

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Incorporación de ceniza de madera de fondo para estabilizar subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE: Ingeniero Civil

AUTORES:

Nuñez Pianto, Edgar (orcid.org/0000-0002-0081-8481)

Quispe Gallegos, Cesar Juan (orcid.org/0000-0001-8030-1054)

ASESOR:

Mg. Medrano Sánchez, Emilio José (orcid.org/0000-0003-0002-5876)

LÍNEA DE INVESTIGACIÓN:

Diseño de Infraestructura Vial

LINEA DE RESPONSABILIDAD SOCIAL UNIVERSITARIA

Desarrollo económico, empleo y emprendimiento

LIMA - PERÚ

2023

Dedicatoria

Esta investigación está dedicada a Dios todo poderoso, a nuestros padres, hermanos, amigos ya que ellos son los principales protagonistas de este sueño alcanzado.

Agradecimiento

Gracias a la Universidad Cesar Vallejo, a todas las personas que colaboraron en el desarrollo de este trabajo en especial a nuestro asesor M.Sc. Ing. Emilio José, Medrano Sánchez; principal colaborador que se esforzó en darnos lo mejor de sus enseñanzas y poder culminar este proyecto de investigación.

Índice de contenidos

Dedicatoria	ii
Agradecimiento	iii
Índice de contenidos	iv
Índice de Tablas	v
Índice de gráficos y figuras	vi
Resumen	vii
Abstract	viii
I. INTRODUCCIÓN	9
II. MARCO TEÓRICO	14
III. METODOLOGÍA	28
3.1 Tipo y Diseño de Investigación	28
3.2 Variables y Operacionalización	29
3.3 Población y Muestra	30
3.4 Técnicas e instrumento de recolección de datos	31
3.5 Procedimiento	32
3.6 Método de análisis de datos	33
3.7 Aspectos éticos	33
IV. RESULTADOS	34
V. DISCUSIÓN	60
VI. CONCLUSIONES	63
VII.RECOMENDACIONES	64
REFERENCIAS	65
ANEXOS	71

Índice de Tablas

Tabla N°01	Nomenclatura de los suelos granulares según SUCS	21
Tabla N°02	Nomenclatura de los suelos finos según SUCS	21
Tabla N°03	Categorización de suelos en función a su plasticidad	25
Tabla N°04	Clasificación de valores de CBR	26
Tabla N°05	Componentes químicos de la ceniza de madera y cemento portland	35
	Resultados del ensayo de PDC	
Tabla N°07	Características de los suelos analizados	36
Tabla N°08	Resultados del ensayo de Proctor modificado	37
	Resultados del ensayo de RCS y CBR	
Tabla N°10	Resultados del Proctor modificado en C-1, C-2, C-3, C-4	38
	Resultados del Proctor modificado-promedio	
Tabla N°12	Resultados de la resistencia a compresión C-1,C-2,C-3,C-4	42
Tabla N°13	Resultado promedio de la resistencia a la compresión	43
Tabla N°14	Resultados del CBR de la MDS en las calicatas	44
Tabla N°15	Resultados del promedio de CBR	45
	Valores para CBR de la MDS de las muestras	
Tabla N°17	Valor promedio para CBR de MDS de muestras	48
Tabla N°18	Resumen de resultados y porcentaje de variación	49
Tabla N°19	Volumen y peso de suelo a estabilizar para distintas alturas	50
Tabla N°20	Costo de insumo para mejoramiento de subrasante con cemento	50
Tabla N°21	Costo de insumo para mejoramiento de subrasante con CP y CMF	51
Tabla N°22	Justificación estadística de CMF y Propiedades mecánicas	53
	Justificación de normalidad para la MDS	
Tabla N°24	Correlación entre CMF y la MDS	55
	Justificación de normalidad para la RCS	
Tabla N°26	Correlación de CMF y de la RCS	57
Tabla N°27	Pruebas de normalidad para la CBR al 95% de la MDS	58
Tabla N°28	Correlación de CMF y el CBR.	59

Índice de gráficos y figuras

Figura N°01	Abaco de la carta de plasticidad	.22
Figura N°02	Proceso de estabilización y mejoramiento de suelos	.25
Figura N°03	Suelo limoso	.27
Figura N°04	Ceniza de madera de fondo	.27
Figura N°05	Esquema de proceso de trabajo	.33
Figura N°06	Diagrama de resultados de penetración dinámica de cono	.36
Figura N°07	Tendencia del valor promedio de la MDS	.40
Figura N°08	Tendencia del valor promedio del OCH	.41
Figura N°09	Tendencia del valor promedio de la RCS	.43
Figura N°10	Tendencia del valor promedio del CBR	.46
Figura N°11	Dosificación optima promedio en función al CBR 95% de la MDS	.49
Figura N°12:	Análisis de costo de estabilización con Cemento y CMF	.51

Resumen

La presente tesis tuvo como finalidad de evaluar la influencia de la incorporación de ceniza de madera de fondo (CMF) para mejorar las propiedades de la subrasante limosa de la trocha carrozable Mayocc-Trigopampa en la cual se incorporó en diferentes dosificaciones ceniza de madera de fondo en porcentajes de 0.0%, 2.5%, 5.0% y 7.5%. La investigación es tipo aplicada, diseño experimental, nivel correlacional y con un enfoque cuantitativo. La población de estudio está conformada por el material de la subrasante la vía Mayocc-Trigopampa km:11+150 al 12+250, cuyas muestras fueron en total 04 calicatas, a las cuales se realizaron ensayos de granulometría, clasificación según SUCS y AASHTO, ensayos para determinar el contenido de humedad, límites de consistencia, ensayos de compactación, Proctor Modificado, resistencia a la compresión simple y ensayo de CBR. Los resultados encontrados en laboratorio, señalan que con la incorporación del 5.0% CMF se consiguen los mejores valores en las propiedades físicas y mecánicas de la subrasante limosa, donde el óptimo contenido de humedad sufre un incremento en el rango de 23.95%, la máxima densidad seca de la muestra sufre una reducción que oscila en el rango de 4.21%, el CBR de la muestra sufre un incremento de hasta un 66.95%, el valor de la resistencia a la compresión simple llega a incrementarse en el rango de 58.28%. Por lo tanto, se concluye que las propiedades físico mecánicas de la subrasante limosa mejoran con la incorporación de CMF, además de ser una alternativa económica para su empleo.

Palabras clave: Estabilización, subrasante, suelo, Ceniza de madera de fondo

Abstract

The purpose of this work was to evaluate the influence of the incorporation of bottom wood ash (CMF) for the improvement of the silty subgrade of the Mayocc-Trigopampa carriageway trail, in which bottom wood ash was incorporated in different dosages in percentages of 0.0%, 2.5%, 5.0% and 7.5%. The research is applied type, experimental design, correlational level and with a quantitative approach. The study population is made up of the material from the subgrade of the Mayocc-Trigopampa road km: 11+150 to 12+250, whose samples were a total of 04 pits, to which granulometry tests were carried out, classification to SUCS and AASHTO, tests to determine moisture content, consistency limits, compaction tests, Modified Proctor, simple compressive strength and CBR test. The results found in the laboratory indicate that with the incorporation of 5.0% CMF the best values are achieved in the mechanical properties of the silty subgrade, where the optimum moisture content suffers an increase in the range of 23.95%, the maximum density The dry sample of the sample suffers a reduction that oscillates in the range of 4.21%, the CBR of the sample suffers an increase of up to 66.95%, the value of the resistance to simple compression increases in the range of 58.28%. Therefore, it is concluded that the physical-mechanical properties of the silty subgrade improve with the incorporation of CMF, in addition to being an economical alternative for its use.

Keywords: Stabilization, subgrade, soil, background wood ash

I. INTRODUCCIÓN

En la actualidad se viene incrementando la construcción de carreteras, muchas de las cuales presentan problemas a causa de material limoso presente en la subrasante, como es de conocimiento estos suelos no tienen optimas propiedades físicas, ni mecánicas, dichas propiedades repercuten en la resistencia que requiere el suelo para tener un buen desempeño como vía de comunicación.

En la actualidad en la trocha carrozable del tramo Mayocc-Trigopampa en la comunidad de compañía, en el departamento de Ayacucho viene presentando problemas relacionados con el suelo de la carretera no pavimentada puesto que se tiene una subrasante limosa de baja capacidad de resistencia, produciendo imperfecciones, huecos, baches en la estructura que perjudica a todas las personas que circulan o emplean esta vía de comunicación, incrementando el tiempo y costo del transporte. Por lo anterior mencionado esta investigación busca resolver este problema a través de un adecuado análisis de la resistencia del suelo que será determinado a través de diferentes métodos (in situ, laboratorio y correlaciones), tomando en consideración el análisis por durabilidad, además de la incorporación de ceniza de madera de fondo (CMF) los cuales son considerados desechos y son abundantes en la zona de estudio para emplearlos a través de dosificaciones y mejorar los parámetros mecánicos del suelo en la carretera no pavimentada.

A nivel mundial siendo precisos en el país de India, en la ciudad de Maharastra en un artículo de investigación señalan que "existen carreteras que se encuentran asfaltadas y no asfaltadas que se encuentran en mal estado a causa de la presencia de suelos finos y limosos, estos muestran según sus rasgos un bajo porcentaje de capacidad de soporte y que, en contacto con el agua, sufren una diferencia y cambios en su volumetría lo que ocasiona problemas de expansión en las carreteras" (Nikhil et al, 2015, p.2).

Según Martínez (2019), en el artículo realizado en Vietnam, en la ciudad de Hanoi. Señala que un suelo arcilloso y limoso posee características muy plásticas, que son de baja capacidad de soporte, que tienen cierto grado de sufrir cambios y modificaciones volumétricas que son ocasionadas por las variaciones en la humedad, produciendo el fenómeno de expansión como consecuencia del contacto con el agua, cuyo efecto es provocar relajación de los esfuerzos, aumento del volumen y posible colapso del suelo.

Según Silva (2016), en su artículo de investigación señala que "en el mundo alrededor del 80% de las carreteras se encuentran sin pavimentar; además, de acuerdo a los datos proporcionados por Asociación Americana de Oficiales de Carreteras Estatales y Transportes (AASHTO) aproximadamente el 25% de las carreteras pavimentadas presentan patologías debido a temas relacionados con el diseño, soporte, resistencia y durabilidad del suelo"

A nivel regional en Argentina, en la ciudad de Córdova, según Vettorelo y Clariá (2015), en el artículo que desarrollaron señalan que "en los últimos tiempos el hombre ha venido trabajando en un sin fin de metodologías para poder mejorar las características y/o propiedades de los suelos, principalmente su resistencia, durabilidad y soporte, por medio de la incorporación de materiales de refuerzo, como las fibras; cuyos insumos provienen del procesamiento de algún desperdicio" (p.27).

Según Coppola y Lorenzi (2016), en el estado de Durango, en el artículo de investigación que desarrollaron en México señalan que "en el presente siglo el tema de sostenibilidad ha adquirido relevancia para su estudio en el sector de la construcción, motivo por el cual el uso de biomateriales está ganando campo e interés en la ingeniería de pavimentos desde hace algunos años" (p.1).

Según Chávez (2015) en el país de Colombia, en el estado de Antioquia, en su artículo de investigación indica que: "la subrasante analizados en esta zona están formados por suelos limosos, además que requieren capas estructurales de mayor dimensión para el pavimento, resultando de mayor tamaño a los utilizados regularmente, motivo por el cual busca otras alternativas de estabilización y de esta manera poder mejorar la propiedad de capacidad de soporte del suelo".

A nivel nacional, en la ciudad de Chimbote, según Carbajal (2018), en su tesis desarrollada, indica que en el Perú "el mal comportamiento a nivel estructural de las carreteras que no se encuentran pavimentadas es consecuencia del empleo de materiales inadecuados cuyas características físico-mecánicas son insuficientes para la carga de diseño que debe soporta dicha carretera".

Por cuanto se ha descrito en los párrafos anteriores se ha planteado como problema general: ¿Cómo influye la incorporación de ceniza de madera de fondo para el mejoramiento de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022? De igual manera el problema específico 1: ¿Cómo influye la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la Máxima densidad seca de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022? De manera similar el problema específico 2: ¿Como influye la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la resistencia a la compresión simple de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022?, así mismo el problema específico 3: ¿Como influye la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la capacidad de soporte de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022?

Así mismo la justificación teórica planteada para el presente proyecto de investigación es cooperar y contribuir al conocimiento de la ingeniería, sobre el efecto que producen los suelos limosos sobre la capacidad de soporte del suelo buscando encontrar soluciones que permitan las distintas propiedades de la subrasante (suelo) y de esta manera las carreteras no pavimentadas sean las

adecuadas y puedan cumplir el fin por las cuales fueron construidas. En cuanto a la justificación social, es que se busca mejorar las carreteras usadas por la comunidad, con el propósito de que resistentes y durables, además que cumplan con la normativa vigente del país. Mientras que la justificación metodológica tiene por finalidad proponer nuevas consideraciones en la investigación aparte de los métodos conocidos para mejorar y/o estabilizar suelos, que han sido de utilidad para presentar esta propuesta de utilizar residuos de madera.

Como objetivo general de la investigación se tiene, determinar la influencia de la incorporación de ceniza de madera de fondo para el mejoramiento de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022. De manera similar el objetivo específico 1 fue, Determinar la influencia de la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la Máxima densidad seca de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022. Mientras que el objetivo específico 2 fue, Determinar la influencia de la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la resistencia a la compresión simple de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022. De igual manera el objetivo específico 3 fue, Determinar la influencia de la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la capacidad de soporte de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.

De manera similar se planteó la hipótesis general: Existe influencia de la incorporación de ceniza de madera de fondo para el mejoramiento de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.De manera similar la hipótesis específica 1: Existe influencia de la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la Máxima densidad seca de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022. Así mismo la hipótesis específica 2: Existe influencia de la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la resistencia a la compresión simple de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022. De igual manera la hipótesis específica 3:

Existe influencia de la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la capacidad de soporte de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.

II. MARCO TEÓRICO

De acuerdo a los antecedentes internacionales en Asia, en el país de Pakistán, ciudad de Skardu, según el artículo de investigación titulado: "Estabilización de suelos en la región de Skardu utilizando residuos y cenizas de madera". Cuyo objetivo fue, examinar y evaluar el efecto de la ceniza de madera producida localmente para la estabilización del suelo que se encuentra en Skardu. región de Gilgit Baltistán, Pakistán. Donde la metodología empleada fue del tipo experimental, el tipo de investigación fue aplicada, con nivel de investigación explicativo, donde la población fue los suelos arcillosos y limosos CL-ML y CL de la región Skardu. Los resultados indican que para el suelo arcilloso analizado se obtuvieron valores para la resistencia a la compresión (RCS) de 240.8 kPa, 447.8 kPa, 430.8 kPa, 388.8 kPa, 383.7kPa con la incorporación de 5%, 10%, 15%, 20% de ceniza de madera (CMF) respectivamente. Mientras que para el CBR se obtuvo valores de 6.60%, 10.0%, 11.60%, 10.30%, 10.10% con la incorporación de 5%, 10%, 15%, 20% de ceniza respectivamente. El OCH tuvo valores de 12.20%, 14.30%, 16.40%, 18.23%, 21.30% con la incorporación de 5%, 10%, 15%, 20% de CMF respectivamente, mientras que la MDS obtuvo los valores de 1.95 gr/cm3. 1.80 gr/cm3, 1.75 gr/cm3, 1.69 gr/cm3, 1.65 gr/cm3 con la incorporación de 5%, 10%, 15%, 20% de ceniza respectivamente. Cuya conclusión fue que hay un incremento de valores de la RCS, CBR y OCH, mientras los valores de MDS se reducen con un valor óptimo de 10% de Ceniza de madera (Muhammad et. al, 2019).

De igual manera en EE. UU, en la ciudad de Luisiana, según el artículo de investigación cuyo titulo es: "Aplicación de suelos expansivos estabilizados con lignina en subrasantes de carreteras". Cuyo objetivo es determinar y evaluar las características mecánicas y físicas de la arcilla de Moreland, incorporada y estabilizada con lignina. Donde la metodología empleada fue del tipo experimental, el tipo de investigación fue aplicada, con nivel de investigación explicativo, donde la población fue la arcilla de la localidad de Luisiana. Los resultados indican que para el material arcilloso analizado obtuvo un Limite plástico y liquido del 22% y 68%, respectivamente. Mientras que la prueba con 5% de lignina, consiguió un

límite líquido y plástico del 67% y 23% respectivamente, cuya conclusión fue que la lignina al incorporarse sobre el suelo genera una disminución del límite líquido, y los valores para el imite plástico se mantuvieron constantes (Sarker et. al, 2021).

Así mismo en el país de India, en la capital de Bangalore en el artículo de investigación cuyo titulo es: "Suelo de subrasante estabilizado con ceniza de fondo mezclado con ceniza de bagazo de caña de azúcar". Cuyo objetivo fue evaluar la utilización de ceniza de fondo junto con la de bagazo de caña de azúcar como para estabilizar un suelo fino. Donde la metodología empleada fue del tipo experimental, la investigación fue aplicada, con nivel explicativo; cuya población fue el algodón negro de la localidad de Coimbatore. Los resultados que se consiguieron indican que el terreno arcilloso con incorporación del 30%. de cenizas de fondo y bagazo, además de 3.0% de cemento aumentan la resistencia al corte del suelo en valores de 10.0%, 15.0% y 30.0% respectivamente. La conclusión fue que cada vez que se aumentaba la cantidad de ceniza de fondo y la de bagazo de caña, los valores de la resistencia al corte, se incrementaba (Kumar et. al, 2022).

Así mismo en India, en el estado de Bihar, en el artículo de investigación titulado: "Estabilización de suelo aluvial para subrasante utilizando ceniza de cascarilla de arroz, ceniza de bagazo de caña de azúcar y ceniza de estiércol de vaca para caminos rurales". Cuyo objetivo fue evaluar el efecto de las cenizas de fondo las propiedades de los suelos orgánicos. Donde la metodología empleada fue del tipo experimental, investigación aplicada, de nivel explicativo. Cuyos resultados fueron, que los valores del CBR y UCS se incrementan con la incorporación de las cenizas del bagazo de caña de azúcar, cascarilla de arroz y estiércol de vaca, donde el óptimo de cenizas tendría un valor de 7.5%. Cuya conclusión fue que hubo una gran mejora en los valores de Capacidad de soporte, consistencia y capacidad empleando las cenizas volantes de diferentes insumos (Yadav, 2017).

Así mismo en Asia, en el estado de Bangladesh en el artículo de investigación que lleva por título: "Estudio del comportamiento resistente de suelos orgánicos estabilizados con cenizas volantes". Donde el objetivo era determinar la eficiencia de las cenizas para estabilizar suelos. Donde la metodología contemplaba un diseño del tipo experimental, investigación aplicada, de nivel explicativo. Cuyos resultados arrojaron que las cenizas volantes producen una reducción en gran medida del índice de plasticidad (IP), mientras que hubo un incremento de los límites de consistencia del suelo. En cuanto a la máxima densidad seca, las cenizas volantes generan un incrementan en esta propiedad, mientras que el agua se reduce de manera sustancial con la incorporación de cenizas. Cuya conclusión fue que las cenizas volantes Tipo I generan más efectos positivos sobre las propiedades mecánicas de la subrasante (Bayshakhi, 2017).

Así mismo en Asia, en el país de Iraq, ciudad de misan en el artículo de investigación que lleva por título: "Efecto sustitución parcial de cenizas de madera sobre las propiedades geotécnicas de arcilla estabilizada con cemento". Cuyo objetivo era verificar el efecto de la ceniza de madera y el cemento Portland agregando en proporciones del 2%, 4%, 6%, 8%, 10% sobre las propiedades geotécnicas del suelo arcilloso. Donde la metodología contemplaba un diseño del tipo experimental, investigación aplicada, de nivel explicativo. Cuyos resultados arrojaron que las cenizas de madera producen una reducción del índice de deformabilidad el cual disminuye de 1 a 0,45 con la adición de hasta un 10%. El valor de la resistencia a la compresión simple (RCS) aumenta con la incorporación de un 10 % de ceniza de madera. Cuya conclusión fue que las cenizas de madera generan más efectos positivos sobre las características mecánicas de los suelos limosos y arcillosos (Musab, 2020).

De igual forma para los antecedentes regionales tenemos que en el país de Chile, la tesis cuyo título es: "Evaluación del uso de aditivos químicos no tradicionales como estabilizadores de suelos limosos para caminos productivos de bajo volumen de tránsito". Cuyo problema general planteado fue: ¿Cuál era la efectividad del empleo de aditivos no tradicionales y aditivos tradicionales como estabilizadores mecánicos de suelos limosos utilizando una metodología específica? Donde el objetivo fue, determinar la efectividad de dos aditivos combinados con los aditivos conservadores como estabilizadores mecánicos de tres suelos limosos, empleando una determinada metodología, con enfoque cuantitativo, tipo de investigación experimental. El resultado señala una optimización en el empleo de recursos concorde al incremento de la mezcla de los aditivos. Así mismo la conclusión fue que el empleo de los aditivos químicos combinados de Oxido de calcio y cemento para estabilización produjo un incremento y optimización de las diferentes propiedades físico y mecánicas de los suelos experimentados (Nieto, 2019).

De igual manera en Colombia en la tesis titulado "Análisis comparativo del comportamiento a la resistencia de un suelo fino con adición de ceniza de cascarilla de arroz y ceniza de cascarilla de café donde el objetivo fue analizar el comportamiento de la resistencia de un suelo mejorado con cenizas de cascarilla de café y cascarilla de arroz. La metodología era de un enfoque cuantitativo, tipo descriptivo, experimental; teniendo una población a los suelos finos de Cundinamarca. Los resultados indicaron buenos valores para el CBR con adición del 18% de CCC, mientras que con la incorporación de 14% de CCA se tiene mejores resultados. Cuya conclusión es que el valor porcentual óptimo de Ceniza de Cascarilla de Café es de 10% y 4% de ceniza de cascarilla de arroz, puesto que genera un incremento de la resistencia hasta en un 257.0%, evidenciando de esta manera mejores resultados de la capacidad de soporte (Laguna y Chacón, 2020).

Así mismo en Colombia en la tesis de ingeniero civil, cuyo título es: "Estabilización de un suelo con cal y ceniza volante" donde el problema general planteado fue: ¿Influencia de la estabilización química de un suelo empleando cal y ceniza en diferentes porcentajes a través de la resistencia a la compresión y a tracción?, cuyo objetivo fue, realizar la estabilización química de un suelo a través de la incorporación de oxido de calcio y ceniza empleando diferentes porcentajes para encontrar la dosificación adecuada. Donde la metodología desarrolada fue del tipo experimental, aplicada, con un nivel de investigación explicativo. Cuyo resultado señala que existe un crecimiento de los valores de la resistencia del suelo, además de una reducción de la deformación unitaria del suelo en un valor de 7.2% a 3.4%. Cuya conclusión fue, que, con la estabilización química, el esfuerzo máximo tiende a incrementarse (Parra, 2018).

Mientras tanto en Ecuador en la tesis de pregrado de ingeniero civil, cuyo título es: "Análisis comparativo de la resistencia al corte y estabilización de suelos arenosos finos y arcillosos combinadas con ceniza de carbón" Cuyo objetivo principal fue, evaluar los efectos de la ceniza de carbón (CC) sobre la resistencia al corte de los suelos arcillosos y arenosos, donde la metodología empleada fue descriptivo, explicativo y diseño experimental. Cuyos resultados fueron que el valor del Proctor modificado, poseía una MDS de 1.54gr/cm3 y OCH de 13.40% para la primera muestra, mientras que una MDS 1.31gr/cm3 y OCH de 26.61% para la segunda muestra. Cuya conclusión fue, que al incorporar CC en el suelo se llega incrementar los valores del CBR y la propiedad de resistencia al corte (Tibiano, 2017).

En cuanto a los Antecedentes Nacionales en Puno en la tesis para lograr el título de ingeniero civil, cuyo título es: "Estabilización de suelos arcillosos en caminos vecinales en la carretera acora-jayujayu, acora, puno-2021". Donde el problema general planteado fue: ¿Como la incorporación de oxido de calcio y ceniza volante influye en la estabilidad de suelos arcillosos en caminos vecinales de la carretera Acora? Cuyo objetivo general fue, evaluar en qué medida la incorporación de oxido de calcio y ceniza volantes influye en la estabilización del suelo arcillosos de la carretera en mención. Donde la metodología desarrollada

tiene un enfoque cuantitativo, del tipo aplicado, tipo experimental y enfoque cuantitativo. Cuyos Resultados fueron, que en la primera dosificación se determinó un IP igual a 15.55%, cuyo valor incrementaba conforme aplicaban un porcentaje mayor de cal y cenizas volantes llegando aplicar 16.0% de cenizas volantes y un 5.0% de cal. Cuya conclusión obtenida fue, que, al agregar cal y cenizas volantes, aumentan positivamente los valores de la resistencia del suelo (Flores y Aquino, 2021).

De igual manera en la tesis titulada: "Mejoramiento de suelos arcillosos en subrasante mediante el uso de cenizas volantes de bagazo de caña de azúcar y cal". Cuyo objetivo general fue evaluar los cambios físicos y mecánicos con la incorporación de cenizas volantes de caña de azúcar y oxido de calcio. Donde la metodología empleada fue descriptivo correlacional. Los resultados indican que la combinación de 50% de oxido de calcio y ceniza de bagazo, genera un incremento del 8.0% de CBR del suelo. Cuya conclusión obtenida fue se logra mejorar las propiedades mecánicas del suelo aplicando Oxido de calcio y Ceniza de bagazo de caña forma separada o independiente (Landa y Torres, 2019).

Así mismo en la ciudad de Ancash en el artículo de investigación titulada: "study of the mechanical effect of a clayey soil by adding rubber powder for geotechnical applications". Donde el problema general planteado fue: ¿Cómo influye el polvo de caucho reciclado sobre la resistencia al corte del suelo? Cuyo objetivo fue determinar los efectos del polvo de caucho sobre la resistencia al corte del suelo. Donde la metodología desarrollada fue empleando un diseño experimental, tipo aplicada y nivel del tipo explicativo. Así mismo los resultados que se obtuvieron son que los suelos conformados por arcilla con baja plasticidad y sin incorporación de aditivo alguno tuvo un valor de resistencia al corte del 3.21%, mientras que el suelo con incorporación del 1.5% de polvo de caucho tuvo un valor de 5.0% en su resistencia al corte (valor incrementado).Las conclusiones fueron que con la incorporación de polvo de caucho el suelo llega a mejorar sus atributos tanto físicas y mecánicas pasando del nivel malo-regular, llegando a mejorar hasta en un 195.0% la resistencia del suelo (Álvarez et. al, 2020).

De igual manera en el departamento de Lima en la tesis de investigación para lograr el título de ingeniero civil, cuyo título es: "Estabilización de la sub rasante con la incorporación de ceniza vegetal". Donde el problema central fue: ¿Cómo influye la incorporación de ceniza proveniente de vegetales sobre la subrasante del suelo? Donde el objetivo central fue determinar los efectos de la ceniza vegetal en la sub rasante. La metodología empleada fue una investigación aplicada, nivel explicativo y experimental. La data adquirida fue a partir de 03 calicatas, las cuales fueron llevadas hacia un laboratorio para poder evaluarlas, los resultados señalan que las adiciones de ceniza vegetal tuvieron valores de 0%, 15% 25% y 35% obteniéndose valores para la MDS de 1.81 gr/cm3, 1.807 gr/cm3, 1.72 gr/cm3 y 1.68 gr/cm3, y sobre la humedad de 14.51%, 12.01%, 12.70% y 13.11%, y un valor de CBR 16.71%, 23.41%, 23.92% y 24.71% en cuanto a la segunda muestra la densidad obtenida tuvo un valor de 1.97 gr/cm3, 1.87 gr/cm3, 1.83 gr/cm3 y 1.80 gr/cm3, y el valor de la humedad fue de 11.10%, 11.92%, 14.11% y 16.8% y un valor de CBR 18.22%, 21.91%, 23.40% y 23.71%. Cuyas conclusiones fueron, que la arena limosa con grava, y la arena limosa, con la adición de un 35% de ceniza vegetal llega alcanzar un valor de la resistencia del suelo de 24.71% y 23.72% respectivamente (Apolinares, 2018).

Así mismo en Andahuaylas en la tesis para lograr el título de ingeniero civil, cuyo título es: "Mejoramiento de la subrasante adicionando ceniza de cebada para el acceso al vertedero de la Provincia de Andahuaylas Apurímac – 2021". El problema general planteado fue: ¿Cuál es la cantidad de ceniza de cebada se debe emplear para estabilizar la subrasante de la vía de acceso al vertedero de la Provincia Andahuaylas? Cuyo objetivo central fue, determinar la cantidad de ceniza de cebada a emplear para estabilizar la subrasante de la vía de acceso al vertedero. La metodología empleada tuvo un enfoque cuantitativo, investigación aplicada, nivel explicativo y con un diseño del tipo experimental. Se extrajeron muestras de 3 calicatas, cuyos resultados que el valor del CBR sufrió un incremento de hasta un 6.59% y la plasticidad hasta en 4.01%. Cuya conclusión fue que, al incorporar ceniza de cebada se llega a mejora la plasticidad de la subrasante hasta en un valor de 4% con respecto al suelo sin incorporación de aditivo alguno, además la máxima densidad se incrementa hasta en un 14.1% (Acuña y Gonzales, 2021).

Bases teóricas

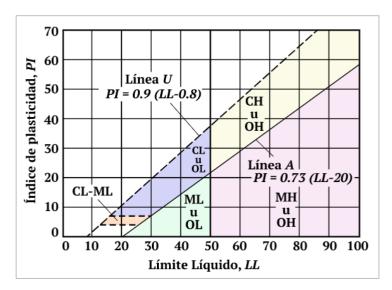
El Suelo

"Es el material de construcción que abunda en el mundo. El suelo se emplea como material de construcción, el cual debe ser seleccionado adecuadamente, así como el método de colocación y luego controlar su ubicación en la ejecución de un proyecto" (Lambe et al, 2015, p.19).

Tabla N°01 *Nomenclatura de los suelos granulares según SUCS*

Grava	G	El 50% o más son retenidos en la malla N°4					
Arena	S	Si más del 50% pasa la malla N°4					
				Es dependiente			
Bien	۱۸/	D	Mal	del Coeficiente			
graduado	W P ado			de uniformidad			
				y Compacidad			
Lincoln	N.A	0	A maillean	Es dependiente			
Limoso	М	C	Arcilloso	del LL y el IP			

Fuente: Fundamentos de ingeniería geotécnica (Braja M, Das 2013)


Tabla N°02 *Nomenclatura de los suelos finos según SUCS*

Prefijo	Sufijo	Descripción		
Limo	Baja plasticidad			
LIIIIO	(LL<50%)	En la carta de plasticidad L y H		
Arcilla	Alta plasticidad	están separados por la línea B.		
Alcilla	(LL>50%)			
Orgánicos	Se debe reportar	Sueles per debaie de la línea A		
	estes suelo	Suelos por debajo de la línea A		

Fuente: Fundamentos de ingeniería geotécnica (Braja M, Das 2013)

Figura N°01

Abaco de la carta de plasticidad

Fuente: Fundamentos de ingeniería geotécnica (Braja M, Das 2013)

El suelo limoso

Los suelos limosos son aquellos suelos de tienen grano fino, además casi siempre presentan poca plasticidad, esta podría ser un suelo limoso con material inorgánico como aquellos que se generan en las canteras y ríos, cabe mencionar que las de ríos presentan características plásticas. (Crespo, 2004).

La composición de los limos

Los limos tienen una composición variada, pero tienen valores que se mantienen dentro de los márgenes conocidos, su composición química está conformada por dióxido de silicio (SiO2) con un valor entre 60% y 80% y por el óxido de aluminio (Al2O3) con valores que oscilan del 5% al 10%, además presenta un 3% de material orgánico al cual se debe poner especial cuidado ya que podría afectar las diferentes propiedades del suelo (Zhu & Liu, 2008).

Comportamiento mecánico de los suelos limosos

En los suelos limosos su comportamiento está determinado por su composición estructural e interacción de los componentes que la conforman (Soluto, solvente y aire). Son suelos inestables, ya que se encuentran relacionados a factores intrínsecos y mecánicos, por otro lado, se sabe que la inestabilidad de estos suelos se atribuye a factores externos a la masa de suelo (Wiseman, 1973).

La subrasante

"Es la capa superior finalizada de una vía o carretera en la cual se colocará la capa estructural de afirmado, asfalto u pavimento" (MTC,2013, p.17).

Se considera que el suelo suficientemente estable con CBR ≥ 6.0 %. Si el CBR < 6.0% (considerado como una subrasante pobre o inadecuada), entonces se requiere estabilización del suelo y el ingeniero a cargo se encargará de esta solución alternativa. dependiendo de la naturaleza, estabilización, reposición de la cimentación, estabilización química, elevación de la pendiente, cambio de ubicación de la vía, elección de la tecnología más conveniente en base a criterios económicos (MTC, 2013).

La subrasante limosa

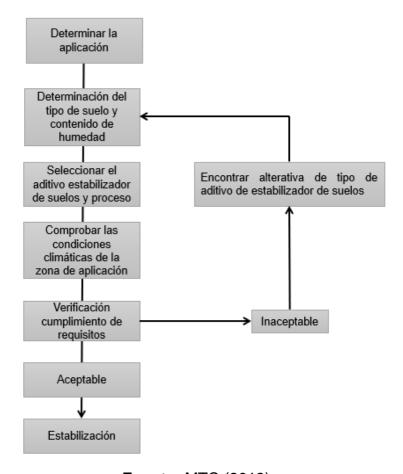
Capa superior terminada de una carretera conformado por material limoso, de baja plasticidad (Menéndez, 2012).

CBR del suelo

Este parámetro esta referido a la resistencia que posee el suelo cuando es sometido a cargas (esfuerzos de corte). La unidad de medida generalmente es N/m2, las fuerzas que se producen se aplican de manera tangencial a lo largo de una capa de tierra. La resistencia al corte puede ser medido a través de ensayos tales como el CBR, STP, DPL que incluyen varios factores para sus correlaciones (MINVU, 2008).

El empuje lateral del suelo

"Es la presión producida de manera horizontal sobre el terreno, mientras que la presión en una masa cubica se da en las paredes de un recipiente de dicha forma". (MINVU, 2008).


Estabilización de suelos

Muchas veces el suelo no cumple con los parámetros mínimos para ser empleados en las carreteras (bases, subbases, etc.). Lo cual plantea realizar un mejoramiento de las características de estos suelos con la finalidad que sus propiedades mejoren, este proceso es conocido como estabilización que tiene por fin principal mejora la capacidad de soporte y así disminuir las deformaciones que se presentan debido a la carga vehicular de la zona donde se realizara la infraestructura vial (MINVU, 2008).

Existe estabilizaciones mecánica y químicas, la primera consiste en procesos de compactación y mejorar la granulometría del material mientras que la estabilización química consiste en incorporar u adicionar aditivos químicos industriales y/o naturales en dosis establecidas para mejorar los atributos del suelo (Thenoux et al, 2000).

Figura N°02

Proceso de estabilización y mejoramiento de suelos

Fuente: MTC (2013).

Tabla N°03Categorización de suelos en función a su plasticidad

Índice de plasticidad	Nivel	Descripción
IP>20	Alta	Muy arcillosos
IP<=20	Media	Arcillosos
IP>7	Media	Arcillosos
IP<7	Baja	Poco arcillosos
IP=0	No plástico (NP)	Extensos de arcilla

Fuente: MTC (2013).

Tabla N°04Clasificación de valores de CBR

CATEGORÍA	CBR
$SR_{0=}$ Inadecuada	Para CBR<3%
SR_1 = Pobre	3.0% <=CBR< 6.0%
SR ₂ =Regular	6.0% <= CBR< 10.0%
SR ₃ =Buena	10.0% <=CBR< 20.0%
SR ₄ =Muy buena	20.0% <=CBR< 30.0%
SR ₅ =Excelente	Para CBR >30.0%

Fuente: MTC (2013).

Ceniza

Polvo de grano fino conformado por sílice, alúmina y diversos óxidos; de naturaleza puzolánica y que reacciona con cal hidratada para generar diversos elementos con propiedades cementantes (Braja, 2013).

La ceniza de madera de fondo (CMF)

Es la parte mas gruesa de ceniza producida en la parte inferior y en la cámara de combustión primaria. Normalmente, se llega a mezclar con otros minerales que se encuentran en el combustible, por ejemplo, los barros. La CMF representa el 65% del total de las cenizas originadas por la combustión de madera (Mamani & Yataco, 2017).

Mejoramiento de suelos

Las cenizas de fondo son desechos y/o desperdicios de las industrias, que provienen muchas veces de la combustión de materiales usados en industrias de diferente rubro, las cuales son aplicadas muchas veces par estabilizar suelos u con diferentes fines (Ulloa, 1978).

Figura N°03 Suelo limoso

Figura N°04 Ceniza de madera de fondo

III. METODOLOGÍA

3.1 Tipo y Diseño de Investigación

3.1.1. Tipo de investigación

El estudio de tipo aplicado "tiene la finalidad de la resolución de problemas prácticos, encontrar respuestas a preguntas específicas, generando así aporte al conocimiento científico" (Abarza, 2012, p.68).

Por lo anterior señalado y de acuerdo a Abarza, el presente proyecto será de tipo aplicada por que se busca una solución a los problemas planteados, además de una resolución práctica de dichos problemas.

3.1.2. Enfoque de investigación

El enfoque de investigación cuantitativo "es cuando una investigación guarda relación con el empleo del diseño, así como fue planteado y/o elaborado, así mismo está basado en estudios que involucran un análisis numérico y estadístico" (Tamayo, 2003, p.58).

Por lo anterior señalado y de acuerdo a Tamayo, la presente investigación tendrá el enfoque cuantitativo, puesto que la contrastación de la hipótesis empleará ensayos de laboratorio y los mismos que serán sometidos a una evaluación matemática y estadística.

3.1.3. Diseño de la investigación

De acuerdo a Arias (2006), indica que "el diseño experimental es un proceso que comprende someter a un objeto a ciertas condiciones, estímulos, para poder observar las reacciones y efectos que se producen" (p.33).

Por lo anterior señalado y de acuerdo a Arias, este trabajo de investigación tendrá un diseño experimental, ya que se manipularán las variables de investigación, además se aplicará dosificaciones porcentuales para observar las reacciones y el comportamiento de la subrasante limosa.

3.1.4. Nivel de investigación

Según Bernal (2010), señala que la investigación correlacional es "una

investigación donde se plantea como objetivo a estudiar, el porqué de las cosas,

las relaciones entre variables, causa y efecto de los fenómenos" (p.115).

Por lo anterior señalado y de acuerdo a Bernal, el presente proyecto de

investigación corresponderá al nivel correlacional puesto que se evaluará la

relación que existe entre las variables (CMF) y la influencia de una de ellas sobre

la otra (Subrasante limosa).

3.1.5. Método de la Investigación

"El método científico es una metodología empleada para producción de

conocimiento, que este sujeto a principios específicos, empleada para contrastar

hipótesis de investigación" (Ruiz, 2007).

Por lo anterior señalado y de acuerdo a Ruiz, en esta investigación se

empleará el método científico ya que se realizarán ensayos en el laboratorio,

siguiendo el método científico bajo los estándares señalados por la normativa

peruana, obteniendo de esta manera resultados que permitan evaluar las hipótesis

de investigación.

3.2 Variables y Operacionalización

Las variables "son aquellas que consisten en poner en práctica el método de

investigación científica, dichas variables se caracterizan por mostrar y/o definir una

cualidad que puede ser medido, controlado y cuantificado" (Supo y Cavero, 2014,

p. 307).

-Variable Independiente: Ceniza de madera de fondo (CMF)

-Variable Dependiente: Subrasante Limosa

La operacionalización nos permite identificar las dimensiones que puede presentar

una variable de investigación, además nos ayuda a caracterizar la variable para

poder identificar de mejor manera sus indicadores (Espinoza, 2019, p. 172).

29

3.3 Población y Muestra

Población

De acuerdo a Arias (2006), indica que "es un conglomerado de elementos que presentan características similares para los cuales serán aplicables las conclusiones de una investigación, que es delimitada por el problema, los objetivos planteados en dicha investigación" (p.81).

Por lo anterior señalado y de acuerdo a Arias, la actual investigación tiene como población a los suelos del tramo de la carretera no pavimentada Ayacucho-Compañía, mientras que la población de estudio son los suelos que conforman el tramo de la carretera no pavimentada Mayocc-Trigopampa desde el km:11+150 al 12+250 (1100m de longitud).

Muestra

De acuerdo a Hernández (2014), afirma que "una muestra es un sub conjunto representativo de una determinada población, seleccionado a través de un proceso selectivo racional el cual es la población de interés para el investigador" (p.173)

Por lo anterior señalado y de acuerdo a Hernández, la presente investigación tendrá como muestra a los suelos del tramo estudio del km:11+350 al 12+150 (800m de longitud), donde se realizarán calicatas de exploración directa, cuyas dimensiones serán de 1.5m(L)x1.5m(A)x1.5m(H), de las cuales se extraerán muestras inalteradas que serán llevadas al laboratorio respectivo.

Muestreo

De acuerdo a Vivanco (2005), Afirma que "el muestreo se encarga de identificar a la muestra más representativa entre todas las que se tiene en una investigación con el ubico objetivo de poder Calificar y distinguir a la población de origen" (p.15).

"El muestreo no probabilístico es aquella que permite seleccionar la muestra más representativa de acuerdo al criterio del investigador" (Hernández, 2014, p.2)

Por lo anterior señalado y de acuerdo a Hernández, en el presente proyecto se realizará un muestreo del tipo no probabilístico, ya que las muestras se seleccionarán por interés del investigador y/o por conveniencia.

3.4 Técnicas e instrumento de recolección de datos Técnicas de investigación

Los métodos de investigación "son procedimientos específicos para recaudar y analizar datos, que conforman la parte integral de un diseño de investigación, con el fin de garantizar la operatividad del proceso de investigación" (Arias, 2012)

Por lo anterior mencionado y de acuerdo a Arias, el presente trabajo se empleará la observación, recopilación de datos y pruebas de error de los ensayos, como técnicas de investigación porque está directamente relacionado con la realidad.

Instrumentos de recolección de datos.

Según Hurtado (2010), los instrumentos en una investigación "son aquellos recursos que pueden ser empleados para plantear problemas y extraer información de ellos".

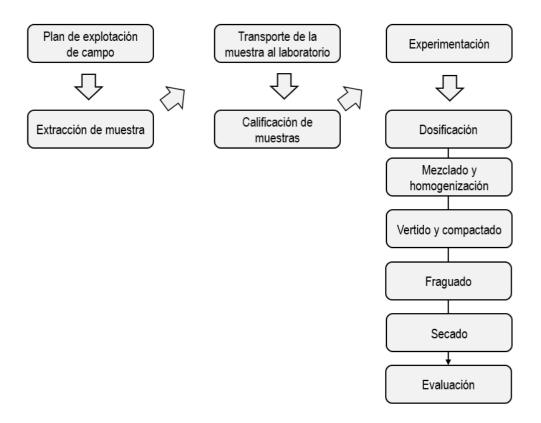
Por lo anterior mencionado y de acuerdo a Hurtado, en el presente proyecto, para la recopilación de datos por medio de un instrumento, que posea características de exactitud y precisión, donde se apunta la data observada. Los instrumentos empleados serán: Fichas de toma de datos para cada ensayo que se efectuara en el laboratorio que se comparan según la opinión de expertos.

Validez

Según Carrasco (2007) señala que la validez "es un método para verificar y comprobar la confiabilidad de los instrumentos que se emplearán y que estos midan con exactitud, veracidad, legitimidad a una variable" (p.336).

Por lo anterior mencionado y de acuerdo a Carrasco, en el presente trabajo de investigación se emplearán las normas técnicas peruanas (NTP), MTC y el ASTM (Normativa extranjera), para los diferentes ensayos que se efectuarán en el laboratorio de análisis cumpliendo con la calidad y acreditación ISO-9001 y ISO-37001.

Confiabilidad


Según Carrasco (2007), indica que la confiabilidad es "un instrumento que nos alcanza resultados veraces y precisos, por lo tanto, es verídico cuando se usa en una variedad de situaciones" (p.163).

Por lo anterior mencionado y de acuerdo a Rangel, en el presente trabajo, la confianza se da por la credibilidad que muestran los laboratorios encargados de las pruebas y ensayos sobre las muestras que cumplirán con la normativa vigente tanto nacional como internacionalmente.

3.5 Procedimiento

El presente trabajo investigación como primer punto, se realizará un recorrido por el área de investigación que conecta Ayacucho con la localidad de Compañía. De donde se selecciona la población, y la población de estudio, luego se define la muestra, se extraen las muestras en el mismo lugar por medio de calicatas (empleado el método estadístico no probabilístico) y se llevan al laboratorio donde se realizan las diferentes pruebas de experimentación.

Figura N°05
Esquema de proceso de trabajo

3.6 Método de análisis de datos

Los datos de las pruebas de laboratorio se presentarán de acuerdo a las especificaciones y los parámetros establecidos en el reglamento nacional e internacional. Así mismo el desarrollo de otros ensayos se realizará bajo normas estrictas, para complementar se emplearán hojas de cálculo, programas estadísticos que permitan evaluar y realizar la verificación de las hipótesis.

3.7 Aspectos éticos

La presente investigacion estará evaluado de acuerdo a la norma de ética de la universidad; (Articulo N°7 Código ética Universidad Cesar Vallejo). Las pruebas y ensayos se realizarán las pruebas en el laboratorio acreditado "CASAGRANDE GEOTECNIA Y CONCRETO, quienes emplearán la logística, rigurosidad para el desarrollo de cada ensayo y la data de resultados de acuerdo a las normativas actuales. La política de anti plagio y el derecho de autor según el artículo N°15-16 de la universidad, se cumplirán fielmente.

IV. RESULTADOS

Para poder evaluar y plantear la estabilización la subrasante limosa de la trocha carrozable Mayocc-trigopampa, se realizó un reconocimiento al tramo de estudio (tramo de la carretera no pavimentada Mayocc-Trigopampa desde el km:11+150 al 12+250), donde en primer lugar se realizaron los ensayos de Penetrómetro Dinámico de Cono (PDC) cada 50m y partir de dichos resultados se definieron los tramos críticos en los cuales se realizaron las excavaciones y/o calicatas (C-1, C-2, C-3, C-4).

Las muestras obtenidas de cada una de las calicatas y la muestra de ceniza de madera de fondo (CMF) las cuales se encuentran en la zona de estudio fueron recogidas, empaquetadas y llevadas al laboratorio para su análisis y procesamiento a través de los diferentes ensayos.

Se realizaron dosificaciones que están conformadas por suelo con adiciones de cemento y ceniza de madera de fondo es decir se elaboraron las diversas muestras que contienen diversos porcentajes de CMF en 0.0%, 2.5%, 5.0% y 7.5% (como sustituto parcial del cemento) con respecto al peso (Kg) del suelo seco, para luego realizar los y compararlos entre sí, y así determinar la dosificación óptima.

4.1. Ensayos generales

4.1.1. Obtención de la ceniza de madera de fondo (CMF)

La CMF es un residuo que se obtiene luego de la combustión de madera (eucalipto, pino, huarango, sauce etc.) utilizado en los hornos de las ladrilleras artesanales las cuales son consideras como desperdicio, estas se producen en abundancia alrededor del área de estudio.

La CMF es llevada a laboratorio donde se somete a un proceso de tamizado por la malla N°200 y luego evaluado. Además de ello se realizó el análisis químico respectivo y poder compararla con los valores del cemento convencional (Portland tipo I).

Tabla N°05

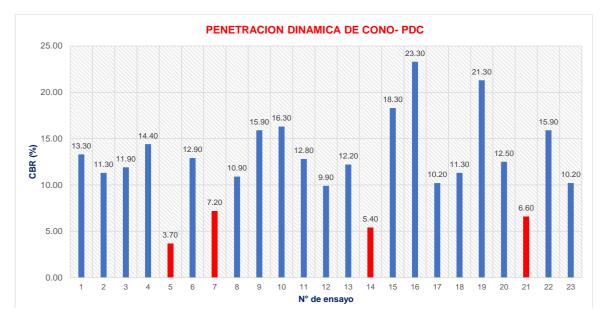
Componentes químicos de la ceniza de madera y cemento portland

Componente	CMF	Cemento Portland
Dioxido de silicio — SIO ₂	46.35	33.21
Oxido de calcio – CaO	0.82	31.07
Oxido de aluminio $- Al_2O_3$	4.18	2.89
Oxido de hierro $- Fe_2O_3$	3.55	5.17
Trioxido de azufre – SO ₃	-	1.05

Nota: Los resultados expuestos en la tabla N°05 indican que la ceniza de madera de fondo (CMF) posee componentes similares al cemento portland, principalmente el dióxido de silicio (SIO $_2$) y Oxido de calcio (CaO), material fundamental para la elaboración del cemento portland.

4.1.2. Ensayos estándares de los suelos analizados

En primer lugar, se realizaron los ensayos de PDC en el tramo de estudio (trabajo de campo), seguidamente se determinaron los puntos de análisis y/o críticos y poder definir los puntos y/o tramos de análisis. En la tabla siguiente se muestran los resultados de dicho ensayo PDC.


Tabla N°06Resultados del ensayo de PDC

Penetración Dinámica de Cono (PDC)								
Ensayo PDC N°	Ubicación km	CBR (%) Diseño						
1	km 11+150	Diseño 13.30	N° 13	11+750	12.20			
2	11+200	11.30	14	11+800	5.40			
3	11+250	11.90	15	11+850	18.30			
4	11+300	14.40	16	11+900	23.30			
5	11+350	3.70	17	11+950	10.20			
6	11+400	12.90	18	12+000	11.30			
7	11+450	7.20	19	12+050	21.30			
8	11+500	10.90	20	12+100	12.50			
9	11+550	15.90	21	12+150	6.60			
10	11+600	16.30	22	12+200	15.90			
11	11+650	12.80	23	12+250	10.20			
12	11+700	9.90						

Nota: Se realizaron en total 23 ensayos de PDC cada 50m, determinándose 4 puntos críticos en las progresivas siguientes km:11+350, km:11+450, km:11+800, km:12+150 donde se realizaron las calicatas para la extracción de muestras.

Figura N°06

Diagrama de resultados de penetración dinámica de cono

Nota: Los resultados expuestos en la tabla 6 señalan, que el tramo de estudio presenta 4 zonas críticas donde el valor del CBR es <=6.0%, dichos tramos son suelos de mala calidad e inadecuados y por lo tanto requieren estabilización.

En estos 4 puntos críticos se han planteado la excavación de calicatas para el análisis respectivo por medio de los diferentes ensayos en laboratorio. Se efectuaron los ensayos estándares de las muestras de las 4 calicatas de estudió.

Tabla N°07Características de los suelos analizados

Muestra	Prog. (KM)	LL (%)	LP (%)	IP (%)	% Grava	% Arena	% Fino	S.U.C.S.	AASHTO
C 1	11+350	27.4	24.2	3.1	11.5	26.1	62.4	ML	A-4(1)
C 2	11+450	NP	NP	NP	22.5	29.3	48.2	SM	A-4(0)
C 3	11+800	23.3	19.6	3.7	3.9	23.0	73.1	ML	A-4(1)
C 4	12+150	NP	NP	NP	17.7	14.0	68.3	ML	A-4 (0)

NP=Suelos No Plásticos, LL=Limite líquido, LP=Limite plástico, IP=índice de plasticidad

Nota: Se observa que para las muestras extraídas de la calicata C-1, C-2, C-3, C-4 se visualiza que según S.U.C.S. el suelo es Limo arenoso (ML), arena limosa con grava (SM), Limo con arena (ML), Limo y tipo grava con arena (ML).

4.1.3. Ensayos de compactación en laboratorio

Se realizó los ensayos de compactación (Proctor modificado - MTC E 115), cuyos resultados se muestran en la tabla N°08.

Tabla N°08Resultados del ensayo de Proctor modificado

	Drograsiya	Ensayo de Proctor modificado		
Muestra	Progresiva (KM)	Máxima densidad seca MDS (tn/m3)	Óptimo contenido de Humedad OCH (%)	
C 1	11+350	1.662	18.10	
C 2	11+450	1.518	16.40	
C 3	11+800	1.617	19.10	
C 4	12+150	1.511	20.90	
Promedio	-	1.577	18.63	

Nota: Como se observa los resultados en la tabla 8 para las muestras extraídas de la calicata C-1, C-2, C-3, C-4 se obtuvo un valor promedio para MDS de 1.577 tn/m3 y OCH promedio de 18.63%.

4.1.4. Ensayos de resistencia en el laboratorio

Se realizó los ensayos de resistencia a las muestras analizadas en laboratorios para poder determinar resistencia a la compresión simple no confinada (MTC E 1103) y la capacidad de soporte CBR de suelos (MTC E 132), los resultados se presentan a continuación.

Tabla N°09
Resultados del ensayo de RCS y CBR

	Ensayo de resistencia			
	Progresive		Capacidad o	de soporte
Muestra	Progresiva (KM)	Resistencia a la compresión simple (RCS)(Kg/cm2)	CBR al 100% de la MDS (%)	CBR al 95% de la MDS (%)
C1	11+350	1.01	5.40	3.90
C2	11+450	5.58	8.60	7.30
C3	11+800	0.75	3.20	2.80
C4	12+150	1.12	4.20	3.80
Promedio	-	2.12	5.35	4.45

Nota: En base a los resultados expuestos mostrados se puede observar que la RCS promedio para las calicatas C-1, C-2, C-3, C-4 es de 2.12 Kg/cm2 y un valor de CBR de 4.45% al 95% de la MDS y un valor de CBR de 5.35% al 100% de la MDS.

4.1.4. Caracterización de las muestras analizadas

Luego de realizar la caracterización de las muestras extraídas y analizadas, así como los ensayos de compactación y resistencia, se analizaron los resultados, para compararlos y establecer muestras más críticas para poder realizar los grupos de verificación y/o control incorporando ceniza de madera de fondo (CMF) según corresponda. Según el manual de carreteras de MTC, sección de suelos, geología geotecnia y pavimentos, capítulo III, sub capítulo 3.3 Sub rasante del camino nos indica que los suelos adecuados y estables son aquellos con un CBR>= 6%, si presentan un valor inferior a este se considerara una subrasante inadecuada. De acuerdo a lo indicado en la tabla N°6 en esta investigación se estaría estabilizando los suelos del tramo de estudio (promedio) ya que cumple con la condición del CBR<= 6%.

4.2. Influencia de la incorporación de CMF sobre los ensayos de compactación.

Se generaron los grupos de control con la incorporación de 0.0%, 2.5%,5.0% y 7.5% de CMF en las muestras de las calicatas C-1, C-2, C-3 y C-4, para poder realizar el ensayo de compactación en laboratorio y de esta manera determinar el óptimo contenido de humedad (OCH) y la Máxima densidad seca (MDS). Los resultados del ensayo de compactación -Proctor modificado de las calicatas se muestran en la tabla N°10.

Tabla N°10Resultados del Proctor modificado en C-1, C-2, C-3, C-4

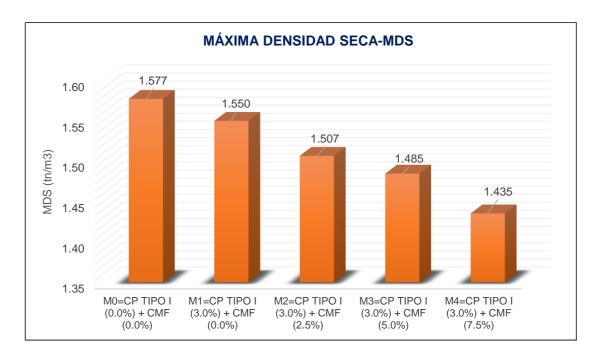
DOSIFICACION CON CENIZA DE MADERA DE FONDO CALICATA Nº 1		
MUESTRA	MDS (Tn/m3)	OCH (%)
M0=CP TIPO I (0.0%) +CMF (0.0%)	1.662	18.10
M1=CP TIPO I (3.0%) +CMF (0.0%)	1.649	21.40
M2=CP TIPO I (3.0%) +CMF (2.5%)	1.642	24.30
M3=CP TIPO I (3.0%) +CMF (5.0%)	1.625	25.80
M4=CP TIPO I (3.0%) +CMF (7.5%)	1.563	28.60

DOSIFICACION CON CENIZA DE MADERA DE FONDO CALICATA Nº 2			
MUESTRA	MDS (Tn/m3)	OCH (%)	
M0=CP TIPO I (0.0%) +CMF (0.0%)	1.518	16.40	
M1=CP TIPO I (3.0%) +CMF (0.0%)	1.494	18.20	
M2=CP TIPO I (3.0%) +CMF (2.5%)	1.440	20.90	
M3=CP TIPO I (3.0%) +CMF (5.0%)	1.426	25.10	
M4=CP TIPO I (3.0%) +CMF (7.5%)	1.377	27.30	

DOSIFICACION CON CENIZA DE MADERA DE FONDO CALICATA Nº 3			
MUESTRA	MDS (Tn/m3)	OCH (%)	
M0=CP TIPO I (0.0%) + CMF (0.0%)	1.617	19.10	
M1=CP TIPO I (3.0%) + CMF (0.0%)	1.594	20.00	
M2=CP TIPO I (3.0%) + CMF (2.5%)	1.514	23.00	
M3=CP TIPO I (3.0%) + CMF (5.0%)	1.491	24.50	
M4=CP TIPO I (3.0%) + CMF (7.5%)	1.420	28.60	

DOSIFICACION CON CENIZA DE MADERA DE FONDO CALICATA Nº 4		
MUESTRA	MDS (Tn/m3)	OCH (%)
M0=CP TIPO I (0.0%) + CMF (0.0%)	1.511	20.90
M1=CP TIPO I (3.0%) + CMF (0.0%)	1.462	23.50
M2=CP TIPO I (3.0%) + CMF (2.5%)	1.430	25.00
M3=CP TIPO I (3.0%) + CMF (5.0%)	1.396	27.60
M4=CP TIPO I (3.0%) + CMF (7.5%)	1.381	28.40

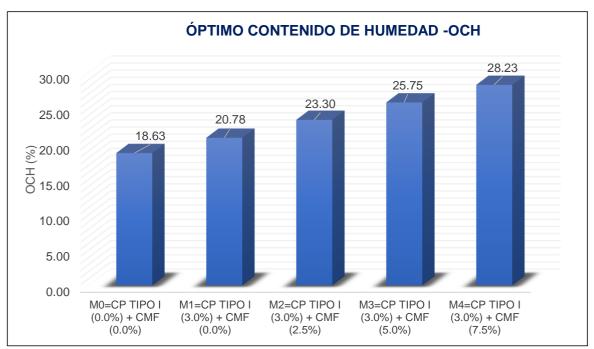
Nota: CMF (Ceniza de madera de fondo), CP Tipo I (Cemento Portland Tipo I)


Tabla N°11Resultados del Proctor modificado-promedio

DOSIFICACION CON CENIZA DE MADERA DE FONDO-PROMEDIO			
MUESTRA	MDS (Tn/m3)	OCH (%)	
M0=CP TIPO I (0.0%) + CMF (0.0%)	1.577	18.63	
M1=CP TIPO I (3.0%) + CMF (0.0%)	1.550	20.78	
M2=CP TIPO I (3.0%) + CMF (2.5%)	1.507	23.30	
M3=CP TIPO I (3.0%) + CMF (5.0%)	1.485	25.75	
M4=CP TIPO I (3.0%) + CMF (7.5%)	1.435	28.23	

Nota: En la tabla N°11 se muestra el valor promedio para cada dosificación, observándose un descenso de los valores de la MDS y un incremento de valores del OCH conforme se aumenta la cantidad CMF.

Figura N°07


Tendencia del valor promedio de la MDS

Nota: De acuerdo al cuadro mostrado para el ensayo de Proctor modificado se observar que el valor de la MDS (Tn/m3) disminuye según se aumenta la cantidad de CMF. Donde el valor de la MDS sin estabilizar (CP Tipo I (0.0%) + CMF (0.0%)) es de 1.577 Tn/m3, y e valor mas bajo de la MDS con adición de CP Tipo I (3.0%) + CMF (7.5%) es 1.435 Tn/m3.

Figura N°08

Tendencia del valor promedio del OCH

Nota: En base a los resultados mostrados en la tabla anterior que el valor porcentual del OCH va incrementando según se aumenta la cantidad de ceniza de madera de fondo (CMF). El valor del OCH sin estabilizar (CP Tipo I (0.0%) + CMF (0.0%)) es de 18.63%, el valor del OCH con adición de CP Tipo I (3.0%) + CMF (0.0%) es de 20.78%, el valor del OCH con adición de CP Tipo I (3.0%) + CMF (2.5%) es de 23.30%, el valor del OCH con adición de CP Tipo I (3.0%) + CMF (5.0%) es de 25.75% y finalmente el valor de OCH con adición de CP Tipo I (3.0%) + CMF (7.5%) es de 28.23%.

4.3. Influencia de ceniza de madera de fondo en la resistencia a la compresión Los resultados del ensayo de compresión simple (MTC E 1103) para las calicatas se muestran en la tabla N°12.

Tabla N°12Resultados de la resistencia a compresión C-1,C-2,C-3,C-4

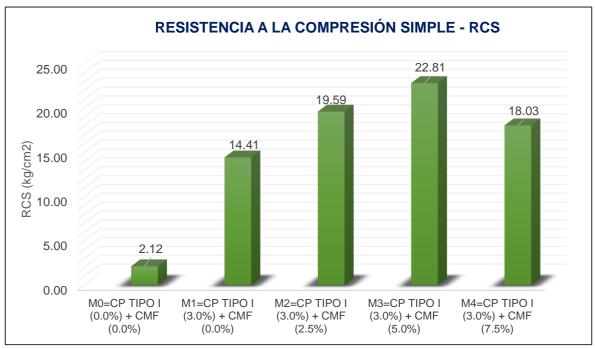
DOSIFICACION CON CENIZA DE MADERA DE FONDO CALICATA Nº 1		
MUESTRA	Compresión simple (kg/cm2)	
M0=CP TIPO I (0.0%) + CMF (0.0%)	1.01	
M1=CP TIPO I (3.0%) + CMF (0.0%)	8.47	
M2=CP TIPO I (3.0%) + CMF (2.5%)	9.69	
M3=CP TIPO I (3.0%) + CMF (5.0%)	12.95	
M4=CP TIPO I (3.0%) + CMF (7.5%)	10.40	

DOSIFICACION CON CENIZA DE MADERA DE FONDO CALICATA Nº 2		
MUESTRA	Compresión simple (kg/cm2)	
M0=CP TIPO I (0.0%) + CMF (0.0%)	5.58	
M1=CP TIPO I (3.0%) + CMF (0.0%)	24.30	
M2=CP TIPO I (3.0%) + CMF (2.5%)	32.32	
M3=CP TIPO I (3.0%) + CMF (5.0%)	44.15	
M4=CP TIPO I (3.0%) + CMF (7.5%)	36.94	

DOSIFICACION CON CENIZA DE MADERA DE FONDO CALICATA Nº 3		
MUESTRA Compresión simple (kg/cm2		
M0=CP TIPO I (0.0%) + CMF (0.0%)	0.75	
M1=CP TIPO I (3.0%) + CMF (0.0%)	6.32	
M2=CP TIPO I (3.0%) + CMF (2.5%)	9.00	
M3=CP TIPO I (3.0%) + CMF (5.0%)	11.37	
M4=CP TIPO I (3.0%) + CMF (7.5%)	9.02	

DOSIFICACION CON CENIZA DE MADERA DE FONDO CALICATA Nº 4		
MUESTRA	Compresión simple (kg/cm2)	
M0=CP TIPO I (0.0%) + CMF (0.0%)	1.12	
M1=CP TIPO I (3.0%) + CMF (0.0%)	18.55	
M2=CP TIPO I (3.0%) + CMF (2.5%)	27.34	
M3=CP TIPO I (3.0%) + CMF (5.0%)	22.76	
M4=CP TIPO I (3.0%) + CMF (7.5%)	15.75	

^{*}CMF (Ceniza de madera de fondo), CP Tipo I (Cemento Portland Tipo I)


Tabla N°13Resultado promedio de la resistencia a la compresión

DOSIFICACION CON CENIZA DE MADERA DE FONDO - PROMEDIO		
MUESTRA	Compresión simple (kg/cm2)	
M0=CP TIPO I (0.0%) + CMF (0.0%)	2.12	
M1=CP TIPO I (3.0%) + CMF (0.0%)	14.41	
M2=CP TIPO I (3.0%) + CMF (2.5%)	19.59	
M3=CP TIPO I (3.0%) + CMF (5.0%)	22.81	
M4=CP TIPO I (3.0%) + CMF (7.5%)	18.03	

Nota: En la tabla mostrada se visualiza los valores promedios de la resistencia a la compresión simple de las calicatas para cada dosificación respectiva, observándose un incremento de los valores según se incrementa el porcentaje de CMF.

Figura N°09

Tendencia del valor promedio de la RCS

Nota: De acuerdo al cuadro mostrado el valor de la RCS va aumentando según aumenta la cantidad de ceniza de madera de fondo (CMF). Cuyo valor de la resistencia a la compresión simple sin estabilizar (CP Tipo I (0.0%) + CMF (0.0%)) es de 2.12 Kg/cm2, de igual forma con la adición de (CP Tipo I (3.0%) + CMF (0.0%)) es de 14.41 Kg/cm2, de igual manera con la adición de (CP Tipo I (3.0%) + CMF (2.5%)) es de 19.59 Kg/cm2, de manera similar con la adición de (CP Tipo I

(3.0%) + CMF (5.0%)) es de 22.81 Kg/cm2 y finalmente la resistencia sufre un descenso en sus valores con la adición de (CP Tipo I (3.0%) + CMF (7.5%)) resultando 18.03 Kg/cm2.

4.4. Influencia de ceniza de madera de fondo sobre el CBR

Los resultados del ensayo de capacidad de soporte -CBR (MTC E 132) para las calicatas se presentan a continuación:

Tabla N°14Resultados del CBR de la MDS en las calicatas

DOSIFICACION CON CENIZA DE MADERA DE FONDO CALICATA Nº 1				
MUESTRA	CBR 100%MDS	CBR 95%MDS		
M0=CP TIPO I (0.0%) + CMF (0.0%)	5.40	3.90		
M1=CP TIPO I (3.0%) + CMF (0.0%)	35.80	31.20		
M2=CP TIPO I (3.0%) + CMF (2.5%)	51.30	42.90		
M3=CP TIPO I (3.0%) + CMF (5.0%)	59.10	56.90		
M4=CP TIPO I (3.0%) + CMF (7.5%)	50.00	37.30		

DOSIFICACION CON CENIZA DE MADERA DE FONDO CALICATA Nº 2

MUESTRA	CBR 100%MDS	CBR 95% MDS
M0=CP TIPO I (0.0%) + CMF (0.0%)	8.60	7.30
M1=CP TIPO I (3.0%) + CMF (0.0%)	47.30	41.70
M2=CP TIPO I (3.0%) + CMF (2.5%)	64.50	55.00
M3=CP TIPO I (3.0%) + CMF (5.0%)	74.00	71.60
M4=CP TIPO I (3.0%) + CMF (7.5%)	63.00	42.50

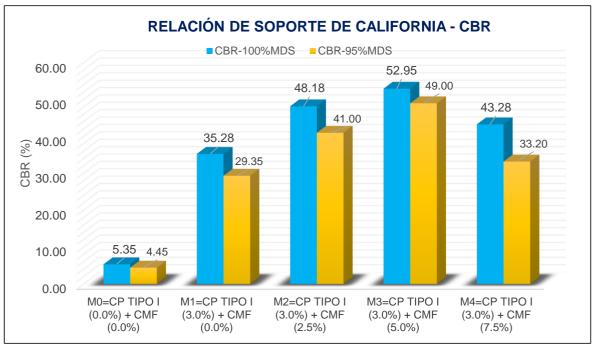
DOSIFICACION CON CENIZA DE MADERA DE FONDO CALICATA Nº 3

MUESTRA	CBR 100%MDS	CBR 95%MDS
M0=CP TIPO I (0.0%) + CMF (0.0%)	3.20	2.80
M1=CP TIPO I (3.0%) + CMF (0.0%)	18.00	13.60
M2=CP TIPO I (3.0%) + CMF (2.5%)	29.10	25.40
M3=CP TIPO I (3.0%) + CMF (5.0%)	38.10	33.10
M4=CP TIPO I (3.0%) + CMF (7.5%)	32.60	31.50

DOSIFICACION CON CENIZA DE MADERA DE FONDO CALICATA Nº 4

MUESTRA	CBR 100%MDS	CBR 95%MDS
M0=CP TIPO I (0.0%) + CMF (0.0%)	4.20	3.80
M1=CP TIPO I (3.0%) + CMF (0.0%)	40.00	30.90
M2=CP TIPO I (3.0%) + CMF (2.5%)	47.80	40.70
M3=CP TIPO I (3.0%) + CMF (5.0%)	40.60	34.40
M4=CP TIPO I (3.0%) + CMF (7.5%)	27.50	21.50

Tabla N°15Resultados del promedio de CBR


DOSIFICACION CON CENIZA DE MADERA DE FONDO - PROMEDIO

MUESTRA	CBR 100% MDS	CBR 95%MDS
M0=CP TIPO I (0.0%) + CMF (0.0%)	5.35	4.45
M1=CP TIPO I (3.0%) + CMF (0.0%)	35.28	29.35
M2=CP TIPO I (3.0%) + CMF (2.5%)	48.18	41.00
M3=CP TIPO I (3.0%) + CMF (5.0%)	52.95	49.00
M4=CP TIPO I (3.0%) + CMF (7.5%)	43.28	33.20

Nota: De acuerdo al cuadro mostrado en la tabla N°15 se muestra el valor promedio del CBR al 95% y al 100% de las calicatas para cada dosificación respectiva, observándose un incremento de los valores según se incrementa el porcentaje de la CMF.

Figura N°10

Tendencia del valor promedio del CBR

Nota: Como se observa en la tabla anterior el valor porcentual del CBR va incrementando según se aumenta la cantidad de ceniza de madera de fondo. El valor del CBR sin estabilizar (CP Tipo I (0.0%) + CMF (0.0%)) al 95% de la MDS es de 4.45% y al 100% de la MDS es de 5.35%, el valor del CBR con la adición de (CP Tipo I (3.0%) + CMF (0.0%)) al 95% de la MDS es de 29.35% y al 100% de la MDS es de 35.28%, el valor del CBR con la adición de (CP Tipo I (3.0%) + CMF (2.5%)) al 95% de la MDS es de 41.00% y al 100% de la MDS es de 48.18%, el valor del CBR con la adición de (CP Tipo I (3.0%) + CMF (5.0%)) al 95% de la MDS es de 49.00% y al 100% de la MDS es de 52.95%, finalmente el valor del CBR con la adición de (CP Tipo I (3.0%) + CMF (7.5%)) sufre un descenso en sus valores al 95% de la MDS es de 33.20% y al 100% de la MDS es de 43.28%.

Dosis óptima de la CMF para mejorar la subrasante limosa de la trocha carrozable Mayocc-Trigopampa.

Para poder determinar la dosificación óptima de CMF en el mejoramiento de la subrasante nos basamos en los parámetros de resistencia que nos indica el MTC: CBR mayor o igual que 6% es equivalente a un suelo adecuado. Siendo así se muestra a continuación los siguientes resultados:

Tabla N°16Valores para CBR de la MDS de las muestras

DOSIFICACION CON CENIZA DE MADERA	DE FONDO CALICATA Nº 1
MUESTRA	CBR 95%MDS
M0=CP TIPO I (0.0%) + CMF (0.0%)	3.90
M1=CP TIPO I (3.0%) + CMF (0.0%)	31.20
M2=CP TIPO I (3.0%) + CMF (2.5%)	42.90
M3=CP TIPO I (3.0%) + CMF (5.0%)	56.90
M4=CP TIPO I (3.0%) + CMF (7.5%)	37.30

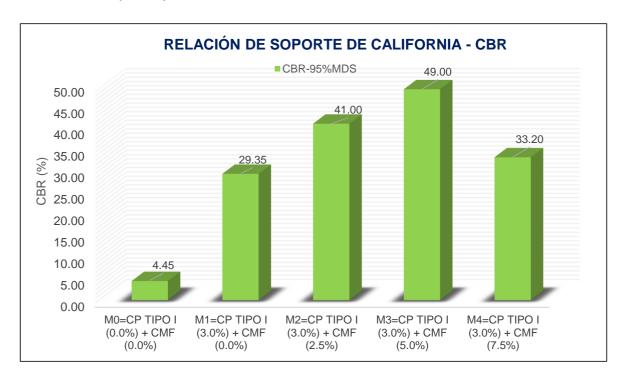
DOSIFICACION CON CENIZA DE MADERA	DE FONDO CALICATA N° 2
MUESTRA	CBR 95%MDS
M0=CP TIPO I (0.0%) + CMF (0.0%)	7.30
M1=CP TIPO I (3.0%) + CMF (0.0%)	41.70
M2=CP TIPO I (3.0%) + CMF (2.5%)	55.00
M3=CP TIPO I (3.0%) + CMF (5.0%)	71.60
M4=CP TIPO I (3.0%) + CMF (7.5%)	42.50

DOSIFICACION CON CENIZA DE MADERA DE FONDO CALICATA Nº 3				
MUESTRA	CBR 95%MDS			
M0=CP TIPO I (0.0%) + CMF (0.0%)	2.80			
M1=CP TIPO I (3.0%) + CMF (0.0%)	13.60			
M2=CP TIPO I (3.0%) + CMF (2.5%)	25.40			
M3=CP TIPO I (3.0%) + CMF (5.0%)	33.10			
M4=CP TIPO I (3.0%) + CMF (7.5%)	31.50			

DOSIFICACION CON CENIZA DE MADERA DE FONDO CALICATA Nº 4				
MUESTRA	CBR 95%MDS			
M0=CP TIPO I (0.0%) + CMF (0.0%)	3.80			
M1=CP TIPO I (3.0%) + CMF (0.0%)	30.90			
M2=CP TIPO I (3.0%) + CMF (2.5%)	40.70			
M3=CP TIPO I (3.0%) + CMF (5.0%)	34.40			
M4=CP TIPO I (3.0%) + CMF (7.5%)	21.50			

Tabla N°17 *Valor promedio para CBR de MDS de muestras*

DOSIFICACION CON CENIZA DE MADERA DE FONDO - PROMEDIO


MUESTRA	CBR 95%MDS
M0=CP TIPO I (0.0%) + CMF (0.0%)	4.45
M1=CP TIPO I (3.0%) + CMF (0.0%)	29.35
M2=CP TIPO I (3.0%) + CMF (2.5%)	41.00
M3=CP TIPO I (3.0%) + CMF (5.0%)	49.00
M4=CP TIPO I (3.0%) + CMF (7.5%)	33.20

Nota: Se puede observar que para cumplir la normativa del MTC que el CBR>=6.0% para que se acepte la subrasante, se tiene que la incorporación mínima de CMF para las Calicatas es de Cemento Portland Tipo I (3.0%) + Ceniza de madera de fondo (0.0%), llegando al valor requerido con ambas dosificaciones el valor mínimo de CBR según norma. Pero de acuerdo a esta investigación se plantearon las incorporaciones de 0.0%, 2.5%, 5.0% y 7.5% de CMF, por lo que estarían cumpliendo el CBR mínimo por normativa.

Concluyendo entonces para la presente investigación que la incorporación óptima de CMF es con Cemento Portland Tipo I (3.0%) + CMF (5.0%) para el mejoramiento de la subrasante limosa.

Figura N°11

Dosificación optima promedio en función al CBR 95% de la MDS

Nota: Para cumplir la normativa del MTC respecto al CBR, se tiene que la dosificación óptima es del CP Tipo I (3.0%) + CMF (5.0%) ya que esta es la presenta los mejores resultados.

Tabla N°18Resumen de resultados y porcentaje de variación

MUESTRA	VAR %	MDS (Tn/m3)	VAR %	OCH (%)	VAR %	RCS (kg/cm2)	VAR%	CBR 95% MDS
M0=CP TIPO I (0.0%) + CMF (0.0%)	-5.87	1.577	38.26	18.63	978.37	2.12	1001.12	4.45
M1=CP TIPO I (3.0%) + CMF (0.0%)	-4.21	1.550	23.95	20.78	58.28	14.41	66.95	29.35
M2=CP TIPO I (3.0%) + CMF (2.5%)		1.507		23.30		19.59		41.00
M3=CP TIPO I (3.0%) + CMF (5.0%)		1.485		25.75		22.81		49.00
M4=CP TIPO I (3.0%) + CMF (7.5%)		1.435		28.23		18.03		33.20

^{*}VAR%=Variación porcentual, RCS=resistencia a la compresión

Nota: De acuerdo a lo mostrado, se indica las variaciones porcentuales (Incremento y disminución de valores) de la M3 respecto a las muestras M0 y M1 para cada propiedad y/o atributo físico mecánico del suelo.

Análisis económico del empleo de ceniza de madera de fondo (CMF) Tabla N°19

Volumen y peso de suelo a estabilizar para distintas alturas

Ancho de carril	Longitud de tramo	Profundidad a mejorar	Volumen a mejorar	Peso de suelo a mejorar
m	m	m	m3	tn
4.50	1100	0.20	990	1470.2
4.50	1100	0.40	1980	2940.3
4.50	1100	0.60	2970	4410.5
4.50	1100	0.80	3960	5880.6
4.50	1100	1.00	4950	7350.8

Nota: Se presentan los valores de los pesos en toneladas para distintas profundidades de suelo a mejorar.

Tabla N°20Costo de insumo para mejoramiento de subrasante con cemento

Peso de suelo a mejorar	Cemento (tn)	Cemento		Costo Total	Costo Unitario
tn	CP TIPO I (8.0%)	CMF (0.0%)	S/.	S/.	S/. x m3
1470.2	117.6	-	S/ 81,359.8	S/ 81,359.8	82.2
2940.3	235.2	-	S/ 162,719.7	S/ 162,719.7	82.2
4410.5	352.8	-	S/ 244,079.5	S/ 244,079.5	82.2
5880.6	470.4	-	S/ 325,439.3	S/ 325,439.3	82.2
7350.8	588.1	-	S/ 406,799.2	S/ 406,799.2	82.2

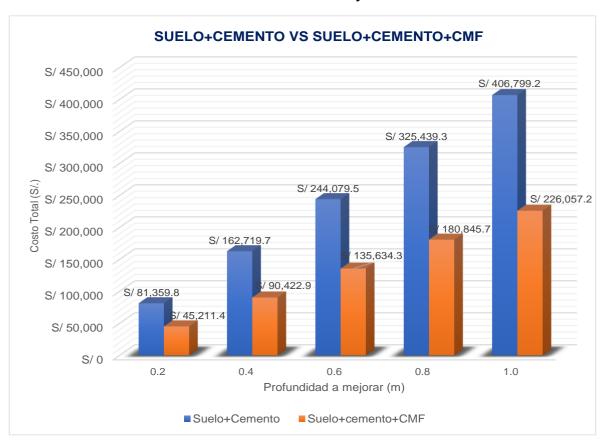

Nota: Se muestra el costo unitario de S/.82.2 por cada m3 de suelo a estabilizar, solamente si se considera al cemento como único aditivo en una proporción de un 8%. con la proporción de CP TIPO I (8.0%) + CMF (0.0%).

Tabla N°21Costo de insumo para mejoramiento de subrasante con CP y CMF

Peso de suelo a mejorar	Cemento (tn)	CMF (tn)	Cemento	CMF	Costo Total	Costo Unitario
tn	CP TIPO I (3.0%)	CMF (5.0%)	S/.	S/.	S/.	S/. x m3
1470.2	44.1	73.5	S/ 30,509.9	S/ 14,701.5	S/ 45,211.4	S/ 45.7
2940.3	88.2	147.0	S/ 61,019.9	S/ 29,403.0	S/ 90,422.9	S/ 45.7
4410.5	132.3	220.5	S/ 91,529.8	S/ 44,104.5	S/ 135,634.3	S/ 45.7
5880.6	176.4	294.0	S/ 122,039.7	S/ 58,806.0	S/ 180,845.7	S/ 45.7
7350.8	220.5	367.5	S/ 152,549.7	S/ 73,507.5	S/ 226,057.2	S/ 45.7

Nota: La tabla anterior muestra el costo unitario de S/.45.7 por cada m3 de suelo a estabilizar, si se considera al cemento y la ceniza en la proporción de CP TIPO I (3.0%) + CMF (5.0%).

Figura N°12: Análisis de costo de estabilización con Cemento y CMF

Nota: La figura muestra una comparación de costos totales para diferentes alturas para estabilización de suelo con dosificaciones de cemento CP TIPO I (8.0%) + CMF (0.0%). y CP TIPO I (3.0%) + CMF (5.0%).

4.5. Prueba Hipótesis

Para la demostración de la hipótesis, sólo se contrastaran las características mecánicas de la subrasante limosa para los valores promedios obtenidos para el total de los ensayo, para lo cual en primer lugar se analizaron las muestras con el fin de evaluar la distribución normal o no, empleando la prueba estadística Shapiro Wilk, para luego proceder a evaluar empleando el estadístico de prueba que se utilizara para la contrastación de la hipótesis a través de la correlación de Pearson si las variables tienen normalidad y si son continuas (Flores-Ruiz et al, 2017, p.368).

4.5.1. Prueba de hipótesis para las características Mecánicas de la subrasante.

4.5.1.1. Prueba hipótesis General

i. Planteamiento de la hipótesis general

Donde: Hipótesis Nula=Ho y Hipótesis Alternativa =Ha

Ho: No Existe influencia de la incorporación de ceniza de madera de fondo para el mejoramiento de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.

Ha: Existe influencia de la incorporación de ceniza de madera de fondo para el mejoramiento de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.

- ii. Grado de relevancia empleada: α =5% (0.05)
- iii. Justificación estadística.

Se emplea la prueba estadística del Chi cuadrado

iv. Guía de determinación

Cuando p-valor sea ≤ 0.05 , se rechaza H_0

Tabla N°22 *Justificación estadística de CMF y Propiedades mecánicas*

Prueba de chi-cuadrado							
		Significación asintótica					
	Valor	df	(bilateral)				
Chi-cuadrado	220,000 ^a	176	,014				
Relación de verosimilitud	90,552	176	1,000				
Asociación lineal x lineal	,005	1	,943				
N de casos	20						

Nota: De acuerdo a la tabla el valor de significación es 0.014 y de p-valor<=0.05, por lo tanto, se acepta la hipótesis Alternativa

Ha: Existe influencia de la incorporación de ceniza de madera de fondo para el mejoramiento de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.

4.5.1.1. Prueba hipótesis para los ensayos de compactación

- Máxima densidad seca (MDS)
- Normalidad de variable
- i. Planteamiento de la normalidad

 H_0 : Los datos de la maxima densidad seca (MDS) tienen normalidad H_a : Los datos de la maxima densidad seca (MDS) no tienen normalidad

- ii. Grado de relevancia empleada: α =5% (0.05)
- iii. Justificación estadística.

Por medio de la prueba estadística SHAPIRO-WILK, para datos (n<50)

iv. Guía de determinación

Cuando p-valor sea ≤ 0.05 , se rechaza H_0

Tabla N°23 *Justificación de normalidad para la MDS*

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Incorporación de Ceniza de madera	0,221	5	0,200.	0,902	5	0,421
Máxima densidad seca (MDS)	0,160	5	0,050.	0,981	5	0,094

Nota: De acuerdo a la tabla N°23 se tiene p-valor=0.094>0.05, por lo tanto, se acepta hipótesis nula.

v. Conclusión

Los valores de la MDS si presentan una normalidad con un nivel de significancia de 5.0%.

Contrastación de la hipótesis

Los datos de máxima densidad seca (MDS) si estarían cumpliendo, efectivamente presentan normalidad y de manera similar las variables son cuantitativas continuas, por lo tanto, se procede a medir el grado de influencia de la incorporación de la ceniza de madera de fondo en la subrasante limosa por medio de la correlación estadística "Coeficiente de correlación (r) de Pearson"

i. Planteamiento de la hipótesis nula y alternativa

 H_0 : La incoporacion de la ceniza de madera $oldsymbol{no}$ influye en la disminución de la MDS H_a : La incoporacion de la ceniza de madera influye en el disminución de la MDS

- ii. Grado de relevancia empleada: α =5% (0.05)
- iii. Justificación estadística.

Por medio del coeficiente de correlación (r) de Pearson

iv. Guía de determinación

Cuando p-valor sea ≤ 0.05 , se rechaza H_0

Tabla N°24

Correlación entre CMF y la MDS

Correlaciones						
		Incorporación de Ceniza de madera	Máxima Densidad Seca			
Incorporación	Correlación de Pearson	1	-0,976			
de Ceniza de	Sig. (bilateral)		0,004			
madera (CMF)	N	5	5			
Máxima	Correlación de Pearson	-0,976	1			
Densidad Seca	Sig. (bilateral)	0,004				
(MDS)	N	5	5			

Nota: De acuerdo a la tabla N°24 se tiene p-valor=0.004<= 0.05, por lo tanto, se rechaza la hipótesis nula y se acepta la hipótesis alternativa.

Por lo que se acepta Ha: La incorporación de la ceniza de madera influye la disminución de MDS.

Además, estando "r" el rango de valores -0.80<= r <= -1.0, se tiene una relación negativa muy alta.

v. Conclusión

La variable de ceniza de madera de fondo tiene una relación lineal inversa muy alta en la influencia de la MDS (r=-0,976) de acuerdo a la evidencia estadística significativa.

Resistencia a la compresión simple (RCS)

- Normalidad de variable

i. Planteamiento de la normalidad

 H_0 : Los datos de la resistencia a la compresion simple tienen normalidad H_1 : Los datos de la resistencia a la compresion simple no tienen normalidad

- ii. Grado de relevancia empleada: α =5% (0.05)
- iii. Justificación estadística.

Por medio de la prueba estadística SHAPIRO-WILK, para datos (n<50)

iv. Guía de determinación

Cuando p-valor sea ≤ 0.05 , se rechaza H_0

Tabla N°25 *Justificación de normalidad para la RCS*

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Incorporación de Ceniza de madera (CMF)	0,221	5	0,200.	0,902	5	0,421
Resistencia a la compresión simple (RCS)	0,251	5	0,200	0,877	5	0,294

Nota: De acuerdo a la tabla N°25 se tiene p-valor=0.294> 0.05, por lo tanto, se acepta la hipótesis nula.

v. Conclusión

Los valores de la resistencia a la compresión simple si presentan normalidad con un nivel de significancia de 5%.

Contrastación de la hipótesis

Los datos de Resistencia a la compresión simple (RCS) si estarían cumpliendo, efectivamente presentan normalidad y de manera similar las variables son cuantitativas continuas, por lo tanto, se procede a medir el grado de influencia de la incorporación de la ceniza de madera de fondo en la subrasante limosa por medio de la justificación estadística "Coeficiente de correlación (r) de Pearson"

i. Planteamiento de la hipótesis nula y alternativa

 H_0 : La incoporacion de la ceniza de madera **no** influye en el incremento de la RCS H_a : La incoporacion de la ceniza de madera influye en el incremento de la RCS

- ii. Grado de relevancia empleada: α =5% (0.05)
- iii. Justificación estadística.

Por medio del coeficiente de correlación (r) de Pearson

iv. Guía de determinación

Cuando p-valor sea ≤ 0.05 , se rechaza H_0

Tabla N°26Correlación de CMF y de la RCS

Correlaciones						
		Incorporación de Ceniza de madera	Resistencia a la compresión simple			
Incorporación	Correlación de Pearson	1	0,645			
de Ceniza de	Sig. (bilateral)		0,044			
madera (CMF)	N	5	5			
Resistencia a la	Correlación de Pearson	0,645	1			
compresión	Sig. (bilateral)	0,044				
simple (RCS)	N	5	5			

Nota: De acuerdo a la tabla N°26 se tiene p-valor=0.044<= 0.05, entonces se rechaza la hipótesis nula y se acepta la hipótesis alternativa.

Por lo tanto, se acepta la Ha: La incorporación de la ceniza de madera influye en el incremento de la resistencia a la compresión simple. Además, estando "r" entre 0.6 <= r <= 0.8, entonces tiene una relación positiva alta.

v. Conclusión

La variable de ceniza de madera de fondo tiene una relación lineal directa alta en la influencia de la RCS (r=0,645) de acuerdo a la evidencia estadística significativa.

■ La Capacidad de soporte

- Normalidad de variable

i. Planteamiento de la normalidad

 H_0 : Los datos de la capacidad de soporte al 95% de la MDS tienen normalidad H_1 : Los datos de la capacidad de soporte al 95% de la MDS no tienen normalidad

- ii. Grado de relevancia empleada: $\alpha=5\%$ (0.05)
- iii. Justificación estadística.

Por medio de la prueba estadística SHAPIRO-WILK, para datos (n<50)

iv. Guía de determinación

Cuando p-valor sea ≤ 0.05 , se rechaza H_0

Tabla N°27Pruebas de normalidad para la CBR al 95% de la MDS

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Incorporación de Ceniza de madera (CMF)	0,221	5	0,200.	0,902	5	0,421
CBR al 95% de la MDS	0,252	5	0,200	0,926	5	0,567

Nota: De acuerdo a la tabla N°27 se tiene p-valor=0.567> 0.05, entonces se acepta la hipótesis nula.

v. Conclusión

Los valores del CBR al 95% de la MDS si tiene normalidad con un nivel de significancia de 5%.

Contrastación de la hipótesis

Los datos del CBR si estarían cumpliendo, efectivamente presentan normalidad y de manera similar las variables son cuantitativas continuas, por lo tanto, se procede a medir el grado de influencia de la incorporación de CMF en la subrasante limosa por medio de la justificación estadística "Coeficiente de correlación (r) de Pearson"

i. Planteamiento de la hipótesis nula y alternativa

 H_0 : La incorporacion de la ceniza de madera $oldsymbol{no}$ influye en el incremento del CBR H_a : La incorporacion de la ceniza de madera influye en el incremento del CBR

- ii. Grado de relevancia empleada: α =5% (0.05)
- iii. Justificación estadística.

Por medio del coeficiente de correlación (r) de Pearson

iv. Guía de determinación

Cuando p-valor sea ≤ 0.05 , se rechaza H_0

Tabla N°28

Correlación de CMF y el CBR.

	Correlaciones						
		Incorporación de Ceniza de madera	CBR al 95% de la MDS				
Incorporación	Correlación de Pearson	1	0,571				
de Ceniza de	Sig. (bilateral)		0,047				
madera (CMF)	N	5	5				
000 1050/ 1	Correlación de Pearson	0,571	1				
CBR al 95% de la MDS	Sig. (bilateral)	0,047					
ia ivido	N	5	5				

Nota: Según lo mostrado se tiene un "r" de Pearson = 0.571 y un p-valor=0.047, por lo que se rechaza la hipótesis nula.

De acuerdo a la tabla N°28 se tiene p-valor=0.047<= 0.05, entonces se rechaza la hipótesis nula y acepta la hipótesis alternativa.

Por lo que se acepta Ha: La incorporación de la ceniza de madera influye en el incremento del CBR al 95% de la MDS. Además, como 0.4<= r <= 0.6, entonces tiene una relación positiva moderada.

v. Conclusión

La variable de ceniza de madera de fondo tiene una relación lineal directa moderada en la influencia del CBR al 95% de la MDS (r=0,571) de acuerdo a la evidencia estadística significativa.

V. DISCUSION

Con respecto a este trabajo de investigación se puede afirmar que se puede estabilizar o mejorar las subrasantes limosas con la incorporación óptima del 5% de Ceniza de madera de fondo (CMF) como reemplazo parcial del cemento respecto al peso seco del suelo, consiguiendo mejoras en las características mecánicas del suelo.

En el presente estudio señala que los mejores valores se obtienen con la dosis optima del 5% de CMF para la resistencia a la compresión (RCS), Capacidad de soporte (CBR), Optimo contenido de humedad (OCH), dichos parámetros se incrementan en un 58.28%, 66.95%, 23.95%, pero la máxima densidad seca (MDS) sufre una reducción del 4.21% respectivamente.

De acuerdo a la hipótesis principal planteada y la contrastación de la misma, se pudo llegar a establecer que existe influencia de la incorporación de CMF para el mejoramiento de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.

En el estudio realizado por Muhammad (2019), menciona que la adición de CMF del 5%, 10%, 15% y 20% de ceniza de madera genera mejoras en las características y/o propiedades del suelo, siendo el valor de 10% la dosis optima a emplear, donde la RCS, CBR, OCH se incrementan en un 78.90%, 5.0%, 34.43% y una reducción de la MDS de 10.51% respectivamente, respecto a la muestra patrón del suelo.

El presente estudio, tienen valores comparables con el estudio de Muhammad puesto que ambos estudios señalan que al adicionar CMF se consiguen mejoras sobre las propiedades mecánicas del suelo en los valores porcentuales ya señalados, lo que indica una COINCIDENCIA.

DISCUSION N°01

En el presente estudio indica que conforme se incrementa el porcentaje de CMF la MDS disminuye y el OCH se incrementa, de acuerdo a la dosis optima del 5% de CMF para la máxima densidad (MDS) seca se obtuvo una reducción del 4.21% y un incremento del OCH del 23.95% respecto a la muestra patrón empleada.

De acuerdo a la hipótesis N°1 planteada y a la contrastación de la misma, se pudo llegar a establecer que existe influencia de la incorporación del 2.5%, 5.0%, 7.5%

de CMF sobre la MDS de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022. Debido a que este parámetro disminuye hasta en un 4.21% y mientras el OCH aumenta hasta en un 23.95%. Puesto que la CMF tiene una relación lineal inversa muy alta en la influencia de la MDS.

En el estudio realizado por Muhammad (2019), menciona que la adición de CMF del 5%, 10%, 15% y 20% de ceniza de madera genera mejorias en las propiedades del suelo, siendo el valor porcentual de 10% la dosis optima a emplear, donde la MDS disminuye hasta en un 10.51% y el OCH se incrementa hasta en un 34.43% con respecto a la muestra patrón del suelo.

En el presente estudio, tienen valores comparables con el estudio de Muhammad puesto que ambos estudios señalan que al adicionar CMF se consiguen una disminución de la máxima densidad seca y un incremento del optimo contenido de humedad del suelo en los porcentajes ya mencionados, lo que indica una COINCIDENCIA.

DISCUSION N°02

En el presente estudio indica que conforme se incrementa el valor porcentual de la CMF la resistencia a la compresión simple (RCS) se incrementa, de acuerdo a la dosis optima del 5% de CMF para la RCS, se obtuvo el incremento porcentual del 58.28% respecto a la muestra patrón empleada.

De acuerdo a la hipótesis N°2 planteada y a la contrastación de la misma, se pudo llegar a establecer que existe influencia de la incorporación del 2.5%, 5.0%, 7.5% de CMF sobre la resistencia a la compresión simple de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022. Puesto que la CMF tiene una relación lineal directa alta en la influencia de la Resistencia a la compresión. Cabe indicar que el valor de este parámetro se incrementa hasta en un 58.28% mejorando el parámetro mecánico del suelo.

En el estudio realizado por Muhammad (2019), menciona que la adición de CMF del 5%, 10%, 15% y 20% de ceniza de madera genera mejoras en las diversas propiedades del suelo, siendo el valor de 10% la dosis optima a emplear, donde la RCS aumenta hasta en un 78.90% con respecto a la muestra patrón del suelo.

En el presente estudio, tienen valores comparables con el estudio de Muhammad puesto que ambos estudios señalan que al adicionar CMF se consiguen un incremento de la RCS en los porcentajes indicados anteriormente, lo que indica una COINCIDENCIA.

DISCUSION N°03

En el presente estudio indica que conforme se incrementa el porcentaje de CMF la capacidad de soporte (CBR) se incrementa, de acuerdo a la dosis optima del 5% de CMF para el CBR, se obtuvo un aumento del 66.95% comparándola con la muestra patrón empleada.

De acuerdo a la hipótesis N°3 planteada y a la contrastación de la misma, se pudo llegar a establecer que existe influencia de la incorporación del 2.5%, 5.0%, 7.5% de CMF en la capacidad de soporte de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022. Puesto que la CMF tiene una relación lineal directa moderada en la influencia del CBR. Cabe indicar que el valor del CBR se incrementa hasta en un 66.95% mejorando el parámetro mecánico y la resistencia del suelo.

En el estudio realizado por Muhammad (2019), menciona que la adición de CMF del 5%, 10%, 15% y 20% de ceniza de madera genera beneficios en las propiedades del suelo, siendo el valor de 10% la dosis optima a emplear, donde el CBR aumenta en un 5.0% en comparación con la muestra control y/o patrón del suelo.

En el presente estudio, tienen valores comparables con el estudio de Muhammad puesto que ambos estudios señalan que al adicionar CMF se consiguen un incremento de la capacidad de soporte del suelo en los porcentajes indicados anteriormente, lo que indica una COINCIDENCIA.

VI. CONCLUSIONES

- 1. En esta investigación realizada se llegó a la conclusión general que la incorporación de ceniza de madera de fondo (CMF) si mejoran las propiedades físico mecánicas del suelo por ende si mejoran las propiedades de la subrasante limosa del tramo Mayocc-Trigopampa empleando una dosificación optima de 5.0% de CMF, puesto que valores superiores a este generan efectos desfavorables en la subrasante limosa.
- 2. En cuanto a la propiedad de la máxima densidad seca del suelo (MDS), la incorporación de las cenizas de madera de fondo en porcentajes de 2.5%, 5.0%, 7.5% generan una disminución de este parámetro, esto sucede debido a la floculación de las partículas del suelo, haciendo que este se desmenuce fácilmente y sea más difícil de compactarlo, por lo tanto, si genera una influencia en la MDS disminuyendo los valores hasta en un 4.21% con la adición de una dosis optima del 5.0% de CMF.
- 3. En cuanto a la propiedad mecánica de la resistencia a la compresión simple (RCS), la incorporación de CMF en porcentajes del 2.5%, 5.0%, 7.5% generan un incremento en sus valores, debido a una mejora el enlace químico entre las partículas del suelo, provocando una reacción entre los minerales del suelo con el agente puzolánico presente en la ceniza de madera, generando un incremento de hasta un 58.28% con la adición de una dosis optima del 5.0% de CMF.
- 4. En cuanto a la propiedad mecánica de resistencia y/o soporte del suelo (CBR), la incorporación de las cenizas de madera de fondo en porcentajes de 2.5%, 5.0%, 7.5% generan un incremento en sus valores, esto sucede debido al proceso de consolidación que sufren las partículas por los enlaces químicos de los mismos, generando el incremento hasta en un 66.95% con la adición de una dosis optima del 5.0% de CMF.

VII.RECOMENDACIONES

- 1. Se recomienda incorporar ceniza de madera de fondo (CMF) como aditivo en la estabilización de subrasantes debido a que este material abunda en la zona de estudio, la cual es considerado como desperdicio, además que brinda beneficios en las propiedades físico-mecánico del suelo a estabilizar.
- 2. Las empresas de construcción, municipalidades y los gobiernos regionales deben utilizar los resultados y/o esta información donde se evidencia que se mejora el suelo con 5.0% de CMF, para así estabilizar las subrasantes de las vías de comunicación que estén en construcción, de esta manera conseguir buenos resultados técnicos y económicos.
- 3. Con la finalidad de desarrollar investigaciones relacionados a la estabilización de suelos empleando CMF en estudio a futuro, se recomienda plantear dosificaciones mayores a 5.0% para las diferentes pruebas físico y mecánicas del suelo.

REFERENCIAS

- Arias, F. (2012). El proyecto de investigación, introducción a la metodología científica. Caracas Venezuela. Disponible en: https://bit.ly/3jNHIBe
- Abarza, F. (2012). *Investigación aplicada vs investigación pura (básica)*. Disponible en: http://bitly.ws/BC9X
- Apolinares, A. (2018). Estabilización de la Sub rasante con la incorporación de Ceniza Vegetal, Jauja. Tesis (Ingeniero Civil). Huancayo: UPLA, Facultad de Ingeniería.
- Alegría, E. y Lago, K. (2021). *Mejoramiento de la subrasante adicionando ceniza de cebada para el acceso al vertedero de la provincia de Andahuaylas Apurímac* 2021. Tesis de pregrado, Universidad César Vallejo. pp.1 disponible en https://hdl.handle.net/20.500.12692/92015.
- Álvarez, N., Gutiérrez, J., Duran, G. y Pacheco, L. (2020). Experimental study of the mechanical effect of a clayey soil by adding rubber powder for geotechnical applications. IOP Conf. Series: Materials Science and Engineering, 758 Disponible en https://repositorioacademico.upc.edu.pe/handle/10757/651767.
- Anand, K., Pradeep G., Adithya, B. (2022). *Bottom Ash Stabilized Subgrade Soil Admixed with Sugarcane Bagasse Ash*. Earthquake Geotechnics. Disponible en https://bit.ly/3w1qCH5 ISSN: 2366-2557.
- Baema, G. (2017). *Metodología de investigación*. México México. Disponible en: https://bit.ly/3OcLKkN
- Bayshakhi, N. (2017). Study on strength behavior of organic soil stabilized with fly ash. International scholarly research notices, Vol. 2017. Disponible en http://bitly.ws/BCcv
- Braja, M. (2013). *Fundamentos de ingeniería geotécnica*. Cengage Learning Latin. Disponible en: https://bit.ly/3BN1qHD
- Bernal, C. (2010. *Metodología de investigación*. Bogotá Colombia. Disponible en: http://bitly.ws/hTw4
- Anand, K., Pradeep G., Adithya, B. (2022). *Bottom Ash Stabilized Subgrade Soil Admixed with Sugarcane Bagasse Ash. Earthquake Geotechnics*. Disponible en https://bit.ly/3w1qCH5 ISSN: 2366-2557.

- Chang, E., Villalta, J., Fernández, C. y Duran, G. (2020). *Improvement of physical, mechanical and strength behavior of cohesive soils with natural pozzolana and brick dust.*Disponible en https://repositorioacademico.upc.edu.pe/handle/10757/651792.
- Chávez, S. (2015). Mejoramiento de subrasantes de tipo arcillosos mediante la adición de escoria de acero. Revista de Investigación, Desarrollo e Innovación, 11(1). http://bitly.ws/B96k
- Caamaño, I. (2016) Mejoramiento de un suelo blando de subrasante mediante la adición de cascarilla de arroz y su efecto en el módulo resiliente. (Tesis). Colombia: Universidad Militar Nueva Granada Facultad de Ingeniería Civil, 2016. Disponible en: https://bit.ly/3Qrhgfi
- Cañar, T., Edwin S. (2017). Análisis comparativo de la resistencia al corte y estabilización de suelos arenosos finos y arcillosos combinadas con ceniza de carbón. Universidad Técnica de Ambato, Ecuador. https://repositorio.uta.edu.ec/handle/123456789/25266
- Carbajal, I., López, A. (2018). Evaluación de la estructura del pavimento flexible de la carretera Chimbote cambio puente, tramo calle Angamos hasta el km 9+000 propuesta de solución-2018. (Tesis). Perú: Universidad Cesar Vallejo, Facultad de Ingeniería Civil, 2015. Disponible en: http://bitly.ws/AiXT
- Cataybutron, R. (2014). *Tipos nivel y diseño de investigación*. México México, 2014. Disponible en: https://bit.ly/38VbbqO
- Cañar, T., Edwin S. (2017). Análisis comparativo de la resistencia al corte y estabilización de suelos arenosos finos y arcillosos combinadas con ceniza de carbón. Universidad Técnica de Ambato, Ecuador.
- Coppola, L., Kara, P. y Lorenzi, S. (2016). Concrete manufactured with crushed asphalt as partial replacement of natural aggregates. Disponible en https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/vie w/2038/2533.
- Carrasco, D. (2007). *Metodología de la investigación científica*. Segunda edición, Ediciones San Marcos, Perú. Disponible en http://bitly.ws/BC6N
- Crespo, V. (2004). *Mecánica de suelos y cimentaciones. 5. a ed.* Limusa: México, 2004. 650 pp. Disponible en http://bitly.ws/BCbd
- Ernández, L., Josué A., Mejía R., David, R., Zelaya A., y César E. (2016). *Propuesta de estabilización de suelos arcillosos para su aplicación en pavimentos rígidos en la facultad multidisciplinaria oriental de la universidad de El Salvador*. El Salvador.

- Espinoza, F. (2019). Las variables y su operacionalización en la investigación educativa. Conrado, 15(69), 171-180. Recuperado en 14 de marzo de 2023, de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1990-86442019000400171&Ing=es&tIng=es
- Fernández, L. (1982). *Mejoramiento y estabilización de suelos*. D.F: LIMUSA. Disponible en: https://bit.ly/3BJi7DW
- González, S. (2008). Aspectos básicos del estudio muestra y población para la elaboración de proyectos de investigación. Tesis (Pregrado). Venezuela: Universidad de Oriente, Facultad de Administración. Disponible en: https://bit.ly/3OfDG2U
- González, A. (2015). Estabilización mecánica de suelos cohesivos a través de la utilización de cal ceniza volante. (Tesis). Guatemala: Universidad de San Carlos de Guatemala, Facultad de Ingeniería Civil, 2015. Disponible en: https://bit.ly/3vK98i7
- Haque, T., Tanvir H., Mohammad S. y Farooq M. (2022). *Stabilization of soil by rice husk* ash. Disponible en https://www.researchgate.net/publication/345876339_stabilization_of_soil_by_rice_husk_ash.
- Hernández, R. (2014). *Metodología de la investigación*. México D.F México. 2014. Disponible en: https://bit.ly/3K3lsgi
- Horna, A. (2012). *7 pasos para una tesis exitosa*. Articulo (Pregrado). Lima Perú, 2012. Disponible en: https://bit.ly/3MqyPdx
- Hurtado, J. (2010). *Metodología de la Investigación Guía para la comprensión holística de la ciencia*. Caracas Venezuela. Disponible en: http://bitly.ws/BC7D
- Kumar, S., Adithya, B., Pradeep, V., Anand, P. (2022). *Bottom Ash Stabilized Subgrade Soil Admixed with Sugarcane Bagasse Ash.* Department of Civil Engineering, Amrita School of Engineering. Volume11. Disponible en http://bitly.ws/BCcj
- Landa, J., Torres, S. (2019). *Mejoramiento de suelos arcillosos en subrasante mediante el uso de Cenizas Volantes de Bagazo de Caña de Azúcar y Cal.* Lima. https://repositorioacademico.upc.edu.pe/handle/10757/626177
- Laguna, O., Chacón, J. (2020). Análisis comparativo del comportamiento a la resistencia de un suelo fino con adición de ceniza de cascarilla de arroz y ceniza de cascarilla de café. (Tesis). Universidad Piloto de Colombia, Colombia. http://repository.unipiloto.edu.co/handle/20.500.12277/9352

- Lambe, W., Whitman, R. (2015). Mecánica de Suelos. Editorial LIMUSA. México D.F, 2015. Disponible en https://www.academia.edu/36677655/Mecanica _de_Suelos_lambe
- Mamani, L., Yataco A. (2017). Estabilización de suelos arcillosos aplicando ceniza de madera de fondo, producto de ladrilleras artesanales en el departamento de Ayacucho (Tesis). Lima: Universidad San Martin de Porres, Facultad de Ingeniería Civil, 2017. https://repositorio.usmp.edu.pe/handle/20.500.12727/3635.
- Maquera, F., Aquino C. (2021). Estabilización de suelos arcillosos en caminos vecinales, modificado con cal y ceniza volante, carrera acora-jayujayu, acora, puno-2021. lima, Perú. obtenido de https://repositorio.ucv.edu.pe/handle/20.500.12692/64809?show=full
- Martínez, E. (2019). Estabilización de suelos cohesivos con aditivo órganosilanos a nivel de subrasante. (Tesis). Universidad Peruana Los Andes, Huancayo-Perú. https://hdl.handle.net/20.500.12848/1366
- Menéndez, R. (2012). *Ingeniería de pavimentos*. Editorial ICG. Lima Perú, 2012. Disponible en: https://bit.ly/37wtu5i.
- MINVU. (2008). Código de normas y especificaciones técnicas de obras de pavimentación. Santiago de chile-Chile. Disponible en http://bitly.ws/BCaw
- Muhammad, H., Liaqat, A. y Muhammad, J. (2019). Soil stabilization in Skardu Region of Gilgit Baltistan using wood Ash. International Journal of Scientific & Engineering Research. Volume13. Disponible en http://bitly.ws/ApYy
- Musab, S. (2020). Partial replacement effect of firewood ash (fwa) on the geotechnical properties of clay stabilized with cement. International Journal of Scientific & Engineering Research. Volume16. Disponible en http://bitly.ws/BCbR
- MTC (2013). Manual de carreteas, geología, geotecnia y pavimentos; sección suelos y pavimentos. Lima Perú, 2013. Disponible en: https://bit.ly/3jEM2mB
- Muelas, Á. (2021). *Manual de Mecánica de Suelos y cimentaciones*. Madrid España. Disponible en: https://bit.ly/3M9zHTv
- Nath, B., Ali K., y Sarkar G. (2017). Study on strength behavior of organic soil stabilized with fly ash. International scholarly research notices.
- Nieto, J. (2019). Evaluación del uso de aditivos químicos no tradicionales como estabilizadores de suelos limosos para caminos productivos de bajo volumen de tránsito (Tesis). Universidad Técnica Federico Santa María, Chile. https://repositorio.usm.cl/handle/11673/47413.

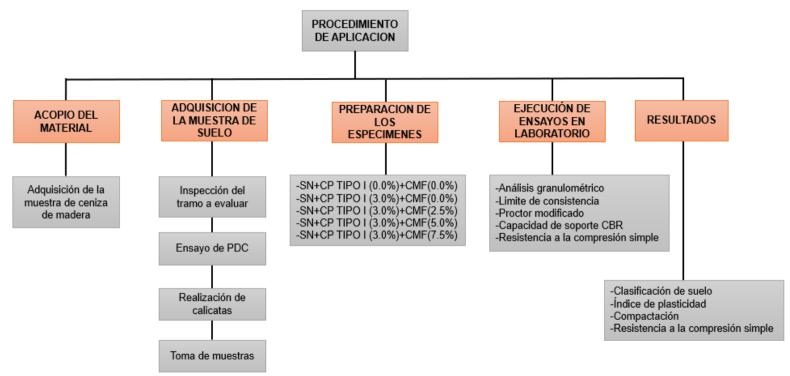
- Nikhil, B., Smitha J. y Uday K. (2015). *Effect of Salinity on Geotechnical Properties of Expansive Soils*. International Journal of Innovative Research in Science, Engineering and Technology. Vol 4. Disponible en http://bitly.ws/B97C.
- Parra, M. (2018). Estabilización de un suelo con cal y ceniza volante. (Tesis).
 Universidad Católica de Colombia, Colombia.
 https://hdl.handle.net/10983/22856
- Rondón, H., Zafra C. y Chaves S. (2018). Behavior of a hot mix asphalt using blast furnace slag and gilsonite. internacional journal of applied engineering. Volume13.Disponible en http://www.ripublication.com.
- Ruíz, R. (2014). El método científico y sus etapas. Articulo (Pregrado). México D.F México. Disponible en: https://bit.ly/3jYYrlo.
- Tamayo, M. (2003). El proceso de la investigación científica. México D.F México. Disponible en: http://bitly.ws/aUbc
- Sarker, D., Shahrear A., Omar K., Narendra W., Y Lynam J. (2021) *Application of sustainable lignin stabilized expansive soils in highway subgrade. geotechnical special publication.* Disponible en https://bit.ly/3w20oUY.
- Rathan, R., Banupriya S., y Dharani R. (2016). *Stabilization of soil using rice husk ash*. Int. J. Comput. Eng. Res, 6(2), 43-50.
- Rangel, R. (2018). Revista del Instituto Nacional de Higiene.
- Silva, M. (2016). Mejoramiento de la subrasante con geomallas multiaxiales tipo Tx140 y Tx160, aplicado a un tramo de la calle Alemania La Molina Cajamarca 2016. (Tesis). Universidad Privada del Norte, Cajamarca-Perú. https://hdl.handle.net/11537/10543
- Supo, F. y Cavero, H. (2014). Fundamentos teóricos y procedimentales de la investigación científica en ciencias sociales. Lima Perú. Disponible en: http://bitly.ws/BC9h
- Thenoux, G. (2000). Estabilización físico-química de suelos para camino. Santiago, PROVIAL, 2000. Disponible en: http://bitly.ws/BCao
- Vivanco, M. (2005). *Muestreo estadístico y diseño de aplicaciones*. Santiago de Chile Chile. Disponible en: http://bitly.ws/BC8q
- Vettorelo, P. Y Clariá J. (2015) Suelos reforzados con fibras: Estado del arte y aplicaciones. Revista de la facultad de ciencias exactas, físicas y naturales.

 Disponible en https://revistas.unc.edu.ar/index.php/FCEFyN/article/view/6856.

- Yadav, A., Gaurav K., Kishor R., y Suman S. (2017). Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads. International journal of pavement research and technology.
- Wiseman, G. (1973). Un estudio de los fenómenos de colapso de un loess no perturbado. Conferencia Internacional sobre Mecánica de Suelos e Ingeniería de Cimentaciones, Moscú, URSS. Disponible en http://bitly.ws/BCaG
- Zhu, Z., & Liu, S. (2008). *Utilización de un nuevo estabilizador de suelo para subrasante de limo*. Disponible en http://bitly.ws/BCb7

ANEXOS

Anexo 01. Matriz de consistencia


Incorporación de ceniza de madera de fondo para estabilizar subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Avacucho, 2022.

PROBLEMA	OBJETIVO	HIPOTESIS	VARIABLES	DIMENSIONES	INDICADOR	INSTRUMENTO	METODOLOGIA
Problema general: ¿Cómo influye la incorporación de ceniza de madera de fondo para el mejoramiento de la subrasante limosa en el	Objetivo general: Determinar la influencia de la incorporación de ceniza de madera de fondo para el mejoramiento de la	Hipótesis general: Existe influencia de la incorporación de ceniza de madera de fondo para el mejoramiento de la	INDEPENDIENTE: Ceniza de madera	Dosificación (Peso seco de masa del suelo)	2.5%, 5.0%, 7.5%	Fichas de recolección de datos de la balanza digital en medición.	MÉTODO DE INVESTIGACION: Científico. DISEÑO DE INVESTIGACION: Experimental.
tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022?	subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.	subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.	de fondo	Granulometría	Pasante malla N°200 (0.075mm)	Fichas de recolección	TIPO DE INVESTIGACION: Aplicada. NIVEL DE INVESTIGACION:
Problema específico: ¿Cómo influye la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la Máxima densidad seca de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022?	Objetivos específicos: Determinar la influencia de la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la Máxima densidad seca de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.	Hipótesis específicas: Existe influencia de la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la Máxima densidad seca de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.		Compactación	Máxima densidad seca(tn/m3), Optimo contenido de humedad (%)	Ficha de recolección de datos del ensayo según Norma MTC E-115	Correlacional POBLACION: Los suelos del tramo de la carretera no pavimentada Mayocc-Trigopampa desde el km:11+150 al 12+250 (1100m de longitud). MUESTRA: Los suelos del tramo
¿Como influye la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la resistencia a la compresión simple de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022?	Determinar la influencia de la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la resistencia a la compresión simple de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.	Existe influencia de la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la resistencia a la compresión simple de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.	DEPENDIENTE: Subrasante limosa	Resistencia a la compresión	Resistencia a la compresión no confinada(kg/cm2)	Ficha de recolección de datos del ensayo según Norma (MTC E 1103)	estudio del km:11+350 al 12+150 (800m de longitud), donde se realizarán calicatas de exploración directa. • TECNICAS DE OBTENCION DE DATOS: Observación Directa.
¿Como influye la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la capacidad de soporte de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022?	Determinar la influencia de la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la capacidad de soporte de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.	Existe influencia de la incorporación del 2.5%, 5.0%, 7.5% de ceniza de madera de fondo en la capacidad de soporte de la subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022.		Capacidad de soporte	CBR (%)	Ficha de recolección de datos del ensayo según Norma (MTC E 132)	TECNICAS PARA EL PROCESAMIENTO DE DATOS: Fichas de recolección de datos; software de análisis de datos (Excel); Minitab, SPSS equipos y herramientas de laboratorio.

Anexo 02. Operacionalización de variables

VARIABLE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	ESCALA	METODOLOGÍA
Variable independiente: Ceniza de madera de fondo	La ceniza de madera de fondo es la fracción gruesa de ceniza producida en la parte inferior y en la cámara de combustión primaria. Normalmente, se llega a mezclar con otros minerales que se encuentran en el combustible, por ejemplo, los barros. La CMF representa el 60% del total de las cenizas producidas por la combustión de madera y carbón (Mamani & Yataco, 2017).	Se desarrolla un análisis cuantitativo y/o químico (por medio ensayos de caracterización) para conocer sus características, ventajas y desventajas, al momento de utilizarlos en las diferentes carreteras.	Dosificación (Peso seco de masa del suelo)	2.5%, 5.0%, 7.5%	Razón	METODO DE INVESTIGACION: Científico. DISEÑO DE INVESTIGACION: Experimental. TIPO DE INVESTIGACION: Aplicada. NIVEL DE INVESTIGACION: Correlacional POBLACION: Los suelos del tramo de la carretera no pavimentada Mayocc-Trigopampa desde el km:11+150 al 12+250 (1100m de longitud). MUESTRA:
Variable dependiente: Subrasante limosa	Las subrasantes limosas están conformadas por suelos no cohesivos cuyas partículas de forma redondeada y el diámetro de las mismas varía entre 0,060mm y 0,002mm, estos suelos al no tener cohesión conforman un suelo que presentara muchas dificultades, es decir es un terreno problemático" (Zapata, 2018).	Se analizan los efectos de la capacidad de soporte, la compresión simple, esfuerzo por corte de la subrasante limosa, para comprender su comportamiento mecánico, condición y calidad.	Compactación Resistencia a la compresión Capacidad de soporte	-Máxima densidad seca(tn/m3) -Optimo contenido de humedad (%) -Resistencia a la compresión no confinada(kg/cm2) -CBR (%)	Razón	Los suelos del tramo estudio del km:11+350 al 12+150 (800m de longitud), donde se realizarán calicatas de exploración directa. • TECNICAS DE OBTENCION DEDATOS: Observación Directa. • TECNICAS PARA EL PROCESAMIENTO DE DATOS: Fichas de recolección de datos software de análisis de dato (Excel); Minitab, SPSS equipos herramientas de laboratorio.

Anexo 03: Procedimiento de aplicación

Fuente: Elaboración propia

Anexo 04. Instrumento de recolección de datos

			FICHA DE RE	COLECCIO	ON DE DAT	ros				
	RESIST	TENCIA A LA CO	OMPRESIÓN DI	E PROBET	AS DE SI	UELO-CEN	MENTO (I	MTC 100	5)	
F	Formato N°103								Pagina 1	de 1
		MACION DEL ENSAYO					ONES AMBIEN			
Código de tra	abajo:	Fecha de recepción/ir	nicio de Ensayo:	Temperatu	ra ambiente INI	I/FIN (°C):	Humedad rela	ativa del ambi	ente INI/FIN (%)	:
		PERSONAL		Realizado:				V°B°:		
Analísta:								100		
O a di una sa unita			Balanza:	EQUIPOS	Vernier:			To:		
oaigo equip	oo de compresión:		Daianza:		vernier:					
N°		JESTRA Ón del Testigo	FECHA DE MOLDEO	DIÁMETRO 1 (mm)	DIÁMETRO 2 (mm)	ALTURA 1 (mm)	ALTURA 2 (mm)	ALTURA 3 (mm)	MASA DEL ESPECIMEN (g)	FUERZA (KN)
1									9/	
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										

DAVID DE JESUS GUERRA AYALA INGENIERO CIVIL

		FIC	HA DE RECOLECCION DE	DATOS
AGF	REGADOS.	Análisis gı	ranulométrico del agregad 400.012 : 2018	o fino, grueso y global. NTP
Fo	rmato N°95	1	400.012 : 2016	Pagina 1 de 1
		INFORMACIO	ÓN DEL ENSAYO DE GRANULOMETRIA	
Código de T	rabajo:			Fecha
	955	C	DE LA MUESTRA	Fecha Tam:
dentificació	n de la muestra:		T.M	. visual muestra:
Ensayos pre	evios de la muestra	a:	Material excluido	o zarandeado:
			PERSONAL	V∘B∘
Analista/Asi	stente:			
			CONDICIONES AMBIENTALES	•
Temperatura	a ambiente tamiza	do (° C):	Humedad relat	iva del ambiente tamizado (%):
			EQUIPOS	
	iz Serie Fina:		Código de Hor	
-	alanza AF (0,1 g):		Código de Equip	2000 C C C C C C C C C C C C C C C C C C
Código Tam	iz Serie Gruesa:		Encount and the second and the secon	Balanza (0,5 g):
			Comprobaciones:	
Comprobaci	ón visual de tamic	es Cumple SI/NO:	50 ALTHOUGH MACHINEN	de agitadores tiempo SI/NO:
Tipo de Tam	izado		DATOS DEL PROCEDIMIENTO Compuesto	Simple
	spécim. ensayo (g)	,	Compuesto	Simple
	spécim. ensayo (g)			+
naoa sooa E		1	Masas	retenidas (g)
Tamiz	Masa Ret. Máxima 12"	Masa Ret Máxima 8"	Tamizado FG Separación Nro. 4	Tamizado FF / Tamizado Simple
5 in.	С	С		
4 in.	С	С		
3 1/2 in.	15,100	С		
3 in.	12,600	С		
2 1/2 in.	10,600	С		
2 in.	8,400	3,600		
1 1/2 in.	6,300	2,700		
1 in.	4,200	1,800		
3/4 in.	3,200	1,400		
1/2 in.	2,100	890		
3/8 in.	1,600	670		
No. 4	800	330		
No. 8		+ +		<u> </u>
No. 16		+ +		1
No. 30		+ +		
No. 50		+ +		1
No. 100		+		+
Fondo	<u> </u>	+ +		1
· ondo				

DAVID DE JESUS GUERRA AYALA INGENIERO CIVIL CIP Nº 285731

FICHA DE RECOLECCION DE DATOS										
СВ	R DE SUELOS - LABORATORIO	(MTC E 132)								
Formato N°28		Página 1 de 1								
Código:	Fecha:	Version:								
Código:										
Fecha:										

Código:										
Fecha:										
				COMPACTA	CION DE	LCBR				
MOLDE N.º	I									
CAPAS N.º										
GOLPES POR (CAPA		56			26			12	
COND. DE LA N	MUESTRA	HUME	DO	SUMERG.	HUM	EDO	SUMERG.	HUN	IEDO	SUMERG.
PESO MOLDE+	SUELO HÚM.									
HUMEDAD							*0			32
TARRO N.º										
MASA TARRO										
TARRO+SUELO										
TARRO+SUELO	O SECO									
				EXP/	ANSIÓN					
DI	IA		DIAL	ē .		DIAI			DIAL	
(0									
89	1									
Ź	2									
	3									
- 4	4									
				PENET	RACION	1				
PENETRACIO	ÓN (mm) (In)	PRI	IMER M	OLDE	SE	GUNDO	MOLDE	T	ERCER N	IOLDE
		Fuerza (kN)		Fuerza (kN)			Fuerza (kN)			
0.000	0.000									
0.630	0.025									
1.270	0.050									
1.900	0.075									
2.540	0.100									
3.170	0.125									
3.810	0.150									
4.445	0.175									
5.080	0.200									
7.620	0.300									
10.160	0.400									
12 700	0.500									

NOTA: Preparación de la Muestra. Cuando más del 75 % en peso de la muestra pase por el tamiz de 19,1 mm (3/4"), se utiliza para el ensayo el material que pasa por dicho tamiz. Cuando la fracción de la muestra retenida en el tamiz de 19,1 mm (3/4") sea superior a un 25% en peso, se separa el material retenido en dicho tamiz y se sustituye por una proporción igual de material comprendido entre los tamices de 19,1 mm (3/4") y de 4,75 mm (N°4), obtenida tamizando otra porción de la muestra. Antes de sumergir, se toma una porción de material, entre 100 y 500g (según sea fino o tenga grava) antes de la compactación y otra al final, se mezclan y se determina la humedad del Suelo. Después de la inmersión, se deja escurrir el molde durante 15 minutos en su posición normal y a continuación se retira la sobrecarga y la placa perforada. Inmediatamente se pesa y se procede al ensayo de penetración. Es importante que no transcurra más tiempo que el indispensable desde cuando se retira la sobrecarga hasta cuando vuelve a colocarse para el ensayo de penetración. Penetración. Se monta el dial medidor de manera que se pueda medir la penetración del pistón y se aplica una carga de 50N (5 kg) para que el pistón asiente.

Finalmente, se desmonta el molde y se toma de su parte superior, en la zona próxima a donde se hizo la penetración, una muestra para determinar su humedad.

DAVID DE JESUS GUERRA AYALA INGÉNIERO CIVIL CIP Nº 285731

	FICHA DE RECOLECCION DE DATOS	
COMPACTACION DE SUELO EN LABOR	TORIO UTILIZANDO UNA ENERGIA MOD 115)	IFICADA (PROCTOR MODIFICADO MTC E
Formato N°10		Página 1 de 1
Código:		Fecha:
	METODO DEL ENSAYO	
Peso total de la muestra:	5) % acumulado 3/4" = (((2*100)/1) :
2) Peso retenido malla 3/4":	6) % acumulado 3/8" (5+	3*100):
3) Peso retenido malla 3/8":	7) % acumulado N° 4 (6+	4*100) :
4) Peso retenido malla N°4 :	Método :	Molde:

METODO	% ACUM. RETENIDO N°4	% ACUM. RETENIDO 3/8"	% ACUM. RETENIDO 3/4"	MATERIAL A USAR	MOLDE	CAPAS/ GOLPES
Α	≤ 20%			Pasa N°4	4"	5/25
В	> 20%	≤20%		Pasa 3/8"	4"	5/25
С		> 20%	≤ 30%	Pasa 3/4"	6"	5/56

		ENSAYO DE COM	MPACTACIÓN		•
Determinación N°	01	02	03	04	05
Peso del model y muestra					
g					
		CONTENIDO DE	HUMEDAD		
Tarro N°	1				
Peso tarro + suelo					
húmedo g					
Peso tarro + suelo seco g					

Peso del tarro g					
Tiempo	de permanencia reque	ido para saturación de espec	imenes	a) Agua añadida para OCI	H = a:
		Tiempo de permanencia		Punto 1 = a-300 =	
	Clasificación	mínimo en horas		Punto 2 = a -150 =	
	GW, GP, SW,SP	No se requiere		Punto 3 = a =	
	GM,SM	3		Punto 4 = a +150 =	
	Todos los demás suelos	16		Punto 5 = a +300 =	

Nota: Debe determinar el porcentaje de material retenido en la malla N° 4, 3/8" o 3/4" para escoger el Método A,B o C. Prepare mínimo 4 especímenes con contenidos de agua lo mas cercano al optimo estimado. Seleccionar los contenidos de agua de los especímenes de tal forma que resulten por lo menos dos especímenes húmedo y dos secos de acuerdo al contenido óptimo de agua, que varien alrededor del 2% y no deberán exceder de 4%. Generalmente, el suelo en un optimo contenido de agua puede ser comprimido y quedar así cuando la presión manual cesa, pero se quebrará en dos secciones cuando es doblada. En contenidos de agua del lado seco del óptimo, los suelo tienden a desintegrarse: del lado húmedo del óptimo, se mantienen unidos en una masa cohesiva pegajosa. El óptimo contenido de humedad frecuentemente es ligeramente menor que el limite pastico. La cantidad total de suelo usado será tal que la 5ia capa compactada se extenderá ligeramente dentro de collar, pero no excederá el 6 mm (1/4 pulg) de la parte superior del motide. Al operar el pisón manual, mantener la guía firmemente y dentro de 5" de la vertical. Aplicar los golpes en una relación uniforme de aproximadamente 25 golpes/minuto. Obtener un especimen para determinar el contenido de agua utilizando todo el especimen o una porción representativa cortando axialmente por el centro del especimen compactado y removiendo 500 g del material de los lados cortados. Para un 3% de variación en la humedad haga variar 150 ml de agua en cada muestra de 5 Kg. 2 muestras antes del optimo y 1 o 2 después del optimo (para lo cual sumar o restar el agua para alcanzar el optimo).

	DAVID DE JESUS GUERRA AVALA
Realizado	Revisado

	FICHA DE RECOL	ECCION DE DATOS				
Standard Test Methods for		ion (Gradation) of Soils Using I3M-17	g Sieve Anal	ysis ASTM		
Formato N°06			Pagi	na 1 de 1		
Código:			Fecha:			
II	IFORMACIÓN DEL ENSAYO DE	GRANULOMETRIA POR TAMIZADO.				
Código de Trabajo:				Fecha ini:		
	DE LA MUESTRA	A		Fecha Tam:		
Identificación de la muestra:						
Ensayos previos de la muestra:	T.M. vis	sual muestra:		1		
Clasificación visual (Nombre y Símbolo):						
Material excluido o zarandeado:	Litología/Forma:			Firma:		
Preparación de especímenes de ensayo:	Húmedo	Seco al Aire	Seco al Horno			
	PERSONAL					
Analista/Asistente:						
	CONDICIONES	AMBIENTALES				
Temperatura ambiente tamizado (° C):	Humedad relativa o	del ambiente tamizado (%):				
	EQU	UIPOS				
Código Tamiz Serie Fina:		Código de Balanza:				
Código Tamiz Serie Gruesa:	Código	de Horno de secado:				

Método de ensayo:	A (Reportar al	B (Reportar al	¿Se empleo dispersante	i
			DATOS DEL PROCEDIMIEN	то
Código de Equipo de L	.avado:		Código de Equipo de Agitac	ión SG:
Código Tamiz de Lava		Código de Equipo de Agita		
Codigo Tamiz Serie G			Codigo de Horno de	secado:

			DATOS DEL PROCEDIM	IENTO		
Método de ensayo: A (Reportar al 1%) B (Reportar al 0,1%)		B (Reportar al 0,1%)	¿Se empleo dispersante SI/NO?:	¿Se empleo Equipo Agitador?:	SI	NO
Tipo de Tamizado			Compuesto 1ra sep.	Compuesto 2da sep.	Sin	ple
Tamiz de separación						
Masa húmeda de la fraco	ción retenida (g)					
Masa húmeda de la fraco	ción pasante (g)		Ť .			
Humedad de la fracción i	retenida (%)					
Humedad de la fracción p	pasante (%)			 		
Masa húmeda espécime	2000					
Masa seca del espécime	,			1		
Masa seca lavada espéc	, ,					
		Ī	+	Masas retenidas (g)		
Tamiz	Masa Ret. Máxima 12"	Masa Ret. Máxima 8"	Tamizado FG 1ra separación	Tamizado FG 2da separación		F / Tamizado nple
3 in.	6,100	2,700		1		
2 in.	4,500	2,000				
1 1/2 in.	3,400	1,500	8			
1 in.	2,500	1,100				
3/4 in.	2,000	900				
3/8 in.	1,200	550				
No. 4	730	325				
No. 10	410	180				
No. 20	260	115				
No. 40	170	75				
No. 60	140	60				
No. 100	90	40				
No. 140	70	30				
No. 200	50	20				
Fondo						
Observaciones:						

Documento controlado, prohibida su reproducción.

DAVID DE JESUS GUERRA AYALI

		FICHA DE	RECOLECCI	ON DE DAT	os		
Standard Test Met	hods for Liq	juid Limit, P	lastic, Limit	, and Plasti	city Index of	Soils ASTN	I D4318-17
Formato N°05						Pagina	a 1 de 1
Código:	•					Fecha:	
		INFORMACIÓN DE	L ENSAYO DE LIMI	TE LIQUIDO Y PLÁ	STICO		
Código de Trabajo:							
			DE LA MUESTI	RA	100		
ldentificación de la muestra:						V*B*	
Remoción de lentes de arena (SI/NO)]		
 (- Cuando el solicitante no especifique el n se hará la preparación húmeda o 		HUMEDO	< 15% Ret N°40	>15% Ret N°40			
'Preparación de especímene		SECO	HORNO < 60°C	AL AIRE	1	Firma:	
			HONO COO C	AL AINE			
A F. ()	PE	RSONAL			1		
Analista/asistente:							
	T		ONDICIONES AMBIE		II /I B ///		
	Temperati	ra ambiente LL / LP (°	-32	nedad relativa del am	biente LL / LP (%):		
Cédina Tamia No 40.			EQUIPOS	M			
Código Tamiz Nº 40:	tantida e		ódigo de Balanza 0,0				
Código de Dispositivo de Límite Li		10000	o de Horno de seca	do:			
Código del aparato de enrollamien	110:	Codi	go del Cronometro:	-			
December de la December de la contraction de la			Comprobacione				
Desgaste de la Base: La huella en l							
Desgaste de la Copa: El desgaste e	en la copa debe tener	una depresión no ma	yora 0,1 mm (Cumple	S1/NO):			
Desgaste en el Sujetador de la Co	pa: El pivote debe mo	verse de lado a lado e	en no mas de 3 mm (0	Cumple SI / NO):			
Desgaste en la Leva: La copa no de	ebe caer antes que el	sujetador pierda conta	acto con la leva (Cum	ple SI / NO):			
Altura de Caída: La altura de la pun		(S) (N)	82 7	8 86			
Velocidad de los Golpes de caída:	La velocidad se encu	entra entre 1,9 a 2,1 (golpes por segundo (C	Cumple SI / NO):			
Herramientas de Ranuración: Las	dimensiones del ranu	rador han sido verifica	das según la NTP (Ci	ımple S1 / NO):			
8		D.F	TOS DEL PROCED	IMIENTO			
TIPO DE ENSAYO	ľ	LIMITE	LIQUIDO		LIMIT	E PLASTICO	
Descripción	25 a 35 golpes	20 a 30 golpes	15 a 25 golpes	15 a 35 golpes	EQUIPO: Manual	/ Aparato de enrolla	amiento
Número de Golpes	ē.				Prueba N° 01	Prueba N° 02	Prueba N°:
Código del recipiente (Nombre)	7.						
Masa del recipiente (g)							
Masa suelo húmedo mas recipiente	Fecha:	<u>k</u> 0			Fecha:		-
(g)	Hora:	Hora:	Hora:	Hora:	Hora:	Hora:	Hora:
T	44500		* ***				
Temperatura de secado:	110°C	60 °C PRIMERA MEDIDA D	Ambiente		DDIMEDA	MEDIDA DE SECAD	0
	Fecha:	PRIMERA MEDIDA D	E SECADO		Fecha:	MEDIDA DE SECAD	U
Masa del suelo seco mas recipiente	Hora:	Hora:	Hora:	Hora:	Hora:	Hora:	Hora:
(g)	a	a	a	a	a	a	a
		SEGUNDA MEDIDA	DE SECADO		SECUNDA	 Medida de Secai	00
Masa del suelo seco mas recipiente	Fecha:	SEGUNDA MEDIDA	DE SECREO	Fecha:	I WEDIDA DE SECAL	50	
(q)	Hora:	Hora:	Hora:	Hora:	Hora:	Hora:	Hora:
137	b	b	b	b	b	b	b
Control de secado (Seco al homo si	=(a-b)/(a-R) x 100	=(a-b)/(a-R) x 100	=(a-b)/(a-R) x 100	=(a-b)/(a-R) x 100	=(a-b)/(a-R) x 100	=(a-b)/(a-R) x 100	=(a-b)/(a-R) x 100
< 0,1%)				12 12 12		12 525 15	1. 43. 14
7		TERCERA MEDIDA I	DE SECADO	•	TERCERA	MEDIDA DE SECAD	00
Masa del suelo seco mas recipiente	Fecha:	225			Fecha:		
(g)	Hora:	Hora:	Hora:	Hora:	Hora:	Hora:	Hora:
	С	С	c	С	С	c	С
Control de secado (Seco al homo si < 0,1%)	=(b-c)/(b-R) x 100	=(b-c)/(b-R) x 100	=(b-c)/(b-R) x 100	=(b-c)/(b-R) x 100	=(b-c)/(b-R) x 100	=(b-c)/(b-R) x 100	=(b-c)/(b-R) x 100
			•	•	•		•

DAVID DE JESUS GUERRA AYALA INGENIERO CIVIL

		FICHA	DE	REC	COLECC	ION	DE	DAT	os				
	COMPRESI	о́и ио со	NFIN	IADA	EN MUE	STRAS	S DE	SUE	LOS	(МТС	E 1	21)	
	Formato N°109								8			Pagina 1 de 1	
Códi	go de orden de trabajo:								Fecha i				
		MUEST	ra .						fecha fi	n:			
den	tificación de la muestra:								V°B°				
		PERSO	NAL						Realiza	do:			
Anal	ista/Asistente:							•					
	CONDICIONE	S AMBIENTA	LES										
Tem	peratura ambiente (°C) inicio/fin:				Humedad ı	relativa de	el amb	iente (9) inicio/	fin:			
			CO	NDICI	ONES DE LA	MUEST	RA						
	HUMEDAD DESEADA	APLICA			DENSI	DAD DESE	ADA		-	APLICA			
		SI NO							SI	N			
					HUMEDAD INICIAL				iedad Nal		0.012	5*ALTURA P	OMPRESION : ROMEDIO DE
TAR	RO N°				200 CO			1000				LA PROBETA GENER	, POR LO
MAS	A TARRO										1	1.75mm	
	RO MÁS SUELO HÚMEDO												
	RO MÁS SUELO SECO OCIDAD DE ENSAYO		-			-							
VLL	OOIDAD DE ENSATO			DIM	ENSIONAMI	ENTO							
N°	Identificación de la muestra	Diametro 1 (mm)		etro 2 nm)	Diametro 3 (mm)	Diame (mr		Altura	1 (mm) Altura 2 (mm)		Altura 3 (mm)	Masa de probeta (g)	
1													
2									v				io.
3													
4													
5													
6												,	
7													
8					E.								
9													
10					g.								
		I				1		<u> </u>					
Nom	bre del archivo:												
Ohse	ervaciobnes:												

DAVID DE JESUS GUERRA AYALA INGENIERO CIVIL CIP Nº 285731

Anexo 05. Certificado de validación del instrumento de recolección de datos

UNIVERSIDAD CESAR VALLEJO ESCUELA DE INGENIERIA Y ARQUITECTURA FACULTAD DE INGENIERIA CIVIL VALIDACIÓN DE EXPERTOS

"Incorporación de ceniza de madera de fondo para estabilizar subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022"

I. DATOS DEL EXPERTO

Apellido y nombres del experto : Valer Pacheco, Pablo Esteban

N° de registro CIP :Ingeniero Civil Especialidad :270174

II. ASPECTOS DE VALIDACION

MUY DEFICIENTE(1), DEFICIENTE (2), ACEPTABLE (3), BUENA (4), EXCELENTE (5)

INDICADODEO	CRITERIOS		VALORACIOI 1 2 3	NC		
INDICADORES	CRITERIOS	1	2	3	4	
CLARIDAD	Este formato se encuentra en un lenguaje adecuado y especifico					×
OBJETIVIDAD	Expresa el alcance del objetivo	criterios 1 2 3 mato se encuentra en un lenguaje adecuado y específico presa el alcance del objetivo el un orden logico al contenido prende aspectos necesarios de de datos prede de y calidad en la toma o registro de datos prede de			>	
ESTRUCTURA	Tiene un orden logico al contenido					>
EFICIENCIA	Comprende aspectos necesarios de cantidad y calidad en la toma o registro de datos				х	
INTENCIONALIDAD	Adecuado para valorar aspectos estrategicos planteados				х	
CONSISTENCIA	Basado en aspectos teorico, científico para identificar y determinar lo requerido por la investigación					>
COHERENCIA	El instrumento de juicio relacionado a la variable de estudio con sus respectivos indicadores, unidades e incidencias					>
METODOLOGIA	La estrategia a emplear responde a la evaluacion insitu				х	
	TOTAL			37		ă.

La valoracion obtenida fue de 37 y esta dentro del rango de valoracion 31-36 y su validacion fue Excelente.

Firma y sello

Ayacucho 08 de febrero del 2023

81

UNIVERSIDAD CESAR VALLEJO

ESCUELA DE INGENIERIA Y ARQUITECTURA FACULTAD DE INGENIERIA CIVIL VALIDACIÓN DE EXPERTOS

"Incorporación de ceniza de madera de fondo para estabilizar subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022"

I. DATOS DEL EXPERTO

Apellido y nombres del experto :Guerra Ayala, David de Jesus

N° de registro CIP :Ingeniero Civil

Especialidad :285731

II. ASPECTOS DE VALIDACION

MUY DEFICIENTE(1), DEFICIENTE (2), ACEPTABLE (3), BUENA (4), EXCELENTE (5)

INDICADORES	CRITERIOS		VALORACION 1 2 3	ON		
INDICADORES	CRITERIOS	1	2	3	4	5
CLARIDAD	Este formato se encuentra en un lenguaje adecuado y especifico					х
OBJETIVIDAD	Expresa el alcance del objetivo	se encuentra en un lenguaje cuado y especifico el alcance del objetivo orden logico al contenido e aspectos necesarios de alidad en la toma o registro de datos o para valorar aspectos ategicos planteados aspectos teorico, cientifico ar y determinar lo requerido r la investigación to de juicio relacionado a la astudio con sus respectivos s, unidades e incidencias a a emplear responde a la			х	
ESTRUCTURA	Este formato se encuentra en un lengua adecuado y especifico Expresa el alcance del objetivo Tiene un orden logico al contenido Comprende aspectos necesarios de cantidad y calidad en la toma o registro de datos Adecuado para valorar aspectos estrategicos planteados Basado en aspectos teorico, científico para identificar y determinar lo requerid por la investigación El instrumento de juicio relacionado a la variable de estudio con sus respectivos indicadores, unidades e incidencias					х
EFICIENCIA	cantidad y calidad en la toma o registro				х	
INTENCIONALIDAD					х	
CONSISTENCIA	Basado en aspectos teorico, científico para identificar y determinar lo requerido por la investigación					х
COHERENCIA	El instrumento de juicio relacionado a la variable de estudio con sus respectivos indicadores, unidades e incidencias					х
METODOLOGIA	La estrategia a emplear responde a la evaluacion insitu				х	
	TOTAL		•	37		-

La valoracion obtenida fue de 37 y esta dentro del rango de valoracion 31-36 y su validacion fue Excelente.

Ayacucho 10 de febrero del 2023

Firma y sello

UNIVERSIDAD CESAR VALLEJO

ESCUELA DE INGENIERIA Y ARQUITECTURA FACULTAD DE INGENIERIA CIVIL VALIDACIÓN DE EXPERTOS

"Incorporación de ceniza de madera de fondo para estabilizar subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022"

I. DATOS DEL EXPERTO

Apellido y nombres del experto :Huaman Gamarra, Kenny

N° de registro CIP :Ingeniero Civil

Especialidad :130033

II. ASPECTOS DE VALIDACION

MUY DEFICIENTE(1), DEFICIENTE (2), ACEPTABLE (3), BUENA (4), EXCELENTE (5)

	animenias .		VA	LORACI	ON	
INDICADORES	CRITERIOS	1	2	3	4	
CLARIDAD	Este formato se encuentra en un lenguaje adecuado y especifico					,
OBJETIVIDAD	Expresa el alcance del objetivo				х	
ESTRUCTURA	Tiene un orden logico al contenido					,
EFICIENCIA	Comprende aspectos necesarios de cantidad y calidad en la toma o registro de datos				х	
INTENCIONALIDAD	Adecuado para valorar aspectos estrategicos planteados					,
CONSISTENCIA	Basado en aspectos teorico, cientifico para identificar y determinar lo requerido por la investigación				х	
COHERENCIA	El instrumento de juicio relacionado a la variable de estudio con sus respectivos indicadores, unidades e incidencias				х	
METODOLOGIA	La estrategia a emplear responde a la evaluacion insitu				х	
	TOTAL			35		

La valoración obtenida fue de 35 y esta dentro del rango de valoración 31-36 y su validación fue Bueno.

Firma y sello

Ayacucho 09 de febrero del 2023

Anexo 06. Cotización de Servicio de mecánica de suelos

ADMINISTRACIÓN COTIZACIÓN

CASAGRANDE CONSULTORIA Y CONSTRUCCIÓN SAC RUC: 20008737023

Jr. Quinus N'570. Ayacucho - Husmanga - Ayacucho Teléfonos: (066) 610625 / 962835652 / 945 513 325 Correc: casagrandecom22@gmeil.com Facebook: Casagranda Consultoria y Construcción

NÚMERO DE COTIZACIÓN

0056-2022-CG

DATOS CLIENTE / DATOS PROYECTO

EMPRESA 0 SENOR(ES):

NUÑEZ PIANTO, EDGAR / QUISPE GALLEGOS, CESAR JUAN

RUC O DNI:

45677180 / 48243549

DIRECCIÓN:

PROYECTO: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTÁBILIZAR SUBRASANTE LIMOSA EN EL

TRAMO MAYOCC-TRISOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022°

UBICACION: AYACUCHO/HUAMANGA/ COMPAÑÍA

SOLICITANTE: NUREZ PIANTO, EDISAR.

CONTACTOS:

TELÉFONOS:

CORREOS:

NUNEZ PIANTO, EDGAR

940 510134

Edn1775@amail.com

QUISPE DALLEGOS, CESAR 918 954 459

En atención a su solicitud, ponemos a su consideración la propuesta de cotinación correspondiente a los servicios de su interés:

тем	CODIGO	DESCRIPCIÓN	NORMA	CANT.	UNID.	PRECIO UNIT. (S/.)	PARCIAL (S/-)
1	*	SUELDS. Método de ensayo para el análhis granulomátrico.	NTP 339.128	4	Unid.	00	240
2	**	SUELOS. Método de ensayo para determinar el limite liquido, limite plastico, e indice de plasticidad de suelos.	NTP 339.129	4	Unid.	60	240
m	*	SUELOS. Método de ensayo para la compactación del suelo en laboratorio utilizando una energia modificada (2 700 kN-m/m ³ (36 000 pie-lof/pie ⁸))	NTP 339.141	13	Unid.	130	1690
4	**	SUELDS. Método de ensayo de CBR (Melación de Soporte de California) de suelos compactados en el laboratorio	NTP 339.345	13	Unid.	220	2800
5		Resistencia a la compresión de probetas de suelo.	ASTM D-1633	13	Unid.	180	2340
D		Método de prueba estándar para el uso del penetrómetro de cono dinámico en aplicaciones de pavimento poco profundo PDC.	A5TM D-6951	20	Unid.	85	1700

SUBTOTAL BRUTO S/. 9070.0 DESCUENTO S/. 0.0 9070.0 SUBTOTAL NETO S/. 1032.6 10702.6 TOTALS/.

ENSAYOS DE MECÁNICA DE SUELOS CON FINES VIALES

INF. N° 001-2022/CG-CON-22-0-021

PROYECTO:

"INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

SOLICITANTE:

NUÑEZ PIANTO, EDGAR

QUISPE GALLEGOS, CESAR JUAN

FECHA:

DICIEMBRE DEL 2022

ANEXO 01 ENSAYOS DE CAMPO

CUADRO RESUMEN DE ENSAYOS DE PENETRACION DINAMICA DE CONO PDC

Ensayo PDC	Ubicación Profundidad (cm)		Numero de Golpes (golp)		DN (mm/golp)	CBR (%)	CBR(%)	
	- 100 m	0.0	24.0	0.0	1.0	240.0	0.6	10.00
	. VM 44 - 450	24.0	52.0	1.0	18.0	16.5	12.7	CBR(%) Diseño
1.0	: KM 11+150	52.0	77.0	18.0	42.0	10.4	21.2	
		77.0	100.0	42.0	62.0	11.5	18.9	

Ensayo PDC	Ubicación	Ubicación Profundidad (cm)		Numero d	le Golpes lp)	DN (mm/golp)	CBR (%)	CBR(%) Diseño	
		0.0	8.8	0.0	1.0	87.5	2.0		
	. PM 11 . 000	8.8	41.1	1.0	38.0	8.8	25.7	Diseño	
2.0	: KM 11+200	41.1	84.9	38.0	61.0	19.0	10.8		
		84.9	98.0	61.0	96.0	3.8	66.4		

Ensayo PDC	Ubicación	Profundi	dad (cm)	Numero o	le Golpes	DN (mm/golp)	CBR (%)	CBR(%) Diseño
	3,55,12	0.0	14.4	0.0	6.0	24.0	8.3	110.11
3.0	: KM 11+250	14.4	44.1	6.0	29.0	12.9	16.6	
3.0	: KWI 11+250	44.1	77.7	29.0	43.0	24.0	8.3	11.9
		77.7	99.9	43.0	58.0	14.8	14.3	

Ensayo PDC	Uhicación Profundidad (cm)		Numero de Golpes (golp)		DN (mm/golp)	CBR (%)	CBR(%) Diseño	
		0.0	14.0	0.0	2.0	69.8	2.5	
4.0	: KM 11+300	14.0	27.9	2.0	20.0	7.8	29.5	Diseño
4.0	: KM 11+300	27.9	68.0	20.0	53.0	12.1	17.8	
		68.0	99.0	53.0	80.0	11.5	18.9	

Ensayo PDC	Ubicación	Profund	Profundidad (cm)		Numero de Golpes (golp)		CBR (%)	CBR(%) Diseño
		0.0	50.0	0.0	1.0	500.0	0.3	
50	. PM 11 . 252	50.0	60.0	1.0	5.0	25.0	7.9	
5.0	: KM 11+350	60.0	80.0	5.0	9.0	50.0	3.7	
1		80.0	100.0	9.0	15.0	33.3	5.8	

Ensayo PDC	Ubicación Profundidad (cm)		Numero o	ie Golpes	DN (mm/golp)	CBR (%)	CBR(%) Diseño	
	No. of the last of	0.0	12.5	0.0	25.0	5.0	48.1	
6.0	1/14 44 : 400	12.5	60.0	25.0	55.0	15.8	13.2	
6.0	: KM 11+400	60.0	87.5	55.0	72.0	16.2	12.9	
		87.5	100.0	72.0	88.0	7.8	29.2	

Ensayo PDC	Ubicación Profundidad (cm)		Numero o		DN (mm/golp)	CBR (%)	CBR(%) Diseño	
		0.0	34.5	0.0	1.0	345.0	0.4	Train and
7.0	: KM 11+450	34.5	61.0	1.0	10.0	29.4	6.6	
7.0	: KM 11+450	61.0	80.5	10.0	21.0	17.8	11.6	1.2
		80.5	98.9	21.0	30.0	20.4	9.9	

Ensayo PDC	Ubicación	Profundi	dad (cm)	Numero o	ie Golpes olp)	DN (mm/golp)	CBR (%)	CBR(%) Diseño
		0.0	33.0	0.0	30.0	11.0	19.9	
0.0	- KM 44 - 500	33.0	65.1	30.0	47.0	18.9	10.9	10.0
8.0	: KM 11+500	65.1	80.5	47.0	62.0	10.3	21.5	10.9
		80.5	99.0	62.0	81.0	9.7	22.8	

CUADRO RESUMEN DE ENSAYOS DE PENETRACION DINAMICA DE CONO PDC

Ensayo PDC	Ubicación	Profundi	dad (cm)	Numero o	le Golpes lp)	DN (mm/golp)	CBR (%)	CBR(%) Diseño
		0.0	44.2	0.0	6.0	73.7	2.4	Diseño
9.0	: KM 11+550	44.2	49.6	6.0	16.0	5.4	43.8	150
	, KW 11+550	49.6	78.2	16.0	24.0	35.7	5.3	15.9
		78.2	98.6	24.0	36.0	17.0	12.2	

Ensayo PDC	Ubicación	Profundi	Profundidad (cm)		Numero de Golpes (golp)		CBR (%)	CBR(%) Diseño
		0.0	20.9	0.0	6.0	34.8	5.5	
100	: KM 11+600	20.9	40.3	6.0	30.0	8.1	28.1	100
10.0	, NIVI 11+000	40.3	60.3	30.0	53.0	8.7	26.0	16.3
		60.3	99.2	53.0	92.0	10.0	22.2	

Ensayo PDC	Ubicación	Profundidad (cm)		Numero de Golpes (golp)		DN (mm/golp)	CBR (%)	CBR(%) Diseño
		0.0	19.0	0.0	21.0	9.0	24.8	
44.0	: KM 11+650	19.0	29.5	21.0	40.0	5.5	43.0	100
11.0	: KIVI 11+650	29.5	60.0	40.0	98.0	5.3	45.5	12.8
		60.0	97.5	98.0	121.0	16.3	12.8	

Ensayo PDC	/ I Ubicación Profundidad (cm)		Numero de Golpes (golp)		DN (mm/golp)	CBR (%)	CBR(%) Diseño	
		0.0	16.4	0.0	8.0	20.5	9.9	
100	: KM 11+700	16.4	40.4	8.0	47.0	6.2	38.2	
12.0	. KIVI 11+700	40.4	70.8	47.0	88.0	7.4	31.0	9.9
		70.8	100.0	88.0	106.0	16.2	12.9	

Ensayo PDC	Ubicación	Profundi	dad (cm)		de Golpes olp)	DN (mm/golp)	CBR (%)	CBR(%) Diseño
		0.0	10.5	0.0	12.0	8.8	25.7	
100	: KM 11+750	10.5	36.0	12.0	27.0	17.0	12.2	100
13.0	: KW 11+750	36.0	79.2	27.0	56.0	14.9	14.2	12.2
		79.2	96.9	56.0	81.0	7.1	32.6	

Ensayo PDC	Ubicación	Profundidad (cm)		Numero de Golpes (golp)		DN (mm/golp)	CBR (%)	CBR(%) Diseño
		0.0	20.3	0.0	1.0	202.5	0.8	Diseño
14.0	: KM 11+800	20.3	41.9	1.0	14.0	16.6	12.5	- 4
14.0	: KM 11+800	41.9	67.5	14.0	23.0	28.5	6.9	5.4
		67.5	98.6	23.0	35.0	25.9	7.6	

Ensayo PDC	Ubicación	Profundi	dad (cm)		de Golpes olp)	DN (mm/golp)	CBR (%)	CBR(%) Diseño
		0.0	20.8	0.0	21.0	9.9	22.4	Diseño
15.0	: KM 11+850	20.8	40.6	21.0	57.0	5.5	43.3	10.2
15.0	. KIVI 11+00U	40.6	61.1	57.0	88.0	6.6	35.3	10.3
		61.1	99.0	88.0	120.0	11.9	18.3	

Ensayo PDC	Ubicación	Profundi	Profundidad (cm)		Numero de Golpes (golp)		CBR (%)	CBR(%) Diseño
		0.0	22.0	0.0	23.0	9.6	23.3	
16.0	: KM 11+900	22.0	35.0	23.0	46.0	5.7	42.0	00.0
16.0	. NW 11+900	35.0	56.0	46.0	77.0	6.8	34.3	23.3
		56.0	61.0	77.0	100.0	2.2	100.0	

CUADRO RESUMEN DE ENSAYOS DE PENETRACION DINAMICA DE CONO PDC

Ensayo PDC	Ubicación	Profundi	dad (cm)	THE STREET CONTRACTOR OF	le Golpes	DN (mm/golp)	CBR (%)	CBR(%) Diseño
		0.0	23.4	0.0	1.0	234.0	0.6	Diseño
17.0	: KM 11+950	23.4	41.3	1.0	12.0	16.3	12.8	100
17.0	: KM 11+950	41.3	80.3	12.0	56.0	8.9	25.4	10.2
		80.3	98.3	56.0	61.0	81.0	2.1	

Ensayo PDC	Ubicación	Profundi	dad (cm)	Numero (de Golpes olp)	DN (mm/golp)	CBR (%)	CBR(%) Diseño
		0.0	13.4	0.0	17.0	7.9	28.9	
18.0	DDOC 10 - 000	13.4	59.0	17.0	42.0	18.2	11.3	11.3
18.0	: PROG. 12+000	59.0	65.0	42.0	50.0	7.5	30.6	11.3
		65.0	100.0	50.0	74.0	14.6	14.5	

Ensayo PDC	Ubicación	Profundidad (cm)		Numero de Golpes (golp)		DN (mm/golp)	CBR (%)	CBR(%) Diseño
		0.0	8.5	0.0	19.0	4.5	54.5	Diseño 21.3
100	PROC 10 - 050	8.5	23.0	19.0	33.0	10.4	21.3	21.2
19.0	: PROG. 12+050	23.0	38.0	33.0	53.0	7.5	30.6	21.3
		38.0	55.0	53.0	100.0	3.6	69.2	

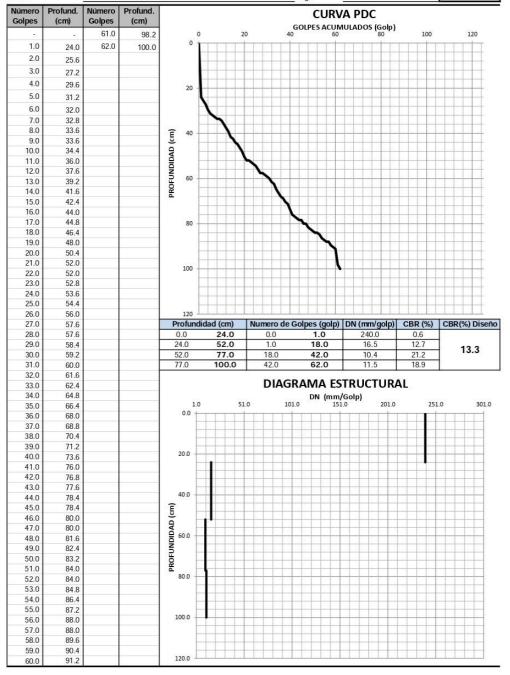
Ensayo PDC	Ublcación	Profundi	dad (cm)		ie Golpes olp)	DN (mm/golp)	CBR (%)	CBR(%) Diseño
		0.0	9.5	0.0	13.0	7.3	31.5	
20.0	: PROG. 12+100	9.5	19.6	13.0	31.0	5.6	42.3	12.5
20.0	; PRUG. 12+100	19.6	48.6	31.0	76.0	6.4	36.2	12.5
		48.6	87.0	76.0	99.0	16.7	12.5	

Ensayo PDC	Ubicación	Profundi	dad (cm)		ie Golpes olp)	DN (mm/golp)	CBR (%)	CBR(%) Diseño
		0.0	21.0	0.0	1.0	210.0	0.7	
21.0	: PROG. 12+150	21.0	42.0	1.0	4.0	70.0	2.5	
21.0	PRUG. 12+150	42.0	81.2	4.0	20.0	24.5	8.1	6.6
		81.2	98.0	20.0	32.0	140	15.2	

Ensayo PDC	Ubicación	Profundi	dad (cm)		de Golpes olp)	DN (mm/golp)	CBR (%)	CBR(%) Diseño
		0.0	20.5	0.0	27.0	7.6	30.2	
00.0	: PROG. 12+200	20.5	50.0	27.0	55.0	10.5	20.9	45.0
22.0	, FRUG. 12+200	50.0	81.0	55.0	78.0	13.5	15.9	15.9
		81.0	91.0	78.0	100.0	45	53.6	

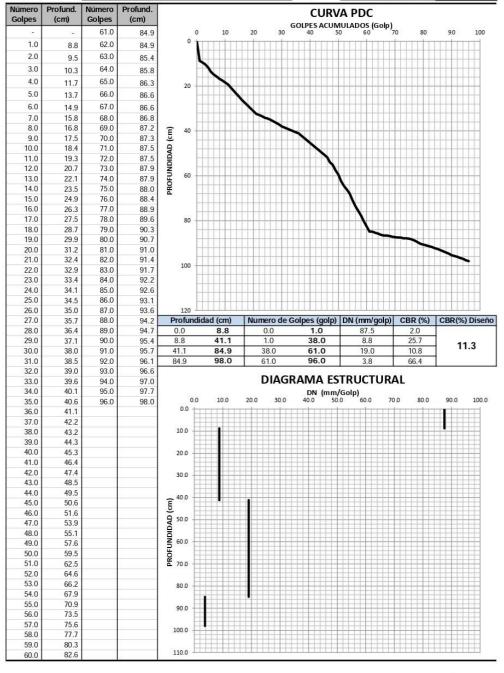
Ensayo PDC	Ubicación	Profundi	dad (cm)	Numero d (gd	le Golpes lp)	DN (mm/golp)	CBR (%)	CBR(%) Diseño
		0.0	30.0	0.0	15.0	20.0	10.2	
23.0	: PROG. 12+250	30.0	37.0	15.0	25.0	7.0	33.0	10.2
23.0 : PROG. 12+2	: PHUG. 12+250	37.0	60.9	25.0	52.0	8.9	25.4	10.2
		60.9	79.0	52.0	80.0	6.5	36.1	

CASAGRANDE CONSULTORIA Y
CONSTRUCCION S.A.C.


DAVID DE JESUS GUERRA AYALA
INCENIERO CIVIL
AREAS GEOTECNIA Y CONCRETO

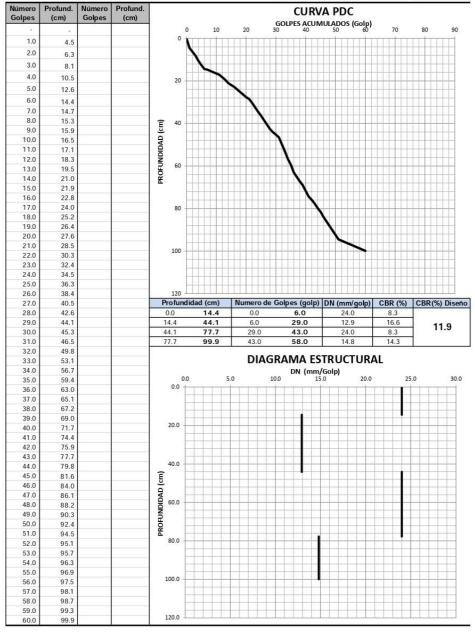
: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR | Región | Provincia | HUMANGA | Distrito | Echa : DICIEMBRE DEL 2022 | Lugar : MAYOCC-TRIGOPAMPA | PDC-1



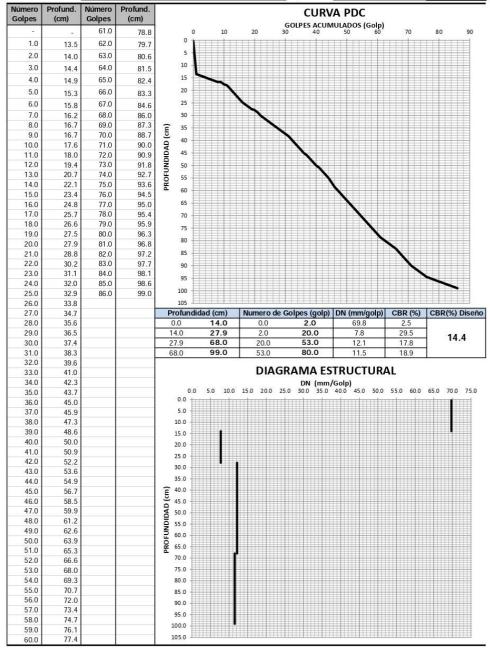
Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante	: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS	, CESAR JU Región	: AYACUCHO	
Ubicación	: KM 11+200	Provincia	: HUAMANGA	PDC-2
Cota Terreno	: SUB RASANTE	Distrito	: PACAYCASA	PDC-Z
Fecha	: DICIEMBRE DEL 2022	Lugar	: MAYOCC-TRIGOPAMPA	



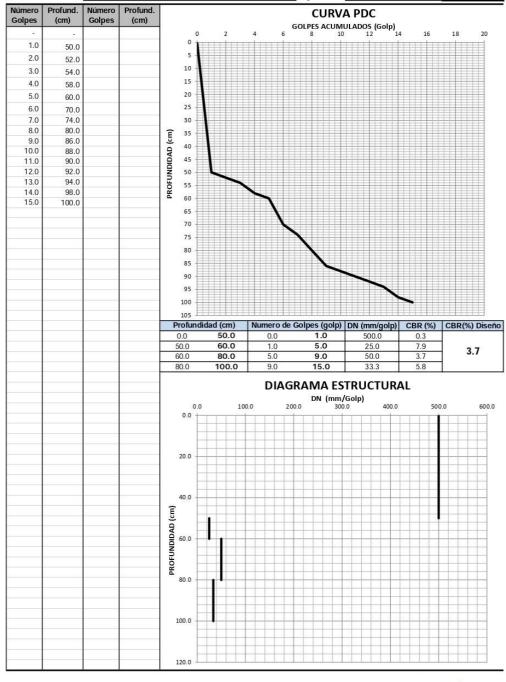
Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante	: NUÑEZ PIANTO, EDGAR - QUISPE GALLE	GOS, CESAR JU Región	: AYACUCHO	
Ubicación	: KM 11+250	Provincia	: HUAMANGA	DDC 2
Cota Terreno	: SUB RASANTE	Distrito	: PACAYCASA	PDC-3
Fecha	: DICIEMBRE DEL 2022	Lugar	: MAYOCC-TRIGOPAMPA	



Proyecto TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

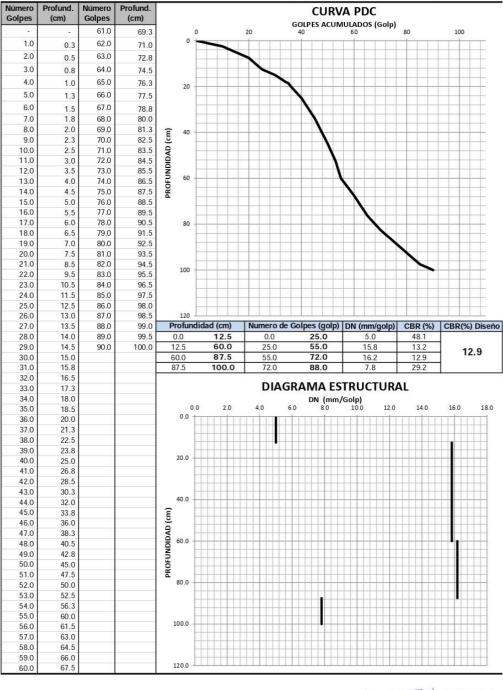
Solicitante	: NUÑEZ PIANTO, EDGAR - QUISPE GALLEG	OS, CESAR JU Región	: AYACUCHO	ii e
Ubicación	: KM 11+300	Provincia	: HUAMANGA	DDC 4
Cota Terreno	: SUB RASANTE	Distrito	: PACAYCASA	PDC-4
Fecha	: DICIEMBRE DEL 2022	Lugar	: MAYOCC-TRIGOPAMPA	



Proyecto TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

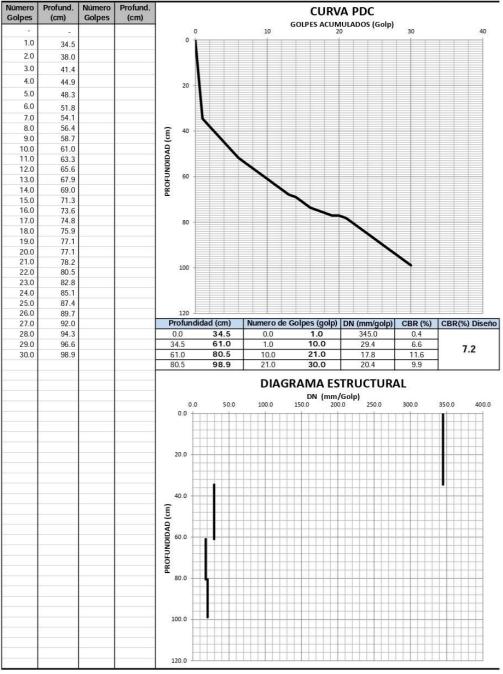
Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JU Región
Ubicación : KM 11+350 Provincia
Cota Terreno : SUB RASANTE DICIEMBRE DEL 2022 PDC-5

SOLICIEMBRE DEL 2022 PDC-5



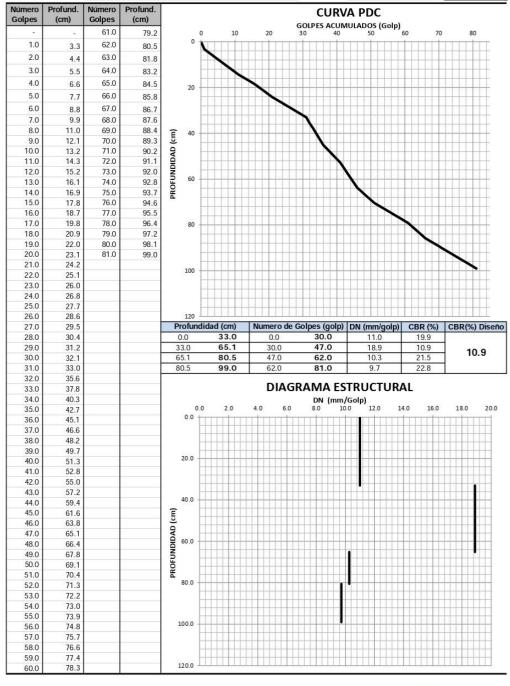
Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante
Ubicación
Cota Terreno
Fecha
Solicitante
Ubicación
SIMPASANTE
SIDICIEMBRE DEL 2022
SIDICIEMBRE DEL 202



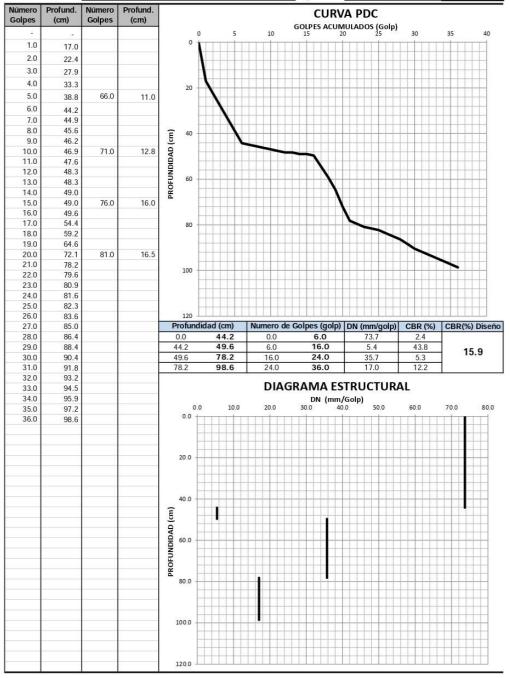
Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JU Región Ubicación : KM 11+450 Provincia SUB RASANTE Distrito Eccha : DICIEMBRE DEL 2022 PDC-7



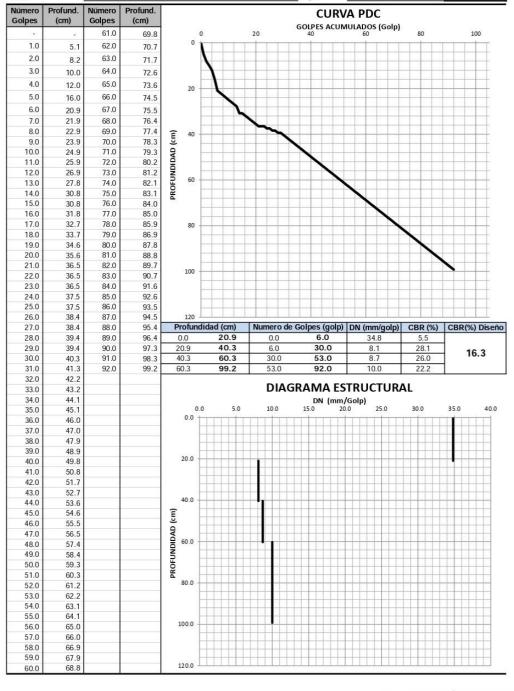
Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JU Región : AYACUCHO
Ubicación : KM 11+500 Provincia : HUAMANGA : SUB RASANTE Distrito : PACAYCASA
Fecha : DICIEMBRE DEL 2022 Lugar : MAYOCC-TRIGOPAMPA



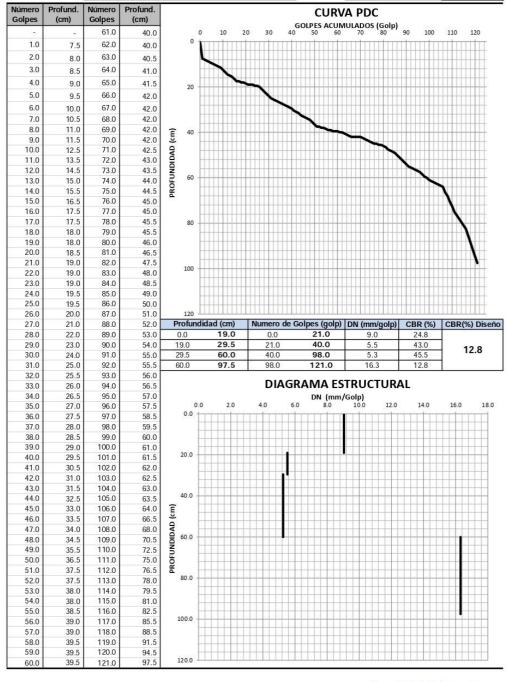
Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JU Región Solicitante : AYACUCHO : KM 11+550 Ubicación Provincia : HUAMANGA PDC-9 : SUB RASANTE : PACAYCASA Cota Terreno Distrito : MAYOCC-TRIGOPAMPA Fecha : DICIEMBRE DEL 2022 Lugar



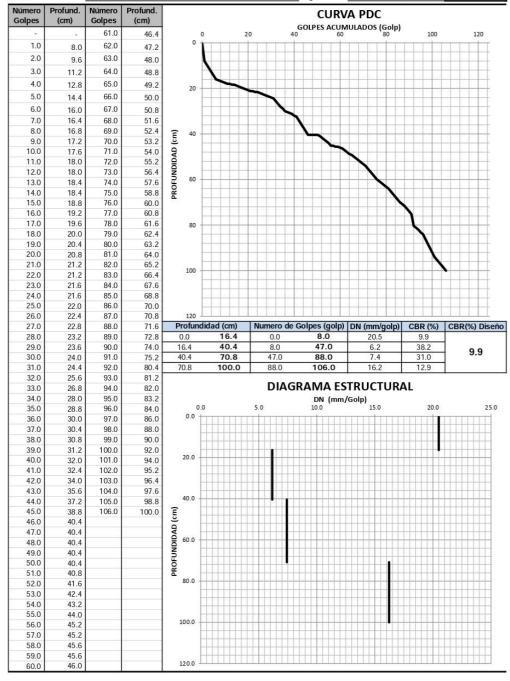
Proyecto TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JU Region
Ubicación : KM 11+600 Provincia
Cota Terreno : SUB RASANTE Distrito
Fecha : DICIEMBRE DEL 2022 Lugar : MAYOCC-TRIGOPAMPA



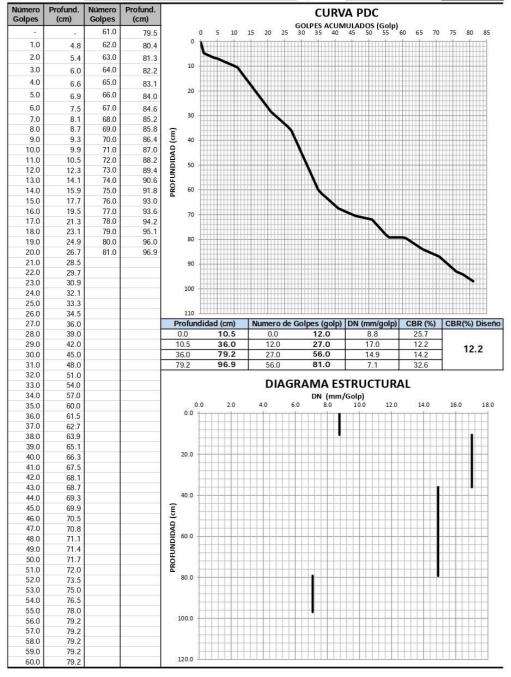
Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante	: NUÑEZ PIANTO, EDGAR - QUISPE GAI	LLEGOS, CESAR JU Región	: AYACUCHO	
Ubicación	: KM 11+650	Provincia	: HUAMANGA	DDC 11
Cota Terreno	: SUB RASANTE	Distrito	: PACAYCASA	PDC-11
Fecha	: DICIEMBRE DEL 2022	Lugar	: MAYOCC-TRIGOPAMPA	



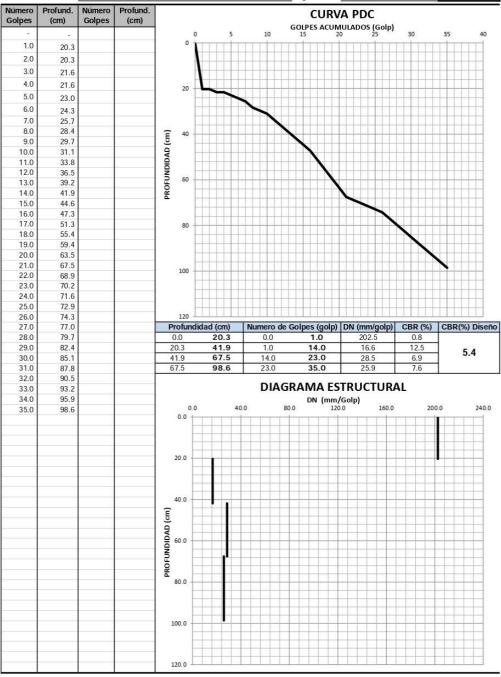
Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante	: NUÑEZ PIANTO, EDGAR - QUISPE GALL	EGOS, CESAR JU Región	: AYACUCHO	
Ubicación	: KM 11+700	Provincia	: HUAMANGA	DDC 12
Cota Terreno	: SUB RASANTE	Distrito	: PACAYCASA	PDC-12
Fecha	: DICIEMBRE DEL 2022	Lugar	: MAYOCC-TRIGOPAMPA	



Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JU Región Ubicación : KM 11+750 Provincia Distrito Echa : DICIEMBRE DEL 2022 PDC-13

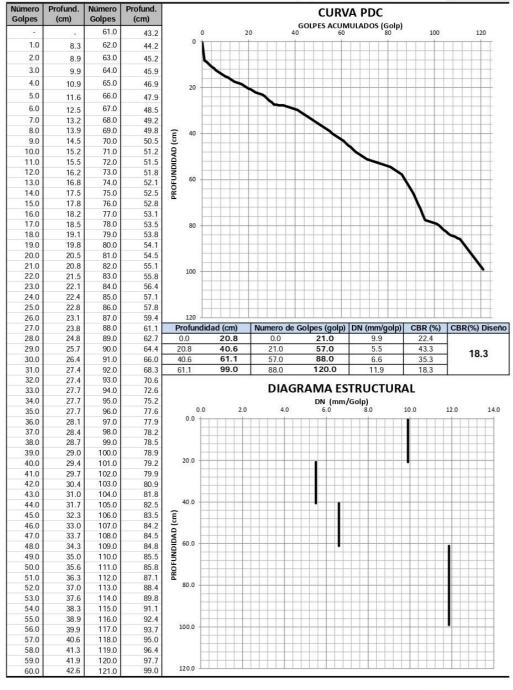


Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante
Ubicación
Cota Terreno
Fecha

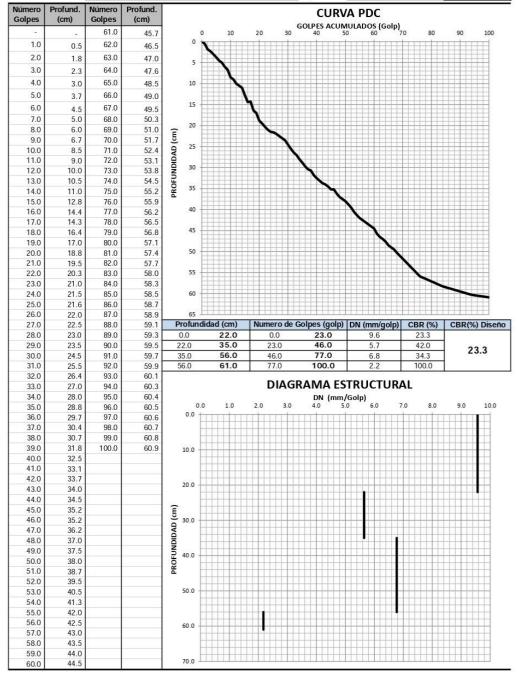
Solicitante

Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante
Solicitante



Proyecto TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

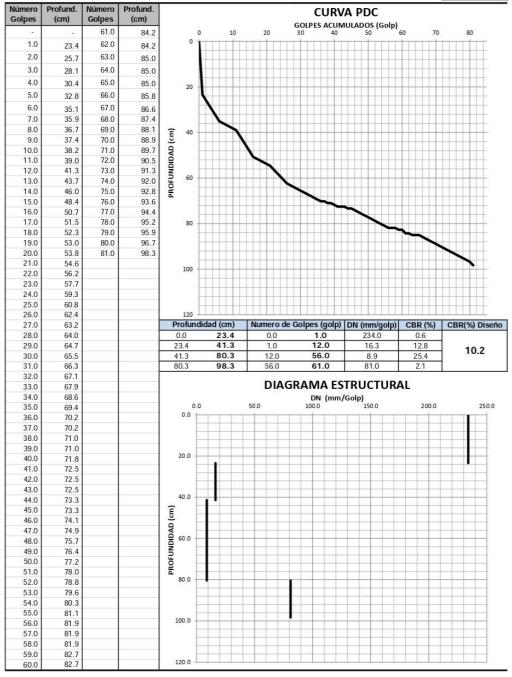
Solicitante	: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS	, CESAR JU Región	: AYACUCHO	
Ubicación	: KM 11+850	Provincia	: HUAMANGA	PDC-15
Cota Terreno	: SUB RASANTE	Distrito	: PACAYCASA	PDC- 13
Fecha	: DICIEMBRE DEL 2022	Lugar	: MAYOCC-TRIGOPAMPA	



Proyecto TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

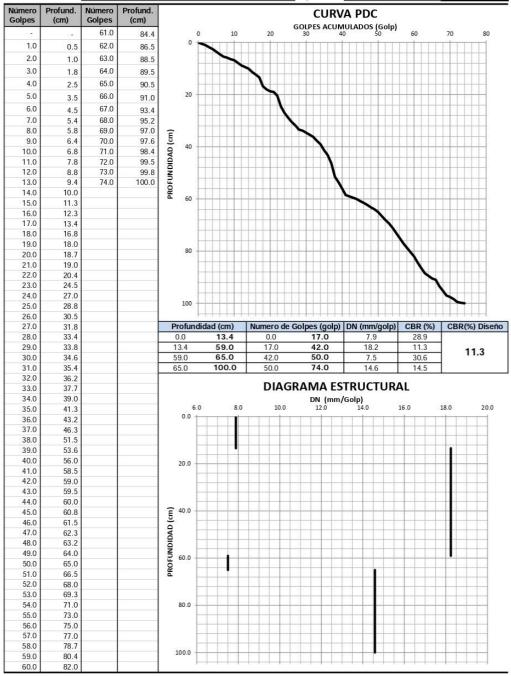
Solicitante
Ubicación
Cota Terreno
Fecha

Solicitante
Ubicación
Cota Terreno
Solicitante
Ubicación
Cota Terreno
Solicitante
Ubicación
Solicitante
Ubicación
Solicitante
Ubicación
Solicitante
Solicita



Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

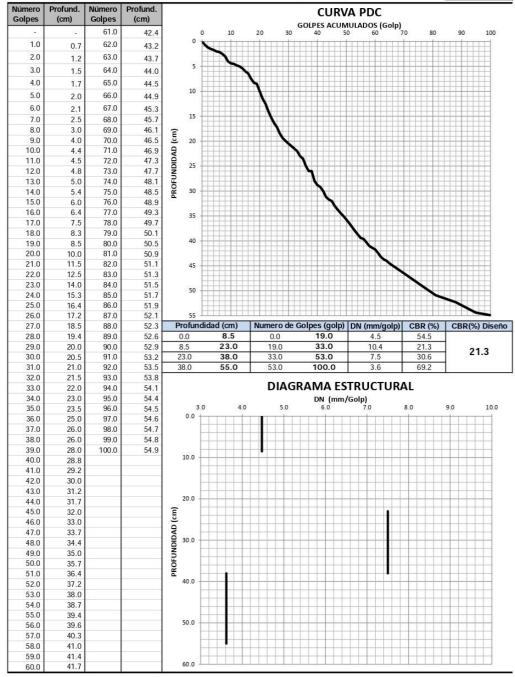
Solicitante	: NUÑEZ PIANTO, EDGAR - QUISPE GALI	EGOS, CESAR JU Región	: AYACUCHO	
Ubicación	: KM 11+950	Provincia	: HUAMANGA	PDC-17
Cota Terreno	: SUB RASANTE	Distrito	: PACAYCASA	PDC-17
Fecha	: DICIEMBRE DEL 2022	Lugar	: MAYOCC-TRIGOPAMPA	



Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

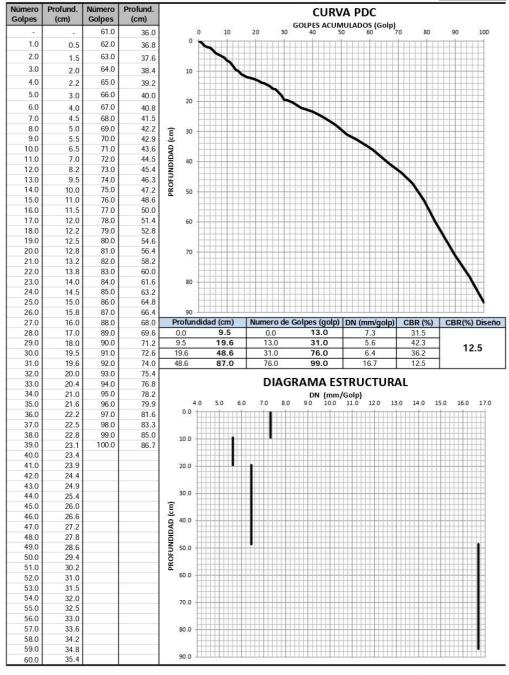
Solicitante
Ubicación
Cota Terreno
Fecha

Solicitante
Ubicación
Cota Terreno
Solicitante
Ubicación
Cota Terreno
Solicitante
Ubicación
Solicitante
Ubicación
Solicitante
Solici



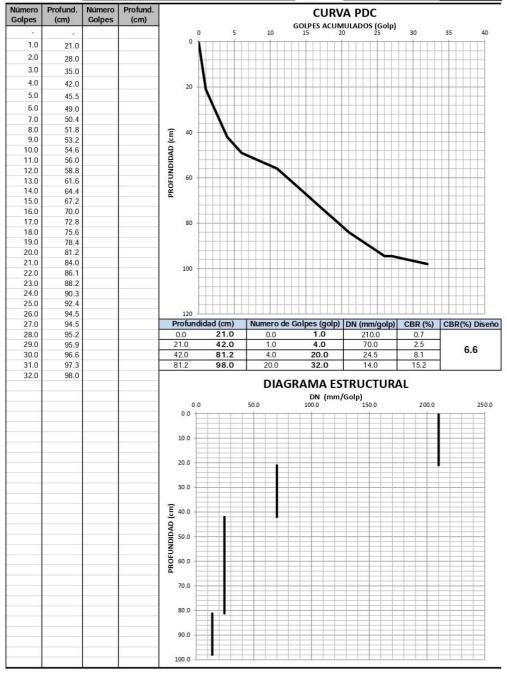
Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante	: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGO	S, CESAR JU Región	: AYACUCHO	
Ubicación	: PROG. 12+050	Provincia	: HUAMANGA	DDC 10
Cota Terreno	: SUB RASANTE DEL PROYECTO	Distrito	: PACAYCASA	PDC-19
Fecha	: DICIEMBRE DEL 2022	Lugar	: MAYOCC-TRIGOPAMPA	v.



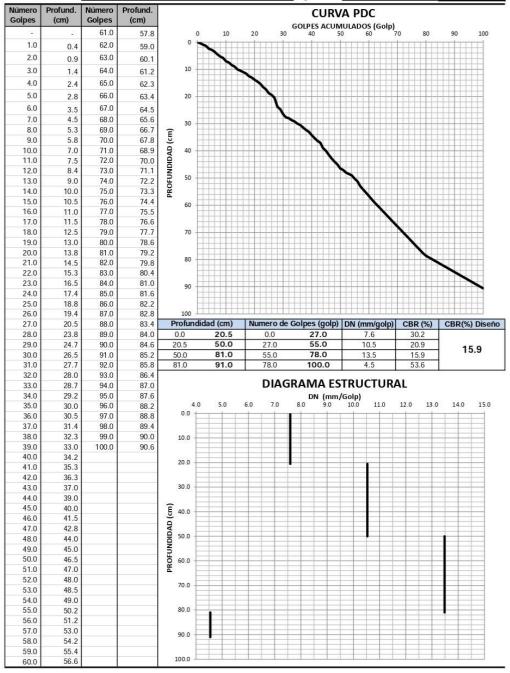
Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante	: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGO	S, CESAR JU Región	: AYACUCHO	
Ubicación	: PROG. 12+100	Provincia	: HUAMANGA	PDC-20
Cota Terreno	: SUB RASANTE	Distrito	: PACAYCASA	PDC-20
Fecha	: DICIEMBRE DEL 2022	Lugar	: MAYOCC-TRIGOPAMPA	



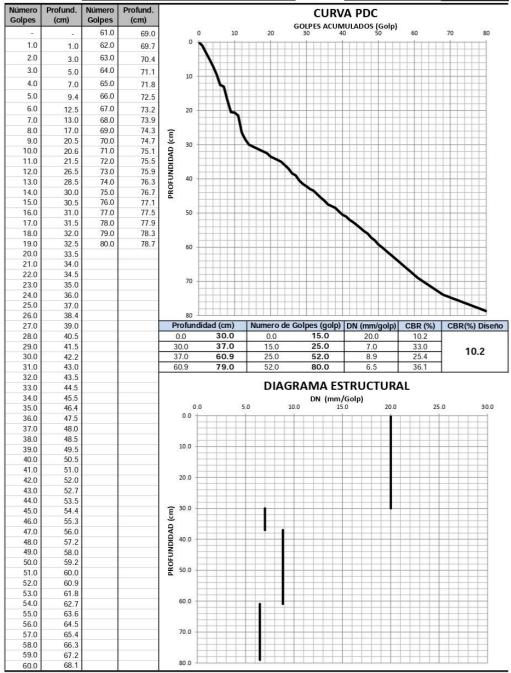
Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JU Región Ubicación : PROG. 12+150 Provincia Cota Terreno : SUB RASANTE Distrito Echa : DICIEMBRE DEL 2022 PDC-21



Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante	: NUÑEZ PIANTO, EDGAR - QUISPE GALLE	GOS, CESAR JU Región	: AYACUCHO	
Ubicación	: PROG. 12+200	Provincia	: HUAMANGA	DDC 22
Cota Terreno	: SUB RASANTE	Distrito	: PACAYCASA	PDC-22
Fecha	: DICIEMBRE DEL 2022	Lugar	: MAYOCC-TRIGOPAMPA	



Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Solicitante	: NUÑEZ PIANTO, EDGAR - QUISPE GAL	LEGOS, CESAR JU Región	: AYACUCHO	
Ubicación	: PROG. 12+250	Provincia	: HUAMANGA	DDC 22
Cota Terreno	: SUB RASANTE	Distrito	: PACAYCASA	PDC-23
Fecha	: DICIEMBRE DEL 2022	Lugar	: MAYOCC-TRIGOPAMPA	

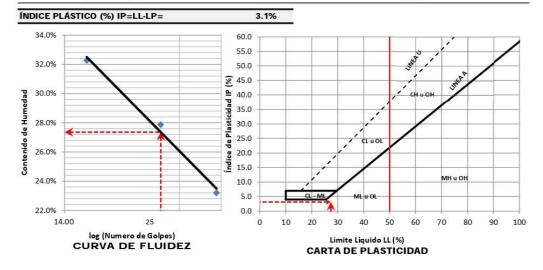
ANEXO 02 ENSAYOS DE LABORATORIO

MIR	ESTRA	1								NSAYO	S DE ON	MALON	FTHIA										Free	SAYOS DE PI	ASTICIDA	AD THE MAN	TE MALLA	Nº 401			- 0		CLASSES	DACKON DE S	UFLOS	FINS	AYOS DE COMPAC	TACKS		NSAYOS DE	RESISTENC	ia I	ENSAYOS DE I	RESIDENCE
	ESTRA	akin	Cartidat	N.Gea Gruen	S Green Fine	% ARDIA	Cartific	Access Gruess	٦,	1				"test 0"	m pa	ficiente de presidad Cu	Coefficiente e Curvanies Co:	D. gross D	umo Opi	Pla test en	stoited Lin	te Indo		Grafic asion di Compresibiliti	1	T	1		Peters Expans o P d25 Bu Declar	on Ep rau of	medel n(%)	Caralicación AASTHO		Clerifocole	Momber de Grupe (KSTMD- 24E 2)		Minima Demokal Scra MES Process Workleade bries)	T. Contract			_		Brokence Promote (Nytro)	Brasteca Procede (IPs)
3	CPTIPO (parkatilis) CMP (BOSATUS)	0-		T	П			Т	Г	П	T				T					1								T									1.62	141	54	3.9	Isutiese	9.1/%	LIR	1010
.6	CPTIPO ((parados)	0-																																			1.69	214	35.0	112	Luciesie	0.02%	8.0	183
AUCATA (1) (OFF (FISHES)	11.5	De poca d	0.2	98.1	28.5	Organieri armidis	7.5	10.3	6.5	624 B	slate	001	054	27	LO	15	103	100 2	58	Sqc 21	% B	6	Bp	25.2%	Espo	Paccasi	leso 1.f	5 Poleno	itqo 1	119%	84(1)	Majbano	ML	LIMO ARCHO SO	2590	1.602	263	113	(23	Exclusion	631%	0.00	1950
36	CPTPO (DISMUS)	0 -																																			148	258	10.1	183	Excise		1216	1287
	CPTIPO I DISEMBS) ORF (TISEMBS)	0 -																																			1.50	286	108	111	Facione	0.00%	90.40	1916
	CPTIPO (park-MDS) CMIT (ERS-MDS)	0-																																			2330	1366	- 86	7.3	legir	0.07%	5.8	156
-	OF politics)	0-																																			1.494	182	413	412	Excess	0.22%	3430	1381
ALICATA DE - : C EM 11-400	CPTPO (paskMbs) ONF paskMbs)	20.5	Pequeta	1.0	16.2	29.3	Depayan	15	12.0	0.0	462 Dec	nudica state	002	015	55 3	108.	0.1	602	813 11	67 Te	pletico A	3		Depr	NP	No plants	Discount acti	m de pp	Paterci	Digo 3	118%	6133	Majbano	98	SPERM LINE CON CRAMA	2630	1.60	209	845	150	Excelerin	0.02%	12.12	1140
.6	CPTPC (DISLANDS)	0.																																			148	25.1	349	716	facilism	0.21%	415	4130
36	CPTIPO (DISSMIS) ONF (LISSMISS)	0-																																			1.307	223	110	423	Exciser	asrK.	35.94	2421
	CPTPO ((0.054MDS) ONE (0.054MDS)	0+																																			1.60	193	22	28	Inadecuada	0.075	0.5	1014
3	CPTPC (paskMIS) ORI (BOLNUS)	0 -																																			1.594	200	162	138	Dura	0.21%	6.8	1620
AUCATA co C	CPTIPO ((30)MDS)	29	Trans	15	2.4	20.0	Pequeta	21	86	7,3	731 B	stante	681	083 (16	1.0	- ta	102	105 19	30	Bap 21	% Ti	55	Bija	19.6%	860	Paccenti	B100 1.7	n Pareci	1000 1	148%	64(1)	Majbamo	М.	UMOCONARDIA	268	1.88	210	29.7	880	Mythes	0,91%	9.00	1882
3.6	CPTPO (puruMDS) (MF (poliumS)	0-																																			1.60	265	38.1	23.1	Liceleste	0.21%	пл	1115
	OFF (CENTRE)	0-																																			1.48	284	328	115	Facrister	0.00%	9.8	148
	CPTPD ((0.05 MES) ONE (0.05 MES)	0-																																			3.80	201	a	38	Indian	0.53%	1.0	8116
16	CPTIPE (parkates) CHE (BOLATES)	0-																																			1.42	215	410	109	Dorient	212.0	18.55	1820
AJCATA 04	CPTIPO (puskatis) (MP (255 MIS)	13.7	Poqueta	4.5	11.0	14.0	pequeta per per a	40	58	4.2	603 B	state	281	011	ar .	5.0	tā.	602	105 6	H No	plenico A		-	Bija	w	No plaste	Carainess arola	a-k n	Pareci	1240 1	0.0%	24 (3)	Majbamo	M.	IMOYTPOCRAWCON ARING	290	1.40	210	-01	462	Dorbse	0.31%	27.34	268
	CPTBG (EXEMPE)	0+																																			1.26	276	116	144	Excelerár	0.00%	22.36	1210
.4	CPTIPO (() (SAMES) ONE (1:55 MES)	0-																																			1.00	284	215	21.6	Mytheso	0.00%	15.75	3510

ANEXO 2.1 CALICATA C-1 KM 11+350

LIMITES DE PLASTICIDAD **DE LOS SUELOS (PASANTE** LA MALLA Nº 40)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto


Región/Provinc : AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

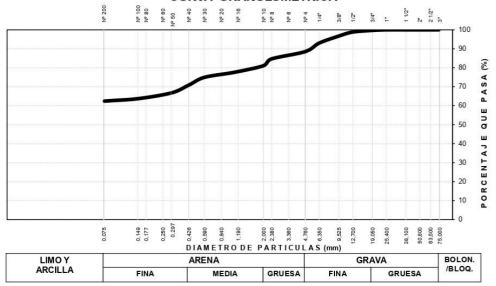
: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito Solicitante : PACAYCASA : CALICATA 01 - KM 11+350 : MAYOCC-TRIGOPAMPA Exploración Lugar Estrato / Nivel : MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

	RECIPIENTE	Nº	126	158	
1	PESO SUELO HUMEDO + RECIPIENTE	gr	24.257	29.641	
2	PESO SUELO SECO+RECIPIENTE	gr	23.101	28.337	
3	PESO RECIPIENTE	gr	18.320	22.960	
4	PESO AGUA (1)-(2)	gr	1.16	1.30	
5	PESO SECO (2)-(4)	gr	4.78	5.38	
6	HUMEDAD	%	24.20%	24.24%	

LIMITE PLÁSTICO 24.2%

			PROCEDII	MIENTO DE M	ULTIPUNTO	UNIPUNTO
	RECIPIENTE	N°	47	75	145	
1	PESO SUELO HUMEDO + RECIPIENTE	gr	36.131	38.334	36.911	
2	PESO SUELO SECO+RECIPIENTE	gr	33.543	34.728	33.059	
3	PESO RECIPIENTE	gr	22.391	21.789	21.123	
4	PESO AGUA (1)-(2)	gr	2.588	3.607	3.852	
5	PESO SECO (2)-(4)	gr	11.152	12.939	11.936	
6	HUMEDAD	%	23.20%	27.88%	32.27%	
7	NUMERO DE GOLPES	N°	35	25	16	
	LIMITE LIQUIDO	%		2	7.4%	•

ANÁLISIS GRANULOMÉTRICO **DEL SUELO POR TAMIZADO** (MTC E 107)



: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCCTRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Provinc. : AYACUCHO/HUAMANGA : INFORME 001-2022/CG-CON-22-O-021 Trazabilidad : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA Exploración : CALICATA 01 - KM 11+350 Lugar : MAYOCC-TRIGOPAMPA : MATERIAL PROPIO : DICIEMBRE DEL 2022 Estrato/Nivel Fecha

	TAMIZ ASTM	Abertura (mm)	PESO (gr) RETENIDO	% RETEN PARCIAL	% RETEN ACUMULADO	% QUE PASA	DATOS DEL ANÁLIS	IS GRANULOMÉTRICO
ă	3"	75.000	5.	15	8	100.00	ENSAYOS	ESTÁNDAR
TAMIZADO	2 1/2"	63.500	29	12	27	100.00	Peso seco inicial (gr)	4479.1
⋛	2"	50.800	-0	(*		100.00	Peso seco lavado (gr)	1682.1
F	11/2"	38.100	52	10	2	100.00	Pérdida por lavado (gr)	2797.0
	1"	25.400	25	12	21	100.00	Humedad (%)	15.65
POR	3/4"	19.000	14.56	0.33	0.33	99.67	% Grava	11.5
ĭ	1/2"	12.700	37.86	0.85	1.17	98.83	% Grava gruesa	0.3
GRANULOMETRICO	3/8"	9.500	95.65	2.14	3.31	96.69	% Grava fina	11.1
3	1/4"	6.350	163.41	3.65	6.95	93.05	% Arena	26.1
<u>r</u>	Nº 4	4.760	201.49	4.50	11.45	88.55	% Arena gruesa	7.5
Ħ	Nº 8	2.360	175.06	3.91	15.36		% Arena media	10.3
5	Nº 10	2.000	159.71	3.57	18.93	81.07	% Arena fina	8.3
3	N°16	1.100	153.89	3.44	22.36		% de Finos	62.4
ź	N° 30	0.590	121.74	2.72	25.08	74.92	$D_{10} = D_{e(mm)} =$	0.0120
5	N° 40	0.425	186.59	4.17	29.25	70.75	D _{30(mm)} =	0.0360
5	N° 50	0.297	180.21	4.02	33.27	66.73	D _{60(mm)} =	0.0721
0	N° 100	0.149	134.29	3.00	36.27	63.73		-,-
ñ	N° 200	0.075	57.68	1.29	37.56	62.44	Cc =	-,-
Ë	W. 20 (20 (20))	100000000000000000000000000000000000000		100000	37.56		CLASI	FICACIÓN
ANALISIS	Lavado		2,797.0	62.44	100.00		AASHTO	A-4 (1)
4	TOTAL	8	4479.1	100.0	20000000		Clasificación SUCS	M
					LIMO AR	ENOSO		5000

CURVA GRANULOMÉTRICA

CONTENIDO DE HUMEDAD PARA SUELOS (MTC E 108)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL Proyecto

TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Prov. : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAI Distrito Solicitante : PACAYCASA

Exploración : CALICATA 01 - KM 11+350 Lugar : MAYOCC-TRIGOPAMPA Estrato/Nivel: MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

	DETERMINACIÓN DE LA HUMEDAD								
N°	126	98							
gr	1,220.10	1,186.22							
gr	1,107.54	1,065.94							
gr	133.74	85.60							
gr	112.56	120.29							
gr	973.80	980.34							
%	11.6%	12.3%							
_	gr gr gr gr	gr 1,220.10 gr 1,107.54 gr 133.74 gr 112.56 gr 973.80							

CONTENIDO DE HUMEDAD % 11.9%

ENSAYO DE LA GRAVEDAD ESPECIFICA DE LOS SOLIDOS DEL SUELO (MTC E 206, E 113)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc. : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CE: Distrito Solicitante : PACAYCASA

Exploración : CALICATA 01 - KM 11+350 Lugar : MAYOCC-TRIGOPAMPA Estrato/Nivel : MATERIAL PROPIO : DICIEMBRE DEL 2022 Fecha

IDENTIFICACION		ENSAYO Nº01	ENSAYO N°02	PROMEDIC
Peso en el aire de la muestra seca	gr	2221.66	2221.66	
Peso en el aire de la muestra SSS	gr	2251.55	2251.55	
Peso sumergido en agua de la muestra SSS (gr)	gr	1364.94	1364.94	
Gravedad Especifica		2.506	2.506	2.506
Gravedad Especifica SSS		2.539	2.539	2.539
Gravedad Especifica Aparente		2.593	2.593	2.593
% de absorción	%	1.345	1.345	1.345

IDENTIFICACIÓN		MUESTRA 01	MUESTRA 02	PROMEDI
Capacidad de Picnómetro	cm3	500	500	
Peso de la muestra seca	gr	102.01	102.10	
Peso de Picnómetro con la muestra y agua	gr	741.07	746.74	
Peso de Picnómetro aforado lleno de agua	gr	678.35	684.10	2.590
Temperatura del agua en el ensayo	°C	24	23	
Corrección por temperatura (K)		0.9991	0.9993	
Gravedad especifica de la muestra		2.594	2.586	

Gravedad especifica de los sólidos	2.590
Porcentaje que pasa la Malla N°4 (%)	88.5
Porcentaje Retenido en la Malla N°4 (%)	11.5

Contenido de humedad

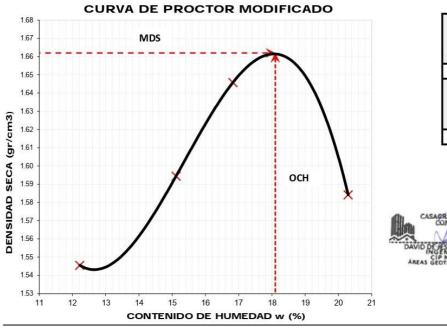
COMPACTACIÓN DE **SUELOS EN LABORATORIO** UTILIZANDO UNA ENERGÍA MODIFICADA (MTC E 115)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL Proyecto

TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc.: AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA


Exploración : CALICATA 01 - KM 11+350 Lugar : MAYOCC-TRIGOPAMPA

Estrato/Nivel : CON CP TIPO I (0.0%	MDS) +	CMF (0.0% MDS)		Fecha	: DICIEMBRE	DEL 2022	
		DATOS DE	L ENSAY	7 0			
Clasificación SUCS :	ML	LIMO ARENOSO			ME	TODO A	
Clasificación AASHTO :	A-4	(1)	Capas	s : 5.00	Golpes/Capa 25		
% Retenido acumulado malla N° 4 :	11.5	Material Pasante	a usar	PASA N° 4			
% Retenido acumulado malla 3/8" :	3.3	Molde (Pulg)	4	Códig	jo	M4	
% Retenido acumulado malla 3/4" :	0.3	Peso Molde (gr) :		4105.00	Vol.(cm3):	939.81	
	EN	SAYO DE CO	МРАСТ	ACIÓN			
Determinación Nº		01	02	03	04		
Peso del molde y muestra	gr	5,735	5,830	5,912	5,896		
Peso de la muestra compactada	gr	1,630.0	1,725.0	1,807.0	1,791.0		
Densidad húmeda	gr/cc	1.73	1.84	1.92	1.91		
Densidad seca	gr/cc	1.55	1.59	1.65	1.58		
	С	ONTENIDO E	E HUMI	EDAD			
Tarro N°		345.0	321.0	152.0	154.0	ľ	
Peso tarro + suelo húmedo	gr	740.21	743.99	670.85	730.22		
Peso de tarro + suelo seco	gr	674.21	664.00	594.28	628.87		
Peso del tarro	gr	134.000	134.880	139.200	129.490		
Peso del agua	gr	66.01	79.98	76.57	101.34		
Peso del suelo seco	gr	540.21	529.12	455.08	499.38		

15.12

16.83

20.29

12.22

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provi: AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

: MAYOCC-TRIGOPAMPA Exploración : CALICATA 01 - KM 11+350 Lugar Estrato/Nivel : CON CP TIPO I (0.0% MDS) + CMF (0.0% MDS) Fecha : DICIEMBRE DEL 2022

			COMP	ACTAC	ION D	EL CB	R				
MOLDE N°			28		Ï	30			32		
CAPAS Nº			5			5			5		
GOLPES POR CAPA			56			26			12		
COND. DE LA MUESTRA			HUMEDO			HUMEDO		HUMEDO			
PESO MOLDE + S. HÚM.	gr		11,730			11,540		11,220			
PESO DEL MOLDE	gr		7,567.00			7,684.00		7,613.00			
PESO SUELO HÚM.	gr		4,163.00			3,856.00			3,607.00		
VOLUMEN DEL MOLDE	cm3		2,112.66			2,116.40		2,093.31			
DENSIDAD HÚMEDA	gr/cm3		1.97			1.82			1.72		
DENSIDAD SECA	gr/cm3		1.663			1.54			1.45		
Contenido de Hun	nedad	Humedad: inicial fi		final	Humeda	ad: inicial	final	Humeda	ad: inicial	final	
TARRO Nº	Nro.	154	322	347	154	322	337	154	322	128	
TARRO+SUELO HÚM.	gr	597.4	784.0	638.2	597.4	784.0	684.1	597.4	784.0	674.0	
TARRO+SUELO SECO	gr	524.5	682.2	545.5	524.5	682.2	579.7	524.5	682.2	566.7	
PESO DEL TARRO	gr	129.49	133.35	133.31	129.49	133.35	136.50	129.49	133.35	136.50	
% DE HUMEDAD	%	18.46	18.55	22.47	18.46	18.55	23.56	18.46	18.55	24.93	
HUMEDAD	%	18	.50	22.47	18	.50	23.56	18	.50	24.93	
ABSORCIÓN	%		3.97			5.06			6.43		
				EXPA	NSIÓI	V					
DÍA		DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	
DIA		DIAL	mm	%] DIAL	mm	%	DIAL	mm	%	
		5330-2003	245.00 (150.00.00	5-0000000000	0.508.5050	284002 (2003)	00000000000	100/1/09/25	100000000000000000000000000000000000000	6, 25,622	

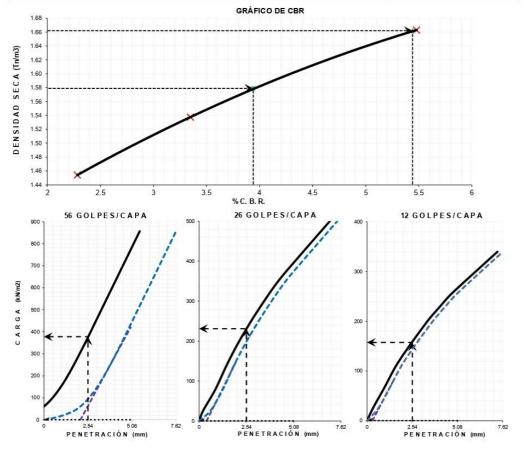
			EXPA	NSIÓI	V .				
DÍA	DIAL	EXPANSIÓN		DIAL	EXPANSIÓN		DIAL	EXPANSIÓN	
DIA	DIAL	mm	%	DIAL	mm	%	DIAL	mm	%
0	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%
4	0.02	127.02	0.02%	0.02	127.02	0.02%	0.03	127.03	0.02%

PENETR	ACIÓN	Carga		PRIMER MOLE	E	S	EGUNDO MOL	.DE	TERCER MOLDE		
(mm) (Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.630	0.025		0.02	0.02	0.01	0.05	0.05	0.03	0.05	0.05	0.03
1.270	0.050		0.05	0.05	0.03	0.15	0.15	0.08	0.13	0.13	0.07
1.900	0.075		0.09	0.09	0.05	0.27	0.27	0.14	0.21	0.21	0.11
2.540	0.100	6.9	0.18	0.18	0.09	0.38	0.38	0.20	0.28	0.28	0.14
3.170	0.125		0.31	0.31	0.16	0.48	0.48	0.25	0.34	0.34	0.18
3.810	0.150		0.48	0.48	0.25	0.57	0.57	0.29	0.40	0.40	0.21
4.445	0.175		0.67	0.67	0.34	0.65	0.65	0.34	0.45	0.45	0.23
5.080	0.200	10.35	0.86	0.86	0.45	0.72	0.72	0.37	0.50	0.50	0.26
7.620	0.300		1.66	1.66	0.86	0.99	0.99	0.51	0.66	0.66	0.34

CBR DE SUELOS - LABORATORIO (MTC E 132)

Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

 Trazabilidad
 : INFORME 001-2022/CG-CON-22-O-021
 Region/Provinc. : AYACUCHO/HUAMANGA


 Solicitante
 : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN
 Distrito
 : PACAYCASA

 Exploración
 : CALICATA 01 - KM 11+350
 Lugar
 : MAYOCC-TRIGOPAMPA

 Estrato/Nivel
 : CON CP TIPO I (0.0% MDS) + CMF (0.0% MDS)
 Fecha
 : DICIEMBRE DEL 2022

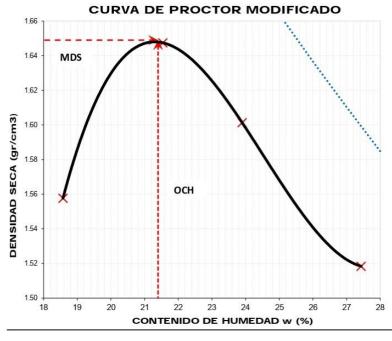
				DATO	OS DEI	ENSAYO)			
Clasificación	SUCS:	ML	LIMO AREN	ioso				AASHTO	O :	A-4 (1)
Máxima Den	sidad Seca	MDS (tn/m3):		1.66	Optimo	Contenido de	Humedad OCI	H % =	18.10	
% Grava =	11.5	% Arena =	26.1	% Finos =	62.4	LL % =	27.4%	LP % =	24.2%	
Expansión %	, =	0.02%	Embebido (días) =	4.0	IP % =	3.1%			

RESULTAD	OS DEL ENSAYO (O1" DE PENETRA	CIÓN)
CBR AL 100% DE MDS (0.1") = 5.44	CBR AL 95% DE LA MDS (0.1") = 3.94	CBR AL 90% MDS =

COMPACTACIÓN DE **SUELOS EN LABORATORIO** UTILIZANDO UNA ENERGÍA **MODIFICADA** (MTC E 115)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL Proyecto

TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"


Región/Provinc.: AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA

Exploración : CALICATA 01 - KM 11+350 Lugar : MAYOCC-TRIGOPAMPA : DICIEMBRE DEL 2022 Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (0.0% MDS) Fecha

Estitatoritival Tooli of The Toolog		O.I.I. (0.070 III.D 0)		1 Goria	. D. G. E. M. D. K. E.	D
		DATOS DI	EL ENSAY	10		
Clasificación SUCS :	ML	LIMO ARENOSO)		ME	TODO A
Clasificación AASHTO :	A-4	(1)	Golpes/Ca	pa 25		
% Retenido acumulado malla N° 4 :	11.5	Material Pasante	al Pasante a usar PASA N° 4		"	
% Retenido acumulado malla 3/8" :	3.3	Molde (Pulg)	4	Códiç	go	M4
% Retenido acumulado malla 3/4" :	0.3	Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81
	EN	SAYO DE C	ОМРАСТ	ACIÓN		
Determinación Nº		01	02	03	04	
Peso del molde y muestra	gr	5,841	5,987	5,970	5,923	
Peso de la muestra compactada	gr	1,735.9	1,881.8	1,864.6	1,818.5	
Densidad húmeda	gr/cc	1.85	2.00	1.98	1.93	
Densidad seca	gr/cc	1.56	1.65	1.60	1.52	
	С	ONTENIDO	DE HUMI	EDAD		
Tarro N°		26.0	415.0	45.0	62.0	
		747.00	754 40	077.50	707 50	

	CONTENIDO DE HUMEDAD								
Tarro N°		26.0	415.0	45.0	62.0				
Peso tarro + suelo húmedo	gr	747.62	751.43	677.56	737.52				
Peso de tarro + suelo seco	gr	651.70	642.39	573.99	606.91				
Peso del tarro	gr	135.340	136.229	140.592	130.785				
Peso del agua	gr	95.92	109.03	103.57	130.61				
Peso del suelo seco	gr	516.36	506.17	433.40	476.13				
Contenido de humedad	%	18.58	21.54	23.90	27.43				

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provi: AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA Exploración : CALICATA 01 - KM 11+350 : MAYOCC-TRIGOPAMPA Lugar

: CON CP TIPO I (3.0% MDS) + CMF (0.0% MDS) : DICIEMBRE DEL 2022 Dosis Fecha

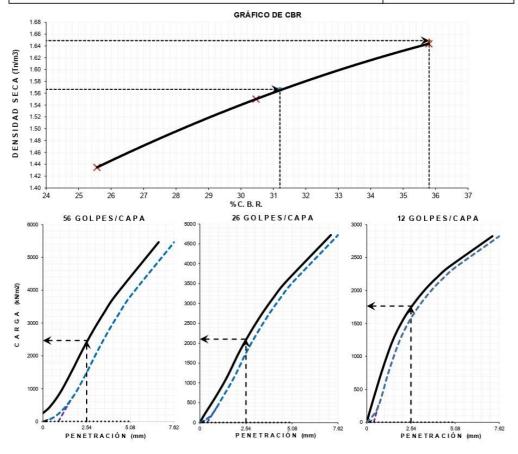
		-	COMP	ACTAC	ION D	EL CB	R			
MOLDE N°			25			10			4	
CAPAS Nº			5			5			5	
GOLPES POR CAPA			56		26			12		
COND. DE LA MUESTRA			HUMEDO		HUMEDO			HUMEDO		
PESO MOLDE + S. HÚM.	gr		11,070		11,819				11,378	
PESO DEL MOLDE	gr		6,871.00		7,866.00				7,711.00	
PESO SUELO HÚM.	gr		4,199.00		3,953.00				3,667.00	
VOLUMEN DEL MOLDE	cm3		2,098.30		2,094.63			2,099.38		
DENSIDAD HÚMEDA	gr/cm3		2.00			1.89		1.75		
DENSIDAD SECA	gr/cm3		1.64			1.55			1.43	
Contenido de Hun	nedad	Humeda	Humedad: inicial final		Humeda	d: inicial	final	Humeda	d: inicial	final
TARRO N°	Nro.	337	322	314	337	322	255	337	322	317
TARRO+SUELO HÚM.	gr	535.6	581.4	781.6	535.6	581.4	742.6	535.6	581.4	751.9
TARRO+SUELO SECO	gr	463.9	501.8	637.6	463.9	501.8	609.4	463.9	501.8	607.6
PESO DEL TARRO	gr	136.50	133.35	65.95	136.50	133.35	96.77	136.50	133.35	66.70
% DE HUMEDAD	%	21.90	21.60	25.19	21.90	21.60	25.98	21.90	21.60	26.68
HUMEDAD	%	21	.75	25.19	21	.75	25.98	21	.75	26.68
ABSORCIÓN	%		3.44			4.23			4.93	
				EXPA	NSIÓN	ı				
DÍA		DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN
DIA		DIAL	mm	%	DIAL	mm	%	DIAL	mm	%
0		0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%
4		0.02	127.02	0.02%	0.02	127.02	0.02%	0.02	127.02	0.02%

					PENET						
PENETR	ACIÓN	Carga	ļ	PRIMER MOLE	DE	S	EGUNDO MOL	.DE	TERCER MOLDE		
(mm) (Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.630	0.025		0.25	0.25	0.13	0.37	0.37	0.19	0.43	0.43	0.22
1.270	0.050		0.82	0.82	0.43	1.26	1.26	0.65	1.51	1.51	0.78
1.900	0.075		1.70	1.70	0.88	2.23	2.23	1.15	2.41	2.41	1.25
2.540	0.100	6.9	2.89	2.89	1.49	3.39	3.39	1.75	3.06	3.06	1.58
3.170	0.125		4.16	4.16	2.15	4.38	4.38	2.26	3.53	3.53	1.83
3.810	0.150		5.35	5.35	2.76	5.29	5.29	2.73	3.93	3.93	2.03
4.445	0.175		6.41	6.41	3.31	6.08	6.08	3.14	4.26	4.26	2.20
5.080	0.200	10.35	7.39	7.39	3.82	6.80	6.80	3.51	4.54	4.54	2.35
7.620	0.300		10.57	10.57	5.46	9.14	9.14	4.72	5.46	5.46	2.82

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc. : AYACUCHO/HUAMANGA Distrito : PACAYCASA


: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN

: MAYOCC-TRIGOPAMPA Lugar

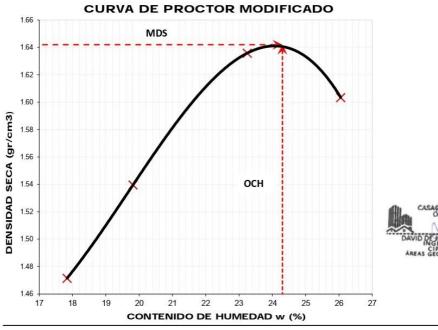
: CALICATA 01 - KM 11+350 Exploración : CON CP TIPO I (3.0% MDS) + CMF (0.0% MDS) Fecha : DICIEMBRE DEL 2022 Dosis

				DATO	OS DEI	LENSAYO	•			
Clasificaciór	SUCS :	ML	LIMO AREI	NOSO				AASHTO	:	A-4 (1)
Máxima Der	sidad Seca	MDS (tn/m3):		1.65	Optimo	Contenido de	Humedad OCH	H % =	21.40	
% Grava =	11.5	% Arena =	26.1	% Finos =	62.4	LL % =	27.4%	LP % =	24.2%	
Expansión 9	6 =	0.02%	Embebido	(días) =	4.0	IP % =	3.1%			

RESULTAD	OS DEL ENSAYO (O1" DE PENETRA	ACIÓN)
CBR AL 100% DE MDS (0.1") = 35.8	CBR AL 95% DE LA MDS (0.1") = 31.2	CBR AL 90% MDS = -,-

COMPACTACIÓN DE **SUELOS EN LABORATORIO** UTILIZANDO UNA ENERGÍA **MODIFICADA** (MTC E 115)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL Proyecto TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"


: INFORME 001-2022/CG-CON-22-O-021

Región/Provinc.: AYACUCHO/HUAMANGA Trazabilidad

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA Solicitante

: CALICATA 01 - KM 11+350 : MAYOCC-TRIGOPAMPA Exploración Lugar

Estrato/Nivel : CON CP TIPO I (3.0%	MDS) +	CMF (2.5% MDS)		Fecha	: DICIEMBRE	DEL 2022
		DATOS DE	EL ENSAY	10		
Clasificación SUCS :	ML	LIMO ARENOSO)		ME	TODO A
Clasificación AASHTO :	A-4	(1)	Capas	5: 5.00	Golpes/Ca	apa 25
% Retenido acumulado malla N° 4 :	11.5	Material Pasante	a usar	PASA N° 4	U	
% Retenido acumulado malla 3/8" :	3.3	Molde (Pulg)	4	Códig	10	M4
% Retenido acumulado malla 3/4" :	malla 3/4": 0.3 Peso Molde (gr):			4105.00	Vol.(cm3):	939.81
	EN	SAYO DE C	ОМРАСТ	ACIÓN		
Determinación Nº		01	02	03	04	
Peso del molde y muestra	gr	5,735	5,839	6,000	6,005	
Peso de la muestra compactada	gr	1,629.7	1,733.7	1,894.8	1,899.5	
Densidad húmeda	gr/cc	1.73	1.84	2.02	2.02	
Densidad seca	gr/cc	1.47	1.54	1.64	1.60	
	С	ONTENIDO	DE HUMI	EDAD		10 ° 10
Tarro Nº		54.0	180.0	108.0	66.0	13.00
Peso tarro + suelo húmedo	gr	732.81	736.55	664.15	722.92	
Peso de tarro + suelo seco	gr	641.96	636.81	564.87	600.01	
Peso del tarro	gr	132.660	133.531	137.808	128.195	
Peso del agua	gr	90.85	99.73	99.28	122.91	
Peso del suelo seco	gr	509.30	503.28	427.06	471.81	
Contenido de humedad	%	17.84	19.82	23.25	26.05	

Solicitante

CBR DE SUELOS - LABORATORIO (MTC E 132)

Distrito

: PACAYCASA

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Prov : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN

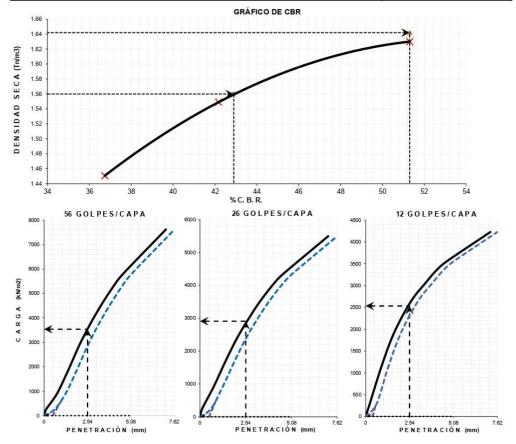
Exploración : CALICATA 01 - KM 11+350 : MAYOCC-TRIGOPAMPA Lugar : DICIEMBRE DEL 2022 : CON CP TIPO I (3.0% MDS) + CMF (2.5% MDS) Fecha Dosis

			COMP	ACTAC	ION D	EL CB	R				
MOLDE Nº			14			35			22		
CAPAS Nº			5			5		5			
GOLPES POR CAPA			56			26		12			
COND. DE LA MUESTRA			HUMEDO			HUMEDO			HUMEDO	V.	
PESO MOLDE + S. HÚM.	gr		12,340			11,723			11,600		
PESO DEL MOLDE	gr		8,073.00			7,677.00			7,795.00		
PESO SUELO HÚM.	gr		4,267.00			4,046.00			3,805.00		
VOLUMEN DEL MOLDE	cm3		2,110.46			2,105.77 2,			2,114.53		
DENSIDAD HÚMEDA	gr/cm3		2.02			1.92			1.80		
DENSIDAD SECA	gr/cm3		1.63			1.55		1.45			
Contenido de Hun	nedad	Humeda	d: inicial	final	Humeda	d: inicial	final	Humeda	Humedad: inicial		
TARRO Nº	Nro.	339	341	251	339	341	315	339	341	252	
TARRO+SUELO HÚM.	gr	532.5	609.0	667.5	532.5	609.0	751.3	532.5	609.0	679.5	
TARRO+SUELO SECO	gr	454.9	517.4	546.2	454.9	517.4	605.0	454.9	517.4	554.6	
PESO DEL TARRO	gr	134.06	134.19	84.15	134.06	134.19	67.20	134.06	134.19	101.01	
% DE HUMEDAD	%	24.19	23.90	26.25	24.19	23.90	27.20	24.19	23.90	27.54	
HUMEDAD	%	24	.04	26.25	24	.04	27.20	24	.04	27.54	
ABSORCIÓN	%		2.21			3.16			3.49		
				EXPA	NSIÓN	ı					
DÍA		DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	
DIA		DIAL	mm	%	DIAL	mm	%	DIAL	mm	%	
0		0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.009	
4		0.01	127.01	0.01%	0.01	127.01	0.01%	0.01	127.01	0.019	

				F	PENET	RACIO	ÓΝ		-			
PENETR	ACIÓN	Carga		PRIMER MOLE)E	S	EGUNDO MOL	.DE	TERCER MOLDE			
(mm)		Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)	
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.630	0.025		0.53	0.53	0.27	0.50	0.50	0.26	0.56	0.56	0.29	
1.270	0.050		1.79	1.79	0.92	1.80	1.80	0.93	2.12	2.12	1.10	
1.900	0.075		3.58	3.58	1.85	3.23	3.23	1.67	3.46	3.46	1.79	
2.540	0.100	6.9	5.53	5.53	2.86	4.59	4.59	2.37	4.47	4.47	2.31	
3.170	0.125		7.20	7.20	3.72	5.73	5.73	2.96	5.28	5.28	2.73	
3.810	0.150		8.69	8.69	4.49	6.76	6.76	3.49	5.87	5.87	3.03	
4.445	0.175		10.03	10.03	5.18	7.64	7.64	3.95	6.44	6.44	3.33	
5.080	0.200	10.35	11.17	11.17	5.77	8.37	8.37	4.33	6.87	6.87	3.55	
7.620	0.300		14.74	14.74	7.62	10.63	10.63	5.49	8.18	8.18	4.23	

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-Proyecto


TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

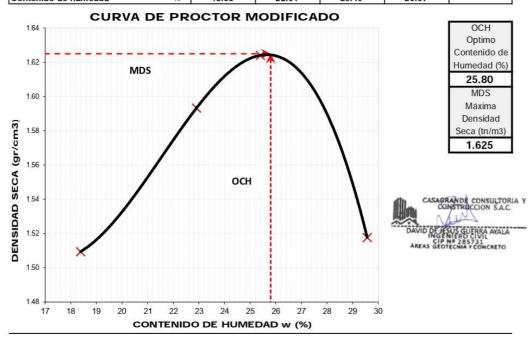
Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc. : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN : PACAYCASA Distrito : MAYOCC-TRIGOPAMPA Exploración : CALICATA 01 - KM 11+350 Lugar : CON CP TIPO I (3.0% MDS) + CMF (2.5% MDS) : DICIEMBRE DEL 2022 Dosis Fecha

				DATO	S DEL	ENSAYO	•			
Clasificaciór	SUCS :	ML	LIMO ARENO	SO				AASHTO):	A-4 (1)
Máxima Den	sidad Seca	MDS (tn/m3):	1	.64	Optimo (Contenido de	Humedad OCH %	-	24.30	
% Grava =	11.5	% Arena =	26.1 9	6 Finos =	62.4	LL % =	27.4%	LP % =	24.2%	
Expansión 9	6 =	0.02%	Embebido (d	ías) =	4.0	IP % =	3.1%			

RESULTAD	RESULTADOS DEL ENSAYO (01" DE PENETRACIÓN)									
CBR AL 100% DE MDS (0.1") = 51.3	CBR AL 95% DE LA MDS (0.1") = 42.9	CBR AL 90% MDS =								

COMPACTACIÓN DE **SUELOS EN LABORATORIO UTILIZANDO UNA ENERGÍA MODIFICADA** (MTC E 115)


: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL Proyecto TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Región/Provinc. : AYACUCHO/HUAMANGA : INFORME 001-2022/CG-CON-22-O-021 Trazabilidad

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA Solicitante

Exploración : CALICATA 01 - KM 11+350 : MAYOCC-TRIGOPAMPA Lugar

Estrato/Nivel : CON CP TIPO I (3.0%	MDS) +	CMF (5.0% MDS)		Fecha	: DICIEMBRE	DEL 2022	
		DATOS DE	EL ENSAY	ro			
Clasificación SUCS :	ML	LIMO ARENOSO)		ME	TODO A	
Clasificación AASHTO :	A-4	(1)	Capas	5: 5.00	Golpes/Capa 25		
% Retenido acumulado malla N° 4 :	11.5	Material Pasante	a usar	PASA N° 4	T .		
% Retenido acumulado malla 3/8" :	3.3	Molde (Pulg)	4	Códig	jo	M4	
% Retenido acumulado malla 3/4" :	0.3	Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81	
	EN	SAYO DE C	ОМРАСТ	ACIÓN			
Determinación Nº		01	02	03	04		
Peso del molde y muestra	gr	5,784	5,945	6,019	5,953		
Peso de la muestra compactada	gr	1,679.3	1,840.4	1,914.1	1,848.1		
Densidad húmeda	gr/cc	1.79	1.96	2.04	1.97		
Densidad seca	gr/cc	1.51	1.59	1.62	1.52		
	С	ONTENIDO	DE HUME	DAD			
Tarro Nº		45.0	178.0	96.0	31.0	200	
Peso tarro + suelo húmedo	gr	710.61	714.23	644.02	701.01		
Peso de tarro + suelo seco	gr	620.24	605.24	540.63	569.40		
Peso del tarro	gr	128.640	129.485	133.632	124.310		
Peso del agua	gr	90.37	108.98	103.39	131.61		
Peso del suelo seco	gr	491.60	475.76	407.00	445.09		
Contenido de humedad	%	18.38	22.91	25.40	29.57		

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Prov : AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

Exploración : CALICATA 01 - KM 11+350 Lugar : MAYOCC-TRIGOPAMPA Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (5.0% MDS) Fecha : DICIEMBRE DEL 2022

0.			COMP	ACTAC	ION D	EL CB	R					
MOLDE Nº			15			25		1	12			
CAPAS Nº			5			5			5			
GOLPES POR CAPA			56			26			12			
COND. DE LA MUESTRA			HUMEDO			HUMEDO			HUMEDO			
PESO MOLDE + S. HÚM.	gr		11,975			11,033			11,628			
PESO DEL MOLDE	gr		7,663.00			6,871.00			7,811.00			
PESO SUELO HÚM.	gr		4,312.00			4,162.00			3,817.00			
VOLUMEN DEL MOLDE	cm3		2,114.15			2,098.30			2,110.84			
DENSIDAD HÚMEDA	gr/cm3		2.04			1.98			1.81			
DENSIDAD SECA	gr/cm3		1.63			1.58			1.44			
Contenido de Hun	nedad	Humeda	ad: inicial	final	Humeda	ad: inicial	final	Humeda	d: inicial	final		
TARRO Nº	Nro.	333	336	272	333	336	251	333	336	250		
TARRO+SUELO HÚM.	gr	616.1	643.2	720.3	616.1	643.2	690.1	616.1	643.2	798.0		
TARRO+SUELO SECO	gr	518.1	540.4	584.9	518.1	540.4	559.0	518.1	540.4	641.6		
PESO DEL TARRO	gr	128.00	133.35	81.00	128.00	133.35	84.15	128.00	133.35	96.54		
% DE HUMEDAD	%	25.12	25.25	26.87	25.12	25.25	27.61	25.12	25.25	28.69		
HUMEDAD	%	25	.19	26.87	25	.19	27.61	25	.19	28.69		
ABSORCIÓN	%		1.68			2.42			3.51	20		
				EXPA	NSIÓI	V						
				NICIÓN		EVD	NOIÓN		EVD	NCIÓN		

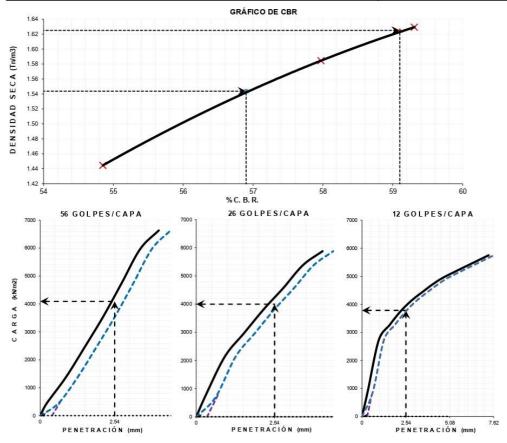
	EXPANSION													
DÍA	DIAL	EXPANSIÓN		DIAL	EXPANSIÓN		DIAL	EXPANSIÓN						
DIA	DIAL	mm	%	DIAL	mm	%	DIAL	mm	%					
0	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%					
4	0.00	127.00	0.00%	0.01	127.01	0.01%	0.01	127.01	0.01%					

				F	PENET	RACIO	ÓN				
PENETR	ACIÓN	Carga	7,1	PRIMER MOLD)E	S	EGUNDO MOL	.DE		TERCER MOLI	DE
(mm)		Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.630	0.025		0.88	0.88	0.46	1.36	1.36	0.70	1.73	1.73	0.90
1.270	0.050		2.65	2.65	1.37	4.11	4.11	2.12	5.29	5.29	2.73
1.900	0.075		4.70	4.70	2.43	5.75	5.75	2.97	6.32	6.32	3.27
2.540	0.100	6.9	6.83	6.83	3.53	7.39	7.39	3.82	7.27	7.27	3.76
3.170	0.125		9.15	9.15	4.73	8.84	8.84	4.57	8.01	8.01	4.14
3.810	0.150		11.55	11.55	5.97	10.42	10.42	5.38	8.60	8.60	4.45
4.445	0.175		12.83	12.83	6.63	11.38	11.38	5.88	9.17	9.17	4.74
5.080	0.200	10.35	12.83	12.83	6.63	11.61	11.61	6.00	9.63	9.63	4.98
7.620	0.300		12.83	12.83	6.63	12.35	12.35	6.38	11.12	11.12	5.75

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-Proyecto

TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"


Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc. : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN : PACAYCASA Distrito

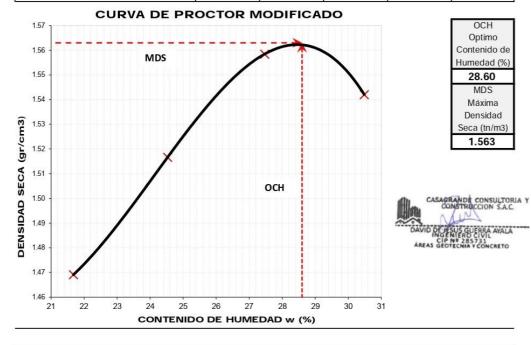
: MAYOCC-TRIGOPAMPA Exploración : CALICATA 01 - KM 11+350 Lugar Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (5.0% MDS) Fecha : DICIEMBRE DEL 2022

	DATOS DEL ENSAYO												
Clasificación	SUCS:	ML	LIMO AREN	oso				AASHTO	1:	A-4 (1)			
Máxima Den	sidad Seca	MDS (tn/m3):		1.63	Optimo	Contenido de	Humedad OCI	H % =	25.80				
% Grava =	11.5	% Arena =	26.1	% Finos =	62.4	LL % =	27.4%	LP % =	24.2%				
Expansión %	5 =	0.02%	Embebido (días) =	4.0	IP % =	3.1%						

RESULTADOS DEL ENSAYO (01" DE PENETRACIÓN) CBR AL 100% DE MDS (0.1") = 59.1 CBR AL 95% DE LA MDS (0.1") = 56.9 CBR AL 90% MDS = -.-

COMPACTACIÓN DE **SUELOS EN LABORATORIO UTILIZANDO UNA ENERGÍA** MODIFICADA (MTC E 115)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL Proyecto


TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc.: AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

: MAYOCC-TRIGOPAMPA Exploración : CALICATA 01 - KM 11+350 Lugar : DICIEMBRE DEL 2022 Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (7.5% MDS) Fecha

ESTRATO/NIVER : CON CP TIPO I (3.0%	IVIDS) +	CIVIF (7.5% IVIDS)		recna	: DICIEMBRE DEL 2022		
		DATOS D	EL ENSAY	'O			
Clasificación SUCS :	ML	LIMO ARENOSO)		ME	TODO A	
Clasificación AASHTO :	A-4	(1)	Capas	: 5.00	Golpes/Ca	pa 25	
% Retenido acumulado malla N° 4 :	11.5	Material Pasante	e a usar	PASA N° 4	30		
% Retenido acumulado malla 3/8" :	3.3	Molde (Pulg)	4	Códig	10	M4	
% Retenido acumulado malla 3/4" :	0.3	Peso Molde (gr)):	4105.00	Vol.(cm3):	939.81	
	EN	SAYO DE C	OMPACT	ACIÓN			
Determinación Nº		01	02	03	04		
Peso del molde y muestra	gr	5,785	5,880	5,972	5,996		
Peso de la muestra compactada	gr	1,680.0	1,775.0	1,867.0	1,891.0		
Densidad húmeda	gr/cc	1.79	1.89	1.99	2.01		
Densidad seca	gr/cc	1.47	1.52	1.56	1.54		
	C	ONTENIDO	DE HUME	DAD		-10	
Tarro Nº		345.0	321.0	152.0	154.0	8	
Peso tarro + suelo húmedo	gr	740.21	743.99	670.85	730.22		
Peso de tarro + suelo seco	gr	632.21	624.00	556.28	589.87		
Peso del tarro	gr	134.000	134.880	139.200	129.490		
Peso del agua	gr	108.01	119.98	114.57	140.34		
Peso del suelo seco	gr	498.21	489.12	417.08	460.38		
Contenido de humedad	%	21.68	24.53	27.47	30.48		

Proyecto

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provi: AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

Exploración : CALICATA 01 - KM 11+350 Lugar : MAYOCC-TRIGOPAMPA : DICIEMBRE DEL 2022 Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (7.5% MDS) Fecha

			COMP	ACTAC	ION D	EL CB	R						
MOLDE N°			53			20			2				
CAPAS Nº			5			5			5				
GOLPES POR CAPA			56			26			12				
COND. DE LA MUESTRA			HUMEDO			HUMEDO			HUMEDO				
PESO MOLDE + S. HÚM.	gr		11,792			11,994			11,658				
PESO DEL MOLDE	gr		7,642.00			7,984.00			7,845.00				
PESO SUELO HÚM.	gr		4,150.00			4,010.00			3,813.00			3,813.00	
VOLUMEN DEL MOLDE	cm3		2,078.14		2,086.70				2,090.67				
DENSIDAD HÚMEDA	gr/cm3		2.00			1.92			1.82				
DENSIDAD SECA	gr/cm3	1	1.56			1.50			1.42				
Contenido de Hum	edad	Humeda	d: inicial	final	Humeda	ad: inicial	final	Humeda	d: inicial	final			
TARRO Nº	Nro.	324	323	272	324	323	300	324	323	311			
TARRO+SUELO HÚM.	gr	706.2	830.0	720.3	706.2	830.0	671.1	706.2	830.0	679.9			
TARRO+SUELO SECO	gr	577.3	680.7	576.4	577.3	680.7	521.3	577.3	680.7	535.3			
PESO DEL TARRO	gr	129.18	136.78	81.00	129.18	136.78	23.52	129.18	136.78	67.83			
% DE HUMEDAD	%	28.76	27.45	29.05	28.76	27.45	30.09	28.76	27.45	30.93			
HUMEDAD	%	28	.11	29.05	28	.11	30.09	28	.11	30.93			
ABSORCIÓN	%		0.94	100		1.99			2.83	100			

	E X P A N S I Ó N														
DÍA	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN						
DIA	DIAL	mm	%	DIAL	mm	%	DIAL	mm	%						
0	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%						
4	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%						

PENETRACIÓN		Carga	PRIMER MOLDE			SEGUNDO MOLDE			TERCER MOLDE		
	(mm) (plg) Están (Mpa		Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.630	0.025		0.10	0.10	0.05	0.23	0.23	0.12	0.27	0.27	0.14
1.270	0.050		0.56	0.56	0.29	1.28	1.28	0.66	1.48	1.48	0.76
1.900	0.075		1.62	1.62	0.84	2.65	2.65	1.37	2.58	2.58	1.33
2.540	0.100	6.9	3.28	3.28	1.69	4.13	4.13	2.14	3.27	3.27	1.69
3.170	0.125		5.02	5.02	2.59	5.45	5.45	2.82	3.79	3.79	1.96
3.810	0.150		6.66	6.66	3.44	6.74	6.74	3.48	4.23	4.23	2.19
4.445	0.175		8.28	8.28	4.28	7.98	7.98	4.12	4.61	4.61	2.38
5.080	0.200	10.35	9.82	9.82	5.07	9.13	9.13	4.72	4.94	4.94	2.55
7.620	0.300		15.00	15.00	7.75	12.98	12.98	6.71	5.98	5.98	3.09

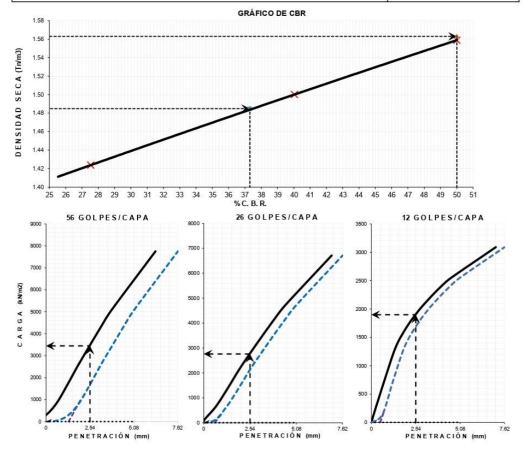
CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCCTRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Provinc. : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN

Distrito : MAYOCC-TRIGOPAMPA Lugar


: CALICATA 01 - KM 11+350 Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (7.5% MDS)

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

Fecha : DICIEMBRE DEL 2022

DATOS DEL ENSAYO										
Clasificaciór	SUCS :	ML	LIMO AREN	oso				AASHTO):	A-4 (1)
Máxima Den	sidad Seca	MDS (tn/m3):		1.56	Optimo	Contenido de	Humedad OCF	1 % =	28.60	
% Grava =	11.5	% Arena =	26.1	% Finos =	62.4	LL % =	27.4%	LP % =	24.2%	
Expansión 9	6 =	0.02%	Embebido (días) =	4.0	IP % =	3.1%			

RESULTAD	RESULTADOS DEL ENSAYO (01" DE PENETRACIÓN)							
CBR AL 100% DE MDS (0.1") = 50.0	CBR AL 95% DE LA MDS (0.1") = 37.3	CBR AL 90% MDS = -,-						

RESISTENCIA A LA COMPRESION DE PROBETAS DE SUELO METODO

В (MTC E 1103, MTC E 1101)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Prov: AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-0-021

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA

Exploración : CALICATA 01 - KM 11+350 : MAYOCC-TRIGOPAMPA Estrato/Nivel : MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

DATOS DE LA MUESTRA

Clasificación SUCS ML LIMO ARENOSO

Clasificación AASHTO:

% Retenido acumulado malla N° 4 : 11.45 % Pasa acumulado malla N° 4 : 88.55

				DATOS D	EL MOLD	EO			
PORCENTAJE DE A	DITIVO	: CON CP TIPO I (0.0% MDS) + CMF (0.0% MDS)			: CON CP TIPO I (3.0% MDS) + CMF (0% MDS)			.113	, co
MOLDE Nº		1	2	3	1	2	3		
PESO MOLDE+S. HÚM.	gr	1,720	1,717	1,711	1,723	1,726	1,729		
PESO DEL MOLDE gr		601.00	602.50	601.90	601.00	602.50	601.90		
PESO SUELO HÚM. gr		1,119.00	1,114.50	1,109.10	1,122.00	1,123.20	1,127.10		
VOLUMEN DEL MOLDE cm3		565.16	564.82	564.90	562.77	564.39	562.31		
DENSIDAD HÚMEDA	gr/cm3	1.98	1.97	1.96	1.99	1.99	2.00		
HUMEDAD TARR	O Nro.	154	44	52	126	35	51		
TARRO+SUELO HÚM. gr		553.30	552.70	621.00	608.63	607.97	683.10		
TARRO+SUELO SECO gr		486.40	482.20	527.75	527.84	520.32	565.22		
PESO DEL TARRI	O gr	129.49	98.79	21.33	142.44	108.67	23.46		
% DE HUMEDAD	%	18.74	18.39	18.41	20.96	21.29	21.76		
DENSIDAD SECA	gr/cm3	1.67	1.67	1.66	1.65	1.64	1.65		
			EN	SAYO DE	COMPRE	SION		· ·	
EDAD	días	7	7	7	7.	7.	7.		
DIAMETRO PROMEDIO	mm	71.2	71.1	71.2	71.2	71.1	71.2		
ALTURA	mm	141.9	142.3	141.9	141.3	142.2	141.2		
RELACION H/D		1.99	2.00	1.99	1.98	2.00	1.98		
FACTOR DE CORRECCION		1.00	1.00	1.00	1.00	1.00	1.00		
LECTURA DE ENSAYO	kN	0.3	0.4	0.5	3.2	3.3	3.5		
RESISTENCIA FC	kg/cm2	0.9	1.0	1.2	8.1	8.4	9.0		
RESISTENCIA PROM	kg/cm2		1.01			8.47			
RESISTENCIA PROM	MPa		0.099			0.831			

RESISTENCIA A LA COMPRESION DE PROBETAS DE SUELO METODO

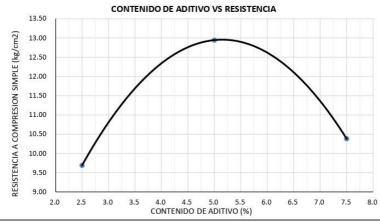
: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-Proyecto

TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Pro\: AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA

Exploración : CALICATA 01 - KM 11+350 Lugar : MAYOCC-TRIGOPAMPA Estrato/Nivel : MATERIAL PROPIO : DICIEMBRE DEL 2022 Fecha


DATOS DE LA MUESTRA

Clasificación SUCS : ML LIMO ARENOSO

Clasificación AASHTO: A-4 (1)

> % Retenido acumulado malla N° 4: 11.45 % Pasa acumulado malla N° 4 : 88.55

				DATOS D	EL MOLD	EO				
PORCENTAJE DE AD	ITIVO	: CON CP TIPO I (3.0% MDS) + CMF (2.5% MDS)			: CON CP TIPO I (3.0% MDS) + CMF (5.0% MDS)			: CON CP TIPO I (3.0% MDS) + CMF (7.5% MDS)		
MOLDE N°		4	5	6	7	8	9	1	2	3
PESO MOLDE+S. HÚM.	gr	1,773	1,774	1,776	1,752	1,744	1,767	1,761	1,751	1,762
PESO DEL MOLDE gr		600.80	602.40	601.30	600.80	601.40	602.30	601.00	602.50	601.90
PESO SUELO HÚM. gr		1,172.40	1,171.30	1,174.70	1,151.60	1,142.30	1,164.70	1,160.00	1,148.50	1,160.10
VOLUMEN DEL MOLDE cm3		580.50	578.07	578.07	575.76	565.62	561.57	566.36	562.20	565.38
DENSIDAD HÚMEDA	gr/cm3	2.02	2.03	2.03	2.00	2.02	2.07	2.05	2.04	2.05
HUMEDAD TARRO	Nro.	349	238	125	324	116	247	152	96	114
TARRO+SUELO HÚM.	gr	536.10	543.90	612.40	519.50	516.80	524.80	589.71	598.29	673.64
TARRO+SUELO SECO gr		447.90	456.00	503.99	447.20	435.10	419.83	465.59	478.90	528.59
PESO DEL TARRO	gr	66.99	95.55	66.26	129.18	88.50	43.97	73.69	105.11	72.89
% DE HUMEDAD	%	23.16	24.39	24.77	22.73	23.57	27.93	31.67	31.94	31.83
DENSIDAD SECA	gr/cm3	1.64	1.63	1.63	1.63	1.63	1.62	1.56	1.55	1.56
			EN	SAYO DE	COMPRE	SION		•		
EDAD	días	7	7	7	7	7	7	7	7	7
DIAMETRO PROMEDIO	mm	72.1	72.0	72.0	71.8	71.1	70.9	71.2	71.1	71.2
ALTURA	mm	142.2	142.0	142.0	142.2	142.5	142.2	142.2	141.6	142.0
RELACION H/D		1.97	1.97	1.97	1.98	2.00	2.01	2.00	1.99	1.99
FACTOR DE CORRECCION		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
LECTURA DE ENSAYO	kN	4.1	3.9	3.6	4.9	5.2	5.1	3.9	4.1	4.1
RESISTENCIA FC	kg/cm2	10.3	9.8	8.9	12.4	13.3	13.2	10.1	10.6	10.5
RESISTENCIA PROM	kg/cm2		9.69			12.95			10.38	
RESISTENCIA PROM	MPa		0.950			1.269			1.018	

ANEXO 2.2 CALICATA C-2 KM 11+450

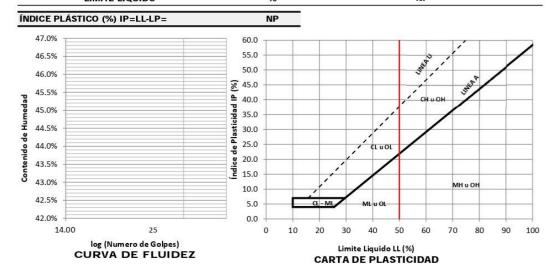
Trazabilidad

LIMITES DE PLASTICIDAD **DE LOS SUELOS (PASANTE** LA MALLA Nº 40)

Región/Provinc : AYACUCHO/HUAMANGA

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-Proyecto

TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"


: INFORME 001-2022/CG-CON-22-O-021

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA

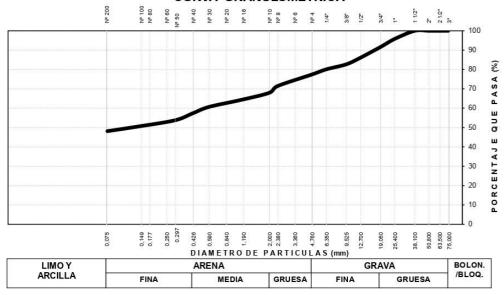
: CALICATA 02 - KM 11+450 : MAYOCC-TRIGOPAMPA Exploración Lugar Estrato / Nivel : MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

	RECIPIENTE	N°	
1	PESO SUELO HUMEDO + RECIPIENTE	gr	
2	PESO SUELO SECO+RECIPIENTE	gr	
3	PESO RECIPIENTE	gr	
4	PESO AGUA (1)-(2)	gr	
5	PESO SECO (2)-(4)	gr	
6	HUMEDAD	%	
	LIMITE DI ÁSTICO	%	NP

			PROCEDIMIEN	UNIPUNTO	
	RECIPIENTE	N°			
1	PESO SUELO HUMEDO + RECIPIENTE	gr			
2	PESO SUELO SECO+RECIPIENTE	gr			
3	PESO RECIPIENTE	gr			
4	PESO AGUA (1)-(2)	gr			
5	PESO SECO (2)-(4)	gr			
6	HUMEDAD	%			
7	NUMERO DE GOLPES	N°			
	LIMITE LIQUIDO	%		NP	

ANÁLISIS GRANULOMÉTRICO **DEL SUELO POR TAMIZADO** (MTC E 107)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-Proyecto


TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Región/Provinc. : AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA Exploración : CALICATA 02 - KM 11+450 Lugar : MAYOCC-TRIGOPAMPA : DICIEMBRE DEL 2022 Estrato/Nivel : MATERIAL PROPIO Fecha

	ACCOUNTS CONTRACTOR OF		23 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					Committee of the Committee of Committee of the Committee of Committee
	TAMIZ	Abertura	PESO (gr)	% RETEN	% RETEN	% QUE	DATOS DEL ANÁLIS	IS GRANULOMÉTRICO
	ASTM	(mm)	RETENIDO	PARCIAL	ACUMULADO	PASA		
TAMIZADO	3"	75.000	-	15	58	100.00	ENSAYOS	ESTÁNDAR
S١	2 1/2"	63.500	72	12	2	100.00	Peso seco inicial (gr)	4130.5
ξI	2"	50.800	-	14		100.00	Peso seco lavado (gr)	2141.6
٤I	11/2"	38.100	-			100.00	Pérdida por lavado (gr)	1988.9
	1"	25.400	173.03	4.19	4.19	95.81	Humedad (%)	11.19
POR	3/4"	19.000	173.43	4.20	8.39	91.61	% Grava	22.5
ا ۵	1/2"	12.700	226.72	5.49	13.88	86.12	% Grava gruesa	8.4
GRANULOMÉTRICO	3/8"	9.500	143.77	3.48	17.36	82.64	% Grava fina	14.2
ا ≘	1/4"	6.350	105.24	2.55	19.91	80.09	% Arena	29.3
<u> </u>	Nº 4	4.760	108.98	2.64	22.54	77.46	% Arena gruesa	9.5
¥۱	Nº 8	2.360	249.25	6.03	28.58	71.42	% Arena media	10.5
ōΙ	Nº 10	2.000	142.95	3.46	32.04	67.96	% Arena fina	9.3
₹I	N°16	1.100	158.27	3.83	35.87		% de Finos	48.2
žΙ	N° 30	0.590	141.47	3.42	39.30	60.70	$D_{10} = D_{e(mm)} =$	0.0156
≴I	N° 40	0.425	136.02	3.29	42.59	57.41	$D_{30(mm)} =$	0.0467
اق	N° 50	0.297	149.02	3.61	46.20	53.80	D _{60(mm)} =	0.5547
ا م	N° 100	0.149	123.92	3.00	49.20	50.80		25
اق	N° 200	0.075	109.54	2.65	51.85	48.15	Cc =	-,-
٦l	172-1100-05-0			15	51.85		CLASI	FICACIÓN
ANALISIS	Lavado		1,988.9	48.15	100.00		AASHTO	A-4 (0)
⋖∣	TOTAL		4130.5	100.0			Clasificación SUCS	S

CURVA GRANULOMÉTRICA

CONTENIDO DE HUMEDAD PARA SUELOS (MTC E 108)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL Proyecto

TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad: INFORME 001-2022/CG-CON-22-O-021 Región/Prov. : AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAI Distrito : PACAYCASA

Exploración : CALICATA 02 - KM 11+450 Lugar : MAYOCC-TRIGOPAMPA Estrato/Nivel: MATERIAL PROPIO : DICIEMBRE DEL 2022 Fecha

N°	66	97				
gr	1,346.19	1,313.98				
gr	1,185.57	1,145.98				
gr	133.74	85.60				
gr	160.63	168.00				
gr	1,051.83	1,060.38				
%	15.3%	15.8%				
	N° gr gr gr gr	gr 1,346.19 gr 1,185.57 gr 133.74 gr 160.63 gr 1,051.83				

CONTENIDO DE HUMEDAD 15.6% %

ENSAYO DE LA GRAVEDAD ESPECIFICA DE LOS SOLIDOS DEL SUELO (MTC E 206, E 113)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN Proyecto

EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc. : AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CE: Distrito : PACAYCASA

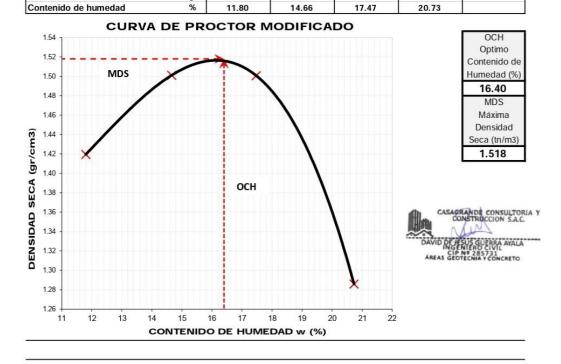
: CALICATA 02 - KM 11+450 : MAYOCC-TRIGOPAMPA Exploración Lugar Estrato/Nivel : MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

IDENTIFICACION		ENSAYO Nº01	ENSAYO N°02	PROMEDI
Peso en el aire de la muestra seca	gr	2174.81	2174.81	
Peso en el aire de la muestra SSS	gr	2204.07	2204.07	
Peso sumergido en agua de la muestra SSS (gr)	gr	1351.74	1351.73	
Gravedad Especifica		2.552	2.552	2.552
Gravedad Especifica SSS		2.586	2.586	2.586
Gravedad Especifica Aparente		2.642	2.642	2.642
% de absorción	%	1.345	1.345	1.345

IDENTIFICACIÓN		MUESTRA 01	MUESTRA 02	PROMEDI
Capacidad de Picnómetro	cm3	500	500	
Peso de la muestra seca	gr	96.99	96.16	
Peso de Picnómetro con la muestra y agua	gr	725.44	730.99	
Peso de Picnómetro aforado lleno de agua	gr	665.21	671.23	2.638
Temperatura del agua en el ensayo	°C	23	24	
Corrección por temperatura (K)		0.9993	0.9991	

Gravedad especifica de los sólidos	2.639
Porcentaje que pasa la Malla N°4 (%)	77.5
Porcentaje Retenido en la Malla N°4 (%)	22.5

COMPACTACIÓN DE SUELOS EN LABORATORIO UTILIZANDO UNA ENERGÍA MODIFICADA (MTC E 115)


Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad :INFORME 001-2022/CG-CON-22-O-021 Región/Provinc.: AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

Exploración : CALICATA 02 - KM 11+450 Lugar : MAYOCC-TRIGOPAMPA
Estrato/Nivel : CON CP TIPO I (0.0% MDS) + CMF (0.0% MDS) Fecha : DICIEMBRE DEL 2022

Estrato/Nivel : CON CP TIPO I (0.0%	Fecha	: DICIEMBRE	DEL 2022			
		DATOS DE	EL ENSA	7 0		
Clasificación SUCS :	SM	ARENA LIMOSA	CON GRAVA		ME.	горо в
Clasificación AASHTO :	sificación AASHTO : A-4			s : 5.00	Golpes/Ca	pa 25
% Retenido acumulado malla N° 4 :	22.5	Material Pasante a usar		PASA 3/8		
% Retenido acumulado malla 3/8" :	17.4	Molde (Pulg)	Molde (Pulg) 4		jo	M4
% Retenido acumulado malla 3/4" :	8.4	Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81
	EN	SAYO DE C	ОМРАСТ	ACIÓN		
Determinación Nº		01	02	03	04	
Peso del molde y muestra	gr	5,597	5,723	5,762	5,564	
Peso de la muestra compactada	gr	1,491.6	1,617.7	1,656.8	1,459.2	
Densidad húmeda	gr/cc	1.59	1.72	1.76	1.55	
Densidad seca	gr/cc	1.42	1.50	1.50	1.29	
	С	ONTENIDO	DE HUMI	DAD		
Tarro Nº		25.0	50.0	45.0	73.0	
Peso tarro + suelo húmedo	gr	549.79	737.82	547.35	673.87	
Peso de tarro + suelo seco	gr	498.75	651.79	475.04	569.82	
Peso del tarro	gr	66.35	65.09	61.21	67.80	
Peso del agua	gr	51.04	86.03	72.31	104.06	
Peso del suelo seco	gr	432.41	586.71	413.83	502.01	

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCCTRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provi: AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

: MAYOCC-TRIGOPAMPA Exploración : CALICATA 02 - KM 11+450 Lugar Estrato/Nivel : CON CP TIPO I (0.0% MDS) + CMF (0.0% MDS) : DICIEMBRE DEL 2022 Fecha

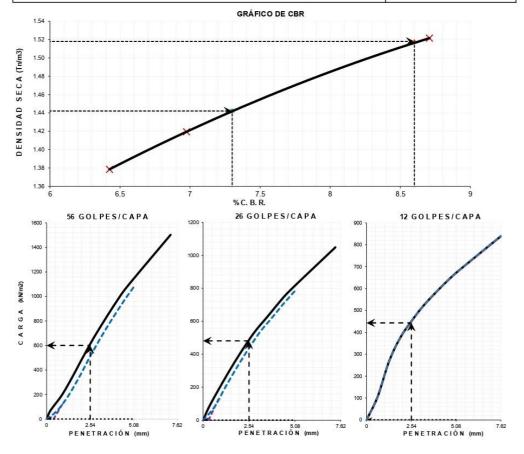
				ACTAC	I O N D		N.				
MOLDE N°			35			30			39		
CAPAS Nº			5			5			5		
GOLPES POR CAPA			56			26		12			
COND. DE LA MUESTRA			HUMEDO			HUMEDO			HUMEDO		
PESO MOLDE + S. HÚM.	gr		11,398			11,173		10,938			
PESO DEL MOLDE	gr		7,677.00			7,684.00			7,575.00		
Peso suelo húm.	gr		3,721.00			3,489.00		3,363.00			
VOLUMEN DEL MOLDE	cm3		2,105.77			2,116.40		2,100.59			
DENSIDAD HÚMEDA	gr/cm3		1.77			1.65			1.60		
DENSIDAD SECA	gr/cm3		1.52			1.42		1.38			
Contenido de Hun	nedad	Humeda	ad: inicial	final	Humeda	d: inicial	final	Humedad: inicial fi		final	
TARRO Nº	Nro.	359	118	313	359	118	337	359	118	315	
TARRO+SUELO HÚM.	gr	701.7	702.3	772.3	701.7	702.3	684.1	701.7	702.3	831.4	
TARRO+SUELO SECO	gr	623.1	607.1	658.4	623.1	607.1	588.7	623.1	607.1	692.4	
PESO DEL TARRO	gr	131.16	23.22	65.04	131.16	23.22	136.50	131.16	23.22	67.20	
% DE HUMEDAD	%	15.98	16.30	19.20	15.98	16.30	21.10	15.98	16.30	22.23	
HUMEDAD	%	16	.14	19.20	16	.14	21.10	16	.14	22.23	
ABSORCIÓN	%		3.05			4.96			6.09		
		·		EXPA	NSIÓN	1					
		DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	DIAL	FXP/	NSIÓN	

DÍA	DIAL	EXPANSIÓN		DIAL	EXPANSIÓN		DIAL	EXPANSIÓN	
DIA	DIAL	mm	%	DIAL	mm	%	DIAL	mm	%
0	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%
4	0.04	127.04	0.03%	0.04	127.04	0.03%	0.04	127.04	0.03%

PENETRACIÓN (mm) (plg)		Carga		PRIMER MOLE	E	SEGUNDO MOLDE			TERCER MOLDE		
		Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.630	0.025		0.14	0.14	0.07	0.16	0.16	0.08	0.21	0.21	0.11
1.270	0.050		0.37	0.37	0.19	0.40	0.40	0.21	0.51	0.51	0.27
1.900	0.075		0.66	0.66	0.34	0.63	0.63	0.33	0.72	0.72	0.37
2.540	0.100	6.9	0.99	0.99	0.51	0.85	0.85	0.44	0.87	0.87	0.45
3.170	0.125		1.29	1.29	0.67	1.04	1.04	0.54	1.00	1.00	0.52
3.810	0.150		1.58	1.58	0.81	1.20	1.20	0.62	1.11	1.11	0.57
4.445	0.175		1.84	1.84	0.95	1.37	1.37	0.71	1.21	1.21	0.62
5.080	0.200	10.35	2.09	2.09	1.08	1.52	1.52	0.78	1.30	1.30	0.67
7.620	0.300		2.91	2.91	1.50	2.03	2.03	1.05	1.62	1.62	0.84

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-Proyecto


TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc. : AYACUCHO/HUAMANGA

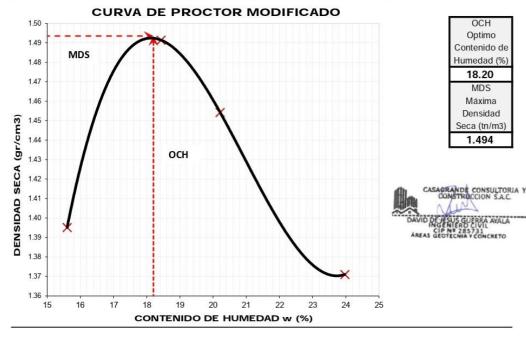
: PACAYCASA : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito Exploración : CALICATA 02 - KM 11+450 : MAYOCC-TRIGOPAMPA Lugar Estrato/Nivel : CON CP TIPO I (0.0% MDS) + CMF (0.0% MDS) Fecha : DICIEMBRE DEL 2022

DATOS DEL ENSAYO										
Clasificación	SUCS :	SM	ARENA LIM	OSA CON G	RAVA			AASHTO):	A-4 (0)
Máxima Den	sidad Seca	MDS (tn/m3):		1.52	Optimo	Contenido de	Humedad O	CH % =	16.40	
% Grava =	22.5	% Arena =	29.3	% Finos =	48.2	LL % =	NP	LP % =	NP	
Expansión %	6 =	0.04%	Embebido ((días) =	4.0	IP % =	NP			

RESULTADOS DEL ENSAYO (01" DE PENETRACIÓN)						
Ī	CBR AL 100% DE MDS (0.1") = 8.60	CBR AL 95% DE LA MDS (0.1") = 7.30	CBR AL 90% MDS = -,-	\exists		

COMPACTACIÓN DE SUELOS EN LABORATORIO UTILIZANDO UNA ENERGÍA MODIFICADA (MTC E 115)

Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"


Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc. : AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

Exploración : CALICATA 02 - KM 11+450 Lugar : MAYOCC-TRIGOPAMPA
Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (0.0% MDS) Fecha : DICIEMBRE DEL 2022

Estrato/Nivel : CON CP TIPO I (3.0%	MD2) +	CIVIF (0.0% IVIDS)		Fecna	: DICIEMBRE	DEL 2022
		DATOS DI	EL ENSA	7 0		
Clasificación SUCS :	SM	ARENA LIMOSA	CON GRAVA		ME	TODO B
Clasificación AASHTO :	A-4	(0)	Capas	s : 5.00	Golpes/Ca	pa 25
% Retenido acumulado malla N° 4 :	22.5	Material Pasante	e a usar	PASA 3/8	· ·	
% Retenido acumulado malla 3/8" :	17.4	Molde (Pulg)	4	Códiç	go	M4
% Retenido acumulado malla 3/4" :	8.4	Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81
	EN	SAYO DE C	OMPACT	ACIÓN		
Determinación Nº		01	02	03	04	
Peso del molde y muestra	gr	5,621	5,765	5,748	5,702	
Peso de la muestra compactada	gr	1,515.8	1,660.0	1,643.0	1,597.4	
Densidad húmeda	gr/cc	1.61	1.77	1.75	1.70	
Densidad seca	gr/cc	1.40	1.49	1.45	1.37	

	C	ONTENIDO	DE HUME	DAD		
Tarro Nº	28	25.0	35.0	88.0	124.0	
Peso tarro + suelo húmedo	gr	740.14	743.91	670.79	730.14	
Peso de tarro + suelo seco	gr	658.33	649.12	581.40	613.99	
Peso del tarro	gr	133.987	134.867	139.186	129.477	
Peso del agua	gr	81.81	94.79	89.38	116.15	
Peso del suelo seco	gr	524.34	514.25	442.22	484.52	
Contenido de humedad	%	15.60	18.43	20.21	23.97	

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provi: AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA

Exploración : CALICATA 02 - KM 11+450 : MAYOCC-TRIGOPAMPA Lugar Dosis : CON CP TIPO I (3.0% MDS) + CMF (0.0% MDS) Fecha : DICIEMBRE DEL 2022

			COMP	ACTAC	ION D	EL CB	R			
MOLDE N°			25			10			4	
CAPAS Nº			5 5 5			5				
GOLPES POR CAPA			56			26			12	
COND. DE LA MUESTRA			HUMEDO			HUMEDO			HUMEDO	
PESO MOLDE + S. HÚM.	gr	0	10,600			11,349			10,908	
PESO DEL MOLDE	gr		6,871.00			7,866.00			7,711.00	
PESO SUELO HÚM.	gr		3,729.00			3,483.00			3,197.00	
VOLUMEN DEL MOLDE	cm3		2,098.30			2,094.63			2,099.38	
DENSIDAD HÚMEDA	gr/cm3		1.78			1.66			1.52	
DENSIDAD SECA	gr/cm3		1.50			1.40			1.28	
Contenido de Hun	nedad	Humeda	d: inicial	final	Humeda	d: inicial	final	Humeda	d: inicial	final
TARRO Nº	Nro.	337	322	314	337	322	255	337	322	317
TARRO+SUELO HÚM.	gr	535.6	581.4	781.6	535.6	581.4	742.6	535.6	581.4	751.9
TARRO+SUELO SECO	gr	471.9	511.8	657.6	471.9	511.8	624.4	471.9	511.8	621.6
PESO DEL TARRO	gr	136.50	133.35	65.95	136.50	133.35	96.77	136.50	133.35	66.70
% DE HUMEDAD	%	18.99	18.39	20.96	18.99	18.39	22.40	18.99	18.39	23.48
HUMEDAD	%	18	.69	20.96	18	.69	22.40	18	.69	23.48
ABSORCIÓN	%		2.27			3.71			4.79	

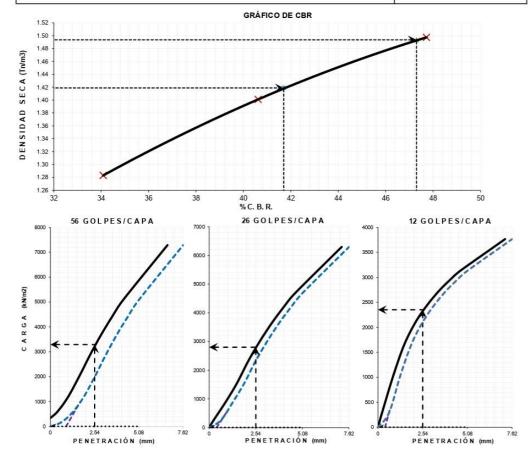
			EXPA	NSIÓI	V				
DÍA	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN
DIA	DIAL	mm	%	DIAL	mm	%	DIAL	mm	%
0	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%
4	0.01	127.01	0.01%	0.01	127.01	0.01%	0.02	127.02	0.02%

				F	PENET	RACIO	ÓΝ				
DENETO	(Mpa) 0 0.000 0 0.025 0 0.050 0 0.075 0 0.100 6.9 0 0.125		PRIMER MOLD	E	S	EGUNDO MOL	.DE	TERCER MOLDE			
			Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.630	0.025		0.33	0.33	0.17	0.49	0.49	0.25	0.57	0.57	0.29
1.270	0.050		1.10	1.10	0.57	1.68	1.68	0.87	2.01	2.01	1.04
1.900	0.075		2.26	2.26	1.17	2.97	2.97	1.53	3.22	3.22	1.66
2.540	0.100	6.9	3.86	3.86	1.99	4.52	4.52	2.34	4.08	4.08	2.11
3.170	0.125		5.54	5.54	2.86	5.84	5.84	3.02	4.71	4.71	2.43
3.810	0.150		7.13	7.13	3.68	7.05	7.05	3.64	5.24	5.24	2.71
4.445	0.175		8.54	8.54	4.41	8.10	8.10	4.19	5.68	5.68	2.93
5.080	0.200	10.35	9.85	9.85	5.09	9.06	9.06	4.68	6.06	6.06	3.13
7.620	0.300		14.10	14.10	7.29	12.18	12.18	6.30	7.28	7.28	3.76

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Provinc. : AYACUCHO/HUAMANGA

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante


Distrito : PACAYCASA Lugar : MAYOCC-TRIGOPAMPA

: CALICATA 02 - KM 11+450 Dosis : CON CP TIPO I (3.0% MDS) + CMF (0.0% MDS)

: DICIEMBRE DEL 2022 Fecha

				DATO	S DEI	ENSAYO	•				
Clasificación	SUCS :	SM	ARENA I	IMOSA CON G	RAVA			AA	SHTO	:	A-4 (0)
Máxima Den	sidad Seca	MDS (tn/m3):		1.49	Optimo	Contenido de	Humedad O	CH % =		18.20	
% Grava =	22.5	% Arena =	29.3	% Finos =	48.2	LL % =	NP	LP 9	6 =	NP	
Expansión %	6 =	0.04%	Embebio	do (días) =	4.0	IP % =	NP				

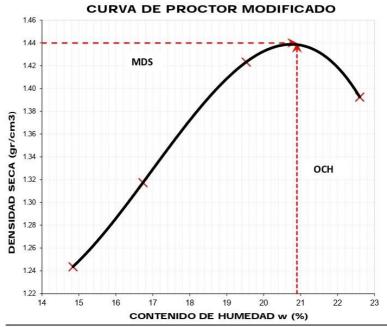
RESULTADOS DEL ENSAYO (01" DE PENETRACIÓN) CBR AL 100% DE MDS (0.1") = 47.3 CBR AL 95% DE LA MDS (0.1") = 41.7 CBR AL 90% MDS = -.-

Trazabilidad

COMPACTACIÓN DE SUELOS EN LABORATORIO UTILIZANDO UNA ENERGÍA MODIFICADA (MTC E 115)

Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

: INFORME 001-2022/CG-CON-22-O-021 Región/Provinc. : AYACUCHO/HUAMANGA


Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

Exploración : CALICATA 02 - KM 11+450 Lugar : MAYOCC-TRIGOPAMPA

Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (2.5% MDS) Fecha : DICIEMBRE DEL 2022

Estrato/Nivel : CON CP TIPO I (3.0%	MDS) +	CMF (2.5% MDS) Fecha		Fecha	: DICIEMBRE DEL 20		
		DATOS DI	EL ENSA	7 0			
Clasificación SUCS :	SM	ARENA LIMOSA	CON GRAVA		ME	TODO B	
Clasificación AASHTO :	A-4	(0)	Capa	s : 5.00	Golpes/Ca	pa 25	
% Retenido acumulado malla N° 4 :	22.5	Material Pasante	a usar	PASA 3/8) (()		
% Retenido acumulado malla 3/8" :	17.4	Molde (Pulg)	4	Códi	go	M4	
% Retenido acumulado malla 3/4" :	8.4	Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81	
	EN	SAYO DE C	ОМРАСТ	ACIÓN			
Determinación Nº		01	02	03	04		
Peso del molde y muestra	gr	5,447	5,550	5,704	5,709		
Peso de la muestra compactada	gr	1,342.3	1,445.3	1,598.8	1,604.5		
Densidad húmeda	gr/cc	1.43	1.54	1.70	1.71		
Densidad seca	gr/cc	1.24	1.32	1.42	1.39		
	С	ONTENIDO	DE HUM	EDAD			
Tarro Nº		25.0	49.0	144.0	75.0		

	C	ONTENIDO	DE HUME	DAD		
Tarro Nº		25.0	49.0	144.0	75.0	
Peso tarro + suelo húmedo	gr	725.48	729.18	657.50	715.69	
Peso de tarro + suelo seco	gr	648.69	643.60	572.37	607.16	
Peso del tarro	gr	131.333	132.196	136.430	126.913	
Peso del agua	gr	76.79	85.59	85.14	108.53	
Peso del suelo seco	gr	517.36	511.40	435.94	480.24	
Contenido de humedad	%	14.84	16.74	19.53	22.60	

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provi: AYACUCHO/HUAMANGA

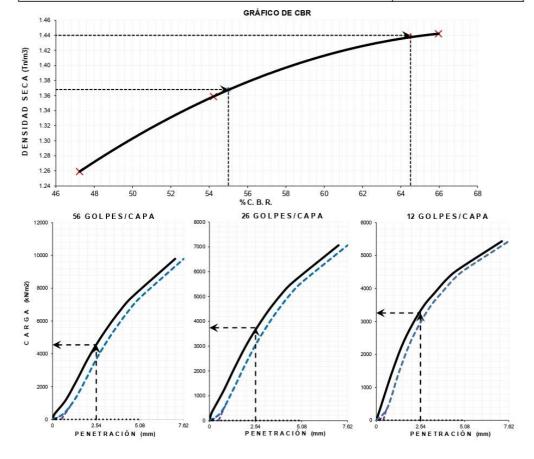
Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

: MAYOCC-TRIGOPAMPA Exploración : CALICATA 02 - KM 11+450 Lugar : CON CP TIPO I (3.0% MDS) + CMF (2.5% MDS) : DICIEMBRE DEL 2022 Fecha

		- (COMP	ACTAC	ION D	EL CB	R				
MOLDE Nº			14			35			22		
CAPAS Nº			5			5			5		
GOLPES POR CAPA			56			26			12		
COND. DE LA MUESTRA			HUMEDO			HUMEDO			HUMEDO	N.	
PESO MOLDE + S. HÚM.	gr		11,760			11,143			11,020		
PESO DEL MOLDE	gr		8,073.00			7,677.00			7,795.00		
PESO SUELO HÚM.	gr		3,687.00			3,466.00			3,225.00		
VOLUMEN DEL MOLDE	cm3		2,110.46			2,105.77			2,114.53		
DENSIDAD HÚMEDA	gr/cm3		1.75			1.65			1.53	1.53	
DENSIDAD SECA	gr/cm3		1.44		1	1.36			1.26		
Contenido de Hun	nedad	Humeda	d: inicial	final	Humeda	ad: inicial	final	Humeda	ad: inicial	final	
TARRO Nº	Nro.	339	341	251	339	341	315	339	341	252	
TARRO+SUELO HÚM.	gr	532.5	609.0	667.5	532.5	609.0	751.3	532.5	609.0	679.5	
TARRO+SUELO SECO	gr	461.9	527.4	557.2	461.9	527.4	617.0	461.9	527.4	564.6	
PESO DEL TARRO	gr	134.06	134.19	84.15	134.06	134.19	67.20	134.06	134.19	101.01	
% DE HUMEDAD	%	21.53	20.75	23.32	21.53	20.75	24.43	21.53	20.75	24.78	
HUMEDAD	%	21	.14	23.32	21	.14	24.43	21	.14	24.78	
ABSORCIÓN	%		2.17			3.28			3.64		

			EXPA	NSIOI	V .				
DÍA	DIAL	EXPANSIÓN		DIAL	EXPANSIÓN		DIAL	EXPANSIÓN	
DIA	DIAL	mm	%	DIAL	mm	%	DIAL	mm	%
0	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%
4	0.01	127.01	0.01%	0.02	127.02	0.02%	0.02	127.02	0.02%

				F	PENET	RACIO	ÓΝ					
PENETR.	ACIÓN	Carga		PRIMER MOLE	DE	S	EGUNDO MOI	.DE	TERCER MOLDE			
(mm)		Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.630	0.025		0.68	0.68	0.35	0.64	0.64	0.33	0.72	0.72	0.37	
1.270	0.050		2.30	2.30	1.19	2.31	2.31	1.19	2.73	2.73	1.41	
1.900	0.075		4.60	4.60	2.38	4.16	4.16	2.15	4.45	4.45	2.30	
2.540	0.100	6.9	7.11	7.11	3.67	5.91	5.91	3.05	5.75	5.75	2.97	
3.170	0.125		9.26	9.26	4.78	7.37	7.37	3.81	6.78	6.78	3.51	
3.810	0.150		11.17	11.17	5.78	8.69	8.69	4.49	7.55	7.55	3.90	
4.445	0.175		12.89	12.89	6.66	9.82	9.82	5.08	8.29	8.29	4.28	
5.080	0.200	10.35	14.37	14.37	7.42	10.76	10.76	5.56	8.84	8.84	4.57	
7.620	0.300		18.95	18.95	9.80	13.67	13.67	7.06	10.52	10.52	5.44	


: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-0-021 Región/Provinc. : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA : MAYOCC-TRIGOPAMPA Exploración : CALICATA 02 - KM 11+450 Lugar : CON CP TIPO I (3.0% MDS) + CMF (2.5% MDS) Fecha : DICIEMBRE DEL 2022 Dosis

				DATO	OS DEI	ENSAYO)			
Clasificación	SUCS:	SM	ARENA LI	MOSA CON G	RAVA			AASHTO):	A-4 (0)
Máxima Den	sidad Seca	MDS (tn/m3):		1.44	Optimo	Contenido de	Humedad O	CH % =	20.90	
% Grava =	22.5	% Arena =	29.3	% Finos =	48.2	LL % =	NP	LP % =	NP	
Expansión %	ó =	0.04%	Embebido	(dias) =	4.0	IP % =	NP			

RESULTADO	OS DEL ENSAYO (01" DE PENETRA	ACIÓN)
CBR AL 100% DE MDS (0.1") = 64.5	CBR AL 95% DE LA MDS (0.1") = 55.0	CBR AL 90% MDS =

Solicitante

COMPACTACIÓN DE **SUELOS EN LABORATORIO** UTILIZANDO UNA ENERGÍA **MODIFICADA** (MTC E 115)

: PACAYCASA

Distrito

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Provinc.: AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN

Exploración : CALICATA 02 - KM 11+450 : MAYOCC-TRIGOPAMPA Lugar

Estrato/Nivel : CON CP TIPO I (3.0%		CMF (5.0% MDS)		Fecha	: DICIEMBRE	DEL 2022
(6)	#	DATOS D	EL ENSAY	10		
Clasificación SUCS :	SM	ARENA LIMOSA	CON GRAVA		ME	торо в
Clasificación AASHTO :	A-4	(0)	Capas	5: 5.00	Golpes/Ca	pa 25
% Retenido acumulado malla N° 4 :	22.5	Material Pasante	e a usar	PASA 3/8	"	
% Retenido acumulado malla 3/8" :	17.4	Molde (Pulg)	4	Códig	jo	M4
% Retenido acumulado malla 3/4" :	8.4	Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81
	EN	SAYO DE C	ОМРАСТ	ACIÓN		
Determinación Nº		01	02	03	04	
Peso del molde y muestra	gr	5,538	5,696	5,769	5,704	
Peso de la muestra compactada	gr	1,432.5	1,591.2	1,663.8	1,598.8	
Densidad húmeda	gr/cc	1.52	1.69	1.77	1.70	
Densidad seca	gr/cc	1.30	1.39	1.42	1.32	
	С	ONTENIDO	DE HUME	DAD		
Tarro N°		55.0	89.0	77.0	123.0	
Peso tarro + suelo húmedo	gr	699.95	703.52	634.36	690.49	
Peso de tarro + suelo seco	gr	614.16	599.39	535.74	564.08	
Peso del tarro	gr	126.710	127.543	131.628	122.446	

	C	ONTENIDO	DE HUME	DAD		
Tarro N°		55.0	89.0	77.0	123.0	
Peso tarro + suelo húmedo	gr	699.95	703.52	634.36	690.49	
Peso de tarro + suelo seco	gr	614.16	599.39	535.74	564.08	
Peso del tarro	gr	126.710	127.543	131.628	122.446	
Peso del agua	gr	85.79	104.12	98.62	126.41	
Peso del suelo seco	gr	487.45	471.85	404.12	441.64	
Contenido de humedad	%	17.60	22.07	24.40	28.62	

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRÁSANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provi: AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

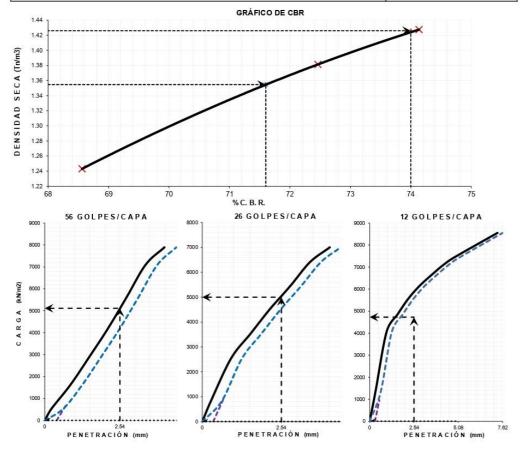
Exploración : CALICATA 02 - KM 11+450 : MAYOCC-TRIGOPAMPA Lugar : DICIEMBRE DEL 2022 Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (5.0% MDS) Fecha

		()	COMP	ACTAC	ION D	EL CB	R						
MOLDE N°			15			25			12				
CAPAS Nº			5		5			5					
GOLPES POR CAPA			56			26			12				
COND. DE LA MUESTRA			HUMEDO			HUMEDO			HUMEDO	N.			
PESO MOLDE+S. HÚM.	gr		11,455			10,513			11,108				
PESO DEL MOLDE	gr		7,663.00			6,871.00 7,811			7,811.00 3,297.00				
PESO SUELO HÚM.	gr		3,792.00			3,642.00			3,297.00			3,297.00	
VOLUMEN DEL MOLDE	cm3		2,114.15			2,098.30	98.30 2,110.8						
DENSIDAD HÚMEDA	gr/cm3		1.79			1.74			1.56				
DENSIDAD SECA	gr/cm3		1.43			1.38			1.24				
Contenido de Hur	nedad	Humeda	d: inicial	final	Humeda	ad: inicial	final	Humeda	d: inicial	final			
TARRO Nº	Nro.	333	336	272	333	336	251	333	336	250			
TARRO+SUELO HÚM.	gr	616.1	643.2	720.3	616.1	643.2	690.1	616.1	643.2	798.0			
TARRO+SUELO SECO	gr	518.1	537.4	581.9	518.1	537.4	558.0	518.1	537.4	639.6			
PESO DEL TARRO	gr	128.00	133.35	81.00	128.00	133.35	84.15	128.00	133.35	96.54			
% DE HUMEDAD	%	25.12	26.18	27.63	25.12	26.18	27.88	25.12	26.18	29.17			
HUMEDAD	%	25	.65	27.63	25	.65	27.88	25	.65	29.17			
ABSORCIÓN	%		1.98			2.22			3.51				

			EXPA	NSIOI	V .							
DÍA DIAL EXPANSIÓN DIAL EXPANSIÓN DIAL EX												
DIA	DIAL	mm	%	DIAL	mm	%	DIAL	mm	%			
0	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%			
4	0.00	127.00	0.00%	0.01	127.01	0.01%	0.01	127.01	0.01%			

PENETR	ACIÓN	Carga		PRIMER MOLE	E	S	EGUNDO MOL	.DE		TERCER MOLE	DE
(mm) (Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.630	0.025		1.05	1.05	0.54	1.61	1.61	0.83	2.58	2.58	1.33
1.270	0.050		3.15	3.15	1.63	4.90	4.90	2.53	7.87	7.87	4.07
1.900	0.075		5.59	5.59	2.89	6.84	6.84	3.54	9.41	9.41	4.86
2.540	0.100	6.9	8.13	8.13	4.20	8.80	8.80	4.55	10.82	10.82	5.59
3.170	0.125		10.89	10.89	5.63	10.52	10.52	5.44	11.92	11.92	6.16
3.810	0.150		13.75	13.75	7.10	12.40	12.40	6.41	12.80	12.80	6.62
4.445	0.175		15.28	15.28	7.89	13.55	13.55	7.00	13.64	13.64	7.05
5.080	0.200	10.35	15.28	15.28	7.89	13.82	13.82	7.14	14.34	14.34	7.41
7.620	0.300		15.28	15.28	7.89	14.70	14.70	7.60	16.55	16.55	8.55

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCCTRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

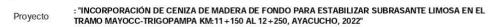

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc. : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN : PACAYCASA : MAYOCC-TRIGOPAMPA Exploración : CALICATA 02 - KM 11+450 Lugar

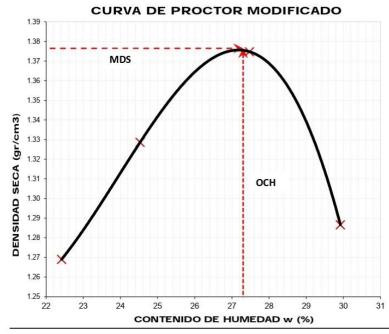
Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (5.0% MDS) : DICIEMBRE DEL 2022 Fecha

				DATO	OS DE	LENSAYO)			
Clasificación	SUCS:	SM	ARENA LI	MOSA CON G	RAVA			AASHTC) ;	A-4 (0)
Máxima Den	sidad Seca	MDS (tn/m3):		1.43	Optimo	Contenido de	Humedad O	CH % =	25.10	
% Grava =	22.5	% Arena =	29.3	% Finos =	48.2	LL % =	NP	LP % =	NP	
Expansión %	, =	0.04%	Embebido	(días) =	4.0	IP % =	NP			

I	RESULTAD	OS DEL ENSAYO (O1" DE PENETRA	CIÓN)	
I	CBR AL 100% DE MDS (0.1") = 74.0	CBR AL 95% DE LA MDS (0.1") = 71.6	CBR AL 90% MDS =	ĺ



COMPACTACIÓN DE **SUELOS EN LABORATORIO** UTILIZANDO UNA ENERGÍA **MODIFICADA** (MTC E 115)


Región/Provinc.: AYACUCHO/HUAMANGA : INFORME 001-2022/CG-CON-22-O-021 Trazabilidad

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA

Exploración : CALICATA 02 - KM 11+450 : MAYOCC-TRIGOPAMPA Lugar

Estrato/Nivel : CON CP TIPO I (3.0%	MDS) +	CMF (7.5% MDS)		Fecha	: DICIEMBRE	DEL 2022	
**		DATOS DI	EL ENSAY	′o			
Clasificación SUCS :	SM	ARENA LIMOSA	CON GRAVA		ME	TODO B	
Clasificación AASHTO :	A-4	(0)	Capas	5: 5.00	Golpes/Ca	pa 25	
% Retenido acumulado malla N° 4 :	22.5	Material Pasante	e a usar	PASA 3/8	и		
% Retenido acumulado malla 3/8":	a 3/8" : 17.4 Mold		4	Códig	10	M4	
Retenido acumulado malla 3/4" : 8.4		Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81	
	EN	SAYO DE C	ОМРАСТ	ACIÓN			
Determinación Nº		01	02	03	04		
Peso del molde y muestra	gr	5,565	5,660	5,752	5,676		
Peso de la muestra compactada	gr	1,460.0	1,555.0	1,647.0	1,571.0		
Densidad húmeda	gr/cc	1.55	1.65	1.75	1.67		
Densidad seca	gr/cc	1.27	1.33	1.37	1.29		
	С	ONTENIDO	DE HUMI	DAD			
Tarro Nº		198.0	156.0	96.0	77.0		
Peso tarro + suelo húmedo	gr	755.02	758.87	684.27	744.82		
Peso de tarro + suelo seco	gr	641.79	636.48	567.41	603.71		

	C	ONTENIDO	DE HUME	DAD		
Tarro Nº		198.0	156.0	96.0	77.0	
Peso tarro + suelo húmedo	gr	755.02	758.87	684.27	744.82	
Peso de tarro + suelo seco	gr	641.79	636.48	567.41	603.71	
Peso del tarro	gr	136.680	137.578	141.984	132.080	
Peso del agua	gr	113.23	122.38	116.87	141.11	
Peso del suelo seco	gr	505.11	498.91	425.42	471.63	
Contenido de humedad	%	22.42	24.53	27.47	29.92	

Solicitante

CBR DE SUELOS - LABORATORIO (MTC E 132)

Distrito

: PACAYCASA

Proyecto :"INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Prov : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN

 Exploración
 : CALICATA 02 - KM 11+450
 Lugar
 : MAYOCC-TRIGOPAMPA

 Estrato/Nivel
 : CON CP TIPO I (3.0% MDS) + CMF (7.5% MDS)
 Fecha
 : DICIEMBRE DEL 2022

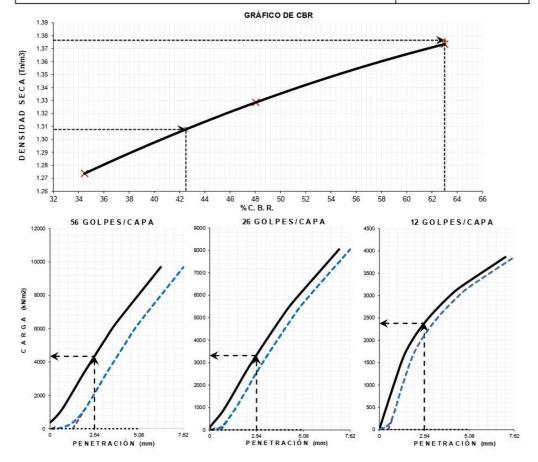
			00110	ACTAC	LOND	F1 0 B	Б.				
				ACTAC	ION D		К				
MOLDE N°			15			24			570.7 667.1 129.18 136.78 27.50 27.59 27.55 2.00		
CAPAS Nº			5			5					
GOLPES POR CAPA			56			26		12			
COND. DE LA MUESTRA			HUMEDO HUMEDO		HUMEDO	X					
PESO MOLDE + S. HÚM.	gr		11,362			11,314	11,0		11,028		
PESO DEL MOLDE	gr		7,663.00		7,713.00						
PESO SUELO HÚM.	gr		3,699.00		3,601.00						
VOLUMEN DEL MOLDE	cm3		2,114.15			2,125.21			2,118.22		
DENSIDAD HÚMEDA	gr/cm3		1.75			1.69			1.62		
DENSIDAD SECA	gr/cm3		1.37			1.33			1.27		
Contenido de Hun	nedad	Humeda	d: inicial	final	Humeda	ad: inicial	final	Humeda	d: inicial	final	
TARRO Nº	Nro.	56	95	126	56	95	75	56	95	58	
TARRO + SUELO HÚM.	gr	692.1	813.4	705.9	692.1	813.4	657.7	692.1	813.4	666.3	
TARRO+SUELO SECO	gr	570.7	667.1	569.8	570.7	667.1	515.8	570.7	667.1	529.5	
PESO DEL TARRO	gr	126.60	134.04	79.38	129.18	136.78	23.05	129.18	136.78	66.47	
% DE HUMEDAD	%	27.34	27.45	27.76	27.50	27.59	28.80	27.50	27.59	29.55	
HUMEDAD	%	27	.40	27.76	27	.55	28.80	27	.55	29.55	
ABSORCIÓN	%		0.36			1.25	A.		2.00		
				EXPA	NSIÓI	V					
DÍA		DIAL EXPA		NSIÓN	DIAL	EXPANSIO		DIAL	EXPA	NSIÓN	
DIA		DIAL	mm	%	DIAL	mm	%] DIAL	mm	%	
0		0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%	
4		0.00	127.00	0.00%	0.00	127.00	0.00%	0.01	127.01	0.01%	

					0.0070			0.0070			0.0170		
		-		ı	PENET	RACIO	ÓN		_				
PENETR	ACIÓN	Carga		PRIMER MOLE	DE	S	EGUNDO MOI	.DE		TERCER MOLDE			
(mm) (plg)		Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)			Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)		
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
0.630	0.025		0.12	0.12	0.06	0.28	0.28	0.15	0.34	0.34	0.18		
1.270	0.050		0.69	0.69	0.36	1.54	1.54	0.80	1.85	1.85	0.95		
1.900	0.075		2.02	2.02	1.05	3.18	3.18	1.64	3.23	3.23	1.67		
2.540	0.100	6.9	4.09	4.09	2.12	4.96	4.96	2.56	4.09	4.09	2.11		
3.170	0.125		6.27	6.27	3.24	6.54	6.54	3.38	4.74	4.74	2.45		
3.810	0.150		8.33	8.33	4.30	8.09	8.09	4.18	5.29	5.29	2.73		
4.445	0.175		10.35	10.35	5.35	9.58	9.58	4.95	5.77	5.77	2.98		
5.080	0.200	10.35	12.27	12.27	6.34	10.96	10.96	5.66	6.18	6.18	3.19		
7.620	0.300		18.75	18.75	9.69	15.58	15.58	8.05	7.47	7.47	3.86		

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Provinc. : AYACUCHO/HUAMANGA

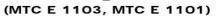
Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN


: PACAYCASA Distrito : MAYOCC-TRIGOPAMPA Lugar

Exploración : CALICATA 02 - KM 11+450 Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (7.5% MDS)

Fecha : DICIEMBRE DEL 2022

DATOS DEL ENSAYO											
Clasificación SUCS : SM Máxima Densidad Seca MDS (tn/m3) :			ARENA L	IMOSA CON G	RAVA			AASHTO):	A-4 (0)	
				1.38	Optimo	Contenido de	CH % =	27.30	0		
% Grava =	22.5	% Arena =	29.3	% Finos =	48.2	LL % =	NP	LP % =	NP		
Expansion % = 0.04%		Embebid	o (días) =	4.0	IP % =	NP					


RESULTADOS DEL ENSAYO (01" DE PENETRACIÓN) CBR AL 95% DE LA MDS (0.1") = 42.5 CBR AL 100% DE MDS (0.1") = 63.0 CBR AL 90% MDS = -,-

RESISTENCIA A LA COMPRESION DE PROBETAS DE SUELO METODO В

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Prov: AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-0-021

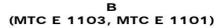
: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN : PACAYCASA

Exploración : CALICATA 02 - KM 11+450 Lugar : MAYOCC-TRIGOPAMPA Estrato/Nivel : MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

DATOS DE LA MUESTRA

SM ARENA LIMOSA CON GRAVA Clasificación SUCS:

Clasificación AASHTO: A-4 (0)


> % Pasa acumulado malla N° 4 : 77.46 % Retenido acumulado malla N° 4 : 22.54

				DATOS D	EL MOLD	EO		
PORCENTAJE DE AD	ITIVO		TIPO I (0.0° MF (0.0% ME			TIPO I (3.0 MF (0% MD		
MOLDE N°		4	5	6	1	2	3	
PESO MOLDE+S. HÚM.	gr	1,623	1,619	1,616	1,594	1,601	1,598	
PESO DEL MOLDE	gr	600.80	602.40	601.30	601.00	602.50	601.90	
PESO SUELO HÚM.	gr	1,021.71	1,016.93	1,014.64	992.91	998.32	995.63	
VOLUMEN DEL MOLDE	cm3	574.45	576.52	578.56	565.56	560.22	561.00	
DENSIDAD HÚMEDA	gr/cm3	1.78	1.76	1.75	1.76	1.78	1.77	
HUMEDAD TARRO	Nro.	45	26	75	72	76	93	
TARRO+SUELO HÚM	. gr	581.41	580.78	652.55	569.90	569.28	639.63	
TARRO+SUELO SECO	gr gr	517.94	513.56	565.32	502.79	497.51	544.32	
PESO DEL TARRO	gr	136.07	103.81	22.41	133.37	101.75	21.97	
% DE HUMEDAD	%	16.62	16.40	16.07	18.17	18.13	18.25	
DENSIDAD SECA	gr/cm3	1.53	1.52	1.51	1.49	1.51	1.50	
			EN	SAYO DE	COMPRE	SION		
EDAD	días	7	7	7	7	7	7	
DIAMETRO PROMEDIO	mm	72.1	72.0	72.0	71.2	71.1	71.2	
ALTURA	mm	140.7	141.6	142.1	142.0	141.1	140.9	
RELACION H/D		1.95	1.97	1.97	1.99	1.98	1.98	
FACTOR DE CORRECCION	I	1.00	1.00	1.00	1.00	1.00	1.00	
LECTURA DE ENSAYO	kN	2.1	2.2	2.4	9.2	9.3	10.0	
RESISTENCIA FC	kg/cm2	5.3	5.5	5.9	23.5	23.7	25.7	
RESISTENCIA PROM	kg/cm2		5.58			24.30		
RESISTENCIA PROM	MPa		0.547			2.383		

RESISTENCIA A LA COMPRESION DE PROBETAS DE SUELO METODO

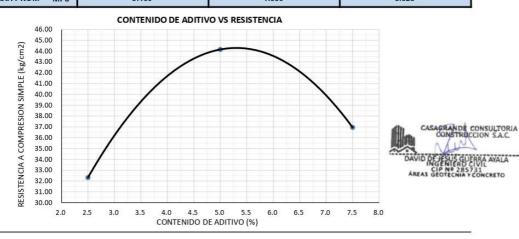
: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-Proyecto

TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Región/Prov: AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-0-021

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA

Exploración : CALICATA 02 - KM 11+450 Lugar : MAYOCC-TRIGOPAMPA Estrato/Nivel : MATERIAL PROPIO : DICIEMBRE DEL 2022 Fecha


DATOS DE LA MUESTRA

Clasificación SUCS : SM ARENA LIMOSA CON GRAVA

Clasificación AASHTO: A-4 (0)

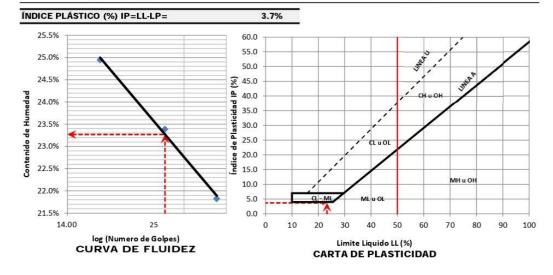
> % Retenido acumulado malla N° 4 : 22.54 % Pasa acumulado malla N° 4: 77.46

				DATOS D	EL MOLD	EO					
PORCENTAJE DE AD	ITIVO		TIPO I (3.0 MF (2.5% MI			TIPO I (3.0 MF (5.0% MI		: CON CP TIPO I (3.0% MDS) + CMF (7.5% MDS)			
MOLDE N°		1	2	3	4	5	6	7	8	9	
PESO MOLDE+S. HÚM.	gr	1,590	1,592	1,586	1,629	1,630	1,637	1,609	1,600	1,579	
PESO DEL MOLDE	gr	601.00	602.50	601.90	600.80	602.40	601.30	600.80	601.40	602.30	
PESO SUELO HÚM.	gr	988.51	989.66	983.89	1,028.61	1,027.50	1,035.96	1,007.93	998.85	976.38	
VOLUMEN DEL MOLDE	cm3	562.77	564.39	562.31	580.50	578.07	578.07	575.76	565.62	561.57	
DENSIDAD HÚMEDA	gr/cm3	1.76	1.75	1.75	1.77	1.78	1.79	1.75	1.77	1.74	
HUMEDAD TARRO	Nro.	96	45	321	145	245	196	124	99	74	
TARRO+SUELO HÚM.	gr	736.44	735.64	826.55	648.68	658.12	741.00	628.60	625.33	635.01	
TARRO+SUELO SECO	gr	636.96	627.86	684.19	535.02	549.66	607.52	525.75	512.11	517.06	
PESO DEL TARRO	gr	172.35	131.49	28.39	81.06	115.62	80.17	156.31	107.09	82.90	
% DE HUMEDAD	%	21.41	21.72	21.71	25.04	24.99	25.31	27.84	27.95	27.17	
DENSIDAD SECA	gr/cm3	1.45	1.44	1.44	1.42	1.42	1.43	1.37	1.38	1.37	
			EN	SAYO DE	COMPRE	SION					
EDAD	días	7	7	7	7	7	7	7	7	7	
DIAMETRO PROMEDIO	mm	71.2	71.1	71.2	72.1	72.0	72.0	71.8	71.1	70.9	
ALTURA	mm	141.3	142.2	141.2	142.2	142.0	142.0	142.2	142.5	142.2	
RELACION H/D		1.98	2.00	1.98	1.97	1.97	1.97	1.98	2.00	2.01	
FACTOR DE CORRECCION		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
LECTURA DE ENSAYO	kN	12.6	12.5	12.8	17.5	18.0	17.6	14.8	14.5	14.0	
RESISTENCIA FC	kg/cm2	32.1	32.1	32.8	43.6	44.8	44.0	37.3	37.3	36.3	
RESISTENCIA PROM	kg/cm2		32.32			44.15			36.94		
RESISTENCIA PROM MPa 3.169						4.330		3.623			

ANEXO 2.3 CALICATA C-3 KM 11+800

LIMITES DE PLASTICIDAD **DE LOS SUELOS (PASANTE** LA MALLA Nº 40)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-Proyecto


TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

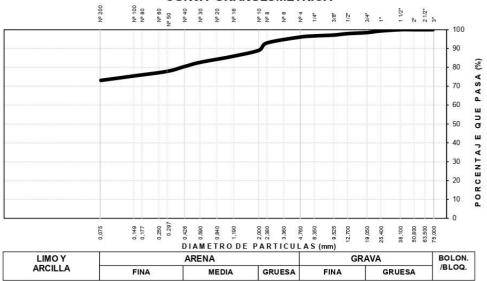
Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA Exploración : CALICATA 03 - KM 11+800 Lugar : MAYOCC-TRIGOPAMPA Estrato / Nivel : MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

	RECIPIENTE	Nº	44	33	
1	PESO SUELO HUMEDO + RECIPIENTE	gr	33.221	36.310	
2	PESO SUELO SECO+RECIPIENTE	gr	31.955	34.827	
3	PESO RECIPIENTE	gr	25.560	27.156	
4	PESO AGUA (1)-(2)	gr	1.27	1.48	
5	PESO SECO (2)-(4)	gr	6.40	7.67	
6	HUMEDAD	%	19.79%	19.33%	
	LIMITE DI ÁSTICO	0/		10 6%	

	(page		PROCEDII	PROCEDIMIENTO DE MULTIPUNTO				
	RECIPIENTE	N°	45	321	114			
1	PESO SUELO HUMEDO + RECIPIENTE	gr	38.345	40.684	39.173			
2	PESO SUELO SECO+RECIPIENTE	gr	36.300	37.786	36.588			
3	PESO RECIPIENTE	gr	26.932	25.395	26.228			
4	PESO AGUA (1)-(2)	gr	2.045	2.898	2.584			
5	PESO SECO (2)-(4)	gr	9.368	12.390	10.360			
6	HUMEDAD	%	21.82%	23.39%	24.95%			
7	NUMERO DE GOLPES	N°	34	25	17			
	LIMITE LIQUIDO	%	•	23	3.3%	•		

ANÁLISIS GRANULOMÉTRICO **DEL SUELO POR TAMIZADO** (MTC E 107)


: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-Proyecto

TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc. : AYACUCHO/HUAMANGA Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA : MAYOCC-TRIGOPAMPA Exploración : CALICATA 03 - KM 11+800 Lugar Estrato/Nivel : MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

	TAMIZ ASTM	Abertura (mm)	PESO (gr) RETENIDO	% RETEN PARCIAL	% RETEN ACUMULADO	% QUE PASA	DATOS DEL ANÁLIS	IS GRANULOMÉTRICO
ă	3"	75.000	Ē			100.00	ENSAYOS	ESTÁNDAR
TAMIZADO	2 1/2"	63.500	29	12	8	100.00	Peso seco inicial (gr)	2804.0
⋛	2"	50.800	-0	19		100.00	Peso seco lavado (gr)	753.5
₹	11/2"	38.100			51	100.00	Pérdida por lavado (gr)	2050.6
	1"	25.400	19.65	0.70	0.70		Humedad (%)	9.31
POR	3/4"	19.000	23.33	0.83	1.53	98.47	% Grava	3.9
	1/2"	12.700	16.81	0.60	2.13	97.87	% Grava gruesa	1.5
GRANULOMÉTRICO	3/8"	9.500	20.00	0.71	2.85	97.15	% Grava fina	2.4
≘	1/4"	6.350	13.43	0.48	3.32	96.68	% Arena	23.0
Ė	Nº 4	4.760	16.04	0.57	3.90	96.10	% Arena gruesa	7.1
픧	Nº 8	2.360	89.04	3.18	7.07	92.93	% Arena media	8.6
ō	Nº 10	2.000	109.70	3.91	10.98	89.02	% Arena fina	7.3
₹	N°16	1.100	96.26	3.43	14.42	85.58	% de Finos	73.1
ž	N° 30	0.590	81.15	2.89	17.31	82.69	D ₁₀ = D _{e(mm)} =	0.0103
⋦	N° 40	0.425	64.26	2.29	19.60	80.40	D _{30(mm)} =	0.0308
Ö	N° 50	0.297	69.74	2.49	22.09	77.91	D _{60(mm)} =	0.0615
S	N° 100	0.149	68.02	2.43	24.52	75.48		7,7
ŝ	N° 200	0.075	66.07	2.36	26.87	73.13	Cc =	-,-
\exists		0.0000000000000000000000000000000000000		1.5	26.87		CLASII	FICACIÓN
ANÁLISIS	Lavado		2,050.6	73.13	100.00		AASHTO	A-4 (1)
¥	TOTAL	in the second	2804.0	100.0			Clasificación SUCS	M

CURVA GRANULOMÉTRICA

CONTENIDO DE HUMEDAD PARA SUELOS (MTC E 108)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL Proyecto

TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 : AYACUCHO/HUAMANGA Región/Prov.

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAI Distrito : PACAYCASA

Exploración : CALICATA 03 - KM 11+800 : MAYOCC-TRIGOPAMPA Lugar Estrato/Nivel: MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

RECIPIENTE	N°	23	29
PESO SUELO HUMEDO+RECIPIENTE DE LA MUESTRA	gr	1,511.08	1,481.03
PESO SUELO SECO+RECIPIENTE DE LA MUESTRA	gr	1,337.13	1,301.55
PESO RECIPIENTE	gr	133.74	85.60
PESO AGUA EN LA MUESTRA	gr	173.95	179.49
PESO SECO DE LA MUESTRA	gr	1,203.39	1,215.95
HUMEDAD	%	14.5%	14.8%

ENSAYO DE LA GRAVEDAD ESPECIFICA DE LOS SOLIDOS DEL SUELO

(MTC E 206, E 113)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN Proyecto

EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc. : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CE: Distrito Solicitante : PACAYCASA

Exploración : CALICATA 03 - KM 11+800 Lugar : MAYOCC-TRIGOPAMPA Estrato/Nivel : MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

MATERIAL RETENIDO EN L	_A M	ALLA N°4 (MTC E 206	5)
IDENTIFICACION		ENSAYO Nº01	ENSAYO Nº02	PROMEDIC
Peso en el aire de la muestra seca	gr	2242.07	2242.07	
Peso en el aire de la muestra SSS	gr	2272.24	2272.24	
Peso sumergido en agua de la muestra SSS (gr)	gr	1409.01	1409.00	
Gravedad Especifica		2.597	2.597	2.597
Gravedad Especifica SSS		2.632	2.632	2.632
Gravedad Especifica Aparente		2.691	2.691	2.691
% de absorción	%	1.345	1.345	1.345

IDENTIFICACIÓN		MUESTRA 01	MUESTRA 02	PROMEDIO
Capacidad de Picnómetro	cm3	500	500	
Peso de la muestra seca	gr	99.99	99.13	
Peso de Picnómetro con la muestra y agua	gr	747.88	753.60	
Peso de Picnómetro aforado lleno de agua	gr	685.06	691.27	2.689
Temperatura del agua en el ensayo	°C	25	24	
Corrección por temperatura (K)		0.9988	0.9991	
Gravedad especifica de la muestra		2.687	2.691	

Gravedad especifica de los sólidos	2.689
Porcentaje que pasa la Malla N°4 (%)	96.1
Porcentaje Retenido en la Malla N°4 (%)	3.9

Peso del agua

Peso del suelo seco

COMPACTACIÓN DE **SUELOS EN LABORATORIO** UTILIZANDO UNA ENERGÍA **MODIFICADA** (MTC E 115)

149.70

563.41

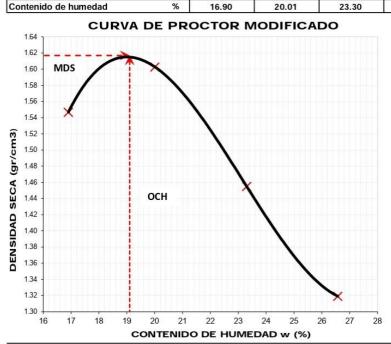
26.57

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

: INFORME 001-2022/CG-CON-22-O-021 Región/Provinc.: AYACUCHO/HUAMANGA Trazabilidad

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN : PACAYCASA Solicitante Distrito

Exploración : MAYOCC-TRIGOPAMPA : CALICATA 03 - KM 11+800 Lugar


Estrato/Nivel : CON CP TIPO I (0.0%	MDS) +	CMF (0.0% MDS)		Fecha	: DICIEMBRE	DEL 2022	
		DATOS DI	EL ENSA	7 0			
Clasificación SUCS :	ML	LIMO CON ARE	NA		METODO A		
Clasificación AASHTO :	A-4	(1)	Capas	s : 5.00	Golpes/Ca	pa 25	
% Retenido acumulado malla N° 4 :	3.9	Material Pasante	e a usar	PASA N° 4	W)		
% Retenido acumulado malla 3/8" :	2.8	Molde (Pulg) 4		Códig	M4		
% Retenido acumulado malla 3/4" :	1.5	Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81	
	EN	SAYO DE C	ОМРАСТ	ACIÓN			
Determinación Nº		01	02	03	04		
Peso del molde y muestra	gr	5,804	5,913	5,791	5,674		
Peso de la muestra compactada	gr	1,699.3	1,807.7	1,686.1	1,569.2		
Densidad húmeda	gr/cc	1.81	1.92	1.79	1.67		
Densidad seca	gr/cc	1.55	1.60	1.46	1.32		
	C	ONTENIDO	DE HUMI	EDAD			
Tarro Nº		49.0	65.0	12.0	17.0		
Peso tarro + suelo húmedo	gr	642.37	862.06	639.52	787.34		
Peso de tarro + suelo seco	gr	560.44	731.60	533.40	637.64		
Peso del tarro	gr	75.74	79.53	78.01	74.23		

130.46

652.07

106.12

455.38

81.93

484.70

gr

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provi: AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

: MAYOCC-TRIGOPAMPA Exploración : CALICATA 03 - KM 11+800 Lugar : DICIEMBRE DEL 2022 Estrato/Nivel : CON CP TIPO I (0.0% MDS) + CMF (0.0% MDS) Fecha

			COMP	ACTAC	ION D	EL CB	R				
MOLDE N°			19		Ĭ	30			41		
CAPAS Nº			5			5			5		
GOLPES POR CAPA			56			26			12		
COND. DE LA MUESTRA			HUMEDO			HUMEDO			HUMEDO		
PESO MOLDE+S. HÚM.	gr		11,910			11,545		11,236			
PESO DEL MOLDE	gr		7,833.00		7,684.00			7,642.00			
PESO SUELO HÚM.	gr		4,077.00		3,861.00			3,594.00			
VOLUMEN DEL MOLDE	cm3		2,113.14			2,116.40			2,101.14		
DENSIDAD HÚMEDA	gr/cm3		1.93			1.82			1.71		
DENSIDAD SECA	gr/cm3		1.62			1.53			1.44		
Contenido de Humedad		Humedad: inicial final		Humeda	Humedad: inicial final		Humedad: inicial		final		
TARRO Nº	Nro.	325	356	349	325	356	330	325	356	318	
TARRO+SUELO HÚM.	gr	724.7	640.7	711.1	724.7	640.7	701.4	724.7	640.7	643.9	
TARRO+SUELO SECO	gr	632.9	550.2	598.4	632.9	550.2	595.4	632.9	550.2	534.5	
PESO DEL TARRO	gr	138.09	87.97	66.99	138.09	87.97	131.62	138.09	87.97	66.21	
% DE HUMEDAD	%	18.55	19.58	21.21	18.55	19.58	22.86	18.55	19.58	23.36	
HUMEDAD	%	19	.07	21.21	19	.07	22.86	19	.07	23.36	
ABSORCIÓN	%		2.14			3.79			4.30	,	
				EXPA	NSIÓN	ı					
DÍA		DIAL	EXPA	NSIÓN	DIAL	EXPANSIÓN		SIÓN DIAL		EXPANSIÓN	
DIA		DIAL	mm	%	DIAL	mm	%	DIAL	mm	%	
0		0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%	

			EXPA	NSIÓN	V				
DÍA	DIAL	EXPANSIÓN		DIAL	EXPANSIÓN		DIAL	EXPANSIÓN	
	DIAL	mm	%	DIAL	mm	%	DIAL	mm	%
0	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%
4	0.02	127.02	0.02%	0.02	127.02	0.02%	0.02	127.02	0.02%

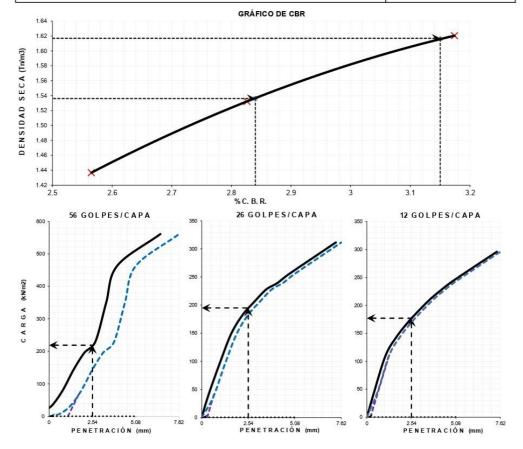
PENETRA	a ción	Carga		PRIMER MOLE	E	S	EGUNDO MOL	.DE	TERCER MOLDE			
(mm) (Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)	
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.630	0.025		0.02	0.02	0.01	0.07	0.07	0.04	0.09	0.09	0.05	
1.270	0.050		0.07	0.07	0.03	0.18	0.18	0.10	0.21	0.21	0.11	
1.900	0.075		0.16	0.16	0.08	0.29	0.29	0.15	0.28	0.28	0.14	
2.540	0.100	6.9	0.28	0.28	0.14	0.35	0.35	0.18	0.33	0.33	0.17	
3.170	0.125		0.38	0.38	0.20	0.40	0.40	0.21	0.37	0.37	0.19	
3.810	0.150		0.44	0.44	0.23	0.44	0.44	0.23	0.41	0.41	0.21	
4.445	0.175		0.68	0.68	0.35	0.46	0.46	0.24	0.44	0.44	0.23	
5.080	0.200	10.35	0.90	0.90	0.46	0.49	0.49	0.26	0.47	0.47	0.24	
7.620	0.300		1.09	1.09	0.56	0.60	0.60	0.31	0.57	0.57	0.30	

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Provinc. : AYACUCHO/HUAMANGA : PACAYCASA Distrito

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Exploración : CALICATA 03 - KM 11+800

Lugar : MAYOCC-TRIGOPAMPA


Estrato/Nivel : CON CP TIPO I (0.0% MDS) + CMF (0.0% MDS)

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

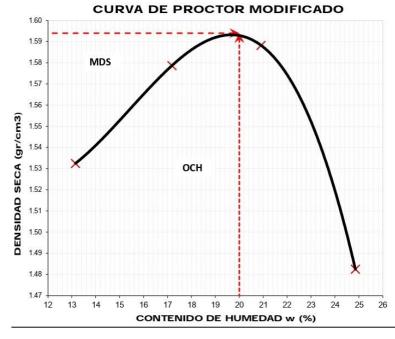
: DICIEMBRE DEL 2022 Fecha

				DATO	OS DEI	LENSAYO)			
Clasificación	SUCS:	ML	LIMO COI	N ARENA				AASHTO	1:	A-4 (1)
Máxima Den	sidad Seca	MDS (tn/m3):		1.62	Optimo	Contenido de	Humedad OCI	H % =	19.10	
% Grava =	3.9	% Arena =	23.0	% Finos =	73.1	LL % =	23.3%	LP % =	19.6%	
Expansión %	5 =	0.04%	Embebido	o (días) =	4.0	IP % =	3.7%			

RESULTAD	OS DEL ENSAYO (O1" DE PENETRA	CIÓN)
CBR AL 100% DE MDS (0.1") = 3.15	CBR AL 95% DE LA MDS (0.1") = 2.84	CBR AL 90% MDS = -,-

COMPACTACIÓN DE **SUELOS EN LABORATORIO** UTILIZANDO UNA ENERGÍA **MODIFICADA** (MTC E 115)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto


Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc.: AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN : PACAYCASA Solicitante Distrito

Exploración : CALICATA 03 - KM 11+800 Lugar : MAYOCC-TRIGOPAMPA

Estrato/Nivel : CON CP TIPO I (3.0%	MDS) +	CMF (0.0% MDS)		Fecha	: DICIEMBRE	DEL 2022	
		DATOS D	EL ENSAY	′ O			
Clasificación SUCS :	ML	LIMO CON ARE	NA		ME	TODO A	
Clasificación AASHTO :	A-4	(1)	Capas	5: 5.00	Golpes/Ca	ipa 25	
% Retenido acumulado malla N° 4 :	3.9	Material Pasante	e a usar	PASA N° 4	0		
% Retenido acumulado malla 3/8" :	2.8	Molde (Pulg)	4	Códiç	до	M4	
% Retenido acumulado malla 3/4" :	1.5	Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81	
	EN	SAYO DE C	OMPACT	ACIÓN			
Determinación N°		01	02	03	04		
Peso del molde y muestra	gr	5,735	5,844	5,910	5,845		
Peso de la muestra compactada	gr	1,629.7	1,738.7	1,804.8	1,739.5		
Densidad húmeda	gr/cc	1.73	1.85	1.92	1.85		
Densidad seca	gr/cc	1.53	1.58	1.59	1.48		
	С	ONTENIDO	DE HUME	DAD			
Tarro Nº		45.0	74.0	96.0	88.0	2	
Peso tarro + suelo húmedo	gr	747.62	751.43	677.56	737.52		
Doso do tarro y suolo soco	or	676.45	661 10	59469	616 74		

	C	ONTENIDO	DE HUME	DAD		
Tarro N°		45.0	74.0	96.0	88.0	
Peso tarro + suelo húmedo	gr	747.62	751.43	677.56	737.52	
Peso de tarro + suelo seco	gr	676.45	661.19	584.69	616.74	
Peso del tarro	gr	135.340	136.229	140.592	130.785	
Peso del agua	gr	71.17	90.23	92.87	120.78	
Peso del suelo seco	gr	541.11	524.97	444.10	485.96	
Contenido de humedad	%	13.15	17.19	20.91	24.85	

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provi: AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA Solicitante

Exploración : CALICATA 03 - KM 11+800 : MAYOCC-TRIGOPAMPA Lugar Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (0.0% MDS) : DICIEMBRE DEL 2022 Fecha

		-	COMP	ACTAC	ION D	EL CB	R				
MOLDE N°			53			20			2		
CAPAS Nº			5			5			5		
GOLPES POR CAPA		56				26		12			
COND. DE LA MUESTRA		HUMEDO				HUMEDO			HUMEDO	X	
PESO MOLDE + S. HÚM.	gr		11,617			11,829			11,453		
PESO DEL MOLDE	gr	7,642.00				7,984.00			7,845.00		
PESO SUELO HÚM.	gr		3,975.00			3,845.00		3,608.00			
VOLUMEN DEL MOLDE	cm3		2,078.14			2,086.70			2,090.67		
DENSIDAD HÚMEDA	gr/cm3		1.91			1.84			1.73		
DENSIDAD SECA	gr/cm3		1.59			1.53		1.43			
Contenido de Hun	nedad	Humeda	d: inicial	final	Humeda	ad: inicial	final	Humeda	d: inicial	final	
TARRO Nº	Nro.	324	323	272	324	323	300	324	323	311	
TARRO+SUELO HÚM.	gr	706.2	830.0	720.3	706.2	830.0	671.1	706.2	830.0	679.9	
TARRO+SUELO SECO	gr	608.3	608.3 711.7 604.4		608.3	711.7	549.3	608.3	711.7	561.3	
PESO DEL TARRO	gr	129.18	129.18 136.78 81.00		129.18	136.78	23.52	129.18	136.78	67.83	
% DE HUMEDAD	%	20.43	20.43 20.58 22.14		20.43	20.58	23.17	20.43	20.58	24.03	
HUMEDAD	%	20	.51	22.14	20	20.51 23.17			20.51 24.03		
ABSORCIÓN	%		1.64			2.66		3.53			

			EXPA	NSIÓI	V				
DÍA	DIAL	EXPANSIÓN		DIAL	. EXPANSIÓN		DIAL	EXPANSIÓN	
JIK .	DIAL	mm	%	DIAL	mm	%] DIAL	mm	%
0	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%
4	0.01	127.01	0.01%	0.01	127.01	0.01%	0.01	127.01	0.01%

				F	PENET	RACIO	ÓΝ				
PENETR	ACIÓN	Carga		PRIMER MOLE	E	S	EGUNDO MOL	.DE	TERCER MOLDE		
(mm)		Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.630	0.025		0.04	0.04	0.02	0.08	0.08	0.04	0.10	0.10	0.05
1.270	0.050		0.20	0.20	0.10	0.46	0.46	0.24	0.53	0.53	0.27
1.900	0.075		0.58	0.58	0.30	0.95	0.95	0.49	0.93	0.93	0.48
2.540	0.100	6.9	1.18	1.18	0.61	1.49	1.49	0.77	1.18	1.18	0.61
3.170	0.125		1.81	1.81	0.93	1.96	1.96	1.01	1.36	1.36	0.71
3.810	0.150		2.40	2.40	1.24	2.43	2.43	1.25	1.52	1.52	0.79
4.445	0.175		2.98	2.98	1.54	2.87	2.87	1.48	1.66	1.66	0.86
5.080	0.200	10.35	3.53	3.53	1.83	3.29	3.29	1.70	1.78	1.78	0.92
7.620	0.300		5.40	5.40	2.79	4.67	4.67	2.42	2.15	2.15	1.11

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-Proyecto TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Región/Provinc. : AYACUCHO/HUAMANGA

: PACAYCASA

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN

Distrito : MAYOCC-TRIGOPAMPA Lugar

Exploración : CALICATA 03 - KM 11+800

Máxima Densidad Seca MDS (tn/m3) :

Clasificación SUCS:

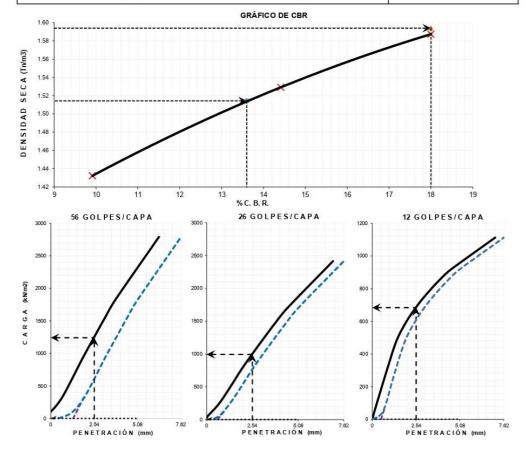
: DICIEMBRE DEL 2022 Fecha

LP % =

19.6%

Estrato/Nivel	: CON CP TIPO I (3.0% MDS) + CMF (0.0% MDS)
	DATOS

ML


S DEL ENSAYO AASHTO: A-4 (1) Optimo Contenido de Humedad OCH % = 20.00

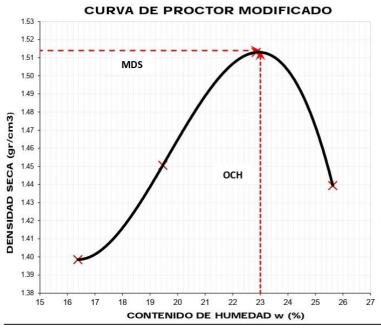
% Grava = 3.9 % Arena = 23.0 % Finos = 73.1 LL % = 23.3% Embebido (días) = IP % = Expansión % = 0.04% 4.0 3.7%

LIMO CON ARENA

1.59

RESULTADOS DEL ENSAYO (01" DE PENETRACIÓN) CBR AL 95% DE LA MDS (0.1") = 13.6 CBR AL 90% MDS = -,-CBR AL 100% DE MDS (0.1") = 18.0

COMPACTACIÓN DE **SUELOS EN LABORATORIO UTILIZANDO UNA ENERGÍA MODIFICADA** (MTC E 115)



: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL Proyecto TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc.: AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

Exploración : CALICATA 03 - KM 11 Estrato/Nivel : CON CP TIPO I (3.0%		CMF (2.5% MDS)		Lugar Fecha	: MAYOCC-TR : DICIEMBRE	5070 (F) (B) (B) (B) (B) (B) (B)
		DATOS DE	EL ENSAY	′O		
Clasificación SUCS :	ML	LIMO CON AREI	NA		ME	TODO A
Clasificación AASHTO :	A-4	(1)	Capas : 5.00		Golpes/Ca	pa 25
% Retenido acumulado malla N° 4 :	3.9	Material Pasante	a usar	PASA N° 4		
% Retenido acumulado malla 3/8" :	2.8	Molde (Pulg)	4	Códig	Ю	M4
% Retenido acumulado malla 3/4" :	1.5	Peso Molde (gr): 4105.00		Vol.(cm3):	939.81	
	EN	SAYO DE C	OMPACT	ACIÓN		300000
Determinación Nº		01	02	03	04	
Peso del molde y muestra	gr	5,635	5,734	5,852	5,805	
Peso de la muestra compactada	gr	1,529.7	1,628.7	1,746.8	1,699.5	
Densidad húmeda	gr/cc	1.63	1.73	1.86	1.81	
Densidad seca	gr/cc	1.40	1.45	1.51	1.44	
	С	ONTENIDO	DE HUME	DAD		
Tarro N°		25.0	14.0	126.0	196.0	2
Peso tarro + suelo húmedo	gr	747.62	751.43	677.56	737.52	8
Peso de tarro + suelo seco	gr	661.45	651.19	577.69	613.74	
Peso del tarro	gr	135.340	136.229	140.592	130.785	
Peso del agua	gr	86.17	100.23	99.87	123.78	
Peso del suelo seco	gr	526.11	514.97	437.10	482.96	
Contenido de humedad	%	16.38	19.46	22.85	25.63	

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Prov : AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

: MAYOCC-TRIGOPAMPA Exploración : CALICATA 03 - KM 11+800 Lugar Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (2.5% MDS) : DICIEMBRE DEL 2022 Fecha

			OMPA	CTACI	ON D	EL CBI	2				
MOLDE N°			40			30	1997	1	33		
CAPAS N°			5			5		5			
GOLPES POR CAPA			56			26		12			
COND. DE LA MUESTRA			HUMEDO			HUMEDO	V		HUMEDO		
PESO MOLDE+S. HÚM.	gr		11,266			11,420			11,155		
PESO DEL MOLDE	gr		7,355.00			7,684.00			7,638.00		
PESO SUELO HÚM.	gr		3,911.00			3,736.00			3,517.00		
VOLUMEN DEL MOLDE	cm3		2,095.53			2,116.40			2,115.97		
DENSIDAD HÚMEDA	gr/cm3		1.87			1.77		1.66			
DENSIDAD SECA	gr/cm3		1.51			1.43		1.35			
Contenido de Hun	nedad	Humedad: inicial		final	Humed	ad: inicial	final	Humeda	ad: inicial	final	
TARRO Nº	Nro.	115	358	328	115	358	337	115	358	339	
TARRO+SUELO HÚM.	gr	567.8	792.8	809.9	567.8	792.8	684.1	567.8	792.8	841.9	
TARRO+SUELO SECO	gr	475.3	671.6	675.6	475.3	671.6	573.2	475.3	671.6	693.5	
PESO DEL TARRO	gr	87.87	139.27	131.32	87.87	139.27	136.50	87.87	139.27	134.06	
% DE HUMEDAD	%	23.88	22.77	24.67	23.88	22.77	25.40	23.88	22.77	26.53	
HUMEDAD	%	23.	32	24.67	23	.32	25.40	23	.32	26.53	
ABSORCIÓN	%		1.35			2.08			3.20		
				EXPAI	NSIÓN	Ì					
DÍA		DIAI	DIAL EXPANSIÓN		DIAL EXP		EXPANSIÓN		EXPA	NSIÓN	
- DIA		DIAL	mm		DIAL	mm	%	DIAL	mm	%	
0		0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%	
4		0.00	0.00 127.00 0.00%			127.01	0.01%	0.01	127.01	0.01%	

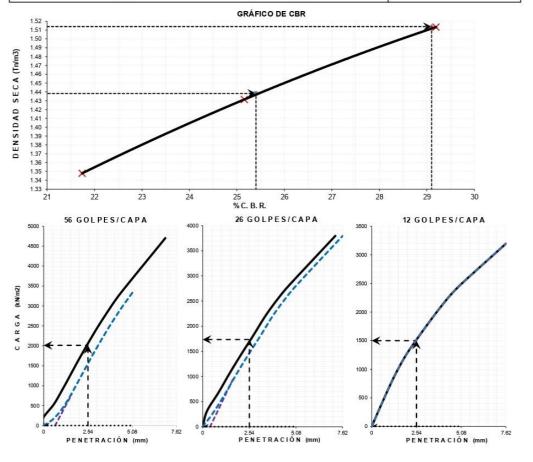
	PENETRACIÓN													
PENETRA	ACIÓNI	Carga	PI	RIMER MOLDE		S	EGUNDO MOL	.DE		TERCER MOLI	DE			
(mm) (Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)			
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
0.630	0.025		0.39	0.39	0.20	0.60	0.60	0.31	0.86	0.86	0.44			
1.270	0.050		1.09	1.09	0.56	1.33	1.33	0.69	1.68	1.68	0.87			
1.900	0.075		2.02	2.02	1.05	2.10	2.10	1.09	2.37	2.37	1.23			
2.540	0.100	6.9	3.02	3.02	1.56	2.84	2.84	1.47	2.93	2.93	1.52			
3.170	0.125		3.97	3.97	2.05	3.53	3.53	1.82	3.46	3.46	1.79			
3.810	0.150		4.87	4.87	2.52	4.26	4.26	2.20	3.96	3.96	2.05			
4.445	0.175		5.70	5.70	2.94	4.88	4.88	2.52	4.43	4.43	2.29			
5.080	0.200	10.35	6.45	6.45	3.33	5.43	5.43	2.80	4.82	4.82	2.49			
7.620	0.300		9.10	9.10	4.70	7.35	7.35	3.80	6.18	6.18	3.19			

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Provinc. : AYACUCHO/HUAMANGA : PACAYCASA Distrito

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Exploración : CALICATA 03 - KM 11+800

Lugar : MAYOCC-TRIGOPAMPA


Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (2.5% MDS)

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

: DICIEMBRE DEL 2022 Fecha

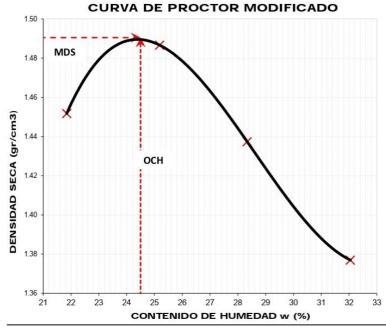
	DATOS DEL ENSAYO										
Clasificación	SUCS:	ML	LIMO CO	N ARENA				AASHTO) :	A-4 (1)	
Máxima Den	sidad Seca	MDS (tn/m3):		1.51	Optimo	Contenido de	Humedad OCI	H % =	23.00		
% Grava =	3.9	% Arena =	23.0	% Finos =	73.1	LL % =	23.3%	LP % =	19.6%		
Expansión %	ó =	0.04%	Embebide	o (días) =	4.0	IP % =	3.7%				

RESULTADOS DEL ENSAYO (01" DE PENETRACIÓN) CBR AL 100% DE MDS (0.1") = 29.1 CBR AL 95% DE LA MDS (0.1") = 25.4 CBR AL 90% MDS = -.-

COMPACTACIÓN DE **SUELOS EN LABORATORIO** UTILIZANDO UNA ENERGÍA **MODIFICADA** (MTC E 115)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc.: AYACUCHO/HUAMANGA


: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA

: MAYOCC-TRIGOPAMPA Exploración : CALICATA 03 - KM 11+800 Lugar Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (5.0% MDS) : DICIEMBRE DEL 2022 Fecha

		DATOS DEL	ENSA	YO		
Clasificación SUCS :	N	IL LIMO CON ARENA	1		ME	TODO A
Clasificación AASHTO :	Α	-4 (1)	Cap	as: 5.00	Golpes/Ca	apa 25
% Retenido acumulado malla N° 4 :	3.9	Material Pasante a	usar	PASA N° 4	(10)	
% Retenido acumulado malla 3/8" :	2.8	Molde (Pulg)	4	Códiç	go	M4
% Retenido acumulado malla 3/4" :	1.5	Peso Molde (gr) :		4105.00	Vol.(cm3):	939.81
	EI	NSAYO DE CO	MPAC	TACIÓN		
Determinación Nº		01	02	03	04	

	ENSAYO DE COMPACTACIÓN									
Determinación Nº		01	02	03	04					
Peso del molde y muestra	gr	5,767	5,854	5,839	5,814					
Peso de la muestra compactada	gr	1,662.5	1,749.1	1,733.7	1,708.8					
Densidad húmeda	gr/cc	1.77	1.86	1.84	1.82					
Densidad seca	gr/cc	1.45	1.49	1.44	1.38					

CONTENIDO DE HUMEDAD											
Tarro N° 345.0 321.0 152.0 154.0											
Peso tarro + suelo húmedo	gr	758.72	762.59	687.63	748.47						
Peso de tarro + suelo seco	gr	647.31	636.98	567.31	599.05						
Peso del tarro	gr	137.350	138.252	142.680	132.727						
Peso del agua	gr	111.41	125.61	120.31	149.43						
Peso del suelo seco	gr	509.96	498.73	424.63	466.32						
Contenido de humedad	%	21.85	25.19	28.33	32.04						

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provi: AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA

: MAYOCC-TRIGOPAMPA Exploración : CALICATA 03 - KM 11+800 Lugar Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (5.0% MDS) : DICIEMBRE DEL 2022 Fecha

		((COMP	ACTAC	ION D	EL CB	R				
MOLDE Nº			51			41			31		
CAPAS Nº			5			5			5		
GOLPES POR CAPA			56			26			12		
COND. DE LA MUESTRA			HUMEDO	V.		HUMEDO			HUMEDO		
PESO MOLDE + S. HÚM.	gr		11,611			11,392			11,198		
PESO DEL MOLDE	gr		7,682.00			7,642.00			7,587.00		
PESO SUELO HÚM.	gr		3,929.00			3,750.00			3,611.00		
VOLUMEN DEL MOLDE	cm3		2,107.53			2,101.14			2,118.22		
DENSIDAD HÚMEDA	gr/cm3		1.86			1.78			1.70		
DENSIDAD SECA	gr/cm3		1.49		Ī	1.43			1.36		
Contenido de Hun	nedad	Humeda	d: inicial	final	Humeda	d: inicial	final	Humeda	d: inicial	final	
TARRO Nº	Nro.	351	116	325	351	116	330	351	116	316	
TARRO+SUELO HÚM.	gr	847.5	700.5	821.6	847.5	700.5	701.4	847.5	700.5	786.1	
TARRO+SUELO SECO	gr	702.4	579.9	682.3	702.4	579.9	583.4	702.4	579.9	630.8	
PESO DEL TARRO	gr	131.46	88.50	138.09	131.46	88.50	131.62	131.46	88.50	68.91	
% DE HUMEDAD	%	25.41	24.54	25.60	25.41	24.54	26.12	25.41	24.54	27.64	
HUMEDAD	%	24	.98	25.60	24	.98	26.12	24	.98	27.64	
ABSORCIÓN	%		0.62			1.14			2.66		

EXPANSIÓN											
DÍA	DIAL	EXPA	NSIÓN	DIAL	IAL EXPANSIÓN DIAL		EXPANSIÓN				
DIA	DIAL	mm	%	DIAL	mm	%	DIAL	mm	%		
0	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%		
4	0.00	127.00	0.00%	0.01	127.01	0.01%	0.01	127.01	0.01%		

					PENET	RACIO	ÓN				
PENETRA	ACIÓN	Carga	1	PRIMER MOLE)E	S	EGUNDO MOL	TERCER MOLDE			
(mm) (Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.630	0.025		1.35	1.35	0.70	1.45	1.45	0.75	1.67	1.67	0.86
1.270	0.050		2.77	2.77	1.43	2.67	2.67	1.38	2.81	2.81	1.45
1.900	0.075		4.01	4.01	2.07	3.57	3.57	1.85	3.44	3.44	1.78
2.540	0.100	6.9	5.21	5.21	2.70	4.42	4.42	2.29	4.00	4.00	2.07
3.170	0.125		6.34	6.34	3.27	5.16	5.16	2.67	4.54	4.54	2.34
3.810	0.150		7.38	7.38	3.82	5.90	5.90	3.05	5.05	5.05	2.61
4.445	0.175		8.34	8.34	4.31	6.60	6.60	3.41	5.55	5.55	2.87
5.080	0.200	10.35	9.19	9.19	4.75	7.22	7.22	3.73	6.00	6.00	3.10
7.620	0.300		12.33	12.33	6.37	9.44	9.44	4.88	7.54	7.54	3.90

Exploración : CALICATA 03 - KM 11+800

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-Proyecto

TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Región/Provinc. : AYACUCHO/HUAMANGA : PACAYCASA Distrito

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN

Lugar : MAYOCC-TRIGOPAMPA

Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (5.0% MDS)

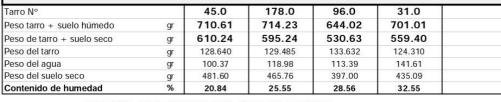
: DICIEMBRE DEL 2022 Fecha

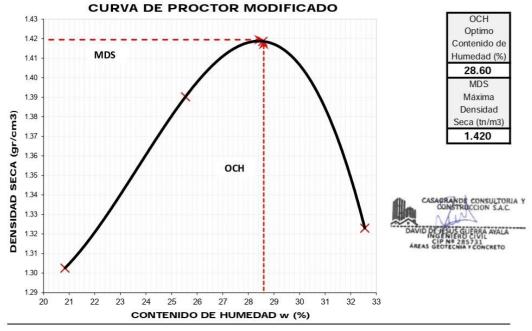
	DATOS DEL ENSAYO										
Clasificación	SUCS :	ML	LIMO CON	ARENA				AASHTO	:	A-4 (1)	
Máxima Den	sidad Seca	MDS (tn/m3):		1.49	Optimo	Contenido de	Humedad OCI	H % =	24.50		
% Grava =	3.9	% Arena =	23.0	% Finos =	73.1	LL % =	23.3%	LP % =	19.6%		
Expansión %	6 =	0.04%	Embebido	(días) =	4.0	IP % =	3.7%				

RESULTAD	OS DEL ENSAYO (O1" DE PENETRA	CIÓN)
CBR AL 100% DE MDS (0.1") = 38.1	CBR AL 95% DE LA MDS (0.1") = 33.1	CBR AL 90% MDS = -,-

COMPACTACIÓN DE **SUELOS EN LABORATORIO UTILIZANDO UNA ENERGÍA MODIFICADA** (MTC E 115)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL Proyecto


TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"


Región/Provinc.: AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

Exploración : CALICATA 03 - KM 11+800 Lugar : MAYOCC-TRIGOPAMPA

Estrato/Nivel : CON CP TIPO I (3.0%	trato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (7.5% MDS)				: DICIEMBRE I	: DICIEMBRE DEL 2022		
		DATOS DI	EL ENSA	10				
Clasificación SUCS :	ML	LIMO CON ARE	NA		ME	TODO A		
Clasificación AASHTO :	A-4	(1)	Capas	5: 5.00	Golpes/Cap	oa 25		
% Retenido acumulado malla N° 4 :	3.9	Material Pasante	a usar	PASA N° 4	u			
% Retenido acumulado malla 3/8" :	2.8	Molde (Pulg)	4	Códig	jo	M4		
% Retenido acumulado malla 3/4" :	1.5	Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81		
	EN	SAYO DE C	ОМРАСТ.	ACIÓN				
Determinación Nº		01	02	03	04			
Peso del molde y muestra	gr	5,584	5,745	5,819	5,753			
Peso de la muestra compactada	gr	1,479.3	1,640.4	1,714.1	1,648.1			
Densidad húmeda	gr/cc	1.57	1.75	1.82	1.75			
Densidad seca	gr/cc	1.30	1.39	1.42	1.32			
	С	ONTENIDO	DE HUMI	DAD				
Tarro N°		45.0	178.0	96.0	31.0			
Peso tarro + suelo húmedo	gr	710.61	714.23	644.02	701.01			
Peso de tarro + suelo seco	gr	610.24	595.24	530.63	559.40			
Peso del tarro	gr	128.640	129.485	133.632	124.310			
Peso del agua	gr	100.37	118.98	113.39	141.61			

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Provi: AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito Solicitante : PACAYCASA

: MAYOCC-TRIGOPAMPA Exploración : CALICATA 03 - KM 11+800 Lugar Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (7.5% MDS) Fecha : DICIEMBRE DEL 2022

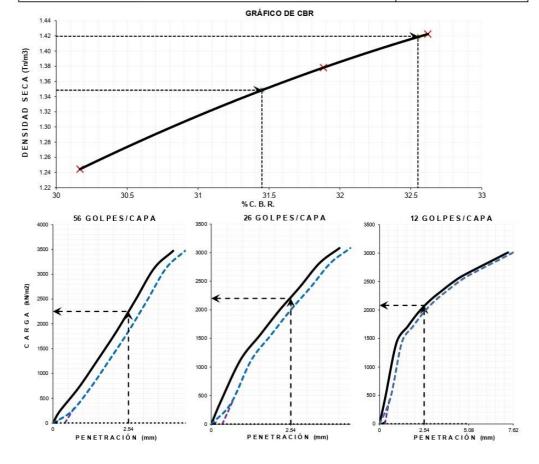
			COMP	ACTAC	ION D	EL CB	R				
MOLDE N°			15		T T	25			12		
CAPAS Nº			5			5			5		
GOLPES POR CAPA			56			26			12		
COND. DE LA MUESTRA			HUMEDO			HUMEDO			HUMEDO		
PESO MOLDE+S. HÚM.	gr		11,575			10,633			11,228		
PESO DEL MOLDE	gr		7,663.00			6,871.00			7,811.00		
PESO SUELO HÚM.	gr		3,912.00			3,762.00			3,417.00		
VOLUMEN DEL MOLDE	cm3		2,114.15			2,098.30					
DENSIDAD HÚMEDA	gr/cm3		1.85			1.79			1.62		
DENSIDAD SECA	gr/cm3		1.42		1.38				1.24		
Contenido de Hun	nedad	Humeda	d: inicial	final	Humeda	d: inicial	final	Humeda	ıd: inicial	final	
TARRO Nº	Nro.	333	336	272	333	336	251	333	336	250	
TARRO+SUELO HÚM.	gr	616.1	643.2	720.3	616.1	643.2	690.1	616.1	643.2	798.0	
TARRO+SUELO SECO	gr	502.1	526.4	571.9	502.1	526.4	547.0	502.1	526.4	629.6	
PESO DEL TARRO	gr	128.00	133.35	81.00	128.00	133.35	84.15	128.00	133.35	96.54	
% DE HUMEDAD	%	30.47	29.72	30.23	30.47	29.72	30.92	30.47	29.72	31.59	
HUMEDAD	%	30	.09	30.23	30	.09	30.92	30	.09	31.59	
ABSORCIÓN	%		0.14)		0.82			1.50		

			EXPA	NSIÓI	V .				
DÍA	DIAL	EXPANSIÓN		DIAL	EXPANSIÓN		DIAL	EXPANSIÓN	
DIA	DIAL	mm	%	DIAL	mm	%	DIAL	mm	%
0	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%
4	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%

	PENETRACIÓN											
PENETRA	ACIÓN	Carga		PRIMER MOLE	DE	S	EGUNDO MOL	.DE	*	DE		
(mm) (Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)	
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.630	0.025		0.46	0.46	0.24	0.71	0.71	0.37	0.91	0.91	0.47	
1.270	0.050		1.39	1.39	0.72	2.15	2.15	1.11	2.77	2.77	1.43	
1.900	0.075		2.46	2.46	1.27	3.01	3.01	1.56	3.31	3.31	1.71	
2.540	0.100	6.9	3.58	3.58	1.85	3.87	3.87	2.00	3.81	3.81	1.97	
3.170	0.125		4.79	4.79	2.48	4.63	4.63	2.39	4.19	4.19	2.17	
3.810	0.150		6.05	6.05	3.13	5.46	5.46	2.82	4.51	4.51	2.33	
4.445	0.175		6.72	6.72	3.47	5.96	5.96	3.08	4.80	4.80	2.48	
5.080	0.200	10.35	6.72	6.72	3.47	6.08	6.08	3.14	5.05	5.05	2.61	
7.620	0.300		6.72	6.72	3.47	6.47	6.47	3.34	5.83	5.83	3.01	

Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-0-021 Region/Provinc. : AYACUCHO/HUAMANGA


 Solicitante
 : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN
 Distrito
 : PACAYCASA

 Exploración
 : CALICATA 03 - KM 11+800
 Lugar
 : MAYOCC-TRIGOPAMPA

 Estrato/Nivel
 : CON CP TIPO I (3.0% MDS) + CMF (7.5% MDS)
 Fecha
 : DICIEMBRE DEL 2022

				DATO	S DE	ENSAYO)			
Clasificación	SUCS:	ML	LIMO CO	ON ARENA				AASHTO) :	A-4 (1)
Máxima Den	sidad Seca	a MDS (tn/m3):		1.42	Optimo	Contenido de	Humedad OCI	H % =	28.60	
% Grava =	3.9	% Arena =	23.0	% Finos =	73.1	LL % =	23.3%	LP % =	19.6%	
Expansión %	=	0.04%	Embebio	do (días) =	4.0	IP % =	3.7%			

RESULTADOS DEL ENSAYO (01" DE PENETRACIÓN)								
CBR AL 100% DE MDS (0.1") = 32.6	CBR AL 95% DE LA MDS (0.1") = 31.5	CBR AL 90% MDS = -,-						

RESISTENCIA A LA COMPRESION DE PROBETAS DE SUELO METODO В

(MTC E 1103, MTC E 1101)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Pro1: AYACUCHO/HUAMANGA

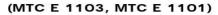
: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

Exploración : CALICATA 03 - KM 11+800 : MAYOCC-TRIGOPAMPA Lugar : DICIEMBRE DEL 2022 Estrato/Nivel : MATERIAL PROPIO Fecha

DATOS DE LA MUESTRA

Clasificación SUCS : ML LIMO CON ARENA

A-4 (1) Clasificación AASHTO:


> % Retenido acumulado malla N° 4 : 3.90 % Pasa acumulado malla Nº 4: 96.10

				DATOS D	EL MOLD	EO		
PORCENTAJE DE AD	ITIVO		TIPO I (0.0 MF (0.0% MI	THE RESERVE OF THE PARTY OF THE PARTY.	: CON CP TIPO I (3.0% MDS) + CMF (0% MDS)			
MOLDE N°		1	2	3	7	8	9	
PESO MOLDE+S. HÚM.	gr	1,706	1,718	1,720	1,691	1,692	1,669	
PESO DEL MOLDE	gr	601.00	602.50	601.90	600.80	601.40	602.30	
PESO SUELO HÚM.	gr	1,105.06	1,115.51	1,117.65	1,089.94	1,091.08	1,066.68	
VOLUMEN DEL MOLDE	cm3	561.98	563.79	561.00	567.66	559.42	560.62	
DENSIDAD HÚMEDA	gr/cm3	1.97	1.98	1.99	1.92	1.95	1.90	
HUMEDAD TARRO	Nro.	12	19	23	44	76	25	
TARRO+SUELO HÚM.	gr	598.91	598.26	672.19	593.04	592.39	665.60	
TARRO+SUELO SECO	gr	525.18	518.66	564.85	517.06	510.60	556.31	
PESO DEL TARRO	gr	140.16	106.93	23.09	138.79	105.89	22.86	
% DE HUMEDAD	%	19.15	19.33	19.81	20.09	20.21	20.49	
DENSIDAD SECA	gr/cm3	1.65	1.66	1.66	1.60	1.62	1.58	
			EN	SAYO DE	COMPRE	SION		
EDAD	días	7	7	7	7	7	7	
DIAMETRO PROMEDIO	mm	71.2	71.1	71.2	71.8	71.1	70.9	
ALTURA	mm	141.1	142.0	140.9	140.2	140.9	142.0	
RELACION H/D		1.98	2.00	1.98	1.95	1.98	2.00	
FACTOR DE CORRECCION	ľ	1.00	1.00	1.00	1.00	1.00	1.00	
LECTURA DE ENSAYO	kN	0.3	0.3	0.3	2.5	2.5	2.5	
RESISTENCIA FC	kg/cm2	0.7	0.9	0.6	6.2	6.4	6.4	
RESISTENCIA PROM	kg/cm2		0.75			6.32		
RESISTENCIA PROM	MPa		0.074			0.620		

RESISTENCIA A LA COMPRESION DE PROBETAS DE SUELO METODO

Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-0-021 Region/Prox: AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

 Exploración
 : CALICATA 03 - KM 11+800
 Lugar
 : MAYOCC-TRIGOPAMPA

 Estrato/Nivel
 : MATERIAL PROPIO
 Fecha
 : DICIEMBRE DEL 2022

DATOS DE LA MUESTRA

Clasificación SUCS : ML LIMO CON ARENA

Clasificación AASHTO : A-4 (1)

% Retenido acumulado malla N° 4 : 3.90 % Pasa acumulado malla N° 4 : 96.10

				DATOS D	EL MOLD	EO				
PORCENTAJE DE AD	2012/12/2012/2012/2012	TIPO I (3.0 MF (2.5% MI		ALC: 1000 CONTRACTOR STORY	TIPO I (3.0 MF (5.0% MI		: CON CP TIPO I (3.0% MDS) - CMF (7.5% MDS)			
MOLDE Nº		1	2	3	4	5	6	7	8	9
PESO MOLDE+S. HÚM.	gr	1,658	1,661	1,659	1,679	1,659	1,672	1,632	1,614	1,612
PESO DEL MOLDE	gr	601.00	602.50	601.90	600.80	602.40	601.30	600.80	601.40	602.30
PESO SUELO HÚM.	gr	1,056.86	1,058.11	1,056.68	1,077.86	1,056.77	1,070.22	1,031.65	1,012.17	1,009.4
VOLUMEN DEL MOLDE	cm3	560.38	564.19	564.18	580.17	573.67	572.86	569.68	556.25	557.86
DENSIDAD HÚMEDA	gr/cm3	1.89	1.88	1.87	1.86	1.84	1.87	1.81	1.82	1.81
HUMEDAD TARRO	Nro.	14	321	458	47	185	136	441	169	19
TARRO+SUELO HÚM	- gr	669.49	668.77	751.41	589.71	598.29	673.64	571.45	568.48	577.28
TARRO+SUELO SECO	gr gr	573.32	566.05	613.44	487.29	500.60	555.29	476.32	465.01	462.42
PESO DEL TARRO	gr gr	156.68	119.54	25.81	73.69	105.11	72.89	142.10	97.35	45.37
% DE HUMEDAD	%	23.08	23.00	23.48	24.76	24.70	24.53	28.46	28.14	27.54
DENSIDAD SECA	gr/cm3	1.53	1.52	1.52	1.49	1.48	1.50	1.41	1.42	1.42
			EN	SAYO DE	COMPRE	SION		•		
EDAD	días	7	7	7	7	7	7	7	7	7
DIAMETRO PROMEDIO	mm	71.2	71.1	71.2	72.1	72.0	72.0	71.8	71.1	70.9
ALTURA	mm	140.7	142.1	141.7	142.1	140.9	140.7	140.7	140.1	141.3
RELACION H/D		1.98	2.00	1.99	1.97	1.96	1.95	1.96	1.97	1.99
FACTOR DE CORRECCION	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
LECTURA DE ENSAYO	kN	3.6	3.6	3.4	4.1	4.8	4.8	4.0	3.4	3.3
RESISTENCIA FC	kg/cm2	9.1	9.3	8.6	10.2	12.0	12.0	9.9	8.6	8.5
RESISTENCIA PROM	kg/cm2	9.00			11.37			9.02		
RESISTENCIA PROM	ISTENCIA PROM MPa 0.882			1.115				0.885		

ANEXO 2.4 CALICATA C-4 KM 12+150

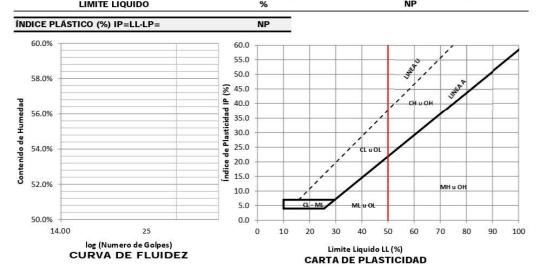
CASAGRANDE GONSULTURIA Y
CONSTRUCCION S.A.C

DAVID DE ESUS GUERA AYALA
NGENERO ENTRE
CIE W 285731
AREAS GEOTECNIA Y CONCRETO

LIMITES DE PLASTICIDAD **DE LOS SUELOS (PASANTE** LA MALLA Nº 40)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Provinc : AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-O-021


: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito Solicitante : PACAYCASA

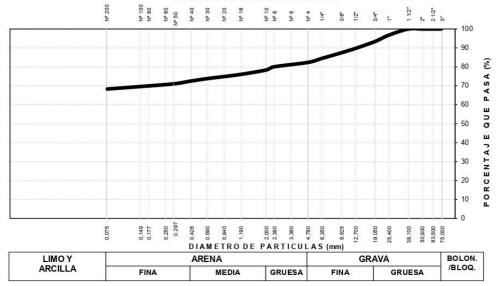
Exploración : CALICATA 04 - KM 12+150 : MAYOCC-TRIGOPAMPA Lugar Estrato / Nivel : MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

7 14100	MATERIALTROTTO		T CONG					
DET	ERMINACIÓN DEL LIMITE	PLÁSTIC	O DE LO	S SUEL	OS (MTC	E 111		
	RECIPIENTE	N°						
1	PESO SUELO HUMEDO + RECIPIENTE	gr						
2	PESO SUELO SECO+RECIPIENTE	gr						
3	PESO RECIPIENTE	gr						
4	PESO AGUA (1)-(2)	gr						
5	PESO SECO (2)-(4)	gr						
6	HUMEDAD	%						

LIMITE PLÁSTICO NP

DE	DETERMINACIÓN DEL LIMITE LIQUIDO DE LOS SUELOS (MTC E 110)										
			PROCEDIMIENTO DE MULTIPUNTO	UNIPUNTO							
	RECIPIENTE	N°									
1	PESO SUELO HUMEDO + RECIPIENTE	gr									
2	PESO SUELO SECO+RECIPIENTE	gr									
3	PESO RECIPIENTE	gr									
4	PESO AGUA (1)-(2)	gr									
5	PESO SECO (2)-(4)	gr									
6	HUMEDAD	%									
7	NUMERO DE GOLPES	N°									
	LIMITE LIQUIDO	9/	ND								

ANÁLISIS GRANULOMÉTRICO **DEL SUELO POR TAMIZADO** (MTC E 107)


: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCCTRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

: INFORME 001-2022/CG-CON-22-O-021 Región/Provinc. : AYACUCHO/HUAMANGA Trazabilidad

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN : PACAYCASA Distrito Exploración : CALICATA 04 - KM 12+150 Lugar : MAYOCC-TRIGOPAMPA Estrato/Nivel : MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

	TAMIZ ASTM	Abertura (mm)	PESO (gr) RETENIDO	% RETEN PARCIAL	% RETEN ACUMULADO	% QUE PASA	DATOS DEL ANÁLIS	SIS GRANULOMÉTRICO
7	3"	75.000	18		-	100.00	ENSAYOS	s estándar
TAMIZADO	2 1/2"	63.500	8	12	12	100.00	Peso seco inicial (gr)	3679.8
≅I	2"	50.800	- 2		2=	100.00	Peso seco lavado (gr)	1166.3
٤I	11/2"	38.100			8	100.00	Pérdida por lavado (gr)	2513.5
	1"	25.400	119.42	3.25	3.25	96.75	Humedad (%)	21.04
POR	3/4"	19.000	125.10	3.40	6.64	93.36	% Grava	17.7
ا ۵	1/2"	12.700	132.81	3.61	10.25	89.75	% Grava gruesa	6.6
Ωl	3/8"	9.500	84.36	2.29	12.55	87.45	% Grava fina	11.0
GRANULOMETRICO	1/4"	6.350	109.78	2.98	15.53	84.47	% Arena	14.0
۴۱	Nº 4	4.760	78.22	2.13	17.66	82.34	% Arena gruesa	4.0
₩I	Nº 8	2.360	84.42	2.29	19.95	80.05	% Arena media	5.8
ō١	Nº 10	2.000	63.00	1.71	21.66	78.34	% Arena fina	4.2
₹I	N°16	1.100	95.59	2.60	24.26	75.74	% de Finos	68.3
ź	N° 30	0.590	72.21	1.96	26.22		$D_{10} = D_{e(mm)} =$	0.0110
≴Ι	N° 40	0.425	46.06	1.25	27.47	72.53	D _{30(mm)} =	0.0329
<u></u>	N° 50	0.297	54.54	1.48	28.96	71.04	D _{60(mm)} =	0.0659
ای	N° 100	0.149	51.89	1.41	30.37	69.63		545
ii l	N° 200	0.075	48.86	1.33	31.69	68.31	Cc =	5-
⊒l		- NOW 38665	0-300-031	5.51	31.69		CLASI	FICACIÓN
ANÁLISIS	Lavado		2,513.5	68.31	100.00		AASHTO	A-4 (0)
⋖│	TOTAL	,	3679.8	100.0			Clasificación SUCS	IV
П				LIM	O Y TIPO GR	AVA CON AR	ENA	

CURVA GRANULOMÉTRICA

CONTENIDO DE HUMEDAD PARA SUELOS (MTC E 108)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL Proyecto

TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-0-021 Región/Prov. : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAI Distrito : PACAYCASA

Exploración : CALICATA 04 - KM 12+150 Lugar : MAYOCC-TRIGOPAMPA Estrato/Nivel: MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

DETERMINACIÓN DE LA HUMEDAD								
RECIPIENTE	N°	17	19					
PESO SUELO HUMEDO+RECIPIENTE DE LA MUESTRA	gr	1,433.49	1,402.42					
PESO SUELO SECO+RECIPIENTE DE LA MUESTRA	gr	1,235.84	1,203.56					
PESO RECIPIENTE	gr	133.74	85.60					
PESO AGUA EN LA MUESTRA	gr	197.65	198.86					
PESO SECO DE LA MUESTRA	gr	1,102.10	1,117.96					
HUMEDAD	%	17.9%	17.8%					

CONTENIDO DE HUMEDAD % 17.9%

ENSAYO DE LA GRAVEDAD ESPECIFICA DE LOS SOLIDOS DEL SUELO (MTC E 206, E 113)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc. : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CE: Distrito : PACAYCASA Solicitante

: CALICATA 04 - KM 12+150 : MAYOCC-TRIGOPAMPA Exploración Estrato/Nivel : MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

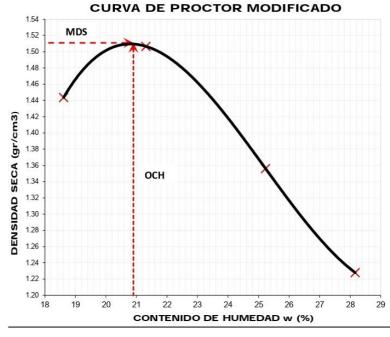
IDENTIFICACION		ENSAYO Nº01	ENSAYO N°02	PROMEDI
Peso en el aire de la muestra seca	gr	2232.07	2232.07	
Peso en el aire de la muestra SSS	gr	2272.24	2272.24	
Peso sumergido en agua de la muestra SSS (gr)	gr	1409.01	1409.00	
Gravedad Especifica		2.586	2.586	2.586
Gravedad Especifica SSS		2.632	2.632	2.632
Gravedad Especifica Aparente		2.712	2.712	2.712
% de absorción	%	1.799	1.799	1.799

IDENTIFICACIÓN		MUESTRA 01	MUESTRA 02	PROMEDI
Capacidad de Picnómetro	cm3	500	500	
Peso de la muestra seca	gr	99.99	99.13	
Peso de Picnómetro con la muestra y agua	gr	747.88	753.60	
Peso de Picnómetro aforado lleno de agua	gr	685.06	691.27	2.689
Temperatura del agua en el ensayo	°C	25	24	
Corrección por temperatura (K)		0.9988	0.9991	
Gravedad especifica de la muestra		2.687	2.691	

Gravedad especifica de los sólidos	2.693
Porcentaje que pasa la Malla Nº4 (%)	82.3
Porcentaje Retenido en la Malla N°4 (%)	17.7

COMPACTACIÓN DE **SUELOS EN LABORATORIO** UTILIZANDO UNA ENERGÍA **MODIFICADA** (MTC E 115)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto


Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc.: AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA Solicitante

: CALICATA 04 - KM 12+150 Lugar : MAYOCC-TRIGOPAMPA Exploración

Estrato/Nivel : CON CP TIPO I (0.0%			Fecha	: DICIEMBRE I			
		DATOS DI	EL ENSAY	7 0			
Clasificación SUCS :	ML	LIMO Y TIPO GF	RAVA CON AR	ENA	ME	TODO A	
Clasificación AASHTO :	A-4	(0)	Capas	s : 5.00	Golpes/Cap	pa 25	
% Retenido acumulado malla N° 4 :	17.7	Material Pasante	e a usar	PASA N° 4	ш		
% Retenido acumulado malla 3/8" :	12.5	Molde (Pulg)	4	Códig	0	M4	
% Retenido acumulado malla 3/4" :	6.6	Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81	
	EN	SAYO DE C	ОМРАСТ	ACIÓN			
Determinación Nº		01	02	03	04		
Peso del molde y muestra	gr	5,714	5,823	5,701	5,584		
Peso de la muestra compactada	gr	1,609.3	1,717.7	1,596.1	1,479.2		
Densidad húmeda	gr/cc	1.71	1.83	1.70	1.57		
Densidad seca	gr/cc	1.44	1.51	1.36	1.23		
	C	ONTENIDO	DE HUME	DAD			
Tarro Nº		49.0	65.0	12.0	17.0	T T	
Peso tarro + suelo húmedo	gr	642.37	862.06	639.52	787.34		
Peso de tarro + suelo seco	gr	553.44	724.60	526.40	630.64		
Peso del tarro	gr	75.74	79.53	78.01	74.23		
Peso del agua	Peso del agua gr		137.46	113.12	156.70		

eso del agua Peso del suelo seco 477.70 645.07 448.38 556.41 Contenido de humedad 21.31 18.62 25.23 28.16

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provi: AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA

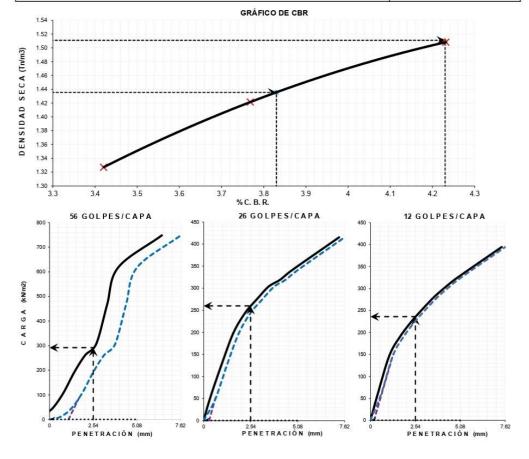
Exploración : CALICATA 04 - KM 12+150 : MAYOCC-TRIGOPAMPA Lugar Estrato/Nivel : CON CP TIPO I (0.0% MDS) + CMF (0.0% MDS) Fecha : DICIEMBRE DEL 2022

			COMP	ACTAC	ION D	EL CB	R				
MOLDE Nº			19			30		1	41		
CAPAS Nº			5			5			5		
GOLPES POR CAPA			56			26			12		
COND. DE LA MUESTRA			HUMEDO			HUMEDO			HUMEDO		
PESO MOLDE + S. HÚM.	gr	11,700				11,334		ľ	11,025		
PESO DEL MOLDE	gr	7,833.00				7,684.00			7,642.00		
PESO SUELO HÚM.	gr	3,867.00				3,650.00			3,383.00		
VOLUMEN DEL MOLDE	cm3	2,113.14				2,116.40			2,101.14		
DENSIDAD HÚMEDA	gr/cm3		1.83			1.72			1.61		
DENSIDAD SECA	gr/cm3		1.51			1.42			1.33		
Contenido de Hun	nedad	Humeda	d: inicial	final	Humeda	ad: inicial	final	Humedad: inicial fi		final	
TARRO Nº	Nro.	325	356	349	325	356	330	325	356	318	
TARRO+SUELO HÚM.	gr	724.7	640.7	711.1	724.7	640.7	701.4	724.7	640.7	643.9	
TARRO+SUELO SECO	gr	621.9	543.2	588.4	621.9	543.2	588.4	621.9	543.2	524.5	
PESO DEL TARRO	gr	138.09	87.97	66.99	138.09	87.97	131.62	138.09	87.97	66.21	
% DE HUMEDAD	%	21.25	21.42	23.53	21.25	21.42	24.74	21.25	21.42	26.05	
HUMEDAD	%	21	.33	23.53	21	.33	24.74	21	.33	26.05	
ABSORCIÓN	%		2.20		1	3.41			4.72		

	EXPANSION												
DÍA	DIAL	EXPANSIÓN		DIAL	EXPANSIÓN		DIAL	EXPANSIÓN					
DIA	DIAL	mm	%	DIAL	mm	%	DIAL	mm	%				
0	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%				
4	0.02	127.02	0.02%	0.03	127.03	0.02%	0.03	127.03	0.02%				

			-,	F	PENET	RACIO	ÓN				
PENETRA	ACIÓN	CIÓN Carga PRIMER MOLDE SEGUNDO MOLDE TERCER MOLDE						DE			
(mm) (Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.630	0.025		0.02	0.02	0.01	0.09	0.09	0.05	0.12	0.12	0.06
1.270	0.050		0.09	0.09	0.05	0.25	0.25	0.13	0.29	0.29	0.15
1.900	0.075		0.21	0.21	0.11	0.38	0.38	0.20	0.37	0.37	0.19
2.540	0.100	6.9	0.37	0.37	0.19	0.47	0.47	0.24	0.44	0.44	0.23
3.170	0.125		0.51	0.51	0.26	0.53	0.53	0.27	0.49	0.49	0.25
3.810	0.150		0.59	0.59	0.31	0.59	0.59	0.30	0.54	0.54	0.28
4.445	0.175		0.90	0.90	0.47	0.62	0.62	0.32	0.59	0.59	0.30
5.080	0.200	10.35	1.19	1.19	0.62	0.66	0.66	0.34	0.63	0.63	0.32
7.620	0.300		1.45	1.45	0.75	0.80	0.80	0.42	0.76	0.76	0.39

CBR DE SUELOS - LABORATORIO (MTC E 132)


: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-0-021 Región/Provinc. : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA Exploración : CALICATA 04 - KM 12+150 Lugar : MAYOCC-TRIGOPAMPA Estrato/Nivel : CON CP TIPO I (0.0% MDS) + CMF (0.0% MDS) Fecha : DICIEMBRE DEL 2022

DATOS DEL ENSAYO											
Clasificación SUCS : ML			LIMO Y	TIPO GRAVA CO	ON AREN	A		AASHTO:		A-4 (0)	
Máxima Densidad Seca MDS (tn/m3) :			1.51	Optimo	Contenido de	CH % =	20.90				
% Grava =	17.7	% Arena =	14.0	% Finos =	68.3	LL % =	NP	LP % =	NP		
Expansión %	xpansion % = 0.04%		Embebio	do (días) =	4.0	IP % =	NP				

RESULTADO	RESULTADOS DEL ENSAYO (01" DE PENETRACIÓN)							
CBR AL 100% DE MDS (0.1") = 4.23	CBR AL 95% DE LA MDS (0.1") = 3.83	CBR AL 90% MDS = -,-						

Peso del agua

Peso del suelo seco

COMPACTACIÓN DE **SUELOS EN LABORATORIO** UTILIZANDO UNA ENERGÍA **MODIFICADA** (MTC E 115)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Provinc.: AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA

87.17

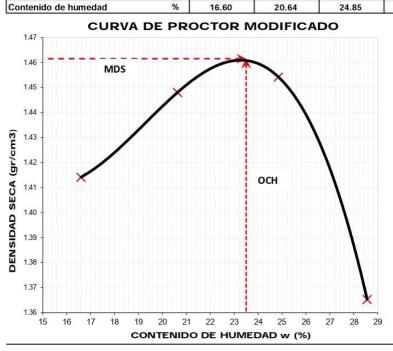
525.11

: MAYOCC-TRIGOPAMPA Exploración : CALICATA 04 - KM 12+150 Lugar

Estrato/Nivel : CON CP TIPO I (3.0%	trato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (0.0% MDS)				: DICIEMBRE	DEL 2022	
		DATOS DI	EL ENSAY	7 0			
Clasificación SUCS :	ML	LIMO Y TIPO GF	RAVA CON AR	ENA	METODO A		
Clasificación AASHTO :	A-4	(0)	Capas	s : 5.00	Golpes/Ca	pa 25	
% Retenido acumulado malla N° 4 :	17.7	Material Pasante	e a usar	PASA N° 4	10)		
% Retenido acumulado malla 3/8" :	12.5	Molde (Pulg)	4	Códig	jo	M4	
% Retenido acumulado malla 3/4" :	6.6	Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81	
	EN	SAYO DE C	ОМРАСТ	ACIÓN			
Determinación Nº		01	02	03	04		
Peso del molde y muestra	gr	5,655	5,747	5,811	5,755		
Peso de la muestra compactada	gr	1,549.7	1,641.7	1,706.3	1,649.5		
Densidad húmeda	gr/cc	1.65	1.75	1.82	1.76		
Densidad seca	gr/cc	1.41	1.45	1.45	1.37		
	С	ONTENIDO	DE HUME	EDAD			
Tarro Nº		45.0	74.0	96.0	88.0	12	
Peso tarro + suelo húmedo	gr	747.62	751.43	677.56	737.52		
Peso de tarro + suelo seco	gr	660.45	646.19	570.69	602.74		
Peso del tarro	gr	135.340	136.229	140.592	130.785		

105.23

509.97


106.87

430.10

134.78

471.96

28.56

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

0.01

127.01

0.01%

Región/Provi: AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA

Exploración : CALICATA 04 - KM 12+150 : MAYOCC-TRIGOPAMPA Lugar : DICIEMBRE DEL 2022 Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (0.0% MDS) Fecha

			COMP	ACTAC	ION D	EL CB	R			
MOLDE N°			53			20			2	
CAPAS Nº			5			5			5	
GOLPES POR CAPA			56			26		12		
COND. DE LA MUESTRA			HUMEDO			HUMEDO			HUMEDO	
PESO MOLDE + S. HÚM.	gr	5	11,382			11,584			11,248	
PESO DEL MOLDE	gr		7,642.00			7,984.00			7,845.00	
PESO SUELO HÚM.	gr		3,740.00			3,600.00			3,403.00	
VOLUMEN DEL MOLDE	cm3		2,078.14			2,086.70			2,090.67	
DENSIDAD HÚMEDA	gr/cm3		1.80			1.73			1.63	
DENSIDAD SECA	gr/cm3		1.46			1.40			1.32	
Contenido de Hun	nedad	Humeda	ad: inicial	final	Humeda	ad: inicial	final	Humeda	ad: inicial	final
TARRO Nº	Nro.	324	323	272	324	323	300	324	323	311
TARRO+SUELO HÚM.	gr	706.2	830.0	720.3	706.2	830.0	671.1	706.2	830.0	679.9
TARRO+SUELO SECO	gr	594.3	699.7	590.4	594.3	699.7	536.3	594.3	699.7	550.3
PESO DEL TARRO	gr	129.18	136.78	81.00	129.18	136.78	23.52	129.18	136.78	67.83
% DE HUMEDAD	%	24.06	23.15	25.50	24.06	23.15	26.29	24.06	23.15	26.86
HUMEDAD	%	23	.60	25.50	23	.60	26.29	23	.60	26.86
ABSORCIÓN	%		1.90			2.69			3.26	
			•	EXPA	NSIÓI	N				
DÍA		DIAL	EXPANSIÓN		DIAL EXPANSIÓN		DIAL	EXPA	NSIÓN	
DIA		DIAL	mm	%	DIAL	mm	%	DIAL	mm	%
0		0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%

				ı	PENET	RACIO	ÓΝ				
PENETRA	ACIÓN	Carga	1	PRIMER MOLE)E	S	EGUNDO MOI	.DE	8.	TERCER MOLI	DE
(mm) (Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.630	0.025		0.08	0.08	0.04	0.19	0.19	0.10	0.22	0.22	0.11
1.270	0.050		0.44	0.44	0.23	1.03	1.03	0.53	1.18	1.18	0.61
1.900	0.075		1.29	1.29	0.67	2.12	2.12	1.10	2.06	2.06	1.07
2.540	0.100	6.9	2.62	2.62	1.35	3.31	3.31	1.71	2.62	2.62	1.35
3.170	0.125		4.01	4.01	2.07	4.36	4.36	2.25	3.03	3.03	1.57
3.810	0.150		5.33	5.33	2.75	5.39	5.39	2.79	3.38	3.38	1.75
4.445	0.175		6.62	6.62	3.42	6.38	6.38	3.30	3.69	3.69	1.91
5.080	0.200	10.35	7.85	7.85	4.06	7.31	7.31	3.78	3.95	3.95	2.04
7.620	0.300		12.00	12.00	6.20	10.39	10.39	5.37	4.78	4.78	2.47

0.01

127.01

0.01%

0.01

127.01

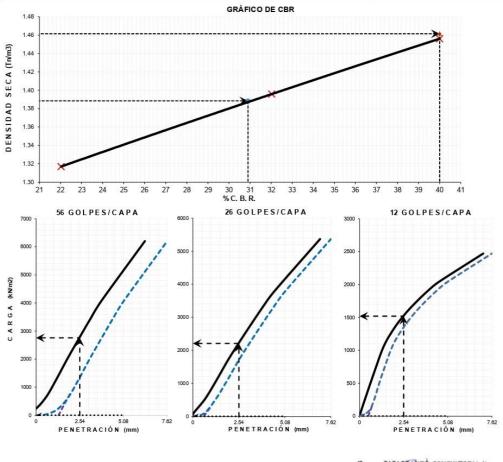
0.01%

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

Región/Provinc. : AYACUCHO/HUAMANGA


: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN

Distrito : PACAYCASA : MAYOCC-TRIGOPAMPA Lugar

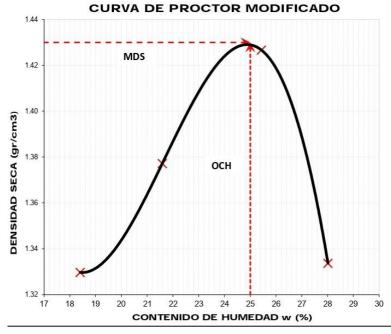
Exploración : CALICATA 04 - KM 12+150 Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (0.0% MDS) Fecha : DICIEMBRE DEL 2022

DATOS DEL ENSAYO										
Clasificación	SUCS :	ML	LIMO Y TI	PO GRAVA CO	ON AREN	A		AASHTO) :	A-4 (0)
Máxima Den	sidad Seca	MDS (tn/m3) :		1.46	Optimo	Contenido de	Humedad O	CH % =	23.50	
% Grava =	17.7	% Arena =	14.0	% Finos =	68.3	LL % =	NP	LP % =	NP	
Expansión %	6 =	0.04%	Embebido	(días) =	4.0	IP % =	NP			

RESULTAD	OS DEL ENSAYO (O1" DE PENETRA	CIÓN)
CBR AL 100% DE MDS (0.1") = 40.0	CBR AL 95% DE LA MDS (0.1") = 30.9	CBR AL 90% MDS =

COMPACTACIÓN DE **SUELOS EN LABORATORIO UTILIZANDO UNA ENERGÍA MODIFICADA** (MTC E 115)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto


Región/Provinc.: AYACUCHO/HUAMANGA : INFORME 001-2022/CG-CON-22-O-021 Trazabilidad

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA Solicitante

Exploración : CALICATA 04 - KM 12+150 Lugar : MAYOCC-TRIGOPAMPA

Estrato/Nivel : CON CP TIPO I (3.0%	strato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (2.5% MDS)					
Estiationing . Sold of Tipo 1 (3.0%		Fecha	: DICIEMBRE	DEL 2022		
		DATOS DI	EL ENSAY	0		
Clasificación SUCS :	ML	LIMO Y TIPO GF	RAVA CON AR	ENA	ME	TODO A
Clasificación AASHTO :	A-4	(0)	Capas	5: 5.00	Golpes/Ca	pa 25
% Retenido acumulado malla N° 4 :	17.7	Material Pasante	e a usar	PASA N° 4		
% Retenido acumulado malla 3/8" :	12.5	Molde (Pulg)	4	Códig	jo	M4
% Retenido acumulado malla 3/4" :	6.6	Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81
	EN	SAYO DE C	OMPACT	ACIÓN		
Determinación Nº		01	02	03	04	
Peso del molde y muestra	gr	5,585	5,679	5,787	5,710	
Peso de la muestra compactada	gr	1,479.7	1,573.7	1,681.8	1,604.5	
Densidad húmeda	gr/cc	1.57	1.67	1.79	1.71	
Densidad seca	gr/cc	1.33	1.38	1.43	1.33	
	С	ONTENIDO	DE HUME	DAD		
Tarro Nº		25.0	14.0	126.0	196.0	
Peso tarro + suelo húmedo	gr	747.62 751.43		677.56	737.52	
Peso de tarro + suelo seco	gr	652.45	642.19	568.69	604.74	

CONTENIDO DE HUMEDAD									
Tarro Nº		25.0	14.0	126.0	196.0				
Peso tarro + suelo húmedo	gr	747.62	751.43	677.56	737.52				
Peso de tarro + suelo seco	gr	652.45	642.19	568.69	604.74				
Peso del tarro	gr	135.340	136.229	140.592	130.785				
Peso del agua	gr	95.17	109.23	108.87	132.78				
Peso del suelo seco	gr	517.11	505.97	428.10	473.96				
Contenido de humedad	%	18.40	21.59	25.43	28.01				

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Region/Prov : AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

Exploración : CALICATA 04 - KM 12+150 Lugar : MAYOCC-TRIGOPAMPA Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (2.5% MDS) : DICIEMBRE DEL 2022 Fecha

Estrato/Niver : Golf of	111 0 1 (0.07	o inibo) + oii	(2.070 1112-0)				recha	. DIGILINDI	LE DEL LOLL	
			COMPA	CTACI	ON DI	EL CBI	2			
MOLDE N°			40			30		1	33	
CAPAS Nº		5				5		5		
GOLPES POR CAPA			56			26			12	
COND. DE LA MUESTRA			HUMEDO			HUMEDO			HUMEDO	
PESO MOLDE+S. HÚM.	gr		11,115			11,318			11,054	
PESO DEL MOLDE	gr		7,355.00			7,684.00			7,638.00	
PESO SUELO HÚM.	gr		3,760.00			3,634.00			3,416.00	
VOLUMEN DEL MOLDE	cm3		2,095.53			2,116.40			2,115.97	
DENSIDAD HÚMEDA	gr/cm3		1.79			1.72			1.61	
DENSIDAD SECA	gr/cm3		1.43		3	1.37			1.29	
Contenido de Hun	nedad	Humeda	d: inicial	final	Humeda	ad: inicial	final	Humeda	ad: inicial	final
TARRO Nº	Nro.	115	358	328	115	358	337	115	358	339
TARRO+SUELO HÚM.	gr	567.8	792.8	809.9	567.8	792.8	684.1	567.8	792.8	841.9
TARRO+SUELO SECO	gr	472.3	660.6	666.6	472.3	660.6	566.2	472.3	660.6	683.5
PESO DEL TARRO	gr	87.87	139.27	131.32	87.87	139.27	136.50	87.87	139.27	134.06
% DE HUMEDAD	%	24.84	25.36	26.77	24.84	25.36	27.44	24.84	25.36	28.83
HUMEDAD	%	25.	10	26.77	25	.10	27.44	25	.10	28.83
ABSORCIÓN	%		1.67			2.34	O.F		3.73	
				EXPA	NSIÓN					
DÍA		DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	DIAL	EXPA	ANSIÓN
DIA		DIAL	mm	%	DIAL	mm	%	DIAL	mm	%
0		0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%
4		0.00	127.00	0.00%	0.00	127.00	0.00%	0.01	127.01	0.01%

	The state of the s			P	ENETE	RACIÓ	N				
PENETR	ACIÓN	Carga	PF	RIMER MOLDE		S	EGUNDO MOL	.DE	1	ERCER MOLI	DE
(mm)	20723	Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.630	0.025		0.64	0.64	0.33	1.00	1.00	0.52	1.43	1.43	0.74
1.270	0.050		1.81	1.81	0.94	2.22	2.22	1.15	2.80	2.80	1.45
1.900	0.075		3.37	3.37	1.74	3.50	3.50	1.81	3.95	3.95	2.04
2.540	0.100	6.9	5.04	5.04	2.60	4.73	4.73	2.45	4.89	4.89	2.53
3.170	0.125		6.61	6.61	3.42	5.88	5.88	3.04	5.76	5.76	2.98
3.810	0.150		8.12	8.12	4.20	7.10	7.10	3.67	6.60	6.60	3.41
4.445	0.175		9.49	9.49	4.91	8.13	8.13	4.20	7.38	7.38	3.81
5.080	0.200	10.35	10.75	10.75	5.55	9.04	9.04	4.67	8.03	8.03	4.15
7.620	0.300		15.17	15.17	7.84	12.24	12.24	6.33	10.30	10.30	5.32

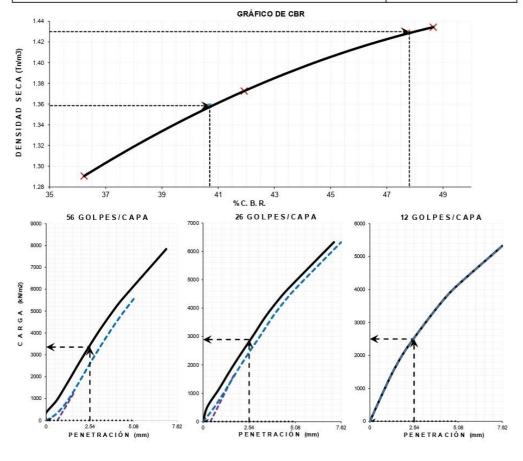
CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Provinc. : AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN

Distrito : PACAYCASA : MAYOCC-TRIGOPAMPA Lugar


Exploración : CALICATA 04 - KM 12+150 Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (2.5% MDS)

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

Fecha : DICIEMBRE DEL 2022

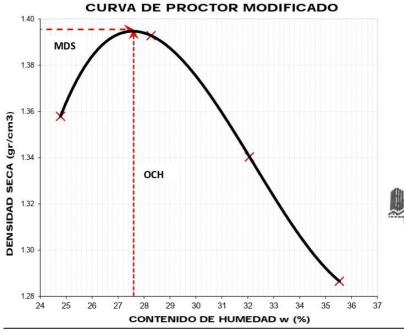
	DATOS DEL ENSAYO										
Clasificaciór	SUCS :	ML	LIMO Y	TIPO GRAVA CO	ON AREN	A		AASHTO):	A-4 (0)	
Máxima Den	sidad Seca	MDS (tn/m3) :		1.43	Optimo	Contenido de	Humedad O	CH % =	25.00		
% Grava =	17.7	% Arena =	14.0	% Finos =	68.3	LL % =	NP	LP % =	NP		
Expansión 9	6 =	0.04%	Embebio	lo (días) =	4.0	IP % =	NP				

RESULTAD	OS DEL ENSAYO (O1" DE PENETRA	ACIÓN)
CBR AL 100% DE MDS (0.1") = 47.8	CBR AL 95% DE LA MDS (0.1") = 40.7	CBR AL 90% MDS =

COMPACTACIÓN DE **SUELOS EN LABORATORIO** UTILIZANDO UNA ENERGÍA **MODIFICADA** (MTC E 115)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL Proyecto

TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"


Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc.: AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Solicitante Distrito : PACAYCASA

· CALICATA 04 - KM 12+150 · MAYOCC-TRIGOPAMPA Exploración Lugar

Exploración : CALICATA 04 - KM 12	+150			Lugar	: MAYOCC-TRIGOPAMPA			
Estrato/Nivel : CON CP TIPO I (3.0%	MDS) +	CMF (5.0% MDS)		Fecha	: DICIEMBRE	DEL 2022		
		DATOS D	EL ENSAY	′ O				
Clasificación SUCS :	ML	LIMO Y TIPO GF	RAVA CON AR	ENA	METODO A			
Clasificación AASHTO :	A-4	(0)	Capas	5: 5.00	Golpes/Ca	oa 25		
% Retenido acumulado malla N° 4 :	17.7	Material Pasante	e a usar	PASA N° 4	(M			
% Retenido acumulado malla 3/8" :	12.5	Molde (Pulg)	4	Códig	jo	M4		
% Retenido acumulado malla 3/4" :	6.6	Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81		
	EN	SAYO DE C	ОМРАСТ	ACIÓN				
Determinación Nº		01	02	03	04			
Peso del molde y muestra	gr	gr	5,697	5,784	5,769	5,744		
Peso de la muestra compactada	gr	1,592.5	1,679.1	1,663.7	1,638.8			
Densidad húmeda	gr/cc	1.69	1.79	1.77	1.74			
Densidad seca	gr/cc	1.36	1.39	1.34	1.29			
	C	ONTENIDO	DE HUMI	DAD				
Tarro Nº		345.0	321.0	152.0	154.0			
Peso tarro + suelo húmedo	gr	758.72	762.59	687.63	748.47	5-		
Peso de tarro + suelo seco	gr	635.31	624.98	555.31	587.05			
Peso del tarro	gr	137.350	138.252	142.680	132.727			
Peso del agua	ar	123.41	137.61	132.31	161.43			

Peso del agua 132.31 161.43 Peso del suelo seco 497.96 486.73 412.63 454.32 Contenido de humedad 32.07 24.78 28.27 35.53

OCH Optimo Contenido de Humedad (%) 27.60 MDS Máxima Densidad Seca (tn/m3) 1.396

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCCTRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Region/Provi: AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

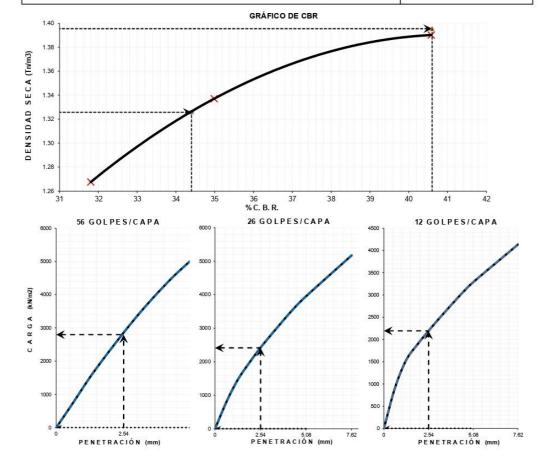
: MAYOCC-TRIGOPAMPA Exploración : CALICATA 04 - KM 12+150 Lugar Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (5.0% MDS) Fecha : DICIEMBRE DEL 2022

		0.	COMP	ACTAC	ION D	EL CB	R				
MOLDE N°			51			41			31		
CAPAS Nº			5			5		5			
GOLPES POR CAPA			56			26			12		
COND. DE LA MUESTRA			HUMEDO	N.		HUMEDO			HUMEDO		
PESO MOLDE + S. HÚM.	gr		11,426			11,232			11,018		
PESO DEL MOLDE	gr		7,682.00			7,642.00			7,587.00		
PESO SUELO HÚM.	gr		3,744.00		3,590.00			3,431.00			
VOLUMEN DEL MOLDE	cm3	2,107.53				2,101.14			2,118.22		
DENSIDAD HÚMEDA	gr/cm3		1.78			1.71			1.62		
DENSIDAD SECA	gr/cm3		1.39			1.34		1.27			
Contenido de Hun	nedad	Humeda	d: inicial	final	Humeda	ad: inicial	final	Humeda	d: inicial	final	
TARRO Nº	Nro.	351	116	325	351	116	330	351	116	316	
TARRO+SUELO HÚM.	gr	847.5	700.5	821.6	847.5	700.5	701.4	847.5	700.5	786.1	
TARRO+SUELO SECO	gr	692.4	566.9	669.3	692.4	566.9	571.4	692.4	566.9	618.8	
PESO DEL TARRO	gr	131.46 88.50 138.09			131.46	88.50	131.62	131.46	88.50	68.91	
% DE HUMEDAD	%	27.65	27.93	28.67	27.65	27.93	29.56	27.65	27.65 27.93		
HUMEDAD	%	27	.79	28.67	27	.79	29.56	27	.79	30.42	
ABSORCIÓN	%		0.88			1.77			2.64		

			EXPA	NSIÓI	N				
DÍA	DIAL	EXPANSIÓN		DIAL	EXPANSIÓN		DIAL	EXPANSIÓN	
DIA	DIAL	mm	%	DIAL	mm	%] DIAL	mm	%
0	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%
4	0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%

					PENET	RACI	ÓN				
PENETR	ACIÓN	Carga		PRIMER MOLE)E	S	EGUNDO MOI	.DE		TERCER MOLI	DE
(mm)		Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.630	0.025		1.43	1.43	0.74	1.54	1.54	0.79	1.77	1.77	0.91
1.270	0.050		2.93	2.93	1.52	2.84	2.84	1.47	2.98	2.98	1.54
1.900	0.075		4.25	4.25	2.20	3.79	3.79	1.96	3.65	3.65	1.89
2.540	0.100	6.9	5.53	5.53	2.86	4.69	4.69	2.42	4.25	4.25	2.19
3.170	0.125		6.72	6.72	3.47	5.48	5.48	2.83	4.81	4.81	2.49
3.810	0.150		7.83	7.83	4.05	6.26	6.26	3.24	5.35	5.35	2.77
4.445	0.175		8.85	8.85	4.57	7.00	7.00	3.62	5.89	5.89	3.04
5.080	0.200	10.35	9.75	9.75	5.04	7.66	7.66	3.96	6.37	6.37	3.29
7.620	0.300		13.07	13.07	6.76	10.01	10.01	5.17	8.00	8.00	4.13

CBR DE SUELOS - LABORATORIO (MTC E 132)


Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

TRIOGIAMINA RUMETT F 100 AE 12 F 200, ATAOOOTIO, 2022

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc. : AYACUCHO/HUAMANGA
Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

Exploración : CALICATA 04 - KM 12+150 Lugar : MAYOCC-TRIGOPAMPA
Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (5.0% MDS) Fecha : DICIEMBRE DEL 2022

				DATO	S DEI	ENSAYO	•			
Clasificación	SUCS :	ML	LIMO Y	TIPO GRAVA CO	ON AREN	A		AASHT	O :	A-4 (0)
Máxima Den	sidad Seca	MDS (tn/m3):		1.40	Optimo	Contenido de	Humedad O	CH % =	27.60	
% Grava =	17.7	% Arena =	14.0	% Finos =	68.3	LL % =	NP	LP % =	NP	
Expansión 9	6 =	0.04%	Embebio	do (días) =	4.0	IP % =	NP			

Densidad seca

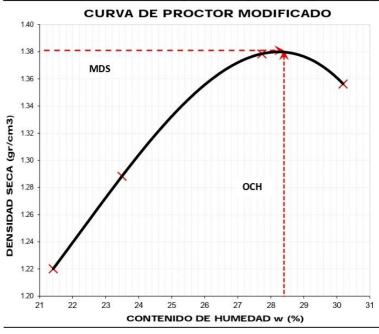
COMPACTACIÓN DE **SUELOS EN LABORATORIO UTILIZANDO UNA ENERGÍA** MODIFICADA (MTC E 115)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL Proyecto TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Provinc.: AYACUCHO/HUAMANGA

: NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

: MAYOCC-TRIGOPAMPA Exploración : CALICATA 04 - KM 12+150 Lugar Estrato/Nivel : CON CP TIPO I (3.0% MDS) + CMF (7.5% MDS) : DICIEMBRE DEL 2022 Fecha


Listratoritivei . Coll of Tiro 1 (3.0%	WIDS) T	CIVII (7.376 IVID3)		Lecha	. DICILIVIDAL	DLL 2022
		DATOS DE	L ENSA	YO		
Clasificación SUCS :	ML	LIMO Y TIPO GR	AVA CON A	RENA	ME	TODO A
Clasificación AASHTO :	A-4	A-4 (0) Capas : 5.00 Golpes/Ca				apa 25
% Retenido acumulado malla N° 4 :	17.7	Material Pasante	a usar	PASA N° 4	"	
% Retenido acumulado malla 3/8" :	12.5	Molde (Pulg)	4	Códi	go	M4
% Retenido acumulado malla 3/4" :	6.6	Peso Molde (gr)	:	4105.00	Vol.(cm3):	939.81
	EN	SAYO DE C	OMPACT	TACIÓN		
Determinación Nº		01	02	03	04	
Peso del molde y muestra	gr	5,497	5,600	5,760	5,764	
Peso de la muestra compactada	gr	1,392.3	1,495.3	1,654.8	1,659.5	
Doneidad húmoda	arlee	1 //0	1.50	1.76	1 77	

CONTENIDO DE HUMEDAD											
Tarro Nº		89.0	324.0	196.0	11.0						
Peso tarro + suelo húmedo	gr	725.48	729.18	657.50	715.69						
Peso de tarro + suelo seco	gr	620.69	615.60	544.37	579.16						
Peso del tarro	gr	131.333	132.196	136.430	126.913						
Peso del agua	gr	104.79	113.59	113.14	136.53						
Peso del suelo seco	gr	489.36	483.40	407.94	452.24						
Contenido de humedad	%	21.41	23.50	27.73	30.19						

1.29

1.38

1.36

gr/cc

1.22

CBR DE SUELOS - LABORATORIO (MTC E 132)

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Región/Prov : AYACUCHO/HUAMANGA Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

: MAYOCC-TRIGOPAMPA Exploración : CALICATA 04 - KM 12+150 Lugar Dosis : CON CP TIPO I (3.0% MDS) + CMF (7.5% MDS) Fecha : DICIEMBRE DEL 2022

6			COMP	ACTAC	ION D	EL CB	R				
MOLDE Nº			18			26		1	33		
CAPAS Nº			5			5			5		
GOLPES POR CAPA			56			26		12			
COND. DE LA MUESTRA			HUMEDO		HUMEDO				HUMEDO		
PESO MOLDE + S. HÚM.	gr		12,100		8	10,523			11,100		
PESO DEL MOLDE	gr		8,391.00			6,907.00			7,638.00		
PESO SUELO HÚM.	gr	3,709.00				3,616.00			3,462.00		
VOLUMEN DEL MOLDE	cm3		2,097.62			2,116.40			2,115.97		
DENSIDAD HÚMEDA	gr/cm3	1.77				1.71		1.64			
DENSIDAD SECA	gr/cm3		1.38			1.33			1.27		
Contenido de Hun	nedad	Humeda	d: inicial	final	Humeda	ad: inicial	final	Humeda	Humedad: inicial		
TARRO Nº	Nro.	339	341	251	339	341	315	339	341	252	
TARRO + SUELO HÚM.	gr	521.9	596.8	654.2	521.9	596.8	736.3	521.9	596.8	665.9	
TARRO+SUELO SECO	gr	438.0	491.4	527.4	438.0	491.4	583.3	438.0	491.4	533.9	
PESO DEL TARRO	gr	131.38	131.51	82.47	134.06	134.19	65.86	134.06	134.19	98.99	
% DE HUMEDAD	%	27.36	29.30	28.49	27.60	29.52	29.57	27.60	29.52	30.36	
HUMEDAD	%	28	.33	28.49	28	.56	29.57	28	.56	30.36	
ABSORCIÓN	%		0.16			1.01			1.80		
				EXPA	NSIÓN	V					
DÍA		DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	DIAL	EXPA	NSIÓN	
DIA		DIAL	mm	%	DIAL	mm	%	DIAL	mm	%	
0		0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%	
4		0.00	127.00	0.00%	0.00	127.00	0.00%	0.00	127.00	0.00%	

				F	PENET	RACIO	ÓN				
PENETR	ACIÓN	Carga	//	PRIMER MOLE)E	S	EGUNDO MOL	.DE	1.0	TERCER MOLI	DE
(mm)		Estándar (Mpa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz. (MPa)	Fuerza (kN)	Fuerza Calib. (kN)	Esfuerz (MPa)
0.000	0.000		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.630	0.025		0.28	0.28	0.15	0.27	0.27	0.14	0.30	0.30	0.16
1.270	0.050		0.96	0.96	0.50	0.96	0.96	0.50	1.14	1.14	0.59
1.900	0.075		1.92	1.92	0.99	1.73	1.73	0.89	1.85	1.85	0.96
2.540	0.100	6.9	2.96	2.96	1.53	2.46	2.46	1.27	2.40	2.40	1.24
3.170	0.125		3.86	3.86	1.99	3.07	3.07	1.59	2.83	2.83	1.46
3.810	0.150		4.66	4.66	2.41	3.62	3.62	1.87	3.15	3.15	1.63
4.445	0.175		5.37	5.37	2.78	4.09	4.09	2.12	3.45	3.45	1.78
5.080	0.200	10.35	5.99	5.99	3.09	4.48	4.48	2.32	3.68	3.68	1.90
7.620	0.300		7.90	7.90	4.08	5.70	5.70	2.94	4.38	4.38	2.26

CBR DE SUELOS - LABORATORIO (MTC E 132)

Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

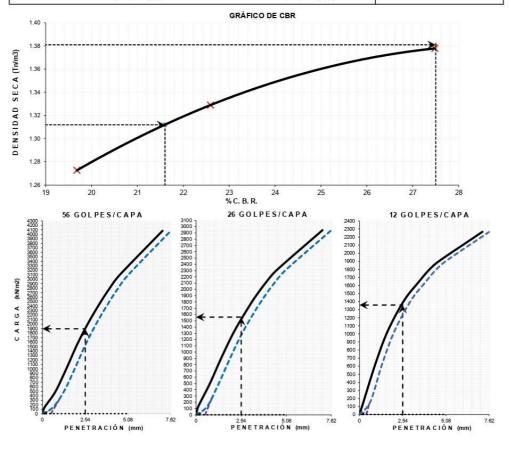
TRIGOT AINITA RIN. 11+ 130 AL 12+230, ATAGGGTIG, 2022

Región/Provinc. : AYACUCHO/HUAMANGA

ante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN

Distrito : PACAYCASA
Lugar : MAYOCC-TRIGOPAMPA

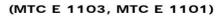
Exploración : CALICATA 04 - KM 12+150


Dosis : CON CP TIPO I (3.0% MDS) + CMF (7.5% MDS)

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021

Fecha : DICIEMBRE DEL 2022

				DATO	S DEI	LENSAYO	•			
Clasificación	SUCS :	ML	LIMO Y T	IPO GRAVA CO	ON AREN	A		AASHTO) :	A-4 (0)
Máxima Den	sidad Seca	MDS (tn/m3):		1.38	Optimo	Contenido de	Humedad O	CH % =	28.40	
% Grava =	17.7	% Arena =	14.0	% Finos =	68.3	LL % =	NP	LP % =	NP	
Expansión %	6 =	0.04%	Embebid	o (días) =	4.0	IP % =	NP			


	37.137.121.03 37.131.		Maria	35.44.01	
	PESUI	TADOS DEL EN	SAVO (01" DE	PENETRACIÓ	(N)
	RESSE	TABOO DEE EN	ISATO (OT BE	TENTETRAGIC	
CBR AL 100%	DE MDS (0.1") = 27	5 CBR AL 959	% DE LA MDS (0.1")	= 21.6	CBR AL 90% MDS =

RESISTENCIA A LA COMPRESION DE PROBETAS DE SUELO METODO

: "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022" Proyecto

Trazabilidad : INFORME 001-2022/CG-CON-22-O-021 Región/Prov: AYACUCHO/HUAMANGA

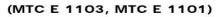
Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

Exploración : CALICATA 04 - KM 12+150 Lugar : MAYOCC-TRIGOPAMPA Estrato/Nivel : MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

DATOS DE LA MUESTRA

Clasificación SUCS : ML LIMO Y TIPO GRAVA CON ARENA

Clasificación AASHTO : A-4 (0)


> % Retenido acumulado malla N° 4 : 17.66 % Pasa acumulado malla N° 4 : 82.34

				DATOS D	EL MOLD	EO			
PORCENTAJE DE AD	ITIVO		TIPO I (0.0 MF (0.0% MI			TIPO I (3.0 MF (0% MD			
MOLDE N°		1	2	3	4	5	6		
PESO MOLDE+S. HÚM.	gr	1,635	1,642	1,633	1,829	1,585	1,577		
PESO DEL MOLDE	gr	601.00	602.50	601.90	600.80	602.40	601.30		
PESO SUELO HÚM.	gr	1,034.06	1,039.51	1,031.45	1,227.88	982.90	975.76		
VOLUMEN DEL MOLDE	cm3	561.98	563.79	561.00	571.19	570.42	578.56		
DENSIDAD HÚMEDA	gr/cm3	1.84	1.84	1.84	2.15	1.72	1.69		
HUMEDAD TARRO	Nro.	21	12	99	14	25	55		
TARRO+SUELO HÚM.	gr	598.91	598.26	672.19	569.55	568.93	639.24		
TARRO+SUELO SECO	gr	517.08	511.54	555.67	486.73	479.56	523.43		
PESO DEL TARRO	gr	140.16	106.93	23.09	133.29	101.69	21.95		
% DE HUMEDAD	%	21.71	21.43	21.88	23.43	23.65	23.09		
DENSIDAD SECA	gr/cm3	1.51	1.52	1.51	1.74	1.39	1.37		
			EN	SAYO DE	COMPRE	SION			
EDAD	días	7	7	7	7.	7.	7		
DIAMETRO PROMEDIO	mm	71.2	71.1	71.2	72.1	72.0	72.0		
ALTURA	mm	141.1	142.0	140.9	139.9	140.1	142.1		
RELACION H/D		1.98	2.00	1.98	1.94	1.95	1.97		
FACTOR DE CORRECCION	ı	1.00	1.00	1.00	1.00	1.00	1.00		
LECTURA DE ENSAYO	kN	0.5	0.5	0.4	7.1	7.8	7.3		
RESISTENCIA FC	kg/cm2	1.3	1.2	0.9	17.8	19.6	18.3		
RESISTENCIA PROM	kg/cm2		1.12			18.55			
RESISTENCIA PROM	MPa		0.110			1.820			

RESISTENCIA A LA COMPRESION DE PROBETAS DE SUELO METODO B

Proyecto : "INCORPORACIÓN DE CENIZA DE MADERA DE FONDO PARA ESTABILIZAR SUBRASANTE LIMOSA EN EL TRAMO MAYOCC-TRIGOPAMPA KM:11+150 AL 12+250, AYACUCHO, 2022"

Trazabilidad : INFORME 001-2022/CG-CON-22-0-021 Región/Pro\: AYACUCHO/HUAMANGA

Solicitante : NUÑEZ PIANTO, EDGAR - QUISPE GALLEGOS, CESAR JUAN Distrito : PACAYCASA

Exploración : CALICATA 04 - KM 12+150 Lugar : MAYOCC-TRIGOPAMPA
Estrato/Nivel : MATERIAL PROPIO Fecha : DICIEMBRE DEL 2022

DATOS DE LA MUESTRA

Clasificación SUCS : ML LIMO Y TIPO GRAVA CON ARENA

Clasificación AASHTO : A-4 (0)

% Retenido acumulado malla N° 4 : 17.66 % Pasa acumulado malla N° 4 : 82.34

				DATOS D	EL MOLD	EO				
PORCENTAJE DE AI	OITIVO		P TIPO I (3.0 MF (2.5% MI		ALCOHOLOGICAL SECTION	TIPO I (3.0 MF (5.0% MI	Control of the Contro	: CON CP TIPO I (3.0% MDS) CMF (7.5% MDS)		
MOLDE Nº		1	2	3	4	5	6	7	8	9
PESO MOLDE+S. HÚM.	gr	1,598	1,606	1,609	1,634	1,614	1,617	1,607	1,599	1,597
PESO DEL MOLDE	gr	601.00	602.50	601.90	600.80	602.40	601.30	600.80	601.40	602.30
PESO SUELO HÚM.	gr	996.86	1,003.11	1,006.68	1,032.86	1,011.77	1,015.22	1,006.65	997.17	994.44
VOLUMEN DEL MOLDE	cm3	560.38	564.19	564.18	580.17	573.67	572.86	569.68	556.25	557.86
DENSIDAD HÚMEDA	gr/cm3	1.78	1.78	1.78	1.78	1.76	1.77	1.77	1.79	1.78
HUMEDAD TARRO	O Nro.	14	321	458	47	185	136	441	169	19
TARRO+SUELO HÚM	1. gr	669.49	668.77	751.41	589.71	598.29	673.64	571.45	568.48	577.28
TARRO+SUELO SECO) gr	569.32	561.05	609.44	479.29	492.60	545.29	476.32	463.01	450.42
PESO DEL TARRO) gr	156.68	119.54	25.81	73.69	105.11	72.89	142.10	97.35	15.37
% DE HUMEDAD	%	24.28	24.40	24.32	27.22	27.28	27.17	28.46	28.84	29.16
DENSIDAD SECA	gr/cm3	1.43	1.43	1.44	1.40	1.39	1.39	1.38	1.39	1.38
			EN	SAYO DE	COMPRE	SION				
EDAD	días	7	7	7	7	7	7	7	7	7
DIAMETRO PROMEDIO	mm	71.2	71.1	71.2	72.1	72.0	72.0	71.8	71.1	70.9
ALTURA	mm	140.7	142.1	141.7	142.1	140.9	140.7	140.7	140.1	141.3
RELACION H/D		1.98	2.00	1.99	1.97	1.96	1.95	1.96	1.97	1.99
FACTOR DE CORRECCIO	N	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
LECTURA DE ENSAYO	kN	10.6	10.6	10.9	9.1	9.2	9.1	6.2	6.1	6.3
RESISTENCIA FC	kg/cm2	27.0	27.3	27.8	22.6	22.9	22.7	15.5	15.5	16.2
RESISTENCIA PROM	kg/cm2		27.34		22.76			15.75		
RESISTENCIA PROM	MPa		2.681			2.232			1.544	

ANEXO 03 CERTIFICADOS DE CALIBRACION

CASAGRANDE CONSULTORIA Y
CONSTRUCCION S.A.C.

DAVID DELESUS GUERNA AYALA
CIP Nº 285731

AREAS GEOTECNIA YCONCRETO

CERTIFICADOS DE CALIBRACION - 2022

ENSAYOS REALIZADOS	EQUIPOS EMPLEADOS
ANALISIS CRANINASTRICO DOS TAMBADO	BALANZA 8200 gr.
ANALISIS GRANUMETRICO POR TAMIZADO	HORNO 720 lt - 250°C
	CAZUELA CASA GRANDE
2. LIMITES DE CONSISTENCIA	BALANZA 2000 gr.
	HORNO 300 lt - 250°C
	BALANZA 4200 gr.
3. HUMEDAD NATURAL	HORNO 300 lt - 250°C
4. GRAVEDAD ESPECIFICA DE LOS SOLIDOS	BALANZA 4200 gr.
DEL SUELO	HORNO 300 lt - 250°C
	BALANZA 30 000 gr.
5. PROCTOR MODIFICADO	PIE DE REY 300 mm.
	HORNO 720 lt - 250°C
	BALANZA 30 000 gr.
6. CBR SUELOS EN LABORATORIO	HORNO 720 lt - 250°C
	MAQUINA COMPRESION 50 000 N
	BALANZA 4200 gr.
7. COMPRESION SIMPLE	PIE DE REY 300 mm
	MAQUINA COMPRESION 1 000 KN

CERTIFICADOS DE CALIBRACION CAZUELA CASAGRANDE

CASAGRANDE L'UNSULTURIA Y
CONSTRUCCION S.A.C.

DAVID DE FESUS GUERRA AYALA
INGENIERO CIVIL
L'IP Nº 285731
AREAS GEOTECHIA Y CONCRETO

METROLOGÍA

LABORATORIO DE CALIDAD Y RESPONSABILIDAD ES NUESTRA MAYOR GARANTÍA

CERTIFICADO DE VERIFICACIÓN Nº 071-2022 GLW

FECHA DE EMISIÓN

: 2022-03-27

1. SOLICITANTE

: CASAGRANDE CONSULTORIA Y CONSTRUCCION SAC

DIRECCIÓN

: Jr. Quinua 570 AYACUCHO - HUAMANGA - AYACUCHO

2. INSTRUMENTO DE MEDICIÓN

: CAZUELA CASAGRANDE MANUAL

MARCA MODELO NÚMERO DE SERIE ALCANCE DE

NO PRESENTA NO PRESENTA NO PRESENTA 0 a 999 VUELTAS 1 VUELTAS

: 2022-03-19

PROCEDENCIA NO PRESENTA **IDENTIFICACIÓN** (*) 0108 TIPO MANUAL **UBICACIÓN** LABORATORIO

DIV DE ESCALA FECHA DE INSPECCIÓN

3. PROCEDIMIENTO DE INSPECCIÓN

Procedimiento de calibración Comparación directa con patrones calibrados.

4. LUGAR DE INSPECCIÓN

La verificación se realizó en el LAB. DE MASA Y LONGITUD DE G&L LABORATORIO S.A.C. AV. MIRAFLORES MZ. E LT. 60 URB. SANTA ELISA II ETAPA LOS OLIVOS - LIMA

5. CONDICIONES AMBIENTALES

	Inicial	Final
Temperatura °C	23.2	23.4
Humedad Relativa %HR	69	69

6. TRAZABILIDAD

Este certificado de inspección documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

7. OBSERVACIONES

(*) Serie indicado en una etiqueta adherida al equipo. El equipo cumple con la norma INV E125-07 / ASTMD 4318 / NTC 4630

8. RESULTADOS

CARACTERISTICAS	VALOR	UNIDAD	
Peso de la copa y el soporte	205,00	g	
Espesor de la copa	2.03	mm	
Profundidad de la copa	26.89	mm	
Altura de la base	50,17	mm	
Ancho de la base	124,63	mm	
ongitud de la base	150.55	mm	

Tec. Gi ntonio Haaman Poquioma. Robordorio de Metrología. Responsa

G & L LABORATORIO S.A.C

TRAZABILIDAD: G&L LABORATORIO S.A.C. Asegura y mantie

(*) Este certificado de inspección expresa fielmente el resultado de las medicion

CASAGRANDE CONSULTORIA Y CONSTRUCCION S.A.C.

lfono: (01) 622 – 5814 ular: 992 – 302 – 883 / 962 – 227 – 858

Correo: laboratorio.gyllaboratorio@gmail.com servicios@gyllaboratorio.com

Av. Miraflores Mz. E Lt. 60 Urb. Santa Elisa II Etapa Los Olivos Lima

Prohibida la Reproducción total de este documento sin la autorización de G&L LABORATORIO S.A.C

CERTIFICADOS DE CALIBRACION BALANZAS

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL-DA COD REGISTRO N°LC - 020

CERTIFICADO DE CALIBRACIÓN

N°de Certificado

: 0461-MPES-C-2022

N° de Orden de trabajo

CASAGRANDE CONSULTORIA Y

CONSTRUCCION SAC

DIRECCIÓN

1. SOLICITANTE

: Jr. Quinua 570 Ayacucho - Huamanga - Ayacucho

2. INSTRUMENTO DE MEDICIÓN

BALANZA

: 0157

MARCA

: OHAUS

MODELO

: NV622ZH

NÚMERO DE SERIE

: 8341485945

ALCANCE DE INDICACIÓN

: 620 g

DIVISIÓN DE ESCALA REAL (d)

: 0,01 g

DIVISIÓN DE ESCALA DE VERIFICACIÓN (e)

: 0,1 g

PROCEDENCIA

CHINA

IDENTIFICACIÓN

: BLZ-016 (*)

TIPO DE INDICACIÓN

: ELECTRÓNICA

UBICACIÓN

: LABORATORIO ENSAYOS DE MATERIALES

FECHA DE CALIBRACIÓN

Página 1 de 3

La incertidumbre reportada en el presente certificado es incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar combinada por el factor de cobertura k=2. Este valor ha sido calculado para un nivel de confianza aproximado del 95 % determinada según la "Guía para la Expresión de la incertidumbre en la medición".

Los resultados sólo están relacionados con los items calibrados y son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PESATEC PERU S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

3. MÉTODO DE CALIBRACIÓN

Comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones, según:

Procedimiento para la Calibración de instrumento de pesaje de funcionamiento no automático clase III y IIII (PC - 001 del INACAL, Primera Edición - Mayo 2019.

4. LUGAR DE CALIBRACIÓN

Av. Condevilla 1269 - Callad

Sello

RIO DE C

PESATEC

Fecha de Emisión

SANDRA ESPERANZA JURUPE MELGAREIO

2021.05.04 16:47: 36-05'00' 2022-03-28

Autorizado po

AVID DE JESUS GUERRA AVALA INGENIERO CIVIL CIP Nº 285731 AREAS GEOTECNIA Y CONCRETO

CASAGRANDE CONSULTORIA Y

Sandra Jurupe Melgareio

RT08-F09 Rev 06

Elaborado: JCFA

Revisado: JMSE

Aprobado: NGJC

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL-DA CON REGISTRO N°LC - 020

Registro N°LC - 020

CERTIFICADO DE CALIBRACIÓN Nº 0461-MPES-C-2022

5. CONDICIONES AMBIENTALES

	Inicial	Final
Temperatura	20,4 °C	19,9 °C
Humedad Relativa	69,8 %	61,9 %

6. TRAZABILIDAD

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Identificación	Certificado de calibración
Patrones de referencia de INACAL-DM	Pesas (Clase de exactitud E2)	ZT-25	LM - C - 192 - 2020

7. OBSERVACIONES

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud III, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático. Se colocó una etiqueta con la indicación de "CALIBRADO".

(*) Código indicado en una etiqueta adherida al instrumento

8. RESULTADOS DE MEDICIÓN

INSPECCIÓN VISUAL								
AJUSTE DE CERO	TIENE	ESCALA	NO TIENE					
OSCILACIÓN LIBRE	TIENE	CURSOR	NO TIENE					
PLATAFORMA	TIENE	SIST. DE TRABA	NO TIENE					
NIVELACIÓN	TIENE							

ENSAYO DE REPETIBILIDAD

Medición	Carga L1=	300,00	9	Carga L2=	600,00	1
N°	(g)	ΔL(mg)	E(mg)	I(g)	ΔL(mg)	E(mg)
1	300,00	5	0	600,00	13	-8
2	300,01	6	9	600,00	12	-7
3	300,00	5	0	599,99	13	-18
4	300,00	6	-1	600,00	12	-7
5	300,00	6	-1	600,00	12	-7
6	300,00	6	-1	600,00	12	-7
7	300,00	5	0	600,00	13	-8
8	300,01	7	8	599,99	11	-16
9	300,01	7	8	600,00	13	-8
10	300,00	6	-1	600,00	13	-8
encia Máxima			10			11
máximo perr	nitido ±	300 r	no	±	300 r	na

CASAGRANDE CONSULTORIA Y CONSTRUCCION S.A.C. DAVID DE JESUS GUERRA AYALA INGENIERO CIVIL CIP Nº 285731 ÁREAS GEOTECNIA Y CONCRETO

RT08-F09 Rev 06

Revisado: JMSE

Aprobado: NGJC

Av. Condevilla 1269 Urb. El Olivar - Callao | Telef: 4848092 - 4847633 - 7444303 - 7444306 | Celular: 994080329 - 975525151
Email: ventas@pesatec.com | Website: www.pesatec.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL O TOTAL DE ESTE DOCUMENTO SIN LA AUTORIZACIÓN DE PESATEC PERU S.A.C

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL-DA CON REGISTRO N°LO - 020

ENSAYO DE EXCENTRICIDAD

Inicial Final
20,5 °C 20,0 °C ΔL(mg) ΔL(mg) 12 0,10 200,01 12 0,11 15 0,10 0,10 0,11 200,01 199,99 14 12 -9 3 16 8 -20 -15 -17 0,11 12 199,99

ENSAYO DE PESAJE

				III N CHEN	F II NOT				
			Temp. (°C)	20,1 °C	19,9 °C				
Carga	ESE GESTIO	CRECIEN	TES	Man Car		DECRECI	ENTES		emp(**)
L(g)	I(g)	ΔL(mg)	E(mg)	Ec(mg)	f(g)	ΔL(mg)	E(mg)	Ec(mg)	±(mg)
0,10	0,10	10	-5						
0,20	0,21	15	0	5	0,20	7	-2	3	100
2,00	2,01	14	1	6	2,00	12	-7	-2	100
10,00	10,02	16	9	14	10,00	7	-2	3	100
50,00	50,02	12	13	18	50,00	12	-7	-2	100
100,00	100,02	12	13	18	99,99	7	-12	-7	200
150,00	150,02	11	14	19	150,00	15	-10	-5	200
200,00	200,02	10	15	20	200,00	7	-2	3	200
400,00	400,02	10	15	20	400,01	14	1	6	300
600,00	600,01	12	3	8	600,01	14	1	6	300
620.00	620.01	10	5	10	620.01	10	5	10	300

(**) error máximo permitido

						_			-		7
	R	com	egida =	- 1	٠- ١	U,	00005	6 x	R		_
_											
	UR		~ /	0.00	0000	- 2	- 20	0.000	0000029	_	D2

R: Lectura de la balanza ΔL:

AL: Carga Incrementad

Error encontrado

E_o: Error en cero

: Error corregido

CASAGRANDE CONSULTORIA Y

DAVID DE JESUS GUERRA AVALA IN GENIERO CIVIL CIP Nº 285731 AREAS GEOTECNIA Y CONCRETO

Fin del certificado de calibración

RT08-F09 Rev 06 Elaborado: JCFA Revisado: JMSE Aprobado: NGJC

Av. Condevilla 1269 Urb. El Olivar - Callao | Telef: 4848092 - 4847633 - 7444303 - 7444306 | Celular: 994080329 - 975525151
Email: ventas@pesatec.com | Website: www.pesatec.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL O TOTAL DE ESTE DOCUMENTO SIN LA AUTORIZACIÓN DE PESATEC PERU S.A.C

Certificado de Calibración - Laboratorio de Masa y Balanzas

Calibration Certificate - Mass and Weighing Instruments Laboratory

M-22933-002 RO

Page / Pág 1 de 4

Equipo

INSTRUMENTO DE PESAJE NO AUTOMÁTICO

Fabricante

NO PRESENTA

Modelo

ING - 021

Número de Serie

No Presenta

Identificación Interna

BLZ - 003

Carga Máxima

2000 g

Solicitante

CASAGRANDE CONSULTORIA Y

CONSTRUCCION SAC

Dirección

Jr. Quinua 570

Cludad

HUAMANGA - AYACUCHO

Fecha de Calibración

2022 - 03 - 23

Fecha de Emisión

2022 - 03 - 29

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al ítem que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información instrumentos y/o de la suministrada por el solicitante.

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo.

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time intervals.

Número de páginas del certificado, incluyendo anexos

mber of pages of the certificate and documents attached

obación del Laboratorio de Metrología PINZUAR S.A.S no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del no se sacan de contexto. Los certificados de calibración sin firma no son válidos.

Without the approval of the Pinzuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan el Certificado

Ing. Sergio Iván Martínez

lecg. Francisco Durán Romero

logo Laborat

leaver were

LM-PC-24-F-01 R 7.0

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

DAVID DE JESUS GUERRA AVALA INGENIERO CIVIL CIP Nº 285731 AREAS GEOTECNIA Y CONCRETO

CASAGRANDE CONSULTORIA Y

Page / Pág. 2 de 4

M-22933-002 RO

DATOS TÉCNICOS

Método Empleado Número de Serie Identificación Interna Resolución Intervalo Calibrado

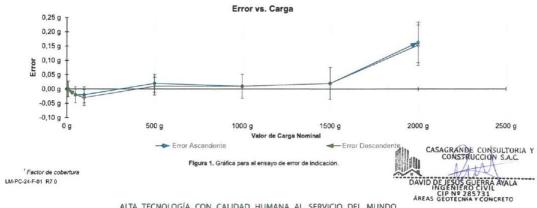
Instrumentos de Referencia Clase de exactitud Certificado No. Comparación Directa

No Presenta BLZ - 003 0,01 g 1 g a 2000 g Pesas cilíndricas

M-20845-002 PINZUAR /CAP-401-20 WR Laboratorios

Guía SIM MWG7/gc-01/V.00:2009 Guía para la Calibración de los Instrumentos para Documento de Referencia

Pesar de Funcionamiento No Automático. RESULTADOS DE LA CALIBRACIÓN


Antes de proceder con la toma de datos se realizó una inspección breve donde se determinó que la instalación (ubicación en el cuarto, nivelación, fuente de corriente y/o batería, entre otros) es adecuada para ejecutar la calibración, también se realizó una verificación de funcionamiento realizando una precarga con el fin de comprobar el buen funcionamiento del instrumento. Posterior a esto se llevaron a cabo las pruebas para los errores de las indicaciones, repetibilidad y excentricidad siguiendo los lineamientos de la Guía SIM - 2009, Numerales 4,5,6,7; Apéndices A,B,C,D,E y F.

En la tabla 1 se encuentra el resultado obtenido para el ensayo de errores de exactitud que permite evaluar la exactitud del instrumento, se encuentran los errores calculados de la diferencia entre la indicación del instrumento y la carga aplicada.

Tabla 1.

Resultados del ensayo de exactitud

Carga g	Indicación Ascendente g	Indicación Descendente g	Error Ascendente	Error Descendente g	Incertidumbre Expandida ±g	k ¹ , _{p=95,45%}
1,000	1,00	1,00	0,000	0,000	0,028	2,25
2,000	2,00	2,00	0,000	0,000	0,028	2,25
5,000	5,00	5,00	0,000	0,000	0,028	2,25
10,000	10,00	10,00	0,000	0,000	0,028	2,25
50,000	49,98	49,98	- 0,020	- 0,020	0,028	2,25
100,000	99,98	99,97	- 0,020	- 0,030	0,028	2,25
500,000	500,02	500,01	0,020	0,010	0,031	2,11
000,000	1 000,01	1 000,01	0,010	0,010	0,042	2,03
500,000	1 500,02	1 500,02	0,020	0,020	0,056	2,02
1 999,997	2 000,16	2 000,15	0,163	0,153	0,071	2,01

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO a: Cl 18 #1033.72 | PBX.57 (1) 745 4555 | 3174233640 | cometrologio@pinzuar

Page / Pág. 3 de 4

M-22933-002 RO

RESULTADOS DE LA CALIBRACIÓN (Continuación)

A continuación, en la Tabla 2 se encuentran los resultados para el ensayo de excentricidad de carga que permite evaluar el comportamiento del equipo al aplicar cargas en un ligar diferente al centro del receptor de carga como se muestra en la Figura 2.

Resultados prueba de excentricidad y la máxima diferencia.

Valor Nominal de la Carga 700 g

Posición	Indicación del Instrumento	Diferencia Respecto a Centro
_	g	9
1	699,97	
2	699,97	0,00
3	699,93	-0,04
4	699,93	-0,04
5	699,99	0,02
rencia máxim	a respecto al centro	0,04

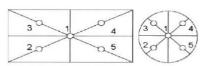


Figura 2. Posiciones de carga para la prueba de excentricidad

Por último, en la Tabla 3 se muestran los resultados del ensayo de repetibilidad que permite identificar la variación de la indicación del instrumento de pesaje no automático al colocar una misma carga bajo condiciones idénticas de manejo y bajo condiciones de ensayo constantes.

Tabla 3.

LM-PC-24-F-01 R7.0

Resultados prueba de repetibilidad y la desviación estándar calculada para cada carga.

	Valor Nominal de las Cargas			
	1000 g	2000 g		
Cantidad de Repeticiones	Indicación del Instrumento	Indicación del Instrumento		
1	1000,02	2000,16		
2	1000,00	2000,16		
3	999,99	2000,14		
4	1000,01	2000,16		
5	1000,00	2000,17		
6	1000,03	2000,16		
7	1000,01	2000,17		
8	1000,02	2000,16		
9	1000,01	2000,16		
10	1000,01	2000,15		
Desviación Estándar	0,011 5 g	0,008 8 g		

CONDICIONES AMBIENTALES

Temperatura Máxima: Humedad Máxima: Presión Barométrica Máxima:

18,0 °C 50 % HR 1000,1 hPa

Temperatura Mínima: Humedad Mínima: Presión Barométrica Mínima:

17,0 °C 49 % HR 1000,0 hPa CASAGRANDE CONSULTORIA Y CONSTRUCCION S.A.C.

DAVID DE ESTA SUE TIMA AVALA

NGEN ER DE TIMA AVALA

AREAS GEOTECHIA V CONCRETO ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

M-22933-002 R0 Page / Pág. 4 de 4

INCERTIDUMBRE DE MEDICIÓN

La incertidumbre expandida de la medición reportada se establece como la incertidumbre estándar de medición multiplicada por el factor de cobertura "k" y la probabilidad de cobertura, la cual debe ser aproximada al 95% y no menor a este valor

INFORMACIÓN ADICIONAL

Tomando como base los resultados obtenidos en la calibración del instrumento de pesaje no automático, se obtienen las ecuaciones con las que el usuario podrá corregir cada lectura R, y también obtener su incertidumbre expandida UR.

La ecuación para la corrección de la lectura, donde R es tomada directamente del indicador del instrumento en las unidades que se reportan los resultados en la página número dos de este certificado. La ecuación aquí presentada aplica a ejercicios de pesada en los que se ajusta el cero del instrumento antes de ejecutar la pesada y asumiendo como condiciones normales de uso lo declarado por el usuario durante la calibración y de información recolectada durante la misma.

 $R_{corregida} = R - E_{aprox}$

 $E_{aprox} = 3.58 E-05 \cdot R$

 R^2

5.42 E-08

La pesada ejecutada en el instrumento de pesaje tendrá la siguiente incertidumbre estándar, 1,50 E-04

Incertidumbre expandida de un resultado de pesada

 $U_R = k \cdot u(W)$

Se puede tomar el valor k = 2, que corresponde a una probabilidad aproximada del 95 % y aplica cuando se puede asumir una distribución normal (Gaussiana) para el error de la indicación. Se encuentra más información sobre el valor de k en el documento Guía SIM MWG7/gc-01/V.00:2009 Guía para la Calibración de los Instrumentos para Pesar de Funcionamiento No Automático.

TRAZABILIDAD

El/Los certificado(s) de calibración de el/los patrón(es) usado(s) como referencia para la calibración en cuestión, que se mencionan en la página dos se pueden descargar accediendo al enlace en el código QR.

OBSERVACIONES

- 1. Se usa la coma como separador decimal
- 2. Las fórmulas calculadas para la obtención de la lectura corregida y su correspondiente incertidumbre estándar se obtuvieron a partir de la condiciones evidenciadas en la calibración (instalación, variación de condiciones ambientales, corriente eléctrica). Si las condiciones de uso del instrumento difieren a las al que hace referencia este certificado es responsabilidad del usuario establecer si es o no adecuada su
- 3. Se puede obtener más información sobre el método y cálculos realizados para la emisión de este certificado de calibración consultando el documento de referencia mencionado en la página dos.
- 4. Se adjunta la estampilla de calibración No. M-22933-002

Fin del Certificado LM-PC-24-F-01 R7.0

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL-DA CON REGISTRO N°LC - 020

Registro N°LC - 020

CERTIFICADO DE CALIBRACIÓN

N°de Certificado 0462-MPES-C-2022

N° de Orden de trabajo : 0157

1. SOLICITANTE CASAGRANDE CONSULTORIA Y
CONSTRUCCION SAC

DIRECCIÓN Jr. Quinua 570 Ayacucho - Huamanga - Ayacucho

2. INSTRUMENTO DE BALANZA MEDICIÓN

MARCA CHAUS

MODELO PC4202E

NÚMERO DE SERIE B830176178

ALCANCE DE 4200 g INDICACIÓN

DIVISIÓN DE ESCALA : 0,01 g

REAL (d)

DIVISIÓN DE ESCALA : 0,1 g DE VERIFICACIÓN (e)

PROCEDENCIA : CHINA

IDENTIFICACIÓN : BLZ-018

TIPO DE INDICACIÓN : ELECTRÓNICA

UBICACIÓN LABORATORIO ENSAYOS DE MATERIALES

FECHA DE : 2022-03-21 CALIBRACIÓN La incertidumbre reportada en el presente certificado es la incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar combinada por el factor de cobertura k=2. Este valor ha sido calculado para un nivel de confianza aproximado del 95 % determinada según la "Guía para la Expresión de la incertidumbre en la

Los resultados sólo están relacionados con los items calibrados y son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PESATEC PERU S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

3. MÉTODO DE CALIBRACIÓN

Comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones, según:

segun: Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase I v II (PC - 011 del SNM-

INDECOPI, 4ta edición abril 2010).

4. LUGAR DE CALIBRACIÓN

Sallo

10 DE C

PESATEC

ERU S.A.C

Av. Condevilla 1269 - Callao

Fecha de Emisión

E: M

SANDRA ESPERANZA JURUPE MELGAREJO 2021.05.04 16:47: 59-05'00' 2022-03-28 DAVID DE JESUS GUERRA AYALA INGENIERO CIVIL CIP Nº 285731 Autorizado por REAS GEOTECNIA y CONCRETO

Sandra Jurupe Melgarejo Gerente Técnico

RT08-F09 Rev 06

Elaborado: JCFA

Revisado: JMSE

Aprobado: NGJC

CASAGRANDE CONSULTURIA Y

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL-DA CON REGISTRO N°LO - 020

CERTIFICADO DE CALIBRACIÓN Nº 0462-MPES-C-2022

5. CONDICIONES AMBIENTALES

	Inicial	Final 20,0 °C	
Temperatura	20,8 °C		
Humedad Relativa	69,3 %	67,2 %	

6. TRAZABILIDAD

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Identificación	Certificado de calibración	
Patrones de referencia de INACAL-DM	Pesas (Clase de exactitud E2)	ZT-25	LM - C - 192 - 2020	

7. OBSERVACIONES

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud II, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático. Se colocó una etiqueta con la indicación de "CALIBRADO".

(*) Código indicado en una etiqueta adherida al instrumento

8. RESULTADOS DE MEDICIÓN

INSPECCIÓN VISUAL				
AJUSTE DE CERO	TIENE	ESCALA	NO TIENE	
OSCILACIÓN LIBRE	TIENE	CURSOR	NO TIENE	
PLATAFORMA	TIENE	SIST. DE TRABA	NO TIENE	
NIVELACIÓN	TIENE	THE WASHING		

ENSAYO DE REPETIBILIDAD

	Inicial Final		
Temp. (°C)	20,8 °C	20,5 °C	

Medición	Carga L1= 2 000,00		9	Carga L2=	4 000,00 g	
N°	I(g)	ΔL(mg)	E(mg)	I(g)	ΔL(mg)	E(mg)
1	2 000,00	9	-4	4 000,00	11	-6
2	2 000,01	10	5	4 000,00	12	-7
3	2 000,00	9	-4	4 000,00	12	-7
4	2 000,00	9	-4	4 000,00	12	-7
5	2 000,00	10	-5	4 000,00	12	-7
6	2 000,00	10	-5	4 000,00	11	-6
7	2 000,00	10	-5	4 000,00	11	-6
8	2 000,01	9	6	4 000,00	12	-7
9	2 000,00	9	-4	4 000,00	12	-7
10	2 000,00	10	-5	4 000,00	12	-7
erencia Máxima	1		11			1
or máximo permitido ± 200 mg		±	300 mg			

DAVID DE JESUS GUERRA AYALA INGENIERO CIVIL CIP Nº 285731 AREAS GEOTECNIA Y CONCRETO

RT08-F09 Rev 06

Elaborado: JCFA

Revisado: JMSE

Aprobado: NGJC

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL-DA CON REGISTRO N*LC - 020

Registro N°LC - 020

CERTIFICADO DE CALIBRACIÓN Nº 0462-MPES-C-2022

ENSAYO DE EXCENTRICIDAD

Posición		Determinaci	ión de E ₀		THE REAL PROPERTY.	n del Error co	rregido		
de la Carga	Carga minima (g)	l(g)	ΔL(mg)	Eo(mg)	Carga (g)	(g)	ΔL(mg)	E(mg)	Ec(mg)
1		0,20	8	-3		1 499,99	10	-15	-12
2		0,19	12	-17	1	1 499,99	7	-12	5
3	0,20	0,20	9	-4	1 500,00	1 500,00	5	0	4
4		0,19	5	-10		1 499,99	10	-15	-5
5		0,19	7	-12		1 500,00	7	-2	10

ENSAYO DE PESAJE

22/11/2017 7/			Temp. ("C	20,3 %	20,0 %	11-7-12			
Carga		CRECIEN	TES			DECRECI	ENTES		emp(**)
L(g)	l(g)	ΔL(mg)	E(mg)	Ec(mg)	l(g)	AL(mg)	E(mg)	Ec(mg)	±(mg)
0,20	0,20	7	-2	100000000000000000000000000000000000000					
0,50	0,50	8	-3	-1	0,49	5	-10	-8	100
100,00	99,99	2	-7	-5	99,99	7	-12	-10	100
200,00	200,00	5	0	2	199,99	6	-11	-9	100
500,00	500,01	5	10	12	500,00	9	-4	-2	100
1 000,00	1 000,01	9	6	8	999,99	6	-11	-9	200
1 500,00	1 500,00	8	-3	-1	1 499,99	8	-13	-11	200
2 000,00	2 000,00	7	-2	0	1 999,97	5	-30	-28	200
3 000,00	3 000,00	9	-4	-2	2 999,97	9	-34	-32	300
4 000,00	3 999,96	4	-39	-37	3 999,95	9	-54	-52	300
4 200,00	4 199,94	7	-62	-60	4 199,94	7	-62	-60	300

(**) error máximo permitido

			277	_					_	_	7
	R _{corregi}	da =	R	+	0,0	0000	41	X	R		J
_											
	$U_R = 2$	1	0.0001	11 0	2	+	0.0	0000	0000016	v	D ²

R : Lectura de la balanza

ΔL: Carga Incrementada

Error encontrado E_o Error en cero

E_c: Error corregido

Fin del certificado de calibración

CASAGRANDE CONSULTORIA Y DAVID DE JESUS QUERRA AVALA
NCENTE SUERRA AVALA
LIP Nº 285731
AREAS GEOTECNIA Y CONCRETO

RT08-F09 Rev 06

Elaborado: JCFA

Revisado: JMSE

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL-DA CON REGISTRO N°LC - 020

Registro N°LC - 020

Página 1 de 3

CERTIFICADO DE CALIBRACIÓN

: 0463-MPES-C-2022 N°de Certificado

N° de Orden de trabajo : 0157

CASAGRANDE CONSULTORIA Y 1. SOLICITANTE

CONSTRUCCION SAC

DIRECCIÓN : Jr. Quinua 570 Ayacucho - Hua

2. INSTRUMENTO DE : BALANZA MEDICIÓN

MARCA : OHAUS

MODELO : AX8201/E

NÚMERO DE SERIE : B904149789

ALCANCE DE : 8200 g INDICACIÓN

DIVISIÓN DE ESCALA : 0,1 g

REAL (d)

DIVISIÓN DE ESCALA : 1g

DE VERIFICACIÓN (e)

PROCEDENCIA : CHINA

IDENTIFICACIÓN : BLZ-019 (*)

: ELECTRÓNICA UBICACIÓN : LABORATORIO ENSAYOS DE MATERIALES

FECHA DE : 2022-03-21 CALIBRACIÓN

La incertidumbre reportada en certificado presente incertidumbre expandida de medición resulta de multiplicar la incertidumbre estándar combinada por el factor de cobertura k=2. Este valor ha sido calculado para un nivel de confianza aproximado del 95 % determinada según la "Guía para la Expresión de la incertidumbre en la medición".

Los resultados sólo están relacionados con los items calibrados y son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PESATEC PERU S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

3. MÉTODO DE CALIBRACIÓN

TIPO DE INDICACIÓN

Comparación directa entre las indicaciones de lectura de la balanza y las cargas aplicadas mediante pesas patrones, según:

Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase I y II (PC - 011 del SNM-INDECOPI, 4ta edición abril 2010).

4. LUGAR DE CALIBRACIÓN

Av. Condevilla 1269 - Callac

CASAGRANDE CONSULTORIA Y

Sello O DE CA

PESATEC

PERU S.A.C

SANDRA ESPERANZA JURUPE MELGAREJO 2021.05.04 16:48: 19-05'00' 2022-03-28

Sandra Jurupe Melgarejo

RT08-F09 Rev 06

Revisado: JMSE

Av. Condevilla 1269 Urb. El Olivar - Callao | Telef: 4848092 - 4847633 - 7444303 - 7444306 | Celular: 994080329 - 975525151 PROHIBIDA LA REPRODUCCIÓN PARCIAL O TOTAL DE ESTE DOCUMENTO SIN LA AUTORIZACIÓN DE PESATEC PERU S.A.C

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL-DA CON REGISTRO N*LC - 020

Registro N°LC - 020

CERTIFICADO DE CALIBRACIÓN Nº 0463-MPES-C-2022

5. CONDICIONES AMBIENTALES

	Inicial	Final
Temperatura	20,6 °C	20,4 °C
Humedad Relativa	60,6 %	69,5 %

6. TRAZABILIDAD

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Identificación	Certificado de calibración
Patrones de referencia de INACAL-DM	Pesas (Clase de exactitud E2)	ZT-25	LM - C - 192 - 2020

7. OBSERVACIONES

RT08-F09 Rev 06

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud II, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático. Se colocó una etiqueta con la indicación de "CALIBRADO".

(*) Código indicado en una etiqueta adherida al instrumento

8. RESULTADOS DE MEDICIÓN

	INSPECCIÓ	N VISUAL	
AJUSTE DE CERO	TIENE	ESCALA	NO TIENE
OSCILACIÓN LIBRE	TIENE	CURSOR	NO TIENE
PLATAFORMA	TIENE	SIST. DE TRABA	NO TIENE
NIVELACIÓN	TIENE		6.4.16.16

ENSAYO DE REPETIBILIDAD

Medición	Carga L1=	4 000,0 g		Carga L2=	8 0000,0	g
N°	I(g)	∆L(mg)	E(mg)	I(g)	ΔL(mg)	E(mg)
1	4 000,1	70	80	8 000,1	50	100
2	4 000,0	70	-20	8 000,2	60	190
3	4 000,1	60	90	8 000,1	50	100
4	4 000,0	60	-10	8 000,1	60	90
5	4 000,0	60	-10	8 000,1	60	90
6	4 000,1	80	70	8 000,1	70	80
7	4 000,1	70	80	8 000,1	60	90
8	4 000,1	70	80	8 000,1	60	90
9	4 000,0	60	-10	8 000,2	70	180
10	4 000,0	60	-10	8 000,1	50	100
encia Máxima			110			110

Revisado: JMSE

DAVID DE JESUS GUERRA AYALA INGENIERO CIVIL AREAS GEOTECNIA Y CONCRETO

Aprobado: NGJC

Av. Condevilla 1269 Urb. El Olivar - Callao | Telef: 4848092 - 4847633 - 7444303 - 7444306 | Celular: 994080329 - 975525151
Email: ventas@pesatec.com | Website: www.pesatec.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL O TOTAL DE ESTE DOCUMENTO SIN LA AUTORIZACIÓN DE PESATEC PERU S.A.C

Elaborado: JCFA

LABORATORIO DE CALIBRACIÓN ACREDITADO POR EL ORGANISMO DE ACREDITACIÓN INACAL-DA CON REGISTRO N°LO - 020

CERTIFICADO DE CALIBRACIÓN Nº 0463-MPES-C-2022

ENSAYO DE EXCENTRICIDAD

Posición		Determinac	ión de E _e	KIELE FALL	(41)	rregido			
de la Carga	Carga minima (g)	I(g)	ΔL(mg)	Eo(mg)	Carga (g)	l(g)	ΔL(mg)	E(mg)	Ec(mg)
1		2,0	60	-10		3 000,0	50	0	10
2		2,0	80	-30		3 000,0	70	-20	10
3	2,0	2,0	90	-40	3 000,0	3 000,0	70	-20	20
4		2,0	80	-30		3 000,1	50	100	130
5		2.0	80	-30		3 000,1	70	80	110
valor entre 0	y 10 e				Error máxim	no permitido :	±	1 000 mg	1

ENSAYO DE PESAJE

			remp. (C)	19,9 %	20,4 -6				
Carga	KENA (COM	CRECIEN	TES			DECRECI	ENTES	EDELLE	emp(**)
L(g)	l(g)	ΔL(mg)	E(mg)	Ec(mg)	l(g)	ΔL(mg)	E(mg)	Ec(mg)	±(mg)
2,0	2,0	70	-20	LE PROPERTY DE					The state of
5,0	5,0	70	-20	0	4,9	30	-80	-60	1 000
100,0	100,0	70	-20	0	100,0	80	-30	-10	1 000
200,0	200,0	80	-30	-10	200,0	70	-20	0	1 000
500,0	500,0	60	-10	10	499,9	80	-130	-110	1 000
1 000,0	1 000,0	50	0	20	999,9	70	-120	-100	1 000
1 500,0	1 500,0	40	10	30	1 499,9	80	-130	-110	1 000
2 000,0	2 000,0	20	30	50	1 999,9	70	-120	-100	1 000
4 000,0	4 000,1	40	110	130	3 999,9	80	-130	-110	1 000
6 000,0	6 000,2	50	200	220	5 999,9	20	-70	-50	2 000
8 200,0	8 200,3	40	310	330	8 200,3	40	310	330	2 000

_	565	_	-			STEEN V	1
Rcor	regida =	R -	0,0	00003	6 x	R	J
 p =	0\ /	0.011	2		0.000	00000033	 -2

R : Lectura de la balanza

Error encontrado E_o: Error en cero

E_c: Error corregido

Fin del certificado de calibración

RT08-F09 Rev 06

Av. Condevilla 1269 Urb. El Olivar - Callao | Telef: 4848092 - 4847633 - 7444303 - 7444306 | Celular: 994080329 - 975525151
Email: ventas@pesatec.com | Website: www.pesatec.com
PROHIBIDA LA REPRODUCCIÓN PARCIAL O TOTAL DE ESTE DOCUMENTO SIN LA AUTORIZACIÓN DE PESATEC PERU S.A.C

Certificado de Calibración - Laboratorio de Masa y Balanzas

M-22933-005 RO

Calibration Certificate - Mass and Weighing Instruments Laboratory

Page / Pág 1 de 4

Equipo INSTRUMENTO DE PESAJE NO AUTOMÁTICO Instrument

Fabricante OHAUS

Modelo R31P30

Número de Serie 83374290343 Serial Number

Identificación Interna BLZ - 008
Internal Identification

Carga Máxima 30000 g Maximum load

Solicitante CASAGRANDE CONSULTORIA Y CONSTRUCCION SAC

Dirección Jr. Quinua 570 Address

Ciudad JULIACA - PUNO

Fecha de Calibración 2022 – 03 – 22

Fecha de Emisión 2022 – 03 – 29

Número de páginas del certificado, incluyendo anexos

Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al ítem que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada por el solicitante.

Este certificado de calibración documenta y asegura la trazabilidad de los resultados reportados a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo.

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This calibration certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for recalibrating the measuring instruments at appropriate time intervals

Sin la aprobación del Laboratorio de Metrología PINZUAR S.A.S no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos.

Without the approval of the Pinzuar Matrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of contaxt. Unsigned calibration certificates are not valid.

Firmas que Autorizan el Certificado

Number of pages of the certificate and documents attached

Signatures Authorizing the Certificate

Ing. Sergio Iván Martínez Director Laboratorio de Metrología Tecg. Francisco Durán Romero

n₄

LM-PC-24-F-01 R 7.0

CONSTRUCCION S.A.C.

DAVID DE JESUS GUERRA AVALA INCENIERO CIVIL INCENIERO CIVIL AREAS GEOTECNIA Y CONCRETO

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laborationa de Metrología: CI 18 #1038-72 1 PBX, 57 (1) 745-4565 3174233640 Laboretrologia@prizuarasmica LWWWPNZLAR.COM.CO

ISO/IEC 17025:2017 11-LAC-004

M-22933-005 RO

Page / Pág. 2 de 4

DATOS TÉCNICOS

Método Empleado Comparación Directa 83374290343 Número de Serie Identificación Interna BLZ - 008 Resolución Intervalo Calibrado 1 g a 30000 g

Instrumentos de Referencia Clase de exactitud

Certificado No.

Documento de Referencia

Pesas cilíndricas F1 y F1

M-4689 Unión Metrológica / M-20632-001 PINZUAR / M-20845-002 PINZUAR / CAP-401-20 WR Laboratorios

Guía SIM MWG7/gc-01/V.00:2009 Guía para la Calibración de los Instrumentos para Pesar de Funcionamiento No Automático.

RESULTADOS DE LA CALIBRACIÓN

Antes de proceder con la toma de datos se realizó una inspección breve donde se determinó que la instalación (ubicación en el cuarto, nivelación, fuente de corriente y/o batería, entre otros) es adecuada para ejecutar la calibración, también se realizó una verificación de funcionamiento realizando una precarga con el fin de comprobar el buen funcionamiento del instrumento. Posterior a esto se llevaron a cabo las pruebas para los errores de las indicaciones, repetibilidad y excentricidad siguiendo los lineamientos de la Guía SIM - 2009, Numerales 4,5,6,7; Apéndices A,B,C,D,E y F.

En la tabla 1 se encuentra el resultado obtenido para el ensayo de errores de exactitud que permite evaluar la exactitud del instrumento, se encuentran los errores calculados de la diferencia entre la indicación del instrumento y la carga aplicada.

Tabla 1. Resultados del ensayo de exactitud

Carga g	Indicación Ascendente g	Indicación Descendente g	Error Ascendente	Error Descendente g	Incertidumbre Expandida ±g	k ¹ , _{p=95,45%}
1,00	1	1	0,00	0,00	0,82	2,01
500,00	500	500	0,00	0,00	0,82	2,01
1 000,00	1 000	1 000	0,00	0,00	0,82	2,01
2 000,00	2 000	2 000	0,00	0,00	0,82	2,01
5 000,02	5 000	5 000	- 0,02	- 0,02	0,82	2,01
10 000,01	10 000	10 000	- 0,01	- 0,01	0,82	2,01
15 000,03	15 000	15 000	- 0,03	- 0,03	0,82	2,01
20 000,02	20 000	20 000	- 0,02	- 0,02	0,82	2,01
25 000,04	25 000	25 000	- 0,04	- 0,04	0,82	2,01
30 000,04	30 000	30 000	- 0,04	- 0,04	0,82	2,01

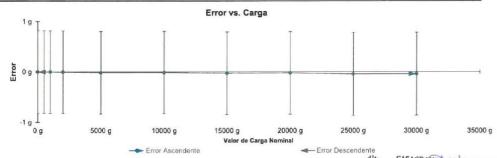


Figura 1. Gráfica para el ensayo de error de indicación.

LM-PC-24-F-01 R7.0

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

DAVID DE JESUS GUERRA AYALA
NGENIERO CIVIL
CIP Nº 285731
AREAS GEOTECHIA Y CONCRETO de Metrologia: Cl 18 #1033 72 | PBX 57 (1) 745 4555 | 3174233640 | labmetrologia@pnzuara

11-LAC-004

M-22933-005 R0 Page / Pág. 3 de 4

RESULTADOS DE LA CALIBRACIÓN (Continuación)

A continuación, en la Tabla 2 se encuentran los resultados para el ensayo de excentricidad de carga que permite evaluar el comportamiento del equipo al aplicar cargas en un ligar diferente al centro del receptor de carga como se muestra en la Figura 2.

Tabla 2

Resultados prueba de excentricidad y la máxima diferencia.

Valor Nominal de la Carga 10000 g

Posición	Indicación del Instrumento	Diferencia Respecto al Centro
	9	g
1	10 000	*****
2	10 000	0
3	10 000	0
4	10 000	0
5	10 000	0
Diferencia máxim	a respecto al centro	0

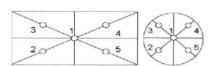


Figura 2. Posiciones de carga para la prueba de excentricidad.

Por último, en la Tabla 3 se muestran los resultados del ensayo de repetibilidad que permite identificar la variación de la indicación del instrumento de pesaje no automático al colocar una misma carga bajo condiciones idénticas de manejo y bajo condiciones de ensayo constantes.

Tabla 3.

Resultados prueba de repetibilidad y la desviación estándar calculada para cada carga.

<u>. 28</u>	Valor Nomina	I de las Cargas
	15000 g	30000 g
Cantidad de Repeticiones	Indicación del Instrumento	Indicación del Instrumento
1	15 000	30 000
2	15 000	30 000
3	15 000	30 000
4	15 000	30 000
5	15 000	30 000
6	15 000	30 000
7	15 000	30 000
8	15 000	30 000
9	15 000	30 000
10	15 000	30 000
Desviación Estándar	0,00 g	0,00 g

CASAGRANDE CONSULTORIA Y

DAVID DE JESUS GUERRA AYALA INGENIERO CIVIL CIP Nº 285731 ÁREAS GEOTECNIA Y CONCRETO

CONDICIONES AMBIENTALES

 Temperatura Máxima:
 20,5 °C
 Temperatura Mínima:
 20,1 °C

 Humedad Máxima:
 47 % HR
 Humedad Mínima:
 46 % HR

 Presión Barométrica Máxima:
 1000,1 hPa
 Presión Barométrica Mínima:
 1000,0 hPa

LM-PC-24-F-01 R7.0

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

de Metrologia: CI 18 #1038-72 | PBX-57 (1) 745-4555 | 3174233640 | labmetrologia@phzuar.com.co | WWW.PNZUAR.COM.CO

M-22933-005 R0

Page / Pág. 4 de 4

INCERTIDUMBRE DE MEDICIÓN

La incertidumbre expandida de la medición reportada se establece como la incertidumbre estándar de medición multiplicada por el factor de cobertura "k" y la probabilidad de cobertura, la cual debe ser aproximada al 95% y no menor a este valor.

INFORMACIÓN ADICIONAL

Tomando como base los resultados obtenidos en la calibración del instrumento de pesaje no automático, se obtienen las ecuaciones con las que el usuario podrá corregir cada lectura $R_{
m c}$ y también obtener su incertidumbre expandida U_R

La ecuación para la corrección de la lectura, donde R es tomada directamente del indicador del instrumento en las unidades que se reportan los resultados en la página número dos de este certificado. La ecuación aquí presentada aplica a ejercicios de pesada en los que se ajusta el cero del instrumento antes de ejecutar la pesada y asumiendo como condiciones normales de uso lo declarado por el usuario durante la calibración y de información recolectada durante la misma.

 $R_{corregida} = R - E_{aprox}$

 $E_{aprox} = -1.37 E-06 \cdot R$

La pesada ejecutada en el instrumento de pesaje tendrá la siguiente incertidumbre estándar,

 $u^{2}(W) =$

1.67 E-01

6,58 E-12 R^2

Incertidumbre expandida de un resultado de pesada

+

 $U_R = k \cdot u(W)$

Se puede tomar el valor k = 2, que corresponde a una probabilidad aproximada del 95 % y aplica cuando se puede asumir una distribución normal (Gaussiana) para el error de la indicación. Se encuentra más información sobre el valor de k en el documento Guía SIM MWG7/gc-01/V.00:2009 Guía para la Calibración de los Instrumentos para Pesar de Funcionamiento No Automático.

TRAZABIL IDAD

El/Los certificado(s) de calibración de el/los patrón(es) usado(s) como referencia para la calibración en cuestión, que se mencionan en la página dos se pueden descargar accediendo al enlace en el código QR.

OBSERVACIONES

- 1. Se usa la coma como separador decimal
- 2. Las fórmulas calculadas para la obtención de la lectura corregida y su correspondiente incertidumbre estándar se obtuvieron a partir de la condiciones evidenciadas en la calibración (instalación, variación de condiciones ambientales, corriente eléctrica). Si las condiciones de uso del instrumento difieren a las al que hace referencia este certificado es responsabilidad del usuario establecer si es o no adecuada su aplicación
- 3. Se puede obtener más información sobre el método y cálculos realizados para la emisión de este certificado de calibración consultando el documento de referencia mencionado en la página dos
- 4. Se adjunta la estampilla de calibración No. M-22933-005

Fin del Certificado

LM-PC-24-F-01 R7.0

DAVID DE JESUS GUERRA AVALA INGENIERO CIVIL CIP Nº 285731 AREAS GEOTECNIA Y CONCRETO

CASAGRANDE CONSULTORIA Y

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

3174233640 Labmetrologic@porunicom.co.t.

CERTIFICADOS DE CALIBRACION HORNOS DE SECADO

CASAGRANDE LUNSULTURIA Y
CONSTRUCCION S.A.C.

DAVID DE JESUS GUERRA AVALA
NGENIERO CIVIL
CIP. Nº 285731
AREAS GEOTECINA Y CONCRETO

Certificado de Calibración - Laboratorio de Temperatura

T-22933-018 RO

Calibration Certificate - Temperature Laboratory

Page / Pág 1 de 4 Equipo HORNO ELÉCTRICO Los resultados emitidos en este certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al ítem que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan Fabricante **PINZUAR** Modelo PG-2004 derivarse del uso inadecuado de los instrumentos Número de Serie 119 y/o de la información suministrada por el solicitante. Identificación Interna HRN-002 Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e Intervalo de Medición 40 °C a 250 °C internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI). CASAGRANDE CONSULTORIA Y Solicitante El usuario es responsable de la calibración de los CONSTRUCCION SAC instrumentos en apropiados intervalos de tiempo. Dirección Jr. Quinua 570 The results issued in this certificate relates to the time and conditions under which the measurements were made. These results correspond to the item that relates on page HUAMANGA - AYACUCHO Ciudad number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer. This calibration certificate documents and ensures the traceability to national and internationals standards, which realize the units Fecha de Calibración 2022 - 03 - 22 Fecha de Emisión 2022 - 03 - 29 of measurement according to the International System of Units (SI).

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la segunidad que las partes del certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos.

Without the approval of the Finzuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas Autorizadas

Authorized Signatures

Ing. Sergio Iván Martínez

Número de páginas del certificado, incluyendo anexos

Tecg. Oscar Eduardo Briceño

Oscol hardo 5.

intervals.

The user is responsible for recalibrating the measuring instruments at appropriate time

DAVID DE JESUS GUERRA AVALA INGENIERO CIVIL AREAS GEOTECNIA Y CONCRETO

Metrologo Labo

LM-PC-21-F-01 R7.1

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratorio de Metrología: CI 18 #1038-72 1 FBX: 57 (1) 745 4555 3174233640 Laboratrología@phrzuarcom.co.l.WWWPNZUARCOM.CO

T-22933-018 RO

Gráfica 1. Ubicación de los sens

Page / Pág 2 de 4

DATOS TÉCNICOS

Método Empleado Comparación Directa

Documento de Referencia DAKKS DKD-R 5 - 7 Kalibrierung von Klimaschränken 1. Neuauflage 2010

Resolución 0,01 °C

Patrón(es) de referencia Termómetro Digital

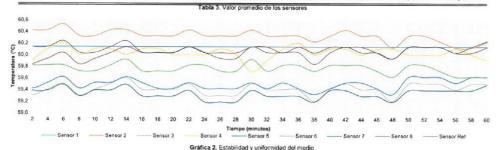
Certificado de Calibración T-21368-003 R0 de Pinzuar / T-21368-001 R0 de Pinzuar

Volumen útil 300 L

RESULTADOS DE LA CALIBRACIÓN

Al medio isotermo en referencia se le efectuó una inspección visual y se determinó que estaba en buen estado. Se determinó que el medio presentaba una buena condición para la calibración, luego se procedió a la calibración y caracterización respectiva en los puntos acordados con el cliente ejecutando las pruebas estabilidad temporal y la uniformidad espacial.

Indicación del Patrón °C	Indicación del Equipo °C	Corrección °C	Incertidumbre Expandida °C	k, _{p=95,45 %}
60,1	60,0	0,1	1,7	2,0
109,7	110,0	-0,3	2,3	2.0


Tabla 1. Resultados de la calibración

Resultados de la Caracterización para 60 °C

Set Point 1	Estabilidad del	Uniformidad	Efecto de	Efecto de
	Medio ²	del Medio ³	Radiación ⁴	Carga ⁵
	°C	°C	°C	°C
60,00	0,24	0.74	0.22	

Tabla 2. Resultados de la caracterización

Sensor 1	Sensor 2	Sensor 3	Sensor 4	Sensor 5	Sensor 6	Sensor 7	Sensor 8	Sensor de Referencia
°C								
60,14	60,34	59,42	60.03	59,50	59.77	59.35	60.05	60.08

LM-PC-21-F-01 R7.1

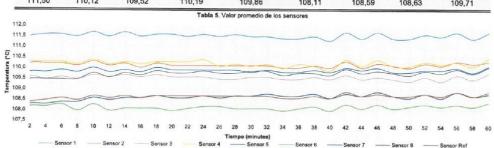
CASAGRANUE CUNSULIURIA Y
CONSTRUCCION S.A.C.

DAVID DE ISSUE GUERRA AVALA
INCENSOR SOLULIUM
AREAS GEOTEMINA VONCRETO

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratora de Metrología: CI 18 #1033-72 | laboratora de

T-22933-018 RO


Page / Pág. 3 de 4

RESULTADOS DE LA CALIBRACIÓN (Continuación)

Resultados de la Caraci	terización para 1	10 °C			
	Set Point 1	Estabilidad del Medio ² °C	Uniformidad del Medio ³ °C	Efecto de Radiación ⁴ °C	Efecto de Carga ⁵ °C
	110,00	0,46	1,79	0,65	

Tabla 4. Resultados de la caracterización

ensor 1	Sensor 2	Sensor 3	Sensor 4	Sensor 5	Sensor 6	Sensor 7	Sensor 8	Sensor de Referencia
°C	°C	°C	°C	°C	°C	°C	°C	°C
111,50	110,12	109,52	110,19	109,86	108,11	108,59	108,63	109,71

Gráfica 3. Estabilidad y uniformidad del medio

LM-PC-21-F-01 R7.1

CASAGRANDE CONSULTORIA Y
CONSTRUCCION S.A.C.

DAVID DE LESUS GUERRA AYALA
INGENIERO CIVIL
AREAS GEOTECNIA Y CONCRETO

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

T-22933-018 RO

Page / Pág 4 de 4

RESULTADOS DE LA CALIBRACIÓN (Continuación)

Definiciones

- ¹ Valor de temperatura programado en el controlador de equipo.
- ² Fluctuación de la temperatura determinada por un registro de datos durante un periodo mayor a 30 minutos, después de alcanzado el estado estable en la posición de referencia (centro del volumen útil).
- 3 Diferencia máxima de temperatura en un lugar de medición determinado por los extremos del volumen útil desde la posición de referencia (centro del volumen útil).
- ⁴ Intercambio de calor por radiación dado por la temperatura ambiente y la pared interna de la cámara que se diferencian a la temperatura del aire. Medida con un termómetro que está protegido contra la influencia de la pared con un escudo de radiación.
- ⁵ Máxima diferencia de temperatura encontrada por el sensor ubicado en la posición de referencia cuando el volumen útil del equipo está parcialmente ocupado y cuando se encuentra vacío. Prueba ejecutada a petición del cliente.

CONDICIONES AMBIENTALES

Temperatura Máxima 18.3 °C Temperatura Mínima 18,1 °C

Humedad Máxima 45 %HR Humedad Minima 45 %HR

INCERTIDUMBRE DE LA MEDICIÓN

La incertidumbre expandida de la medición reportada (página No. 2 Tablas de resultados), se establece como la incertidumbre estándar de medición multiplicada por el factor de cobertura k y la probabilidad de cobertura aproximadamente al 95 %. Basados en el documento: JCGM 100:2008. GUM 1995 with minor corrections. Evaluation of measurement data Guide to the expression of uncertainty in measurement. First Edition. September 2008.

TRAZABILIDAD

El/Los certificado(s) de calibración de el/los patrón(es) usado(s) como referencia para la calibración en cuestión, que se mencionan en la página dos se pueden descargar accediendo al enlace en el código QR.

0	В	S	E	R	V	Α	CI	0	N	Е	S

- 1. Se usa la coma como separador decimal.
- 2. Se adjunta la etiqueta de calibración No. T-22933-018

Fin del Documento

DAVID DE FSUS GUERRA AVALA INGENIERO CIVIL CIP Nº 285731 AREAS GEOTECNIA Y CONCRETO

CASAGRANDE CONSULTURIA Y

LM-PC-21-F-01 R7.1

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

ologia: Ci 18 #1033-72 | PBX 57 (1) 745 4555

Certificado de Calibración - Laboratorio de Temperatura

T-22933-019 RO

Calibration Certificate - Temperature Laboratory

Page / Pág 1 de 4 Equipo HORNO ELÉCTRICO Los resultados emitidos en este certificado se refleren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo **Fabricante PINZUAR** corresponden al ítem que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan Modelo PG-2005 derivarse del uso inadecuado de los instrumentos Número de Serie 102 y/o de la información suministrada por el solicitante. Identificación Interna HRN-003 Este certificado de calibración documenta y asegura la trazabilidad a patrones nacionales e Intervalo de Medición internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional 40 °C a 250 °C de Unidades (SI). Solicitante CASAGRANDE CONSULTORIA Y El usuario es responsable de la calibración de los instrumentos en apropiados intervalos de tiempo. CONSTRUCCION Dirección Jr. Quinua 570 The results issued in this certificate relates to the time and conditions under which the measurements were made. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that mey arise from the Cludad HUAMANGA - AYACUCHO improper use of the instruments and/or the information provided by the customer. Fecha de Calibración 2022 - 03 - 22 Fecha de Emisión 2022 - 03 - 29

Número de páginas del certificado, incluyendo anexos

This calibration certificate documents and ensures the traceability to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsible for recalibrating the measuring instruments at appropriate time intervals.

ación del Laboratorio de Metrología Pinzuar no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se

Without the approval of the Pinzuar Metrology Laboratory, the report can not be reproduced, except when it is repro-out of context. Unsigned calibration certificates are not valid.

Firmas Autorizadas

Ing. Sergio Iván Martinez

Tecg. Oscar Eduardo Briceño

LM-PC-21-F-01 R7

CONSTRUCCION S.A.C. DAVID DE JESUS GUERRA AVALA
INGENIERO CIVILI
AREAS GEOTECNIA V CONCRETO

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

de Metrologia: Cl 18 #1038-72 | PBX 57 (1) 745-4555 - 3174233640 | labrinetrologia@pinzuarcon

T-22933-019 RO

Page / Pág 2 de 4

DATOS TÉCNICOS

Método Empleado Comparación Directa

Documento de Referencia DAKKS DKD-R 5 - 7 Kalibrierung von Klimaschränken 1. Neuauflage 2010

Resolución 0,01 °C
Patrón(es) de referencia Termómetro Digital

Certificado de Calibración T-21368-003 R0 de Pinzuar / T-21368-001 R0 de Pinzuar

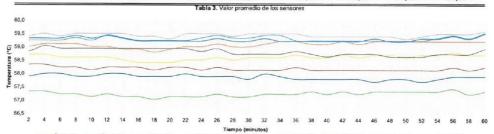
Volumen útil 800 L

RESULTADOS DE LA CALIBRACIÓN

Al medio isotermo en referencia se le efectuó una inspección visual y se determinó que estaba en buen estado. Se determinó que el medio presentaba una buena condición para la calibración, luego se procedió a la calibración y caracterización respectiva en los puntos acordados con el cliente ejecutando las pruebas estabilidad temporal y la uniformidad espacial.

Indicación del Patrón °C	Indicación del Equipo °C	Corrección °C	Incertidumbre Expandida °C	k, _{p=95,45} %
58,8	60,0	-1,2	2,0	2,0
108,3	110,0	-1,7	4,5	2,0

Tabla 1. Resultados de la calibración


Gráfica 1. Ubicación de los sensores

Resultados de la Caracterización para 60 °C

Set Point 1	Estabilidad del Medio ²	Uniformidad del Medio 3	Efecto de Radiación ⁴	Efecto de Carga ⁵
°C	°C	°C	°C	°C
60.00	0.22	1.58	0.58	

Tabla 2. Resultados de la caracterización

Sensor 1 °C	Sensor 2 °C	Sensor 3 °C	Sensor 4 °C	Sensor 5 °C	Sensor 6 °C	Sensor 7 °C	Sensor 8	Sensor de Referencia °C
59,31	59,10	59,45	58,63	59,29	57.25	57,88	58,20	58.83

LM-PC-21-F-01 R7.1

Gráfica 2. Estabilidad y uniformidad del medio

CASAGRANDE CONSULTORIA Y

AREAS GEOTECNIA Y CONCRETO

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratoro de Metrologia: CI 18 #1033-72 | PBX: 57 (1) 745 4555 | 3174233640 | jabrierologia prizuarcomo il WWW.PNZUARCOM.CX

Sensor 1 Sensor 2 Sensor 3

T-22933-019 RO

Sensor 6 Sensor 7 Sensor 8

Page / Pág. 3 de 4

RESULTADOS DE LA CALIBRACIÓN (Continuación) Resultados de la Caracterización para 110 °C

Sensor 4

Set Point 1	Estabilidad del	Uniformidad	Efecto de	Efecto de
	Medio ²	del Medio ³	Radiación ⁴	Carga ⁵
	°C	°C	°C	°C
110,00	0,54	3,01	2,35	

Tabla 4. Resultados de la caracterización

Sensor 5

°C	•	C	°C			°C			°C				°C		°C			°C			°C	
109,53	109	9,86	110,4	1	1	109,18	3		110,9	6		10	5,30	1	08,0	8	1	08,4	7		108	31
18,0						Ta	abla 5. \	/alor p	romed	lo de l	os ser	nsores										-
15,0																						
12,0																				1,8		
9,0																						
06,0																						
0,80																						

Tilempe (minutes)

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8 Sensor Ref

Gráfica 3. Estabilidad y uniformidad del medio

LM-PC-21-F-01 R7.1

CASAGRANDE CONSULTORIA Y
CONSTRUCÇION S.A.C.

DAVID DE JESUS GUERRA AYALA
INCENIERO CIVIL
CIP Nº 285731
AREAS GEOTECINA Y CONCRETO

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratore de Metrologia: CI 18 #1033-72 | PBX: 57 (1) 745 4555 - 3174233640 | Laboretrologia@ponzuarcom.co | WWW.PNZUAR.COM.CO

T-22933-019 RO

Page / Pág 4 de 4

RESULTADOS DE LA CALIBRACIÓN (Continuación)

Definiciones

- ¹ Valor de temperatura programado en el controlador de equipo.
- ² Fluctuación de la temperatura determinada por un registro de datos durante un periodo mayor a 30 minutos, después de alcanzado el estado estable en la posición de referencia (centro del volumen útil).
- ³ Diferencia máxima de temperatura en un lugar de medición determinado por los extremos del volumen útil desde la posición de referencia (centro del volumen útil).
- ⁴ Intercambio de calor por radiación dado por la temperatura ambiente y la pared interna de la cámara que se diferencian a la temperatura del aire. Medida con un termómetro que está protegido contra la influencia de la pared con un escudo de radiación.
- ⁵ Máxima diferencia de temperatura encontrada por el sensor ubicado en la posición de referencia cuando el volumen útil del equipo está parcialmente ocupado y cuando se encuentra vacío. Prueba ejecutada a petición del cliente.

CONDICIONES AMBIENTALES

Temperatura Máxima 19,2 °C Temperatura Minima 18,1 °C

Humedad Máxima 50 %HR Humedad Minima 49 %HR

INCERTIDUMBRE DE LA MEDICIÓN

La incertidumbre expandida de la medición reportada (página No. 2 Tablas de resultados), se establece como la incertidumbre estándar de medición multiplicada por el factor de cobertura k y la probabilidad de cobertura aproximadamente al 95 %. Basados en el documento: JCGM 100:2008. GUM 1995 with minor corrections. Evaluation of measurement data Guide to the expression of uncertainty in measurement. First Edition. September 2008.

TRAZABILIDAD

El/Los certificado(s) de calibración de el/los patrón(es) usado(s) como referencia para la calibración en cuestión, que se mencionan en la página dos se pueden descargar accediendo al enlace en el código QR.

0	В	S	E	R	٧	A	C	10	N	ES	

1. Se usa la coma como separador decimal.

LM-PC-21-F-01 R7.1

2. Se adjunta la etiqueta de calibración No. T-22933-019

Fin del Documento

CASAGRANDE CONSULTORIA Y DAVID DE JESUS GUERRA AYALA INGENIERO CIVIL CIP Nº 285731 ÁREAS GEOTECNIA Y CONCRETO

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

de Metrologia: Cl 18 #1033.72 | PBX, 57 (1) 745 4555 - 3174233640 | kabmetrologia@pirzuarcr

CERTIFICADOS DE CALIBRACION PIE DE REY

Certificado de Calibración - Laboratorio de Longitud

L-22933-016 RO

Los resultados emitidos en este certificado se refieren al momento y condiciones en que

relaciona en esta página. El laboratorio que

lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso

inadecuado de los instrumentos y/o de la información suministrada por el solicitante.

Este certificado documenta y asegura la trazabilidad a patrones nacionales e internacionales, que reproducen las

unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI). El usuario es responsable de la comprobación de los instrumentos en

The results issued in this certificate relates to the time and conditions under which the measurements. These results correspond to

the item that relates on page number one.

The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the costumer. This certificate documents and ensures the

traceability to national and internationals standards, which realize the units of

measurement according to the International

apropiados intervalos de tiempo.

realizaron las mediciones. Dichos resultados solo corresponden al item que se

Calibration Certificate - Dimensional Metrology Laboratory

Page / Pág. 1 de 3

Equipo PIE DE REY

Fabricante

Modelo

Número de Serie

Identificación Interna

Intervalo de Medición

Solicitante

Dirección

Ciudad

City

Fecha de Calibración

Fecha de Emisión

Número de páginas del certificado, incluyendo anexos

INSIZE

1215-322

0921170080

VRN-002

0 mm a 300 mm

CASAGRANDE CONSULTORIA Y

CONSTRUCCION SAC

Jr. Quinua 570

HUAMANGA - AYACUCHO

2022 - 03 - 22

2022 - 03 - 29

The user is responsable for checking the measuring instruments at appropriate time 03 intervals.

Sin la aprobación del Laboratorio de Metrología Pinzuar, no se puede reproducir el informe, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del certificado no se sacan de contexto. Los certificados sin firma no son válidos.

Without the approval of the Pinzuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the certificate are not taken out of context. Unsigned certificates are not valid.

Firmas Autorizadas

Ing. Sergio Iván Martínez Director Laboratorio de Metrología

Tecg. Jaiver Arnulfo López

System of Units (SI).

LM-PC-23-F-01 R8 0

ASAGRANDE CONSULTURIA Y CONSTRUCCION S.A.C. DAVID DE JESUS GUERRA AYALA INGENIERO CIVIL CIP Nº 285731 ÁREAS GEOTECNIA Y CONCRETO

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO de Metrologia: CL18 #1038 72 LPRX 57 (1) 725 3174233640 Labmetrologa@prizuar

L-22933-016 RO

Page / Pág. 2 de 3

DATOS TÉCNICOS

Tipo de Medición Método Empleado

Documento de Referencia Tipo de Indicación

Resolución

Instrumentos de Referencia Certificado No. Exteriores e Interiores Comparación Directa

DI - 008 del Centro Español de Metrología, Edición 1

Analógica Tipo Nonio

0,02 mm

-20 0

-40

Bloques Patrón Longitudinales de Caras Paralelas

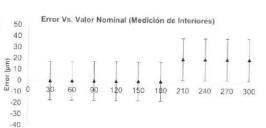
LMD201701 de Cidesi; 200295 de C.I.E.

RESULTADOS DE LA CALIBRACIÓN

Al equipo en referencia se le efectuó una inspección visual con la que se determinó que se encuentra en buen estado, las superficies de medición no presentan sobresaltos, por lo tanto, presenta una buena condición para la medición. Se procede a la realizar la toma de datos respectiva comparando la indicación del equipo con el valor nominal del bloque patrón iniciando la medición con la puesta a cero del equipo.

Tabla 1. Resultados de las Superficies para Medición de Exteriores

Nominal	Promedio	Error	Incertidumbre Expandida	k (p=95,45%)	
mm	mm	μm	μm		
30	30,000	0	18	2,00	
60	60,000	0	18	2,00	
90	90,000	0	18	2.00	
120	120,000	0	18	2,00	
150	150,020	20	18	2.00	
180	180,020	20	18	2,00	
210	210,020	20	19	2,00	
240	240,020	20	19	2.00	
270	270,020	20	19	2.00	
300	300,040	40	19	2,00	



120 150 180 210 240 270 300

Valor Nominal (mm)

Tabla 2. Resultados de las Superficies para Medición de Interiores

	Nominal	Promedio	Error	Incertidumbre Expandida	k	
_	mm	mm	μm	±μm	(p=95,45%)	
	30	30,000	0	17	2,01	
	60	60,000	0	17	2,01	
	90	90,000	0	17	2,01	
	120	120,000	0	17	2,01	
	150	150,000	0	17	2.00	
	180	180,000	0	18	2.00	
	210	210,020	20	19	2.00	
	240	240,020	20	19	2.00	
	270	270,020	20	19	2.00	
=	300	300,020	20	19	2,00	

Valor Nominal (mm)

LM-PC-23-F-01 R8.0

CASAGRANDE CUNSULTORIA Y DAVID DE JESUS GUERRA AYALA INGENIERO CIVIL CIP Nº 28571 AREAS GEOTECNIA V CONCRETO

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

oboratoro de Metrología: C118 #1033-72 | FBX 57 (1) 745 4555 | 3174233640 | labmetrologia@pinzuarcon

L-22933-016 RO

Page / Pág. 3 de 3

CONDICIONES AMBIENTALES

La calibración se llevó a cabo en en las instalaciones del Laboratorio de Metrología Pinzuar., las condiciones ambientales durante la ejecución fueron las siguientes:

Temperatura Máxima:

19,7 °C

Humedad Máxima: Humedad Mínima: 55 % 54 %

Temperatura Mínima:

INCERTIDUMBRE DE MEDICIÓN

La incertidumbre expandida de la medición reportada (página No. 2 Tablas de resultados), se establece como la incertidumbre estándar de medición multiplicada por el factor de cobertura k y la probabilidad de cobertura aproximadamente al 95 %. Basados en el documento: JCGM 100:2008. GUM 1995 with minor corrections. Evaluation of measurement data Guide to the expression of uncertainty in measurement. First Edition. September 2008.

TRAZABILIDAD

El/Los certificado(s) de calibración de el/los patrón(es) usado(s) como referencia para la calibración en cuestión, que se mencionan en la página dos se pueden descargar accediendo al enlace en el código QR.

OBSERVACIONES

1. Se usa la coma como separador decimal.

LM-PC-23-F-01 R8 0

2. Se adjunta la estampilla de calibración No. L-22933-016

Fin de Certificado

DAVID DE JESUS GUERRA AYALA INGENIERO CIVIL CIP Nº 285731 AREAS GEOTECHIA Y CONCRETO

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

obcrotoro de Metralogia: CLI 18 #1033-72 - LPBX, 57 (1) 745-4555 - 3.17.4233.640 Liabmetrologia@prizuarcomoo LWWWPN/ZUARCOMOC

CERTIFICADOS DE CALIBRACION MAQUINA A COMPRESION

F-22933-013 R0

Certificado de Calibración - Laboratorio de Fuerza

Calibration Certificate - Laboratory of Force

Page / Pág. 1 de 5

Equipo MÁQUINA MULTIUSOS PARA ENSAYOS A COMPRESIÓN

PS-27

50000 N

Fabricante PINZUAR S.A.S.

Modelo

Número de Serie 186

Identificación Interna PRC-001

Capacidad Máxima

Solicitante

CASAGRANDE CONSULTORIA Y CONSTRUCCION SAC

Dirección Jr. Quinua 570

Ciudad

HUAMANGA - AYACUCHO

Fecha de Calibración 2022 - 03 - 22

Fecha de Emisión

2022 - 03 - 29

Número de páginas del certificado, incluyendo anexos

Los resultados emitidos en este Certificado se refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados solo corresponden al ítem que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada por el solicitante.

Este Certificado de Calibración documenta y asegura la trazabilidad de los resultados a patrones nacionales e internacionales, que reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la Calibración de los instrumentos en apropiados intervalos de tiempo.

The results issued in this Certificate relates to the time and conditions under which the measurements. These results correspond to the measurements. These results correspond to the item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information provided by the customer.

This Calibration Certificate documents and ensures the traceability of the reported results to national and internationals standards, which realize the units of measurement according to the International System of Units (SI).

The user is responsable for Calibration the measuring instruments at appropriate time

intervals

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el Certificado, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las paríes del Certificado no se sacan de contexto. Los certificados de calibración sin firma no son válidos.

Without the approval of the Pinzuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the Certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan el Certificado

Ing. Sergio Iván Martínez

Ing. Miguel Andrés Vela Avellaneda

LM-PC-05-F-01 R12.0

DAVID DE JESUS GUERRA AYALA INGENIERO EVILL CIP Nº 285731 AREAS GEOTECNIA Y CONCRETO

CASAGRANDE CUNSULTURIA Y

F-22933-013 R0

DATOS TÉCNICOS

Máquina de Ensayo Bajo Calibración Instrumento(s) de Referencia
Clase 1,0

Dirección de Carga Compresión Instrumento Transductor de Fuerza de 50 kN Tipo de Indicación Digital Modelo 14711 División de Escala 1 N Clase 0.0 Resolución 1 N Número de Serie 620

Resolución 1 N Número de Serie 620
Intervalo de Medición Del 10 % al 100 % de la Certificado de Calibrado carga máxima. Calibración 4277 del INM

Calibrado carga máxima. Calibración 427/ del INM Límite Inferior de la Escala 200 N Próxima Calibración 2023 - 03 - 22

RESULTADOS DE LA CALIBRACIÓN

La calibración se efectuó siguiendo los lineamientos establecidos en el documento de referencia NTC-ISO 7500-1:2007 Materiales Metálicos. Verificación de Máquinas de Ensayo Uniaxiales Estáticos. Parte 1: Máquinas de Ensayo de Tracción/Compresión Verificación y Calibración del Sistema de Medida de Fuerza, en donde se especifica un intervalo de temperatura comprendido entre 10°C a 35°C, con una variación máxima de 2°C durante cada serie de medición. Se utilizó el método de comparación directa aplicando Fuerza Indicada Constante.

Se realizó una inspección general de la máquina y se determina que: Se puede continuar la calibración como se recibe el equipo

Tabla 1. Indicaciones como se recibió y se entregó la máquina después de ajuste

Indicación del IBC		S ₁	S ₂	S ₂ '	Equipo Patrón p S ₃	S ₄	Promedio
%	N	Ascendente N	Ascedente N	No Aplica	Ascendente N	No Aplica	S _{1,2y3}
10	5 000	5 013,6	5 013,1		5 013.9		5 013.6
20	10 000	10 025,5	10 025,6		10 025.7		10 025.6
30	15 000	15 036,8	15 037,3		15 036.7		15 036.9
40	20 000	20 047,6	20 047,0		20 047,3		20 047.3
50	25 000	25 057,2	25 056,5		25 056.7		25 056.8
60	30 000	30 066,3	30 066.2		30 065.8		30 066.1
70	35 000	35 075,6	35 074,9		35 074.9		35 075.1
80	40 000	40 084,2	40 084,9		40 084.5		40 084.5
90	45 000	45 094,4	45 095.0		45 094.4		45 094.6
100	50 000	50 104,8	50 104.7		50 104.6		50 104,7

LM-PC-05-F-01 R12.0

CASAGRANDE LUNSULIURIA Y
CONSTRUCCION S.A.C.

DAVID DE JESUS GUIERA AYALA
INGENIERO CIVIL
AREAS GEOTECINA Y CONCRETO

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO E CI 18 #1038/72 | IPBX 57 (1) 745 4555 | 3174233640 | labrierologia@pxx.arcomoo |

RESULTADOS DE LA CALIBRACIÓN Continuación...

Error realitivo de cero, f_0 , calculado para cada serie de medición a partir de su cero residual

f _{0,S1} %	f _{0,S2} %	f _{0,S2} . %	f _{0,S3} %	f _{0,S4} %
0,000	0,000		0,000	

Tabla 3. Resultados de la Calibración de la máquina de ensayo.

			Errores Relativo	S	Resolución	Incerti	dumbre	
Indicación del IBC		Indicación Repetibilidad		Reversibilidad	Relativa	Expandida		k p≈95%
		q	b	V	a		U	
%	N	%	%	%	%	N	%	
10	5 000,0	-0,270	0,016		0,020	4,5	0,090	2,01
20	10 000,0	-0,255	0,002		0,010	9,0	0,090	2,01
30	15 000,0	-0,245	0,004		0,007	14	0.090	2,01
40	20 000,0	-0,236	0,003		0,005	18	0,090	2,01
50	25 000,0	-0,227	0,003		0,004	23	0.090	2,01
60	30 000,0	-0,220	0,002		0.003	27	0,090	2.01
70	35 000,0	-0,214	0,002	and the later later	0,003	32	0.090	2.01
80	40 000,0	-0,211	0,002		0,003	36	0.090	2.01
90	45 000,0	-0,210	0,001		0,002	41	0,090	2.01
100	50 000,0	-0,209	0,000		0,002	45	0.090	2,01

CONDICIONES AMBIENTALES

Temperatura Ambiente Máxima: 20,4 °C Humedad Relativa Máxima: 47 % HR Temperatura Ambiente Mínima: 20,1 °C Humedad Relativa Mínima: 47 % HR

LM-PC-05-F-01 R12.0

CASAGRANDE CUNSULIURIA Y DAVID DE JESUS GUERRA AYALA INGENIERO CIVIL CIP Nº 285731 AREAS GEOTECNIA Y CONCRETO

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO abaratario de Metrologia: Cl 18 #103B-72 | FBX, 57 (1) 745 4555 - 3174233643 Lichmetrologia@pnzuara

F-22933-013 R0

Pág. 4 de 5

RESULTADOS DE LA CALIBRACIÓN Continuación...

Tabla 4.

Coeficientes para el cálculo de la fuerza en función de su defomación y su R², el cual refleja la bondad del ajuste del modelo a la variable.

Ao	A ₁	A ₂	A ₃	 R ²
-1,83833 E-01	1,00289 E00	-3,30427 E-08	3,44646 E-13	1,0000 E00

 $F = A_0 + (A_1 * X) + (A_2 * X^2) + (A_3 * X^3)$

Tabla 5. Valores calculados en función de la fuerza aplicada

Indicación N	0	500	1 000	1 500	2 000
5 000	5 013.5				
		5 514,8	6 016,0	6 517,3	7 018,5
7 500	7 519,8	8 021,0	8 522,2	9 023,4	9 524,6
10 000	10 025,8	10 526,9	11 028,1	11 529,2	12 030,3
12 500	12 531,5	13 032,6	13 533,7	14 034,7	14 535.8
15 000	15 036,9	15 538,0	16 039,0	16 540,1	17 041,1
17 500	17 542,1	18 043,1	18 544,2	19 045,2	19 546,2
20 000	20 047,2	20 548,1	21 049,1	21 550,1	22 051,1
22 500	22 552,0	23 053,0	23 554,0	24 054,9	24 555,9
25 000	25 056,8	25 557,7	26 058,7	26 559,6	27 060,5
27 500	27 561,5	28 062,4	28 563,3	29 064,2	29 565,2
30 000	30 066,1	30 567,0	31 067,9	31 568,8	32 069,8
32 500	32 570,7	33 071,6	33 572,5	34 073,4	34 574.3
35 000	35 075,3	35 576,2	36 077,1	36 578,0	37 079,0
37 500	37 579,9	38 080,8	38 581,8	39 082,7	39 583,7
40 000	40 084,6	40 585,6	41 086,5	41 587,5	42 088,4
42 500	42 589,4	43 090,4	43 591,4	44 092,4	44 593,4
45 000	45 094,4	45 595,4	46 096,4	46 597,4	47 098,4
47 500	47 599,5	48 100,5	48 601,6	49 102,6	49 603,7
50 000	50 104,8				7 mars 100 to 100 miles (100 to 100 t

Tabla 6. Valores Residuales

Indicación del IBC	Promedio S1, 2 y 3	Por Interpolación	Residuales	
N	N	N	N	
5 000	5 013,6	5 013,5	0	=
10 000	10 025,6	10 025.8	0	
15 000	15 036,9	15 036,9	0	
20 000	20 047,3	20 047,2	0	
25 000	25 056,8	25 056,8	0	
30 000	30 066,1	30 066,1	0	
35 000	35 075,1	35 075,3	0	
40 000	40 084,5	40 084,6	0	
45 000	45 094,6	45 094,4	0	
50 000	50 104 7	50 104 8	0	

CASAGRANUH CONSULIURIA Y
OONSTRUCCION S.A.C.

DAVID DE JESUS GUERRA AVALA
INGENIERO CIVIL
AREAS GEOTECNIA Y CONCRETO

LM-PC-05-F-01 R12.0

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratoro de Metrologia: Cl 18 #1038-72 | FBX. 57 (1) 745 4555 - 3174233640 | laboratrologia@pinzuarcompo | WWWPINZUARCOMCO

INCERTIDUMBRE DE MEDICIÓN

La incertidumbre expandida de la medición reportada (Tabla No.3), se establece como la incertidumbre estándar de medición multiplicada por el factor de cobertura k = 2,013 y la probabilidad de cobertura, la cual es del 95,45%, con una distribución "tstudent". La incertidumbre expandida fue estimada bajo los lineamientos del documento: JCGM 100:2008. GUM 1995 with minor corrections. Evaluation of measurement data Guide to the expression of uncertainty in measurement. First Edition. September 2008.

TRAZABILIDAD

El/Los certificado(s) de calibración de el/los patrón(es) usado(s) como referencia para la Calibración que se mencionan en la Pág. 2, se pueden descargar accediendo al enlace en el código QR.

CRITERIOS PARA LA CLASIFICACIÓN DE LA MÁQUINA DE ENSAYO

La siguiente Tabla proporciona los valores máximos permitidos, para los diferentes errores relativos del sistema de medición de fuerza y para la resolución relativa del indicador de fuerza que caracteriza una escala de la máquina de ensayo de acuerdo con la clase apropiada para sus ensayos según la sección 7 de la Norma NTC-ISO 7500-1:2007 Materiales Metálicos. Verificación de Máquinas de Ensayo Uniaxiales Estáticos. Parte 1: Máquinas de Ensayo de Tracción/Compresión Verificación y Calibración del Sistema de Medida de Fuerza

Clase de la escala de la máquina	Indicación	Repetibilidad	Reversibilidad*	Cero	Resolución relativa
0,5	0,5	0,5	0,75	0,05	0,25
1	1	1	1,5	0,1	0,5 ,
2	2	2	3	0,2	1
3	3	3	4,5	0,3	1.5

*El error realtivo de reversibilidad se determina solamente cuando es previamente solicitado por el cliente.

OBSERVACIONES

- 1. Se emplea la coma (,) como separador decimal.
- En cualquier caso, la máquina debe calibrarse si se realiza un cambio de ubicación que requiera desmontaje, o si se somete a ajustes o reparaciones importantes. Numeral 9. NTC-ISO 7500-1:2007
- 3. Con el presente Certificado de Calibración se adjunta la etiqueta de Calibración No. F-22933-013

Fin del Certificado

LM-PC-05-F-01 R12.0

CASAGRANDE CONSULTURIA Y
CONSTRUCCION S.A.C.

DAVID DE ESUS GUERRA AYALA
LICEN DE SESUS GUERRA AYALA
CIP Nº 285731
AREAS GEOTECNIA Y CONCRETO

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratoro de Metrologia: Cli 18 #1038.72 | PBX.57 (1) 7.45.4555 | 3174233640 | abmetrologia@prizuarcomica | WWWPINZUARCOMICC

Certificado de Calibración - Laboratorio de Fuerza

Calibration Certificate - Laboratory of Force

F-22933-011 R0

Los resultados emitidos en este Certificado se

refieren al momento y condiciones en que se realizaron las mediciones. Dichos resultados

solo corresponden al ítem que se relaciona en esta página. El laboratorio que lo emite no se responsabiliza de los perjuicios que puedan derivarse del uso inadecuado de los instrumentos y/o de la información suministrada

Este Certificado de Calibración documenta y

asegura la trazabilidad de los resultados a patrones nacionales e internacionales, que

reproducen las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

El usuario es responsable de la Calibración de

los instrumentos en apropiados intervalos de

The results issued in this Certificate relates to the time and conditions under which the measurements. These results correspond to the

item that relates on page number one. The laboratory, which will not be liable for any damages that may arise from the improper use of the instruments and/or the information

This Calibration Certificate documents and ensures the traceability of the reported results to

national and internationals standards, which realize the units of measurement according to

the International System of Units (SI).

The user is responsable for Calibration the measuring instruments at appropriate time

provided by the customer.

intervals.

por el solicitante.

Page / Pág. 1 de 5

Equipo MÁQUINA DIGITAL DOBLE RANGO PARA ENSAYOS Instrument DE CONCRETOS

Fabricante PINZUAR S.A.S.

Modelo PC-42D

Número de Serie 284

Identificación Interna PDC-001

Capacidad Máxima 1000 kN

Solicitante CASAGRANDE CONSULTORIA Y

construccion sac

Dirección Jr. Quinua 570

Ciudad HUAMANGA - AYACUCHO

Fecha de Calibración 2022 – 03 – 22

Fecha de Emisión 2022 – 03 – 29

Número de páginas del certificado, incluyendo anexos

e of Issue

Number of pages of the certificate and documents attached

Sin la aprobación del Laboratorio de Metrología Pinzuar no se puede reproducir el Certificado, excepto cuando se reproduce en su totalidad, ya que proporciona la seguridad que las partes del Certificado no se sacen de contexto. Los certificados de calibración sin firma no son válidos.

Without the approval of the Pinzuar Metrology Laboratory, the report can not be reproduced, except when it is reproduced in its entirety, since it provides the security that the parts of the Certificate are not taken out of context. Unsigned calibration certificates are not valid.

Firmas que Autorizan el Certificado

Signatures Authorizing the Certificate

Ing. Sergio Iván Martínez

OAVID DEJESUS GUERRA AVALA
MIGENIERO CIVIL
AREAS EGRENA AVALA
LING MIGUEL AND CONCRETO
LING MIGUEL AND CONCRETO

Ing. Miguel Andrés Vela Avellaneda Metrólogo Laboratorio de Metrología

LM-PC-05-F-01 R12.0

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratorio de Mistralogía: CL 1.8 #1038-72 | TPBX, 57 (1) 745-4555 - 3174233640 | abmetrologia@pinzuarcom.co | WWW.PINZUAR.COM.CC

F-22933-011 R0 Pág. 2 de 5

DATOS TÉCNICOS

Máquina de Ensayo Bajo Calibración Instrumento(s) de Referencia Clase 1.0 Dirección de Carga Compresión Instrumento Transductor de Fuerza de 1 MN Tipo de Indicación Digital Modelo KAL 1MN División de Escala 0,01 kN Clase 0,5 Resolución 0,01 kN Número de Serie HV325-911250 Intervalo de Medición Del 20 % al 100 % de la Certificado de 5047 del INM Calibrado carga máxima. Calibración Límite Inferior de la Escala 2 kN Próxima Calibración 2023-02-03

RESULTADOS DE LA CALIBRACIÓN

La calibración se efectuó siguiendo los lineamientos establecidos en el documento de referencia NTC-ISO 7500-1:2007 Materiales Metálicos. Verificación de Máquinas de Ensayo Uniaxiales Estáticos. Parte 1: Máquinas de Ensayo de Tracción/Compresión Verificación y Calibración del Sistema de Medida de Fuerza, en donde se específica un intervalo de temperatura comprendido entre 10°C a 35°C, con una variación máxima de 2°C durante cada serie de medición. Se utilizó el método de comparación directa aplicando Fuerza Indicada Constante.

Se realizó una inspección general de la máquina y se determina que: Se puede continuar la calibración como se recibe el equipo

Tabla 1. Indicaciones como se recibió y se entregó la máquina después de ajuste

Indicación del IBC		S ₁	S ₂	S ₂ '	S ₃	S ₄	Promedio
%	kN	Ascendente kN	Ascedente kN	No Aplica	Ascendente kN	No Aplica	S _{1,2y3} kN
10	100,00	100,81	101,01		100,71		100,84
20	200,00	201,76	201,26		201,86		201,63
30	300,00	301,79	302,39		302,39		302,19
40	400,00	402,31	402,51		402.31		402.38
50	500,00	503,02	503,53		503,53		503.36
60	600,00	603,93	603,33		603.63		603,63
70	700,00	703,92	704,12		704.02		704,02
80	800,00	804,42	804,82		804.82		804.68
90	900,00	905,21	904,91		905,41		905,18
100	1 000,00	1 005,3	1 005,5		1 005.4		1 005.4

LM-PC-05-F-01 R12.0

CASAGRANDE CONSULTORIA Y
CONSTRUCCION S.A.C.

DAVID DESESUS GUERRA AVALA
INGENIERO CIVILI
AREAS GEOTECNIA Y CONCRETO

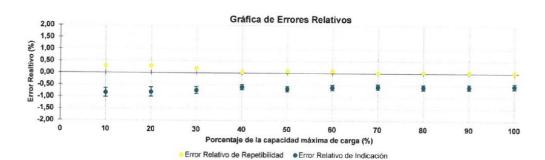
ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratorio de Metrología: Cl. 18. #1038-72. LPBX: 57 (1) 745-4555 - 3174233640 Laborretrología@pinzuarcom.co LWWWPINZUAR.COM.CO

ISO/IEC 17025:2017 11-LAC-004 F-22933-011 R0

Pág. 3 de 5

RESULTADOS DE LA CALIBRACIÓN Continuación...


Tabla 2.

Error realitivo de cero, f_0 , calculado para cada serie de medición a partir de su cero residual

f _{0,S1} %	f _{0,S2} %	f _{0,82} ,	f _{0,S3} %	f _{0,S4} %
0,000	0,000		0,000	

Tabla 3. Resultados de la Calibración de la máquina de ensayo.

		Errores Relativos			Resolución Relativa	Incertidumbre Expandida		k p≈95%
Indicación del IBC		Indicación Repetibilidad	Reversibilidad					
		g b	b	v	a	U		p-33.7
%	kN	%	%	%	%	kN	%	
10	100,00	-0,84	0,30		0.010	0,19	0,19	2,01
20	200,00	-0,81	0,30		0.005	0.39	0,20	2,01
30	300,00	-0,73	0,20		0.003	0.44	0,15	2,01
40	400,00	-0,59	0,05		0,003	0.44	0,11	2.01
50	500,00	-0,67	0.10		0.002	0,55	0,11	2,01
60	600,00	-0,60	0,10		0,002	0.66	0,11	2,01
70	700,00	-0,57	0.03		0.001	0,77	0,11	2,01
80	800,00	-0,58	0,05		0,001	0,88	0,11	2,01
90	900,00	-0,57	0.06		0.001	0.99	0,11	2,01
100	1 000,0	-0,54	0,02		0.001	1,1	0,11	2,01

CONDICIONES AMBIENTALES

CASACRANDE CONSULTORIA Y DAVID OF JESUS QUERRA AYALA INGENIERO CIVIL CIP Nº 285731 AREAS GEOTECNIA Y CONCRETO

Temperatura Ambiente Máxima: 19.4 °C Humedad Relativa Máxima: 46 % HR

Temperatura Ambiente Minima:

19,1 °C Humedad Relativa Minima: 45 % HR

LM-PC-05-F-01 R12.0

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

F-22933-011 R0

Pág. 4 de 5

RESULTADOS DE LA CALIBRACIÓN Continuación...

Tabla 4.

Coeficientes para el cálculo de la fuerza en función de su defomación y su R², el cual refleja la bondad del ajuste del modelo a la variable.

A ₀	A ₁	A ₂	A ₃	 R ²
2,93500 E-01	1,00636 E00	-1,25233 E-06	8,06138 E-11	1,0000 E00

 $F = A_0 + (A_1 * X) + (A_2 * X^2) + (A_3 * X^3)$

Tabla 5. Valores calculados en función de la fuerza aplicada

Indicación kN	0,00	10,00	20,00	30,00	40,00
100,00	100,92	110,98	121,04	131,10	141,16
150,00	151,22	161,28	171,34	181,40	191.46
200,00	201,52	211,57	221,63	231,69	241.75
250,00	251,81	261,86	271,92	281,98	292.03
300,00	302,09	312,15	322,20	332,26	342,31
350,00	352,37	362,42	372,48	382,53	392,59
400,00	402,64	412,70	422,75	432,80	442,86
450,00	452,91	462,96	473,01	483,07	493,12
500,00	503,17	513,22	523,27	533,32	543,38
550,00	553,43	563,48	573,53	583,58	593,63
600,00	603,68	613,73	623,77	633,82	643,87
650,00	653,92	663,97	674,02	684,06	694,11
700,00	704,16	714,21	724,25	734,30	744.35
750,00	754,39	764,44	774,48	784,53	794,58
800,00	804,62	814,67	824,71	834,76	844.80
850,00	854,84	864,89	874,93	884.98	895.02
900,00	905,06	915,10	925,15	935,19	945,23
950,00	955,27	965,32	975,36	985,40	995,44
1 000,00	1 005,5			,10	200,11

Tabla 6. Valores Residuales

Indicación del IBC	Promedio S1, 2 y 3	Por Interpolación	Residuales kN	
kN	kN	kN		
100,00	100,84	100,92	0,07	
200,00	201,63	201,52	- 0.11	
300,00	302,19	302,09	- 0,10	
400,00	402,38	402,64	0.26	
500,00	503,36	503,17	- 0.19	
600,00	603,63	603.68	0.05	
700,00	704,02	704,16	0,14	
800,00	804,68	804,62	- 0.06	
900,00	905,18	905.06	- 0,12	
1 000,00	1 005,4	1 005,5	0.08	

CASAGRANDE CONSULTORIA Y
CONSTRUCCION S.A.C.

DAVID DE JESUS GUERRA AVALA
NICENERO CIVIL
AREAS GEORGEMA Y CONCRETO

LM-PC-05-F-01 R12.0

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratorio de Metrología: CL18 #1038-72 1 FBX, 57 (1) 745-4555 - 3174233640 Liobmetrologia@przuar.com.cc. LWWWPNZLAP.com.cc.

F-22933-011 R0 Pég. 5 de 5

INCERTIDUMBRE DE MEDICIÓN

La incertidumbre expandida de la medición reportada (Tabla No.3), se establece como la incertidumbre estándar de medición multiplicada por el factor de cobertura k = 2,013 y la probabilidad de cobertura, la cual es del 95,45%, con una distribución "t-student". La incertidumbre expandida fue estimada bajo los lineamientos del documento: JCGM 100:2008. GUM 1995 with minor corrections. Evaluation of measurement data Guide to the expression of uncertainty in measurement. First Edition. September 2008.

TRAZABILIDAD

El/Los certificado(s) de calibración de el/los patrón(es) usado(s) como referencia para la Calibración que se mencionan en la Pág. 2, se pueden descargar accediendo al enlace en el código QR.

CRITERIOS PARA LA CLASIFICACIÓN DE LA MÁQUINA DE ENSAYO

La siguiente Tabla proporciona los valores máximos permitidos, para los diferentes errores relativos del sistema de medición de fuerza y para la resolución relativa del indicador de fuerza que caracteriza una escala de la máquina de ensayo de acuerdo con la clase apropiada para sus ensayos según la sección 7 de la Norma NTC-ISO 7500-1:2007 Materiales Metálicos. Verificación de Máquinas de Ensayo Uniaxiales Estáticos. Parte 1: Máquinas de Ensayo de Tracción/Compresión Verificación y Calibración del Sistema de Medida de Fuerza

Clase de la escala de la máquina	Indicación	Repetibilidad	Reversibilidad*	Cero	Resolución relativa
0,5	0,5	0,5	0,75	0,05	0,25
1	1	1	1,5	0,1	0,5
2	2	2	3	0,2	1
3	3	3	4,5	0.3	1.5

*El error realtivo de reversibilidad se determina solamente cuando es previamente solicitado por el cliente.

OBSERVACIONES

- 1. Se emplea la coma (,) como separador decimal.
- En cualquier caso, la máquina debe calibrarse si se realiza un cambio de ubicación que requiera desmontaje, o si se somete a ajustes o reparaciones importantes. Numeral 9. NTC-ISO 7500-1:2007
- 3. Con el presente Certificado de Calibración se adjunta la etiqueta de Calibración No. F-22933-011

Fin del Certificado

LM-PC-05-F-01 R12.0

CASAGRANDE CONSULTURIA Y
CONSTRUCCION S.A.C.

DAVID DE ISUS GUERRA AVALA
INCENIERO CIVIL
AREAS GEOTECINIA Y CONCRETO

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

Laboratoro de Metrología: CI 18 #1038-72 | FBX, 57 (1) 745-4555 - 3174233640 | labmetrologica@arzuar.comico | WWW.PNZUAR.CCM.CC

Anexo 08. Reporte de turnitin

Anexo 09. Panel fotográfico

Imagen 01: Excavación de Calicata C-01

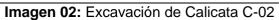


Imagen 03: Excavación de Calicata C-03

Imagen 04: Excavación de Calicata C-04

Imagen 05: Ensayo de PDC-01

Imagen 06: Ensayo de PDC-02

Imagen 07: Ensayo de PDC-03

Imagen 08: Ensayo de PDC-04

Imagen 09: Ensayo de PDC-05

Imagen 10: Ensayo de PDC-06

Imagen 11: Ensayo de PDC-07

Imagen 12: Ensayo de PDC-08

Imagen 13: Ensayo de PDC-10

Imagen 14: Ensayo de PDC-11

Imagen 15: Hornos artesanales

Imagen 16: Hornos artesanales

Imagen 17: Toma de muestra-ceniza de madera

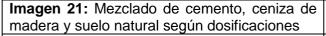

Imagen 18: Muestra de ceniza de madera

Imagen 19: Suelo natural y ceniza de madera

Imagen 20: Mezclado de ceniza de madera y suelo natural según dosificaciones

Imagen 22: Mezclado de cemento, ceniza de madera y suelo natural según dosificaciones

Imagen 23: Mezclado de cemento, ceniza de madera y suelo natural según dosificaciones

Imagen 24: Mezclado de cemento, ceniza de madera y suelo natural según dosificaciones

Imagen 25: Ensayo de Análisis granulométrico según dosificaciones

Imagen 26: Ensayo de Análisis granulométrico según dosificaciones

Imagen 27: Ensayo de limite plástico según dosificaciones

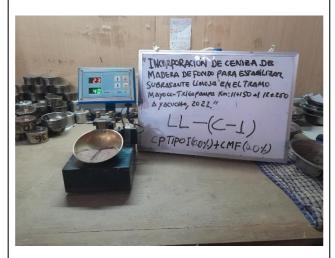

Imagen 28: Ensayo de limite plástico según dosificaciones

Imagen 29: Mezclado de cemento, ceniza de madera y suelo natural según dosificaciones

Imagen 30: Mezclado de cemento, ceniza de madera y suelo natural según dosificaciones

THORPORATION DE CENIRA DE MADRA DE PONDE PARA ESTABLISAR SUBJASANTE LIMOJA RIVEL TRAMO MAJOCC-TRÍGIPANAS KRISHISDA I 12-250 A YACUCHA, 2022."

LL—(C—2)
CPTIPO I(3,0)/J+CMF(2,5/)

Imagen 31: Ensayo de Limite liquido según dosificaciones

Imagen 32: Ensayo de Limite liquido según dosificaciones

Imagen 33: Ensayo de Limite liquido según dosificaciones

Imagen 34: Ensayo de Limite liquido según dosificaciones

Imagen 35: Ensayo de Proctor modificado según dosificaciones

Imagen 36: Ensayo de Proctor modificado según dosificaciones

Imagen 37: Ensayo de CBR según dosificaciones

Imagen 38: Ensayo de CBR según dosificaciones

Imagen 39: Ensayo de resistencia a la compresión simple según dosificaciones

Imagen 40: Ensayo de resistencia a la compresión simple según dosificaciones

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Declaratoria de Autenticidad del Asesor

Yo, MEDRANO SANCHEZ EMILIO JOSÉ, docente de la FACULTAD DE INGENIERÍA Y ARQUITECTURA de la escuela profesional de INGENIERÍA CIVIL de la UNIVERSIDAD CÉSAR VALLEJO SAC - LIMA NORTE, asesor de Tesis Completa titulada: "Incorporación de ceniza de madera de fondo para estabilizar subrasante limosa en el tramo Mayocc-Trigopampa km:11+150 al 12+250, Ayacucho, 2022", cuyos autores son NUÑEZ PIANTO EDGAR, QUISPE GALLEGOS CESAR JUAN, constato que la investigación tiene un índice de similitud de 28.00%, verificable en el reporte de originalidad del programa Turnitin, el cual ha sido realizado sin filtros, ni exclusiones.

He revisado dicho reporte y concluyo que cada una de las coincidencias detectadas no constituyen plagio. A mi leal saber y entender la Tesis Completa cumple con todas las normas para el uso de citas y referencias establecidas por la Universidad César Vallejo.

En tal sentido, asumo la responsabilidad que corresponda ante cualquier falsedad, ocultamiento u omisión tanto de los documentos como de información aportada, por lo cual me someto a lo dispuesto en las normas académicas vigentes de la Universidad César Vallejo.

LIMA, 16 de Marzo del 2023

Apellidos y Nombres del Asesor:	Firma
MEDRANO SANCHEZ EMILIO JOSÉ	Firmado electrónicamente
DNI: 21815819	por: EMEDRANOS el 16-
ORCID: 0000-0003-0002-5876	03-2023 11:17:05

Código documento Trilce: TRI - 0537196

