
PONTIFICAL CATHOLIC UNIVERSITY OF MINAS GERAIS

DISTANCE EDUCATION CENTER

Postgraduate Summer of Sense in Full Stack Web Development

Samuel Gallo Da Silva Jorge

ADMINISTRATIVE PANEL FOR E-COMMERCE

Rio de Janeiro

2020



Samuel Gallo Da Silva Jorge

ADMINISTRATIVE PANEL FOR E-COMMERCE

Completion of course work presented to the

Specialization Course in Full Stack Web

Development as a partial requirement to obtain

the specialist title.

Rio de Janeiro

2020



SUMMARY

This application aims to implement an administrative panel for electronic

commerce, so that people who do not have advanced knowledge can use it and that

it is fast and makes use of modern technologies. With simple and intuitive usability,

containing the essential resources for managing a virtual store and that can be used

both in desktop environments and in mobile environments, a user can manage their

products, their orders and their customers through the administrative panel. Using

modern and easy-to-maintain technologies and the creation of new resources, this

application is easily scalable and customizable, given that the architecture standard

used is MVC (Model-View-Control), and also has a library of tests that verify correct

operation. of the main functionalities of the application.

Keywords: Node.js. Express.js. MongoDB. Mongoose. Ecommerce. Web

application.



SUMMARY

1. Presentation 5

1.1. Context 5

1.1. Target Audience 5

1.2. Requirements 6

2. Modeling 8

2.1. Use Case Diagram 8

2.2. actors 8

2.3. Details of use cases 9

2.4. Interfaces 22

2.5. class diagram 38

3. Project 40

3.1. software architecture 40

3.2. Information Architecture 41

4. Testes 43

5. URLs 45

5.1. web application 45

5.2. source code repository 45

5.3. Job presentation video 45

REFERENCES 46



5

 1. Presentation

 1.1. Context

The purpose of the application is to provide a user-friendly interface for

managing an e-commerce business, as the existing ones on the market are often

very complicated to use, and have many features that are not used. The use of the

application is made for people or small companies that want to simplify or even start

their online business but with little investment power, the technologies chosen for the

development of the application are the most current in the market and the simplest,

thus giving powers to the owner of the code can scale the application according to

his needs.

 1.1. Target Audience

In this application the target audience are people or companies that need an

administrative panel for their online store, the application is easy to understand and

requires little prior knowledge of e-commerce so that the application can be used in

its entirety, knowledge such as the basics of SEO (Search Engine Optimization),

knowledge in Marketing for better exposure and architecture of store products. The

application has simple resources so that an e-commerce analyst or even the product

owner can create, change and delete products and pages with an intuitive and limited

interface so that even users who do not have prior knowledge can maintain the

application. The expectation is that with a few hours of work you will have a

ready-to-use e-commerce ecosystem with different user roles.

 1.2. Requirements

The table below presents the list of functional requirements for the application.



6

ID Functional requirement Description

RF-01 Login and Registration Registration of new users. Registration is
necessary to access the full application
as well as define the roles of each user
and manage the application's features.

RF-02 Functional access control The application must have user roles
distributed between Admin, Analyst and
Assistant where the Admin has all the
permissions the Analyst can register and
make modifications and the Assistant can
only see the data.

RF-03 application menu The application must have a side menu
that gives access to all application
options.

RF-04 registration screens In all application options, there should be
a main screen where all the data of that
entity and its options to add, change or
delete can be listed.

RF-05 master/detail screen The application must have a screen
where the details of an entity can be
registered.

RF-06 transaction screens The application must be able to download
and import products through .csv files. It
should also have the option of registering
data related to the business in question,
such as name, telephone number and
address.

RF-07 Statistics graphic report The application must have graphics on
the main screen that display quantities of
products and the number of users and
their roles.

The table below presents the list of non-functional requirements of the

application.

ID Functional
requirement

Description

RNF-01 OAuth Integration You must have the option to log in using a
Google or Linkedin account.



7

RNF-02 Responsiveness The application must be accessible to all
devices remotely, tablets, cell phones and
computers.

RNF-03 Database The application must use a non-relational
database such as MongoDB.

RNF-04 server The application must use Node.js and
Express as the main web framework.

RNF-05 Endpoints The application must have endpoints
where the front-end can connect to
display the site's data.

RNF-06 Availability The application must be online 99% of the
time.

RNF-07 Programming language The application must be written in
Javascript language.

RNF-08 Cross Browser The application must work in the main
browsers of today.

RNF-09 cloud storage The download, upload and image files
must be stored in the cloud using for
example AWS S3.

RNF-10 Versioning The application must have file version
control.

 2. Modeling

 2.1. Use Case Diagram



8

Figure 1: Use case diagram.

 2.2. actors

The application foresees four actors for interaction with the developed

functionalities:

● Admin - Has all permissions within the application, with this user it is possible

to view, edit, register and delete freely within the application, this user also has

the privilege to change or create the site configuration data.

● Analyst - Has permission to view, create and edit site data, but does not have

permission to delete or change site configuration data.

● Assistant - This user can view site information and can create new data, but is

not able to edit, delete, or access configuration information.

● Front-End (API) - It only has the option to view data from the main page,

products, categories and pages.

 2.3. Details of use cases

Table 3. Use case breakdown - Login

Name Login

Description User must provide email and password to access the
application.

actors Admin, Analyst, Assistant

Precondition Valid email and password.

Postcondition The application creates a session for the user.

Basic Flow 1. The user enters the website.
2. The user enters his email and password in the form

fields or use the login option through social



9

networks.
3. The User clicks the Sign in button.
4. The user is redirected to the main screen
5. Closed use case.

Alternative Flow 3. The user has an incorrect email or password.
3.1 The application returns to step 1 and displays
an error message.

Exception Flow 2. The user does not have a login in the application.
2.1 The user must register or use the login through
social networks.

Table 4. Details of use cases - Registration

Name User registration

Description The user logs into the application.

actors guest user

Precondition First name, Last name, Email and Password.

Postcondition The application redirects to the login screen.

Basic Flow 1. The user enters the website.
2. Click on the Register button.
3. The user enters his First Name, Last Name, Email

and his password in the fields of the form.
4. The User clicks on the Save button.
5. The user is redirected to the login screen.
6. Closed use case.

Alternative Flow 1. The user uses the login option through social
networks.

Exception Flow 4. The user already registered in the application.
4.1 The application redirects to the login screen
and displays an error message.

Table 5. Use case breakdown - Login via social networks

Name Login via social networks



10

Description The user must login using Google or Linkedin.

actors guest user

Precondition Registration on social networks.

Postcondition The application creates a session for the user.

Basic Flow 1. The user enters the website.
2. The user selects one of the social network options

and clicks the button.
3. On the screen that opens, the user enters his data.
4. The user is redirected to the main screen
5. Closed use case.

Alternative Flow 1. The user clicks the Register button.
3.1 The user fills in his data and registers in the
application.

Exception Flow -

Table 6. Use case breakdown - Edit settings

Name edit settings

Description The user changes application information.

actors Admin

Precondition The user must be logged into the application as admin

Postcondition The application reloads the edit page.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the Settings option in the side

menu.
4. The user changes the data he wants.
5. The user clicks save.
6. Closed use case.

Alternative Flow -

Exception Flow 5. An error occurs while saving the data.
5.1 The application redirects to the 503 error page
and displays a message.



11

Table 7. Details of use cases - Download of registered products

Name Registered product downloads

Description The user downloads the products registered in the
application.

actors Admin, Analyst

Precondition The user must be logged into the application as Admin or
Analyst

Postcondition The application reloads the page.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the Products option in the side

menu.
4. The user clicks the Export link.
5. The user saves the generated csv file.
6. Closed use case.

Alternative Flow -

Exception Flow 5. An error occurs while downloading the data.
1.1 The application redirects to the 503 error page
and displays a message.

Table 8. Use case breakdown - Importing products

Name Import of products

Description User imports products from a csv file.

actors Admin, Analyst

Precondition The user must be logged into the application as Admin or
Analyst

Postcondition The application redirects to the products page.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the Products option in the side

menu.
4. The user clicks the Import link.
5. The user clicks the Choose File button.



12

6. The user chooses the file to be imported.
7. The user clicks the Upload button.
8. Closed use case.

Alternative Flow -

Exception Flow 7. An error occurs while downloading the data.
1.1 The application redirects to the 503 error page
and displays a message.

Table 9. Use case breakdown - Product listing

Name product listing

Description The user lists all the products registered in the
application.

actors Admin, Analyst, Assistant, Front-end

Precondition The user must be logged into the application or access
the application through the /api/products endpoint.

Postcondition The application returns a list of products.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the Products option in the side

menu.
4. Closed use case.

Alternative Flow -

Exception Flow 3. An error occurs while saving the data.
1.1 The application redirects to the 503 error page
and displays a message.

Table 10. Use case breakdown - Product registration

Name Product registration

Description The user registers products in the application.



13

actors Admin, Analyst, Assistant

Precondition The user must be logged into the application as Admin or
Analyst

Postcondition The application redirects to the products page.

Basic Flow 5. The user enters the website.
6. The user logs in.
7. The user clicks on the Products option in the side

menu.
8. The user clicks the New Product button.
9. The user fills in the data.
10.The user clicks the Save button.
11. Closed use case.

Alternative Flow -

Exception Flow 6. An error occurs while saving the data.
1.1 The application redirects to the 503 error page
and displays a message.

Table 11. Use case breakdown - Editing products

Name Product editing

Description The user edits products in the application.

actors Admin, Analyst

Precondition The user must be logged into the application as Admin or
Analyst

Postcondition The application redirects to the products page.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the Products option in the side

menu.
4. The user chooses the product to be edited and

clicks on the edit button.
5. The user fills in the data.
6. The user clicks the Save button.
7. Closed use case.

Alternative Flow -



14

Exception Flow 6. An error occurs while saving the data.
6.1 The application redirects to the 503 error page
and displays a message.

Table 12. Use case breakdown - Delete products

Name delete products

Description The user deletes the product in the application.

actors Admin

Precondition The user must be logged into the application as Admin

Postcondition The application redirects to the products page.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the Products option in the side

menu.
4. The user chooses the product to be deleted and

clicks on the delete link.
5. The user confirms the action.
6. Closed use case.

Alternative Flow -

Exception Flow 5. An error occurs while deleting the data.
5.1 The application redirects to the 503 error page
and displays a message.

Table 13. Use Case Breakdown - Category Listing

Name category listing

Description The user lists all categories registered in the application.

actors Admin, Analyst, Assistant, Front-end

Precondition The user must be logged into the application or access
the application through the /api/categories endpoint.

Postcondition The application returns a list of categories.



15

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the optionCategories no menu

lateral.
4. Closed use case.

Alternative Flow -

Exception Flow 4. An error occurs while saving the data.
1.1 The application redirects to the 503 error page
and displays a message.

Table 14. Details of use cases - Registration of categories

Name Category registration

Description The user registers a category in the application.

actors Admin, Analyst, Assistant

Precondition The user must be logged into the application as Admin or
Analyst

Postcondition The application redirects to the category page.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the optionCategories no menu

lateral.
4. The user clicks the New Category button.
5. The user fills in the data.
6. The user clicks the Save button.
7. Closed use case.

Alternative Flow -

Exception Flow 6. An error occurs while saving the data.
6.1 The application redirects to the 503 error page
and displays a message.

Table 15. Use case breakdown - Editing categories



16

Name category editing

Description The user edits categories in the application.

actors Admin, Analyst

Precondition The user must be logged into the application as Admin or
Analyst

Postcondition The application redirects to the category page.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the optionCategories no menu

lateral.
4. The user chooses the category to be edited and

clicks on the edit button.
5. The user fills in the data.
6. The user clicks the Save button.
7. Closed use case.

Alternative Flow -

Exception Flow 6. An error occurs while saving the data.
6.1 The application redirects to the 503 error page
and displays a message.

Table 16. Use case breakdown - Delete category

Name delete categories

Description The user deletes categories in the application.

actors Admin

Precondition The user must be logged into the application as Admin

Postcondition The application redirects to the category page.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the optionCategories no menu

lateral.
4. The user chooses the category to be deleted and

clicks on the delete link.
5. The user confirms the action.



17

6. Closed use case.

Alternative Flow -

Exception Flow 5. An error occurs while deleting the data.
1.1 The application redirects to the 503 error page
and displays a message.

Table 17. Use case breakdown - User listing

Name user listing

Description The user lists all users registered in the application.

actors Admin, Analyst, Assistant

Precondition The user must be logged into the application.

Postcondition The application returns a list of users.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the Products option in the side

menu.
4. Closed use case.

Alternative Flow -

Exception Flow 3. An error occurs while saving the data.
1.1 The application redirects to the 503 error page
and displays a message.

Table 18. Use case details - User registration

Name User registration

Description The user registers a user in the application.

actors Admin, Analyst

Precondition The user must be logged into the application as Admin or



18

Analyst

Postcondition The application redirects to the users page.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the Customers option in the side

menu.
4. The user clicks the New Customer button.
5. The user fills in the data.
6. The user clicks the Save button.
7. Closed use case.

Alternative Flow -

Exception Flow 6. An error occurs while saving the data.
6.1 The application redirects to the 503 error page
and displays a message.

Table 19. Use case breakdown - Editing users

Name User Editing

Description The user edits categories in the application.

actors Admin, Analyst

Precondition The user must be logged into the application as Admin or
Analyst

Postcondition The application redirects to the users page.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the Customers option in the side

menu.
4. The user chooses the data to be edited and clicks

on the edit button.
5. The user fills in the data.
6. The user clicks the Save button.
7. Closed use case.

Alternative Flow -

Exception Flow 6. An error occurs while saving the data.
6.1 The application redirects to the 503 error page
and displays a message.



19

Table 20. Use case breakdown - Delete user

Name delete users

Description The user deletes users in the application.

actors Admin

Precondition The user must be logged into the application as Admin

Postcondition The application redirects to the users page.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the Customers option in the side

menu.
4. The user chooses the user to be deleted and clicks

on the delete link.
5. The user confirms the action.
6. Closed use case.

Alternative Flow -

Exception Flow 5. An error occurs while deleting the data.
5.1 The application redirects to the 503 error page
and displays a message.

Table 21. Use Case Breakdown - Page Listing

Name Page listing

Description The user lists all pages registered in the application.

actors Admin, Analyst, Assistant, Front-end

Precondition The user must be logged into the application or access
through the /api/pages endpoint.

Postcondition The application returns a list of pages.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the Products option in the side



20

menu.
4. Closed use case.

Alternative Flow -

Exception Flow 3. An error occurs while saving the data.
1.1 The application redirects to the 503 error page
and displays a message.

Table 22. Use case breakdown - Page registration

Name Page registration

Description The user registers a page in the application.

actors Admin, Analyst, Assistant

Precondition The user must be logged into the application as Admin or
Analyst

Postcondition The application redirects to the page listing.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the Pages option in the side

menu.
4. The user clicks the New Page button.
5. The user fills in the data.
6. The user clicks the Save button.
7. Closed use case.

Alternative Flow -

Exception Flow 6. An error occurs while saving the data.
6.1 The application redirects to the 503 error page
and displays a message.

Table 23. Use case breakdown - Editing pages

Name Editing Pages



21

Description The user edits pages in the application.

actors Admin, Analyst

Precondition The user must be logged into the application as Admin or
Analyst

Postcondition The application redirects to the page listing.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the Pages option in the side

menu.
4. The user chooses the page to be edited and clicks

on the edit button.
5. The user fills in the data.
6. The user clicks the Save button.
7. Closed use case.

Alternative Flow -

Exception Flow 6. An error occurs while saving the data.
6.1 The application redirects to the 503 error page
and displays a message.

Table 24. Use Case Breakdown - Clear Page

Name turn off pages

Description The user deletes a page in the application.

actors Admin

Precondition The user must be logged into the application as Admin

Postcondition The application redirects to the page listing.

Basic Flow 1. The user enters the website.
2. The user logs in.
3. The user clicks on the Customers option in the side

menu.
4. The user chooses the data to be deleted and clicks

on the delete link.
5. The user confirms the action.
6. Closed use case.

Alternative Flow -



22

Exception Flow 5. An error occurs while deleting the data.
5.1 The application redirects to the 503 error page
and displays a message.

 2.4. Interfaces
 

2.4.1 Login screen

The first screen presented when we access the application url is the login

screen, this screen brings a form to login to the application using previously

registered email and password, a button to register in the application and two

buttons to login using the networks social media Google or Linkedin.



23

Figure 2: Login screen.

Figure 3: Diagram of States - Login.



24

 2.4.2 Registration Screen

This screen presents a form to fill in the following data to register in the

application: First name, second name, email and password, all registered users

receive the role of analyst until someone with admin permission changes this

role for that user in question .

Figure 4: Registration screen.

 

Figure 5: State Diagram - Registration.

 



25

 2.4.3 Main fabric

This is the application's main screen where a welcome message is displayed.

Just below this message, two graphs are presented, the first of which is a

comparison of how many products in the application are active and how many

are deactivated, and the other graph shows the average of roles of user this is

how many users are admin, analyst and assistant, in addition to the side

navigation bar where you can access other application options.

 

Figure 6: Main canvas, Desktop and Mobile.

 2.4.4 Category list screen

Here are displayed the registered categories as well as their links to edit, delete

and a button to register new categories.

 

 
Figure 7: Category Canvas, Desktop and Mobile.



26

Figure 8: State Diagram - List of categories.

2.4.5 New category screen
On this screen, the user registers a new category by filling in the following data and
saving: Category name, url, content text, select the products that should be linked to
this category and the status of the category.



27

Figure 9: New category screen, Desktop.

Figure 10: State Diagram - Registration of categories.

 

 2.4.6 Category editing screen

On this screen, the user can change the data registered in a specific category.

 Figure 11: Category editing screen, Desktop.



28

Figure 12: State Diagram - Editing Categories.

 2.4.7 Product list screen

All products are listed on this screen, as well as links to actions on products

such as deleting and editing, as well as buttons for registering new products,

importing products and exporting products to a .csv file.

Figure 13: Product listing screen, Desktop.

Figure 14: State Diagram - Product listing.



29

 2.4.8 Product registration screen

On this screen, you can register a new product by providing the following data

for registration: Product name, URL, SKU, Price, Special Price (if any),

Description, Quantity, Status, image and a button to save the new product.

 

Figure 15: Product registration screen, Desktop.

 

 

 Figure 16: Status Diagram - Product registration.



30

 2.4.9 Product edit screen

In this screen it is possible to edit the data of a previously registered product.

 Figure 17: Product editing screen, Desktop.

 

Figure 18: State Diagram - Product edition.

 2.4.10 Page list screen

This screen lists all the dynamic pages registered in the application, it also has



31

buttons to edit, delete a product in question and a button to register a new page.

 Figure 19: Page list screen.

Figure 20: State Diagram - Page listing.



32

 

 2.4.11 Page registration screen

In this screen it is possible to register a new page by inserting the following

data: Title of the page, Url, content, status and button to save the new page.

 

Figure 21: Page registration screen, Desktop.

 

Figure 22: State Diagram - Page Editing.



33

 2.4.12 Page editing screen

In this screen it is possible to edit an existing page by changing the data already

inserted in the page.

 

 Figure 23: Page editing screen, Desktop.

Figure 24: State Diagram - Editing page.



34

 2.4.13 User list screen

This screen lists all users as well as links to user actions such as deleting,

editing and even buttons to register new users.

 

 Figure 25: User list screen, Desktop.

Figure 26: State Diagram - List of users.



35

 2.4.14 User registration screen

On this screen, it is possible to register a new user by filling in the following

data: first name, second name, email, telephone, date of birth, address, user

status, user role and password.

 

 Figure 27: Registration screen ofuser, Desktop.

Figure 28: Status Diagram - User registration.



36

 2.4.16 User edit screen

On this screen, it is possible to edit the data of an already registered user, such

as the user's role in the application.

 

 Figure 29: Edit screen ofuser, Desktop.

Figure 30: State Diagram - User edition.



37

 2.4.17 Settings screen

All the application settings are displayed here, such as the name of the store,

email, telephone, copyright, opening hours, address and logo, on this screen it

is also possible to edit this information.

 

 Figure 31: Settings editing screen, Desktop.

Figure 32: State Diagram - Settings.



38

 2.5. class diagram

In the application, a NoSQL database was used because it has a more flexible

structure, so we can conclude that the application code is responsible for the data

relationship.

Composed of 5 Collections: categories, customers, pages, products, settings,

and the only relationship found is categories, a category menu item where, within a

category item, it is possible to link products to a category through the “_id” of a

product, a one-to-some (1:N) relationship. The NoSQL primary key is usually an

Object that automatically receives an id when creating the data.

When creating new data or editing, a method called “timestamps” was

included in the application, in which two fields are created,createdAt and updatedAt,

these fields automatically insert the edit or creation date of the data.

The users class has a mechanism to encrypt the user's password at the time

of creation, and every time the login is performed, this password is validated by the

encryption application. This class has basic data and data that predict a future

implementation of codes. In the settings class it is possible to define all the data

related to the application, the class of products, categories and pages they

receivedata formatted ofone WYSIWYG editor that allows the customization of

information available for the front-end.



39

Figure 33: Class diagram.



40

 3. Project

 3.1. architecture ofsoftware

The architectural pattern chosen was the Model View Controller (MVC)

because it is a well-known pattern in application development. The programming

language chosen was JavaScript because it has a complete Stack for building a

complete application and with several open source resources available. The backend

was built on top of Node.js because it has high scalability and performance, in

addition to a package manager called NPM (Node Package Manager) that has many

code library options, thus speeding up the development of an application. The web

framework used wasExpress.js for being minimalist and having great adherence by

the community, thus facilitating the support of the developed codes. To manage the

application on the server, the PM2 package was used, whose main objective is not to

stop the application in case of errors or a possible overload in the application.

The database used was MongoDB using the Mongoose library which is a

powerful object data modeling library (ODM) based on schemas where Mongoose

retrieves data from the database and converts it to javascript and can easily be used

within the application. .

The login is done on top of a package calledPassport.js which provides login

capabilities to various social networks, and the native login was done using the

bcrypt package to encrypt user passwords at registration, and user sessions use an

Express.js framework add-on.

The application also has an integration with AWS S3, which is an Amazon

storage service, where the images of the forms are stored as well as the “.csv” files,

that is, if the application is not running locally, all images and files are sent to S3. The

application uses a package to manage the environment variables where the

password of the services used is located.



41

The pages displayed on the front-end are rendered on the back-end as they

follow the EJS package standard (Embedded JavaScript templates), the application

pages were made using HTML, there was the inclusion of the Bootstrap css library in

order to facilitate the application of styles in the pages, and Google Fonts to apply

new fonts to the texts of the application, the jQuery library was included for small

interactions in the forms.

 3.2. Information Architecture

The information was arranged in a way that is simple to understand, with few

colors to avoid confusion for the user. On the login screen, the buttons are positioned

sequentially and the form fields have a description of what needs to be filled out. On

the registration screen, the form fields have a label with the description of each item.

On the main screen, graphs of active pages and types of users are displayed,

a welcome message for the user, his name and a button on the right side at the top

with actions to edit profile and exit the application.

The side navigation menu has succinct items for navigating the system page

options, and displays a different color on the active item to demonstrate the current

location of the user, when the user is navigating through a mobile device the

navigation menu is presented through a “hamburger” icon that by global convention

represents a menu. Each item in this navigation has a self-descriptive word to access

an application option, in addition the application presents some icons in order to

make each action more dynamic.

The internal content of the application's pages mostly have a table listing all

the data contained in that application's option. displayed and in the right corner of this

information there are action links, which can be to edit, delete or preview a data

completely, and at the top we can see a button to create a new data.



42

When the user clicks on an action link to register new data, a page is

displayed that contains a form to be filled out, this form will have a label over the text

or selection field, where the user must fill in what is asked to succeed in saving this

new data.

When the user chooses to edit some pre-existing data, he will be directed to a

page where a form with the fields already filled in will be displayed, thus only needing

to change the data he wants.

The forms displayed on the site are labeled with words that are easy to

understand so that it does not become something complicated to register or change.

As it is a small application with intuitive buttons and does not have a search system,

when saving some data from a form, a POST request is made to the controller of the

data category in question where the treatment is carried out and this data is saved in

the database of data, and then the application returns to the listing page, this listing

page is returned through a GET type request for the specific controller of that

category.

The application has a list of routes, that is, url paths for each functionality and

within this route, the url is separated by type of request, be itGET to return data,

POST to save data, DELETE to delete data, editing is done through the POST

method as HTML forms do not have the PUT method as an option.

The data are grouped and accessible by their menu items so that when a

menu item is accessed, the user has access to all the options available for that item

on the list screen.

 4. Testes

Some unit tests were performed using the Mocha test framework and the Chai

library to verify the behavior of the results. The tests consist of checking the return of



43

the urls present in the application as well as their status based on the standardization

of the HTTP Status Codes.

A login test was also carried out where the objective was to test a login in the

application automatically and also test a login failure in the application returning the

error code 401. And in the sequence a test is performed using the GET method to

verify if the server is working and responding effectively. A test related to the products

was carried out in order to verify the application's ability to automatically register a

product and delete it from the database.

Figure 33: Tests - Test results.

The usability tests were carried out experimentally, aiming at the basic use of

the application and considering the student nature of the application. The interface

was inspired by other e-commerce applications available on the market, applications

that have great user adherence, we can see this in front of the screens presented

where the menu is allocated laterally to facilitate access, the login screen being

displayed in a simple and lean as well as the other pages.



44

A quick assessment was carried out with 5 users, 3 of which have an advanced use

profile, 1 intermediate and 1 basic knowledge.

1. For 4 users the interface is too simple and needs more usability.

2. 2 out of 5 users could log in using a social network, register a product and a

dynamic page without much problem.

3. 1 user had problems with login due to not having the resource to redeem the

password.

4. 3 users complained about the lack of messages when an action is performed

or an error occurs.

5. 2 complained about the lack of resources, such as the possibility of registering

more than one image for products and the lack of the application's final

interface (Front-End) where pages and published products can be seen.

6. 3 users reported having no problems with the accessibility of the side menu.

7. 4 users did not have problems using a mobile device to access the application

due to the interface.

In general, it was observed that the interface needs improvements and that new

functionalities need to be implemented, such as integration with means of payment,

documentation for using the application and customization of the graphics presented.

 5. URLs

 5.1. source code repository

https://github.com/samuelgallo/ecommerce-dashboard

 5.2. Job presentation video

https://youtu.be/OmJCnhJKjag

https://github.com/samuelgallo/ecommerce-dashboard
https://youtu.be/OmJCnhJKjag


45

 REFERENCES

Powers, Shelley. Learning Node: Using JavaScript on the Server. Novatec
Editora, 2017.

Stefanov, Stoyan.JavaScript standards. Novatec Editora, 2010.


