomadas, los que se convertirán en el sustento técnico para la estructura que se está definiendo como mejor alternativa.

Para efectos del diseño se ha analizado la: "Manual de carreteras: suelos, geología, geotecnia y pavimentos", la norma CE.010 de Pavimento Urbanos del RNE y los criterios de diseño de la Guía AASHTO para la definición de coeficientes estructurales de capa y el Número Estructural requerido.

6.3. Módulo Resilente

El método de diseño de pavimentos necesita de diversos parámetros, uno de estos es el Modulo Resilente (MR), dicho parámetro de importancia; pero debido a la especializado en la realización del ensayo, se cuenta con publicaciones donde se muestra diferentes correlaciones de MR con CBR, y para el caso del presente informe se hizo uso de la fórmula 5.1, la que es recomendad en el manual de carreteras del Perú.

 $Mr (psi) = 2555 \times CBR^{0.64}$

Aplicando la anterior formula se obtiene lo siguiente

THE SESTRUCTURE PROTECTION ASSOCIATION OF THE PROTECTION OF THE PR

HUERTAS ESTRUCTURAS & GEOTECNIA SEL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Tabla 6.2 Modulo Resilente para diseño del pavimento

Muestra	CBR (%)	MR (Klb/pulg2)
C-9,M-1	7.8	9.51

6.4. Metodología de Diseño

En base al pavimento proyectado se optó por usar la metodología del AASTHO 93. Este procedimiento está basado en los modelos que fueron desarrollados en función a la performance del pavimento, las cargas vehiculares y resistencia de la sub-rasante para cálculo de espesores.

El propósito del modelo es el cálculo del Numero estructural requerido (SNr), en base al cual se identifican y determinan un conjunto de espesores de cada capa de la estructura del pavimento, que deben ser construidas sobre la sub rasante para soportar las cargas vehiculares con aceptable serviciabilidad durante el periodo de diseño establecido del proyecto.

$$\log W_{18} = ZR \times S_0 + 9.36 \log(SN + 1) - 0.20 + \frac{\log (\Delta PSV + 1.2 - 1.5)}{0.40 (1.094/(SN + 1)^{5.19})} + 2.32 \log Mr - 8.07$$

Figura 6.2 Ecuacion basica para diseño de un pavimento flexible (fuente: AASTHO 93)

6.5. Parámetros de diseño

En base a la metodología utilizada para el diseño del pavimento se obtuvieron los siguientes parámetros los cuales serán utilizados en el diseño del pavimento.

Datos para el diseño del pavimento

Tipo de Carretera:
Crecimiento Anual:
Función de la Carretera:
Tipo de Zona:
Calidad de Drenaje:
% de Tiempo de exposición:
CBR subrasante:
CBR sub base (MIN):

Pavimentada con bajos volumenes 5.00% Colectora de transito

> Rural Aceptable > 25 % 7.8%

> > 17

40%

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 © 044-603601 [] 974960020 943721150 947510463

RUEBTAS ESTRUCTURAS & GEOTECNIA SEL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

CBR base (MIN):	80%
Periodo de Diseño (Años)	20
Numero de Ejes Equivalentes Total (W18)	1.25E+05
Serviciabilidad Inicial (pi)	4.2
Serviciabilidad Final (pt)	2.0
Factor de Confiabilidad (R)	85%
STANDARD NORMAL DEVIATE (Zr)	-1.036
OVERALL STANDARD DEVIATION (So.)	0.45

COMPONENTE DEL PAVIMENTO	COEFICIENTE	VALOR COEFICIENTE ESTRUCTURAL & (cm)	OBSERVACIÓN
CAPA SUPERFICIAL	4 6		The second second
Carpeta Asfatrica en Caliente, modulo 2 965 MPa (430,000 PSI) a 20 °C (68 °F)	h .	0.170 / cm	Capa Superficial recomendada para todos los tipos de Trafico
Carpeta Asfáltica en Frio, mezda asfáltica con emulsión.	ðı.	0.125 / cm	Capa Superficial recomendada para Trafico ≤ 1'000,000 EE
Micropavmento 25 mm	a ₁	0.130 / cm	Capa Superficial recomendada para Trafico ≤ 1'000,000 EE
Tratamiento Superkcial Bicapa.		n	Capa Superfical recomendada para Trafico x 500,000 EE. No Aplica en tramos con pendiente major a 8% y, en vias con curvas pronunciadas, curvas de voltrio, curvas y contracurvas, y en tramos que obliquen ai fienado de vehícutos
Lechada asfáltica (slurry seal) de 12 mm	•	n	Capa Superficial recomendada para Tráfico < 500,000 EE No Aplica en tramos con pendiente mayor a 8% y en tramos que obliguen al frenado de vahículos
(*) no se considerapor no tener aporte estructural	2 53		A CONTRACTOR

Figura 6.3 Valor del coeficiente estructural para la capa superficial (fuente: Cuadro 12.13 del Manual de Carreteras del Perú)

6.6. Espesores del pavimento

Con los valores de Diseño obtenidos, C.B.R. igual a 7.8%, un EAL de 124823 y clima de 20 grados centígrados en promedio, se obtiene el siguiente diseño para una pavimentación tipo rígido y adoquinado exige que tenga los siguientes espesores:

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 🕥 044-603601 🗍 974960020 943721150 947510463

HUERTAS ESTRUCTURAS A GENTECNIA SRL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

Tabla 6.2 Espesores del Pavimento Flexible proyectado (fuente: propia)

Pavimento	Espesor (cm)	Observación
Carpeta Asfáltica	5.00	Pavimento en caliente
Base	20.00	Ver especificaciones técnicas
Sub base	15.00	Ver especificaciones técnicas
Total	40.00	

El valor señalado para el espesor total del pavimento, se deberá considerar desde el nivel del terreno natural, esto es desde el material identificado como Arcilla ligeramente Plástico.

6.7. Especificaciones Técnicas

Tanto la base como la sub base deben cumplir ciertos parámetros mínimos, los cuales fueron asumidos en el cálculo de los espesores del pavimento; por lo que deberían ser verificados en obra para que se tenga correlación de lo supuesto en calculo con lo realizado en obra. A continuación, se presenten algunas especificaciones técnicas de la norma CE.010

a. Especificaciones técnicas para Sub base (Fuente: Norma CE.010)

Requerimientos Granulométricos para Subbase Granular

Tamiz	Porcentaje que Pasa en Peso						
	Gradación A (1)	Gradación B	Gradación C	Gradación D			
50 mm. (2")	100	100		-			
25 mm. (1")		75-95	100	100			
9,5 mm.(3/s ")	30-65	40-75	50-85	60-100			
4,75 mm. (N.º 4)	25-55	30-60	35-65	50-85			
2,0 mm. (N.º 10)	15-40	20-45	25-50	40-70			
425 µm. (N.º 40)	8-20	15-30	15-30	25-45			
75 µm. (N.º 200)	2-8	5-15	5-15	8-15			

Fuente: ASTM D 1241

WG VAST CRISTINGS HERTELL CIP 19 105

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 (044-603601 [] 974960020 943721150 947510463

HUEBTAS ESTRUCTURAS & GEUTECNIA SIL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

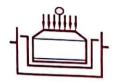
Subbase Granular Requerimientos de Ensayos Especiales

Ensayo	Norma		Norma AASHTO	Requerimiento	
	МТС			< 3000 msnm	≥ 3000 msnm
Abrasión Los Ángeles	MTC E 207	C 131	T 96	50 % máx.	50 % máx.
CBR (1)	MTC E 132	D 1883	T 193	40 % mín.	40 % mín.
Límite Líquido	MTC E 110	D 4318	T 89	25% máx.	25% máx.
Índice de Plasticidad	MTC E	D 4318	T 90	6% máx.	4% máx.
Equivalente de Arena	MTC E 114	D 2419	T 176	25% mín.	35% mín.
Sales Solubles	MTC E 219	9-9	9 .9 9	1% máx.	1% máx.
Particulas Chatas y Alargadas		D 4791		20% máx.	20% máx.

- (1) Referido al 100% de la Máxima Densidad Seca y una Penetración de Carga de 0.1°(2.5 mm)
- (2) La relación ha emplearse para la determinación es 1/3 (espesor/longitud)

b. Especificaciones técnicas para base (Fuente: Norma CE.010)

Requerimientos granulométricos para base granular


Tamiz	Porcentaje que pasa en peso						
	Gradación A	Gradación B	Gradación C	Gradación D			
50 mm. (2")	100	100	1 485 1	Department A			
25 mm. (1")		75-95	100	100			
9,5 mm.(3/s")	30-65	40-75	50-85	60-100			
4,75 mm. (N.º 4)	25-55	30-60	35-65	50-85			
2,0 mm. (N.º 10)	15-40	20-45	25-50	40-70			
425 μm. (N.º 40)	8-20	15-30	15-30	25-45			
75 µm. (N.º 200)	2-8	5-15	5-15	8-15			

Fuente: ASTM D 1241

20

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 🔾 044-603601 🗍 974960020 943721150 947510463

HUEBTAS ESTRUCTURAS & GEUTECNIA SEL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

		The second second second second
Valor Relativo de Soporte, CBR (1)	Tráfico en ejes equivalentes (<10 ⁶)	Min. 80%
	Tráfico en ejes equivalentes (≥10°)	Mín. 100%

(1) Referido al 100% de la Máxima Densidad Seca y una Penetración de Carga de 0.1" (2.5 mm)

Requerimientos agregado grueso


Ensayo	Norma	Norma	Norma	Requerimientos Altitud		
	MTC	ASTM	AASHTO	< 3.000 msnm	≥ 3.000 msnm	
Particulas con una cara fracturada	MTC E 210	D 5821	71	80% mín.	80% mín.	
Particulas con dos caras fracturadas	MTC E 210	D 5821	-	40% min.	50% min.	
Abrasión Los Ángeles	MTC E 207	C 131	T 96	40% máx.	40% máx.	
Particulas chatas y alargadas (1)		D 4791		15% máx.	15% máx.	
Sales solubles totales	MTC E 219	D 1888		0,5% máx.	0,5% máx.	
Durabilidad al sulfato de magnesio	MTC E 209	C 88	T 104		18% máx.	

Requerimientos Agregado Fino

Ensayo	Norma	Requerimientos Altitud		
the same of the sa		<3.000 msnm	≥3.000 msnm	
Índice plástico	MTC E 111	4% máx.	2% mín.	
Equivalente de arena	MTCE 114	35% mín.	45% mín.	
Sales solubles	MTC E 219	0,5% máx.	0,5% máx.	
Durabilidad al sulfato de magnesio	MTC E 209	10 To Take 1	15%	

943721150 947510463

HUERTAS ESTRUCTURAS A GEOTECNIA SRI

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

7.0 Conclusiones y Recomendaciones

7.1. Conclusiones

El terreno estudiado arroja los siguientes valores para ser considerados en los planos de proyecto:

- Se han ejecutado 10 calicatas de 1.50 m distribuidos en toda el área en estudio con fines de pavimentación y extracción de muestras para su análisis en laboratorio (Ver Plano de Ubicación de Calicatas en Anexos).
- La profundidad de la napa freática, NO fue encontrada a -1.50 m desde el nivel del terreno natural.
- El terreno presenta un perfil del tipo homogéneo, donde por debajo de un material orgánico se encuentran suelos finos de ligera plasticidad parcialmente saturado y partículas alargadas (Ver Perfil Estratigráfico).
- El material de sub-rasante obtuvo un valor de CBR de diseño igual a 7.8%, el cual NO necesita mejoramiento o estabilización y se encuentra dentro de la categoría REGULAR para ser usado como sub-rasante.

Tabla 7.1 Propiedades físicas y valores de CBR para el diseño del pavimento

Muestra	OCH (%)	MDS (g/cm3)	CBR (%)
C-9,M-1	8.75	2.014	7.80

- El tráfico obtenido expresado en Ejes Equivalente (EE) fue de 1.25 E+05 y según se califica como un tráfico tipo T_{PO}.
- Según la metodología aplicada, las características de la sub-rasante y el tráfico de diseño, se obtuvo los siguientes espesores para el pavimento proyectado.

22

HUERTAS MARTELL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

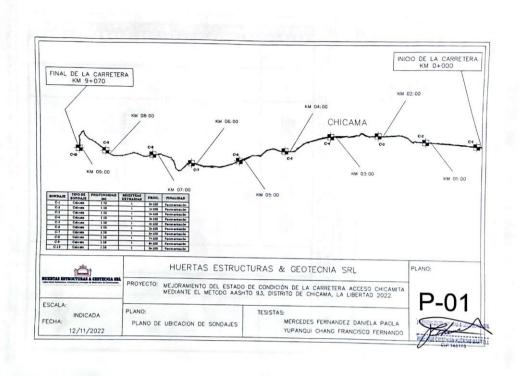

Tabla 7.2 Espesores del Pavimento Flexible proyectado (fuente: propia)

Pavimento	Espesor (cm)	Observación
Carpeta Asfáltica	5.00	Pavimento en caliente
Base	20.00	Ver especificaciones técnicas
Sub base	15.00	Ver especificaciones técnicas
Total	40.00	

7.2. Recomendaciones

- Las canteras de extracción de materiales que se utilizarán en este proyecto deberán satisfacer en su totalidad (previo ensayo de laboratorio), los requerimientos indicados en los diferentes cuadros que se anexan en el presente informe, los mismos que serán verificados antes de la colocación en las diferentes partidas de este proyecto.
- En caso de proyectarse un sistema de drenaje, se debería asegurar que este funcione adecuadamente para que el pavimento tenga la vida útil proyectada. Se tendrá que programar acciones periódicas de limpieza integral, mantenimiento y verificación del funcionamiento de los sistemas de alcantarillado y sanitario. En caso contrario deberá proyectarse la pendiente suficiente para que el agua por lluvia corra y no quede sobre el pavimento proyectado.
- La pendiente mínima recomendada para proveer un área de circulación de rápido drenaje y secado y libre de charcos es del 1.0%. Los cambios en pendientes deben ser graduales para evitar que los vehículos dañen el pavimento.
- Se recomienda que la clave del tubo de desagüe (si existiera) tendrá que ir profundizada como mínimo a una altura de 1.20 metros, desde la superficie de la sub rasante considerada en el proyecto, dado que, a ese nivel, los incrementos de los esfuerzos producidos por las capas externas son prácticamente nulos.

CRISTHIAN HUERTAS MARTELL CIP 148105 23


Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

- Para el relleno de las zanjas, luego de colocado las tuberías se recomienda emplear un material de préstamo consistente en un suelo gravoso, debidamente compactado por capas al 95% de la Máxima Densidad Seca del Proctor Modificado.

Trujillo, noviembre del 2022

ANEXOS

RUEBTAS ESTRUCTURAS & GEOTECNIA SRI Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO:	MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022	CALICATA:	C-1
TESISTA:	MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI		147.50
UBICACIÓN:	CHANG FRANCISCO FERNANDO TITO CHICAMA - ASCOPE - LA LIBERTAD	COTA (m): PROF. (m):	1,50
FECHA:	NOVIEMBRE DEL 2022	NAF (m):	NP

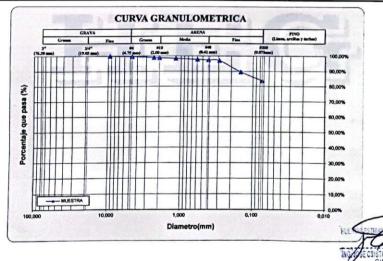
REGISTRO DE PERFIL DEL SUELO

	Esp.(mts)	Descripcion Visual del Suelo	SUCS		Muestra
CA	ALICATA (C-1 (147.5 msnm) CAMINO ACCESO CHIC	CAMITA	- PROG. 0)+100
-1,50	1,50	ARCILLA LIGERAMENTE PLASTICA COLOR BEIGE OSCURO, PARCIALMENTE HUMEDA, ESTRUCTURA COHESIVA, CONSIST. BLANDA, RETRAE AL SECADO.	(CL)		M-1
		NAF = NO SE ENCONTRO A LA PROFUNDIDAD ESTUDIADA		Carlose Call Thinks	MERTAN MARTEL

HUEBTAS ESTRUCTURAS & GEOTECNIA SEL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO
UBICACION: CHICAMA - ASCOPE - LA LIBERTAD
FECHA: TRUJILLO, NOVIEMBRE DEL 2022


Prof (m): 0.00 - 1.50

CANTERA:	MATERIAL IN SITU - PROG. 0+100
	ARCILLA LIGERAMENTE PLASTICA

Sondaje:	C-1	•

PRUEBA GRANULOMETRICA (NTP 339.128)

Peso Origin			200,00			Especific	caciones	OBSERVACIONES:	
Pérd, por la			167,56			Lim	nites	Tamaño Maximo:	2"
Peso Tamiz	ado (gr)		32,44			Superior	Inferior	Limites de Consistencia:	_
ABERT.	MALLA	Peso	%	% Ret	%	%	%	Limite Liquido:	35,15%
Pulg/malla	mm	Retenido	Retenido	Acumulado	Pasa	Pasa	Pasa	Limite Plastico:	21,63%
	4.000			- 0				Limite de Contraccion:	17,419
2"	50,800			-	7 7			Indice de Plasticidad:	13,519
1 1/2"	38,100							more de Flasticidad.	13,317
1"	25,400	1		- 5	W-10-1	100		Porcentaje en muestra:	
3/4"	19,050	9		-			-	% Grava (3" a #4):	0,27%
1/2"	12,700		- Clark Control	1			-	% Arena (#4 a #200):	15,969
3/8"	9,525	0,00	0,00%	0.00%	100.00%			% Finos (Menor a #200):	83,789
No 4	4,750	0,53	0,27%	0,27%	99,74%			d i mos (monor a #200).	00,707
No 8	2,381	1,28	0,64%	0.91%	99.10%			Características Granulom	etricae.
No 10	2.000	0,37	0,19%	1,09%	98.91%			D60; (mm);	ouicas.
No 16	1,191	0,94	0.47%	1,56%	98,44%			Dso: (mm):	- 5
No 30	0.595	1,25	0.63%	2,19%	97,82%		1 1	D30: (mm):	-
No 40	0,420	0,76	0,38%	2,57%	97,44%			D10: (mm):	- 5
No 50	0,296	0.75	0.38%	2.94%	97.06%	THE PERSON NAMED IN	market and	Cu:	- 1
No 100	0,149	15,01	7,51%	10.45%	89.56%			Cc:	- 3
No 200	0,075	11,55	5,78%	16,22%	83,78%			Clasificacion:	-
Pla	to	167,56	83,78%	100,00%	0,00%	Contenido de h	numedad (%)	SUCS: CL	
Sumai	toria	200.00	100.00%			6,0		AASHTO: A-6	(10)

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 (044-603601 974960020 943721150 947510463

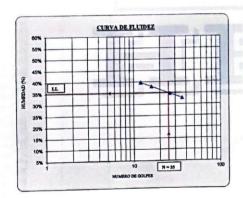
IAN HUERTAS MARTELE 148105

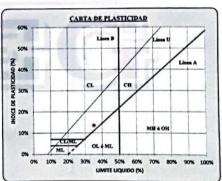
HUERTAS ESTRUCTURAS & GEOTECNIA SRL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA.

LA LIBIERTAD, 2022
TESISTA. MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO
UBICACION: CHICAMA: - ASCOPE - LA LIBERTAD
FECHA. TRUJILLO, NOVIEMBRE DEL 2022
DESCRIPCION DE LA MUESTRA.
CANTERA: MATERIAL IN SITU- PROG. 0+100
CLASE DE SUELO: ARCILLA LIGERAMENTE PLASTICA (CL)


CLASE DE SUELO: ARCILLA LIGERAMENTE PLASTICA (CL)


LIMITES DE CONSISTENCIA (NTP 339.129)

ENSAYO Nº	1	2	3	4
Tara + suelo húmedo	84.64	54.36	53,81	64,04
Tara + suelo seco	66,32	44,25	45,07	52,80
Agua	18.32	10,11	8,74	11,24
Peso de la tara	20.20	17,60	20,03	18,60
Peso del suelo seco	46.12	26,65	25,04	34 20
% humedad	39,73%	37,94%	34,90%	32,87%
No golpes	12	16	26	36
LIMITE LIQUIDO		35,169		

ENSAYO N°	1	2	
Tara + suelo húmedo	29,13	17,86	
Tara + suelo seco	28,53	17,23	
Agua	0,60	0,63	
Peso de la tara	25,90	14,15	
Peso del suelo seco	2,63	3,08	
% humeded	22,81%	20,45%	
LIMITE PLASTICO	21,63%		

Limite Liquido:	35,16%
Liquido Plastico:	21,63%
Limite de Contraccion:	17,41%
Indice de Plasticidad:	13,51%

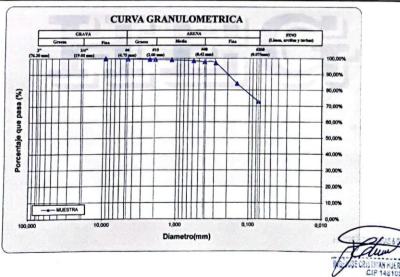
HUEBTAS ESTRUCTURAS & GEUTECNIA SEL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

		CALICATA:	
PROYECTO:	MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO		C-2
	AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022		C 2
TESISTA:	MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI		149.90
	CHANG FRANCISCO FERNANDO TITO	COTA (m):	10,00
UBICACIÓN:	CHICAMA - ASCOPE - LA LIBERTAD	PROF. (m):	1,50
FECHA:	NOVIEMBRE DEL 2022	NAF (m):	NP

REGISTRO DE PERFIL DEL SUELO

Esc.	Prof.(m)	Esp.(mts)	Descripcion Visual del Suelo	SUCS	Simbolo	Muestra
	CA	LICATA (C-2 (149.9 msnm) CAMINO ACCESO CHIO	CAMITA	- PROG.	1+100
	-1,50	1,50	ARCILLA LIGERAMENTE PLASTICA COLOR BEIGE OSCURO, PARCIALMENTE HUMEDA, ESTRUCTURA COHESIVA, CONSIST. BLANDA, RETRAE AL SECADO.	(CL)		M-1
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					Annual State Control	
6			NAF = NO SE ENCONTRO A LA PROFUNDIDAD ESTUDIADA			
7					VALEET S	CIP 149105

HUERTAS ESTRUCTURAS & GEOTECNIA SEL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion


PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO

UBICACION: CHICAMA - ASCOPE - LA LIBERTAD FECHA: TRUJILLO, NOVIEMBRE DEL 2022

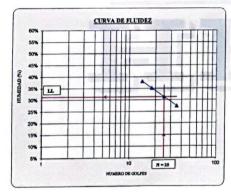
CANTERA:				
	MATERIAL IN SITU - PROG. 1+100	Sondaje:	C-2	
CLASE DE SUELO:	ARCILLA LIGERAMENTE PLASTICA	Muestra:	M-1	

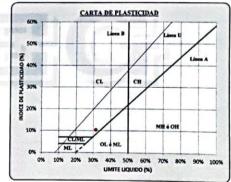
PRUEBA GRANULOMETRICA (NTP 339.128)

Peso Origin	al (gr)		200,00			Especific	caciones	OBSERVACIONES:	
Pérd. por la	vado(gr)		145,67		7		nites	Tamaño Maximo:	2"
Peso Tamiz	zado (gr)		54,33			Superior	Inferior	Limites de Consistencia:	_
ABERT.	MALLA	Peso	%	% Ret	%	%	%	Limite Liquido:	31.38%
Pulg/malla	mm	Retenido	Retenido	Acumulado	Pasa	Pasa	Pasa	Limite Plastico:	21,04%
				15	0.8	24 6	1	Limite de Contraccion:	17,74%
2"	50,800				2 19	3 4	-	Indice de Plasticidad:	10,34%
1 1/2"	38,100							1	10,0110
1"	25,400			-			7	Porcentaje en muestra:	
3/4"	19,050			150			7	% Grava (3" a #4):	0.22%
1/2"	12,700	· · · · · · · · · · · · · · · · · · ·	proved -	1				% Arena (#4 a #200):	26,95%
3/8"	9,525	0,00	0,00%	0,00%	100,00%		1	% Finos (Menor a #200):	72,84%
No 4	4,750	0,44	0,22%	0,22%	99,78%				
No 8	2,381	0,78	0,39%	0,61%	99,39%			Caracteristicas Granulom	etricas:
No 10	2,000	0,11	0,06%	0,67%	99,34%			D60: (mm):	- 2
No 16	1,191	0,50	0,25%	0,92%	99,09%			Dso: (mm):	
No 30	0,595	1,06	0,53%	1,45%	98,56%			D30: (mm):	
No 40	0,420	1,37	0,69%	2,13%	97,87%	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the		D10: (mm):	-
No 50	0,296	1,41	0,71%	2,84%	97,17%			Cu:	
No 100	0,149	25,90	12,95%	15,79%	84,22%			Ce:	-
No 200	0,075	22,76	11,38%	27,17%	72,84%			Clasificacion:	
Plat	to	145,67	72,84%	100,00%	0,00%	Contenido de l	numedad (%)	SUCS: CL	
Sumat	toria	200,00	100,00%			8,3	9	AASHTO: A-4	[8]

is estructuras a geotecnia srl

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion


PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA. MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO UBICACION: CHICAMA - ASCOPE - LA LIBERTADO DE CONCORDA - ASCOPE - LA CIBERTADO DE CONCORDA - ASCOPE - LA LIBERTADO DE CONCORDA - ASCOPE - ASCOPE - LA LIBERTADO DE CONCORDA - ASCOPE - LA LIBERTAD


LIMITES DE CONSISTENCIA (NTP 339.129)

LIMITE LIQUIDO				
ENSAYO N°	1	2	3	4
Tara + suelo húmedo	72,56	53,84	54,82	71,38
Tara + suelo seco	58,11	45,82	46,41	60.00
Ague	14,45	8,02	8,41	11,38
Peso de la tara	20,20	23,03	19,61	18,60
Peso del suelo seco	37,91	22,79	26,80	41,40
% humedad	38,11%	35,19%	31,38%	27,48%
No golpes	14	18	25	35
LIMITE LIQUIDO		24 200		

ENSAYO N°	#1	2	
Tara + suelo húmedo	25,92	22,05	
Tara + suelo seco	25,32	21,48	
Agua	0,60	0,57	
Peso de la tara	22,48	18,76	
Peso del suelo seco	2,84	2,72	
% humedad	21,13%	20,96%	
LIMITE PLASTICO	21,04%		

RESULTADOS:	31,38%
Liquido Plastico:	21,04%
Limite de Contraccion:	17,74%
Indice de Plasticidad:	10,34%

huertas estructuras a geotecnia srl

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

ENSAYO DE PROCTOR MODIFICADO (NORMA ASTM D-1557) TIPO A

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022 TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO UBICACION: CHICAMITA - LA LIBERTAD FECHA: TRUJILLO, NOVIEMBRE DEL 2022 CANTERA: MATERIAL IN SITU

MUESTRA: CALICATA MUESTRA SUCS

C-2 M-1 CL

NUMERO DE GOLPES Y CARACTERISTICAS DEL MOLDE: GOLPES/CAPA 5/25

DIMENSIONES MOLDE MOLDE Duimetro 10,20 cm Altura 11,60 cm Volumen: 947,85 cm

MARTILLO: PESO CAIDA

CONTENIDO DE HUMEDAD Y DENSIDAD SECA:

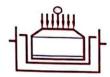
DETERMINACION DEL CONTENIDO DE HUMEDAD

MUESTRA No	1	2	3	4	5
Tara No	1	2	3	4	5
Peso Tara + Suelo Húmedo (g)	70,82	68,43	67,48	68,42	51,63
Peso Tara + Suelo Seco (g)	68,07	65,23	63,61	63,71	46,82
Peso del Agua (g)	2,75	3,20	3,85	4.71	4,81
Peso tara (g)	24,69	27,79	28,22	24,94	14,21
Peso Suelo Seco (g)	43.38	37,44	35,39	38,77	32.61
Contenido de humedad (%)	6.34	8,55	10,88	12.15	14,75


DETERMINACION DE LA DENSIDAD

MUESTRA No	1	2	3	4	6
Peso Molde+Peso Suelo Húmedo (g)	4031	4082	4125	4071	4019
Peso Molde (g)	2004	2004	2004	2004	2004
Peso Suelo Húmedo (g)	2027	2078	2121	2067	2013
Volumen Suelo Húmedo (g)	947.85	947,85	947,85	947,85	947,85
Densidad Humeda (g/cm²)	2.14	2,19	2,24	2.18	2,13
Densided Secs (o/cm²)	2.01	2.02	2.02	1,94	1,85

2.026


RESULTADOS:

DSM (g/cm²) OCH (%): DSM = Densidad seca máxima

El laboratorio no ha intervenido en la exploración y muestreo, solo se ha limitado a realizar el ensayo indicado a la muestra entregada, por tanto; solo responde por los resutados obtenidos en dicha muestra.

HUERUS ST USTH AT HUERTAS WARTELL CIP 143105 ING.

as estructuras a geotecnia srl

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

ENSAYO DE RELACION DE SOPORTE DE CALIFORNIA (CBR) NORMA ASTM D-1883

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO

UBICACION: CHICAMITA - LA LIBERTAD FECHA: TRUJILLO, NOVIEMBRE DEL 2022 CANTERA: MATERIAL IN SITU

Pag. 1/2

MUE	STRA:
CALL	CATA:
MUE	STRA:
SUCS	

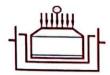
MOLDE CBR
Peso del molde (g) =
Diámetro del molde (cm) =
Altura del molde sin anillo (cm) =

ENSAYO DE COMPACTACION

Molde	1		2		3	
Número de capas	5		5		5	
Número de golpes por capa	56		25		12	
Sobrecarga (g)	4540		4540		4540	
Condición	Antes de empapar	Desp. de empapar	Antes de empapar	Desp. de empapar	Antes de empapar	Desp. de empapar
Muestra húmeda + molde (g)	11700		11300	9 9	10850	
Peso del molde (g)	4191		4191	1 1	4191	
Peso de muestra húmeda (g)	7509		7109	American	6659	
Volúmen de la muestra (cm3)	3243,3		3243,3		3243,3	
Densidad húmeda (g/cm³)	2,32		2,19		2,05	100

CONTENIDO DE HUMEDAD

Tara Nº	1 1	2	3
Muestra humeda + tara (g)	58,25	59,65	58,32
Muestra seca + tara (g)	55,25	56,50	55,30
Peso del agua (g)	3,00	3,15	3,02
Peso de la tara (g)	19,00	20,20	18,76
Muestra seca (g)	36,25	36,30	36,54
Contenido de humedad (%)	8,28%	8,68%	8,26%
Densidad seca (g/cm3)	2,14	2,02	1,90


ENSAYO DE EXPANSIÓN Factor de conversión Dial, F =

Sobrecarga (g)		45	4540		540	4540		
Número de golpes por capa		56		25		12		
Fecha	Tiempo (h)	Lectura del dial	Hincham. (mm)	Lectura del dial	Hincham. (mm)	Lectura del dial	Hincham (mm)	
08/11/2022	0	0,00	0,00	0,00	0,00	0,00	0,00	
09/11/2022	24	65,20	1,66	205,20	5,21	247,50	6,29	
10/11/2022	48	142,50	3,62	285,50	7,25	325,30	8,26	
11/11/2022	72	158,50	4,03	296,30	7,53	330,00	8,38	
% de Ex	mansión	2,2	6%	4,2	23%	4,	71%	

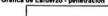
ENSAYO DE CARGA - PENETRACIÓN
Diámetro del pistón de penetración =
Área del piston =

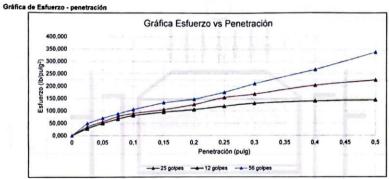
5,08 cm 20,27 cm²

Mo	ide		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ASSET OF	STREET, STREET	2		The Proper	3	CIP 14	
Número de golpes por capa			56			25			12		
Penetración (pulg)	Patrón (kgf/cm²)	Carga (kg)	Esfuerzo (kgf/cm²)	Esfuerzo (lb/pulg ²)	Carga (kg)	Esfuerzo (kgf/cm²)	Esfuerzo (lb/pulg²)	Carga (kg)	Esfuerzo (kgf/cm²)	Esfuerzo (lb/pulg²)	
0		0	0,000	0,000	0	0,000	0,000	0	0,000	0,000	
0.025		70	3,454	49,123	50	2,467	35,088	40	1,974	28,070	
0.050		100	4,934	70,175	80	3,947	56,140	70	3,454	49,123	
0,075		125	6,167	87,719	110	5,427	77,193	95	4,687	66,666	
0,100	70,31	150	7,401	105,263	128	6,315	89,824	115	5,674	80,701	
0,150		190	9,374	133,333	150	7,401	105,263	135	6,661	94,736	
0,200	105,46	210	10,361	147,368	180	8,881	126,315	150	7,401	105,263	
0,250		250	12,335	175,438	220	10,854	154,385	170	8,387	119,298	
0,300		300	14,801	210,525	240	11,841	168,420	186	9,177	130,526	
0.400		380	18,748	266,665	290	14,308	203,508	199	9,818	139,648	
0,500		480	23.682	336,840	320	15,788	224,560	205	10,114	143,859	

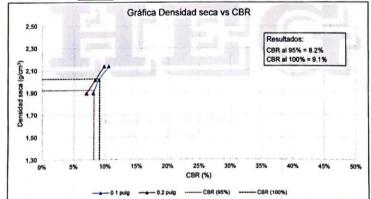
ls estructuras a geotecnia srl

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion


ENSAYO DE RELACION DE SOPORTE DE CALIFORNIA (CBR) NORMA ASTM D-1883


PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA. MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO
URICACION: CHICAMITA, LA LIBERTAD.

UBICACION: CHICAMITA - LA LIBERTAD FECHA: TRUJILLO, NOVIEMBRE DEL 2022 CANTERA: MATERIAL IN SITU


Pag. 2/2

Molde				2	Name and Post	3
Número de golpes por capa	5	6	- 2	25		12
Penetracion (pulg)	0,1	0,2	0,1	0,2	0,1	0,2
Patrón (kgf/cm²)	70,31	105,46	70,31	105,46	70,31	105,46
Esfuerzo ensayo (kgf/cm²)	7,401	10,361	6,315	8,881	5,674	7,401
CBR (%)	10,53%	9,82%	8,98%	8,42%	8,07%	7,02%

Gráfica Densidad seca - CBR CBR al 95% de la MDS (%) = Máxima densidad seca = 2,026 g/cm 8,75 % Óptimo contenido de hume CBR al 100% de la MDS (%) =

NOTA: El laboratorio no ha intervenido en la exploración y muestreo, solo se ha limitado a realizar el en por tanto, solo responde por los resutados obtenidos en dicha muestra.

HUEBTAS ESTRUCTURAS & GEUTECNIA SEL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

		CALICATA:	
PROYECTO:	MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022		C-3
TESISTA:	MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO	COTA (m):	168,50
UBICACIÓN:	CHICAMA - ASCOPE - LA LIBERTAD	PROF. (m):	1,50
FECHA:	NOVIEMBRE DEL 2022	NAF (m):	NP

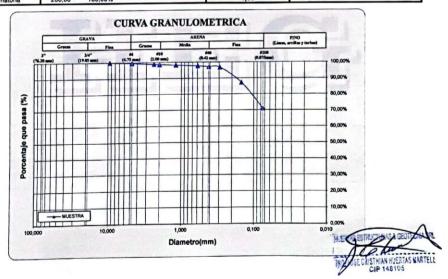
REGISTRO DE PERFIL DEL SUELO

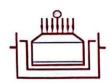
Esc.	Prof.(m)	Esp.(mts)	Descripcion Visual del Suelo	SUCS	Simbolo	Muestra
	CA	LICATA	C-3 (168.5 msnm) CAMINO ACCESO CHIO	CAMITA	- PROG.	2+100
	-1,50	1,50	ARCILLA LIGERAMENTE PLASTICA COLOR BEIGE OSCURO, PARCIALMENTE HUMEDA, ESTRUCTURA COHESIVA, CONSIST. BLANDA, RETRAE AL SECADO.	(CL)		M-1
2		<u> </u>				
3		1				
4		-				
5		70			Time!	
6			NAF = NO SE ENCONTRO A LA PROFUNDIDAD ESTUDIADA			
7						
						Church

as estructuras a geotecnia sel

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO


UBICACION: CHICAMA - ASCOPE - LA LIBERTAD FECHA: TRUJILLO, NOVIEMBRE DEL 2022


Prof(m): 0.00 - 1.50

CANTERA:	MATERIAL IN SITU - PROG. 2+100	Sondaje:	C-3	
CLASE DE SUELO:	ARCILLA LIGERAMENTE PLASTICA	Muestra:	M-1	

PRUEBA GRANULOMETRICA (NTP 339.128)

Peso Origin	nal (gr)		200,00		and the same of th	Especific	caciones	OBSERVACIONES:	
Pérd. por la	vado(gr)		142,06		7	Lin	nites	Tamaño Maximo:	2"
Peso Tami	zado (gr)		57,94			Superior	Inferior	Limites de Consistencia:	
ABERT	MALLA	Peso	%	% Ret	%	%	%	Limite Liquido:	31,60%
Pulg/malla	mm	Retenido	Retenido	Acumulado	Pasa	Pasa	Pasa	Limite Plastico:	21,87%
				- 3	0. 0 4	45 10	1	Limite de Contraccion:	18,58%
2"	50,800			-		7 1		Indice de Plasticidad:	9,73%
1 1/2"	38,100]	
1"	25,400					100	9	Porcentaje en muestra:	
3/4"	19,050	- 8		- 1		-		% Grava (3" a #4):	0,40%
1/2"	12,700		PETROLE	6			100	% Arena (#4 a #200):	28,57%
3/8"	9,525	0,00	0,00%	0,00%	100,00%		9	% Finos (Menor a #200):	71,03%
No 4	4,750	0,80	0,40%	0,40%	99,60%			The second second	
No 8	2,381	1,43	0,72%	1,12%	98,89%			Caracteristicas Granulom	etricas:
No 10	2,000	0,42	0,21%	1,33%	98,68%		. 6	D60: (mm):	-
No 16	1,191	0,85	0,43%	1,75%	98,25%		JI	Dso: (mm):	-
No 30	0,595	1,17	0,59%	2,34%	97,67%			D30: (mm):	-
No 40	0,420	0,95	0,48%	2,81%	97,19%		4	D10: (mm):	
No 50	0,296	0,81	0,41%	3,22%	96,79%	11000000000		Cu:	•
No 100	0,149	19,11	9,56%	12,77%	87,23%	All Samuel		Cc:	-
No 200	0.075	32,40	16,20%	28,97%	71,03%			Clasificacion:	
Pl	ato	142,06	71,03%	1,03% 100,00% 0,00%		Contenido de humedad (%)		SUCS: CL	
Sum	atoria	200.00	100.00%			1,5	59	AASHTO: A-4	[7]

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022

TESISTA: MERCEDIES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO

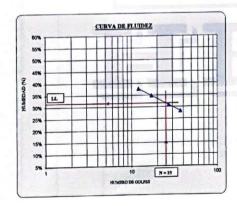
UBICACION: CHICAMA - ASCOPE - LA LIBERTAD

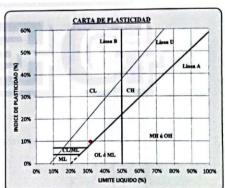
FECHA. TRUJILLO, NOVIEMBRE DEL 2022

PESCRIPICON DE LA MUESTRA.

CANTERA: MATERIAL IN SITU - PROG 2+100

CLASE DE SUBLIO: ARCILLA LIGERAMENTE PLASTICA (CL)


Muestra: M-1


LIMITES DE CONSISTENCIA (NTP 339.129)

ENSAYO Nº	1	2	3	4
Tara + suelo húmedo	65,53	54.60	58,81	62,48
Tara + suelo seco	53,10	45,97	49,07	52,80
Agua	12,43	8,63	9.74	9,68
Peso de la tara	20,20	21,21	17,60	18,60
Peso del suelo seco	32,90	24,76	31,47	34,20
% humedad	37,79%	34.85%	30,95%	28,29%
No golpes	12	17	27	37
LIMITE LIQUIDO		31,60%		

ENSAYO N°	2 11 2	2	
Tara + suelo húmedo	17,14	22,86	
Tara + suelo seco	16,52	22,29	
Agua	0,62	0,57	
Peso de la tara	13,76	19,61	
Peso del suelo seco	2,76	2,68	
% humedad	22,46%	21,27%	
LIMITE PLASTICO	21,87%		

Limite Liquido:	31,60%
Liquido Plastico:	21,87%
Limite de Contraccion:	18,58%
Indice de Plasticidad:	9,73%

RUEBTAS ESTRUCTURAS & GEOTECNIA SRLLaboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO:	MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022	CALICATA:	C-4
TESISTA:	MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI		
	CHANG FRANCISCO FERNANDO TITO	COTA (m):	169,80
UBICACIÓN:	CHICAMA - ASCOPE - LA LIBERTAD	PROF. (m):	1,50
FECHA:	NOVIEMBRE DEL 2022	NAF (m):	NP

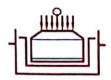
REGISTRO DE PERFIL DEL SUELO

Esc.		Esp.(mts)	Descripcion Visual del Suelo	sucs	Simbolo	Muestra
	CA	LICATA (C-4 (169.8 msnm) CAMINO ACCESO CHIC	AMITA	- PROG. 3	+100
	-1,50	1,50	ARENA LIMOSA, COLOR BEIGE OSCURO, ESTADO DE COMPACIDAD SEMI DENSA, PARCIALMENTE SECA, PARTICULAS DE FORMA SUB ANGULOSA.	(SM)		M-1
			NAF = NO SE ENCONTRO A LA PROFUNDIDAD ESTUDIADA		- 8	
				,	ISLER CO	ALEAN HUERTAS MARTE

EUERTAS ESTRUCTURAS & GEOTECNIA SEL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022

TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO
UBICACION: CHICAMA - ASCOPE - LA LIBERTAD
FECHA: TRUJILLO, NOVIEMBRE DEL 2022
Prof (m

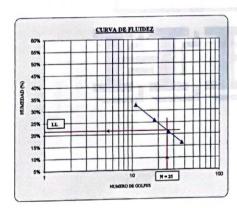

0.00 - 1.50 Prof(m):

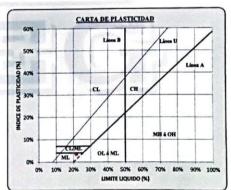
CANTERA:	MATERIAL IN SITU - PROG. 3+100	Sondaje:	C-4	
		Muestra:	M-1	
CLASE DE SUELO:	ARENA LIMOSA	Mucsu a.	141-1	

PRUEBA GRANULOMETRICA (NTP 339.128)

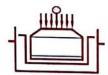
Peso Original (gr) Pérd. por lavado(gr)		description	4000,00			Especific	caciones	OBSERVACIONES:	-
		1099,68			Lím	nites	Tamaño Maximo:	2"	
Peso Tamiz	zado (gr)		2900,32			Superior	Inferior	Limites de Consistencia:	
	MALLA	Peso	%	% Ret	%	%	%	Limite Liquido: Limite Plastico:	21,60% 18,17%
Pulg/malla		Retenido	Retenido	Acumulado	Pasa	Pasa	Pasa		17,12%
3"	76,200	0,00	0,00%	0,00%	100,00%	- 10	1	Limite de Contraccion:	3,43%
2"	50,800	174,20	4,36%	4,36%	95,65%	7. 7.		Indice de Plasticidad:	3,4376
1 1/2"	38,100	235,49	5,89%	10,24%	89,76%				
1"	25,400	340,86	8,52%	18,76%	81,24%		1	Porcentaje en muestra:	
3/4"	19,050	61,07	1,53%	20,29%	79,71%		The same of the sa	% Grava (3" a #4):	31,10%
1/2"	12,700	110,65	2,77%	23,06%	76,94%			% Arena (#4 a #200):	41,41%
3/8"	9,525	92,17	2,30%	25,36%	74,64%			% Finos (Menor a #200):	27,49%
No 4	4,750	229,62	5,74%	31,10%	68,90%			§ Section	12/12/12/12/2
No 8	2,381	18,24	0,46%	31,56%	68,44%			Caracteristicas Granulom	etricas:
No 10	2,000	2,81	0.07%	31,63%	68,37%			D60: (mm):	-
No 16	1,191	9,20	0,23%	31,86%	68,14%			Dso: (mm):	0,22
No 30	0,595	16,92	0,42%	32,28%	67,72%			D30: (mm):	-
No 40	0,420	35,22	0,88%	33,16%	66,84%			D10: (mm):	-
No 50	0,296	56,61	1,42%	34,58%	65,42%		No. of Mary	Cu:	•
No 100	0,149	1190.13	29,75%	64,33%	35,67%			Ce:	•
No 200	0,075	327,13	8,18%	72,51%	27,49%			Clasificacion:	
	ato	1099.68	27,49%	100,00%	0,00%	Contenido de	humedad (%)	SUCS: SI	
	atoria	4000.00	100,00%			0,:	31	AASHTO: A-2-4	[0]

HUERTAS ESTRUCTURAS & GEOTECNIA SELLaboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion


PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA. LA LIBERTAD, 2022
TESISTA. MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO ITIO
URICACION: CHICAMA- ASCOPE - LA LIBERTAD
FECHA: TRUILLO, NOVIEMBRE DEL 2022
DESCRIPCION DE LA MUESTRA,
CANTERA MATERIAL IN STUL. PROG 3-100
CANTERA MATERIAL IN STUL. PROG 3-100
CLASE DE SUELO: ARENA LIMOSA (SM)


LIMITES DE CONSISTENCIA (NTP 339.129)

ENSAYO Nº	1	2	3	4			
Tera + suelo húmedo	70,54	50,45	52,80	62,84			
			46,07	56.60			
Tara + suelo seco	58,20	43,92					
Agua	12,34	6,53	6,73	6,24			
Peso de la tara	20,20	18,76	14,15	18,60			
Peso del suelo seco	38,00	25,16	31,92	38,00			
% humedad	32,48%	25,95%	21,08%	16,41%			
No. golpes	11	18	26	37			
LIMITE LIQUIDO	21,60%						


ENSAYO N°	1	2	
Tara + suelo húmedo	29,15	38,76	
Tara + suelo seco	28,63	38,21	
Agua	0,52	0,55	
Peso de la tara	25,90	35,03	
Peso del suelo seco	2,73	3,18	
% humedad	19,05%	17,30%	
LIMITE PLASTICO	18,17%		

RESULTADOS:	
Limite Liquido:	21,60%
Liquido Plastico:	18,17%
Limite de Contraccion:	17,12%
Indice de Plasticidad:	3,43%

Huertas estructuras a geotecnia srl

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

ENSAYO DE PROCTOR MODIFICADO (NORMA ASTM D-1557) TIPO B

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO UBICACION: CHICAMITA - LA LIBERTAD FECHA: TRUJILLO, NOVIEMBRE DEL 2022 CANTERA: MATERIAL IN SITU

MUESTRA: CALICATA MUESTRA SUCS

NUMERO DE GOLPES Y CARACTERISTICAS DEL MOLDE; GOLPES/CAPA. 5/25

MARTILLO: 44,50 N 457,00 mm 2700 KN-m/ CAIDA ENERGIA

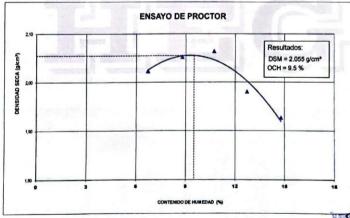
Diametro 10,20 cm Altura 11,60 cm Volumetr 947,85 cm

PESO DEL MOLDE - 2004 g

CONTENIDO DE HUMEDAD Y DENSIDAD SECA:

DETERMINACION DEL CONTENIDO DE HUMEDAD

MUESTRA No	1	2	3	4	6
Tara No	1	2	3	4	5
Peso Tara + Suelo Húmedo (g)	77,03	108,98	118,85	106,66	66,82
Peso Tara + Suelo Seco (g)	73,48	102,17	109,96	97,81	61,55
Peso del Agua (g)	3,55	6,81	8.89	8,85	5,27
Peso tara (g)	20,45	24,60	26,90	28,22	25,90
Peso Suelo Seco (g)	53,03	77,57	83,06	69,59	35,65
Contenido de humedad (%)	6.69	8,78	10.70	12.72	14,78


DETERMINACION DE LA DENSIDAD

MUESTRA No	1	2	3	4	5
Peso Molde+Peso Suelo Húmedo (g)	4050	4120	4170	4120	4100
Peso Molde (g)	2004	2004	2004	2004	2004
Peso Suelo Húmedo (g)	2046	2116	2166	2116	2096
Volumen Suelo Húrnedo (g)	947,85	947,85	947,85	947,85	947,85
Densidad Humeda (g/cm²)	2,16	2,23	2,29	2.23	2,21
Densidad Seca (g/cm²)	2 02	2.05	2.06	1.08	1 93

RESULTADOS:

9.50 OCH (%)

DSM = Densidad seca máxima OCH = Optimo contenido de hui

NOTA:

El laboratorio no ha intervenido en la exploración y muestreo, solo se ha limitado a realizar el ensayo indicado a la muestra entregada, por tanto; solo responde por los resutados obtenidos en dicha muestra.

HISTHIAN HUERTAS BARTELL CIP 145105

Huertas estructuras a geotecnia sel

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

ENSAYO DE RELACION DE SOPORTE DE CALIFORNIA (CBR) NORMA ASTM D-1883

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO

UBICACION: CHICAMITA - LA LIBERTAD FECHA: TRUIILLO, NOVIEMBRE DEL 2022 CANTERA: MATERIAL IN SITU

Pag. 1/2

MUESTRA:		MOLDE CBR	
CALICATA:	C4		
MUESTRA:		Peso del molde (g) =	41
	M-1	Diámetro del molde (cm) =	15,
SUCS	SM	Altura del molde ein seille (em) -	17

ENSAYO DE COMPACTACION

Molde	1		2		2	
Número de capas		5	-		5	
Número de golpes por capa	56		25		12	
Sobrecarga (g)	45		4540		4540	
Condición	Antes de empapar	Desp. de empapar	Antes de empapar	Desp. de empapar	Antes de empapar	Desp. de empapar
Muestra húmeda + molde (g)	11750		11550	- гора	11120	оптророг
Peso del molde (g)	4191		4191		4191	
Peso de muestra húmeda (g)	7559		7359		6929	
Volúmen de la muestra (cm³)	3243,3		3243.3		3243.3	6
Densidad húmeda (g/cm³)	2,33		2.27		2.14	

CONTENIDO DE HUMEDAD

Tara N°	1	2	3	13
Muestra humeda + tara (g)	58,56	59,23	58,22	_
Muestra seca + tara (g)	55,23	55,80	54,66	_
Peso del agua (g)	3,33	3,43	3,56	7
Peso de la tara (g)	19,00	20,20	18,76	
Muestra seca (g)	36.23	35,60	35,90	-
Contenido de humedad (%)	9,19%	9,63%	9,92%	
Densidad seca (g/cm ³)	2,13	2,07	1,94	

ENSAYO DE EXPANSIÓN Factor de conversión Dial, F = 0,001 pulg

Moide Sobrecarga (g) Número de golpes por capa		Die Co	CALL THE STATE OF		2		3	
		4540 56		4540 25		4540 12		
								Fecha
08/11/2022	0	0,00	0,00	0,00	0,00	0,00	0,00	
09/11/2022	24	25,50	0,65	52,20	1,33	81,80	2,08	
10/11/2022	48	62,50	1,59	75,50	1,92	96,60	2,45	
11/11/2022	72	66,30	1,68	76,00	1,93	97,00	2,46	
% de Expansión		0,95%		1,09%		1,39%		

ENSAYO DE CARGA - PENETRACIÓN

Area del piston =

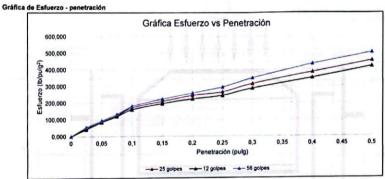
5,08 cm 20,27 cm²

Molde		olde 1 2				3				
Número de go	olpes por capa	56			25			12		
Penetración (pulg)	Patrón (kgf/cm²)	Carga (kg)	Esfuerzo (kgf/cm²)	Esfuerzo (lb/pulg²)	Carga (kg)	Esfuerzo (kgf/cm²)	Esfuerzo (lb/pulg ²)	Carga (kg)	Esfuerzo (kgf/cm²)	Esfuerzo (lb/pulg²)
0	The last	0	0,000	0,000	0	0,000	0,000	0	0,000	0,000
0,025		80	3,947	56,140	70	3,454	49,123	60	2,960	42,105
0.050		135	6,661	94,736	125	6,167	87,719	120	5,921	84,210
0,075		190	9,374	133,333	180	8,881	126,315	170	8,387	119.298
0,100	70,31	260	12,828	182,455	245	12,088	171,929	228	11,249	159,999
0.150		320	15,788	224,560	300	14,801	210,525	280	13,815	196,490
0,200	105,46	370	18,255	259,648	350	17,268	245,613	320	15,788	224,560
0,250		420	20,722	294,735	380	18,748	266,665	350	17,268	245,613
0,300		500	24,669	350,876	450	22,202	315,788	410	20,229	287,718
0,400		620	30,590	435,086	550	27,136	385,963	500	24,669	350,876
0.500		720	35,523	505,261	650	32,070	456,138	600	29,603	421,051

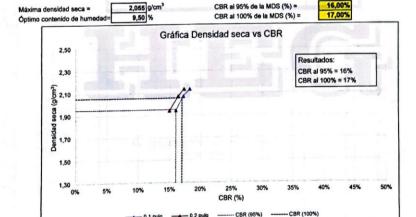
rtas estructuras & Geotecnia SRL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

ENSAYO DE RELACION DE SOPORTE DE CALIFORNIA (CBR) NORMA ASTM D-1883

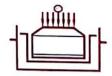

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO
UBICACION CHICAMITA LA LIBERTAD
FECHA: TRUILLO, NOVIEMBRE DEL 2022
CANTIDA MATERIAL NECES.

CANTERA: MATERIAL IN SITU


Pag. 2/2

Cálculo	de	CBR	
CONTRACTOR OF THE PARTY.		Molde	With the

Molde	THE STREET			2	3	
Número de golpes por capa	5	56 25			12	
Penetracion (pulg)	0,1	0,2	0,1	0,2	0,1	0,2
Patrón (kgf/cm²)	70,31	105,46	70,31	105,46	70,31	105,46
Esfuerzo ensayo (kgf/cm²)	12,828	18,255	12,088	17,268	11,249	15,788
CBR (%)	18.24%	17,31%	17,19%	16,37%	16,00%	14,97%



Gráfica Densidad seca - CBR

NOTA: no ha intervenido en la explorac

to; solo responde por los resutados obtenidos en dici

HUEBTAS ESTRUCTURAS & GEOTECNIA SIL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

	METODAL	CALICATA:	
PROYECTO:	MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022	-	C-5
TESISTA:	MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO	COTA (m):	176,03
UBICACIÓN:	CHICAMA - ASCOPE - LA LIBERTAD	PROF. (m):	1,50
FECHA:	NOVIEMBRE DEL 2022	NAF (m):	NP

REGISTRO DE PERFIL DEL SUELO

	(m) Esp.(mts)	Descripcion Visual del Suelo	SUCS	Simbolo	Muestra
(CALICATA (C-5 (176.03 msnm) CAMINO ACCESO CHI	CAMITA	- PROG. 4	1+100
-1,50	1,50	ARCILLA LIGERAMENTE PLASTICA COLOR BEIGE OSCURO, PARCIALMENTE HUMEDA, ESTRUCTURA COHESIVA, CONSIST. BLANDA, RETRAE AL SECADO.	(CL)		M-1
-1,50					
	1000	PITTING A	P		
		NAF = NO SE ENCONTRO A LA PROFUNDIDAD ESTUDIADA			
				in the same of the	HIAN HUERTAS WART

HUERTAS ESTRUCTURAS & GEOTECNIA SRL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO
UBICACION: CHICAMA - ASCOPE - LA LIBERTAD
FECHA: TRUJILLO, NOVIEMBRE DEL 2022
Prof (m): 0.00 - 1.50

rof (m)	:	0.00 -	1.5

CANTERA:	MATERIAL IN SITU - PROG. 4+100
CLASE DE SUELO:	ARCILLA LICEDAMENTE DI ASTICA

Sondaje: C-5 Muestra: M-1

DDIIEDA	CDANIII	OMETRICA	NTD	220	128)
PRUEBA	CTRANUL	OWILIKICA	INIT	337.	.1201

Peso Origin	al (gr)		200,00			Especific	caciones	OBSERVACIONES:	
Pérd. por la	vado(gr) 138,89 Limites		nites	Tamaño Maximo:	2"				
Peso Tamiz	ado (gr)		61,11			Superior	Inferior	Limites de Consistencia:	
ABERT.	MALLA	Peso	%	% Ret	%	%	%	Limite Liquido:	31,75%
Pulg/malla	mm	Retenido	Retenido	Acumulado	Pasa	Pasa	Pasa	Limite Plastico:	21,71%
				- 6	0 0 0	8 8		Limite de Contraccion:	18,37%
2"	50,800			- 6	9 9 9	7 8		Indice de Plasticidad:	10,04%
1 1/2"	38,100							1	
1"	25,400						150	Porcentaje en muestra:	
3/4"	19,050	. 8		All Control				% Grava (3" a #4):	0,53%
1/2"	12,700	2	-					% Arena (#4 a #200):	30,03%
3/8"	9,525	0,00	0,00%	0,00%	100,00%			% Finos (Menor a #200):	69,45%
No 4	4,750	1,05	0,53%	0,53%	99,48%			- Inner	
No 8	2,381	2,31	1,16%	1,68%	98,32%			Caracteristicas Granulom	etricas:
No 10	2,000	1,02	0,51%	2,19%	97,81%		3	D60: (mm):	-
No 16	1,191	1,02	0,51%	2,70%	97,30%		1	Dso: (mm):	-
No 30	0,595	2,03	1,02%	3,72%	96,29%		- 8	D30: (mm):	-
No 40	0,420	2,02	1,01%	4,73%	95,28%			D10: (mm):	-
No 50	0,296	2,02	1,01%	5,74%	94,27%	126000000000000000000000000000000000000	Sea The Paris	Cu:	-
No 100	0,149	26,32	13,16%	18,90%	81,11%			Cc:	2
No 200	0,075	23,32	11,66%	30,56%	69,45%			Clasificacion:	
Pla	ito	138,89	69,45%	100,00%	0,00%	Contenido de	humedad (%)	SUCS: CL	
Suma	itoria	200,00	100,00%		in the same of the	7,	25	AASHTO: A-4	[7]

HUERTAS ESTRUCTURAS & GEOTECNIA SRL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TERSISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO ITIO
UBICACION: CHICAMA - ASCOPE - LA LIBERTAD
FECHA. TRUILLO, NOVIEMBRE DEL 2022

DESCRIPCION DE LA MUESTRA,
CANTERA: MATERIAL IN STU. PROG. 4-100
CASTERA: MATERIAL IN STU. PROG. 4-100
CLASE DE SUELO: ARCILLA LIGERAMENTE PLASTICA (CL)

MIGENTI M. 4

MIGENTI M. 4

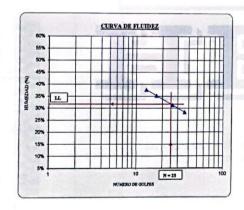
MIGENTI M. 5

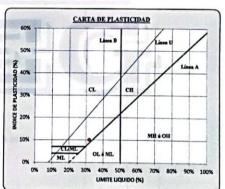
MIGENTI M. 5

MIGENTI M. 5

MIGENTI M. 6

LIMITES DE CONSISTENCIA (NTP 339.129)


LIMITE LIQUIDO


ENSAYO Nº	1	2	•		
Tara + suelo húmedo		•	,	4	
	75,30	53,85	54,81	67.01	
Tara + suelo seco	60,20	45,81	46,40	56.30	
Agua	15,10	8.04	8,41	10,71	
Peso de la tara	20.20	23.03	19,81	18,60	
Peso del suelo seco	40,00	22,78	26,79	37,70	
% humedad	37,76%	35,29%	31,39%	28.40%	
No. golpes	13	17	26	36	
LIMITE LIQUIDO	31,75%				

ENSAYO Nº	0.1	2	
Tara + suelo húmedo	25,91	22,06	
Tara + suelo seco	25,31	21,46	
Agua	0,60	0,60	
Peso de la tara	22,48	18,76	
Peso del suelo seco	2,83	2.70	
% humedad	21,20%	22,22%	
LIMITE PLASTICO	21,71%		

RESULTADOS:				
Limite Liquido:				
Limited Directions				

Limite Liquido:	31,75%
Liquido Plastico:	21,71%
Limite de Contraccion:	18,37%
Indice de Plasticidad:	10,04%

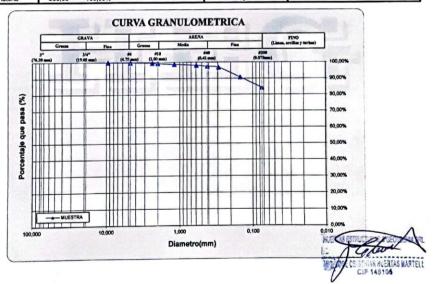
HUERTAS ESTRUCTURAS & GEUTECNIA SEL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

	VEIOD II III	CALICATA:	
PROYECTO:	MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022	Te.	C-6
TESISTA:	MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO	COTA (m):	176,29
UBICACIÓN:	CHICAMA - ASCOPE - LA LIBERTAD	PROF. (m):	1,50
FECHA:	NOVIEMBRE DEL 2022	NAF (m):	NP

REGISTRO DE PERFIL DEL SUELO

Esc.	Prof.(m)	Esp.(mts)	Descripcion Visual del Suelo	SUCS	Simbolo	Muestra
	CA	LICATA C	-6 (176.29 msnm) CAMINO ACCESO CHIO	CAMITA	- PROG.	5+100
	-1,50	1,50	ARCILLA LIGERAMENTE PLASTICA COLOR BEIGE OSCURO, PARCIALMENTE HUMEDA, ESTRUCTURA COHESIVA, CONSIST. BLANDA, RETRAE AL SECADO.	(CL)		M-1
2						
			HIPTE!			
				Second Control of the	100	
			NAF = NO SE ENCONTRO A LA PROFUNDIDAD ESTUDIADA			
					Herioge	Open Aus
					1	RISTHIAN MUERTAS MARTE CIP 148105

HUEBTAS ESTRUCTURAS & GEUTECNIA SRL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion


PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO UBICACION: CHICAMA - ASCOPE - LA LIBERTAD FECHA: TRUJILLO, NOVIEMBRE DEL 2022

0.00 - 1.50

	MATERIAL IN SITU - PROG. 5+100	Sondaje:	C-6	
CLASE DE SUELO:	ARCILLA LIGERAMENTE PLASTICA	Muestra:	M-1	

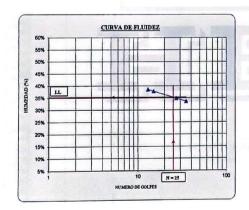
PRUEBA GRANULOMETRICA (NTP 339.128)

Peso Origin	al (gr)	0.75	200,00	(= 1)	-	Especific	caciones	OBSERVACIONES:	
Pérd. por la	vado(gr)		168,46			Limites		Tamaño Maximo:	2"
Peso Tamiz	ado (gr)		31,54			Superior	Inferior	Limites de Consistencia:	
ABERT.	MALLA	Peso	%	% Ret	%	%	%	Limite Liquido:	35,30%
Pulg/malla	mm	Retenido	Retenido	Acumulado	Pasa	Pasa	Pasa	Limite Plastico:	20,86%
					0.8.1	11 (4)		Limite de Contraccion:	16,59%
2"	50,800				1 1			Indice de Plasticidad:	14,45%
1 1/2"	38,100								
1"	25,400			4		Part of the last		Porcentaje en muestra:	
3/4"	19,050			1				% Grava (3" a #4):	0,13%
1/2"	12,700	1		A				% Arena (#4 a #200):	15,65%
3/8"	9,525	0,00	0,00%	0,00%	100,00%	100		% Finos (Menor a #200):	84,23%
No 4	4,750	0,25	0,13%	0,13%	99,88%	1		Secret .	
No 8	2,381	0,69	0,35%	0,47%	99,53%			Caracteristicas Granulom	etricas:
No 10	2,000	0,55	0,28%	0,75%	99,26%			D60: (mm):	-
No 16	1,191	0,98	0,49%	1,24%	98,77%	Ham to be		Dso: (mm):	
No 30	0,595	1,25	0,63%	1,86%	98,14%			D30: (mm):	-
No 40	0,420	1,32	0,66%	2,52%	97,48%	diameter .		D10: (mm):	-
No 50	0,296	1,25	0,63%	3,15%	96,86%	(Water Party)		Cu:	
No 100	0,149	12,25	6,13%	9,27%	90,73%	51,000		Ce:	-
No 200	0,075	13,00	6,50%	15,77%	84,23%			Clasificacion:	
Pla	ito	168,46	84,23%	100,00%	0,00%	Contenido de	humedad (%)	SUCS: CI	
Suma	itoria	200.00	100,00%		A CANADA AND AND AND AND AND AND AND AND AN	5,	80	AASHTO: A-6	[10]

HUERTAS ESTRUCTURAS & GEOTECNIA SRL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA.


LA LIBIERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO ITIO
UBICACION: CHICAMA - ASCOPE - LA LIBERTAD
FECHA: TRUJILLO, NOVIEMBRE DEL 2022
DESCRIPCION DE LA MUESTRA;
CANTERA: MATERIAL IN STUT- PROG. 5-100
CANTERA: MATERIAL IN STUT- PROG. 5-100
CANTERA: MATERIAL IN STUT- PROG. 5-100
CLASE DE SUELO: ARCILLA LIGERAMENTE PLASTICA (CL)


LIMITES DE CONSISTENCIA (NTP 339.129)


ENSAYO N°	1	2	3	4	
Tara + suelo húmedo	86,71	54,35	53,80	72,98	
Tara + suelo seco	68,20	44,26	45,06	59,30	
Agua	18,51	10,09	8,74	13.68	
Peso de la tara	20,20	17,60	20,03	18,60	
Peso del suelo seco	48,00	26,66	25,03	40,70	
% humedad	38,56%	37,85%	34,92%	33,62%	
No. golpes	13	15	27	35	
LIMITE LIQUIDO	35,30%				

LIMITE PLASTICO			
ENSAYO N°	1	2	
Tara + suelo húmedo	29,12	17,85	
Tara + suelo seco	28,54	17,24	
Agua	0,58	0,61	
Peso de la tara	25,90	14,15	
Peso del suelo seco	2,64	3,09	
% humedad	21,97%	19,74%	
LIMITE PLASTICO	20.86%		

RESULTADOS:	
Limite Liquido:	35,30%
Liquido Plastico:	20,86%
Limite de Contraccion:	16,59%
Indice de Plasticidad:	14,45%

HUERTAS ESTRUCTURAS & GENTECNIA SRL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO:	MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022	CALICATA:	C-7
TESISTA:	MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO	COTA (m):	178,07
UBICACIÓN: FECHA:	CTTT I I I I I I I I I I I I I I I I I I	PROF. (m): NAF (m):	1,50 NP

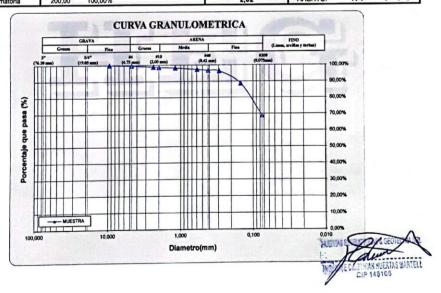
REGISTRO DE PERFIL DEL SUELO

Esc.		Esp.(mts)	Descripcion Visual del Suelo	sucs	Simbolo	Muestra
	CA	LICATA C	-7 (178.07 msnm) CAMINO ACCESO CHI	CAMITA	- PROG.	6+100
1 2 2	-1,50	1,50	ARCILLA LIGERAMENTE PLASTICA COLOR BEIGE OSCURO, PARCIALMENTE HUMEDA, ESTRUCTURA COHESIVA, CONSIST. BLANDA, RETRAE AL SECADO.	(CL)		M-1
2					Electroniano los	
3				7		
4						
			NAF = NO SE ENCONTRO A LA PROFUNDIDAD ESTUDIADA			
					Test	1 HO FO
						CIO SESTOS ENSTRANTAS MART

Huertas estructuras a geotecnia srl

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO


UBICACION: CHICAMA - ASCOPE - LA LIBERTAD FECHA: TRUJILLO, NOVIEMBRE DEL 2022

0.00 - 1.50 Prof (m):

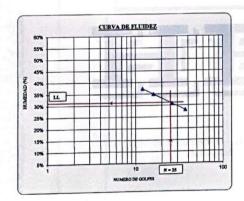
CANTERA: MATERIAL IN SITU - PROG. 6+100 Sondaje: C-7 CLASE DE SUELO: ARCILLA LIGERAMENTE PLASTICA Muestra: M-1

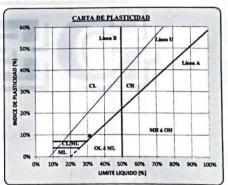
PRUEBA GRANULOMETRICA (NTP 339.128)

Peso Origin	al (gr)		200,00			Especifi	caciones	OBSERVACIONES:	
Pérd. por la	vado(gr)		137,89			Lin	nites	Tamaño Maximo:	2"
Peso Tamiz	ado (gr)		62,11			Superior	Inferior	Limites de Consistencia:	
ABERT.	MALLA	Peso	%	% Ret	%	%	%	Limite Liquido:	31,28%
Pulg/malla	mm	Retenido	Retenido	Acumulado	Pasa	Pasa	Pasa	Limite Plastico:	21,86%
				Ci Ci	5 5 5	20 10		Limite de Contraccion:	18,66%
2"	50,800				1 10 1	3 7		Indice de Plasticidad:	9,42%
1 1/2"	38,100								
1"	25,400	7					No.	Porcentaje en muestra:	
3/4"	19,050							% Grava (3" a #4):	0,33%
1/2"	12,700	- 1						% Arena (#4 a #200):	30,73%
3/8"	9,525	0,00	0,00%	0,00%	100,00%			% Finos (Menor a #200):	68,95%
No 4	4,750	0,65	0,33%	0,33%	99,68%			S Spenier	
No 8	2,381	1,44	0,72%	1,05%	98,96%			Caracteristicas Granulom	etricas:
No 10	2,000	0,52	0,26%	1,31%	98,70%			D60: (mm):	-
No 16	1,191	0,86	0,43%	1,74%	98,27%	Lain L		Dso: (mm):	-
No 30	0,595	2,01	1,01%	2,74%	97,26%			D30: (mm):	-
No 40	0,420	1,02	0,51%	3,25%	96,75%			D10: (mm):	-
No 50	0,296	0,89	0,45%	3,70%	96,31%	-		Cu:	-
No 100	0,149	15,36	7,68%	11,38%	88,63%			Cc:	-
No 200	0,075	39,36	19,68%	31,06%	68,95%			Clasificacion:	
Pla	ito	137,89	68,95%	100,00%	0,00%		humedad (%)	SUCS: CI	1
Suma	storia	200.00	100.00%			2.	02	AASHTO: A-4	(7)

HUERTAS ESTRUCTURAS & GEOTECNIA SRL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion


PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO
UBICACION: CONICAMA - ASCOPE - LA LIBERTAD
FECHA: TRUJILLO, NOVIEMBRE DEL 2022
DESCRIPCION DE LA MUESTRA:
CANTERA: MATERIAL IN SITU-190G, 6+100
CANTERA: MATERIAL IN SITU-190G, 6+100
CLASE DE SUELO: ARCILLA LIGERAMENTE PLASTICA (CL)
MUESTRA:
MILITARIO MOSTRA:
MILITARIO MOSTRA:
CA
MUESTRA:
MILITARIO MOSTRA:
MILITARIO MOS


LIMITES DE CONSISTENCIA (NTP 339.129)

ENSAYO N°	1	2	3	4	
Tara + suelo húmedo	61,39	54,61	58,80	66,88	
Tara + suelo seco	50,20	45,96	49,06	56,30	
Agua	11,19	8,65	9,74	10,58	
Peso de la tara	20,20	21,21	17,60	18,60	
Peso del suelo seco	30,00	24,75	31,46	37,70	
% humedad	37,31%	34,95%	30,96%	28,06%	
No. golpes	12	16	26	37	
LIMITE LIQUIDO	31,28%				

ENSAYO N°	9.1	2	
Tara + suelo húmedo	17,15	22,85	
Tara + suelo seco	16,51	22,30	
Agua	0,64	0,55	
Peso de la tara	13,76	19,61	A Company of the Comp
Peso del suelo seco	2,75	2,69	
% humedad	23,27%	20,45%	Consultation of the last
LIMITE PLASTICO	21,86%		

Limite Liquido:	31,28%
Liquido Plastico:	21,86%
Limite de Contraccion:	18,66%
Indice de Plasticidad:	9,42%



HUEBTAS ESTRUCTURAS & CEDTECNIA SEL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

		CALICATA:	
PROYECTO:	MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022		C-8
TESISTA:	MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO	COTA (m):	184,04
UBICACIÓN:	CHICAMA - ASCOPE - LA LIBERTAD	PROF. (m):	1,50
FECHA:	NOVIEMBRE DEL 2022	NAF (m):	NP

REGISTRO DE PERFIL DEL SUELO

Esc.	Prof.(m)	Esp.(mts)	Descripcion Visual del Suelo	SUCS	Simbolo	Muestra
	CA	LICATA C	-8 (184.04 msnm) CAMINO ACCESO CHIC	AMITA	- PROG.	7+100
	-1,50	1,50	ARCILLA LIGERAMENTE PLASTICA COLOR BEIGE OSCURO, PARCIALMENTE HUMEDA, ESTRUCTURA COHESIVA, CONSIST. BLANDA, RETRAE AL SECADO.	(CL)		M-1
					Property of Springer	
		150				
			NAF = NO SE ENCONTRO A LA PROFUNDIDAD			
			ESTUDIADA			
					HE	2 1 050 John
						THIAN HUERTAS MAR

HUERTAS ESTRUCTURAS & GEOTECNIA SRL

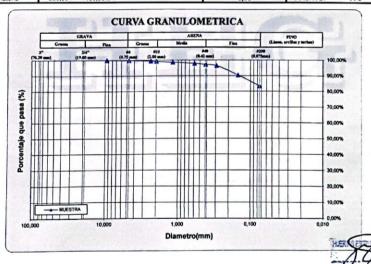
Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO PROTECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA ME 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022

TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO UBICACION: CHICAMA - ASCOPE - LA LIBERTAD FECHA: TRUJILLO, NOVIEMBRE DEL 2022

Prof (m.

0.00 - 1.50


MATERIAL IN SITU - PROG. 7+100 CLASE DE SUELO: ARCILLA LIGERAMENTE PLASTICA Sondaje: C-8

Muestra:

M-1

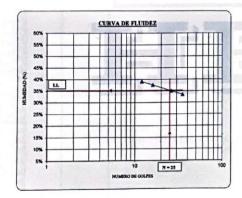
PRUEBA GRANULOMETRICA (NTP 339.128)

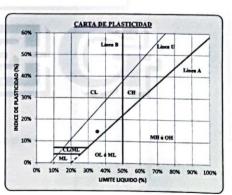
Peso Origin	al (gr)		200,00		-	Especific	caciones	OBSERVACIONES:	
Pérd. por la	vado(gr)		166,86			Lin	nites	Tamaño Maximo:	2"
Peso Tamiz	ado (gr)		33,14			Superior	Inferior	Limites de Consistencia	:
ABERT.	MALLA	Peso	%	% Ret	%	%	%	Limite Liquido:	35,28%
Pulg/malla	mm	Retenido	Retenido	Acumulado	Pasa	Pasa	Pasa	Limite Plastico:	20,86%
				- B	2 2 5	8 6		Limite de Contraccion:	16,60%
2"	50,800				7 1	1 7		Indice de Plasticidad:	14,43%
1 1/2"	38,100								
1"	25,400			-			O _k	Porcentaje en muestra:	
3/4"	19,050	E.		1			1	% Grava (3" a #4):	0,18%
1/2"	12,700		95900mg -			-		% Arena (#4 a #200):	16,39%
3/8"	9,525	0,00	0,00%	0,00%	100,00%			% Finos (Menor a #200):	83,43%
No 4	4,750	0,38	0,18%	0,18%	99,82%			1 Innae	
No B	2,381	0,55	0,28%	0,46%	99,55%			Caracteristicas Granulon	netricas:
No 10	2,000	0,60	0,30%	0,76%	99,25%			D60: (mm):	-
No 16	1,191	1,05	0,53%	1,28%	98,72%			Dso: (mm):	
No 30	0,595	1,45	0,73%	2,01%	98,00%			D30: (mm):	
No 40	0,420	1,55	0,78%	2,78%	97,22%			D10: (mm):	-
No 50	0,296	1,56	0,78%	3,56%	96,44%	provided as		Cu:	
No 100	0,149	12,02	6,01%	9,57%	90,43%			Ce:	
No 200	0,075	14,00	7,00%	16,57%	83,43%			Clasificacion:	
Pla	to	166,86	83,43%	100,00%	0,00%	Contenido de	humedad (%)	SUCS: C	L
Suma	toria	200,00	100,00%			3,9	90	AASHTO: A-6	[10]

HUERTAS ESTRUCTURAS & GEOTECNIA SEL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA/YUPANQUI CHANG FRANCISCO FERNANDO TITO
UBICACION: CHICAMA - ASCOPE - LA LIBERTAD
FECHA: TRUJILLO, NOVIEMBRE DEL 2022
FECHA: TRUJILLO, NOVIEMBRE DEL 2022
DESC<u>RIPCION DE LA MUESTRA:</u>
CANTERA: MATERIAL IN SITU - PROG. 7+100
CASE DE SUBLO: ARCILLA LIGERAMENTE PLASTICA (CL.)


**Muestra:*
**Muestra:


LIMITES DE CONSISTENCIA (NTP 339.129)

LIMITE LIQUIDO					
ENSAYO N°	1	2	3	4	
Tara + suelo húmedo	69,39	54,35	53,84	67,75	
Tara + suelo seco	55,55	44,30	45,06	55.41	
Ague	13,84	10,05	8,78	12.34	
Peso de la tara	20,20	17,60	20,03	18.60	
Peso del suelo seco	35,35	26,70	25,03	36,81	
% humedad	39,16%	37.64%	35,08%	33,51%	
No golpes	12	16	26	35	
LIMITE LIQUIDO		35,28%			

LIMITE PLASTICO	IMITE PLASTICO			
ENSAYO N°	1	2		
Tara + suelo húmedo	29,12	17,85		
Tara + suelo seco	28,54	17,24		
Agua	0,58	0,61		The section is a second
Peso de la tara	25,90	14,15		
Pesa del suelo seco	2,64	3,09		
% humedad	21,97%	19,74%		
LIMITE PLASTICO	20,86%			

Limite Liquido:	35,28%
Liquido Plastico:	20,86%
Limite de Contraccion:	16,60%
Indice de Plasticidad:	14,43%

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 (044-603601) 974960020 943721150 947510463

THIAN HUERJAS MARTELL

HUEBTAS ESTRUCTURAS & CEUTECNIA SRLLaboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

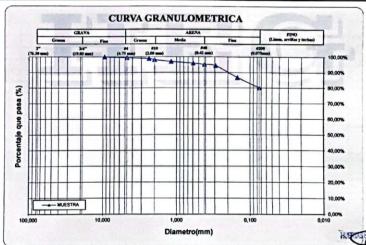
PROYECTO:	MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022	CALICATA:	C-9
TESISTA:	MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO	COTA (m):	187,51
UBICACIÓN:	CHICAMA - ASCOPE - LA LIBERTAD	PROF. (m):	1,50
FECHA:	NOVIEMBRE DEL 2022	NAF (m):	NP

REGISTRO DE PERFIL DEL SUELO

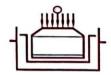
Esc.		Esp.(mts)	Descripcion Visual del Suelo	SUCS	Simbolo	Muestra
	CA	LICATA C	-9 (187.51 msnm) CAMINO ACCESO CHI	CAMITA	- PROG.	8+100
	-1,50	1,50	ARCILLA LIGERAMENTE PLASTICA COLOR BEIGE OSCURO, PARCIALMENTE HUMEDA, ESTRUCTURA COHESIVA, CONSIST. BLANDA, RETRAE AL SECADO.	(CL)		M-1
			PIPTEU/	7		
		100				
			NAF = NO SE ENCONTRO A LA PROFUNDIDAD ESTUDIADA			
					110 440	
					THE	CALSTH AN HUERTAS W

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 🔾 044-603601 🗍 974960020 943721150 947510463

HUERTAS ESTRUCTURAS & GEOTECNIA SEL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion


PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO
UBICACION: CHICAMA - ASCOPE - LA LIBERTAD
FECHA: TRUJILLO, NOVIEMBRE DEL 2022
Prof (m): 0.00 - 1.50

CANTERA:	MATERIAL IN SITU - PROG. 8+100
CLASE DE SUELO:	ARCILLA MEDIANAMENTE PLASTICA


Sondaje: C-9 Muestra: M-1

PRUEBA	GRANUL	LOMETRICA	(NTP 339.128)	
---------------	--------	------------------	---------------	--

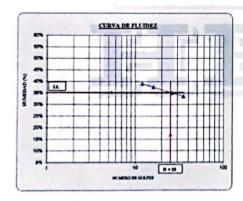
Peso Origin	al (gr)		200,00			Especific	caciones	OBSERVACIONES:	
Pérd. por la	vado(gr)		160,26			Lím	nites	Tamaño Maximo:	2"
Peso Tamiz	ado (gr)		39.75			Superior	Inferior	Limites de Consistencia:	
ABERT.	MALLA	Peso	%	% Ret	%	%	%	Limite Liquido:	35.33%
Pulg/malla	mm	Retenido	Retenido	Acumulado	Pasa	Pasa	Pasa	Limite Plastico:	20,22%
					0 0 0	0.01		Limite de Contraccion:	15,96%
2"	50,800					7 7	-2.	Indice de Plasticidad:	15,12%
1 1/2"	38,100]	
1"	25,400	9		-			1	Porcentaje en muestra:	
3/4"	19,050			100			-	% Grava (3" a #4):	0,53%
1/2"	12,700	- 9	THE PARTY AND ADDRESS OF	P-1-1				% Arena (#4 a #200):	19,34%
3/8"	9,525	0,00	0,00%	0,00%	100,00%			% Finos (Menor a #200):	80,13%
No 4	4,750	1,06	0,53%	0,53%	99,47%				
No 8	2,381	1,02	0,51%	1,04%	98,96%			Caracteristicas Granulor	netricas:
No 10	2,000	1,56	0,78%	1,82%	98,18%			D60: (mm):	-
No 16	1,191	2,32	1,16%	2,98%	97,02%			Dso: (mm):	-
No 30	0,595	2,14	1,07%	4,05%	95,95%		111	D30: (mm):	-
No 40	0,420	1,60	0,80%	4,85%	95,15%		and the same of th	D10: (mm):	-
No 50	0,296	1,60	0,80%	5,65%	94,35%			Cu:	
No 100	0,149	15,25	7,63%	13,27%	86,73%			Ce:	-
No 200	0,075	13,20	6,60%	19,87%	80,13%			Clasificacion:	
Pla	to	160,26	80,13%	100,00%	0,00%	Contenido de	humedad (%)	SUCS: C	L.
Suma	toria	200,00	100,00%			4.0	00	AASHTO: A-6	[10]

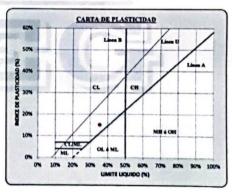
Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 🗘 044-603601 🗌 974960020 943721150 947510463

HUERTAS ESTRUCTURAS & GEOTECNIA SEL

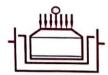
Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBIERTAD, 2022
TESISTA, MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO
URICACIONO CHICAMA - ASCOPE - LA LIBERTAD
FECHA. TRUILLO, NOVEMBRE DEL 2022
DESCRIPCION DE LA MUESTRA,
CANTERA MATERIAL IN SITU- PROG 8-100
CASE DE SUELO ARCILLA MEDIANAMENTE PLASTICA (CL)


CASE DE SUELO ARCILLA MEDIANAMENTE PLASTICA (CL)


LIMITES DE CONSISTENCIA (NTP 339.129)

ENSAYO Nº	1	2	3	4	
Tara + suelo húmedo	72,92	54,38	53,84	70,17	
Tara + suelo seco	58,10	44,31	45,05	57,20	
Aqua	14,82	10,05	8,79	12,97	
Peso de la tera	20,20	17,60	20,03	18,60	
Peso del suelo seco	37,90	26,71	25,02	38,60	
% humeded	39,10%	37,63%	35,13%	33,60%	
No polpes	12	16	26	35	
LIMITE LIQUIDO	35,33%				


ENSATO N°	1	2	
Tara + suelo húmedo	29,10	17,86	
Tara + susto seco	28,55	17,25	
Agua	0,55	0,61	
Peso de la tara	25,90	14,15	
Perso del suelo seco	2,65	3,10	
% humeded	20,75%	19,68%	
LMITE PLASTICO	20,22%		

RESULTADOS:	
Limite Liquido:	36,33%
Liquido Plastico:	20,22%
Limite de Contraccion:	16,96%
Indice de Plasticidad:	15,12%

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 🔾 044-603601 🗌 974960020 943721150 947510463

Huertas estructuras a geotecnia sal

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

ENSAYO DE PROCTOR MODIFICADO (NORMA ASTM D-1557) TIPO A

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO UBICACION: CHICAMITA - LA LIBERTAD FECHA: TRUJILLO, NOVIEMBRE DEL 2022 CANTERA: MATERIAL IN SITU

NUMERO DE GOLPES Y CARACTERISTICAS DEL MOLDE: GOLPES/CAPA 5/25

MUESTRA: CALICATA MUESTRA SUCS.

M-1 CL

MARTILLO:

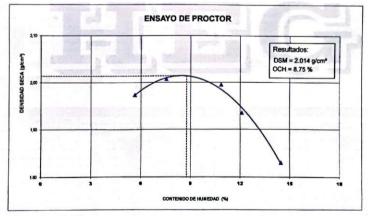
DIMENSIONES MOLDE:
Diámetro: 10,20 cm
Altura: 11,60 cm
Volumen: 947,85 cm

PESO: CAIDA

CONTENIDO DE HUMEDAD Y DENSIDAD SECA:

DETERMINACION DEL CONTENIDO DE HUMEDAD

MUESTRA No	1	2	3	4	6
Tara No	1	2	3	4	5
Peso Tara + Suelo Húmedo (g)	85,25	74,25	65,66	86,32	64,33
Peso Tara + Suelo Seco (g)	81,80	71,00	62,00	79,70	58,00
Peso del Agua (g)	3.45	3,25	3,66	6,62	6,33
Peso tara (g)	20,50	27,79	28,22	24,94	14,21
Peso Suelo Seco (g)	61,30	43,21	33,78	54,76	43,79
Contenido de humedad (%)	5,63	7,52	10.83	12.09	14.46


DETERMINACION DE LA DENSIDAD

MUESTRA No	1	2	3	4	6
Peso Molde+Peso Suelo Húmedo (g)	3980	4050	4100	4060	3990
Peso Molde (g)	2004	2004	2004	2004	2004
Peso Suelo Húmedo (g)	1976	2046	2096	2056	1986
Volumen Suelo Húrnedo (g)	947,85	947,85	947.85	947,85	947,85
Densidad Humeda (g/cm²)	2,08	2,18	2.21	2.17	2,10
Densidad Seca (g/cm³)	1.97	2.01	2.00	194	1.83

RESULTADOS:

DSM (g/cm²) OCH (%):

DSM = Densidad seca máxima OCH = Optimo contenido de I

El laboratorio no ha intervenido en la exploración y muestreo, solo se ha limitado a realizar el ensayo ind la muestra entregada, por tanto; solo responde por los resutados obtenidos en dicha muestra.

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 📞 044-603601 🗍 974960020

943721150 947510463

HUERTAS ESTRUCTURAS & GEOTECNIA SAL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

ENSAYO DE RELACION DE SOPORTE DE CALIFORNIA (CBR) NORMA ASTM D-1883

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO
UBICACION: CHICAMITA - LA LIBERTAD
FECHA: TRUJILLO, NOVIEMBRE DEL 2022
CANTERA: MATERIAL IN SITU

Pag. 1/2

MUESTRA:		MOLDE CBR	
CALICATA:	C-9	Peso del molde (g) =	4191
MUESTRA:	M-1	Diametro del molde (cm) =	15,24
SUCS:	a.	Altum del melde sin enille (em) -	17.70

ENSAYO DE COMPACTACION

Molde			2		3	
Número de capas	5		5		5	
Número de golpes por capa	56		25		12	
Sobrecarga (g)	4540		4540		4540	
Condición	Antes de empapar	Desp. de empapar	Antes de empapar	Desp. de empapar	Antes de empapar	Desp. de empapar
Muestra húmeda + molde (g)	11680		11250		10750	
Peso del molde (g)	4191		4191		4191	
Peso de muestra húmeda (g)	7489		7059		6559	
Volúmen de la muestra (cm3)	3243,3	1	3243.3		3243.3	No.
Densidad húmeda (g/cm³)	2,31		2,18		2,02	

CONTENIDO DE HUMEDAD

Tara Nº	THE REAL PROPERTY.	2	3
Muestra humeda + tara (g)	68,02	61,44	60,1
Muestra seca + tara (g)	64,00	58,20	57,00
Peso del agua (g)	4,02	3,24	3,10
Peso de la tara (g)	19,00	20,20	18,76
Muestra seca (g)	45,00	38,00	38,24
Contenido de humedad (%)	8,93%	8,53%	8,11%
Densidad seca (g/cm³)	2,12	2,01	1,87

ENSAYO DE EXPANSIÓN Factor de conversión Dial, F = 0,001 pulg

Molde			A DESCRIPTION OF	THE REAL PROPERTY.	2	THE STREET	3
Sobrec	arga (g)	4540		4	540	4	540
Número de g	olpes por capa	5	56 25		25	12	
Fecha	Tiempo (h)	Lectura del dial	Hincham. (mm)	Lectura del dial	Hincham. (mm)	Lectura del dial	Hincham. (mm)
08/11/2022	0	0,00	0,00	0,00	0,00	0,00	0,00
09/11/2022	24	66,32	1,68	208,25	5,29	250,50	6,36
10/11/2022	48	152,50	3,87	288,25	7,32	326,30	8,29
11/11/2022	72	161,20	4,09	299,30	7,60	329,30	8,36
% de E	xpansión	2,3	0%	4,	28%	4	70%

ENSAYO DE CARGA - PENETRACIÓN Diámetro del pistón de penetración = Área del piston =

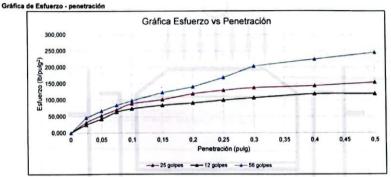
5,08 cm 20,27 cm²

Mo	ilde	THE RESERVE OF	1	国际公共		2			3	1000000
Número de go	olpes por capa	CONTRACT OF	56			25			12	
Penetración (pulg)	Patrón (kgf/cm²)	Carga (kg)	Esfuerzo (kgf/cm²)	Esfuerzo (lb/pulg ²)	Carga (kg)	Esfuerzo (kgf/cm²)	Esfuerzo (lb/pulg ²)	Carga (kg)	Esfuerzo (kgf/cm²)	Esfuerzo (lb/pulg ²
0		0	0,000	0,000	0	0,000	0,000	0	0,000	0,000
0,025		65	3,207	45,614	45	2,220	31,579	35	1,727	24,561
0.050	791	95	4,687	66,666	75	3,700	52,631	60	2,960	42,105
0,075		120	5,921	84,210	101	4,983	70,877	90	4,440	63,158
0,100	70,31	140	6,907	98,245	127	6,266	89,122	105	5,181	73,684
0,150		175	8,634	122,806	145	7,154	101,754	120	5,921	84,210
0,200	105,46	200	9,868	140,350	170	8,387	119,298	130	6,414	91,228
0,250		240	11,841	168,420	185	9,128	129,824	142	7,006	99,649
0,300		290	14,308	203,508	196	9,670	137,543	152	7,499	106,666
0,400		320	15,788	224,560	205	10,114	143,859	169	8,338	118,596
0.500		350	17.268	245.613	220	10.854	154,385	170	8,387	110,298

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 044-603601 974960020 943721150 947510463

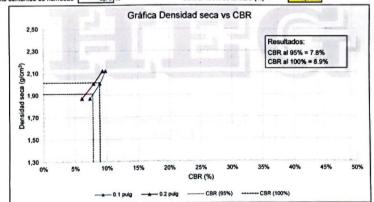
212

HUERTAS ESTRUCTURAS & GEOTECNIA SRL


Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

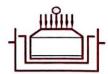
ENSAYO DE RELACION DE SOPORTE DE CALIFORNIA (CBR) NORMA ASTM D-1883

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO
UBICACION: CHICAMITA - LA LIBERTAD
FECHA: TRUILLO, NOVIEMBRE DEL 2022
CANTERA: MATERIAL IN SITU


Pag. 2/2

Molde	1 a 56		2 25		3	
Número de golpes por capa						
Penetracion (pulg)	0,1	0,2	0,1	0,2	0,1	0,2
Patrón (kgf/cm²)	70,31	105,46	70,31	105,46	70,31	105,46
Esfuerzo ensayo (kgf/cm²)	6,907	9,868	6,266	8,387	5,181	6,414
CBR (%)	9.82%	9.36%	8,91%	7,95%	7,37%	6,08%

Gráfica Densidad seca - CBR



NOTA: El laborat

FRIAS WARTELL

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 🕥 044-603601 🗍 974960020 943721150 947510463

HUERTAS ESTRUCTURAS & GEOTECNIA SEL Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO:	MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022	CALICATA:	C-10
TESISTA:	MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO	COTA (m):	191,46
UBICACIÓN: FECHA:	CHICAMA - ASCOPE - LA LIBERTAD NOVIEMBRE DEL 2022	PROF. (m): NAF (m):	1,50 NP

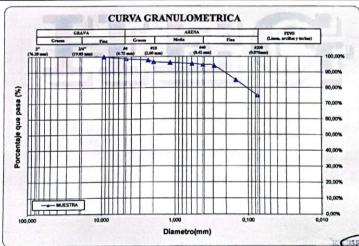
REGISTRO DE PERFIL DEL SUELO

Esc.		Esp.(mts)	Descripcion Visual del Suelo	SUCS	Simbolo	Muestra
	CAI	LICATA C-	10 (191.46 msnm) CAMINO ACCESO CH	ICAMITA	- PROG.	9+100
	-1,50	1,50	ARCILLA LIGERAMENTE PLASTICA COLOR BEIGE OSCURO, PARCIALMENTE HUMEDA, ESTRUCTURA COHESIVA, CONSIST. BLANDA, RETRAE AL SECADO.	(CL)		M-1
					. I	
		-544	percentances, presents, pro-	* Angelon	Total .	
			NAF = NO SE ENCONTRO A LA PROFUNDIDAD ESTUDIADA			
				tesi .	100	ALERTAS BARTELL 8105

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 🔾 044-603601 🗌 974960020 943721150 947510463

HUERTAS ESTRUCTURAS & GEOTECNIA SEL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion


PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO
UBICACION: CHICAMA - ASCOPE - LA LIBERTAD
FECHA: TRUJILLO, NOVIEMBRE DEL 2022
Prof (m): 0.00 - 1.50

MATERIAL IN SITU - PROG. 9+100 CLASE DE SUELO: ARCILLA MEDIANAMENTE PLASTICA Sondaie: C-10 Muestra:

M-1

THE COURT OF THE C	PRUEBA	GRANUL	OMETRICA	(NTP 339.128
--	--------	--------	----------	--------------

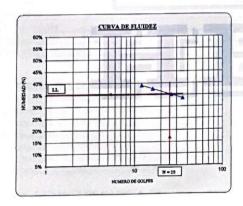
Peso Origin	al (gr)		200,00			Especific	caciones	OBSERVACIONES:	
Pérd, por la	vado(gr)		150,05			Lim	nites	Tamaño Maximo:	2"
Peso Tamiz	ado (gr)		49,95			Superior	Inferior	Limites de Consistencia:	
ABERT.	MALLA	Peso	%	% Ret	%	%	%	Limite Liquido:	35,36%
Pulg/malla	mm	Retenido	Retenido	Acumulado	Pasa	Pasa	Pasa	Limite Plastico:	20,33%
				100	0.00	0.5		Limite de Contraccion:	16,07%
2"	50,800				1 1 1	1 9		Indice de Plasticidad:	15,02%
1 1/2"	38,100								
1"	25,400		J. Branch					Porcentaje en muestra:	
3/4"	19,050							% Grava (3" a #4):	1,30%
1/2"	12,700			1			10	% Arena (#4 a #200):	23,68%
3/8"	9,525	0,00	0,00%	0,00%	100,00%			% Finos (Menor a #200):	75,03%
No 4	4,750	2,60	1,30%	1,30%	98,70%			The Bases	
No 8	2,381	1,80	0,90%	2,20%	97,80%		9	Caracteristicas Granulon	netricas:
No 10	2,000	2,20	1,10%	3,30%	96,70%		Land of	D60: (mm):	-
No 16	1,191	1,02	0,51%	3,81%	96,19%			Dso: (mm):	-
No 30	0,595	1,30	0,65%	4,46%	95,54%		7	D30: (mm):	
No 40	0,420	1,33	0,67%	5,13%	94,88%		The same of	D10: (mm):	-
No 50	0,296	1,45	0,73%	5,85%	94,15%		Printer address.	Cu:	-
No 100	0,149	18,25	9,13%	14,98%	85,03%			Cc:	-
No 200	0,075	20,00	10,00%	24,98%	75,03%			Clasificacion:	
Pla	ito	150,05	75,03%	100,00%	0,00%	Contenido de	humedad (%)	SUCS: C	L
Suma	itoria	200,00	100,00%			5,3	20	AASHTO: A-6	[10]

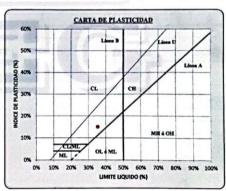
Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 📞 044-603601 🗌 974960020 943721150 947510463

HUERTAS ESTRUCTURAS & GEOTECNIA SRL

Laboratorio Geotecnico, Estructural y Ensayos de Materiales de Construccion

PROYECTO: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022
TESISTA: MERCEDES FERNANDEZ DANIELA PAOLA / YUPANQUI CHANG FRANCISCO FERNANDO TITO
UBICACION: COPICAMA: - ASCOPE - LA LIBERTAD
FECHA: TRUJILLO, NOVIEMBRE DEL 2022
DESCRIPCION DE LA MUESTRA;
CANTERA: MATERIAL IN STUD. PROG. 9-100
CLASE DE SUELO: ARCILLA MEDIANAMENTE PLASTICA (CL)


CLASE DE SUELO: ARCILLA MEDIANAMENTE PLASTICA (CL)


LIMITES DE CONSISTENCIA (NTP 339.129)

ENSAYO N°	1	2	3	4		
Tara + suelo húmedo	80,14	54,37	53,86	84,90		
Tara + suelo seco	63,30	44,32	45,06	68.20		
Agua	16,84	10,05	8,80	16,70		
Peso de la tara	20,20	17,60	20,03	18.60		
Peso del suelo seco	43,10	26,72	25,03	49,60		
% humedad	39,07%	37,61%	35,16%	33,66%		
No golpes	12	18	26	35		
LIMITE LIQUIDO	35,36%					

ENSAYO N°	1	2		
Tara + suelo húmedo	29,12	17,87		
Tara + suelo seco	28,56	17,26		
Agua	0,56	0,61		
Peso de la tara	25,90	14,15		
Peso del suelo seco	2,66	3,11		
% humedad	21,05%	19,61%	100	
LIMITE PLASTICO	20,33%			

Limite Liquido:	36,36%
Liquido Plastico:	20,33%
Limite de Contraccion:	16,07%
Indice de Plasticidad:	15,02%

Calle Paisajista s/n Mz. i Lote 12 Urb. Upao II - Trujillo R.U.C. 20607116220 🔾 044-603601 🗍 974960020 943721150 947510463

AN HUERIAS MARTELL

PANEL FOTOGRAFICO

FOTO Nº 1

CALICATA DE EXPLORACION SUBTERRANEA, REALIZADA AL TERRENO UBICADO EN EL CAMINO DE ACCESO A CHICAMITA - DIST. CHICAMA - PROV. ASCOPE - DEP. LA LIBERTAD, DONDE SE PROYECTA LA OBRA DENOMINADA: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022

FOTO № 2
CALICATA DE EXPLORACION SUBTERRANEA, REALIZADA AL TERRENO UBICADO EN
EL CAMINO DE ACCESO A CHICAMITA - DIST. CHICAMA - PROV. ASCOPE - DEP. LA
LIBERTAD, DONDE SE PROYECTA LA OBRA DENOMINADA: MEJORAMIENTO DEL
ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL
METODO AASHTO 93. DISTRITO DE CHICAMA. LA LIBERTAD. 2022

PANEL FOTOGRAFICO

FOTO N° 3

CALICATA DE EXPLORACION SUBTERRANEA, REALIZADA AL TERRENO UBICADO EN EL CAMINO DE ACCESO A CHICAMITA - DIST. CHICAMA - PROV. ASCOPE - DEP. LA LIBERTAD, DONDE SE PROYECTA LA OBRA DENOMINADA: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022

FOTO N° 4 CALICATA DE EXPLORACION SUBTERRANEA, REALIZADA AL TERRENO UBICADO EN EL CAMINO DE ACCESO A CHICAMITA - DIST. CHICAMA - PROV. ASCOPE - DEP. LA LIBERTAD, DONDE SE PROYECTA LA OBRA DENOMINADA: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93. DISTRITO DE CHICAMA. LA LIBERTAD. 2022

PANEL FOTOGRAFICO

FOTO N° 5

CALICATA DE EXPLORACION SUBTERRANEA, REALIZADA AL TERRENO UBICADO EN EL CAMINO DE ACCESO A CHICAMITA - DIST. CHICAMA - PROV. ASCOPE - DEP. LA LIBERTAD, DONDE SE PROYECTA LA OBRA DENOMINADA: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93, DISTRITO DE CHICAMA, LA LIBERTAD, 2022

FOTO N° 6 CALICATA DE EXPLORACION SUBTERRANEA, REALIZADA AL TERRENO UBICADO EN EL CAMINO DE ACCESO A CHICAMITA - DIST. CHICAMA - PROV. ASCOPE - DEP. LA LIBERTAD, DONDE SE PROYECTA LA OBRA DENOMINADA: MEJORAMIENTO DEL ESTADO DE CONDICION DE LA CARRETERA ACCESO CHICAMITA MEDIANTE EL METODO AASHTO 93. DISTRITO DE CHICAMA. LA LIBERTAD, 2022

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, PANDURO ALVARADO ELKA, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - TRUJILLO, asesor de Tesis titulada: "Diseño de pavimento flexible de la carretera acceso a Chicamita mediante el método AASHTO 93 Distrito de Chicama, La Libertad 2022.", cuyos autores son YUPANQUI CHANG FRANCISCO FERNANDO TITO, MERCEDES FERNANDEZ DANIELA PAOLA, constato que la investigación tiene un índice de similitud de 19.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

TRUJILLO, 23 de Noviembre del 2022

Apellidos y Nombres del Asesor:	Firma
PANDURO ALVARADO ELKA	Firmado electrónicamente
DNI: 18081570	por: EPANDUROAL el 30-
ORCID: 0000-0003-4866-8707	11-2022 22:49:26

Código documento Trilce: TRI - 0452150

