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Deep learning techniques for the
localization and classification of
liquid crystal phase transitions

Ingo Dierking*, Jason Dominguez, James Harbon and
Joshua Heaton

Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom

Deep Learning techniques such as supervised learning with convolutional neural
networks and inception models were applied to phase transitions of liquid crystals to
identify transition temperatures and the respective phases involved. In this context
achiral as well as chiral systems were studied involving the isotropic liquid, the
nematic phase of solely orientational order, fluid smectic phases with one-
dimensional positional order and hexatic phases with local two-dimensional
positional, so-called bond-orientational order. Discontinuous phase transition of
1st order as well as continuous 2nd order transitions were investigated. It is
demonstrated that simpler transitions, namely Iso-N, Iso-N*, and N-SmA can
accurately be identified for all unseen test movies studied. For more subtle
transitions, such as SmA*-SmC*, SmC*-SmI*, and SmI*-SmF*, proof-of-principle
evidence is provided, demonstrating the capability of deep learning techniques to
identify even those transitions, despite some incorrectly characterized test movies.
Overall, we demonstrate that with the provision of a substantial and varied dataset of
textures there is no principal reason why one could not develop generalizable deep
learning techniques to automate the identification of liquid crystal phase sequences
of novel compounds.
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1 Introduction

The liquid crystalline (LC) state of matter exhibits partially ordered phases that occur
between the isotropic (Iso) and crystalline phases. In this study we limit ourselves to LCs which
are formed by rod-like, calamitic, molecules which occur through a change of temperature
(Dierking, 2003). Figure 1 summarizes the LC phases studied here, starting with the isotropic
liquid at high temperatures, then the nematic or chiral nematic (cholesteric) phase with
orientational order, cooling through the fluid smectic and the hexatic phases with one
dimensional and two-dimensional positional order, respectively. We specifically also
investigate achiral and chiral materials, where the latter exhibit helical superstructures.

Machine learning, within which deep learning is one of the leading sub-fields, has found
applications in automating tasks such as image classification and object detection (LeCun et al.,
2015). Within the field of LCs, machine learning has been applied by other authors to
identifying isotropic to nematic (Iso-N) transitions (Sigaki et al., 2020) and tracking
nematic topological defects (Minor et al., 2020), where in both studies simulated textures
were employed. The chiral Iso-N* transition has been studied in (Khadem and Rey, 2021) by
using sequence models with numerical simulation data, whereas we are using computer vision
models with experimental texture images. By utilizing deep learning techniques to identify LC
phases and their transitions, the difficulty to classify new LC compounds via textures can be
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overcome. Furthermore, if deep learning has the capability to learn
subtle LC phase transitions, then with the collection of a large dataset
of textures, a model could reach the performance of an automated tool
for phase classification. Nevertheless, since the model output is purely
a classification and prediction accuracies, no information about the
thermodynamic order of the phase transition will be obtained, while
transition temperatures can be located to the accuracy of the applied
experimental setup.

In this investigation we are particularly interested in the
localization and classification of particular liquid crystal phase
transitions. These are: 1) The clearing points, i.e., the transition
between an isotropic and nematic phase, Iso-N. This includes
texture transitions from planar to homeotropic director field
distributions of the nematic phase, and as such could also be used
for a description of the only seldomly observed re-entrant behavior.
Additionally, also the respective chiral system was studied with the
transition Iso-N*. 2) The transition from nematic to fluid smectic, here
N-SmA and the chiral transition N*-SmC*, which both characterize
the onset of the positional order in addition to the orientational order
of the N and N* phase. 3) The SmA*-SmC* transition as an example of
a known second order, thus continuous transition. 4) The scenario of a
fluid smectic to hexatic smectic transition, here SmC*-SmI* and at last
5) the SmI*-SmF* transition between two hexatic phases, where the
effects of a too small dataset are demonstrated.

2 Machine learning

2.1 Overview of deep learning

In Machine Learning, a computer program learns from some
experience or feedback in order to improve its performance on a
desired task (Mitchell, 1997). Deep learning, a sub-field of machine
learning, accomplishes this using artificial neural networks (ANNs).
ANNs are made up of “neurons”, which compute simple weighted
sums of their inputs (Goodfellow et al., 2016). By interconnecting
many layers of neurons, ANNs are able to model complex tasks. ANNs
have been shown to be capable of human-level or better performance
in a wide variety of tasks, including computer vision (LeCun et al.,
2015). A common way to train ANNs for a task is via supervised
learning, which uses labelled data (Lecun et al., 1998). By comparing

the predicted outputs of a model with the labels, the errors can be
propagated back through the model to update its parameters, known
as weights, and improve performance (Lecun et al., 1998). A trained
model results from minimizing the errors of the model, known as the
loss. This can be done using gradient-based methods such as gradient
descent (Lecun et al., 1998). An investigation of the performance of
different artificial neural networks in relation to the number of model
layers, inception blocks and augmentations will be given elsewhere
(Dierking, Dominguez, Harbon, Heaton).

2.2 Model validation

When training a model on data, known as training data, the aim is
to create a model that generalizes to unseen data. The two major
challenges of this are avoiding underfitting and overfitting the training
data (Lever et al., 2016). Underfitting is when the model is unable to
accurately predict the correct labels of the training data, whereas
overfitting is when a high training accuracy is achieved, but the model
is unable to generalize to unseen data (Lever et al., 2016). This is due to
it learning features that are specific to the training data, such as noise.
In particular, overfitting is a common problem with small datasets due
to a smaller range of examples to learn from (Emeršič et al., 2017).

To reduce these effects during training, a validation set of data is
commonly used (Lever et al., 2016). These data, whilst still part of the
training process, are not used to update the parameters of the model.
Instead, they are used to see how the model is expected to perform on
unseen data. Ideally, the performance on the validation set should reflect
how themodel will perform on the test set. This consists of unseen data on
which the model is being designed to be applied (Russell and Norvig,
2010). During the training process, underfitting can be identified by a low
training accuracy. Overfitting can be identified by a higher training
accuracy than validation (Lever et al., 2016). Using this information,
underfitting can be reduced by increasing the model complexity, for
example by increasing the number of layers. Overfitting can be reduced by
using regularization (Russell and Norvig, 2010). Regularization
summarizes techniques in machine learning that discourage the
learning of a more complex model, with the aim to minimize the loss
function and to prevent overfitting. This will happen when a model is
trying to capture the noise in the training set, which will lead to a low
accuracy of prediction. Regularization will constrain some coefficient

FIGURE 1
Diagram showing the molecular order for different LC phases and the typical sequence of phases with decreasing temperature from left to right. Bold
arrows indicate the average molecular orientation, i.e., the director.
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estimates to zero, very similarly to smoothening a noisy curve. This will
discourage learning of an over-complex model.

A common regularization technique for ANNs is using dropout
layers between layers of neurons (Goodfellow et al., 2016). These work
by randomly ignoring the outputs from some neurons during training.
For example, a 0.5 dropout layer will ignore 50% of these outputs. The
aim of this is to make the model less specific to the training data by
increasing the difficulty of improving the training accuracy. Themodel
is then used without dropout layers on the validation and test data.

Another technique, specific to image recognition is image
augmentation (Lecun et al., 1998). An example of this is flipping
augmentation, where training images are randomly flipped before
being used. This artificially increases the number of different examples
seen by the model. Overall, the validation data is used to adjust
hyperparameters of the model. This includes the number and types of
layers in the model and howmuch dropout is used (Berrar et al., 2019).

In deep learning, a common technique is to holdout a randomly
selected portion of training data to be the validation data. Another
technique is k-fold cross validation (Russell and Norvig, 2010). These

methods are shown in Figure 2. In k-fold cross validation, several
datasets are created for a classification task, each with a different
choice of data for the validation set (Russell and Norvig, 2010). The
drawback of this technique is increased computational time, as using k
different datasets means that a model will be trained k times for every
configuration tested. However, with a single holdout set, the
assumption is that the randomly selected validation set will be
representative of the expected test data (Russell and Norvig, 2010).
This is less likely for small datasets (approximately thousands rather
than millions of data examples) and can result in the model’s
performance on the validation data poorly reflecting the
performance on the test data (Russell and Norvig, 2010).

2.3 Convolutional neural networks and
inception networks

Deep learning for computer vision uses convolutional neural
networks (CNNs). CNNs include a series of image processing

FIGURE 2
k-fold cross validation (left) and single holdout validation (right) are techniques to randomly select a portion of training data to be used as validation data.

FIGURE 3
Diagram of a CNNwith one convolution layer and an Inceptionmodel with one Inception block, each followed by a pooling layer and ANN. Feature map
outputs for each layer’s filters are shown as stacks.
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layers before an ANN, which act as feature extractors (Lecun et al.,
1998). This is shown in Figure 3. These include convolution layers and
pooling layers. Convolution layers pass filters over sections of the
layer’s input, to produce a feature map. Pooling layers often follow
convolution layers to summarize these feature maps and reduce the
computational requirements of the network (LeCun et al., 2015). For
the convolutional layers of a CNN, the filter values are the learnable
parameters during training. Overall, the validation data is used to
adjust hyperparameters of the model. Hyperparameters are the aspects
of the model that are chosen prior to training and include the number
and types of layers in the model and how much dropout is used.

These hyperparameter choices for convolution layers are the
number and size of filters that the layer applies to its input. Whilst
CNNs have layers in series, Inception models have convolution layers
in parallel (Szegedy et al., 2014). These have a different number of
filters and/or filter sizes each, as shown in Figure 3. For example, by
including parallel layers with different choices of filter size, the model
complexity can be increased. This also reduces the need to train
models with different values for these hyperparameters (number of
filters and filter size) for the convolution layers (Szegedy et al., 2014),
in order to find the most generalizable model. Inception models have
been shown to outperform series CNNs, however can be more
computationally intensive (Szegedy et al., 2014).

3 Methodology

Phase transitions were recorded from natural sample preparations
by polarized optical microscopy. POM was carried out with a Leica
OPTIPOL polarizing microscope, equipped with a Linkam hot stage
(LTSE350) with temperature controller (TP 94) and a UEye UI-
3360CP-C-HQ video camera. Image acquisition was at a resolution
of 2048 × 1088 pixels. Several different compounds were investigated,
5CB and 8CB (Gray et al., 1973) as achiral liquid crystals, and the
homologues series Dn (n = 5–8) (Dierking et al., 1994) and Mn (n = 5,
6, 7, 9, and 10) (Schacht et al., 1995) as the chiral materials. All
recorded videos had all of their frames extracted. These were then
sorted into their different phases. The resulting dataset of all textures
available for use had 43.423 textures obtained from 129 videos. These
were collected for the phases Iso: 3133, N: 8120, N*: 19664, SmA: 2506,
SmC: 5406, SmI: 1340, and SmF: 3254.

The final preprocessing step was to convert the extracted images
from PNG format to JPEG. This was done to reduce the storage
requirements of the images, with negligible loss in quality. Images were
resized to 256 × 256 pixels to reduce computational demands of the
models. Further, every image was converted to grayscale to allow the
models to focus on the textures rather than color, which does not affect
the LC phase. Google Colaboratory (For “Google Colaboratory” see,
2022), which offers 12 GB GPU RAM, was used to train all the models
in this project. By reducing their storage requirements, images could
be stored in memory. This allowed for faster model training times,
with all models taking less than 2 h. Models were created using the
Keras deep learning framework (For “Keras API” see, 2022).

For each targeted transition, the first step was to find the possible
test videos for the transition. Next, a dataset of the phases involved in
the transition needed to be made. Any images from the test videos
were removed from the dataset so that the test videos remained unseen
by the models. To create a balanced dataset, where all phases have a
similar number of examples, the phase with the larger number of

images had images removed. This is known as undersampling. One
can show that it is not convenient to simply randomly remove images
until the dataset is balanced. This allows for phases to be
overrepresented by textures from any single video. To avoid this,
images were removed from the most overrepresented videos for the
phase that needed reducing. For example, if the phase that needed
reducing had 1,000 images from one video and 30,000 from another,
1 in every 30 images from the overrepresented video would be kept in
the dataset. With the dataset created, it was then randomly split into
training and validation sets with an approximate 3:1 split, as is
common practice in machine learning (Russell and Norvig, 2010).
It was also made sure that images from the same video were not split
among training and validation sets, so that the validation set images
remained unseen.

With a dataset for the targeted transition created, deep learning
models were trained for the classification of the images. Due to the
number of hyperparameters that can be tuned in deep learning
models, we focused on the number of layers of the models, and use
of dropout and flipping augmentation (Dierking, Dominguez,
Harbon, and Heaton). Flipping was chosen as it was the only
augmentation technique, offered by Keras, which was compatible
with the OpenCV library (For “Open CV” see, 2022) used for
labelling test videos. Additionally, for all models trained, the
optimizer was chosen to be the default Adam-Optimizer (Kingma
et al., 2017), due to its efficient performance with little hyperparameter
tuning (Kingma et al., 2017). Finally, all models were trained for
40 iterations through the training data, known as epochs, as this was
enough for training to plateau or start overfitting.

All models were saved at their epoch of lowest validation loss. By
repeating training for each model, the average validation accuracy of
the saved models was calculated. The results of this optimization
study, varying layers, inception blocks, dropout and augmentation are
provided elsewhere (Dierking, Dominguez, Harbon, and Heaton).
Here, the model with the highest average validation accuracy was
selected to be applied to the test videos. This involved classifying the
test videos frame-by-frame with the chosen model. By relating the
known temperature range of a video and the constant heating or
cooling rate to the number of frames in the video, each frame could be
associated with its temperature. From this, graphs of phase prediction
probability were plotted against temperature. The crossover of phase
probabilities in these graphs indicated a detected transition and its
related phase transition temperature.

4 Results and discussion

4.1 Transitions between the isotropic and
nematic phases

At first, models for the binary classification between the Iso and N
textures were trained. As Iso-N transitions are visually simple to
identify, only series convolutional neural networks (CNN models)
were trained for this task. The dataset used for training models to
distinguish Iso and N textures consisted of 4,963 training images each
for Iso and N, and 1,720 validation images each for Iso and N. To
balance this dataset, 3,669 low brightness noise images were added to
the Iso training set and 602 to the validation set. This was also done to
avoid models misclassifying low brightness N textures, for example
homeotropic boundary condition nematic phases, for Iso.
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All models achieved an average validation accuracy above 90%.
This was to be expected due to the simplicity of the classification task.
The highest average accuracy model investigated was a CNNwith four
convolution layers and no regularization. This model achieved a
validation accuracy of 99.9%.

There were six videos available, of the 5CB and 8CB liquid crystals,
showing Iso-N transitions. The model chosen to be applied to these
test videos identified all Iso-N transitions accurately. Figure 4 shows a
typical test video result. From this graph, it was determined that the
Iso-N transition occurred at (35.6 ± 0.1)°C. The error was taken to be
the relative error of the hot stage used to heat the LC in the video. This
transition temperature was consistent with a visual inspection of the
video, as shown by the inclusion of frames from the video in Figure 4.

Figure 4 also demonstrates the use of this method for homeotropic
N textures, which are visually indistinct from Iso textures, hence their
name, pseudo-isotropic. Although the CNN cannot distinguish
between Iso and homeotropic N images, by using the information
that N had previously been predicted in the video, the algorithm was
able to overwrite subsequent Iso predictions with homeotropic N
predictions. This is suitable only for Iso-N transitions upon cooling,
from Iso to N, and assumes no re-entrant behavior. For the latter to be
predicted, one would need to label the training data accordingly.

4.2 Transitions between the isotropic and
cholesteric phases

The split of images used to train CNNmodels for classifying between
Iso andN* textures were 3308 training images and 1563 validation images
for each of the Iso and N* phase. 2939 low brightness noise images were
introduced into the isotropic training set and 1104 into the isotropic
validation set, for the same reasons as explained above.

The same experimentation with series CNN models was done as
with Iso-N classification in Section 4.1. Similarly, all models achieved a
validation accuracy close to 100%. A model with three convolution
layers, 0.5 dropout and flipping augmentation achieved 100%
validation accuracy on all three repeats of training and was chosen
to be used on the test videos. There were fifteen test videos showing

Iso-N* transitions, including the D5 to D8 and M6 to M10 LCs.
Overall, all test videos had their Iso-N* transition labelled consistently
with visual inspection. Figure 5 depicts an example of a typical result
with the transition temperature determined to (136.3 ± 0.1)°C.

The machine learning identified Iso-N* transition of compound
D6 very well reproduces the experimentally determined temperature
of 135.6°C (Dierking et al., 1994).

4.3 Transitions between the nematic and
smectic a phases

As outlined above, the k-fold cross validation method can be more
reproducible when using small datasets for classification tasks. Table 1
shows the training and validation splits for the five cross-validation
datasets made for classifying between N and SmA textures.

Inception models are of higher capacity than CNNs and thus
potentially more accurate for classifying between these phases, which
can indeed look rather similar. Therefore, inception models were used
here, also to demonstrate the variety of convolutional networks that may
be used for the above datasets. Inception models with one and two
inception blocks were trained for this task, with different regularization.
Table 2 shows the average results of the models with the highest average
validation accuracy for each of the five datasets. These models were
chosen to be applied to the test transition videos. Errors given in these
results come fromhalf the range of results from three training repeats. Sets
one, three and five achieved a lower accuracy than two and four. This
shows how, when using deep learning techniques with a limited dataset,
the specific choice of which images are in the training and validation sets
can affectmodel performance. This is because the dataset does not contain
a wide variety of the different textures that can be seen.

There were five test videos for the N-SmA transition of 8CB. After
applying the chosen models from each cross-validation set to the test
videos, it was found that the set one and two models were unable to
identify any transitions in the videos. Themodels from sets three, four and
five accurately identified all test video transitions. When looking at the
validation set textures for themodels whichwere inaccurate on test videos,
it was observed that most of the SmA textures were focal conics. These are

FIGURE 4
Graph of phase prediction probability against temperature for a labelled I-N transition test video. The vertical dashed line shows the identified transition
temperature.
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visually distinct from the type of SmA textures in the test set videos. This
further indicates the need to create a dataset with a wide variety of textures
to train models which can generalize to many possible phase textures.

Figure 6 shows a typical test video result, using themodel trained on set
four. From the graph, the transition was determined to be at (33.4 ± 0.1)°C.
The uncertainty was taken to be the approximate width of the region
around which the phase prediction probabilities cross. This was considered
to be consistent with the literature value of the N-SmA transition for the
8CB LC, 33.6°C (Struth et al., 2011), assuming an absolute temperature
error of ±2°C due to different hot stages employed and other effects, such as
rate of heating, causing a variation in transition temperaturemeasurements.

4.4 Transitions between the cholesteric and
fluid smectic phases

For this classification task, there were six test videos showing examples of
N*-fluid smectic transitions, specificallyN*-SmC*. Thedataset created for this
task consisted of 4,226 training and 3,138 validation images for N*, and

3,854 training and 3,010 validation images for the fluid smectic phases. The
fluid smectic textures were made up of SmA and SmC textures, with
approximately an equal number of each in the training and validation
sets. In making this dataset balanced, N* images had to be undersampled
from approximately 18,000 to approximately 7,000, following the procedure
as explained above.

The same type of analysis as for the achiral N-SmA transition in the
previous section via Inception models was performed for this classification
task. As expected, the results were similar, and the same model with two
Inception blocks and two 0.9 dropout layers was chosen to be applied to the
test videos. This model achieved 99.6% validation accuracy. Overall, all six
test video transitions were accurately labelled, and Figure 7 shows a typical
example of the chosen model’s labelling of the test videos.

From Figure 7, the transition temperature was identified at (128.5 ±
0.1)°C, using the relative error of the hot stage. The literature value of the
transition for this LC, M5, is 128.9°C (Schacht et al., 1995). The transition
temperature is thus very well reproduced and any differences in absolute
temperature values can easily be accounted for through the use of different
hot stages in both investigations.

4.5 Transitions between the smectic A* and
smectic C* phases

So far we have demonstrated the viability of machine learning to
identify first order, discontinuous phase transitions. Here, we assess if
it is also possible to characterize and classify a second order transition,
namely the SmA* to SmC* transition. The training and validation split
of images used is 1,088 training, 438 validation images for SmA* and
1,111 training and 422 validation images for SmC*. In creating this

FIGURE 5
Graph of phase prediction probability against temperature for a labelled Iso-N* transition test video. The vertical dashed line shows the identified
transition temperature.

TABLE 1 Number of training (T) and validation (V) images in the N-SmA datasets.

Cross-validation sets

One Two Three Four Five

T V T V T V T V T V

N 1214 567 1222 559 1226 555 1208 573 1192 623

SmA 1214 567 1222 559 1226 555 1208 573 1192 623

TABLE 2 Results for the highest validation accuracy models trained on each set of data.

Cross-validation sets

One Two Three Four Five

Inception Blocks 2 2 2 2 2

Regularization 0.9 dropout and flipping 2 × 0.5 dropout 0.9 dropout 2 × 0.9 dropout 2 × 0.9 dropout

Validation accuracy (%) 76.1 ± 13.4 99.2 ± 1.1 72.5 ± 22.8 99.7 ± 0.5 74.7 ± 4.1
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dataset, SmA* images needed to be undersampled, reducing the
number of SmA* images from 2,383 to 1,526.

Due to the similarity in textures at a continuous transition,
inception models were used for this classification. Most models
tried, achieved an average validation accuracy close to 100%. Of
these models, the one with a 0.5 dropout layer, a single Inception
block and flipping augmentation had the highest average validation
accuracy of 99.3% and was chosen to be applied to the test videos.

The result of applying the chosen model to the five possible SmA*-
SmC* test videos was that only one transition was correctly identified. The
graph and video screenshots for this video are shown in Figure 8. Taking
the region of crossover between the phase prediction probabilities as the
relative error, the transition was detected at (127.2 ± 0.4)°C. This was
consistent with the literature value of 125.6°C for D8 (Dierking et al.,
1994), again assuming an approximately ±2°C error in absolute
temperature due to employing different hot stages. The value for the
transition temperature was also consistent with visual inspection of the
video. For the other test videos no transition was detected by machine
learning algorithms. However, it should be noted that the transitions in
these videos were visually much more subtle so these may have been too
difficult for the model to distinguish, given the relatively small amount of

training data. Overall, the model accurately identified a characteristic
example of a SmA*-SmC* transition, however the inability to identify
more subtle SmA*-SmC* texture change appearances implies that for
continuous transitions much larger sets of training data need to be
collected and most likely higher capacity machine learning algorithms
need to be employed to found a more solid basis for the classification of
second order transitions. Nevertheless, our investigation demonstrates
proof of principle that this is indeed possible.

4.6 Transitions between the fluid smectic and
hexatic phases

For this classification task, there were fourteen test videos
showing examples of fluid smectic-hexatic transitions. As images
from test videos cannot be used in training or validation, creating a
single dataset with all fourteen videos in the test set was not
possible. Therefore, two datasets were made for this
classification task, with seven test videos held out for one
dataset and the other seven held out for the other. This left
enough images available for training and validation. The first

FIGURE 6
Graph of phase prediction probability against temperature for a labelled N-SmA transition test video. The vertical dashed line shows the identified
transition temperature.

FIGURE 7
Graph of phase prediction probability against temperature for a labelled N*-SmC* transition test video. The vertical dashed line shows the identified
transition temperature.
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and second dataset created for classifying between the fluid smectic
and hexatic phases are shown in Table 3.

Two different Inception model architectures were used for the
classification, a model with one and another with two inception
blocks. The latter constellation generally provided a higher accuracy.
We also varied the regularization use, from applying no regularization,
which led to overfitting, especially for the single block inception model.
The use of two 0.99 dropout layers on the other hand led to underfitting.
The highest average accuracy was achieved for a model with two
Inception blocks and two 0.5 dropout layers, which was chosen for
application to the test videos, and which achieved a validation accuracy of
91.7%. Similar results were achieved with the second dataset.

Overall, when applying the selected trained model to the test
videos, one out of the thirteen was labelled accurately. This case is
shown in Figure 9 and one can already see from the curves that the
predictions are by far not as accurate as in the cases shown before,
where the probabilities where basically either 0 or 1 with a precise
changeover at the transition, while here the phase prediction
probabilities change from 10% to 70% or vice versa, from 90% to 30%.

From Figure 9, showing the accurately identified fluid smectic-hexatic
transition test video, the transition was identified at (89.2 ± 0.4)°C, with the
relative error taken as the approximate width of the overlap region between
the phase prediction probabilities. This was consistent with visual inspection
of the video and the literature value of the transition forD6, 90.5°C (Dierking
et al., 1994), when accounting for factorswhich affect transition temperatures
by a few degrees (different hot stages, cooling rate etc.). We note that
although a large change in prediction probability is observed at the transition
from fluid to hexatic smectic, an increasing order of the liquid crystal phase
leads to a larger uncertainty in phase prediction. This is due to the fact that
with increasing order when lowering the temperature, the actual changes in
texture at transitions become more and more subtle, and phases are

becoming less and less distinguishable by their textures. This is a further
indication for the need to use more and larger training sets, as well as higher
capacity models for prediction. The smaller the differences in the images
which need to be categorized themore examples are needed for training and
the more complex the employed models need to be.

More insight into the model’s performance can be gained by
analyzing the inaccurately labelled test videos. With nine of the
thirteen test videos, although inaccurately labelled, the model
showed a sign of textural change indicated by a noticeable
probability change at the transition. Figure 10 shows an example of
one of these test videos. The fluid smectic-hexatic transition in this
video occurred where the small probability change is seen in the graph,
at approximately 91.2°C. A transition was then incorrectly identified at
97.0°C ± 2.0°C, because the helical structure of the fluid smectic phase
changes considerably at the latter temperature, due to an unwinding
which is interpreted by the algorithm as a phase change. It should be
noted that this is specific to chiral phases, because in the achiral
analogy of this transition no helical superstructures would be involved
at all. The latter scenarios should be considerably easier to be classified.

The performance of the model on the video in Figure 10 can be
explained using the included video frames. These show that the
change of texture at the transition was more subtle than the change
seen as the helical structure changes in the SmC* phase. A large
proportion of the fluid smectic dataset contained textures with this
helical characteristic. Therefore, the trained model recognizes the
pattern changes as a phase transition, because it is the most obvious
textural difference between the fluid smectic and hexatic phases. In
an attempt to train a model which could correctly identify the
subtle change that occurs at the transition, all textures with the
helical pattern were removed from the dataset. However, using this
dataset, models never achieved significantly above 50% validation

FIGURE 8
Graph of phase prediction probability against temperature for a labelled SmA*-SmC* transition test video. The vertical dashed line shows the identified
transition temperature.

TABLE 3 Number of training and validation images in the fluid smectic-hexatic datasets.

Phase Set one Set Two

Training images Validation images Training images Validation images

SmA* 2777 2141 2777 1887

SmC* 2521 1748 2521 1672
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accuracy. This was due to too few training sets for learning the
subtle differences in the textures. To improve a model’s
generalizability for this transition, more images should be
collected, with a priority for obtaining textures that occur just
after the transition, without the helix variation.

4.7 Transitions between the smectic I* and
smectic F* phases

The final transition targeted in our investigation was that between
the two chiral hexatic phases, SmI* and SmF*. Again, the dataset was
split into two, one with five test videos left out (set 1), and one with
four test videos left out (set 2). These are shown in Table 4.

The initial employment of inception models only achieved
approximately 50% validation accuracy, which implies that the
classification was basically random guesses. This was likely due to

the small number of images available. Series CNNs were also trained to
see if lower capacity algorithms could reach a better accuracy.
Unfortunately, the models trained did not return a validation
accuracy larger than 50% for dataset 1. However, with set 2, a
model with four CNN layers, flipping augmentation and
0.5 dropout, achieved an 78.5% average validation accuracy, and
was chosen to be applied to the test videos for set 2 of the dataset.

For set 1 of the datasets, all transitions in the five videos were
missed while for the model chosen from set 2, three of the four test
videos had their transitions missed. For the other test video, the results
are shown in Figure 11. This transition was found to be at (81.7 ± 0.5)°

C. The relative error on this measurement was taken to be the
approximate width of the region around which the phase
prediction probabilities crossed. Again, this was determined to be
consistent with the literature value for D8, of 83.7°C (Dierking et al.,
1994). It was also consistent with visual inspection of the video, as
indicated by the frames included in Figure 11. Nevertheless, the phase

FIGURE 9
Graph of phase prediction probability against temperature for a labelled chiral fluid to hexatic (SmC*-SmI*) transition test video. The vertical dashed line
shows the identified transition temperature. The figure shows the accurately labelled test video (in contrast to the incorrectly labelled ones further below in
Figure 10).

FIGURE 10
Graph of phase prediction probability against temperature for a labelled chiral fluid smectic- hexatic (SmC*-SmI*) transition test video. The vertical
dashed line shows the incorrectly identified transition temperature, due to changes in the helical superstructure, while the arrow indicates the real transition.
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prediction probabilities are again clearly different from 0 to 1, due to
the uncertainties in the prediction.

Overall, a generalizable model for identifying transitions between
SmI* and SmF* phases was not achieved, most likely due to the rather
limited dataset. Although further analysis with varying choices of
training and validation sets as well as model architecture could be
done, the collection of more data would be the most effective way of
achieving such a generalized model, due to the subtlety of the
transition and the variety of textures possible. Nevertheless, the
accurately identified SmI*-SmF* transition provides proof-of-
principle for the possibility of deep learning to identify this transition.

5 Conclusion

The results of this investigation show that deep learning models
are capable to be trained for the identification of liquid crystal phase
transitions from video recordings of experimental polarizing optical
microscopy. It was clearly demonstrated that simple transitions of
achiral as well as chiral systems, such as I-N, I-N*, N-SmA and N*-
SmC* transitions, could accurately be identified in all unseen test
videos via deep learning. Phase transition temperatures can accurately
be identified, provided a suitable temperature calibration is done for
the investigated movies. When targeting more subtle LC transitions,
such as the 2nd order transition SmA*-SmC*, the fluid smectic-hexatic
(SmC*-SmI*), and the inter hexatic SmI*-SmF* transition, proof-of-
concept examples of accurately labelled transitions were
demonstrated. Explanations for any inaccurately identified
transitions, such as the variation of a helical superstructure in fluid
smectic C* textures, were provided. These would be eliminated if only

achiral materials were studied. Generalizable models capable of
accurately identifying a wider range of these transitions was
beyond the scope of this study due to the limited variety of texture
examples available. Yet, without the limitations of datasets and
computing power, there is no principal reason why one could not
automate the identification of phase sequences of novel compounds by
deep learning with suitable neural network algorithms of sufficient
capacity.
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TABLE 4 Number of training and validation images for the SmI*-SmF* datasets.

Phase Set One Set Two

Training images Validation images Training images Validation images

SmI* 624 436 631 398

SmF* 630 339 615 448

FIGURE 11
Graph of phase prediction probability against temperature for a labelled SmI*-SmF* transition test video. The vertical dashed line shows the identified
transition temperature.
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