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Outline

This thesis focuses on achieving two main objectives:

1. Novel application of cutting-edge statistical learning methods to longitudinal health

data;

2. Development of a Bayesian approach to model-based clustering of time series of

categorical variables.

In Chapter 1, we introduce topics in mental health, which is a relevant issue in modern

healthcare. In Chapter 2, we provide brief introductions to few of the methods and other

tools which have been used throughout the thesis. Chapters 3, 4 and 5 can be read

independently as they are written in academic paper format, and each of these chapters

includes a separate abstract at the beginning of the paper. In Chapter 3, we perform

residual analysis and clustering of mood-pain trajectories on the basis of transitions taken

from a longitudinal study. In Chapter 4, we perform Bayesian inference on the same

data considered before in the previous chapter. We assume the data to be distributed

multinomially and taking Dirichlet distribution as a conjugate prior, we use Hamiltonian

Monte Carlo method to sample estimates of the model parameters. In doing so, we also

address the problem of label-switching in the mixture model. In Chapter 5, we consider

all the self-reported symptoms, not just mood and pain, and implement dimensionality

reduction to investigate the relationships amongst those. Chapters 6 and 7 include further

prospects of the thesis, and conclusion respectively.

10



Declaration

No portion of the work referred to in the thesis has been submitted in sup-

port of an application for another degree or qualification of this or any other

university or other institute of learning.

11



Copyright statement

The following four notes on copyright and the ownership of intellectual property rights

must be included as written below:

i The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and they have given

the University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii The ownership of certain Copyright, patents, designs, trademarks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv Further information on the conditions under which disclosure, publication and com-

mercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy

(see https://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in

any relevant Thesis restriction declarations deposited in the University Library, the

University Library’s regulations (see http://www.library.manchester.ac.uk/a

bout/regulations/) and in the University’s policy on Presentation of Theses.

12

https://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/
http://www.library.manchester.ac.uk/about/regulations/


Acknowledgements

Amongst many . . . ,

I would like to express my deepest gratitude towards my supervisors Thomas House,

Mark Muldoon and Mark Lunt for their continuous support and guidance throughout my

PhD journey. Thomas has been very inclusive and always optimistic which has helped

me maintain faith in myself and my research. Mark M. has given his valuable time

throughout and motivated me to work on new concepts. Working alongside him has been

a privilege, thus allowing me to grow and learn. Mark L. has provided valuable input

and advice as needed. These examples represent only a fraction of the reasons for my

gratitude, as they have consistently shown kindness, support and encouragement.

I am indebted to the Engineering and Physical Sciences Research Council (EPSRC), a

part of the UKRI research council, for funding my research.

Many thanks to Xiaoxi and my office mates Jacob, Xiaodong, Bindu, Zubier, Wang,

Lubo, Peej, Martyn, QS, Steve and Anthony for their company and support. I would

also like to acknowledge the Mathematics Epidemiology group with whom I had a great

time attending seminars and conferences, and engaging in social activities. Furthermore,

I would like to acknowledge my collaborators, the University of Manchester Mathematics

Department, IT services and the Mathematics Teaching and Learning Office, particularly

Gemma, for her patience in addressing my numerous queries as a postgraduate researcher.

I extend my thanks to other members of the group, including Tracey, Laura, and James.

I am sincerely grateful to my examiners Korbinian Strimmer and Robert Goudie for their

valuable time and the insightful feedback on my thesis.

Thanks to my friends Sampurna, Rishiraj, Shabnam, Abhimanyu, Miruna, Rhea and

Esther for being pillars of emotional strength in this journey.

Last but not the least, thank you to mamma and baba who have been by my side through

the maxima and many minima of this journey with me.

Thank you all for reading this!

Rajenki

13



Chapter 1

Introduction

If a man has lost a leg or an eye,

he knows he has lost a leg or an

eye; but if he has lost a

self—himself—he cannot know it,

because he is no longer there to

know it.

Oliver Sacks

Health is an integral part of human well being, and a holistic perspective on the same

involves physical, mental and social factors (World Health Organization et al., 1948).

However, “health” itself is a complex concept where many aspects play a role in build-

ing a healthy person and meanings of the same can vary across individuals, as per the

capability of tackling an illness (Leonardi, 2018). Most of us are aware of physical illness

and associated concerns but mental health often gets neglected in the larger discourse

on health and wellbeing, and it remains important to remember the adage “no health

without mental health” as used used by e.g. Prince et al. (2007) in the context of overall

health. Even though recently there has been an increase in awareness towards mental

health, the stigma around it continues to exist (Bharadwaj et al., 2017; Gold et al., 2016).

Additionally this social stigma around mental health as well as a self-perceived notion of

underestimating an issue (Andrade et al., 2014) often leads to lack of treatments. Proper

treatments or diagnoses are still unavailable or inaccessible for many individuals (Moreno

et al., 2020; Camm-Crosbie et al., 2019; MacDonald et al., 2018). In 2019, the World

Health Organisation (WHO) estimated 970 million people in the world to be living with

a mental disorder (Organization, 2022). Keeping all of this in mind, it needs to be re-

iterated that mental ailments are widespread and can affect anyone, just like a physical

illness. There are many aspects of this topic that need to be dealt with carefully, but

in this thesis, the emphasis has been on finding mental health traits using digital health

14
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records and how it can facilitate the process of developing treatments for the same.

Mental health can be affected by numerous factors, with examples being: physical health

problems, socio-economic conditions, nutrition, genetics, and the environment around us

(Kola et al., 2021; Adan et al., 2019; Bhugra et al., 2013; Tew et al., 2012; Rutter, 2005;

Morris, 2003; Tsuang, 2000). Even though identifying causes remains an extremely chal-

lenging problem, symptoms associated with a decline in mental health can aid diagnoses.

It can be found that withdrawal in life, many times shown by lack of motivation, is quite

prominent amongst those severely affected by mental affliction and can serve as a vital

warning. But, a more comprehensive understanding of mental health requires an inter-

disciplinary approach (Fried, 2021) which can benefit from insights from various fields

including neurology, psychology, sociology, biology etc. and, importantly in the current

context, mathematical sciences. The advent of COVID-19 presented a global health cri-

sis which affected lives across the world quite disproportionately (Gibson et al., 2021)

and resulted in further widening of inequalities. A rise in mental health problems, as an

associated result of worsening physical health or in this case, a physical health calamity,

has become a major concern (Vigo et al., 2020) and may have long-term implications

(Bourmistrova et al., 2022; Kola et al., 2021). The motivation behind this thesis was to

help quantify mental health, model it and see underlying behaviour using mathematical,

statistical and computational tools as these would help in comparing and providing better

tools for understanding the differences and commonalities in behaviour patterns.

While there are pros and cons to the advancement of technology and electronic health

(eHealth) (Vitacca et al., 2009), in this context, it has provided us with digital health tools

which have facilitated the collection of information on health. Mobile health (mHealth)

is potentially revolutionary and opening up doors to opportunities for exploring research

in healthcare (Fiordelli et al., 2013). Especially in the sphere of mental health, mhealth

helps in overcoming many barriers related to accessibility (Price et al., 2014). Such apps

or platforms can be beneficial to those who are unable or are reluctant to be available for

an in person appointment, as well as those who want to keep their information completely

private or anonymous. This is particularly true in the context of mental health, where

many prefer not to be identified while reporting their issues as a result of the stigma

attached, although it is difficult to tell if a mHealth based solution or therapy is indeed

better than an in-person one (Olff, 2015) but nevertheless, these apps can be useful as

they maintain the confidentiality of the patient. Not only this, digital health apps also

enable a person to track and share their health behaviour easily. Especially with the

rise in smartwatches and other devices, it gets easier to monitor one’s health as one can

be notified if there are abrupt changes in their patterns of health. These technological

interventions are not just beneficial for the participants, but also for the clinicians and

doctors, who can now access patient behaviour easily and take necessary actions and
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intervene accordingly. For researchers, mHealth enables them to study a wider range

of problems with the data collected – understanding mental health has rather been a

long, time-consuming process and mHealth can offer to speed up the research by easier

collection of data. Other drawbacks of mHealth are related to its authentication (Mathews

et al., 2019). Digitisation is not so pervasive in many countries, so we could be excluding

significant proportions of people before coming to any conclusion based on an mHealth

based analysis. At the same time, technology in general can have a negative effect on

mental health (Haidt and Allen, 2020; Scott et al., 2017) so it can sound ironic to rely

on such devices. Thus, ethics in digital health and its widespread impact still need

to be actively discussed. Regardless, the potential benefits of digital health are clear

(Triantafyllidis and Tsanas, 2019), and it is hoped that new technology can benefit wider

population with correct implementation. In the context of mental health, for example,

we may see apps that allow individuals to share their problems with ease and seek help

quickly.

In this thesis, efforts have been put into understanding mental health by taking a quan-

titative approach to mHealth data. The dataset used in this research is provided by the

Cloudy with a Chance of Pain study (Sergeant et al., 2015; Dixon et al., 2019) led by

the University of Manchester. Details of the dataset specific to the corresponding study

are provided in Chapters 3, 4 and 5. These are the three main chapters pertinent to the

work carried out as part of the doctoral research presented here. These chapters are also

arranged chronologically which helps in connecting the motivations of moving from one

study to another. In Chapters 3 and 4, the primary focus is on the combined trajectories

of mood and pain which were taken as the real data for the analyses. Chapter 5 includes

mood and pain as part of a unified analysis of many other self-reported symptoms that

were recorded in the Cloud with a Chance of Pain study. Each of these three chapters is

written in the form of a journal paper, but additionally contains a motivation section at

the beginning of the main write-up. As a technical introduction, in Chapter 2 the meth-

ods and tools used throughout this thesis are briefly discussed. More specific methods

are elaborated in the respective chapters themselves. Chapter 3 talks about clustering

the participants of the study on the basis of their self reported mood and pain trajec-

tories. We discovered four digital phenotypes on the basis of the mood-pain behaviour

over a period of time, and emphasised the need for personalised treatment. In chapter 4,

we take a Bayesian inference approach in further analysing these mood-pain trajectories.

We develop a Dirichlet-multinomial distribution based on the Markov chains derived from

the given data. We consider existence of clusters, and while doing this kind of mixture

modelling, we had to deal with the inherent problem of label switching, all of which is

talked about in the chapter itself. Chapter 5 gives an overview of the data and shows us

how the features in the dataset are related and can be grouped. It gives insights on what
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parameters to take care of when studying mental health. Chapter 6 talks about the unac-

complished goals and what else we would have liked to do. More importantly, it includes

pointers on potential further research based on what has been carried out in this thesis.

Finally in Chapter 7, we make some concluding remarks regarding the thesis. Please note

that notations within a chapter are kept consistent, unless stated otherwise.

The results presented in this thesis highlight the applicability of the findings to real-

world problems such as mental health, which is an extremely relevant subject of concern

and further discussion. In addition to that, the overall objective of the research project

was to be able to forecast mood and build a mobile phone application or a software,

keeping in mind the structure of forecast tools such as weather applications, which could

facilitate greater understanding of mental health and build predictive technologies that

ensure better treatment of the same. As this was my rather larger goal, I believe the work

in this thesis will contribute along those lines and that some day in the future, we will be

to talk about mental health without any shame whatsoever, as well as assess and predict

(which is also a term with quite a broad meaning) the behaviour patterns pertaining to

mental health in a more confident and scientific way.

Methodology motivation

We are presented with data taken from Cloudy with a Chance of Pain study (https:

//www.cloudywithachanceofpain.com/) in which a mobile phone application collected

details on self-reported variables like mood, pain, sleep quality, weather parameters like

humidity, dew point and some baseline information like age and sex mainly to investigate

the relationship between weather and pain (Dixon et al., 2019). The cohort contained

residents from the UK aged 17 or above who were already experiencing chronic pain for

at least three months preceding the study. More details of data pertaining to the studies

have been provided in later chapters. Data obtained from such mobile health surveys are

often in the form of longitudinal data which means same data are collected repeatedly

over a period of time. Such kind of data collection is very common in the fields of health

where health parameters of several people are tracked over a period of time. This helps in

recognising patterns or trends of behaviour across a span of time. Commonly implemented

methods include linear models (Garcia and Marder, 2017; Diggle et al., 2002) which

capture correlation for e.g. mixed effect models are used in estimating random and fixed

effects allowing to analyse behaviour inter and intra subjects. For identification of latent

classes in longitudinal trajectories, Herle et al. (2020) compared mixed effect models with

growth mixture models and latent class growth analysis and discussed the possibility of

complexities in the case of multivariate trajectories instead of univariate. Proust-Lima

et al. (2015); Komárek and Komárková (2013) extended mixed models to identify latent

https://www.cloudywithachanceofpain.com/
https://www.cloudywithachanceofpain.com/
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Figure 1.1: Screenshot of the mobile application for daily symptom collection (Source:
Druce et al. (2017))

classes in longitudinal data. Different methods may allow to relax the Markov chain

assumption that we have taken, allowing for e.g. consideration of patterns in longer

sequences of data, but that would be at the cost of the ability to model out of sample

behaviour as Markov chains allow. Defining a distance measure in longitudinal data is

difficult Liao (2005). Identifying markers of a progression of a condition and finding the

sub-conditions which are called as endotypes or phenotypes are often discovered with

the help of model-based clustering where a mixture model framework is considered e.g.:

Gaussian Mixture Models are commonly used for mixture modelling (McNicholas and

Murphy, 2010) while another approach is demonstrated by De la Cruz-Meśıa et al. (2008)

where a mixture of non-linear hierarchical models are considered. Hidden Markov Models

(Eddy, 2004) are usually applied in order to model longitudinal data trajectories which

are assumed to be Markov chains. They are especially helpful in estimating the underlying

trajectories. However, in our case, we implemented the Expectation-Maximisation (EM)

(Dempster et al., 1977) algorithm, similar to what is done in a Hidden Markov Model,

to cluster the participants of the study on the basis of their self-reported trajectories of

data and thereby, recognise the patterns in the longitudinal data– this resulted in the
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discovery of the distinct digital phenotypes that we talk about later. The algorithm has

been elaborated in the next chapter.

Recalling that the overall goal is to set up a system which could help predicting mental

health of an individual, we moved on to do Bayesian inference in studying given mood-

pain trajectories of participants of the study. Once we classified the participants according

to their mood-pain trajectories in Chapter 3, we wanted to investigate how considering

a multinomial distribution, which is a natural assumption for such data (Tu, 2014), will

help in estimating parameters of Dirichlet distribution which is taken to be the conjugate

prior thereby, giving potential to predict a state of an individual given the history of their

severities of mood-pain. To do so, we built a Bayesian inference model for this data and

reported the findings for real-data. We carried out Bayesian Inference on the same dataset

and compared the results. Similar methods are demonstrated by Holmes et al. (2012)

and Cadez et al. (2003) where Dirichlet-multinomial modelling is done for genome data

and web navigation data respectively. Li et al. (2019) implements a variation of Dirichlet-

multinomial mixture model for topic modelling over short texts. But in our case, we work

with digital health data and model transition matrices instead of vectors. Grimshaw and

Alexander (2011) considers transition matrices to denote monthly movement of loans

between delinquency states and then model them using Dirichlet-multinomial distribution

to make forecasts. Frühwirth-Schnatter and Pamminger (2010) have done model based

clustering on transition matrices to model the deviation of each row from the mean

of a group-specific transition matrix and applied to wage data. We assume each row

of transition matrix derived from the observational data to be sampled from Dirichlet

distribution and the group is specified by Dirichlet parameters and mixture weights.

Using these we introduce more parameters later which have been utilised to address the

problem of label-switching in mixture models. The method is elaborated in Chapter

4.

We primarily analysed behaviour based on self-reported daily symptoms and developed

methods to recognise underlying phenotypes which would also help in predicting be-

haviour. In the next chapter, we provide a background of the methods to familiarise with

the methodology sections of the following chapters.



Chapter 2

Methods

With help of the mobile health study, the very ultimate goal is to improve mental health.

To achieve so, we need to analyse the data, model it for further predictions and evaluate

the outcomes to emphasise on interventions and treatments, policy making and subse-

quent research. We start by dealing with the following sub-problems first which are very

much related to each other and cannot be solved independently. In view of the prob-

lem, at present, only mood and pain are taken into account. But other symptoms like

sleep quality and physical activity may be taken into account to reinforce the model and

considering more features will increase the dimensions which will need to be dealt with

simultaneously. Missing values exist in the dataset when a participant did not enter a

value for a symptom– such values in our studies in the thesis have been ignored. For e.g.

value for mood is not recorded on a day, then the entire row from the table is removed.

We begin our analysis with the consideration of the following sub-problems:

i) Fitting a model:

We have already got a dataset of observations. The observations on their own are mean-

ingless, statistical methods are what give meaning to the observations by detecting pat-

terns. Statistical modelling is the technique to encapsulate an entire dataset with the

help of equation(s).

We assume the trajectories of the symptoms to be Markov chains and take a maximum-

likelihood approach for the statistical modelling. The steps to build a suitable model for

the given dataset is discussed in the next chapter.

ii) Identification of endotypes or phenotypes:

Understanding the aetilogy of a medical condition is very important to be able to un-

derstand a health condition. An endotype is “a subtype of a condition, which is defined

by a distinct functional or pathophysiological mechanism (Lötvall et al., 2011)” whereas

a phenotype is an observable trait. Identification of phenotypes can contribute towards

20
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understanding the underlying mechanisms therefore helping with finding endotypes. For

e.g. McInnes et al. (2016) proposed that with the help of characterising endotypes, it

would be possible to select RA (Rheumatoid Arthritis) patients who are most likely to

benefit from a certain anti-cytokine therapy. In the similar way, if we are able to identify

endotypes for our problem, it will be helpful in advancing therapies targeted to specific

mechanisms. Additionally, endotypes can help in prescribing medications or treatments

accordingly or/ and predicting responses to given treatments. All in all, identifying en-

dotypes is a crucial step which can answer many questions thereby, enhancing the overall

management of a health issue.

To summarise, there are two key questions: i) are there any endotypes present?, and ii)

if yes, what are they?

Person 4 Person 5 Person 6

Person 1 Person 2 Person 3
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Figure 2.1: Glimpse of mood-pain behaviour of a random sample over a period of time

To address this, we begin with residual analysis which tells us about the possibility of

clusters (thereby endotypes or phenotypes) and then perform clustering with the help of

an EM algorithm based model in an attempt to spot the endotypes or phenotypes.

In the Chapter 3, we clustered the trajectories with the initial assumption that all par-

ticipants belong to one group, and then we gradually distributed them to four clusters

therefore, all participants of a cluster have the same transition probability matrix. In

other words, the initial set up of our previous analysis considered all the observed tran-

sitions altogether while, in Chapter 4, we focus on the observed transition probability

matrix per participant. The clusters are then defined by a distribution over transition

matrices and it is these that lead to the Dirichlet-multinomial distributions which this

chapter emphasises. Thus in this chapter, we:
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1. Invent a distribution over transition matrices. If the number of states in n, then the

n-rows of a transition matrix are drawn from n separate, n-dimensional Dirichlet

distributions. This means that a component of the model is specified by an n× n

matrix of Dirichlet shape parameters whose i-th row gives the shape parameters for

the i-th row of the transition matrix.

2. Formulate a k-component mixture model whose components are specified by the

sort of distribution over transition matrices defined above.

3. Marginalise-out the individual subjects’ transition matrices: this ultimately leads

to the Dirichlet-multinomial distribution for the counts in a given row which is

discussed in the chapter.

4. Address the label-switching problem by (i) imposing an ordering constraint on the

sums of all the shape parameters and (ii) getting a good starting guess via EM and

then fitting Dirichlet distributions to the rows of those participants assigned to the

same cluster.

We carry out the above steps on a test dataset by synthesising trajectories such that the

rows of transition matrices are sampled from a Dirichlet distribution. Then, we run it

on the real data made available to us. It must not be forgotten that this method is not

restricted to the dataset considered throughout this PhD thesis, but can be applied to

any data with similar data structure.

In Chapters 3 and 4, we considered how complex trajectories of mood and pain may,

through unsupervised learning, be indicative of the presence of multiple disease pheno-

types. Here, we consider a complementary unsupervised learning approach in which all

ten variables (mood, pain severity, impact of pain on daily activity, physical activity, time

spent outside, fatigue, sleep quality, morning stiffness, waking up tired) measured in the

Cloudy With a Chance of Pain data https://www.cloudywithachanceofpain.com/

may co-occur in participants in ways that indicate they arise from a number of underlying

factors that is significantly less than 10. Such a dimensionality reduction is in fact often

used as part of determination of clusters in data (Hastie et al., 2009) although here we

will focus on the insights gained from it as a standalone analysis. So finally, we applied

dimensionality reduction techniques to the given dataset and analysed the results. This

has been included in Chapter 5.

Although the methods along with the applications are included in the following three

chapters, in this chapter we aim to provide background of few topics that could help

form a basis of the methods used later. Additionally, in the Section 2.2, we elabo-

rate an expectation-maximisation algorithm specific to Markov chains which has been

implemented in Chapter 3.

https://www.cloudywithachanceofpain.com/
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2.1 Mixture modelling

A mixture model is a probabilistic model that assumes the presence of sub-populations.

Throughout the thesis, we concern ourselves only with finite mixtures which means there

are finitely many components within the population considered for modelling. In Fig-

ure 2.2, we can see mixture population density where the sample of the population is

composed of two Gaussian distributions.
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Figure 2.2: Mixture density of two Gaussian distributions (green and red curves) together
with a grey histogram showing a finite sample from this density.

More formally, let y be a random vector of n observations y1, . . . , yn which are sampled

from one of the K mixture components. We use the word ‘component’ interchangeably

with ‘cluster’ and ‘group’. Then each observation yi is associated with a component label

k ∈ {1, . . . , K}. Let zi, which is sometimes referred to as latent variable, denote the

unknown or unobserved component label for an observation yi. The marginal probability

(density) of yi is given by:

P (yi) =
K∑
k=1

P (yi | zi = k)P (zi = k)︸ ︷︷ ︸
ωk

=
K∑
k=1

ωkP (yi | zi = k) (2.1)

Here the ωk are the mixture weights or mixture proportions that represent probability of

observation yi belonging to the k-th component where k ∈ Z+. Thus, assuming ωk ̸= 0∀k

and
K∑
k=1

ωk = 1. Also the mixture component P (yi | zi = k) gives the distribution of yi

given it was taken from component k.

We can then write a likelihood for a mixture model by taking products of the individual
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terms in Equation (2.1):

P (y) =
n∏

i=1

K∑
k=1

ωkP (yi | zi = k) .

Note that for continuous random variables, P given above is a probability density function

and for discrete variables, it is a probability mass function.

A major challenge for mixture modelling is the inherent issue of label switching, where

the likelihood of the model is invariant under relabelling of the mixture components. In

simpler language, the labels of mixture components can be swapped without changing

the likelihood, which raises issues with identifying the component associated with a set

of parameters. This occurs particularly while estimating parameters of a mixture model

by taking a Bayesian approach. Hence this gives rise to K! (i.e. K factorial) modes,

where K is the total number of mixture components. Many methods (Papastamoulis,

2015) have been suggested in the past to address this problem, the primary one being

the imposition of ordering constraints to the set of hyperparameters associated with the

mixture components. This is discussed further in Chapter 4.

2.1.1 EM algorithm

Now we introduce the Expectation-Maximisation (EM) algorithm that describes the

method of computing a maximum likelihood estimate of the parameters with an un-

derlying distribution for a given dataset, especially when the data is incomplete or con-

tains missing values. The following outline is based on the exposition of Bilmes et al.

(1998).

Let y be the observed data generated by some distribution which represents the incom-

plete data. We assume a complete dataset that contains the observation set y and latent/

missing/ unobserved variable set z, i.e. the complete dataset is x = (y, z). Let Θ be the

set of parameters, then the joint density distribution can be given by:

P (x | Θ) = P (y, z | Θ) = P (z | y,Θ)P (y | Θ) .

With this new density function of observed and missing/ latent variables, the likelihood

function can be written as L(Θ | x) = L(Θ | y, z) = P (y, z | Θ), which is the complete-

data likelihood. Note that this likelihood function is a random variable as it contains

missing information z which is unknown, random and usually, assumed to be sampled

from some underlying distribution. The likelihood L(Θ | y) of the observed data y is

known as the incomplete-data likelihood function.

As the name of the EM algorithm suggests, we first find the expected value of the
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complete-data log-likelihood logP (y, z | Θ) with respect to the unknown set z given

observation data y and current parameter estimates. Therefore, the expectation is given

by:

Q(Θ,Θ(i−1)) = E
[
logP ({y, z | Θ} | {y,Θ(i−1)})

]
(2.2)

where, Θ(i−1) is the set of current parameter estimates which is used to calculate expec-

tation and Θ is the set of new parameters that is to be optimised to increase Q. Here, z

is the random vector and its variables are sampled from the distribution f(ζ | y,Θ(i−1)).

Therefore, the right side of (2.2) can be further written as:

E
[
logP ({y, z | Θ} | {y,Θ(i−1)})

]
=

∫
ζ∈Z

logP (y, ζ | Θ)f(ζ | y,Θ(i−1)) dζ (2.3)

where f(ζ | y,Θ(i−1)) is the marginal distribution of the unobserved data and is a function

of observed data and current parameters. Z is the domain space of ζ.

In the second step of EM algorithm, we maximise the expectation computed in the

previous step by finding

Θ(i) = argmax
Θ

Q(Θ,Θ(i−1)) (2.4)

Both these steps of EM are iterated in order to increase the log-likelihood, thereby con-

verging to a local maximum of the likelihood function.

2.1.2 Maximum likelihood estimation

Let Θ = (ω1, . . . , ωK , θi, . . . , θK) be the set of parameters describing a mixture model

with K components; then the probabilistic model is written as:

P (y | Θ) =
K∑
k=1

ωkPk(y | θk)

for mixture weights ωk and conditional probability density function Pk = P (yi | zi = k)

parameterised by θk for each component k.

Due to missing observations, the data remain incomplete. The incomplete data log-

likelihood expression for the density for data with observations y = y1, . . . , yn is given

by

logL(Θ | y) = logP (y | Θ) = log
n∏

i=1

P (yi | Θ) =
n∑

i=1

log

(
K∑
k=1

ωkPk(yi | θk)

)

which can’t be optimised easily since the integrand contains the log of a sum. Now
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considering y to be incomplete and assuming z to be the latent variable set that indicates

which mixture component is associated with each data point i.e. zi ∈ {1, . . . , K} for each

i, so zi = k if i-th observation is generated by the k-th component of the mixture model.

If the values of z are known, then the log-likelihood can be simplified as

logL(Θ | y, z) = logP (y, z | Θ) =
n∑

i=1

log(P (yi | zi)P (zi)) =
n∑

i=1

log(ωziPzi(yi | θzi)) ,

which gets rid of the log-sum expression and gives a form that can be optimised using

appropriate techniques. As the values of z are unknown, if we simply consider z to be a

random vector, we can proceed with the method.

We start by deriving a general expression for the distribution of the unobserved data z.

Let’s assume a new set of parameters for the mixture model as Θ′ = (ω1
′, . . . , ωK

′, θ1
′, . . . , θK

′)

with likelihood L(Θ′ | y, z). Given Θ′, we can compute Pk(yi | θk ′) for each i and j in-

dices for numbers of observations and components respectively. Additionally, the mixture

weights ωk can be thought of as prior probabilities of each of the mixture components,

i.e. ωk = P (component k).

Using Bayes’s rule (2.30), we get

P (zi | yi,Θ′) =
ωzi

′Pzi(yi | θzi ′)
P (yi | Θ′)

=
ωzi

′Pzi(yi | θzi ′)∑K
k=1 ωk

′Pk(yi | θk ′)

and

P (ζ | y,Θ′) =
n∏

i=1

P (zi | yi,Θ′)

where ζ = (z1, . . . , zn) is an instance of the unobserved data, which is independently

drawn from a multinomial distribution with parameters equal to the mixture weights ω.
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Now, substituting in Equation (2.3), we get

Q(Θ,Θ′) =
∑
ζ∈Z

log(L(Θ | y, ζ))p(ζ | y,Θ′) (2.5)

=
∑
ζ∈Z

n∑
i=1

log(ωzipzi(yi | θzi))
n∏

j=1

p(zj | yj,Θ′) (2.6)

=
K∑

z1=1

K∑
z2=1

· · ·
K∑

zn=1

n∑
i=1

log(ωzipzi(yi | θzi))
n∏

j=1

p(zj | yj,Θ′) (2.7)

=
K∑

z1=1

K∑
z2=1

· · ·
K∑

zn=1

n∑
i=1

K∑
l=1

δl,zi log(ωzlpl(yi | θl))
n∏

j=1

p(zj | yj,Θ′) (2.8)

=
K∑
l=1

n∑
i=1

log(ωzlpl(yiθl))
K∑

z1=1

K∑
z2=1

· · ·
K∑

zn=1

δl,zi

n∏
j=1

p(zj | yj,Θ′) (2.9)

For l ∈ {1, . . . , K},

K∑
z1=1

K∑
z2=1

· · ·
K∑

zn=1

δl,zi

n∏
j=1

p(zj | yj,Θ′) (2.10)

=

 K∑
z1=1

· · ·
K∑

zi−1=1

K∑
zi+1=1

· · ·
K∑

zn=1

n∏
j=1,j ̸=i

p(zj | yj,Θ′)

 p(l | yi,Θ′) (2.11)

=
n∏

j=1,j ̸=i

 K∑
zj=1

p(zj | yj,Θ′)

 p(l | yi,Θ′) (2.12)

= p(l | yi,Θ′), (2.13)

where
K∑
i=1

p(i | yj,Θ′) = 1, so using Equations (2.9) and (2.13), we get

Q(Θ,Θ′) =
K∑
l=1

n∑
i=1

log(ωlpl(yi | θl))p(l | yi,Θ′) (2.14)

=
K∑
l=1

n∑
i=1

log(ωl)p(l | yi,Θ′) +
K∑
l=1

n∑
i=1

log(pl(yi | θl))p(l | yi,Θ′) (2.15)

Now to maximise the expectation, the two additive terms in Equation (2.15) are max-

imised separately.
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2.2 An EM algorithm for a mixture of Markov chains

We have sequences of some data which we have assumed to be discrete-state and discrete-

time Markov chains. These can be described as xs,0, xs,1, . . . , xs,t, . . . xs,ns where xs,t ∈
{1, . . . , M} is a state, the first subscript, s ∈ {1, . . . , S}, which we refer to by subject,

indicates which of the S observed chains is considered and the second subscript, t ∈
{0, . . . , ns}, is a discrete-time.

Hence, xs,t = the state reported by subject s at time t. Therefore, a single Markov chain

with M states gets characterised by an initial distribution α = (α1, . . . , αM) over the

states that governs the first entry in the sequence, αj = P (x0 = j) and M ×M transition

matrix T whose entries are Ti,j = P (xt = j | xt−1 = i) such that
∑M

j=1 Ti,j = 1.

Therefore, the probability of observing a single sequence of states x = x0, . . . , xn can be

computed as:

P (x | α,T ) = P (x0 | α,T )
n∏

t=1

P (xt | xt−1,α,T )

= αx0

n∏
t=1

Txt−1,xt

= αx0

∏
i,j ∈{1,...,M}

T
Ni,j

i,j

where Ni,j ∈ N is the number of times a transition i → j appears in the state sequence

x0, . . . , xn.

Our goal is to model in a way such that each subject is a member of one of the classes (or

‘components’) and within each class, all the subjects report state sequences drawn from

the same Markov chain.

2.2.1 Finite mixtures of Markov chains

Now consider a K-component mixture of Markov Chains specified by pairs of parameters

(αk,T k) with k ∈ {1, . . . , K} defined so that

• αk is the distribution over initial states for sequences drawn from component k, so

that

αk,j = P (x0 = j | sequence is drawn from chain component k). (2.16)
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• Tk is a transition matrix for the k-th component, so that

Tk,i,j = P (xt = j | xt−1 = i and sequence is drawn from chain component k).

(2.17)

• ωk is the discrete distribution of mixture weights ω over the K components such

that

ωk = P (component k) (2.18)

Given a mixture of Markov Chains, we can generate samples that look like many realisa-

tions of a discrete- state, discrete-time Markov Chain by performing the following steps

for each subject s.

1. Choose a component number ks by sampling from the discrete distribution ω in

Equation (2.18).

2. Choose an initial state by sampling from the discrete distribution αk:

P (xs,0 = j | k) = αk,j. (2.19)

3. Extend the sequence up to the appropriate length, ns, by sampling successive states

from rows of Tk:

P (xs,t = j | xs,t−1 = i, ks = k) = Tk,i,j. (2.20)

If we know that a given observed sequence x = x0, . . . xn was drawn from component k,

the likelihood can be computed as:

P (x | k) = αk,x0

n∏
t=1

Tk,xt−1,xt = αk,x0

∏
i,j ∈{1,...,M}

T
Ni,j

k,i,j

where, as above, Ni,j ∈ is the number of times a transition i → j appears in the state

sequence x. Using this, we can also compute

P (x) =
K∑
k=1

P (x |k)P (k) =
K∑
k=1

αk,x0

∏
i,j ∈{1,...,M}

T
Ni,j

k,i,j

ωk (2.21)

Using Bayes’ theorem (2.30), a posterior probability for the class assignments:

P (k | x) = P (x | k)P (k)
P (x)

=

(
αk,x0

∏
i,j ∈{1,...,M} T

Ni,j

k,i,j

)
ωk∑K

k′=1

(
αk′,x0

∏
i,j ∈{1,...,M} T

Ni,j

k′,i,j

)
ωk′
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2.2.2 Maximum-likelihood estimation for mixture of chains

We want to estimate the parameters of a mixture of Markov chains but a problem that

arises is that we do not know the class assignments of the each of the subject’s chains i.e.

we do not know which Markov chain belongs to which component. Therefore we treat

the class assignments as latent variables and introduce a vector k ∈ {1, . . . , K}S with

k = (k1, . . . , kS), to hold the class assignments, and we’ll write ks = k to indicate that

subject s belongs to class k. The contribution to the likelihood from subject s with data

xs is then

P (xs | Θ) =
K∑
k=1

P (xs | Θ, ks = k)P (ks = k | Θ)

=
K∑
k=1

αks,xs,0

∏
i,j ∈{1,...,M}

T
Ns,i,j

ks,i,j

ωk ,

where Θ represents all the parameters of the mixture of chains. The likelihood for the

full dataset is then a product over subjects:

L =
S∏

s=1

P (xs | Θ)

=
S∏

s=1

[
K∑
k=1

P (xs | Θ, ks = k)ωk

]

=
S∏

s=1

 K∑
k=1

ωk

αk,xs,0

∏
i,j ∈{1,...,M}

T
Ns,i,j

k,i,j

 (2.22)

with the constraints for each component k ∈ {1, . . . , K} as:

M∑
j=1

αk,j = 1, and
M∑
j=1

Tk,i,j = 1 for each i ∈ {1, . . . ,M} and
K∑
k=1

ωk = 1.

(2.23)

Applying Lagrange multipliers, the expression for the constrained log-likelihood is

L = log (L)− β

(
K∑
k=1

ωk

)
−

K∑
k=1

(
µk

M∑
j=1

αk,j +
M∑
i=1

λk,i

M∑
j=1

Tk,i,j

)

=
S∑

s=1

log

 K∑
k=1

ωk

αk,xs,0

∏
i,j ∈{1,...,M}

T
Ns,i,j

k,i,j

− β

(
K∑
k=1

ωk

)

−
K∑
k=1

(
µk

M∑
j=1

αk,j +
M∑
i=1

λk,i

M∑
j=1

Tk,i,j

)
(2.24)
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and to maximise the log likelihood,we get the following equations for all k ∈ {1, . . . , K},

∂L

∂ωk

∣∣∣∣
ω̂,α̂,T̂

= 0,
∂L

∂αk,j

∣∣∣∣
ω̂,α̂,T̂

= 0 and
∂L

∂Tk,i,j

∣∣∣∣
ω̂,α̂,T̂

= 0,

where the last two equations hold, respectively, for all j ∈ {1, . . . ,M} and for all i, j ∈
{1, . . . ,M}.

Considering the derivative of the optimisation target with respect to some transition

probability Tk,p,q, where k ∈ {1, . . . , K} and p, q ∈ {1, . . . ,M} are fixed, we get:

∂L

∂Tk,p,q
=

 S∑
s=1

(
Ns,p,q

Tk,p,q

) ωk

(
αk,xs,0T

Ns,p,q

k,p,q

)
∑K

k′=1 ωk′

(
αk′,xs,0

∏
i,j ∈{1,...,M} T

Ns,i,j

k′,i,j

)
− λk,p

=
1

Tk,p,q

[
S∑

s=1

Ns,p,q

(
P (ks = k)P (xs | Θ, ks = k)

P (xs | Θ)

)]
− λk,p

=
1

Tk,p,q

[
S∑

s=1

Γs,kNs,p,q

]
− λk,p (2.25)

where,

Γs,k =
ωk

(
αk,xs,0T

Ns,p,q

k,p,q

)
∑K

k′=1 ωk′

(
αk′,xs,0

∏
i,j ∈{1,...,M} T

Ns,i,j

k′,i,j

) = P (ks = k | xs,Θ). (2.26)

So to compute maximum likelihood, we equate Equation (2.25) to 0, but Γs,k includes

the parameters of the mixture. If we ignore this dependence, we can solve the equation

above to get an estimate T̂k,p,q, which is given by

T̂k,p,q =

∑S
s=1 Γs,kNs,p,q

λk,p
.

Since
∑M

q=1 T̂k,p,q = 1, summing over the left-hand and right-hand sides gives:

λk,p =
M∑
q=1

S∑
s=1

Γs,kNs,p,q.

Therefore,

T̂k,p,q =
Ñk,p,q∑M
r=1 Ñk,p,r

, where Ñk,p,q =
S∑

s=1

Γs,kNs,p,q. (2.27)

Here Np,q is the total number of transitions p → q observed in the data and Ñk,p,q is a

sum over the data in which the transition count for a subject s, Ns,p,q, is weighted by Γs,k
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which is the posterior probability that subject s belongs to class k. This probability is a

crucial element in our EM-algorithm outlined in Chapter 3.

Taking derivative with respect to αk,j, we get

∂L

∂αk,j

=

 ∑
s |xs,0=j

(
1

αk,j

) ωk

(
αk,j

∏
p,q∈{1,...,M} T

Ns,p,q

k,p,q

)
∑K

k′=1 ωk′

(
αk′,xs,0

∏
p,q∈{1,...,M} T

Ns,p,q

k′,p,q

)
− µk,

and performing similar calculations as before, we get: and thus that

α̂k,j =

∑
s |xs,0=j Γs,k∑S

s=1 Γs,k

. (2.28)

Similarly for ωk, the derivative is

∂L

∂ωk

=

 S∑
s=1

(
1

ωk

) ωk

(
αk,xs,0

∏
p,q∈{1,...,M} T

Ns,p,q

k,p,q

)
∑K

k′=1 ωk′

(
αk′,xs,0

∏
p,q∈{1,...,M} T

Ns,p,q

k′,p,q

)
− β,

and the final estimate is

ω̂k =

∑S
s=1 Γs,k

S
. (2.29)

Thus we have the following algorithm:

Algorithm (The EM algorithm for a mixture of K Markov chains). Given a collection

of state sequences, find maximum-likelihood estimates of the parameters ω, αk and T k

for a mixture of Markov chains.

1. Make initial assignments of the S subjects to K classes in the set Γs,k.

2. Given the Γs,k, Use Equations. (2.29), (2.28) and (2.27) to estimate the parameters

of the mixture, ω̂, α̂k and T̂ k.

3. Use Equation (2.26) to re-estimate the Γs,k, the posterior probabilities of class-

membership.

4. Repeat steps 2 and 3 until the estimated parameters converge.

The results from Borman (2009) ensure that this algorithm increases the likelihood (2.22)

in each cycle.
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2.3 Bayesian inference

Suppose I walk into my office in the university and find a chocolate cake at my desk.

There could be numerous reasons why it is there, two obvious causes that would come

to mind are – it is my birthday, it is somebody else’s birthday, or some celebration in

the office or university. Each of these possibilities has a prior probability. If it was my

birthday yesterday and I had already received a cake from my friends then it is unlikely

that it the same reason for this event. Another question in my mind is whose birthday it

is then. As I consider more information, I will narrow down to a few possibilities. This

scenario simply helps us in understanding how Bayesian statistics works where we take

into consideration other information before arriving to a conclusion of how likely an event

is.

Throughout the thesis we consider longitudinal health data, so we will give another

example to form an intuition of Bayesian statistics. The case of missing data is a common

challenge when collecting information from participants of a study over a period of time,

which can lead to biases and inefficient inferences if not dealt with appropriately (Mason

et al., 2010; Ma and Chen, 2018). It can arise due to several reasons: malfunctioning of the

survey method (e.g. a mobile application had a bug and stopped working), unavailability

of a participant on a specific day and so on. In fact, Rubin (1976) says these missing data

can be classified into missing completely at random, missing at random and not missing

at random. To address this, the missing values can be treated as random variables and a

Bayesian model can be built considering different circumstances based on the importance

of the missing values.

A one line explanation of Bayesian inference is that a subjective probability (density)

is updated as we receive more information about the event. The following set of steps

provides a more detailed description of carrying out Bayesian Data Analysis:

1. Find data based on the area of research. Identify the variables to be predictors and

those that are predicted.

2. Specify a prior distribution.

3. Compute the posterior distribution, and analyse by making inferences about the

parameters.

Bayesian inference is based on the Bayes’ theorem which can be defined as: For data D

and hypothesis H,

P (H | D) =
P (D | H)P (H)

P (D)
(2.30)

where P (H | D) is the posterior probability,

P (D | H) is the likelihood,
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P (H) is prior and

P (D) is the marginal likelihood.

In the above expression, it is the marginal likelihood which is often hard to compute.

Writing it even more explicitly, for observable random variables x1 . . . xn the posterior

density for parameter θ can be expressed as a parametric model of x1 . . . xn given θ and

the prior probability density for θ,

P (θ | x1, . . . , xn) =

n∏
i=1

P (xi | θ)P (θ)∫
n∏

i=1

P (xi | θ)P (θ)dθ
,

and P (x1, . . . , xn | θ) = L(θ | x1, . . . , xn) is the likelihood function.

2.4 Selected distributions

We now show our preferred parameterisation of some distributions used throughout the

thesis.

2.4.1 Bernoulli and Binomial distribution

Let yi ∈ {1, . . . , n} be a random variable with n possible outcomes of an event. When

n = 2, we call it a Bernoulli distribution which gets extended to Binomial distribution

for multiple trials.

Let yi be a binary random variable with two possible outcomes 0 and 1, so yi ∈ {0, 1}.
Suppose for one trial- which we call Bernoulli trial in this scenario, probability P (yi =

1) = θ, then P (yi = 0) = 1 − θ. Therefore, the probability mass function P (yi | θ) of

Bernoulli distribution is written as Bernoulli(yi | θ) = θyi(1−θ)1−yi . The expected value

is given as:

E[y] =
∑
yi∈0,1

yiP (yi) = P (yi = 1) = θ

Variance is:

Var[y] = E[y2]− (E[y])2 = θ(1− θ)

Likelihood for a sequence of data S = {y1, . . . , yN} with 2 possible outcomes is given
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by:

L(θ) = P (S | θ)

=
N∏
i=1

θyi(1− θ)1−yi

= θ

N∑
i=1

yi
(1− θ)

N∑
i=1

(1−yi)

= θN1(1− θ)N−N1

where N1 =
N∑
i=1

yi is the number of 1’s i.e. it is the number of times when y = 1. Now to

find the likelihood of N1 outcomes out of N total trials instead of a sequence, we include

a combinatorial factor to the likelihood found above. Thus, this gives the probability

mass function for Binomial distribution which is written as:

P (N1 | N, θ) =
(
N

N1

)
θN1(1− θ)N−N1 = Binom(θ,N)

where the Binomial coefficient
(
N
N1

)
= N !

(N−N1)!N1!
represents the number of ways of select-

ing N1 outcomes out of N trials of an event which is the Binomial distribution on the

counts of possible outcomes. It is a generalisation of Bernoulli distribution where number

of trials is more than 1.

2.4.2 Multinomial distribution

Multinomial distribution extends Binomial distribution by taking the possible number of

outcomes to be more than 2.

Let yi ∈ {1, . . . , n} be a categorical random variable with n possible outcomes and

P (yi) = θi, then the probability for one trial:

P (yi | θ) = Mult(yi | θ) =
n∏

i=1

θ
I(yi=1)
i

where I is the Indicator function so I(y = i) = 1, if y = i or it is 0, otherwise. Therefore,

we get:

P (yi | θ) =
n∏

i=1

θyii

Likelihood for the sequence of data S = {y1, . . . , yN} with n possible outcomes is given

by:

L(θ) = P (S | θ) =
N∏
j=1

n∏
i=1

θ
I(yj=i)
i =

n∏
i=1

θNi
i
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where Ni =
N∑
j=1

I(yj = i) is the number of times y = i.

Now to write the likelihood for a given number of counts N1, . . . , Nn out of total N

trials, we include Multinomial coefficient, which gives the probability mass function of

Multinomial distribution on counts of data as :

P (N1, . . . , Nn | N) = Mult(θ,N) =

(
N

N1 . . . Nn

) n∏
i=1

θNi
i

where
(

N
N1...Nn

)
= N !

N1!...Nn!
=
(
N
N1

)(
N−N1

N2

)
. . .
(
N−N1−···−Nn−1

Nn

)
is the Multinomial coeffi-

cient.

2.4.3 Gamma and Beta distributions

A random variable y has Gamma distribution with shape and scale parameters α and

β respectively if the probability density function is given by:

P (y) = Gam(α, β) =

 1
Γ(α)βα y

α−1e−y/β, if 0 < y <∞

0, otherwise

where α, β > 0 and Γ(α) =
∞∫
0

tα−1e−tdt is the Gamma function.

Let us take another random variable x and the same parameters α and β, the probability

density function of Beta distribution is given as:

P (y) = Beta(α, β) =


Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1, if 0 < x < 1

0, otherwise

Beta function is given by:
∫ 1

0
xα−1(1− x)β−1dx

2.4.4 Dirichlet distribution

Here, we derive an expression for the Dirichlet distribution by implementing a sampling

strategy of generating random variables from Gamma distribution. Let yi be a random

variable generated from Gamma distribution Gam(αi, 1) for i = 1, . . . , n. Let y1, . . . , yn

be independent samples, then the joint probability distribution function is given as:

P (y1, . . . , yn) =


∏n

i=1
1

Γ(αi)βα
i
yαi−1
i e−yi , if 0 < yi <∞

0, otherwise

We perform the following transformation on the random variables yi.
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pi =
yi

y1 + · · ·+ yn
, i ∈ {1, . . . , n− 1}

pn = y1 + · · ·+ yn

(2.31)

This means 0 ≤ pi ≤ 1 for i ∈ {1, . . . , n− 1} and 0 ≤ pn <∞. Equating the transforma-

tion Equations (2.31), we get:

y1 = p1pn,

...

yn−1 = pn−1pn,

yn = pn(1− p1 − · · · − pn−1)

Now, the Jacobian of the transformation is given by:

J =



pn 0 . . . 0 p1

0 pn . . . 0 p2
...

...
...

...

0 0 . . . pn pn−1

−pn −pn . . . −pn 1− p1 − · · · − pn−1


n×n

and its determinant is:

| J | = pn−1
n

Therefore, the joint probability density function is re-written as:

f(p1, . . . , pn−1, pn) = f(y1, . . . , yn−1, yn) | J |

=
n∏

i=1

1

Γ(αi)

n−1∏
i=1

(pipn)e
−(pipn)pαn−1

n (1− p1 − · · · − pn−1)
αn−1e−pn(1−p1−···−pn−1)pn−1

n

=
n∏

i=1

1

Γ(αi)

n−1∏
i=1

pαi−1
i (1− p1 − · · · − pn−1)

αn−1pα1+···+αn−1
n e−pn

Integrating out the n-th term of the transformed variables to get the marginal density

as:

f(p1, . . . , pn−1) =

∫ ∞

0

f(p1, . . . , pn−1, pn)dpn

=

∫ ∞

0

n∏
i=1

1

Γ(αi)

n−1∏
i=1

pαi−1
i (1− p1 − · · · − pn−1)

αn−1pα1+···+αn−1
n e−pndpn

=
n∏

i=1

1

Γ(αi)

n−1∏
i=1

pαi−1
i (1− p1 − · · · − pn−1)

αn−1Γ(α1 + · · ·+ αn)

∫ ∞

0

pα1+···+αn−1
n e−pn

Γ(α1 + · · ·+ αn)
dpn
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where, ∫ ∞

0

pα1+···+αn−1
n e−pn

Γ(α1 + · · ·+ αn)
dpn = 1

since the integrand is probability density function of Gamma distribution Gam(α1+ · · ·+
αn, 1). This gives us the probability density function of the Dirichlet distribution with

parameters {α1, . . . αn} as:

f(p1, . . . , pn−1) =
Γ(α1 + · · ·+ αn)

n∏
i=1

Γ(αi)

n−1∏
i=1

pαi−1
i (1− p1 − · · · − pn−1)

αn−1 (2.32)

On simplification of the Equation (2.32), we rewrite the probability density function in

the following form. Let p = {p1, . . . , pn} be a probability vector of n components such

that
n∑

i=1

pi = 1 and pi ≥ 0 for i ∈ {1, . . . , n}. Then the probability density function of

Dirichlet distribution over simplex ∆n−1 of dimension n− 1 is given as:

f(p1, . . . , pn) = Dir(α1, . . . , αn) =
Γ(α)

n∏
i=1

Γ(αi)

n∏
i=1

pαi−1
i (2.33)

where α =
n∑

i=1

αi and {α1, . . . , αn} are the Dirichlet shape parameters such that αi >

0 for i ∈ {1, . . . , n}.
An (n − 1)-dimensional simplex represented by ∆n−1, is a vector of length n which has

been defined by the following set:

∆n =

{
{p1, . . . , pn} ∈ Rn | pi ≥ 0 and

n∑
i=1

pi = 1

}
.

Points lying in the interior of the simplex ∆n−1 are probability distributions over the

numbers {1, . . . , n}. In the case of Dirichlet distribution, we talk about the shape pa-

rameters α over the simplex. Figure 2.3 shows us how the shape parameters distribute

the weight of the random variables generated from a Dirichlet distribution.
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(a) {α1, α2, α3} = {0.1, 0.1, 0.1}
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(b) {α1, α2, α3} = {1, 1, 1}
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(c) {α1, α2, α3} = {10, 10, 10}
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(d) {α1, α2, α3} = {10, 10, 5}

Figure 2.3: Ternary diagrams for different sets of Dirichlet shape parameters
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Now we compute the mean E[y] and variance Var[y] (Lin, 2016).

E[yi] =

1∫
0

· · ·
1∫

0

yi
Γ(α)

K∏
k=1

Γ(αk)

K∏
k=1

pαk−1
k dy1 . . . dyK

=
Γ(α)

K∏
k=1

Γ(αk)

K∏
k=1
i ̸=k

Γ(αk)Γ(αi + 1)

Γ(α + 1)

1∫
0

· · ·
1∫

0

K∏
k=1
i ̸=k

Γ(α + 1)

Γ(αk)Γ(αi + 1)

K∏
k=1
i ̸=k

yαk−1
k yαi+1−1

i dy1 . . . dyK

=
Γ(α)

K∏
k=1

Γ(αk)

K∏
k=1
i ̸=k

Γ(αk)Γ(αi + 1)

Γ(α + 1)

=
Γ(α)Γ(αi + 1)

Γ(αi)Γ(α + 1)

=
αi

α

Using similar steps as that for E[y], we get the second moment E[y2] as:

E[y2i ] =
Γ(α)Γ(αi + 2)

Γ(αi)Γ(α + 2)
=
αi(αi + 1)

α(α + 1)

and therefore, substituting the values from above, we get the variance to be:

Var[yi] = E[y2i ]− (E[yi])
2 =

αi(α− αi)

α2(α + 1)

Now to compute the covariance, we begin by writing the product moment E[yiyj] as:

E[yiyj] =
Γ(α)Γ(αi + 1)Γ(αj + 1)

Γ(α + 2)Γ(αi)Γ(αj)
=

αiαj

α(α + 1)

where i ̸= j.

Therefore, the covariance Cov[yi, yj]:

Cov[yi, yj] = E[yiyj]− E[yj]E[yj] =
αiαj

α2(α + 1)
, i ̸= j

2.4.5 Historical note

The Dirichlet distribution is named after Johann Peter Gustav Lejeune Dirichlet who

was a German mathematician born with a French last name. He was born in a town

which was under was the First French Empire at that time. “Lejeune Dirichlet” can be

translated to the boy from Richelet. The point of mentioning this is that it is unknown



2.5. MARKOV CHAIN MONTE CARLO 41

what pronunciation Dirichlet himself would have preferred and the correct pronunciation

can be debatable. On this note, an interesting fact to add is that Dirichlet’s primary

three advisors were known to be Siméon Poisson, Joseph Fourier and Carl Gauss.

2.5 Markov chain Monte Carlo

Markov Chain Monte Carlo methods have been known about for some time, but it is

only in the last 30 years that they have gained widespread adoption due to availability of

computational resources. They are based on adapting Monte Carlo methods for Markov

chains, as the name suggests.

A Markov chain is a sequence of events where the probability of occurrence of the next

event is determined by the previous one and it is independent of all the other events

before that. This characteristic of retaining no memory of the past is also known as

memorylessness and often referred to as Markov property in the context of Markov chains

or processes. In this thesis, we consider only finite-dimensional, discrete-time Markov

chains.

Monte Carlo refers to computational methods that simulate a probability model. Monte

Carlo is a gambling casino in Monaco which is said to have given name to the method

implying simulation through (pseudo-) random number generation.

Let X1, . . . , Xn be an n- sequence of independent, identically distributed (i.i.d) simula-

tions of a probability model. Let X be a generic realisation of the probability model such

that all the Xi have the same distribution π(x) as that of X. As we have simulated a ran-

dom process, now we can compute probabilities and expectations by taking average over

these simulations (Geyer, 1998). To calculate expectation of a random variable g(X) an-

alytically, E(g(X)) =
∫
g(x)π(x)dx can be tricky sometimes, so we can use Monte Carlo

integration instead (Metropolis et al., 1953). Therefore, we get µ = E(g(X)). Monte

Carlo approximation gives:

µ̂n =
1

n

n∑
i=1

g(Xi).

Here, µ̂n is the sample mean of i.i.d random variables g(X1), . . . , g(Xn) with expectation

µ. The Strong Law of Large Numbers tells us that µ̂n converges to µ almost surely as

the number of simulations n tends to infinity. Furthermore, if the variance Var(g(X))

is finite say σ2, then by Central Limit Theorem says that µ̂n is asymptotically normal

with mean µ and variance σ2/n. But sampling those sequences from model still remains

a problem.

Now combining the concept of Monte Carlo and Markov chains, we talk about Markov
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chain Monte Carlo, mostly referred to as MCMC. MCMC is a tool for generating samples

of a probability model while exploring the state space through a Markov chain mechanism

so that the chain spends more time in the regions with high probability mass. In short,

Markov chain samples are generated from a probability distribution and then Monte

Carlo approximation gets implemented.

Let x(i) be a Markov chain drawn from a target distribution π(x), then

π(x(i) | x(i−1), . . . , x(1)) = T (x(i) | x(i−1))

where T denotes transition probability kernel and the chain is homogeneous (Andrieu

et al., 2003) if it remains invariant i.e. πT = π with
∑

x(i) T (x(i) | x(i−1)) = 1 for any

i. For any starting point, a Markov chain will converge to its invariant, also known as

stationary distribution π(x) if T has the following properties:

1. Irreducibility : A given Markov chain is irreducible if it is possible to visit all other

states from any given state i.e. transition probability from one state to another is

positive for the complete state space. So the Markov chain should not be reducible.

In Figure 2.4, we see a reducible Markov chain as we cannot visit state C if we start

from state A or B.

0.5
0.5

0.8

0.2

0.2
0.3

0.5

AB

C

Figure 2.4: Reducible Markov chain

2. Aperiodicity : A Markov chain is aperiodic if it does not get trapped in any of the

loops i.e. the greatest common divisor (g.c.f) of number of times of possible return

of state to itself is 1 holds true for all states of the Markov process. Hence the

Markov chain has no periodic states. In Figure 2.5, we see that all the states are

periodic since a state can be visited back only in even number of jumps thereby the
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g.c.f is greater than 1. However, this Markov chain is reducible while the previous

Markov chain shown in Figure 2.4 was aperiodic.

1

0.6

0.4

1

AB

C

Figure 2.5: Periodic Markov chain

There are many MCMC algorithms which describe how a sampling is carried out. One

of the widely used algorithms is the Metropolis-Hastings algorithm which is introduced

in the next section.

2.5.1 Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm is an MCMC method which involves sampling

a new value x∗ given x according to proposal distribution q(x∗ | x) and the invariant

distribution π(x). The Markov chain selects x∗ with the acceptance probability (Hastings,

1970) given by:

min

{
1,
π(x∗)q(x | x∗)
π(x)q(x∗ | x)

}
, (2.34)

otherwise it remains at x. More details can be found in Chib and Greenberg (1995)

amongst many other sources.

2.5.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) previously known as Hybrid Monte Carlo is another

MCMC technique which is based on Hamiltonian dynamics. HMC modifies the MH

algorithm of sampling from a proposal distribution q(y | x) by adding two steps of

proposal on the basis of the Hamiltonian system and improving the acceptance probability

accordingly.
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HMC was developed by Duane et al. (1987) as a numerical simulation method for lat-

tice field theory which was then known as Hybrid Monte Carlo, in which MCMC and

deterministic simulation methods got combined. Later Neal et al. (2011) and others im-

plemented it in the context of statistics thus, soon the method got started to be known

as Hamiltonian Monte Carlo.

Now we briefly describe the Hamiltonian dynamics before formulating HMC. A way of

visualising the Hamiltonian system can be by imagining someone on a roller-coaster ride

whose state is determined by their position r and momentum at a point ρ in the ride.

Potential energy U(r) is directly proportional to the height of the position of the person

on the roller coaster with respect to the ground, and Kinetic energy K(ρ) is given by

|ρ|2/2m where m is the mass of the object which is the rider in this context. Thus, the

Hamiltonian of the rider will be determined by the sum of their potential and kinetic

energies which remains conserved by the Law of Conservation of Energy. So we write the

following equation of the Hamiltonian system in a generic form:

H(r, ρ) = U(r) +K(ρ)

with

dri
dt

=
∂H

∂ρi
and

dρi
dt

= −∂H
∂ri

(2.35)

for i = 1, . . . , d where d is the dimension of position and momentum vectors r and ρ

respectively.

Alternatively, the vectors r and ρ can be combined to z = (r, ρ) with 2d dimensions, so

the Equations (2.35) can be rewritten as:

dz

dt
= J∇H(z) (2.36)

where ∇H is the gradient of H and

J =

[
0d×d Id×d

−Id×d 0d×d

]
2d×2d

(2.37)

where 0 and I are the Zero and Identity matrices respectively. There are several properties

specified by Neal et al. (2011) which are essential for Markov Chain Monte Carlo (MCMC)

updates to happen. An outline of the properties is given below:

• Reversibility: For time t → t + s, the mapping Ts: H(rt, ρt) → H(rt+s, ρt+s) is

one-one, therefore, T−s exists.
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• Conservation of Hamiltonian i.e dH
dt

= 0.

• Preservation of volume: This is also given by Liouville’s theorem (Liouville). If the

mapping Ts is applied to points in some region R of (r, ρ) space with volume V

then the image of R under Ts will have same volume V .

• Symplecticness: Preservation of volume is also a result of the symplecticness. Let

z = (r, ρ) and J is given by (2.37), the symplecticness condition is Jacobian matrix

Bs of Ts satisfying B
T
s J

−1Bs = J−1.

For computational implementation of HMC, it is essential to discretise the time in Hamil-

tonian equations. Time is broken down into small step-sizes ϵ as ϵ, 2ϵ, 3ϵ, . . . , and then I

solve the Hamiltonian system of equations using an appropriate numerical method. One

of such numerical methods is Leapfrog integrator which updates the r and ρ according

to the following set of equations (Ziegler, 2019):

ρi(t+
ϵ

2
) = ρi(t)−

ϵ

2
∇U(r(t))

ri(t+ ϵ) = rit+ ϵρi(t+
ϵ

2
)

ρi(t+ ϵ) = ρi(t+
ϵ

2
)− (

ϵ

2
)∇U(r(t+ ϵ))

To summarise, with the help of leapfrog integrator, the Hamiltonian Monte Carlo al-

gorithm uses a Markov chain containing alternate stochastic updates of momentum ρ

and Hamiltonian updates, and the resulting state is accepted or rejected on the basis

of Metropolis-Hasting criterion on Hamiltonian H (Bishop and Nasrabadi, 2006). The

probability of accepting a candidate state is given by:

min
(
1, eH(r,ρ)−H(r∗,ρ∗)

)
(2.38)

where (r, ρ) is the initial state and (r∗, ρ∗) is the new state after leapfrog integration.

Statistical interpretation

In the context of probability and statistics, a distribution p(ϕ) on the momenta aug-

ments the posterior probability density p(θ | y), then the joint distribution p(θ, ϕ | y) =
p(ϕ)p(θ | y) where ϕ is an auxiliary variable. In addition to the posterior probability den-

sity, gradient of the log-posterior probability density d log p(θ | y)
dθ

is also supplied to HMC.

Here θ and ϕ play the roles of position and momentum vectors simultaneously satisfying

the Hamiltonian system of equations (Gelman et al., 2014; Betancourt, 2017) where the

joint density p(θ, ϕ | y) defines the Hamiltonian as:
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H(θ, ϕ) = − log p(θ, ϕ)

= − log p(θ)− log p(ϕ | θ)

= U(θ) +K(ϕ | θ)

where, U(θ) = − log p(θ) is the Potential energy and

K(ϕ | θ) = − log p(ϕ | θ) is the Kinetic energy.
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Abstract

It is well-known that mood and pain interact with each other, however individual-

level variability in this relationship has been less well quantified than overall asso-

ciations between low mood and pain. Here, we leverage the possibilities presented

by mobile health data, in particular the “Cloudy with a Chance of Pain” study,

which collected longitudinal data from the residents of the UK with chronic pain

conditions. Participants used an App to record self-reported measures of factors

including mood, pain and sleep quality. The richness of these data allows us to per-

form model-based clustering of the data as a mixture of Markov processes. Through

this analysis we discover four endotypes with distinct patterns of co-evolution of

mood and pain over time. The differences between endotypes are sufficiently large
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to play a role in clinical hypothesis generation for personalised treatments of co-

morbid pain and low mood.

3.1 Introduction

Mental disorder has been associated with a substantial excess in all-cause mortality risk

(Prince et al., 2007). It is often accompanied by mood disorders which, according to

the World Health Organisation (WHO) (Organization and Others, 2017), are one of the

leading causes of disability. Mental health can suffer due to many social, physical and

other factors, and mathematical approaches are uniquely placed to disentangle these

complex issues. In view of the difficulty in clearly defining “mental illness” itself, simply

linking its absence with positive mental health is not enough (Jahoda, 1958; Galderisi

et al., 2015). One may not suffer from any “mental illness”, yet not be mentally fit. So,

identifying markers of mental health disorders remains a vital challenge.

Chronic pain is a persistent or intermittent pain that lasts for more than 3 months (Sheng

et al., 2017), and approximately one fifth of the population in the USA and Europe are

affected by it (Breivik et al., 2006). Chronic pain can cause a lot of emotional distress

and affect lifestyle by interrupting activities (van den Berg-Emons et al., 2007) thereby

it can potentially lower a person’s mood. Low mood and low self esteem often give

birth to mental disorders like depression. (Fordyce, 1976) and (Sternbach, 1974) noted

that depression is a frequent accompaniment to chronic pain while, (Von Knorring et al.,

1983) observed that those who suffer from depression often complain of pain. Depression,

which is commonly associated with chronic pain (Fishbain et al., 1997; Zis et al., 2017),

is one of the leading contributors to global disease burden (Whiteford et al., 2013; Collins

et al., 2011). It has been seen that chronic pain and depression tend to coexist (Romano

and Turner, 1985) and the relationship between the two is widely studied. (Tang et al.,

2008) showed that when a depressed mood was induced in patients with chronic back

pain, their pain ratings increased, while participants with a happy mood had lower pain

ratings. (Fishbain et al., 1997) observed evidence against the hypothesis of depression

preceding the development of pain and indicated that pain may play a causal role for

depression. Chronic pain could be due to presence of inflammatory diseases (Ji et al.,

2016), which cause inflammation in the body that can produce cytokines which can lower

mood (Wright et al., 2005), and according to Irwin (2002), higher levels of biomarkers

associated with inflammation are linked with depression. So today, the causal relationship

of these associations between inflammation and mood disorders is said to be bi-directional

(Rosenblat et al., 2014; Jones et al., 2020; Lwin et al., 2020).

It is widely recognised that healthcare increasingly involves dealing with comorbidities

(Gijsen et al., 2001), and also personalisation of treatment plans (Vicente et al., 2020).
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Health issues such as mood disorders and conditions associated with chronic pain are often

comorbid (Tunks et al., 2008; Agüera et al., 2010), but the manner in which these condi-

tions influence each other varying from person to person is still considerably uncertain.

Mood disorders or depression can be treated in three ways: antidepressants, psychother-

apy and electro-convulsive therapy (ECT) (Nemeroff and Owens, 2002). Chronic pain

treatments can be based on multiple aspects of pain experience like the intensity and

quality of pain, and use of rescue analgesic medications (Patel et al., 2021). For cer-

tain types of chronic pain, drug therapy including intake of analgesics like non-steroidal

anti-inflammatory drugs (NSAIDs) could be the option, while for others, a multimodal

approach may be required (Portenoy, 2000) e.g.: a pharmacotherapy consisting analgesics

and Cognitive–behavioural therapy (CBT) together can be effective when chronic pain

and anxiety disorders co-occur (Asmundson and Katz, 2009). But when dealing with

both mood disorders and chronic pain, especially when considering only pharmaceutical

interventions, it must be noted that the combined usage of anti-depressants and NSAIDs

can have negative effect, as shown in (Shin et al., 2015; Hou et al., 2021) where there

observed a risk of intracranial haemorrhage although there was no such association found

in independent use.

Nowadays, technology is making its presence felt in several sectors, one of which is the

health sector. It is only in the early 21st century that eHealth, a broad term for the com-

bined usage of electronic and communication technologies in the health sector, emerged

(Harrison and Lee, 2006). Many novel ways have developed to tackle healthcare issues

and provide support. From wearable accessories to smartphone applications, all of these

are aiding healthcare. From a global perspective, e-health is useful in dissemination of

health information as well as ensuring that the most updated information is used to im-

prove the health (Kwankam, 2004; Kendall et al., 2020). The WHO’s Global Observatory

for eHealth defines mobile health (mHealth) as “medical and public health practice sup-

ported by mobile devices, such as mobile phones, patient monitoring devices, personal

digital assistants (PDAs), and other wireless devices”. mHealth is a powerful way to

cater to individual requirements. Few of the benefits of the mHealth tools, especially for

the purpose of research, are: (i) cost-effectiveness while collecting voluminous amount of

data; (ii) more honesty in answers received as there is no direct human intervention in

collection of data; and (iii) convenience of easily linking mHealth apps to other link to

other sensing tools. More than one in four people are affected by mental health disorders

like depression, anxiety etc. worldwide (Ginn and Horder, 2012), and digital technology

interventions show the potential to extend support to those who suffer from mental health

problems. There is a growing need to make digital based mental health care aid accessible

to as many people as possible (Naslund et al., 2017), and in this study, we make use of

digital health data to analyse mood-pain patterns in a cohort of residents of the UK with
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chronic pain conditions.

We explore the association between pain and mood by analysing long records of self-

reported, daily data collected using a mobile phone application. We perform clustering

on the basis of the transitions of mood-pain and show how an intervention to improve

low mood or high pain symptoms can affect the clusters differently.

3.2 Methods

3.2.1 Data

We use data from the Cloudy with a Chance of Pain study (Reade et al., 2017; Dixon

et al., 2019), which was conducted to investigate the relationship between weather and

pain, but in doing so created an extremely rich dataset suitable to answer a diversity of

research questions. Data were collected from January 2016 to April 2017 from participants

resident in the UK who were aged 17 or above and had experienced chronic pain for at

least 3 months preceding the survey (Druce et al., 2017).

The cohort had 10,584 survey participants, each of whom was asked to rate their symp-

toms and other variables on a mobile application in five ordinal categories (e.g. pain

scores ranged from 1 for no pain to 5 for very severe pain). Data were recorded for pain

interference, sleep quality, time spent outside, tiredness, activity, mood, well-being, pain

severity, fatigue severity and stiffness on a daily basis. However, participants did not al-

ways report all the data daily so we considered only those (Mood, Pain) states where both

the values are available, leaving us with N = 9990 participants for our analysis.

In this paper we analyse trajectories of pairs of self-reported pain severity and mood

scores. Participants were asked to provide information on these on a five-point Likert

scale, with accompanying text for each of the ordinal levels. For mood, a score of 1

represents worst mood and 5 represents best, whereas for pain a score of 1 represents

least pain and 5 represents most.

For easier analysis of the data and interpretation of results, we regrouped the severity of

mood and pain into two categories each on the basis of the descriptions associated with

each ordinal value. Mood scores of 1–3 and 4–5 were labelled Bad (B) and Good (G)

respectively, while pain levels of 1–2 and 3–5 were, respectively, labelled Low (L) and

High (H). Thus, at a given time, a participant’s mood and pain scores fall into one of

four states: GL; GH; BL; and BH. Full details are shown in Table 3.1
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Mood Pain

Score Description Binary Score Description Binary

1 Depressed Bad 5 Very severe pain High

2 Feeling low Bad 4 Severe pain High

3 Not very happy Bad 3 Moderate pain High

4 Quite happy Good 2 Low pain Low

5 Very happy Good 1 No pain Low

Table 3.1: Mood and pain scores, descriptions, and binary classifications. Score is the
value on a Likert scale available to participants, Text is the description presented to
them when recording these data, and Binary is our binary classification into ‘Good’ (G)
or ‘Bad’ (B) for Mood, and ‘Low’ (L) and ‘High’ (H) for Pain.

Participants self-reported diagnoses, and also provided information on age, sex, pain

condition diagnosed and the site of pain. They might have more than one condition

and site of pain. The list of conditions includes Rheumatoid arthritis, Osteoarthritis,

Spondyloarthropathy, Gout, Unspecific arthritis, Fibromyalgia, Chronic headache and

Neuropathic pain. The list of sites of pain taken in this analysis includes mouth or jaw,

neck or shoulder, back pain, stomach or abdominal, hip pain, knee pain, and hands.

Code for this study is made available at: https://github.com/rajenkidas/EM-clu

stering-on-Markov-Chains. The data is scheduled to be made available to the wider

research community via a trusted research environment in 2023.

3.2.2 Residual analysis

We performed an initial data analysis based on Pearson residuals, looking for notable

patterns in the co-evolution of mood and pain over time using standard methodology as

outlined by e.g. Bishop et al. (1975). Such an analysis particularly helps to visualise the

ways in which observed patterns deviate from a simple ‘null’ model.

We begin by visualising a matrix of transitions observed in the data. Let Y be the count

matrix whose element Yij denotes the total number of observed transitions—across all

participants—from state i one reporting day to state j the next reporting day. We then

perform Pearson residual analysis to compare observed transition probabilities with the

expected values given a specified ‘null’ model assumption, which we fit by maximum

likelihood estimation. Throughout this work we will use the standard result that the

maximum likelihood estimator for a probability of an outcome is the observed number

of such outcomes divided by the number of observations under binomial and Poisson

sampling (which we also assume throughout as appropriate).

We have seen that participants are most likely to remain in their current state rather

https://github.com/rajenkidas/EM-clustering-on-Markov-Chains
https://github.com/rajenkidas/EM-clustering-on-Markov-Chains
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Figure 3.1: Transition probability matrix: Heatmap showing probabilities of transitions
from one state to another.

than move to another one. That is, their mood and pain scores do not usually change

from one day to the next, as shown in Figure 3.1. These observations allow us to define a

simple first model for their behaviour and perform residual analyses as described below.

In this exploratory analysis we work with the original data, so there are n = 5× 5 = 25

states.

We therefore define a null model in which the number of participants starting in state

i is Ni, the probability of staying in state i is πi and when a person does change state,

the probabilities Pij of a transition from state i to state j ̸= i are uniform. The model

parameters can then have maximum likelihood estimators (indicated with hats) as follows.

For i, j ∈ {1, 2, . . . , n},

N̂i =
n∑

k=1

Yik, π̂i =
Yii∑n
k=1 Yik

, P̂ij =


π̂i if i = j,

1− π̂i
n− 1

otherwise,
Eij = N̂iP̂ij, (3.1)

where Eij is the (i, j)-th element of the matrix of expected counts, E. The associated

entry in the Pearson residual matrix R is then given by

Rij =
Yij − Eij√

Eij

. (3.2)

Since we expect such residuals to be asymptotically standard normal under the null

(Bishop et al., 1975), we will interpret these as values over 2 indicating significantly
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more events than expected under the null, and values under −2 indicating significantly

fewer.

3.2.3 Clustering analysis

In this section we outline methods used to classify the participants using unsupervised

learning, organising the participants into clusters on the basis of their sequences of reduced

(Mood, Pain) states: GL, GH, BL, BH.

Model setup

We assume the sequence of self-reported mood-pain states X = (Xt; t ≥ 0) is generated

by a Markov chain:

Pr(Xt+1 = j | X0 = k0, ..., Xt = i) = Pr(Xt+1 = j | Xt = i) =: Pij, (3.3)

where the Pij are called the chain’s transition probabilities.

Our data consists of trajectories of mood-pain pairs that we reduce to matrices tabulating

numbers of transitions observed for each participant individually. We then cluster these

count-matrices by using the EM algorithm to fit a mixture of Markov chains with a

distinct matrix of transition probabilities for each component of the cluster.

Let the number of states be n and the number of participants be S. We write C for the

matrix of total count of transitions from one state to another, and use Cs for the matrix

of counts of transitions that appear in the trajectory of states of mood-pain of participant

s. We note that C is distinguished from the count matrix Y introduced in Section 3.2.2

since it involves only the four reduced states.

The expectation-maximisation algorithm

The classical Expectation-Maximisation (EM) algorithm (Dempster et al., 1977) provides

a way to do maximum-likelihood estimation of parameters in a setting where some vari-

ables are unobserved or unknown. In our case, the latent variables are the classes to

which the participants belong. The algorithm involves iteration of two alternating steps:

the E, or expectation step, during which one computes the expected value of the log like-

lihood for the observed data, given the current estimates of the parameters, and the M,

or maximisation, step during which one re-estimates the parameters is maximising the

expected value as calculated in the E-step.

The details of this algorithm are given in Supplementary Material §3.5.3. It gives an

S ×K matrix Γ such that its (s, c)-th element Γsc is the probability that participant s

belongs to cluster c. Finally, cluster assignments are then made on the basis of the class
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membership probabilities: participants are assigned to whichever cluster they have the

highest probability of belonging to.

Associated stationary distribution

The stationary distribution for a Markov chain with n×n transition matrix M has prob-

ability xi associated with state i, where x = (xi) solves the left Eigenvalue equation

xk =
n∑

i=1

xiMik, (3.4)

where k ∈ {1, . . . , n}, and we impose conditions ensuring that x is a probability vector:

xi ≥ 0 and
∑n

i=1 xi = 1.

The solution to Eqn. (3.4) need not be unique, but as the transition matrices of our

problem are regular, we do get a unique stationary distribution for each component of

the mixture (Stirzaker, 2003). That is, for each cluster, we get a distribution over the

states BH, BL, GH and GL. Further, as the Markov chains are ergodic, the modelled

expected fraction of time an individual participant spends in state k is given by xk.

3.2.4 Intervention

In this section, we explore the prospect of alleviating low mood or high pain, which can

be done by taking the appropriate treatment targeting mood or pain. We näıvely exam-

ine how the interventions could work by altering the transition probabilities associated

with the clusters and see what effect this has on the cluster’s stationary distribution.

Throughout, we will let the transition probability matrix before intervention be repre-

sented as: 

GL GH BL BH

BH M11 M12 M13 M14

BL M21 M22 M23 M24

GH M31 M32 M33 M34

GL M41 M42 M43 M44

. (3.5)

Improving mood

To model an improvement in mood, we increase the probabilities of transitions from

states of bad mood to those with good mood. We get an updated transition matrix M′
c
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for every cluster c in the following way:



GL GH BL BH

BH M11 + βM M12 + βM 0.8× (M13 +M14 − 2βM) 0.2× (M13 +M14 − 2βM)

BL M21 + βM M22 + βM 0.8× (M23 +M24 − 2βM) 0.2× (M23 +M24 − 2βM)

GH M31 M32 M33 M34

GL M41 M42 M43 M44

,
(3.6)

where the rows are labelled by the (Mood, Pain) states from which the transition starts,

while the columns are labelled by the states to which it goes. Here βM must be chosen

so that all transition probabilities remain in the range 0 ≤ M ′
cij ≤ 1. For our fitted

transition matrices, these constraints mean that 0 ≤ βM ≤ 0.15.

One can see that we distribute the probabilities disproportionately between transitions to

BH and BL from BH and BL. This has been done to reduce the probability of moving to

BL, which we wish to model as less likely under an intervention assumed to be beneficial.

In fact, in general the probability of moving to good mood from bad mood could have

been achieved in numerous other ways through changes to the full matrices. The choice

used here permits a more substantial increase in the probabilities of improved mood than

simpler formulæ, many of which are strongly constrained by the necessity of keeping all

probabilities to the laws of probability.

Improving pain

Similar to improvement of mood, we considered altering the transition probabilities to

improve pain, which means increasing probability of transitioning to low pain through

adding and subtracting βP as shown below for the updated transition probability matrix

M′
c for every cluster c in the following way:



GL GH BL BH

BH M11 + βP 0.8× (M12 +M14 − 2βP ) M13 + βP 0.2× (M12 +M14 − 2βM)

BL M21 M22 M23 M24

GH M31 + βP 0.8× (M32 +M34 − 2βM) M33 + βP 0.8× (M32 +M34 − 2βM)

GL M41 M42 M43 M44

.
(3.7)

Here 0 ≤ βP ≤ 0.2. In both cases, we then examine the resulting changes in the sta-

tionary distributions to see the consequences of the intervention for each cluster individ-

ually.
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3.3 Results

3.3.1 Residual analysis

The resulting transition probability matrix is illustrated in Figure 3.1, which is a heatmap

illustrating the probabilities with which participants switch from one pair of mood-pain

scores to another. It is based on the original data and so has 5× 5 = 25 possible states

and 25× 25 = 625 possible transitions. It has rows labelled by a current mood-pain pair

and columns labelled by the mood-pain pair on the following day.

Note that the diagonal elements—those that correspond to remaining in the same state

on successive days—have high probabilities. The entries at upper right and lower left,

which correspond, respectively, to the worst and best mood-pain scores, are especially

large (near their maximum value, 1) indicating that participants at the extremes of the

scale have a strong tendency to remain there.

Figures 3.2a and 3.2b, which illustrate the distribution of residuals for this model as

computed with Eqn. (3.2), clearly show that the residuals do not appear to be normally

distributed. Looking at the residual heatmap in 3.2c, we can say that the näıve model

specified by Eqn. (3.1) does not describe the data well.

This suggests we try another model or check for latent variables or clusters. We try

another model in the Supplementary (3.12) which showed an improvement in fitting

since the residual range decreases in 3.15, but it still did not fit the data well as we see

in 3.16. So we move on to clustering the data, as explained in the next section.

3.3.2 Clustering

We found four clusters using the EM algorithm to do model-based clustering using a

mixture of Markov chains, as illustrated in Figure 3.3, where the clusters are represented

by heatmaps of their transition matrices.
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Figure 3.2: A is the scatter plot of expected values and the residuals. B shows a histogram
of the residuals as well as a blue curve giving the probability density function of a normal
distribution having the same mean and variance as the residuals. C is a heatmap of the
matrix of residuals based on the model specified by Eqn. (3.1).
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Figure 3.3: Heatmaps of the transition probability matrices for the four clusters where
G, B, L and H imply good mood, bad mood, low pain and high pain respectively.

Before describing the clusters, it should be noted that GL is the best state as both mood

and pain are good, while BH is the least preferable state to be in as both mood and

pain are bad here. Based on the transition probabilities, the four clusters for mood-pain

dynamics can be broadly characterised as:

Cluster 1: Movement to the least preferable state. 1783 members.

Here, we see that there are high probabilities of moving to the state where there is

bad mood and high pain.

Cluster 2: Movement to the ideal state. 1558 members.

In this cluster, we observe, irrespective of the current state, a participant is most

likely to be in good mood and low pain the next day.

Cluster 3: Good mood, high pain. 2019 members.

In this cluster, the dominant movement is to the state with good mood and high

pain.

Cluster 4: Remain in the same state. 4630 members.

Most of the participants tend to stay in the same state.

Given the total of 9990 participants, we see that it is most common for participants

(46%) to be members of Cluster 4 involving staying in the same state, which is consistent

with our exploratory analysis of transitions. The smallest cluster (number 2) with 16%



3.3. RESULTS 59

of participants, consists of those who tend to the ideal state, but at the same time, not

many (18%) are in Cluster number 1 that tends to the worst state. The remainder (20%)

belong to the third cluster: good mood, high pain.

In Figure 3.6, we present a set of comparisons of properties of the clusters. The stationary

distributions as defined by Eqn. (3.4) are shown in Figure 3.4, and are as would be

expected from the full estimated transition probability estimates they are derived from:

Cluster 1 has most probability mass on BH; Cluster 2 has most probability mass on

GL; Cluster 3 has most probability mass on GH; and Cluster 4 has evenly distributed

probability masses.
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Figure 3.4: Stationary distribution for the four clusters

In Figure 3.5, we compare age distributions by sex and cluster, seeing that Clusters 1

and 4 have comparable age distributions, but Cluster 3 is associated with older ages than

these two and Cluster 2 is associated with older ages than all three other clusters. Males

are typically older than females in all clusters.

Participants had one or more conditions and sites of pain, with log odds ratios for these

by cluster shown in Figures 3.6a and 3.6b. These show that while some conditions and

sites such as gout and hands are not strongly associated with any cluster, for others this

is not the case. Fibromyalgia and stomach pain are particularly strongly associated with

Cluster 2, for example.
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Figure 3.5: Age distribution amongst the clusters

3.3.3 Intervention

We look at how interventions could work help alleviate the symptoms of bad mood and

high pain.

In Figure 3.7a, Cluster 2 shows least improvement in mood, while Cluster 1 shows the

most followed by Cluster 4. Decrease in state BH is the highest for Cluster 1, followed

by Cluster 4 and least for Cluster 2. Overall, Cluster 1 shoes the most drastic changes

in probability distribution while Cluster 2 is the least. We also note that in the case of

improving mood from bad mood, state BL probability drops for Clusters 2 and 4, while

it increases for 1 and 3.

In Figure 3.7b, we again find Cluster 1 with maximum changes. When intervened to

improve pain by lessening the intensity of pain, probability of GH state improves only

for Cluster 1.
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Figure 3.6: A and B represent log odds ratio of condition and site of pain respectively,
per cluster.
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3.4 Discussion

In this work, we have performed an analysis of joint trajectories of mood and pain of

participants in the large mobile health cohort, “Cloudy with a Chance of Pain”. In

addition to analysis of the full set of transitions using residuals, we performed clustering

on transitions between a simplified set of variables and in doing so found four digital

behavioural phenotypes on the basis of people’s past trajectories of their mood-pain

states. This suggests that even though mood and pain have been known to be correlated,

the association may not be generalised in one single way for an entire population.

Previous studies on mood-pain relationships have tended to reach the conclusions on uni-

versal associations between mood and pain – i.e. generalising the result for everyone. The

clusters found in this study emphasise that mood-pain relationships may differ between

(groups of) individuals. The varying relationships between mood and pain, as shown by

the clusters, highlights that such variability should be taken into account when consider-

ing expected future associations - for example, in a clinical prediction model, an approach

of personalising forecasts could be taken.

Going beyond association to look at mechanism and causation, we stress that we have

not performed causal inference and so results should all be interpreted as indicative of

(potential) association magnitudes rather than as causal statements. Nevertheless, the

interpretability of the observed clusters and their diversity in terms of e.g. conditions

and sites of pain represented suggests that there may be associated endotypes – i.e.

clusters representing distinct mechanisms of disease. If such causally distinct groups

exist, then our hypothetical investigation of interventions that target either mood or

pain individually suggests that we might expect clinically significant differences from

different treatment depending on an individual’s endotype.
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Our study has some limitations that should be borne in mind when interpreting results.

The first of these is, as discussed above, that we consider associations rather than causa-

tion. Furthermore, we have assumed missing values – primarily arising when participants

did not enter data on one day – can be ignored and so have removed them; although this

is not a major component of the data an alternative would be to model non-response as a

separate value. Along related lines, the simplification of the state space, while necessary

for the EM algorithm to produce plausible transition matrices for each cluster, involves

some information loss and this leaves open the possibility of more sophisticated method-

ology to perform the clustering. Also, factors common to all observational studies such

as this one are important to bear in mind, particularly that individuals are selected from

the general rather than a clinical population.

Extension of the work presented here could include applying the same methodology to

more datasets to check if the phenotypes found are reproducible. This would further

strengthen the likelihood of different causal relationships holding within clusters. To

make a fuller assessment of likely causation, however, expected relationships between all

observed and unobserved variables would need to be specified, and ideally intervention

studies run. Additionally, this work can be extended by including socio-economic factors,

extra latent variables like sleep quality, environment etc. Another direction would be to

apply different techniques to this dataset, such as linear model based approaches that

can identify latent classes (Proust-Lima et al., 2015; Komárek and Komárková, 2013).

Different methods may allow the Markovian assumption made in our work to be relaxed,

allowing for e.g. consideration of patterns in longer sequences of data, but at the cost of

the ability to model out of sample behaviour as Markov chains allow.

Ultimately, our hope is that work on observational data such as that presented here can

aid with hypothesis generation for future clinical studies of more personalised interven-

tions for common problems such as low mood and chronic pain.
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Supplementary Material

3.5 Supplementary text

3.5.1 Summary statistics of data and results

Main data

Here we provide an overview of the data. Both mood and pain were rated on a five point

scale where 1 for mood is the worst score while 1 for pain is the best. Similarly 5 means

the mood is the best and pain is at its worst. Mean values of mood and pain are 3.6 and

2.7 respectively. Number of NA’s: 344784 in mood and 349760 in pain. After removing

these NA’s from the data, we are left with 9990 participants instead of 10584. More

details about the data can be found in www.cloudywithachanceofpain.com.

With five possibilities of each of mood and pain, there are 5 × 5 i.e. 25 possible (mood,

pain) pairs, which would become the states of our Markov processes, leading to transition

matrices with 25×25 = 625 entries. But instead, we reduce the total number of states by

regrouping the scores of mood and pain into good and bad, and low and high categories

respectively and then taking pairs of these regrouped scores. For Mood, the Bad (B)

scores are {1,2,3} while the Good (G) ones are {4,5}. For Pain, Low (L) is {1,2} while

High (H) is {3,4,5}.

For Mood, number of B’s and G’s are, respectively, 153922 and 288145. For Pain the

number of H’s and L’s are, respectively, 245344 and 196723. The frequencies with which

the four (Mood, Pain) states are observed is shown in Figure 3.8. The frequencies for

BH, BL, GH and GL are 113632, 40290, 131712 and 156433, respectively.

Figure 3.9 gives the overall age distribution of the cohort. It shows that the mean age

for the women and men are approximately 47 years and 52 years respectively.

Tables 3.2 and 3.3 give the characteristics of the study participants. Total number of

participants is 9990.

Clustered data

We have also included the clustered heatmaps without any regrouping of the categorical

variables in Figure 3.19. Note that the probability of moving to a state gets reduced

from 0.25 (in case of grouped data) to 0.04 which brings problems of interpretability and

generalisations which have been talked about before. But it can help in understanding the

contribution of a transition probability to the grouped clusters, which even 3.18 helps. We

have chosen not to discuss the granular details with 25-states and focus on the clustering

www.cloudywithachanceofpain.com
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with respect to the reduced states which can help in easy comparison with similar studies

performed or yet to be performed.

We see that within cluster composition of the conditions and sites of pain are both

more or less the same across the clusters as shown in Figures 3.10a and 3.10b. The

biggest difference which can be immediately noted is that in the composition of conditions

in cluster 2, Fibromyalgia and Neuropathic pain are less while unspecified arthritis is

comparatively more. Next, when we look at how much of a cluster constitutes a condition,

we find the proportions are in sync with the in general sizes of the clusters. Noticeable

difference in 3.10c is that cluster 2 amounts to very little proportion of Fibromyalgia,

while for site of pain, we find in 3.10d, cluster 2 constitutes very little of site of pain as the

face, while cluster 1 takes up a high proportion compared to the rest of its contributing

proportions.

Table 3.4 gives the mean age in years and the response rate in percentage per cluster.

Mean age was calculated by taking the average of age in a group, after removing all the

NA values. Response rate is the percentage of participants in a cluster who gave their

date of birth details.

3.5.2 Definition of the log odds ratio

Tables 3.5 and 3.6 give the log odds ratio of a condition and site of pain respectively in a

cluster compared to the other clusters. To calculate log odds ratio, we use Multinomial

Logistic Regression and build the following contingency table first:

Cluster Remaining clusters

Condition n11 n12

Remaining conditions n21 n22

Explicitly:

n11 is the number of participants with a specific condition in a cluster.

n12 is the number of participants with the specific condition not in the cluster.

n21 is the number of participants without the specific condition in the cluster.

n22 is the number of participants without the specific condition not in the cluster.

The log odds ratio is then given by:

L = log

(
n11n22

n12n21

)
= log(n11) + log(n22)− log(n12)− log(n21)

The standard error of this quantity is asymptotically equal to
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σ =
√
n11

−1 + n12
−1 + n21

−1 + n22
−1),

as shown in Bishop et al. (1975). Therefore, the 95% Confidence Interval is approximately

L± 1.96σ.

Similarly we calculate for site of pain by building the following contingency table:

Cluster Remaining clusters

Site of pain n11 n12

Remaining sites of pain n21 n22

Explicitly:

n11 is the number of participants with a specific site of pain in a cluster.

n12 is the number of participants with the specific site of pain not in the cluster.

n21 is the number of participants without the specific site of pain in the cluster.

n22 is the number of participants without the specific site of pain not in the cluster.

And we can then calculate a log odds ratio as for conditions. In general, a positive log

odds ratio indicates that the site or condition is more commonly in a cluster, and a

negative that it is less commonly so.

3.5.3 Description of the EM algorithm

The matrix Γ is initialised randomly with probabilities chosen such that every row sums

to 1. The mixture of Markov chains is then specified by a weight vector ω of length K

in which

ω̂k =

∑S
s=1 Γsk

S
(3.8)

Using the mixture weights and count matrices, we then estimate the parameters of the

per-cluster Markov chains which are transition probability matrices M. For cluster k,

the estimate for i to j transition is given by

M̂kij =

∑S
s=1 Γsk Csij∑K

k=1

∑S
s=1 ΓskCsij

. (3.9)

The rows of the a participant’s count matrix are taken to follow a Multinomial distribution

and so define an S×K matrix of expected likelihoods whose entry Λsk gives the likelihood

of observing participant s’s trajectory given that they participant s belongs to cluster k.

It is given by

Λsk =
n∏

i,j=1

M
Csij

kij
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where we have suppressed a multinomial coefficient that does not depend on the param-

eters of the mixture model and so does not affect maximum-likelihood estimates. The

log-likelihood for participant s and cluster k is thus given by,

log Λsk =
n∑

i,j=1

Csij log (Mkij) . (3.10)

Using Eqn. (3.10), we can specify the algorithm steps as follows:

• Expectation step: The expected values of the matrix of class membership prob-

abilities are computed using

Γ̂sk =
ωk Λsk∑K
c=1 ωc Λsc

• Maximisation step: This involves re-estimating the parameters of the mixture

using Eqns. (3.8) and (3.9).

One performs the steps in alternation until the matrix Γ converges. That is, one keeps

track of the two most recent estimates of Γ — call them Γ̂ and Γ̂′ — and continues

iterating until a convergence criterion such as

|Γ̂− Γ̂′| < ϵ,

for some sufficiently small ϵ is met. Straightforward arguments by Borman (2009) estab-

lish that every cycle of this algorithm increases the likelihood thereby the log likelihood

as defined in Eqn. (3.11).

3.5.4 Choosing the number of clusters

To find the total log-likelihood of the observed data, we made use of the log-likelihood

per participant per cluster log(Λsk) as found in Eqn. (3.10):

S∑
s=1

log

(
K∑
k=1

ωkΛsk

)
, (3.11)

where s denotes the participant and k ranges over the clusters.

Figure 3.11 shows the negative log-likelihood as a function of the number of clusters. We

see a massive drop between K = 1 and K = 2 which suggests that the participants may

fall into two or more clusters . Further we see relatively big decreases as we increase the

number of components to K = 3 and K = 4. The curve continues falling after K = 4,

but as the decreases in negative log-likelihood are modest, we decided to work with 4
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clusters. Additionally, we notice that the curve seems to flatten between 4 and 5. We

have also plotted differences between consecutive negative Log-Likelihoods in Figure 3.12

to show how the negative Log-Likelihoods vary across number of clusters. We can see

that the differences show a dropping trend with more number of clusters. Taking number

of clusters to be 4 seems to be sufficient to describe the data.

Now we talk about another model selection criterion which was considered during this

study. Bayesian Information Criterion (BIC) is a method to compare statistical models by

calculating the information loss between the true and evaluated model by penalising the

sample size to address the problem of overestimating the number of parameters (Dorea

et al., 2014).

First we compute the likelihood L for the model in consideration. Then, we write BIC as

BIC = −2 logL+ k log(n),

where logL same as that given in 3.11. k is the total number of parameters and n is the

number of observations.

For the problem in question, k = K× size(T)× (size(T)−1)+K−1 where K is the total

number of clusters and T is the transition probability matrix therefore, for the 4-state

Markov mixture models, we get k = K × 4 × (4 − 1) + K − 1 = 13K − 1. Number of

observations is the total number of transitions which is 432077. We select the optimal

number of clusters in the similar way as that done for negative log-likelihood above. Its

plot is given in Figure 3.14. However, we don’t see much difference from the previous

model selection plot in Figure 3.11. It is because in comparison to the large size of the

dataset, the penalty in BIC is too small and does not give criteria value much different

from negative Log-Likelihood. It is common to have BIC and other criteria to keep on

decreasing in case of large datasets and not be penalised much. We can see that Yin

et al. (2016) used similar reasoning for model selection.

Additionally, we performed clustering into 5 to 8 components as shown in Figures 3.20,

3.21, 3.22 and 3.23, which refine the clusters but since cluster 4, identified by high prob-

abilities along the diagonal bottom left to top right, pattern seems to exist consistently

and it is the cluster with highest number of participants (46 % of population belong to

this group), further breakdown of other clusters will lead to much fewer people to the

other groups which we might want to avoid. So, we decided 4 to be a good selection

as the clusters from the 4-component mixture had certain natural interpretations (see

Section 3.4) while those from the other component mixtures did not. Taking K = 4 gives

us quite distinct patterns while higher-cluster models have repeated patterns amongst

the clusters.
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3.5.5 Residual analysis: a second model

In order to fit a better model, let’s us go back to the observed transition matrix plotted

in Figure 3.1. The observation that the diagonal elements are high has already been

incorporated into the model described by Eqns. (3.1). If we look at the heatmap more

carefully, we can see that there are more dark bands indicating high probabilities in

certain off-diagonal regions as well.

Let m and p denote the original mood and pain scores respectively. The states are in the

pairs of form (m, p) where, m, p ∈ {1, 2, 3, 4, 5}. Since people tend not only to remain in

the same state, but also to move a single step up or down in either mood or pain, it is

interesting to extend the simple model of Eqn. (3.1) to capture these features. Let the

probability that a person remains in the same state (m, p) be πm,p and the probabilities

that they move to a state with p± 1 be πm,p±1 and probability of moving to a state with

m± 1 be πm±1,p.

Assuming independence holds, the model is re-defined using the following distribution.

P(m,p),(m′,p′) is the probability of people moving from state (m, p) on a day to (m′, p′) the

next day. For m, p ∈ {1, 2, 3, 4, 5},

P(m,p),(m′,p′) =



πm,p if (m′, p′) = (m, p)

πm,p±1 if (m′ = m) and (p′ = p± 1)

πm±1,p if (m′ = m± 1) and (p′ = p)

uniform otherwise

(3.12)

The new model is thus that the probabilities for staying at the same state or moving to

states whose mode or pain scores differ by 1 agree with those implicit, but transitions

to all other states are equally likely. When we overlay a standard normal curve on the

histogram of standardised residuals, as shown in Figure 3.16, we find once again that the

residuals do not appear to be normally distributed.

Using the same standardised residual formula as in Eqn. (3.2), the heatmap of the resid-

uals shown in Figure 3.15 is obtained. Comparing it with Figure 3.2, the first noticeable

difference is that the range of residuals for the new model has decreased, indicating a

better fit. Also, the diagonal region connecting the top left to bottom right has smoothed

out a bit.

We could in principle carry on, constructing models of increasing complexity and reducing

the largest residuals until those that remain have the expected, near-normal distribution.

But this modelling effort was only meant to be exploratory: our main goal was the

clustering analysis as discussed before.
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Figure 3.16a compares the expected values and residuals obtained from Figure 3.12, and

Figure 3.16b shows how the normal distribution curve fits the histogram of residuals.

3.5.6 Clusters

Transition probability matrix based on the regrouped states is given in Figure 3.17.

Before clustering, we take a look at the transition probability matrix again, but with the

new states where we have regrouped the states into two categories, Good (G) and Bad

(B) for mood, and Low (L) and High (H) for pain. We see trends similar to those in

Figure 3.1, where the probability to remain in any given state is high. Additionally, here

we can also see that probability of moving from (Mood, Pain) state (B, L) to (G, L) is

high.

Once clustering is done, in Figure 3.18 we note the distribution of transitions amongst

the clusters. Here, the sum of probabilities for a particular transition across clusters add

up to 1.

3.5.7 Computing the shift for interventions

Here, we show how we have shifted the transition matrices to intervene with either im-

proving mood or improving pain. Please note that this is an arbitrarily developed method

to find a shift in the given scenario, as it helps in following the laws of probability. This

need not be the optimal solution i.e. the maximum possible shift.

Step 1: We first calculate an intermediate result α by taking the maximum of the max-

imum of the probabilities of transitioning from bad mood to good mood over the clus-

ters:

α = max{ max
1≤k≤K

Prk(mood tomorrow = G | mood today = B)}.

Step 2: Given α, we calculate β = (1/2)∗(1−α). Then our new probabilities become

Pr′(mood = good tomorrow | mood = bad today) =

Pr(mood = good tomorrow | mood = bad today) + β.

To ensure that the probabilities to add up to 1,

Pr’(mood = bad & pain = low | mood = bad) = 0.8 × (Pr’(mood = good | mood = bad)

and

Pr’(mood = bad & pain = high | mood = bad) = 0.2 × (Pr’(mood = good | mood = bad).

We split in the ratio of 4:1 sto give lesser probability to the least-ideal state BH.

For our data, we get the approximate maximum value of β as 0.15. So we shift by 0.15
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and compare with the clusters.

In a similar way, we calculated βP .
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3.6 Supplementary tables

Diagnosis N (% approx.)

Chronic headache 1040 (10.4)

Fybromalgia 2668 (26.7)

Gout 340 (3.4)

Neuropathic pain 1519 (15.2)

Osteoarthiritis 2283 (22.8)

Rheumotoid arhiritis 1838 (18.3)

Spondyloarthropathy 865 (86.5)

Unspecified arthiritis 3418 (34.2)

Table 3.2: Conditions reported by the participants of the study.

Site of pain N (% approx.)

Head 1963 (19.6)

Face 740 (74)

Mouth or jaws 1606 (16)

Neck or shoulder 5692 (57)

Back 5910 (59.1)

Stomach 1713 (17.1)

Hip 5160 (51.6)

Knee 6260 (62.6)

Hands 5778 (57.8)

Feet 4749 (47.5)

Table 3.3: Sites of chronic pain reported by the participants of the study

Age mean (% response rate)

Sex Overall Cluster 1 Cluster 2 Cluster 3 Cluster 4

Female 47 46 (96) 51 (97) 47 (97) 46 (96)

Male 52 50 ( 96) 56 (96) 53 (95) 50 (93)

Table 3.4: Rounded off values of mean age and response rate
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Cluster Condition Log OR Std. Error CI low CI high

1 Cluster 1 Rheumatoid arthritis -0.04 0.07 -0.17 0.10

2 Cluster 2 Rheumatoid arthritis -0.15 0.07 -0.29 -0.00

3 Cluster 3 Rheumatoid arthritis 0.16 0.07 0.03 0.29

4 Cluster 4 Rheumatoid arthritis -0.01 0.05 -0.11 0.10

5 Cluster 1 Osteoarthritis -0.08 0.06 -0.20 0.04

6 Cluster 2 Osteoarthritis -0.25 0.07 -0.38 -0.12

7 Cluster 3 Osteoarthritis -0.30 0.06 -0.41 -0.18

8 Cluster 4 Osteoarthritis 0.40 0.05 0.30 0.49

9 Cluster 1 Spondyloarthropathy -0.34 0.08 -0.51 -0.18

10 Cluster 2 Spondyloarthropathy 0.47 0.12 0.25 0.70

11 Cluster 3 Spondyloarthropathy 0.03 0.09 -0.14 0.20

12 Cluster 4 Spondyloarthropathy -0.00 0.07 -0.15 0.14

13 Cluster 1 Gout 0.02 0.14 -0.26 0.30

14 Cluster 2 Gout 0.13 0.16 -0.19 0.44

15 Cluster 3 Gout 0.01 0.14 -0.26 0.28

16 Cluster 4 Gout -0.08 0.11 -0.30 0.14

17 Cluster 1 Unspecific arthritis 0.22 0.06 0.11 0.33

18 Cluster 2 Unspecific arthritis -0.26 0.06 -0.38 -0.14

19 Cluster 3 Unspecific arthritis 0.07 0.05 -0.04 0.17

20 Cluster 4 Unspecific arthritis -0.04 0.04 -0.13 0.05

21 Cluster 1 Fibromyalgia -0.97 0.06 -1.08 -0.85

22 Cluster 2 Fibromyalgia 1.64 0.10 1.45 1.84

23 Cluster 3 Fibromyalgia -0.41 0.06 -0.52 -0.31

24 Cluster 4 Fibromyalgia 0.32 0.05 0.23 0.41

25 Cluster 1 Chronic headache -0.46 0.08 -0.61 -0.31

26 Cluster 2 Chronic headache 0.59 0.11 0.37 0.81

27 Cluster 3 Chronic headache 0.27 0.09 0.10 0.44

28 Cluster 4 Chronic headache -0.11 0.07 -0.24 0.02

29 Cluster 1 Neuropathic pain -0.72 0.06 -0.84 -0.59

30 Cluster 2 Neuropathic pain 1.08 0.11 0.87 1.29

31 Cluster 3 Neuropathic pain -0.23 0.07 -0.36 -0.09

32 Cluster 4 Neuropathic pain 0.24 0.06 0.13 0.35

Table 3.5: 8618 out of 9990 participants of the study, reported their chronic pain condi-
tion. Log odds ratio of a condition in a cluster with 95% Confidence Interval
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Cluster Condition Log OR Std. Error CI low CI high

1 Cluster 1 Head -0.71 0.06 -0.82 -0.59

2 Cluster 2 Head 0.75 0.08 0.58 0.91

3 Cluster 3 Head 0.06 0.06 -0.07 0.18

4 Cluster 4 Head 0.08 0.05 -0.02 0.18

5 Cluster 1 Face -0.80 0.09 -0.96 -0.63

6 Cluster 2 Face 1.16 0.16 0.85 1.47

7 Cluster 3 Face -0.23 0.09 -0.41 -0.05

8 Cluster 4 Face 0.28 0.08 0.13 0.44

9 Cluster 1 Mouth or jaws -0.59 0.07 -0.72 -0.46

10 Cluster 2 Mouth or jaws 0.96 0.10 0.77 1.16

11 Cluster 3 Mouth or jaws -0.21 0.07 -0.34 -0.08

12 Cluster 4 Mouth or jaws 0.12 0.06 0.01 0.22

13 Cluster 1 Neck or shoulder -0.62 0.06 -0.74 -0.50

14 Cluster 2 Neck or shoulder 0.53 0.06 0.42 0.65

15 Cluster 3 Neck or shoulder -0.28 0.06 -0.39 -0.17

16 Cluster 4 Neck or shoulder 0.22 0.04 0.13 0.30

17 Cluster 1 Back -0.91 0.07 -1.04 -0.78

18 Cluster 2 Back 0.81 0.06 0.70 0.93

19 Cluster 3 Back -0.39 0.06 -0.50 -0.28

20 Cluster 4 Back 0.25 0.04 0.16 0.33

21 Cluster 1 Stomach -0.69 0.06 -0.82 -0.57

22 Cluster 2 Stomach 1.06 0.10 0.87 1.26

23 Cluster 3 Stomach -0.05 0.07 -0.18 0.08

24 Cluster 4 Stomach 0.04 0.05 -0.06 0.15

25 Cluster 1 Hip -0.60 0.06 -0.71 -0.48

26 Cluster 2 Hip 0.60 0.06 0.48 0.71

27 Cluster 3 Hip -0.34 0.05 -0.44 -0.23

28 Cluster 4 Hip 0.22 0.04 0.14 0.31

29 Cluster 1 Knee -0.39 0.06 -0.51 -0.26

30 Cluster 2 Knee 0.39 0.06 0.28 0.51

31 Cluster 3 Knee -0.38 0.06 -0.49 -0.26

32 Cluster 4 Knee 0.22 0.05 0.14 0.31

33 Cluster 1 Hands -0.32 0.06 -0.44 -0.21

34 Cluster 2 Hands 0.20 0.06 0.09 0.32

35 Cluster 3 Hands -0.19 0.06 -0.30 -0.09

36 Cluster 4 Hands 0.19 0.04 0.11 0.28

37 Cluster 1 Feet -0.43 0.06 -0.54 -0.32

38 Cluster 2 Feet 0.40 0.06 0.28 0.51

39 Cluster 3 Feet -0.28 0.05 -0.38 -0.17

40 Cluster 4 Feet 0.21 0.04 0.13 0.29

Table 3.6: 9146 out of 9990 participants of the study reported their site of pain. Log
odds ratio of a site of pain in a cluster with 95% Confidence Interval
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3.7 Supplementary figures
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Figure 3.9: Overall age distribution, included for comparison with Figure 3.5.
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(b) Proportion reporting site of pain per
cluster
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(c) Proportion assigned to cluster per
condition

19.316.518.945.3

19.817.524.738

23.910.320.645.2

18.513.520.947.1

16.817.120.445.7

29.84.525.939.7

25.79.417.347.6

296.524.240.3

Chronic headache

Fibromyalgia

Gout

Neuropathic pain

Osteoarthritis

Rheumatoid arthritis

Spondyloarthropathy

Unspecific arthritis

0 25 50 75 100
Proportion

C
on

di
tio

n

Cluster

1
2
3
4

(d) Proportion assigned to cluster per
site of pain

26.39.219.445.1

30.15.923.640.3

25.27.52344.3

20.613.121.844.6

21.511.822.244.5

26.5720.745.8

2112.322.444.2

19.114.121.944.9

19.114.821.244.9

20.313.322.244.1

Back

Face

Feet

Hands

Head

Hip

Knee

Mouth or jaws

Neck or shoulder

Stomach

0 25 50 75 100
Proportion

S
ite

Cluster

1
2
3
4

Figure 3.10: A and B indicate the proportion of participants in a cluster reporting,
respectively, a given condition and site of pain. C and D show the proportions of partic-
ipants with, respectively, a given condition or site of pain who fall into each cluster.
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Figure 3.11: Negative Log Likelihood as a function of the number of components
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k+1 and k
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Figure 3.13: Dotted lines represent negative Log Likelihood gradients extrapolated from
the difference between clusters 1 and 2, and clusters 9 and 10.
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Figure 3.15: Residual heatmap of the model given by Eqn. (3.12)
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(a) Expected vs residual values
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Figure 3.16: A is the scatter plot of expected values and the residuals. B shows a
histogram of the residuals as well as a blue curve giving the probability density function
of a normal distribution having the same mean and variance as the residuals.
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Figure 3.17: Transition Matrix based on the regroup scales
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Figure 3.18: The ratio of the entries in the transition probability matrices for the clusters
to the transition probabilities estimated from the whole sample without clustering.
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Figure 3.19: Four clusters without regrouping (Mood, Pain) states
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Figure 3.20: Heamtap of transition probability matrices when number of clusters is 5
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Figure 3.21: Heamtap of transition probability matrices when number of clusters is 6
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Figure 3.22: Heamtap of transition probability matrices when number of clusters is 7
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Figure 3.23: Heamtap of transition probability matrices when number of clusters is 8
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Abstract

We are given trajectories of data which we model to build a mixture of Markov

chains parameterised by a vector of matrices each representing a class of Markov

chains. We sample a finite mixture of Markov chains fitting Dirichlet distribution

and implement Hamiltonian Monte Carlo imposing constraints on the parameters

of the model to address the problem of label-switching. This method is then applied

to a set of real data consisting of longitudinal trajectories of self reported mood

and pain severities, and then the findings are reported.

4.1 Introduction

Data in real world are often heterogeneous in nature and can’t be described by only one

probability distribution. In statistics, mixture modelling is an approach to address such

heterogeneity where sub-populations of the data are identified. It is useful in estimating

unobserved variables, finding patterns and clustering into what are often known asmixture

components. The main problem becomes estimating the parameters of the components

of the mixtures. There are several applications of mixture modelling in day to day life,

especially in healthcare such as finding endotypes of a given disease.

The multinomial distribution is used in the modelling of counts and is often useful when

categorical data is presented. A classic approach taken for multinomial estimation is

introduction of the Dirichlet distribution as a prior to the multinomial (Bouguila, 2008;

85
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Minka, 2000). We can find applications of this Dirichlet-multinomial distribution in many

fields like stock assessment (Bouguila, 2008), detection of protein sequence homology

(Sjölander et al., 1996) and language modelling (MacKay and Peto, 1995).

In this paper, we are given trajectories of self-reported data which we have assumed to be

sampled from a mixture of Dirichlet distribution on the transition matrices. Given these

finite mixtures, we then build a Bayesian model to estimate the parameters by sampling

each row of the transition matrix of a component from a Dirichlet distribution. For

parameter estimation of this model, we implement Markov Chain Monte Carlo (MCMC)

using the method of Hamiltonian Monte Carlo (HMC). In short, we show how HMC can

be performed on mixture of count matrices parameterised by matrices of Dirichlet shape

parameters by taking care of label-switching which is an inherent computational challenge

in mixture modelling. Additionally, we run the model on real data of the trajectories of

self-reported mood and pain, and report the inference on it.

4.2 Data and code

This is a secondary analysis where the data is taken from the Cloudy with a Chance

of Pain study (Reade et al., 2017; Dixon et al., 2019) which was conducted in order to

investigate the relationship between weather and pain, but in doing so a rich dataset

was created which could be used to answer a diversity of research questions. Data were

collected for 1 year 3 months which was from January 2016 to April 2017. The participants

were residents in the UK who were aged 17 or above and had experienced chronic pain

for at least 3 months preceding the survey (Druce et al., 2017).

The cohort had 10,584 survey participants, each of whom was asked to rate their symp-

toms and other variables on a mobile phone application in five ordinal categories of 1

to 5. Data were recorded for 10 variables, two of which were pain severity and mood.

Participants were asked to provide information on these on a five-point Likert scale, with

accompanying text for each of the ordinal levels. For mood, a score of 1 represents worst

mood and 5 represents best, whereas for pain a score of 1 represents least pain and 5

represents most.

In this study, we analyse trajectories of self-reported pain severity and mood scores —

individual mood and pain trajectories, and also a trajectory with pairs of mood and pain.

In case of a state not reported i.e. recorded as NA, we remove that data point i.e. the

entire row in the dataset entirely. Also, while performing this analysis, we considered

only those participants who had at least 3 weeks i.e. 21 days of entry — participants

outside this criterion were removed.

As we were considering these trajectories to be drawn from Markov chains, the transition
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probability of moving to another state is 1/(no. of states). If we regroup the data, where

possible, in such a way that the number of states decreases therefore, our transition

probability increases which helps in better understanding of the transitions. So for easier

understanding of results, we regrouped the severity of mood and pain into two categories

each on the basis of the descriptions associated with each ordinal value. Mood scores of

1–3 and 4–5 were labelled Bad (B) and Good (G) respectively, while pain levels of 1–2

and 3–5 were, respectively, labelled Low (L) and High (H). When combining mood and

pain states, we get four states: GL; GH; BL; and BH.

Code will be made available at: https://github.com/rajenkidas/.

4.3 Bayesian framework

In this section, we talk about the steps taken in developing the distribution over transition

matrices and establishing a mixture model whose components are represented by Dirichlet

distributions over row-vectors of a transition matrix per component.

A similar method has been described by Frühwirth-Schnatter and Pamminger (2010) in

studying wage mobility in the Austrian labour market where they model the deviations of

each row of transition matrix using Dirichlet-multinomial and take the Dirichlet parame-

ters as the group specific parameters. In our case, we have assumed each row of transition

matrix to be sampled from Dirichlet and the group is specified by Dirichlet parameters

and mixture weights. Using these we introduce few more parameters later which have

been utilised to address the problem of label-switching in mixture models.

4.3.1 What data do we have?

We are given trajectories of ordinal data. We assume each trajectory is drawn from

an n-state Markov chain i.e. the trajectories follow the Markov property in which a

state depends only on the previous state. Using these trajectories, we derive count

matrices Cs for each of the subject s ∈ {1, . . . , S}. Count matrices contain frequencies

of transitions observed from one state i to another state j. These can be reduced to

matrices of transition probabilities Ts per subject s where each of its elements represents

the proportion of counts in a row for a subject. The trajectories are further classified into

K components based on the transitions observed in the data. We assume that each row

of the transition count matrix C is sampled from a Dirichlet-multinomial distribution for

a component. Therefore, each component gets defined by its mixture weight and a matrix

of Dirichlet parameters. Our goal is to model the count data by implementing Bayesian

inference in order to estimate the Dirichlet parameters of the model, which can thereby

also help in predicting the probability of a state for a subject given the trajectory.

https://github.com/rajenkidas/
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So, we have the following data for the model:

• Total number of states: n

• Total number of subjects: S

• Total number of components: K

• Count matrices: Cs for each subject s.

The real data specifications are given in the Supplementary in Table 4.1.

4.3.2 What is the model?

To summarise the gist of the model pictorially, we represent it as Figure 4.1a getting

reduced to Figure 4.1b where each row of a count matrix is sampled from a Dirichlet

distribution. To achieve this, we begin by defining some intermediate parameters for

which we carry out transformations as stated in the equations: (4.2) to (4.5). Using

these parameters, we can retrieve each of the individual Dirichlet shape parameters as

shown in the Equation (4.6). The Dirichlet parameters are later used in computing

likelihood and posterior distribution.

Stack of matrices of counts

n
o
.s
u
b
je
ct
s

(a) Pillar of count matrices

Stack of matrices of Dirichlet 
shape parameters

n
o
.c
o
m
p
o
n
en

ts

(b) Pillar of Dirichlet shape pa-
rameters matrices

Let the matrix of Dirichlet shape parameters α associated with a single component be

written as: 
α11 α12 . . . α1n

...

αn1 αn2 . . . αnn

 , (4.1)

then each row of the above matrix specifies a Dirichlet distribution.
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Summing the elements of the matrix (4.1) over columns across rows, we get the row-sum

for each row:

α̂i =
n∑

j=1

αij (4.2)

Dividing every element of the matrix (4.1) by the row-sum defined in (4.2), we get the

following parameter that adds up to 1 for each row:

θij =
αij

α̂i

(4.3)

Now let αGrandTotal be defined as the grand total of all the Dirichlet shape parameters

of a component. This parameter helps in identifying a mixture-component, and used

to impose an ordering constraint on the model. We sum all the elements of the matrix

(4.1):

αGrandTotal =
n∑

i=1

α̂i (4.4)

The fraction of row-sum (4.2) in grand total is given by:

ϕi =
α̂i

αGrandTotal

(4.5)

Therefore, ϕi for each component sums to 1.

We create the intermediate parameters so that it gets easier to reconstruct the Dirichlet

shape parameters in the end using:

αij = ϕiθijαGrandTotal (4.6)

So the parameters used in defining the model are:

• Mixture weights per component: ω, vector of length K

• Proportion of Dirichlet parameter per row: θi for row i, simplex vector of

length n per state per component

• Ordering constraint parameter defined per component: αGrandTotal per com-

ponent

• Proportion of row-sum of Dirichlet parameters in αGrandTotal : ϕ, a simplex

vector of length n per component

• Sum of Dirichlet parameters per row: α̂, a vector of length n

• Dirichlet shape parameter vector: α = (α1, . . . , αn), a vector of length n per

state per component
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4.3.3 What are the priors taken for the model parameters?

Here we list the prior distributions considered for some of the parameters of the model.

Since some parameters are related to other parameters so that their values can be com-

puted once other parameter values are known, all parameters do not require a prior to

be given.

Prior taken for:

• Mixture weights ω: Dirichlet distribution

• Parameter θi for row i: Dirichlet distribution

• Ordering constraint parameter, αGrandTotal: Gamma distribution

Exact prior values are provided in Table 4.2 in the Supplementary of this paper.

4.3.4 How do we initialise the MCMC chains?

This is not a necessary step for the MCMC sampling, but we do so for better and faster

convergence of the chains. We specify some initial values for some of the parameters of the

model so that the starting point of the MCMC chains are close to the same local maximum

of the likelihood thus, avoiding label-switching. To obtain the point of initialisation, we

implement Expectation-Maximisation (EM) algorithm by fitting mixture model to count

matrices Cs per subject to estimate matrices of Dirichlet shape parameters of size n× n

for K components. Additionally, the EM-algorithm also returns mixture weights of the

components of the model which are obtained from class memberships of the subjects.

Using step (4.5), we get the ϕ parameter of the model. Using the generated matrices, θ

vectors per row per component are sampled from Dirichlet distribution with the shape

parameters corresponding to the row and component. In the end, we generate a point

of initialisation for the MCMC chains by providing estimates of parameters ω, ϕ, θ and

αGrandTotal.

Initial values given for parameters: ω, ϕ, θ and αGrandTotal (ordered set).

More details on the starting guess and the ordering of the parameters are given in the

section 4.4.

4.3.5 Bayesian inference

Here we finally formulate the Bayesian inference framework for estimating the Dirichlet

shape parameters. It remains to calculate the likelihood which is used to estimate the

posterior probability in the STAN model.
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We model vectors of count data ys ∈ Nn as arising from a multinomial distribution

whose per sample probability vector ps is drawn from a K-component mixture i.e. ys ∈
Mult(ps) and ps ∈ Dir(α) whereα = {α1, . . . , αN} is vector of Dirichlet shape parameters

in simplex space ∆n−1 of dimension n − 1. Let ω be the vector of K mixture weights.

Given this scenario, the likelihood can be computed as:

P (ys,ps | ω,α) = P (ys | ps)P (ps | ω,α)

= Mult(ys | ps)

(
K∑
k=1

ωkDir(ps | αk)

)

But ps values are unknown to us, and therefore we would like to marginalise these out in

the following way:

P (ys | ω,α) =

∫
∆n−1

P (ys | ps)P (ps | ω,α)dps

=

∫
∆n−1

Mult(ys | ps)(
K∑
k=1

ωkDir(ps | αk))dps

=
K∑
k=1

ωk

(∫
∆n−1

Mult(ys | ps)Dir(ps | αk)dps

)
(4.7)

Now we focus on the single integral included in the sum in the Equation (4.7) and drop

the subscripts s and k. Therefore, the problem reduces to:

P (y | α) =

∫
∆n−1

Mult(y | p)Dir(p | α)dp (4.8)

where y ∈ Nn,p ∈ ∆n−1 and α ∈ RN
+ .

We have,

Mult(y | p) = N !∏n
i=1 yi

(
n∏

i=1

pi
yi

)
and Dir(p | α) =

Γ(α)∏n
i=1 Γ(αi)

(
n∏

i=1

pi
αi−1

)
.

where, N =
n∑

i=1

yi and α =
n∑

i=1

αi.

Substituting the probability density functions of multinomial and Dirichlet distributions
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in the integral (4.8), we get:

P (y | α)

=

∫
∆n−1

N !
n∏

i=1

yi

Γ(α)
n∏

i=1

Γ(αi)

n∏
i=1

pi
αi+yi−1dp

=
N !
n∏

i=1

yi

Γ(α)
n∏

i=1

Γ(αi)

∫
∆n−1

n∏
i=1

pi
αi+yi−1dp

=
N !
n∏

i=1

yi

Γ(α)
n∏

i=1

Γ(αi)

n∏
i=1

Γ(αi + yi)

Γ(α+ y)

=
N !
n∏

i=1

yi

B(α+ y)

B(α)

= DirMult(y | α)

(4.9)

where

B(α) =

∏
Γ(αi)∏
(
∑
αi)

=

∫
∆n−1

(∏
pi

αi−1
)
dp

Now finally substituting in Equation (4.7), we find that the marginalising p out of

P (y,p | ω,α) gives us Dirichlet-Multinomial distribution.

Thus, the likelihood of our model is written as :

DirMult(ys | ω,α) =
K∑
k=1

ωkDirMult(ys | αk) (4.10)

4.4 MCMC constraints

In this part of the section, we discuss the additional problems as part of the modelling.

Since this is a problem of mixture modelling i.e. modelling using a distribution with

more than one set of parameters, we encounter the inherent problem of label-switching

while computing.

To address this issue, we focus on the following two steps of:

1) selecting a starting guess for running the MCMC sampling, and

2) imposing constraints on the parameters of the model.
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4.4.1 Initialisation outline

To ensure good performance of the MCMC model, we initialise the Markov chains by

finding a starting point via EM-algorithm. With MCMC starting from the same local

maximum likelihood, it helps to address the problem of label-switching in mixture models.

Broadly we take the following two steps to determine the point of initialisation for the

MCMC: 1. Perform EM in order to find a matrix of class assignments for the subjects.

2. Using the class assignments, estimate Dirichlet shape parameters.

In step (1), we initiate EM by performing k-means in Centred-Log-Ratio space.

So to generate a starting guess for the MCMC inference, we fit a mixture model to the

count matrices using EM algorithm. This organises the subjects’ information to the

specified number of clusters as previously shown in Chapter 3. Once, we have the class

assignments for the participants, then using count data and cluster-membership proba-

bilities, we estimate matrices of Dirichlet shape parameters where each row represents

a Dirichlet distribution. These parameters are further fed into the MCMC model by

fitting a Dirichlet distribution to the rows of proportions of the counts matrices. Using

an R package (Heck et al., 2019), we estimate the shape parameters for samples of each

component which give us the initial values.

4.4.2 Ordering of parameters

A common strategy is to impose an ordering constraint on the parameters to identify

the components of the mixture model. So we imposed a constraint on the parameters by

ordering the grand total of Dirichlet shape parameters, as derived in equation (4.4), per

component to associate with the corresponding component.

Hence, for a component k ∈ {1, . . . , K}, associated with an n×nmatrix of Dirichlet shape

parameters [α]kn×n, we compute the total sum of all the parameters for a component k

as αk
GrandTotal =

∑
1≤i,j≤n α

k
ij. This helps the HMC-MCMC chains in identifying the

mixture components. We do assume that these alpha grand totals are all different for the

components, and by imposing the ordering constraint, we found that our Monte Carlo

Markov chains of the model converged. This constraint confines HMC-MCMCM to a

region of parameter space that will contain only a single example of theK! symmetrically-

related local maxima that label-switching produces.

Before proceeding to the next section, we would like to point out that we had initially

run our method on synthetic data which was instrumental in assessing the robustness and

limitations of our technique, i.e. the synthetic data analysis was mainly a debugging tool.

Once we achieved decent results– primarily indicated by convergence of the sampling per

chain around the expected values, we moved on to implementing our method to the real
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dataset which was introduced in Section 4.2. By doing so, we get results showing how

our model worked which, at this point, we mainly check by the convergence of the Monte

Carlo Markov chains. Additionally, we also learn about the mood and pain associations

in this data and compare with those found by Das et al. (2023). These results based on

the observed mood-pain trajectories bring the possibility of predicting mood-pain which

is a pertinent question in the health sphere.

In the next section, we share the results from implementation of the Bayesian inference

described in this Chapter on the real data which contain self-reported values of mood

and pain over a period of time.

4.5 Results on real data

Trace plots show the movement of iterations in MCMC. It helps to assess the convergence

and mixing of the chains. We show the trace plots of some parameters representing our

model. We have taken 4 chains for sampling, so these are denoted by 4 trace plots of

different colour in a figure.
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(c) Parameter ϕ

Figure 4.2: Parameters for modelling Mood-Pain trajectories with 4 states
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We display density plots for the same parameters in Figure 4.3.
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Figure 4.3: Parameters for modelling Mood-Pain trajectories with 4 states

In Figure 4.4, we show the trace plots for all the estimated Dirichlet shape parameters

of the model. We see each MCMC chain gives almost same estimate for every parameter

therefore, appear to converge to the same value.
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Figure 4.4: Dirichlet shape parameters of the model

Next, if we were to withdraw random variables from the Dirichlet distributions with the

estimated Dirichlet shape parameters, which are the αs, then we get the density plots as

shown in Figure 4.5. Each of the states is an ordered pair of mood and pain scores where

G and B imply good mood and bad mood respectively, while L and H imply low pain

and high pain respectively.

While studying these densities individually, we focus on the mean and standard deviation

to understand how strong the transition probabilities are. We write about few of the

observations here but provide a discussion by giving meaning to the states in the next

section. In component 1, we see for transition from state 1 to any other state, the density

plots representing the probabilities have more or less the same variance. Probability from

state 1 to states 1 and 3 are almost same. From 2 and 3, it seems unlikely moving to state

1. From 4, there is a good probability of moving to 4, even though the density noted is

low as compared to others.

In component 2, there is low probability of moving from 1 and 2 to 4. Movement to state

1 from any of the states is quite probable with probabilities above 0.5.
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In component 3, probabilities of moving from any of the states to state 3 are low. Out

of all the values displayed, probability from 2 to 2 is the highest.

In component 4, movement to state 1 from 1, 2, 3 are more than 0.3. Movement from 3

to 2 has low probability as the mean is slightly above zero.
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Figure 4.5: Probabilities sampled from Dirichlet distributions, where State 1: (G,L); State 2: (G,H); State 3: (B,L); State 4: (B,H)
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4.6 Discussion

We developed a distribution over transition matrices. We set up a routine of steps that

associates transition count matrices of participants of a longitudinal data survey to a

matrix where the rows are vectors of Dirichlet shape parameters. We extend this by

considering a mixture model, therefore the count matrix of every participant is linked to

the set of Dirichlet parameters belonging to only one of the components. To elaborate

on this, let’s say there are people who have recorded some data containing 3 states.

Then each person has a personal 3 × 3 transition count matrix. Now let there be 2

components, so each of person’s transition matrices has rows which are assumed to be

sampled from a Dirichlet distribution associated with one of the two components. In

short, a personal matrix is sampled from a Dirichlet distribution (defined by a matrix of

parameters) belonging to a component.

To achieve the mixture-modelling and its Bayesian inference, we had also introduced a

new parameter αGrandTotal which was used to impose ordering constraint on the cluster-

specific parameters.

Now we discuss a few of the defining characteristics of the clusters. Cluster 1 shows high

probability of movement from any of the states to the one with Bad Mood, High Pain.

Cluster 2 has high probability of moving from any of the states to Good Mood, Low Pain.

Cluster 3 shows high probability of staying in the same state, other than in the case of

already being in Bad Mood, Low Pain when the probability of moving to Good Mood,

Low Pain is the highest. In Cluster 4, we see high probability of movement to Good

Mood and Low Pain from the same state, and the one with same mood but High Pain.

For the other two states, there is a tendency of remaining in the state in this cluster.

In a nutshell, in comparison to the results found in Chapter 3, we also find distinct

characteristics of the clusters, few of which are quite similar to what we had observed

before. In this chapter, we again notice that two of the clusters are distinguished by high

probabilities of transitioning to the best state and the least ideal state.

A limitation is that this method may fail for scenarios which have not been explored

yet. However, problems might be easy to deal with mathematically but computational

challenges may arise. For example, if the sums of the shape parameters are equal for at

least two of the components, then our ordering constraint will fail as at least two of the

components will be linked by the same hyper-parameter giving rise to the label-switching

problem. There already exists many methods concerning the label-switching problem,

and those can also be implemented in this scenario where MCMC was performed using

Hamiltonian Monte Carlo method. But another problem that could occur is poor con-

vergence in a higher dimension data and it could require more attention. We have not

yet checked the performance of our method in a situation with much more dimensions
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than currently taken in this paper. Even though higher dimensions may present new

issues, we think the routine as set forth in this paper helps in setting up a basis for

Dirichlet-multinomial parameter estimation of this kind of longitudinal data by perform-

ing Hamiltonian Monte Carlo. An improvement at any of the steps is a scope for further

research. We did not perform sensitivity analysis of the parameters which can also be

studied further.

The methodology provided at this paper can be extended to more similar types of lon-

gitudinal data, and utilised in prediction modelling. Another potential extension of this

study is to consider the geometry of the Dirichlet shape parameters which have not been

discussed in this paper.
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Supplementary Material

4.7 Outline of steps taken

All the steps taken to develop our codes are:

• Generate synthetic data: First, we generated synthetic data of Markov chain mix-

tures drawn from Dirichlet distribution in the following manner:

1. Fix number of components K, number of states n and number of subjects S.

2. Setup: Create a transition probability matrix for each component where each

row of the transition matrix is sampled from a Dirichlet distribution.

3. Setup: Create a set of K mixture weights.

4. Sample: Draw S Markov chains of varying lengths from the complete model

according to the transition probability matrix per component and the mixture

weights.

• Construct the Bayesian inference model: Next, we formulate Bayesian inference by

calculating the likelihood. This has been covered in the methods section.

• Sample from the posterior probability distribution: Once we derived the likelihood,

we have the posterior distribution from which we sample data with the help of

MCMC. This has been covered in the methods section.

• Check the results: We check if the results converged, and since we know the param-

eter values of the synthetic data, it is easy to compare with the parameter estimates.

In case of low convergence or bad estimates, we make changes to the prior and take

relevant steps to fix the issue.

• Run the model on real data in hand: Once we have decent results, we fit the model

to longitudinal data of self-reported data trajectories.

We have already discussed the problem in the context of real data in the main paper.

4.8 Experiments on synthetic data

We generated samples of two-state Markov chains from a mixture of Dirichlet distribution

with three components. In Figure 4.6, we can see how the shape parameters were varied

for synthesis of 3-component mixture of Markov chains.
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Figure 4.6: Synthetic data- shape parameters of Dirichlet distribution

4.8.1 Without specifying any point of initialisation

Here, we show how not assigning an initial point for the MCMC lead to no convergence

of the Markov chains despite the ordering constraint on parameters. We can notice that

the components 2 and 3 get swapped when third and fourth chains are compared.
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Figure 4.7: Density plots of hyper-parameters
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Figure 4.8: Trace plots of hyper-parameters

4.8.2 With an EM based point of initialisation

Here we show how feeding an initial point, which was computed using EM-algorithm, to

the model for the MCMC to run on the same synthetic data resulted in convergence of

MCMC for parameter estimation. This along with ordering of parameters addressed the

problem of label-switching in mixture models as well.
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Figure 4.9: MCMC samples of parameter estimates

4.9 Real data specifications

Real data information required for the model is given in the Table 4.1, and uninformative

priors taken for the parameters are in the Table 4.2. For αGrandTotal, 4
2 (4 being the size

of the transition matrices) is multiplied arbitrarily and any other value could have been

chosen.
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Data Value

No. of states n 4

No. of components K 4

No. of subjects S 3720

Table 4.1: Data

Parameter Prior

ω Dir(1, 1, 1, 1)

αGrandTotal Gamma(42 × 1.5, 1.5)

θi Dir(1, 1, 1, 1)

Table 4.2: Priors

4.10 Background of methods

4.10.1 Multinomial distribution and Dirichlet distribution

The multinomial distribution is a distribution for a vector of counts and is parameterised

by total number of trials and the probabilities per outcome.

Let yi be the count of an outcome group or category i and p be a vector of probabilities

associated with each outcome level such that pi is the probability of category i being

realised in a single trial and
n∑

i=1

pi = 1. Let N be the total number of trials and n be the

total number of outcomes or categories which is same as the length of the vectors y and

p. Then y = (y1, y2, . . . , yn) follows a multinomial distribution with parameters N and

probabilities p = (p1, p2, . . . , pn). Note that vectors are denoted with a bar on them. So,

for
n∑

i=1

yi = N , we get:

Mult(y | N,p) = N !

y1!y2! . . . yn!
py11 p

y2
2 . . . pynn

=
Γ(
∑

i yi + 1)∏
i Γ(yi + 1)

n∏
i=1

pyii

when y ∼ Mult(N,p), then yi ∼ Binom(N, pi). Therefore, the multinomial distribution

is also known as multivariate binomial distribution.

The Dirichlet distribution is a distribution over the probability vectors p. It is commonly

used for compositional data. The Dirichlet distribution has a simplex as its sample space

that takes the dimension of the data into account, and the distribution is parameterised

by α which are known as Dirichlet shape/ concentration parameters. Let p ∈ ∆n−1 (a
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simplex of dimension n-1) be a random vector whose elements represent the proportions

of items in it therefore, summing up to be 1, then we get the probability distribution to

be:

p ∼ Dir(α1, . . . , αn) =

Γ(
n∑

i=1

αi)

n∏
i=1

Γ(αi)

n∏
i=1

pαi−1
i (4.11)

where
n∑

i=1

pi = 1 and pi > 0 for i ∈ {1, . . . , n}.

We know that the integration of any probability distribution over the sample space is 1.

So we now integrate the Eqn. (4.11) over the simplex ∆n−1 which gives:

1 =

∫
∆n−1

Γ
n∑

i=1

αi

n∏
i=1

Γ(αi)

n∏
i=1

pαi−1
i dp

=⇒ 1 =

Γ
n∑

i=1

αi

n∏
i=1

Γ(αi)

∫
∆n−1

n∏
i=1

pαi−1
i dp

Thus, we get the normalising constant of the Dirichlet distribution B(α) as:

B(α) =

∫
∆n−1

n∏
i=1

pαi−1
i dp =

n∏
i=1

Γ(αi)

Γ(
n∑

i=1

αi)
(4.12)

Now, let us consider we are given a training set of data D = {p1,p2, . . . ,pN} containing

N samples of probability vectors each of length n such that pij > 0 and
n∑

j=1

pij = 1 for

i ∈ {1, . . . , N} and j ∈ {1, . . . , n}. Then the likelihood is given as:

P (D | α) = log
N∏
k=1

Dir(pi | α) =
N∏
k=1

Γ(
n∑

i=1

αi)

n∏
i=1

Γ(αi)

n∏
i=1

pαi−1
ki

Here we compute Maximum Likelihood Estimate (MLE) to get estimates for the Dirichlet

shape parameters α (Minka, 2000). Therefore, we get the log likelihood as:

logP (D | α) = N log Γ(
n∑

i=1

αi)−N

n∑
i=1

log Γ(αi) +N

n∑
i=1

(αi − 1) log p̃i
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where log p̃i =

N∑
k=1

pki

N
.

Now we take the derivative with respect to a shape parameter αi which gives us the

gradient as:

d log p(D | α)
dαi

= NΨ(
n∑

i=1

αi)−NΨ(αi) +N log p̃i

where Ψx = d log Γ(x)
dx

is the digamma function.

In an exponential family, when gradient is zero then expected sufficient statistic is equal to

observed sufficient statistic which is E(log(pi)) = Ψ(αi)−Ψ(
∑
αi). Next, an appropriate

numerical method can be applied to maximise the likelihood. Example, in the case of

fixed-point iteration, we use Ψ(αnew
i ) = Ψ(

∑
i

αold
i )+log p̃i. This finally results in obtaining

the estimates of the Dirichlet shape parameters α by taking an MLE approach.

We will take a Bayesian approach to estimate the Dirichlet shape parameters in the

modelling described in this paper. An important property to remember is that Dirich-

let distribution is the prior conjugate of multinomial distribution which means the prior

distribution of the parameters of a multinomial distribution is taken to be a Dirichlet dis-

tribution, then the posterior distribution is also a Dirichlet distribution with an updated

set of parameters.

4.10.2 Dirichlet-multinomial distribution

The Dirichlet-Multinomial distribution is a probability distribution that arises naturally

when doing Bayesian inference for Dirichlet models of count data. It is a probability

distribution over vectors of counts y ∈ Nn, but parameterised by the total number of

counts N =
∑n

i=1 yi and a vector of shape parameters α ∈ Rn
+. Its probability mass

function is

P (y |N,α) ≡ DirMult(y |α)

=

(
N !∏n
i=1 yi!

)(
Γ(α)∏n
i=1 Γ(αi)

)(∏n
i=1 Γ(αi + yi)

Γ(α+N)

)
=

(
N !∏n
i=1 yi!

)
B(α+ y)

B(α)
(4.13)

where, as above, α =
n∑

i=1

αi is the sum of the shape parameters and B(α) is the normal-

ising constant as defined in Equation (4.12).
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4.10.3 Identifiability, exchangeability and label-switching

Random variables x1, . . . xn are exchangeable if ∀ permutations σ on 1, . . . , n, the corre-

sponding probability mass or density function follows: p(x1, . . . , x2) = p(xσ(1), . . . , xσ(n)).

Exchangeability captures the notion of symmetry amongst random variables of the model.

The concept is said to be introduced by de Finetti whose theorem talked about indepen-

dence and exchangeability (Diaconis and Freedman, 1980).

To explain label-switching, we start by defining a parametric family of finite mixture

densities with the following probability density function for random variables x ∈ RK

and mixture weights ω such that
∑K

k=1 ωk = 1:

P (x | θ) =
K∑
k=1

ωkPk(x | θk) (4.14)

where Pk is the probability density functions corresponding to parameter θk, and let

ϕ = (ω1≤k≤K , θ1≤k≤K). This parametric family of probability density functions is iden-

tifiable if for distinct parameters we get distinct probabilities. In view of (4.14), iden-

tifiability means that for two sets of parameter pair ϕ
′
= {ω′

1≤k≤K , θ
′

1≤k≤k} and ϕ
′′
=

{ω′′

1≤k≤K , θ
′′

1≤k≤K}, probability densities p(x | θ′
) and p(x | θ′′

) for almost all x ∈ Rn

only if ∃ permutation π1≤k≤K such that ω
′

k = ω
′′

π(k), and if ω
′

k ̸= 0 then θ
′

k = θ
′′

π(k) for

1 ≤ k ≤ K. More details can be found in Redner and Walker (1984).

It often happens in such mixture models that the log of likelihood L(ϕ | x), given by

logL(ϕ | x)= log
∏K

k=1

∑K
k=1 p(xk | θk) =

∑K
k=1 log

(∑K
k=1 p(xk | θk)

)
can be maximised

at multiple different values of ϕ. In such a case, if the component parameters (ωk, θk) and

(ωk′ , θk′) for some k ̸= k′ are interchanged, the log-likelihood still remains the same. This

results in the problem of “label-switching” (Redner and Walker, 1984) which is common

when taking a Bayesian approach to parameter estimation of mixture models (Stephens,

2000), and it is often dealt with by imposing identifiability with the help of constraints.

In other words, during Bayesian inference, if the priors given do not distinguish between

the components of the mixture, then posterior distribution will turn out to be symmetric

which causes problem in identifying the components. One of the common approaches in

addressing label-switching in mixture modelling includes ordering the parameters.

4.10.4 Initialisation

K-means to estimate an initialisation for EM

To determine a point of initialisation for the Expectation-Maximisation (EM) algorithm,

we perform K-means clustering on the centred log-ratio (CLR) transformed data. The

following steps are executed:
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1. Transform the trajectories to matrices of counts of observed transitions.

2. Perform CLR on each row of the matrix such that for every i ∈ 1, . . . , n:

clr(xi) = log xi −
1

n

n∑
j=1

log xij

3. Joining all the rows, we get vectors in Rn×n.

4. Apply K-means algorithm for clustering which returns cluster membership proba-

bilities.

5. Fit Dirichlet distribution to the proportions of counts for every ith row of matrix

for a subject in a particular component to get the ith vector of Dirichlet shape

parameters for the component.

We could have stopped here and utilised the membership probabilities attained here di-

rectly to estimate the model parameters. However, when we did so, MCMC did not show

convergence for some of the parameters of the Dirichlet-multinomial model. Therefore,

we implemented EM to re-estimate the cluster membership probabilities and generate

the point of initialisation for MCMC.

Now we re-estimate the Dirichlet shape parameters using EM algorithm as follows:

EM to estimate cluster membership probabilities

1. Recall Eq. 4.9:

P (y | α)

=
N !
n∏

i=1

yi

B(α+ y)

B(α)

= DirMult(y | α)

(4.15)

, and Eq. 4.10:

DirMult(ys | ω,α) =
K∑
k=1

ωkDirMult(ys | αk) (4.16)
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2. Take log of Eq. 4.15, we get:

logL

= logP (y | α)

= logN !− log
n∏

i=1

yi + logB(α+ y)− logB(α)

= log Γ(
n∑

i=1

yi + 1)−
n∑

i=1

log Γ(yi + 1) + logB(α+ y)− logB(α)

3. Computing the gradient by differentiating log likelihood with respect to the shape

parameters:
∂ logL

∂α
= ψ(B(α+ y))− ψ(B(α)) (4.17)

where ψ(.) is digamma function which is derivative of Gamma function.

4. The log likelihood is maximised using numerical methods. Class-memberships are

re-estimated till convergence of the algorithm. These are further used to estimate

mixture weights and Dirichlet shape parameters.
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Abstract

Here we perform unsupervised learning techniques to cluster and reduce the

dimension of data containing ten self-reported variables in a longitudinal data. We

observe more or less consistent grouping of these variables across methods.

5.1 Introduction

Health has been often associated with physical health. Absence of an identifiable ail-

ment often makes us conclude that a person is healthy. However, WHO defines health as

“complete physical, mental and social well-being and not merely the absence of disease

or infirmity” (World Health Organization et al., 1948) which looks at health at a holistic

level. Good health can be characterised by adequate physical and mental health, and

also physiological well-being which can bring a sense of purpose in life, enhance relation-

ships with others and realise one’s potential (Ryff and Singer, 1998). A healthy person

may experience “well-being” which can improve functioning of biological system thereby

preventing a person from succumbing to a disease, and in the case of an illness, it can

promote rapid recovery hence potentially forming a cycle of positive health (Ryff et al.,

2004). “Wellbeing” is a very subjective concept which is associated with happiness and

life satisfaction (Diener, 2009), and gives importance to parameters affecting health other

than the physiology of it. The WHO-5 (Topp et al., 2015) is a widely used questionnaire

that helps in measuring the well-being as well as acts as a screening tool for depression

112
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thereby reflecting on the mental health.

Narrowing down to mental health, mood disorders are quite common and very prominent

in those having mental health issues. Sleep is essential in maintaining mental and physical

health, and can help regulate poor moods and emotions. It has been shown that anxiety

and depression, which are indicative of mental health, are related with sleep quality (João

et al., 2018). Its relationship with depression and other mental health disorders is complex

(Fang et al., 2019), but sleep remains an indicator of mental health. Another parameter

to consider while looking at mental health, and especially could be useful in building

a survey is waking up tired which is associated with sleep can reflect on the mental

health (Palmer, 2020; Appels and Schouten, 1991). Similarly, fatigue is another indicator

which can tell how healthy one is. Fatigue is a complex concept though, as it there

can be mental or/and physical fatigue (Lee and Giuliani, 2019; Rosenthal et al., 2008),

nevertheless it remains an interesting variable to consider. Mental health particularly is

very complex which can be affected by numerous factors and disentangling those remains

a challenge.

Other than the symptoms talked till now, lifestyle based indicators like exercise and time

spent outside can be measured against other parameters to see how health varies.

When talking about health, an important aspect of physical health is the musculoskeletal

system of the human. Experiencing pain can affect our day to day lives and can impact

negatively by interfering with our routine. For example, morning stiffness- a general

increase in musculoskeletal symptoms in the morning, is a common trait in people with

rheumatoid arthiritis, which is the most common type of poly-arthirtis or other chronic

pain conditions. In fact, pain and mood are linked as we can find in Das et al. (2023) and

their associations can help us understand health. Chronic pain has affected approximately

20 % of the population in the USA and Europe (Breivik et al., 2006) and prevails to be

a global problem.

Studying health, especially mental health, is very complex problem. Usually there are

several factors that affect the health and considering all these can be a difficult prob-

lem. However, interactive media is proving to have substantial impact in the field of

healthcare as initially noted by Frank (2000). Digital health especially is vital in cap-

turing granularity of individual behaviour within and amongst individuals.With the help

of electronic health devices, it becomes easier to record information on a wide range of

aspects pertaining to different aspects of human being. We can get data on age, sex, eco-

nomic conditions, physical ailments etc. at a place and also perform longitudinal studies

to track health data and other relevant symptoms. But the wide availability of data can

be an overload both on user and developer ends. In such scenarios, statistical tools like

feature extraction and dimensionality reduction can come into aid and help in selecting
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data which captures most information.

Here, we present an overall view of Cloudy with a Chance of Pain data which consists

of categorical ordinal data information on some self-reported severities of 10 variables:

mood, pain severity, impact of pain (on daily activity), physical activity, time spent

outside, fatigue, sleep quality, morning stiffness, waking up tired.

Dealing with complex datasets with several features often requires the need to decrease

the size of the dataset. Dimensionality reduction is the method of transforming high-

dimensional data by reducing the number of random variables of the problem in consid-

eration (Roweis and Saul, 2000). It can help in identifying principal variables and getting

rid of redundant variables. Hence, it is vital in classification and visualisation, amongst

many other applications. It is often combined with data processing steps to get the data

in a more understandable format. Since the given dataset is multivariate, eventually,

there is a need to adopt specific dimensionality reduction techniques.

We apply few dimensionality reduction methods to understand the relationship amongst

the self-reported variables. Methods used are:

1. Principal Component Analysis (PCA)

2. Hierarchical Clustering

3. Independent Component Analysis (ICA)

4. Logistic Principal Component Analysis (LPCA)

Code for these methods will be made available at: https://github.com/rajenkida

s/

5.2 Data

We use data from the Cloudy with a Chance of Pain study (Reade et al., 2017; Dixon

et al., 2019), which was conducted to investigate the relationship between weather and

pain, but in doing so created an extremely rich dataset suitable to answer a diversity of

research questions. Data were collected from January 2016 to April 2017 from participants

resident in the UK who were aged 17 or above and had experienced chronic pain for at

least 3 months preceding the survey (Druce et al., 2017).

The cohort had 10,584 survey participants, each of whom was asked to rate their symp-

toms and other variables on a mobile application in five ordinal categories (e.g. pain

scores ranged from 1 for no pain to 5 for very severe pain). Data were recorded for pain

interference, sleep quality, time spent outside, tiredness, activity, mood, well-being, pain

severity, fatigue severity and stiffness on a daily basis.

https://github.com/rajenkidas/
https://github.com/rajenkidas/
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For the applications of PCA, ICA and hierarchical clustering, we perform dimensionality

reduction on the self-reported symptoms, while for LPCA, we have converted the data

to binary on the basis of the change of scores of each of the variables. We have loosely

regrouped into two categories: 1) if the severity has increased from the previous day’s, 2) if

the severity has decreased. More have been discussed in the corresponding sections.

5.3 Method

We have s participants with with n observations in total that contain ordinal measure-

ments on a set of d features which we call symptoms here. We have d = 10 symptoms

viz: Fatigue, Mood, Morning stiffness, Pain impact, Pain severity, Well-being, Exercise,

Sleep quality, Time spent outside, Waking up tired. We perform unsupervised learning

techniques on these data for a better understanding of the features.

5.3.1 Principal Component Analysis

Principal components are representative variables that explain most of the variability in a

given dataset. Principal Component Analysis (PCA) is a linear dimensionality reduction

method used to find the principal components representing the data in which the they

get embedded to a linear subspace of lower dimension. The low dimension representation

describes data by maximising variance.

As we have n observations and d features, then each of the new dimension or principal

component is a linear combination of the d features. The first PC of the features has

the largest variance and can be given by: Z1 =
∑d

i=1 ϕi1Xi where
∑d

i=1 ϕ
2
i1 = 1. Here

the coefficients ϕs are called loadings of the first principal component. These tell us how

much a feature contributes towards the specific principal component, and the sign of

a loading indicate if a feature is positive or negatively correlated with the component.

Hence the loading vector for a principal component j is ϕj = (ϕ1j, ϕ2j . . . , ϕdj)
T with the

constraint that the sum of squares of loadings is 1, to prevent the variances from being

arbitrarily large. The total variance amongst all the principal components is same as the

total variance amongst the features, so the there is no loss in information. PCA simply

rotates the data and gives new set of orthogonal vectors. New data Y is a result of the

transformation Y = Xϕ. We assume that the data is centred at zero, i.e. the mean of

each of the features is zero. Keeping that in mind, finding PCA components becomes a

problem of maximising variance or minimising the mean squared residuals.
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5.3.2 Hierarchical clustering

Hierarchical clustering is a unsupervised learning technique that groups data to create

a tree-like/ hierarchical structure with branches separating out the features. It builds

a binary tree i.e. every node has at most two branches. There are two major types of

hierarchical clustering: 1) Agglomerative clustering- it starts with the assumption that

every feature is its own cluster and the method progresses by combining the features to

form clusters till all features are connected. 2) Divisive clustering- it begins by considering

all the features belong to one cluster and carries on by breaking down into clusters till

every feature is allocated a group. The clusters are often represented in the form of tree

like structures called dendrograms.

Let X = x1, . . . , xn be the dataset with cardinality n. Let there be K clusters represented

by C1≤k≤K , then
⋃

1≤k≤K

Ck = X The generic hierarchical clustering algorithm is as follows

(Nielsen, 2016):

• Initialise by putting each data point xi ∈ X into its own cluster C i.e xi ∈ Ci.

• Compute the distances between two data points and select the pair with the least

distance and merge the points’ clusters.

• Calculate the new pairwise inter-cluster distances for the remaining clusters.

In the case of this paper, we have a dataset d features for n observations. We perform ag-

glomerative hierarchical clustering by taking Manhattan distance with complete linkage.

Manhattan distance between two points x(x1, x2) and y(y1, y2) in 2-dimensional space

is given by dist(x, y) = |x1 − y1| + |x2 − y2|. Now the distance between the clusters,

graphically represented by the height of the link between two clusters in a dendrogram,

is determined by the linkage specified. The complete linkage between cluster A and B is

defined by dist(A,B) = max
x∈A,y∈B

dist(x, y).

5.3.3 Independent Component Analysis

Independent Component Analysis (ICA), used in image and signal processing, helps to

differentiate independent sources from a mixed signal. ICA of a random vector includes

finding the linear transformation which minimises the statistical dependence between its

components (Comon, 1994). It is a generative model that describes how the observed data

are produced by mixing the components (Hyvärinen and Oja, 2000). Let x = (x1, . . . , xn)

be the vector of observations and s = (s1 . . . sd) be the vector of latent variables called

independent components. An unknown constant matrix A is called the mixing matrix.

Note that every bold capital letter is a matrix and bold small letter is for a column vector.

Then, every observation xi is a linear combination of d independent components giving
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us xi= ai1s1 + ai2s2 + · · · + aidsd ∀ 1 ≤ i ≤ n. Assuming no noise in the model, the ICA

can be expressed as (Hyvarinen, 1999):

x = As =
d∑

i=1

aisi (5.1)

where x has the basis vector ai = {a1i, . . . , ani}T. Equation (5.1) represents ICA model

where the independent components are non-Gaussian. The goal of the problem can be

regarded as maximising the non-Gaussianity of the independent components.

The non-Gaussanity can be maximised in several ways. In this paper, we have used Fas-

tICA algorithm which measures non-Gaussanity by approximating negentropy J defined

for entropy H as (Hyvärinen and Oja, 2000):

J(y) = H(yGauss)−H(y)

where yGauss is a Gaussian random variable with covariance matrix equal to that of

y.

5.3.4 Logistic Principal Component Analysis

Logistic Principal Component Analysis (LPCA) is an extension of PCA by making it more

suitable for binary data. LPCA is based on Bernoulli model as described by Landgraf

and Lee (2020). Let X be data matrix of size n × d such that each of its element

xij is binary which is assumed to be withdrawn from Bernoulli distribution i.e. xij

∼ Bernoulli(pij). The natural parameter θij = logit(pij) for the Bernoulli distribution

describes the saturated model (pij = xij). To perform the equivalent PCA to the binary

data, we instead minimise the Bernoulli deviance - this is done by taking the natural

parameters of the saturated model and projecting them on a d-dimensional space. It can

be said that the classical PCA is extended to logsitic PCA analogous to linear regression

being extended to logistic linear regression (Song et al., 2020). We used the package

logisticPCA (Landgraf and Lee, 2015) to perform LPCA on the binary data representing

changes in the self-reported symptoms.

5.4 Results

Looking at the scree plot in Figure 5.7, the optimal number of principal components for

PCA is taken to be 3.
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5.4.1 Principal Component Analysis

In Figure 5.1, we look at the barplot of loadings for the first three principal components.

The colours are based on the signs of the loadings. In PC1, we see how five of the

symptoms have positive loadings, while the others have have negative values on the

component. Projection onto PC1 gives an understanding of the general wellbeing based

on the symptoms, where positive is good while negative has the opposite meaning. In

PC2, Exercise and Time spent outside show high loadings which could imply that they

vary the most irrespective of other symptoms’ behaviour. It hints at the independent

behaviour of the factors exercise and time spent outside. In PC3, Sleep quality has the

highest loadings, and Exercise, Time spent outside and Waking up tired are the only

symptoms with positive loadings which could imply that these three factors are related.
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Figure 5.1: Loadings per principal component

In Figure 5.2 showing the biplot for the first two principal components, the loading plot

is overlaid on the kernel density representing the distribution of scores (participants) in

the background. The direction of the loadings shows how the symptoms are correlated

amongst each other. Two symptoms in the opposite directions are negatively correlated



5.4. RESULTS 119

while the ones perpendicular can be said to be unrelated to the other symptoms. Ad-

ditional way of looking at it is by considering the acute angle between any two arrows.

Lesser the angle, more related the symptoms are, and the orientation helps in under-

standing the direction of the correlation. We also see a higher density of scores around

PC1 = −2 and PC2 = 0. But there are no clear clusters of scores.
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Figure 5.2: Bi-plot

5.4.2 Hierarchical clustering

The heatmap for the distance matrix and the dendrogram representing hierarchical clus-

tering on the basis of Manhattan distance is given in Figure 5.3. The heatmap is sliced

by considering three clusters. So we get the groups of symptoms as: 1) sleep, mood

and wellbeing, 2) exercise and time spent out, and 3) fatigue, waking up tired, morning

stiffness, pain impact and its severity.
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Figure 5.3: Distance matrix- Manhattan with Complete linkage dendrogram

5.4.3 Independent Component Analysis

We look at the squares of the loadings in Figure 5.4. Here the direction of the loadings

are ignored. We only focus on the magnitude of the loadings. In PC1, we see Mood, Pain

severity and Fatigue capture the maximum variance of the data, while Sleep quality and

Well-being have least loadings indicating low information about the data. in PC2, most

of the variables have low loadings other than Exercise, Pain severity and then Waking

up tired and Pain impact. In PC3, all loadings are less than 0.25 except Well-being and

Sleep quality which had low loadings for the previous components. So it can be said that

PC3 is most represented by well-being and sleep quality.
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Figure 5.4: ICA commonalities

5.4.4 Logistic Principal Component Analysis

LPCA was performed on the changes of symptoms between two reports. So only positive

and negative changes of the scores of the variables were retained for the application of

this analysis. In Figure 5.5, we find the barplot for the loadings for the three princi-

pal components of the LPCA. The results are quite similar to what we have found in

Figure 5.1.
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Figure 5.5: LPCA loadings based on the changes of symptoms

In Figure 5.6, the biplot containing the loadings of the principal components on top of

scores of the samples is shown. This figure is also very similar to what we have observed

before in Figure 5.2. The scanty scores in the background are due to the consideration of

retaining only those data points which have positive and negative score changes, hence

it reduced the size of the data here.
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Figure 5.6: Biplot of LPCA loadings and scores based on the changes of symptoms

5.5 Discussion

Conducting Principal Component Analysis (PCA) on symptoms and Logistica Principal

Component Analysis (LPCA) on the changes on the scores of symptoms, we found similar

results. We found three groups of the features which seem to be inter-related:

1) sleep quality, well being, mood 2) fatigue, time spent outside 3) pain severity, pain

impact, exercise, waking up tired, morning stiffness.

In this grouping, we find that the symptoms of groups 1 and 2 appear to be negatively

correlated while those of group 2 are almost orthogonal to the vectors of the features

belonging to the other groups. This tells us that the features ‘fatigue’ and ‘time spent

outside’ are independent of the remaining features but closely correlated within them-

selves. This grouping was further re-established by hierarchical clustering.

In the case of Independent Component Analysis (ICA), ‘wellbeing’ and ‘sleep quality’

differentiate the first and third components where in the first one, they capture the least

of the variance while in the third, they express the maximum variances in the data.

Few of the limitations of this study are: 1) as we are given longitudinal data, the results
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may have some biases according to those participants of the studies who recorded their

values the most. 2) Existence of other inherent biases based on the population of this data

may hinder in generalisation these results at a bigger scale for the overall public.

In this study, we attempted to present longitudinal data visually. We clustered the

symptoms with dimensionality reduction related techniques. It gives an overview of the

structure of the data by telling us the relationship amongst the variables, and can be

extended to including more features and parameters for deeper understanding of health

and lifestyle. It needs to be remembered that dimensionality reduction includes infor-

mation loss - so a feature might get less priority in general, but for a specific individual

or subject, that certain feature may have the most importance. This paper highlights

an alternative way of dealing with digital health data, which can be standardised along

with the traditional practices. More similar datasets can be considered in the study for

comparison. More methods can also be included.

Also, we do emphasise on the findings of this report. Biplots of the first two components

of PCA and LPCA, and the dendrograms of hierarchical clustering show consistency in

the grouping of the symptoms. In case of lesser feasibility of building a study and availing

of resources, developing similar studies asking for lesser information can be enough in un-

derstanding mental health or related matters. Suppose, we are given a clinical population

of those suffering with insomnia or having other sleep problems, we can correlate it with

mood and build treatments and additional research problems accordingly. This is simply

an alternative use that we are suggesting, not a solution to observational data or other

clinical real world based problems as there are biases involved and generalisation often

becomes tough.



5.6. MATERIALS AND METHODS 125

Supplementary Material

5.6 Materials and Methods

This is a secondary data analysis of data collected by Cloud from the residents in the

United Kingdom from January 2016 to April 2017. In this study, we extracted data

about ten self-reported categorical variables. Details are in the table below. Dataset was

reduced to exclude missing values in the categorical variables. No other exclusions were

made based on age or other characteristics.

Fatigue Mood Morning stiffness Pain impact Pain severity

Min. 1.0 1.0 1.0 1.0 1.0

1st Qu. 2.0 3.0 2.0 2.0 2.0

Median 3.0 4.0 3.0 2.0 3.0

Mean 2.6 3.6 2.7 2.5 2.7

3rd Qu. 3.0 4.0 3.0 3.0 3.0

Max. 5.0 5.0 5.0 5.0 5.0

NA’s 345136 344784 349760 346624 341850

Patient wellbeing Exercise Sleep quality Time spent outside Waking up tired

Min. 1.0 1.0 1.0 1.0 1.0

1st Qu. 3.0 2.0 2.0 2.0 2.0

Median 4.0 3.0 3 2.0 3.0

Mean 3.5 2.5 3 2.2 2.8

3rd Qu. 4.0 3.0 4 3.0 4.0

Max. 5.0 5.0 5.0 5.0 5.0

NA’s 345584 348061 351230 348076 350899

Table 5.2: Summary statistics of the self-reported symptoms
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Variable Description Scale

Mood How was your mood today? 1 = Depressed, 2 = Feeling low,
3 = Not very happy, 4 = Quite
happy, 5 = Very happy

Well-being How well did you feel today? 1 = Very unwell, 2 = Quite un-
well, 3 = Unwell, 4 = Well, 5 =
Very well

Pain severity How severe was your pain today? 1 = No pain, 2 = Mild Pain, 3 =
Moderate pain, 4 = Severe pain,
5 = Very severe pain

Fatigue How severe was your fatigue to-
day?

1 = No fatigue, 2 = Mild fatigue,
3 = Moderate fatigue, 4 = Se-
vere fatigue, 5 = Very severe fa-
tigue

Morning stiffness How stiff did you feel on waking
this morning?

1 = No stiffness, 2 = A little
Stiff, 3 = Moderately stiff, 4 =
Severe stiff, 5 = Very severe stiff

Pain impact Has your pain interfered with
your activities today?

1 = Not at all, 2 = A little bit,
3 = Somewhat, 4 = Quite a bit,
5 = Very much

Sleep quality How was your sleep quality last
night?

1 = Very poor, 2 = Poor, 3 =
Fair, 4 = Good, 5 = Very good

Time spent outside How much time have you spent
outside today?

1 = None of the day, 2 = Some
of the day, 3 = Half of the day,
4 = Most of the day, 5 = All of
the day

Feeling tired How did you feel when you woke
this morning?

1 = Not at all tired, 2 = A little
bit tired, 3 = Moderately tired,
4 = Quite a bit tired, 5 = Ex-
tremely tired

Exercise How long have you exercised to-
day?

1 = No exercise, 2 = Less than
30 minutes of light activity, 3 =
30+ minute light activity, 4 =
Less than 30 minute strenuous
activity, 5 = 30+ minute stren-
uous activity

Table 5.3: Description of self-reported symptoms
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5.7 Model selection

5.7.1 PCA

Figure 5.7 gives the screeplot to choose an optimal number of principal components. We

chose 3.
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Figure 5.7: Scree Plot- Variance

5.7.2 ICA

R package by Nordhausen et al. (2022) tests for the number of Gaussian components

using Fourth Order Blind Identification. We additionally look at it to select the number

of independent components which are supposed to be non-Gaussian. The bars of Figure

5.8 are in the order of non-Gaussianity.
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5.7.3 LPCA

Figure 5.9 shows different k values for different dimensions and m is for approximations

to the saturated model. We are more interested in k as that helps in deciding the number

of principal components. We took k = 3 and m = 3.
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Figure 5.9: LPCA model selection
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5.8 Extras

In this section, we have provided alternative plots to few of the figures in main text for

more clarity. In Figure 5.10, we can see the loading vectors along with the contribution

of each of those.
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Figure 5.10: Contributions to principal components

Figure 5.11 shows the barplot of loadings for 10, same as total number of self-reported

symptoms, principal components. The colour of each symptom is consistent throughout

the components.

Figures 5.12a. 5.12b and 5.12c, we find the heatmaps of the loadings for first three

principal components for each of PCA, ICA and LPCA. Please note that LPCA was

performed on the changes of symptoms, while the other two were on symptoms as it

is.

Figure 5.13 is the correlation plot for all the ten self-reported symptoms.
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Figure 5.11: Loadings per principal component
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Chapter 6

Further work

A broad outcome of the thesis includes analysing longitudinal digital health data and

interpreting results related to mental health, and developing and applying suitable meth-

ods. In this chapter, we discuss the possible ways of extending our work for further

research. We do so by giving some suggestions and sharing additional results which can

be utilised for the purpose of more related studies.

6.1 Missing data interpretations

Throughout the thesis, we performed analyses where the cleaned dataset was obtained by

simply removing the data points (self-reported variables) containing NA (Not Available)

values. But the missing data may have provided additional insights which have been

not captured. So our work can be further extended by including the missing information

and treating them appropriately, and then re-analyse and possibly compare the results.

Taking an inter-disciplinary approach in handling the missing data, here, the self-reported

variables, can provide meaningful interpretations.

6.2 More clusters

We have applied an Expectation-Maximisation (EM) algorithm to perform clustering on

the joint longitudinal trajectories of self-reported data of mood and pain as elaborated

in Chapter 3.

In this section, we specifically talk about extending the study by including clustering of

trajectories containing other self-reported symptoms paired with pain. We re-run the

clustering for other symptoms and show the results.

We present the cluster-heatmaps by first showing the frequency plots— Figures 6.1 to

132
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6.9 give the frequencies of self-reported symptoms paired with pain. This helps in un-

derstanding how the states are distributed over the period of time of the mobile health

study.

We can note similarities amongst some of the plots by looking at them. Few are almost

centered at the middle, while few are left aligned and others are to the right. These can

be analysed in relation to all the studies we have performed till now. At this point, we

have just taken a glance of the frequency plots and not studied them individually. We

hope the results can serve beyond the extension of our analyses, and can be utilised as

observational data output for other related work.
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Figure 6.7: (Morning stiffness, Pain)
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Clusters

Figure 6.10 to Figure 6.17 present heatmaps of four clusters based on trajectories of other

self-reported symptoms, which are sleep quality, wellbeing, exercise, time spent outside,

fatigue, pain impact, morning stiffness and waking up tired, paired with pain severity.

On this new data, we perform the same EM algorithm based clustering as described in

Chapter 3 by selecting the optimal number of clusters to be 4. However, we do not

regroup the individual states to binary values which resulted total 2 × 2 = 4 states of

Markov chain earlier, because the dichotomisation of the states can’t be uniformly done

in similar ways as before as the meanings of the categories of other symptoms differ and

require more consideration during bifurcation. So we retain all the 5× 5 = 25 transition

states of the Markov chain during re-running of the EM based clustering.

While looking at the following figures of heatmaps of the transition probability matrix

per cluster, please note that the mid point of the range of colours in legend has been set

at 1/25 = 0.04. The granularity of the heatmaps of the clusters has not been examined at

this point, but could be done as part of another analysis. The results can provide insights

to the relationships between the two variables in a pair and can be useful to other related

studies involving these.
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Figure 6.10: Clusters containing (Sleep quality, Pain) states
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Figure 6.11: Clusters containing (Wellbeing, Pain) states
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Figure 6.12: Clusters containing (Exercise, Pain) states
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Figure 6.13: Clusters containing (Time spent outside, Pain) states
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Figure 6.14: Clusters containing (Fatigue, Pain) states
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Figure 6.15: Clusters containing (Pain impact, Pain) states
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Figure 6.16: Clusters containing (Morning stiffness, Pain) states
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Figure 6.17: Clusters containing (Waking up tired, Pain) states
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6.3 Extension to n-tuple

We have performed our EM clustering on pairs (2-tuples) of symptoms. We propose that

it can be further extended to an n− tuple system where n ≥ 3 where more symptoms

can be included in the model. For e.g.: (mood, pain, sleep quality) can be considered as

a state.

6.4 Variations of Dirichlet-multinomial method

Motivated by the longitudinal data in hand, we proposed a Bayesian inference model

for multinomial longitudinal data by assuming the data to be generated from a mixture

of Dirichlet distributions parameterised by matrices of shape parameters as discussed in

Chapter 4. We did not do a sensitivity analysis based on the parameters.

The method can be further extended by varying the following:

1. Constraints on parameters:

We imposed an ordering constraint on the sum of the Dirichlet parameters to ad-

dress label-switching in mixture models. We could experiment with more parame-

ters or other label-switching methods inspired by Papastamoulis (2015) but for the

Hamiltonian Monte Carlo sampling, to increase the efficiency of the simulations.

2. Initialisation for MCMC chains:

We found an initial point for the MCMC chains with the help of EM algorithm again

to help with label-switching in the MCMC sampling. However, the method can be

retested with more points of initialisation by considering different parameters.

3. Number of dimensions:

In this thesis, we applied our Dirichlet-multinomial method to 4 states i.e. the

dimension of the simplex was 4 − 1 = 3. This mixture model can be extended by

taking more parameters to increase the dimension of the simplex, and analysed and

improved further. Situations pertaining to higher state space arise often in many

spheres of life and research where higher-dimensional data are presented.

4. Geometry of Dirichlet-multinomial distribution:

Dirichlet distributions are represented by their shape parameters belonging to a

simplex. As the dimensions increase, the corresponding simplices get tougher to vi-

sualise. In continuation to what has been suggested in the previous point, increasing

the number of states while implementing an MCMC method may incur issues in

the geometry of the simplex due to the shape constraint in its definition. To deal

with this issue, the geometry of the simplex can be transformed such that the shape

constraint gets softened. Betancourt (2012) shows transformation of variables to
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simplify the simplex.

We would have proceeded with including higher dimensional data in Chapter 4

where we would have liked to explore the geometry of the simplex and then the

efficiency of the implemented MCMC method. However, at this point, this remains

as a proposed extension to the project.

6.5 More dimensionality reduction, clustering and

other techniques

Based on this chapter, we could extend the analysis to consider more dimensionality

reduction and clustering techniques like t-SNE (Van der Maaten and Hinton, 2008),

UMAP (McInnes et al., 2018) and CLASSIX (Chen and Güttel, 2022) so we can include

more data and stratify according to several other variables like a weather parameter or

site of pain or baseline information like age, sex to check if the stratification influences

the results and gives new clusters. In fact, where and as applicable time-series methods,

some of which are listed in the review by Aghabozorgi et al. (2015) could be translated

to longitudinal data implementation. Other methods to look at would include efforts to

build a dynamical system e.g. Cramer et al. (2016) and Demic and Cheng (2014).

Another addition is comparing the results obtained from this thesis with similar studies or

other available data– populations of different demographics can provide new insights on

the behaviour of the self-reported symptoms amongst other groups at a larger scale.

Last but not the least, performing regression and comparing the results with our methods

can give an overview of the methods with the corresponding results. This can help in

updating traditional epidemiological or similar longitudinal data analyses’ methods and

can potentially propose a new set of initial check-up routines for handling such data.



Chapter 7

Conclusion

At the start of this work, I was presented with longitudinal data recording self-reported

ratings of mood, pain and eight other variables. These data were of a scale and com-

plexity such that careful consideration of methodology allowed for greater insights to

be delivered. Together with collaborators, I studied the data using (and comparing)

expectation-maximisation, Bayesian, and machine learning approaches. This thesis has

two outcomes: (1) application wise – we find digital phenotypes based on the self-reported

data of mood and pain trajectories; (2) methods wise – we develop and implement meth-

ods driven by different statistical ideologies on the longitudinal data.

The three main bodies of work in this thesis show the multiple ways of handling large,

heterogeneous and complex longitudinal data. In Chapter 3, we investigated the relation-

ship between mood and pain trajectories by performing a residual analysis first based on

the observed transition probability matrix of the data. Due to high residuals, we moved

on to model-based clustering of the mood and pain transitions. Since it would be difficult

to perform clustering of longitudinal data transitions with a distance-measure (Aghabo-

zorgi et al., 2015; Liao, 2005) we implemented an expectation-maximisation algorithm

based clustering as elaborated in the chapter which helped in discovering the underlying

phenotypes. The algorithm developed can be applied to any scenario with similar form

of data containing trajectories of values over a period of time. The results in this chapter

highlighted the need for personalised treatments in healthcare and emphasised that an

umbrella solution to a problem may not be correct. The biases and limitations were also

pointed out.

In Chapter 4, we performed Bayesian inference of the same mood, pain transitions. We

developed a Dirichlet-multinomial mixture distribution to address the specific problem

where the row of every individual transition matrix was sampled from a Dirichlet distri-

bution belonging to a component. Its application on mobile health data showed similar

142
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clustering to what had been achieved before in Chapter 3, but with the help of Bayesian

inference, predictions can be made which can potentially forecast mood or similar health

parameters.

Finally in Chapter 5, we applied several dimensionality reduction and clustering tech-

niques to our dataset by selecting all self-reported variables instead of focusing on only

mood and pain. The visualisations obtained in these techniques showed clear clusters of

the symptoms and highlighted the benefits of the method in quick assessment therefore,

can be implemented as part of primary and exploratory analyses.

Overall all these three bodies of work show the applications of mathematical, statistical

and computational tools in understanding health and mental health specifically. The

results give us insights on the behaviour of mood, pain and other parameters experienced

by a cohort of people who were already experiencing chronic pain. Application wise,

the main takeaway is highlighting the complexity of mental health and chronic pain

associations which need to be dealt with care thereby emphasising on making treatments

personalised to a patient’s history and needs. A limitation of the project is the possibility

of biases (e.g. sampling bias) inherent to smartphone studies. However, if we can carry

out similar studies on cohorts of different demographics and make comparisons, we can

eventually learn more and examine the biases accordingly. If consistency in results is

observed in other iterations of this study with varying cohorts, it would be a breakthrough

to find the specific clusters of human behaviour. Also, if we are able to identify such groups

based on the transitions of self-reported symptoms, it would lead to further research and

designing of studies pertaining to the particular groups.

In terms of methodology presented in the thesis, we implement novel approaches on

the longitudinal data and find the results accordingly. The methods can be further

extended by including more variables and parameters, as well as adding more layers of

constraints and assumptions. While doing so, it is important to remember that making

methods too complex may present problems of over-fitting and interpret-ability, and be

computationally intensive. Nevertheless, the methods introduced and discussed in this

thesis are not exclusive to the Cloudy with a Chance of Pain survey and can be applied

to other similarly structured data belonging to other fields of study as well.
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