
The University of Manchester Research

Classification of liquid crystal textures using convolutional
neural networks
DOI:
10.1080/02678292.2022.2150790

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Dierking, I., Dominguez, J., Harbon, J., & Heaton, J. (2022). Classification of liquid crystal textures using
convolutional neural networks. Liquid Crystals, 1-15. https://doi.org/10.1080/02678292.2022.2150790

Published in:
Liquid Crystals

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:04. Sep. 2023

https://doi.org/10.1080/02678292.2022.2150790
https://research.manchester.ac.uk/en/publications/57704636-05ec-4762-b9ac-3d280a5cba8b
https://doi.org/10.1080/02678292.2022.2150790

1

Classification of liquid crystal textures using
convolutional neural networks

Ingo Dierking*, Jason Dominguez, James Harbon, Joshua Heaton

Department of Physics and Astronomy, The University of Manchester, Oxford

Road, Manchester M13 9PL, UK

Abstract

We investigate the application of convolutional neural networks (CNNs) to the classification

of liquid crystal phases from images of their experimental textures. Three CNN classifier model

types (Sequential, Inception and ResNet50) are tuned and trained on five individual phase

group datasets. The complete dataset includes images of the cholesteric phase, chiral fluid

smectic A and C phases and hexatic smectic I and F phases, all extracted from polarised

microscopy videos of various liquid crystalline compounds. Three binary classification tasks,

each including two liquid crystal phases, provide the foundational demonstration of CNN model

viability. The average test set accuracies obtained are approximately (95 ± 2)%. More complex

multi-phase datasets are also created and investigated, with a three-phase cholesteric, fluid

smectic, and hexatic smectic set, in addition to a set containing all five individual phases. The

average test set accuracies for these classification tasks are (85 ± 2)%.

2

1. Introduction

Machine learning (ML) is the term assigned to a wide range of computer algorithms that use data
to automatically improve their performance on a specific task. These tasks can take various

forms, including decision-making, pattern recognition, and prediction [1]. A sub-field of ML
known as deep learning generally consists of applying large-scale multi-layer neural networks, a

type of algorithm inspired by the structure of the brain, to tasks involving highly complex
abstractions of data. Such intensive algorithms typically require vast quantities of data and

powerful computational resources to be trained effectively, with the advantage that they do not
require any manual feature extraction [2]. With the recent explosion in availability of such data

and sophisticated computing technology, deep learning has seen a surge in interest and
application among several fields [3]. Computer vision is one such field that has been impacted

greatly. Convolutional neural networks (CNNs), a type of neural network suited particularly well
to grid-based data, have proven extremely successful in the tasks of image classification,

segmentation, and object detection [4].

There are many thousands of documented liquid crystal (LC) compounds, with each
displaying a certain sequence of identifiable phases between that of a liquid and solid [5].

Commonly, polarised microscopy (PM) is used to capture images of the textures produced by LC
phases for identification by eye [5]. Literature on ML for LC phase classification is sparse, with

most studies focusing on the extraction of physical properties of LCs using simulated texture data
[6, 7, 8, 9], or other means [10, 11, 12, 13]. Of most relevance is the work by Sigaki et al., in which

they utilise CNNs to classify simulated isotropic and nematic phases to high accuracy [6].

Here, we prepare a novel dataset of LC texture images captured by PM, spanning multiple
phases of all orders. Subsequently, we apply CNN classifier models to various phase groupings,

probing the limits of attainable model accuracy.

1.1 Liquid crystals

Liquid crystal phases are characterised by the orientational and positional order of the molecular

arrangement. In general thermotropic LCs, as used in this study, become more ordered with
decreasing temperature [5]. The order and overall structure of the LC phase determines its

optical properties, in particular its birefringence. This enables images of the textures of a liquid
crystal to be obtained by polarised microscopy, in which the sample is placed between two

crossed polarisers.

 At sufficiently high temperatures, thermotropic LCs take the form of a fully isotropic liquid
with no structural order and hence no birefringence, resulting in completely dark textures. Upon
cooling, they will display at least one partially ordered phase before reaching the fully crystalline
stage. In between, the lowest order LC phase exhibits solely orientational order of the long
molecular axis, called the nematic (N) phase, where the molecules are aligned along a particular
direction called the director and are still free to translate as in a liquid. Compounds with chiral
molecules may instead display the cholesteric (N*) phase, which is the same as the nematic phase
except with helical variation of the director in a direction perpendicular to the long molecular
axis. Layered positional order is introduced in the smectic phase (Sm), which is divided into three

3

distinct phase groupings. The orientation of the director further categorises these groupings. The
fluid smectic phases exhibit 1D positional order, thus the formation of layers but with no
positional order within these layers. The orientation of the director with respect to the layer
planes determines whether the phase is smectic A (SmA), in which it is perpendicular, or C (SmC)
otherwise. The smectic B (SmB), I (SmI), and F (SmF) phases are placed into the hexatic smectic
(HSm) group, with short-range hexagonal order within the smectic layers, so called bond-
orientational order. The soft crystal phases differ in that the molecules within layers exhibit long-
range positional order [5].

This investigation uses CNNs to classify experimental polarising microscopy textures from
thermotropic chiral LC compounds [14], including the phases N*, SmA*, SmC*, SmI*, and SmF*.

Figure 1 gives example textures of each of these phases.

Figure 1: Samples from the LC texture dataset, from left to right: cholesteric, chiral smectic A, C, I and F.

1.2 Supervised machine learning

Machine learning algorithms can in general be categorised as supervised, unsupervised, or
reinforcement learning [1]. The ML implementations of this study are purely supervised learning
algorithms. In this case, the ML model is defined as a function, parametrised by learned values θ,

that maps an input data sample x containing various features to an output predicted label yˆ

[1],

 ŷ = f(x;θ). (1)

ŷ can take various forms depending on the specific task, for example regression, in which the
model attempts to predict a continuous value given the input data, or classification, in which it

predicts a category to which the input sample belongs [1]. A supervised model attempts to learn
appropriate θ values for the mapping using a set of training data, consisting of pairs, i, of input

examples and their corresponding true labels, {x(i),y(i)}. The model takes a sample x(i) and

produces an output label prediction yˆ(i) according to Equation 1 [1]. A chosen cost function J(y,

ŷ;θ) is then evaluated, which generally provides a measure of the divergence of the model outputs

from the true labels. The parameters are then updated with a particular optimisation algorithm

in order to minimise the cost. Successful training results in a model that is effective in producing

accurate predictions for new unseen data samples [1, 2]. Fixed parameters that define the precise
form of f, as well as training configurations, are known as hyperparameters [1, 2].

When deciding on the form of a supervised model, its capacity is of great importance, which

can be thought of as the size of the model. A low-capacity model with few trainable parameters

4

may not extract or infer enough features from the training data to form accurate predictions. This

problem is called underfitting. On the other hand, too high a capacity will cause the model to learn
many features that are specific to the training data and therefore it may not perform well when

inferring on new unseen examples. This is referred to as overfitting. The model’s

hyperparameters must, therefore, be properly tuned to ensure it does not overfit or underfit. In
addition to limiting model capacity, regularisation techniques can be applied to help prevent

overfitting and improve generalisation [1, 2].

Measurement of a supervised model’s performance is critical in determining how well it will

generalise to new unseen data, often done by evaluating a metric on a dataset of samples. For
classification tasks a common metric is the percentage of samples to which the model assigned

the correct class label [1]. The training dataset can be split into three subsets: training, validation,
and test. The training set contains the data samples used to update the trainable parameters of

the model. The validation set is used to tune the hyperparameters of the model. Evaluation of a

trained model on the training and validation sets can reveal if the model has underfitted or
overfitted. In the former case a low performance on both sets will be observed, whereas for the

latter a high performance on the training set and low on the validation set will occur [1, 2].
Hyperparameters can then be adjusted accordingly before retraining the model. After a

satisfactory model configuration and validation performance are reached, it is evaluated on the
as-of-yet unseen test set to give an indication of the model’s generalisation error [1, 2].

1.3 Neural networks

1.3.1 Layers

Neural networks are a type of ML algorithm that pass input data through a series of layers, each
containing a number of units. Every unit of a layer is connected in a particular way to the units of

the previous layer. Units can take various forms including ones with or without trainable
parameters, and specific layers are engineered so as to identify, manipulate, and propagate data

features from the input to the output of the network [15]. In a fully-connected, or dense, layer the
input to each unit is the outputs of all units of the previous layer. The inputs are multiplied by the

unit’s learned weight parameters and summed together with a learned bias parameter to

calculate the unit’s output [2, 15]. An activation function can then be applied to the output of each
unit of the layer to introduce non-linearity to the network. Such non-linearities are essential in

allowing a neural network to act as a universal function approximator, enabling it to perform
highly complex inference on input data [16]. A dense layer can hence be represented in matrix
form as

 O = A(WI + B), (2)

where O is the vector containing the outputs for the layer, W is the matrix of layer weights, I is

the vector of layer inputs, B is the vector of bias parameters, and A is the activation function

applied element-wise [2, 15].

Convolutional layers take grid-based input data such as two-dimensional images, and convolve

it with a kernel of trainable parameters. The kernel has a width and height smaller than that of
the input. The kernel is moved iteratively over the input, with the distance moved each iteration

5

known as the stride of the convolution [17]. At each step the kernel’s parameters are multiplied

with aligned input values, with the results summed together to produce the final output value.
An activation function can be applied to this output value. The complete layer output is formed

as a grid containing the ordered output values from the convolution. The size of the output grid

depends on the dimensions of the kernel and the stride of the convolution, as these together
determine the number of convolution steps in each direction [17]. The input and output of the

layer can have a third dimension, for example with the three colour channels of an RGB image. In
this case, the kernel will have a different set of parameters for each channel. This number of

channels is set by a hyperparameter known as the number of filters and can be increased from
input to output by stacking the results from multiple kernels [17]. A convolutional layer’s

padding refers to the behaviour of the kernel at the edges of the input. When the kernel is
confined completely within the input space it is called valid padding. Same padding is when the

kernel extends beyond the input space such that each value is visited by the kernel the same

number of times, with kernel values outside the space multiplied by zero. For a stride of one in

both directions, same padding will result in an output with the same shape as the input, and valid

padding will result in dimensionality reduction [2, 17]. An example of a convolution operation is
detailed in Figure 2.

Figure 2: Adapted from [2]. An example convolution operation with one channel. The 3 × 3 input is

convolved, denoted by ∗, with a 2 × 2 kernel with stride 1 × 1 and valid padding, to produce a 2 × 2 output

matrix.

The main advantage of convolutional layers over dense layers is the greatly reduced

computational and memory cost, since they require far fewer parameters. The kernel parameters

are shared over the entire input, which can also improve regularisation. Each kernel can be

thought of as learning to extract a particular feature from the input to be passed on to the next
layer, such as edges of objects in an image [2].

Pooling layers are often used after convolutional layers to reduce the dimensions of the
network [2]. They can be thought of as a convolutional layer with a kernel that does not have any

trainable parameters and instead performs a specific operation. This could be, for example,
taking the maximum value from the aligned input values at each step, known as max pooling.

Average pooling takes the arithmetic mean of the aligned input values [17]. For pooling layers

6

the kernel size is instead known as the pool size, and the pooling operation is applied to each

input channel individually. Global pooling refers to the case in which the pool size is equal to the
input size, which results in a vector output with one value for each of the input channels [17].

Pooling layers are utilised to reduce the overall size and computational cost of the network whilst

providing it with some invariance to translations of the input [2, 17].

A common choice of activation function for dense and convolutional layers is the rectified
linear unit (ReLU), defined for unit output z as

 A(z) = max(0,z), (3)

which partially models the behaviour of neurons in the brain [18]. It has the advantage of
introducing non-linearity without the potential for vanishing or exploding gradients when

training the network [2, 18]. For classifier neural networks, the final output layer is a dense layer

with a number of units equal to the number of classes. The softmax activation function is applied,

which converts the output of each unit into a probability that the input sample belongs to the
unit’s corresponding class [2]. For output unit i, this is defined as

 , (4)

where N is the total number of classes. The final output of the network is generally taken as the
class with the greatest assigned probability [2].

1.3.2 Training

Before training begins, a neural network’s trainable parameters are randomly initialised from a

particular distribution such as a normal distribution [2]. A training step is performed by first
selecting a “minibatch” containing a set number, called the batch size, of random samples from

the training set of data. The samples are passed through the network and a loss function is

evaluated for each output [2]. For classifier models, a widely used loss function, derived from the
Kullback–Leibler divergence and maximum likelihood estimation, is the categorical cross-

entropy, defined as

 L(p) = −logp (5)

where p is the model’s output probability that the sample belongs to the true labelled class [19].

The cost function is then calculated as the average of the loss for all samples in the minibatch [2].
An algorithm called backpropagation is then applied to calculate the gradient of the cost function
with respect to the trainable parameters, g = ∇θJ(y,yˆ;θ). Backpropagation, in summary, applies

the chain rule of differentiation sequentially from the final network layer going backwards to the
input layer, extracting the gradients at each unit output [2, 20]. A chosen optimisation algorithm

is then applied to update the parameters, with a simple example being stochastic gradient
descent [2]. In this case, the parameters are updated against the gradient as

 θ←θ− αg, (6)

where α is a hyperparameter called the learning rate, which modulates how much the parameters
are adjusted with each step [20]. This act of descending the cost function aims to reduce the loss

7

when the model is evaluated on future samples, and in doing so improves its accuracy [2].

Minibatches are sampled without replacement until the entire training set has been observed by
the model, completing an epoch of training [2].

1.3.3 Regularisation methods

There are numerous methods of regularising neural networks in order to avoid overfitting [2].

Here the details are provided for methods utilised in this study.

Dataset augmentation aims to effectively increase the overall number of samples in the

training set by performing transformations on the samples when they are selected for a

minibatch, with the result taking the same label as the base sample. In the case of image data,
alterations can be applied randomly and can include flipping the image, rotations, translations,

and magnification within certain ranges. When used appropriately, augmentations are a

powerful and simple way to improve model generalisation [2].

Another simple yet highly effective regularisation method is early stopping. During training
the model’s performance on the validation set, usually simply the cost evaluated on the entire

set, is recorded after every training epoch. Training stops if the cost has not decreased by more
than a tolerance value after a certain number of epochs, defined by the patience hyperparameter.

This helps greatly with regularisation because the model can overfit the training set if trained for
too many epochs [2, 21].

Dropout is a regularisation technique in which some unit outputs in a layer are multiplied by

zero with a set probability, called the dropout rate, with random units selected each training
update step. This can be viewed as training multiple sub-models with shared parameters, and it

has the effect of reducing the neural network’s sensitivity to noise [22].

For a layer with batch normalisation, after calculating the layer output values for each sample

in a minibatch, the outputs are rescaled by subtracting the minibatch mean for each unit output
and dividing by the standard deviation. The result for each unit is then rescaled linearly with

extra learnable parameters. For output z of a layer’s unit this change is represented as

 (7)

where γ and β are the extra learnable parameters, µ is the mean and σ is the standard deviation
of the unit’s output over the minibatch. For future computations on single samples, during

training running averages of the means and standard deviations are recorded. Batch

normalisation improves model stability whilst training and provides a regularising effect by
introducing a form of noise [23].

2 Methodology

2.1 Data preparation

All LC texture image data used has been obtained from PM videos of LCs, labelled by compound

and temperature range. Two homologous series of chiral compounds were investigated which
are discussed in detail in the literature [24, 25]. Textures of specific phases were accumulated

8

from all homologues which exhibited these phases. The software VLC Media Player [26] is used

to extract image frames from the videos, and they are classified according to the LC phase
displayed at the point of extraction. The raw images have a resolution of 2048 × 1088. They are

split into six smaller images of size 682 × 544 without compromising the features displayed by

each image. The images are then cropped to square 544 × 544 before being scaled down to the
model input size of 256 × 256 and converted to greyscale with pixel value range zero to one. This

input size is selected based upon results of studies relating to the performance of different
machine learning models, changing input image size, number of CNN layers and number of

inception blocks [14]. Further, images were converted to black and white to reduce the
computational cost and to avoid models developing a dependence on colour, while the actual
focus lies on the texture.

In construction of the training, validation, and test data sets, images of the same phase that
also come from the same video are not divided between any of the three sets. This is to minimise

potential data leakage, which is observed when samples in the training set are highly similar to
samples in the validation or test sets, artificially inflating model accuracy on the validation or test

set [27]. The distribution of the complete dataset over all LC phases is presented in Figure 3. From

Figure 3: The number of images in the complete dataset belonging to each phase, with a total of 6,978

images.

this we construct five individual model training datasets, split by video in an approximate ratio

of 3:1:1 into training to validation to test set image count. Videos are selected randomly from the
training set to be moved into the validation and test sets until the target split ratio is

approximately met. The five cases of different phase groupings studied, include three binary

(two-phase) sets and two multi-phase sets. The names of each dataset and the phases they

9

include are summarised in Table 1, with the specific distributions of the data in each set

presented in Table 2.

Table 1: The LC phases contained in each dataset.

Dataset ChSm SmAC SmIF ChSm2 ChSm4

Phases Ch, Sm SmA, SmC SmI, SmF Ch, FSm, HSm Ch, SmA, SmC, SmI, SmF

Table 2: Image count and distribution for each LC phase class.

 Phase Ch Sm FSm HSm SmA SmC SmI SmF

Training 1148 3598 2110 1488 722 1388 918 570

Validation 245 853 481 372 180 301 198 168

Test 253 881 515 366 204 311 210 162

 Totals 1646 5332 3106 2226 1106 2000 1326 900

2.2 CNN Models

In this study we use three different types of CNN architectures, with each built from dense,

convolutional, and pooling layers. All convolutional layers use a stride of 1×1, same padding, and

ReLU activation, and all dense and convolutional layers have batch normalisation. A standard

convolutional layer has kernel size 3 × 3, and a standard pooling layer refers to a max pooling
layer with pool size and stride of 2 × 2 and same padding.

2.2.1 Sequential architecture

The simplest and lowest capacity models used are Sequential CNNs. They consist of a series of

standard convolutional layers, each followed by a standard pooling layer. The number of
channels is doubled with each successive convolutional layer. The final convolutional layer in the

network is followed instead by global average pooling, which is proceeded by two dense layers,
first with a number of units equal to the output of the average pooling, and second with half that

amount. Both dense layers have ReLU activation and dropout rate 0.5. The final layer is the dense
classification output with a number of units equal to the number of classes and a softmax

activation. Figure 4 displays a diagram of a Sequential model with three convolutional layers.

10

Figure 4: Schematic of a Sequential network with three convolutional layers. “Conv” refers to a standard

convolutional layer and “Pool” to a standard pooling layer. Layer output shape is given in bold next to

each layer.

2.2.2 Inception architecture

A set of models based on Google’s Inception CNN architecture contain modules called Inception
blocks, which have parallel convolutional layers with different kernel sizes sharing inputs and

outputs [28]. The structure of an Inception block is detailed in Figure 5. Our downsized Inception
networks begin with a convolutional layer with kernel size 7 × 7, followed sequentially by a

standard pooling layer, a convolutional layer with kernel size 1×1, a standard convolutional layer,
and a standard pooling layer. The output of this pooling layer is then fed into a series of one or

more Inception blocks. The output of the final Inception block is followed sequentially by an

average pooling layer with pool size and stride 5×5 and valid padding, a standard convolutional
layer, and finally the same output dense layer structure as the Sequential models starting with

global average pooling. Similar to the Sequential models, the number of channels doubles with

each convolutional layer, aside from inside the Inception blocks, in which the number of channels

is halved from the block input and then kept constant. The output concatenation has four times
the channels as they are stacked from each branching layer.

11

Figure 5: Diagram of a single inception block, adapted from [28]. “Conv 1x1” represents a convolutional

layer with kernel size 1×1 and “max pool 3x3” represents max pooling with pool size and stride of 3 × 3.

The branching architecture with varying kernel sizes attempts to extract features of varying sizes from

the input [28].

2.2.3 ResNet50 architecture

The ResNet models, first implemented in 2015 by Kaiming He et al., aim to tackle the problem of

vanishing gradients in CNNs with many layers [29]. They do this by adding skip connections to
the network, which feed the ouputs of layers early in the network to later layers, in conjunction

with the standard sequential layer inputs. The specific model we utilise in this study is called

ResNet50, owing to it having a total of 50 layers [29]. A diagram of the architecture is presented

in Figure 6. This is an extremely high-capacity model owing to the number of layers and channels
within each layer, amounting to more than 25.5 million trainable parameters [29].

12

Fig.6: The architecture of ResNet50, adapted from [29]. “Conv 1x1, N” is a convolutional layer with kernel

size 1 × 1 and N channels. All convolutional layers have stride of 1 × 1. The input to a skip connection block

is put through three convolutional layers, and the output of this is concatenated with the original input.

The factors next to each skip connection block represent a series of that number of blocks.

2.3 Model training configurations

We use the deep learning libraries TensorFlow and Keras to build and train all models [30, 31].

Model training is powered by NVIDIA CUDA, either on an NVIDIA RTX 2060 graphics card or

cloud-based using Google Colaboratory [32, 33]. All models use the categorical cross-entropy loss
function and are updated with the Adam optimiser with variable learning rate and other fixed

hyperparameter settings of β1 = 0.9, β2 = 0.999, and [14, 34]. Early stopping is applied to

all models, with a patience of 25 epochs and based on validation set cost. Each model is trained
for a maximum of 50 epochs if early stopping is not activated before. The final saved model

parameters correspond to the epoch of training with the lowest validation set cost. Random

flipping in both the horizontal and vertical directions is applied to the minibatches of images

throughout training [14]. These are the only augmentations used. Model accuracy on a dataset is
evaluated as the percentage of correctly classified images in the set.

2.4 Model tuning

For each dataset, we train and tune Sequential, Inception and ResNet50 classifier models with

the aim of maximising accuracy when evaluating on the test set. The hyperparameters we choose

13

to vary include batch size and learning rate for all model types. For the Sequential models we also

vary the number of convolutional layers and starting channels, and for the Inception models we
vary the number Inception blocks and starting channels. The ResNet50 architecture is fixed. For

every configuration tested we train the model ten times, recording the validation and test set

accuracies at the end of each run. The model’s parameters are reset between each run. The mean
accuracies for the configuration are then calculated along with the standard deviations. Selection

of hyperparameters is based on trial and error combined with grid-search methods. In a grid-
search lists of values are specified for two or more hyperparameters, and models are trained with
all possible combinations of the values [2].

3 Classification tasks and results

Here, the results for the models of each type achieving the highest mean test set accuracies for
each phase classification task are presented. Architecture details are listed as number of

convolutional layers, number of starting channels for Sequential models, number of blocks, and
number of starting channels for Inception models. The error bars on the results summary graphs

for each dataset represent the standard deviation of the test set accuracy. Model types are
abbreviated as “Seq” for Sequential, “Inc” for Inception, and “RN50” for ResNet50. The y-axis
scale is fixed at 50 to 100 percent to aid comparison of the results between each dataset.

The test set mean and standard deviation confusion matrices are given for the best model

type and configuration in each case. Confusion matrix values represent the fraction of test set
samples with a particular true label that the model assigned a particular predicted label. For the

best performing model configurations, the confusion matrices are calculated for all ten individual
trained models, and the mean and standard deviation are calculated for each value.

3.1 Binary classifiers

The binary classifiers predict which of two phases a LC texture is displaying. These serve as

foundational investigations for model viability before attempting to build more complex
multiphase classifiers. The simplest of such binary classifiers is to distinguish between the

isotropic phase and a liquid crystal phase. This task is obviously quite trivial and all models
achieved a 100% success rate, so this will not be discussed here in any more detail.

3.1.1 ChSm (cholesteric – smectic)

Models in this first non-trivial binary phase classification task attempt to differentiate between
the cholesteric phase and all smectic phases in the complete dataset. The final results for the

tuned models are displayed in Figure 7 and the model configurations and accuracies are given in

Table 3. All three model types achieve over 90% mean test accuracy, with Inception the highest
and ResNet50 the lowest. In the latter case we presume that the extremely high capacity of

ResNet50 leads to some overfitting, despite usage of early stopping. Overall, the variances in
accuracy suggest good stability in training the models, with no standard deviations greater than

3%. The mean test accuracies are higher than validation in every case, however, the differences

14

are small. This trend is most likely due to the relatively small size of the dataset, which could

result in elevated sensitivity to the exact choice of videos to include in each set.

Table 3: Best results and corresponding model configuration details for the ChSm dataset. For the number

of parameters, k represents multiples of one thousand and m represents one million.

 ChSm Sequential Inception ResNet50

 Mean test accuracy/% 96 ± 3 98 ± 2 93 ± 3

 Mean validation accuracy/% 93 ± 1 95 ± 2 91 ± 2

 Architecture details 3, 64 1, 16 N/A

 Batch size 16 16 16

 Learning rate 5 × 10−5 1 × 10−4 1 × 10−4

 Trainable parameters 470 k 497 k 25.5 m

The mean confusion matrix in Figure 7b for the Inception model shows that the inaccuracies
in general stem from misidentifying the cholesteric phase as smectic, at 3%. This is likely due to

(a)

Figure 7: (a) Mean test and validation set accuracies for the best model of each type trained on the ChSm

dataset. (b) Mean test set confusion matrix for the ChSm Inception model. (c) Standard deviations of test

set confusion matrices for the ChSm Inception model.

the large imbalance in the dataset in favour of the smectic class, which has approximately three
times the number of samples. Such an imbalance may induce some bias in the model towards the

larger class. In addition, the models are most unstable when processing cholesteric samples, as
demonstrated by the standard deviation confusion matrix in Figure 7c, with 6% for both true

cholesteric values. Again, this could be due to the class imbalance. There may also be some
cholesteric images with features that are similar to some smectic ones. Overall, the ChSm task is

(b) (c)

15

successful in demonstrating that the CNN models can easily learn to distinguish between features

of two broad liquid crystal classes, phases with only orientational order and those with
orientational and positional order.

3.1.2 SmAC

The fluid smectic A and C phases share rather similar textural features because the difference in
order between the phases is subtle [5], smectic C being the tilted version of smectic A, separated

by a 2nd order phase transition. One could, therefore, infer that the binary classification task on
the SmAC dataset should be more challenging. Nevertheless, initial tests suggested that this is not

the case, as the best model trained on a similar smectic A and C dataset achieved (97 ± 1)% mean
test set accuracy [14]. We now attempt to verify and improve this result with the more robust

method of performing ten training runs per model configuration as opposed to just three in the

initial tests. The obtained results for the models tuned to the SmAC dataset are presented in
Figure 8 and Table 4. Both the Sequential and Inception models achieve an extremely high

accuracy on the test set, with ResNet50 trailing behind by approximately 8%. Again, the
validation accuracies are lower for all models.

The mean confusion matrix for the Inception model in Figure 8b shows that on all ten training

runs, the model is 100% accurate in identifying the smectic A phase in the test set. The only
confusion is an average rate of 1% misidentification of smectic C as A, despite the slight imbalance

of the dataset with almost two times more smectic C samples than A. The results of the initial

tests for smectic A and C have thus been reinforced and improved upon, demonstrating the
suitability of CNNs for cases with subtle differences between image features.

16

Table 4: Best results and corresponding model configuration details for the SmAC dataset

.

Figure 8: (a) Mean test and validation set accuracies for the best model of each type trained on the SmAC

dataset. (b) Mean test set confusion matrix for the SmAC Inception model. (c) Standard deviations of test

set confusion matrices for the SmAC Inception model.

3.1.3 SmIF

The hexatic smectic I and smectic F binary classification task is another one in which the phases
display similar features due to similar underlying structure [5], with both hexatic phases being

tilted, only differing in their tilt direction to the apex and the side of the hexagon, respectively.

The results and model configurations for the SmIF dataset are displayed in Figure 9 and Table 5.

Overall, the model performance is somewhat lower than for the previous datasets, with the

highest mean test set accuracy achieved with the Sequential architecture, at (93 ± 6)%. In
addition, there are large variances in accuracy for SmIF. This is most likely a result of the

relatively small size of the dataset, which could cause instability in training the models as there
are not enough samples to consistently learn the correct characteristic features for each phase.

The poorer performance and high variance could also suggest that the features distinguishing
smectic I and F are more subtle than in, for example, the case of smectic A and C, although by

experience this does not seem to be the case. The performance of ResNet50 is particularly low.

SmAC Sequential Inception ResNet50

Mean test accuracy/% 99 ± 1 99 ± 1 91 ± 2
Mean validation accuracy/% 92 ± 3 95 ± 3 90 ± 1
Architecture details 4 , 8 2 , 2 N/A
Batch size 16 16 16
Learning rate 1 × 10 − 4 1 × 10 − 4 1 × 10 − 5

Trainable parameters 31 k 34 k 25.5 m

) (a

(b) (c)

17

This is in part because the training time is longer than for the sequential and inception models,

which allows for only fewer tuning attempts.

Figure 9b shows the mean test set confusion matrix for the SmIF Sequential model. From this

we see that the largest source of inaccuracy lies in the true smectic I sample predictions, with
90% mean test accuracy as opposed to 97% for smectic F. The two classes are well balanced in
this case, which provides no explanation for the inaccuracy. It may instead perhaps stem from

Table 5: Best results and corresponding model configuration details for the SmIF dataset.

Figure 8: (a) Mean test and validation set accuracies for the best model of each type trained on the SmIF

dataset. (b) Mean test set confusion matrix for the SmIF Sequential model. (c) Standard deviations of test

set confusion matrices for the SmIF Sequential model.

images in the dataset that have been taken near the point of a phase transition between smectic

I and F, which could result in some overlap of important features from each phase in the image.
Therefore, the model could be exhibiting a bias towards smectic F if its confidence identifying

smectic F features is greater than for smectic I. The standard deviation confusion matrix in Figure
9c shows that true phase smectic I accuracy is also more unstable than smectic F, which provides

further evidence that the model is less confident in extracting the features of smectic I.

Nevertheless, the performance on the SmIF dataset is surely satisfactory in that the models
perform substantially better than randomly guessing. However, there could be room for

SmIF Sequential Inception ResNet50

Mean test accuracy/% 93 ± 6 82 ± 14 66 ± 12
Mean validation accuracy/% 84 ± 12 88 ± 12 68 ± 8
Architecture details 3,128 2 , 8 N/A
Batch size 16 16 16
Learning rate 1 × 10 − 4 1 × 10 − 4 1 × 10 − 5

Trainable parameters 1.9 m 538 k 25.5 m

) (a

() b (c)

18

improvement by expansion of the dataset with more videos from smectic I and F phases, which

would provide more samples for the models to learn a more accurate interpretation of the subtle
textural features.

3.2 Multi-phase classifiers

Having demonstrated success in binary LC phase classification, we now progress to the more
challenging tasks of classifying more than two phases at a time.

3.2.1 ChSm2

The ChSm2 dataset contains all phases in the complete dataset, (i) cholesteric, and (ii) with
smectic A and C grouped into the fluid smectic class and (iii) smectic I and F grouped into the

hexatic smectic class. (The hexatic smectic class contains more images than the entire SmIF
dataset because images from one video displaying the hexatic smectic phase could not be further

labelled as smectic I or F). Figure 10 and Table 6 summarise the results and model configurations

for this dataset. We obtain a similar performance from the Sequential and Inception models, with
both reaching 85% mean test accuracy. ResNet50 lags behind again on this task, most likely for

similar reasons of overfitting and fewer attempts at tuning, as discussed above. With no standard
deviations greater than 3%, model training and accuracy is relatively stable for the ChSm2 task.

The overall performance is lower in comparison to the binary datasets, which can be explained
by the increased complexity and size of the task with a greater number of phases and,
subsequently, more features to learn.

Table 6: Best results and corresponding model details for the ChSm2 dataset.

 ChSm2 Sequential Inception ResNet50

Mean test accuracy/% 85 ± 2 85 ± 3 72 ± 2

Mean validation accuracy/% 82 ± 2 83 ± 3 67 ± 3

 Architecture details 3, 64 1, 8 N/A

 Batch size 16 16 16

 Learning rate 5 × 10−5 1 × 10−4 1 × 10−4

 Trainable parameters 470 k 125 k 25.5 m

19

(a)

Figure 10: (a) Mean test and validation set accuracies for the best model of each type trained on the ChSm2

dataset. (b) Mean test set confusion matrix for the ChSm2 Sequential model. (c) Standard deviations of

test set confusion matrices for the ChSm2 Sequential model.

Displayed in Figure 10b is the mean test set confusion matrix for the Sequential model.

Surprisingly, the true cholesteric samples are most often mislabelled as hexatic smectic, at 11%.
This is counter-intuitive because the hextic smectic phase has a higher order than even the fluid

smetic, which would normally result in greater similarity between the cholesteric and fluid
smectic phases rather than between cholesteric and hexatic smectic. There is also generally high

confusion between the fluid and hexatic smectic phases, and relatively high instability in accuracy

for true hexatic smectic samples, when interpreting Figure 10c. These results can be explained
by the similarity of texture features over all fluid and hexatic smectic phases (fan-shaped textures

only), with more data and possibly a more rigorous tuning required to increase accuracy further.
Nevertheless, phases can be predicted with an accuracy of approximately 85%, which is a decent
result when considering the size of the relatively small dataset.

3.2.2 ChSm4

At last, the final dataset, ChSm4, contains five classes representing all individual phases of the
complete dataset, cholesteric as well as smectic A, C, I and F. This is the most ambitious and

challenging of all the phase classification tasks investigated in this study, requiring the models to

learn numerous subtle features to distinguish between a closely related series of LC phases. The

results from extensive tuning are presented in Figure 11 and Table 7. We again obtain good

performance on the test set from the Sequential and Inception models, at 87% and 86% mean
accuracy respectively, with ResNet50 performing worse by approximately 20%. Of note is the

particularly poor mean validation accuracy for all model types, with none reaching 70%. This is
again indicative that the final result is sensitive to the specific choice of videos placed in each sub-
dataset, likely due to the small overall size of the complete dataset.

(b) (c)

20

Table 7: Best results and corresponding model configuration details for the ChSm4 dataset.

 ChSm4 Sequential Inception ResNet50

Mean test accuracy/% 87 ± 3 86 ± 4 66 ± 7

Mean validation accuracy/% 65 ± 2 68 ± 5 60 ± 5

 Architecture details 3, 128 2, 4 N/A

 Batch size 16 16 16

 Learning rate 1 × 10−5 1 × 10−4 5 × 10−4

 Trainable parameters 1.9 m 135 k 25.5 m

Upon constructing the mean test set confusion matrix for the Sequential model, Figure 11b
depicts the main source of inaccuracy. The true smectic I samples are mislabelled as smectic C

55% of the time on average, with a large standard deviation of 19% as seen in Figure 11c. This
suggests that there may be overlap in the model’s learned features between the smectic C and I

phases. We presume that this overlapping feature is in fact the helical superstructure exhibited

by both phases, due to the chirality of the system. This is manifested in the textures of chiral
smectic C as an equidistant line pattern, which is largely retained in chiral smectic I, but later

partially vanishes for chiral smectic F. The model is largely successful in identifying all other

phases, each correctly predicted approximately 90% of the time with smectic A correct 100% of

the time. The accuracy on true smectic F samples has a high standard deviation of 15%, similarly
to smectic I. These results combined provide insight into the inaccuracies of the ChSm2 task,

which likely also suffers from confusion between smectic C and I samples.

The success of the models applied to the ChSm4 dataset is notable. However, training on a

vastly expanded dataset would allow model accuracy and stability to be improved. This would
require longer training times because larger model capacities would be required to extract more

meaningful features from the data. A more balanced dataset with better representation for the
smectic A, I and F phases would possibly also be beneficial.

21

(a)

 (b) (c)

Figure 11: (a) Mean test and validation set accuracies for the best model of each type trained on the ChSm4

dataset. (b) Mean test set confusion matrix for the ChSm4 Sequential model. (c) Standard deviations of

test set confusion matrices for the ChSm4 Sequential model.

4 Conclusions

In this study we have investigated various datasets of textures of liquid crystals from binary ((i)

cholesteric – fluid smectic; (ii) smectic A – smectic C; (iii) smectic I – smectic F) to multi-phase systems
((iv) cholesteric – fluid smectic – hexatic smectic and (v) cholesteric – smectic A – smectic C – smectic I –

smectic F) involving up to five different phases. We have trained and tuned different machine

learning models, Sequential, Inception and ResNet50, to a high average test set accuracy. A
summary of the best results for each phase grouping is presented in Table 8. Binary systems

displayed an average test set accuracy of about 95% and higher, while multi-phase systems were
accurate to approximately 85%. Since these results were obtained on real liquid crystalline

systems with experimentally determined textures, such accuracies are quite remarkable for the
relatively small and at times unbalanced test sets. Especially in the light that all studies up to date

were carried out with respect to the quite trivial distinction between isotropic and nematic

22

phases, and often even on idealised computer-generated textures, which explains their high

prediction accuracies as compared to this study of experimentally determined textures of largely
different smectic phases.

Table 8: Results for the best tuned model for each prepared dataset. Binary classifiers (i) ChSm:

cholesteric – fluid smectic; (ii) SmAC: smectic A – smectic C; (iii) SmIF: smectic I – smectic F. Multi phase

classifiers (iv) ChSm2: cholesteric – fluid smectic – hexatic smectic and (v) ChSm4: cholesteric – smectic

A – smectic C – smectic I – smectic F.

Overall the Sequential models have proved most successful, achieving the highest mean test

accuracies in the three most complex classification tasks. The inception models follow closely

behind with comparable results in all cases. ResNet50 has performed the worst on all datasets.
However, it did produce mean test accuracies above 90% on the ChSm and SmAC datasets. The

generally poor performance suggests the capacity of the model is too high and overfitting to the
training set has occurred. Furthermore, the size of ResNet50 results in training times much

longer than for the other models[14]. For this reason, fewer hyperparameter tuning cycles have
been performed.

Throughout the investigation, dataset size has been the key limiting factor. The results could
potentially be improved by further balancing and expanding the dataset with more samples.

Particularly, including PM videos from an extended range of compounds would be beneficial in

allowing the models to learn more general textural features from each phase, improving accuracy

when applied to new unseen samples. An ambitious goal for potential future investigations would

be to establish a vastly expanded dataset spanning more phases, such as frustrated phases (Blue
Phases, BP, and twist grain boundary phases, TGB), or even soft crystals. Larger models such as

ResNet50 would be necessary to obtain high accuracies on more complex classification tasks.
Alternatives to CNNs could be investigated, such as the promising Transformer network

architectures which have seen success in computer vision tasks involving extremely large

datasets [35].

References

[1] K. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

Dataset No. of phases Best model type Mean test accuracy/%

ChSm 2 Inception 98 ± 2
SmAC 2 Inception 99 ± 1
SmIF 2 Sequential 93 ± 6
ChSm2 3 Sequential 85 ± 2
ChSm4 5 Sequential 87 ± 3

23

[3] A. Shrestha and A. Mahmood, “Review of deep learning algorithms and architectures,” IEEE

Access, vol. 7, pp. 53040–53065, 2019.

[4] A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, and D. Andina, “Deep learning
for computer vision: A brief review,” Intell. Neuroscience, 2018.

[5] I. Dierking, Textures of Liquid Crystals. WILEY-VCH, 2003.

[6] H. Y. D. Sigaki et al., “Learning physical properties of liquid crystals with deep convolutional
neural networks,” Scientific Reports, vol. 10, p. 7664, 2020.

[7] H. Y. D. Sigaki, R. F. de Souza, R. T. de Souza, R. S. Zola, and H. V. Ribeiro, “Estimating physical
properties from liquid crystal textures via machine learning and complexity-entropy
methods,” Phys. Rev. E, vol. 99, p. 013311, 2019.

[8] E. N. Minor et al., “End-to-end machine learning for experimental physics: using simulated

data to train a neural network for object detection in video microscopy,” Soft Matter, vol. 16,
p. 1751, 2020.

[9] M. Walters, Q. Wei, and J. Z. Y. Chen, “Machine learning topological defects of confined liquid
crystals in two dimensions,” Phys. Rev. E, vol. 99, p. 062701, 2019.

[10] F. Leon, S. Curteanu, C. Ta, L. Lin, and N. Hurduc, “Machine learning methods used to predict

the liquid-crystalline behavior of some copolyethers,” Molecular Crystals and Liquid Crystals,
vol. 469, 2007.

[11] C. Butnariu, C. Lisa, F. Leon, and S. Curteanu, “Prediction of liquid-crystalline property using

support vector machine classification,” Journal of Chemometrics, vol. 27, no. 7-8, pp. 179–
188, 2013.

[12] H. Doi, K. Takahashi, K. Tagashira, J. Fukuda, and T. Aoyagi, “Machine learning-aided analysis
for complex local structure of liquid crystal polymers,” Scientific Reports, vol. 9, 2019.

[13] T. Inokuchi, R. Okamoto, and N. Arai, “Predicting molecular ordering in a binary liquid crystal
using machine learning,” Liquid Crystals, vol. 47, no. 3, pp. 438–448, 2020.

[14] I. Dierking, J. Dominguez, J. Harbon and J. Heaton, to be published

[15] S. Haykin, Neural Networks: A Comprehensive Foundation. 2 ed., 1998.

[16] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal
approximators,” Neural Networks, vol. 2, pp. 359–366, 1989.

[17] H. H. Aghdam and E. J. Heravi, Guide to Convolutional Neural Networks: A Practical

Application to Traffic-Sign Detection and Classification. Springer Publishing Company,

Incorporated, 1st ed., 2017.

[18] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” Proc. Mach.
Learn. Res, vol. 15, pp. 315–323, 2011.

24

[19] D. Kline and V. Berardi, “Revisiting squared-error and cross-entropy functions for training

neural network classifiers,” Neur. Comp. App., vol. 14, pp. 310–318, 2005.

[20] S. Amari, “Backpropagation and stochastic gradient descent method,” Neurocomputing, vol.
5, pp. 185–196, 1993.

[21] C. Bishop, “Regularization and complexity control in feed-forward networks,” in Proceedings

International Conference on Artificial Neural Networks ICANN’95, vol. 1, pp. 141–148, EC2 et
Cie, 1995.

[22] N. Srivastava et al., “Dropout: a simple way to prevent neural networks from overfitting,” J.
Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by

reducing internal covariate shift,” in Proceedings of the 32nd International Conference on
International Conference on Machine Learning, vol. 37, pp. 448—-456, JMLR.org, 2015.

[24] I. Dierking, F. Gießelmann, J. Kußerow, and P. Zugenmaier, “Properties of higher-ordered

ferroelectric liquid crystal phases of a homologous series,” Liquid Crystals, vol. 17, pp. 243–
261, 1994.

[25] J. Schacht, I. Dierking, F. Gießelmann, K. Mohr, H. Zaschke, W. Kuczynski, and P. Zugenmaier,
“Mesomorphic properties of a homologous series of chiral liquid crystals containing the α-
chloroester group,” Liquid Crystals, vol. 19, pp. 151–157, 1995.

[26] VideoLan, “Vlc media player.” https://www.videolan.org/vlc/index.html, 2006.

[27] S. Kaufman et al., “Leakage in data mining: Formulation, detection, and avoidance,” ACM
Trans. Knowl. Discov. Data, vol. 6, pp. 556–563, 2012.

[28] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

[30] M. Abadi et al., “Tensorflow: A system for large-scale machine learning,” in 12th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 16), pp. 265–283,
2016.

[31] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd, 2017.

[32] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs. Morgan

Kaufmann Publishers Inc., 1st ed., 2012.

[33] E. Bisong, Google Colaboratory, pp. 59–64. 2019.

[34] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International Conference
on Learning Representations, 2014.

25

[35] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. Khan, and M. Shah, “Transformers in vision: A

survey,” ArXiv, 2021.

