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Abstract 
 

Different convolutional neural network (CNN) and inception network architectures were trained for 

the classification of isotropic, nematic, cholesteric and smectic liquid crystal phase textures to test 

the prediction accuracy for each one of these models. Varying the number of layers and inception 

blocks, as well as the regularization, and application to different phase transitions and classification 

tasks, it is shown that in general the architecture of an inception network with two blocks leads to 

the best classification results. Regularization, such as image flipping, and dropout layers additionally 

somewhat increases the classification accuracy. Even for simple tasks like the isotropic-nematic 

transition, which is of importance for applications in the automatic readout of sensors, convolutional 

neural networks need more than one layer. Care must be taken to not apply architectures of too large 

complexity, as this will again reduce the classification accuracy due to overfitting. Architecture 

complexity needs to be adjusted to the given classification task.      
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1. Introduction 

 
1.1 Background and Motivation 

Liquid crystals (LCs) are fluids with partial order, thermodynamically located between that of the 

isotropic and the crystalline phases [1,2]. Whilst perfect crystals have full three‐dimensional order 

and isotropic fluids have none, LC phases have orientational order and sometimes one‐, two‐ or three‐

dimensional positional order. Thermotropic liquid crystal phases can be categorized into several 

different classes. The phase with the lowest order and highest symmetry is the nematic, N, phase, 

which solely exhibits orientational order of the long molecular axis along a preferred direction called 

the director. This phase often shows characteristic topological defects in the form of two or four 

brushes, called the Schlieren texture [3], which makes it easy to be identified via machine learning. If 

the nematic phase is chiral, either by inherent chirality due to chiral elements within the molecular 

structure or through the addition of a chiral dopant, one speaks of the cholesteric, N*, phase. This 

exhibits a helical superstructure of the director and gives rise to characteristic oily-streaks defects, 

which are also easily observed in polarized microscopy [3].  

Next on cooling, one can observe phases with one-dimensional positional order, thus the formation 

of smectic layers, the so-called fluid smectic phases, SmA or SmC, depending on whether the director 

is parallel or tilted to the smectic layer normal, respectively. Both phases often show fan-shaped 

textures (SmA) or broken fan-shaped textures (SmC) [3]. Also these phases may be chiral with the 

SmC* phase exhibiting ferroelectric properties and a helical superstructure often visible as a pattern 

of equidistant lines. Once short range in-plane order is additionally introduced within the smectic 

layers, we speak of the hexatic phases for the orthogonal phase (SmB) and different tilt direction with 

respect to the local hexatic order (SmI, SmF), respectively. Hexatic phases also often show fan-shaped 

textures. Again, these phases can be chiral, yet a helical superstructure is only seldomly observed and 

is often only partial. Smectic phases with three-dimensional positional order are also known as soft 

crystal phases. These often exhibit mosaic textures but are usually only very hard to tell apart [3].   

To characterize the diversity of liquid crystalline phases with varying degrees of order, several 

experimental techniques are employed [4]. At first, there is differential scanning calorimetry (DSC) 

which provides information about transition temperatures, widths of different liquid crystalline 

phases and the order of phase transitions between different phases, as well as the transition 

enthalpies. For example, transitions between the isotropic and the LC phases are normally of first 

order, related to relatively large changes in structure and transition enthalpies, ΔH, in the order of 

several kJ mol-1. Transitions between fluid smectic phases, for example SmA-SmC, are generally of 

second order with a vanishing transition enthalpy. DSC will not be able to allow a prediction of the 

nature of a corresponding phase.  

A second method to characterize the phase behavior of liquid crystals is polarized optical microscopy 

(POM), where a thin sample of the liquid crystal is prepared between untreated glass plates and 

placed in a hot stage between two crossed polarisers of a microscope. This will produce images of 

characteristic textures which can, by means of guessing, experience and comparison, be related to 
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the observed liquid crystal phase [3]. This method can yield the phase transition temperatures and 

provide a good guess of the observed phase, yet it does not represent proof of a particular molecular 

arrangement.  

A third experimental method, which can in fact lead to the characterization of liquid crystalline order 

is temperature-controlled X-ray diffraction on oriented samples [4]. It nevertheless should be pointed 

out, that this methodology is often quite hard to perform and time consuming. It would thus be 

worthwhile to have a further method at disposal which goes beyond the qualified guesses of POM 

while being more straight forward than X-ray diffraction. This is where we suggest that machine 

learning may come in helpful as a method based on POM, yet possibly combining the experience of a 

whole community of researchers in identifying different phases automatically.   

Currently, POM and DSC can be utilized together. POM provides phase and transition temperature 

information via textures and DSC provides further transition information. We propose to follow on 

from the work done by Sigaki et al. [5,6], who used machine learning to accurately identify the 

isotropic and nematic phases from their textures. A machine learning model capable of running with 

accessible computational power, which can identify LC phases and transitions, would be useful 

alongside the currently leading techniques. This model would provide benefits over POM in that it 

would not require extensive LC experience and benefits over DSC in that it would be able to provide 

information about the phase, as well as the transition temperature. 

In the last years, machine learning has found its ways into the design, synthesis and characterization 

of molecules and materials, and thus also into the prediction of applicational aspects of material 

science [7,8]. With soft condensed matter being on the rise in materials science this trend has 

obviously not stopped short for the design and property prediction of soft materials [9] of which liquid 

crystals are an integral part. It is therefore not surprising that first publications of machine learning in 

liquid crystals have been published very recently, although the field is still in its infancy. Most of these 

publications are concerned with the prediction of properties such as phases and phase transition 

temperatures of liquid crystals [5,6,10,11]. A focus has so far been the isotropic to nematic transition 

of thermotropics, using both simulated as well as experimental data. But also polydisperse systems 

[12] as well as lyotropic liquid crystals [13] have been investigated. A lot of the work so far has been 

related to nematic topological defects in one way or the other, which may be formed in the presence 

of planar boundary conditions in the form of the above mentioned Schlieren textures. Classifications 

of these defects have been carried out on simulated data [14] as well as on experimental textures 

[15]. A particularly interesting investigation was carried out in the study of hydrodynamics of active 

nematics [16], which display such topological defects. Other work has used machine learning in the 

detection and tracking of circular inclusions (islands, droplets, bubbles) in free-standing smectic films 

[17] which then allows an investigation of convection properties.  

All such machine learning studies are of course relevant for the application of liquid crystals in a range 

of different devices. The identification of Blue Phases [18,19] can for instance enable novel mixtures 

for BP displays. A further field is the exploitation of liquid crystals in chemical and biological sensors 

[20]. In principle, these all use the transition from homeotropic to planar orientation, thus a director 

field reorientation from a uniformly black to a bright state, again with the exhibition of topological 

defects, which allows the automatic readout via machine learning [21]. This has also been 



5 
 

demonstrated for gas sensors [22,23], SARS-CoV-2 by use of a viral induced texture transition [24], or 

in the detection of endotoxins from different bacterial species [25]. At last, machine learning has also 

been employed in medicine, via automatic thermography examination for breast cancer using the 

selective reflection of cholesteric liquid crystals [26]. A rather different application of machine 

learning in relation to liquid crystals can be found in industrial quality control during the production 

of TFT-LCD substrates [27-29]. 

In our investigations we would like to take the analysis of liquid crystal phases to a level beyond the 

isotropic/pseudo-isotropic to nematic transition by using machine learning algorithms on different 

transitions, whole phase sequences and to characterize transition temperatures [30,31]. Here, we will 

test different machine learning architectures, varying algorithms from convolutional networks to 

inception networks, changing the number of layers and inception blocks, as well as varying the 

regularization employed and discuss which will be more suitable to different classification tasks.       

 

2. Theory 

 
2.1 Machine Learning 
2.1.1 Supervised Machine Learning and Deep Learning 

In supervised machine learning there is a set of data, known as training data, for which the expected 

output, or label, is known [32]. Using this, supervised learning aims to learn the mapping from the 

inputs to the known outputs [33]. This is known as training a model. An example of this is linear 

regression. 𝑥 coordinates and their corresponding 𝑦 coordinates are known and a mapping, or linear 

fit, is learned. This can then map new 𝑥  coordinates to their predicted 𝑦  values. Within machine 

learning, deep learning is the current leading technique, being held largely responsible for the rapid 

advances in machine learning [33]. 

Artificial neural networks (ANNs) are an example of deep learning. These consist of layers of ’neurons’. 

The connection of many neurons, which perform different computations, allows for the ANN to model 

a complex function [34]. The complexity of this function is increased by increasing the number of 

neurons and or layers in the network [32]. Training an ANN follows the form: forward propagation, 

backward propagation, weight updates and repetition. For each neuron, 𝑖, in the layer 𝑙 of an ANN, 

there are associated weights, 𝒘[𝑙] [34]. In forward propagation, the ANN is presented with one or 

more data examples, represented by a feature vector, 𝒙. For images, 𝒙 could be the pixel values 

flattened from a matrix to a column vector. With the input, each neuron, 𝑖, computes to 

∑ 𝒘𝑖,𝑘
[𝑙]𝑛

𝑘=1 + 𝒘𝑖,0
[𝑙]

      ( 1 ) 

[32]. A non-linear function is then applied to this value. A common choice is the rectified-linear-unit 

(ReLU) function, which is zero for arguments below zero and linear for those above zero. The outputs 

of neurons in one layer are the input to each neuron in the next layer. This continues until the last 

output layer is reached. Each neuron in this layer computes an output, or prediction, 𝑦𝑝𝑟𝑒𝑑,𝑖. With the 
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output of the network, the loss is calculated. For classification problems, a commonly used loss 

function is the categorical cross-entropy loss, which is 

𝐿 =  − ∑ 𝑦𝑖 log 𝑦𝑝𝑟𝑒𝑑,𝑖
𝑁
𝑖=1      ( 2 ) 

[32] for a single example input. Here, 𝑦𝑖  is the expected output and the sum is over each output 

neuron of the network, 𝑁, the number of prediction classes. For an output layer with three neurons, 

an output could be [𝑦𝑝𝑟𝑒𝑑,1, 𝑦𝑝𝑟𝑒𝑑,2, 𝑦𝑝𝑟𝑒𝑑,3] = [0.2, 0.1, 0.7] . An example of an expected output 

could be [𝑦1, 𝑦2, 𝑦3] = [0, 0, 1] , representing the third class in this three-class classifier. The 

backpropagation algorithm then uses this loss to update the weights via a gradient-based 

optimization algorithm, such as gradient descent, 

𝒘[𝑙] ≔ 𝒘[𝑙] − 𝛼
𝜕𝐿

𝜕𝒘[𝑙]      ( 3 ) 

[34], where 𝛼  is a predefined learning rate. The Adam algorithm is a commonly used variant of 

gradient descent, changing the learning rate during training, which has been shown to reach 

convergence sooner than standard gradient descent [35]. The entire process is repeated until the loss, 

which is inversely related to accuracy, is lowered to convergence. 

2.1.2 Bias-Variance Tradeoff and Generalizability 

When applying deep learning to a dataset it is common practice to have a training set and test set. 

The methodology is that a model is trained using the training set examples and then applied to the 

test data to evaluate if the model generalizes to unseen data [33]. 

One problem faced in the training of a model is the bias‐variance tradeoff, also known as under or 

overfitting. A model can overfit to the training data, meaning it has high variance and low bias. This is 

seen by a high training accuracy and a lower test accuracy [32]. Figure 1 shows an example of this, 

where a model has learned to recognize the noise in training data. This will not generalize sufficiently 

well to unseen data. Alternatively, if the training accuracy is lower than desired, the model is said to 

underfit the training data - low variance, high bias [33]. The ideal model will achieve a test accuracy 

as high as possible, depending on the difficulty of the task. 

 

Figure 1: (a) Effects of under and overfitting and (b) how loss can indicate this. In (a), using a linear function 
(grey) to fit a quadratic data functionality (solid black) would indicate underfitting, while using a higher polygon 



7 
 

(dashed black) would imply overfitting. This illustrates that in machine learning it is important to adjust the 
complexity of the architecture to the classification task. Figure edited from [36]. 

A validation set of data is often used during training. This is a small portion of the training data which 

is held-out and not used for updating weights. For every epoch, which is an iteration through all the 

training data, the accuracy on the validation set is computed. Monitoring this accuracy can identify 

when the model is overfitting training data, as the validation accuracy will be lower than the training 

accuracy. Using this information, hyperparameters of the model, such as number of layers, can be 

changed [33]. 

 

2.2 Convolutional and Inception Networks 

Figure 2(a) shows the general architecture of a convolutional neural network (CNN). CNNs are a type 

of ANN which perform better for image classification problems. They include convolutional and 

subsampling layers, before the output is flattened into a vector and passed through an ANN [37]. 

Convolutional layers have filters of a certain size and perform convolutions over the entire area of the 

input. Rather than having weights to update, convolutional layers update the parameters in the filters 

[32]. 

Subsampling, or pooling layers look at a certain sized area of the input and then output the maximum 

value in that area [32]. They thus down sample the feature maps by summarizing the features in 

patches of the feature map. There are no trainable parameters in pooling layers, so they help to 

reduce the computational cost of a CNN and also reduce the problem of overfitting. 

 

Figure 2: Summary of the general architecture of (a) a convolutional neural network and (b) an inception 
network. 

In 2014, researchers at Google designed GoogLeNet, an Inception network, which achieved the 

highest accuracy in the 2014 ImageNet image classification competition [38]. Inception networks 
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replace the convolutional layers in CNNs with Inception modules, as shown in Figure 2(b). The 

Inception module utilizes layers with different properties, such as filter size, or type, in parallel. One 

benefit of this is that it removes the need to guess what layer should be used [38]. Instead, by having 

different layers in parallel, the network can learn which layer is best suited, through the training 

process. Having different layers in parallel is computationally very expensive, so to mitigate this, 1 × 1 

convolution layers are often used to reduce the number of computations performed [38]. 

 

3. Collection and Preparation of Texture Images 
 

Before the implementation of a supervised deep learning model, POM texture images, grouped by 

phase, and transition videos needed to be collected. The complete dataset obtained consists of 11773 

textures of different phases. In particular, these were 1981 isotropic, 2813 nematic, 2132 cholesteric 

(chiral nematic), 1284 SmA, 1448 SmC, 396 SmI, 270 SmF images, as well as 945 images of an 

unidentified soft crystal phase and 504 images of the crystalline phase.  The images used were 

obtained from POM phase transition videos of the 5CB, 8CB, D5 to D9 [39] and M6 to M10 [40] liquid 

crystals. 

To get images from the videos, the open-source VLC media player [41] was used to extract the frames 

from the videos. Frames were captured every five to twenty frames depending on how fast changes 

occurred in the video. Having many, almost identical, images would take up more storage space and 

have little benefit for a deep learning model. The images obtained from these videos had a resolution 

of 2048 × 1088. As this was a large resolution, the images were then split into six 682 × 544 images, 

increasing the total number of different images in the dataset to that mentioned above. This 

resolution still allowed key features of the textures to be identified. Figure 3 shows a summary of the 

image preprocessing applied for convolutional neural networks and inception networks. 

 

Figure 3: Diagrams of all the images pre-processing steps performed on an example nematic texture before use 
in a deep learning model. 
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The videos, from which the images were extracted had known phases, phase transition temperatures 

and temperature ranges so that the phase of the images could be identified. Images of the liquid 

crystals D5 to D8 and M6 to M10 were grouped using transition temperature information from POM 

and literature [39,40]. Images from the 5CB and 8CB LCs were identified by POM as they exhibited 

visually distinct isotropic, nematic and smectic phases. All images of a single phase were grouped in 

the same folder and stored. 

The Keras deep learning framework [42] in Python was used to implement deep learning models. In 

all these models, real-time preprocessing was done via Keras. Images were converted to grayscale. 

This was done because texture, rather than color, determines the phase and because computational 

time can be saved. Images were further resized to 256 × 256 to obtain square images of dimensions 

that are powers of two. Both of these scalings are common practices with CNNs [32]. Further, this 

image size was small enough to reduce the computation time for working with standard personal 

computers, without obscuring texture details. Finally, the image’s grayscales were rescaled by 1/255, 

so that pixel values were between 0 and 1, a requirement for CNNs to work correctly [32]. 

 

4. Data Selection and Training Image Classification Models 

 
4.1 Isotropic, Nematic, Cholesteric and Smectic Phase Classification 
4.1.1 Method 

The first attempt at applying machine learning to LC phase transitions was performed for phase 

transitions involving the isotropic, nematic, cholesteric or smectic phases, as these are the easiest to 

distinguish visually. To achieve this, an isotropic, nematic, cholesteric and smectic image classifier 

needed to be trained. 

Before training a model, it was necessary to create training and validation image sets and a test set 

of phase transition videos. The videos selected for the test set were those of the 8CB and the liquid 

crystal M6, as these involved a variety of different transitions between the phases. To avoid data 

leakage, where a model has effectively ’seen’ the answer before, any images extracted from these 

videos were not included in the training or validation sets. Images from a single video were not split 

between training and validation, again to avoid data leakage. Further, the sets were balanced, with a 

roughly equal number of images of each phase, by deleting similar images from over-represented 

phases. This was to avoid bias towards predicting one phase. 

A training and validation dataset was made which consisted of 1446 training  / 259 validation images 

for the isotropic phase, 1367 / 392 for nematic, 1547 / 352 for cholesteric and 1499 / 543 training vs 

validation images for the smectic phases. The training‐ validation split was also approximately 15% 

validation images and the above mentioned precautions for avoiding data leakage were followed. 

Using this dataset, CNNs and Inception networks of varying layers were trained for three repeats in 

order to find the model architecture with the highest validation accuracy. Each model was trained 

using a default Adam optimizer and categorical‐cross entropy loss function. Training was done using 

a Google Colaboratory [43] GPU, allowing for quicker training times as compared to a standard CPU. 
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4.1.2 Results 

For this classification problem, the training and validation accuracy and loss were computed after 

each training epoch and plotted, as shown in Figure 4(a) for the convolutional network. One can 

observe a lot of fluctuation in the validation accuracy and loss. This is possibly due to the relatively 

small size of the validation set, where a change in prediction for a small number of images can have 

a larger effect on the accuracy and loss. Overall, this shows that the validation accuracy reached its 

maximum value at epoch 78 with a value of 69.8%. However, the validation loss is seen to increase. 

This is usually a sign of overfitting to the training images, also shown by the training accuracy being 

much higher than the validation accuracy. Figure 4(a) also shows the confusion matrix for this trained 

model for the validation set images. In the ideal case the model exhibits 1 for every entry in the 

diagonal, indicating that each image was predicted correctly. From Figure 4(a) it can be seen that this 

model mislabeled 75.15% of the validation smectic phases as nematic, indicating that it had not 

learned to distinguish the two. 
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Figure 4: Training (red) and validation (blue) accuracy and loss as a function of training epochs for (a) 
convolutional neural network and (b) an inception network of a complex classification task involving isotropic, 
nematic, cholesteric and smectic textures. Corresponding confusion matrices are also provided which indicate 
that the CNN architecture does not distinguish between cholesteric and smectic and mislabels these textures. 
The inception model on the other hand provides excellent results with an average classification accuracy in 
excess of 94%. 

From attempts to increase the number of layers it can be seen that, for CNN models, increasing the 

number of layers increased the validation accuracy (see also below). Overall, Inception networks 

achieved a higher accuracy, as is also depicted in figure 4(b) where the highest validation accuracy, of 

95.9% was achieved. With a training time per epoch of 90 s, the total training time was approximately 

1.5 hours. The model also showed less overfitting to the training data than most models. This can be 

seen in Figure 4(b), as its loss is mostly decreasing. The confusion matrix for the inception model 

shows that all phases were correctly predicted from textures, with a high accuracy achieved. Overall, 

the inception model showed a more accurate performance on the unseen validation images than the 

convolutional neural networks. 

 

4.2 Fluid Smectic and Hexatic Phase Classification 
4.2.1 Method 

For creating a classifier to identify transitions between fluid smectic and hexatic phases, the first step 

was again to create an image classifier. Due to its high accuracy on the previous task, the Inception 

model architecture was used. The output had to be change from a four‐class to binary output. 

Because of the small number of fluid smectic and hexatic images, relative to other phases, a dataset 

containing only fluid smectic and hexatic images was created. This was to avoid having to 

distinguishing among many phases, including fluid smectic and hexatic. The training set consisted of 

777 fluid smectic textures and 516 hexatic textures. The validation set consisted of 114 and 102 fluid 

smectic and hexatic textures, respectively. Fluid smectic images were comprised of a roughly equal 

number of SmA and SmC images, whereas the hexatic images were comprised of SmF and SmI images 
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with an approximate ratio of 2 : 3. The same methods to avoid data leakage as outlined above were 

followed. Only two test videos were chosen, of the D7 and D8 liquid crystals, to avoid further limiting 

the number of images available for the training and validation sets. 

4.2.2 Results 

Figure 5 shows the accuracy and loss curves for the inception model applied to this classification 

problem. At epoch 46, the highest validation accuracy of 98.2%, was achieved. After this epoch, the 

loss starts to increase, indicating that overfitting was starting to occur. From the confusion matrix for 

the trained model, it can be seen that predictions of unseen images for each class were highly 

accurate. 

 

Figure 5: Training (red) and validation (blue) accuracy and loss as a function of epochs for the 
classification task to distinguish between fluid smectic and hexatic smectic phases via an inception 
model. The confusion matrix indicates a high classification accuracy of approximately 97%. 

 

5. Architecture Dependent Results and Discussion 

After having discussed the epoch dependent development of the training and validation accuracy and 

loss for the convolutional neural network and the inception architecture for the examples of multi-

phase and binary classifiers, we can now shift our interest towards variations of CNN layer numbers, 

inception blocks and regularization for fine-tuning architectures to achieve maximum prediction 

accuracies for several different classification tasks involving binary classifiers. 

 

5.1 Isotropic – Nematic/Cholesteric Classification 

One of the easiest classification tasks is that between the isotropic and the nematic phase, or for 

chiral materials that between isotropic and cholesteric, respectively. These are the only machine 

learning studied transitions in liquid crystals, the reason being that both LC phases display 
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characteristic defects, topological Schlieren defects and oily streaks for achiral and chiral materials, 

respectively, which are easy to recognize. The second reason is the fact that this transition very closely 

resembles that of the texture transition between homeotropic (pseudo-nematic) and planar 

anchoring conditions as exploited in the automated readout of chemical or biological sensors. In 

Figure 6 we present the results of the average validation accuracy obtained as a function of the 

number of CNN layers and different regularization via dropout layers and image flipping for both the 

achiral and the chiral case. 

 

 

Figure 6: Average validation accuracy for different architectures used in the classification of the (a) isotropic 
and nematic, as well as (b) the isotropic and chiral nematic / cholesteric liquid crystal phases. Rather 
independent of the regularization used, it is clear that the architectures approach their maximum accuracy for 
a certain model complexity beyond a single CNN layer and approaching close to 100% for 3- to 4-layer CNN 
architectures. 

For the isotropic – nematic classification (Figure 6(a)) it is already visually clear that the average 

validation accuracy approaches its maximum at a 3- or 4-layer CNN architecture. This is largely 

independent of any regularization used. A single layer CNN architecture is obviously not sufficiently 

complex to produce adequate results for the classification task, although as can be seen from 
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Figure 6(a), application of regularization methods already increases the accuracy. The regularizations 

used here are dropout layers, which apply a mask that nullify the contribution of some neurons to the 

next layer, leaving all others unchanged, and augmentation methods such as image flipping. A very 

similar behavior is obtained for the isotropic – cholesteric classification, which is shown in Figure 6(b). 

For no regularization applied at all, the results can be summarized for these transitions as a quickly 

increasing validation accuracy with an increasing number of CNN layers, depicted in Figure 7. It should 

be noted that for further increasing the number of convolutional layers the accuracy may well 

decrease again, due to overfitting and applying a too complex architecture to the relatively simple 

classification task. 

 

Figure 7: Average validation accuracy as a function of convolutional layers in the CNN architecture. The 
accuracy quickly approaches 100% for both the isotropic – nematic and the isotropic – cholesteric classification 
tasks, with no dropout layers or image augmentations applied.   

 

5.2 Nematic/Cholesteric – Smectic Classification 

A somewhat more difficult classification task is that between nematic or cholesteric and the fluid 

smectic phases, and we believe that this has not been investigated besides the studies from our group 

[30,31]. For this part we chose to employ an inception architecture, varying between one and two 

inception blocks and applying different regularizations. 

Figure 8(a) displays the results for the nematic to smectic classification task as an average validation 

accuracy (in %) for grouping different regularizations when using a varying number of inception blocks. 

One can see that on average the architecture with two inception blocks leads to a slightly higher 

accuracy by approximately 4% when compared to only one inception block, increasing the overall 

average accuracy from 94% to 98% for the nematic to smectic identification task. At the same time, 
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variations for individual regularization processes are much reduced. This suggests that the 

architecture with two inception blocks is more stable and less prone to under and overfitting. This 

thus appears to be the correct choice of model complexity for the classification task investigated.     

 

 

Figure 8: Average validation accuracy for several different regularizations employed on inception architectures 
with one (black) and two (blue) inception blocks for (a) the nematic to smectic and (b) cholesteric to smectic 
classification tasks. 

A similar, yet more pronounced behavior can be observed for the cholesteric to smectic classification 

task, with results depicted in Figure 8(b). On average, disregarding different regularizations, the 

accuracy of the two-inception-block model is about 10% higher than that of the single block 

architecture, increasing from about 80% to 90%. The second inception block also appears to slightly 

dampen the variations on different regularization processes. Again, the inception model with two 

inception blocks appears to have the right complexity for the task investigated. Dropout layers and 
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flip augmentations then lead to average validation accuracies in the order of 95%, which is absolutely 

acceptable for this classification task. 

 

5.3 SmA* – SmC* Classification 

The classification between smectic A and smectic C on first sight should be a rather complicated task 

for machine learning, because this is a second order, continuous transition where often only minute 

changes in texture from a fan-shaped to a broken fan-shaped arrangement are observed. This is 

certainly true for the transition of an achiral material. We have therefore investigated the chiral 

version of this transition, smectic A* - smectic C*. This is in most cases still a continuous transition, 

but at the same time related to the paraelectric to ferroelectric transition, because according to the 

symmetry arguments by Meyer et al.[44] every tilted smectic phase composed of chiral molecules 

potentially exhibits a spontaneous polarization PS and can thus be ferroelectric, if PS is switchable 

between two stable states. Due to the fact that the spontaneous polarization vectors would like to 

compensate in the smallest volume possible, the SmC* phase forms a helical superstructure with the 

magnitude of the molecular tilt being fixed by thermodynamics, while its direction is free to choose. 

Due to the coupling between tilt and polarization the molecular helical superstructure is connected 

to a polarization helix, which compensates PS over the period of one pitch. The helical superstructure 

of SmC* in turn gives rise to an equidistant line pattern across the fan-shaped texture, which is 

distinguishable from the smooth fans of the paraelectric SmA* phase at zero tilt. 

 

Figure 9: Average validation accuracy for several different regularizations used within a one block inception network 
architecture to classify between SmA* and SmC*. Accuracies are rather high with values around 99% and nearly 
independent of regularization. This is due to the fact that in contrast to the achiral SmA-SmC transition, the chiral 
SmA*-SmC* transition exhibits textures with clearly identifiable differences (see text). 

This leads to the observation that the classification task between SmA* and SmC* is much easier and 

less complex than first anticipated. The results of a single block inception architecture are depicted in 

Figure 9. It can be seen that, independent of the regularization employed, very high average validation 
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accuracies of close to 100% are obtained with very little variation (error). This indicates that an 

inception architecture with a single inception block and no regularization are already sufficient to 

classify the task with nearly 100% accuracy. Nevertheless, it should be noted that we anticipate the 

equivalent task carried out for achiral materials to be much harder, involving only minute texture 

changes and thus require an increased complexity of the machine learning architecture employed. 

 

5.4 Fluid Smectic – Hexatic Classification 

Quite a bit harder is the classification of liquid crystal phases when one involves phases of higher 

order, for example hexatic phases or even soft crystal phases. While we have left the soft crystal 

phases with their 3D-order for a later investigation, we have studied the classification between phases 

of fluid to hexatic order. Changes of textures between those two classes of phases are subtle, which 

is the reason why we employed inception architectures instead of convolutional neural networks. The 

results of changing from one to two inception blocks, together with regularizations like dropout layers 

and image flipping augmentations are shown in Figure 10.   

 

Figure 10: Average validation accuracy for several different regularizations employed on inception 
architectures with one (black) and two (blue) inception blocks for the fluid smectic to hexatic smectic 
classification tasks. 

One can first of all clearly see that a single inception block architecture is not sufficient to classify 

between fluid and hexatic smectics with an acceptable accuracy. Comparing architectures without 

any regularization we obtain 64% average validation accuracy for the single block architecture, which 

is indeed very close to simply guessing the phases to be classified. The 84% accuracy obtained from 

the same two-block inception architecture is already quite a bit better and probably in line with a 

phase characterization done by an experienced researcher, although error margins, i.e. variations in 

accuracies, are relatively large in both cases. Using regularization methods shows an increase in 

accuracy for both inception block architectures, especially for employing dropout layers, much less 

so for flip augmentation. On average over all regularizations, the average validation accuracy 
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increases from approximately 73% for the one-inception-block architecture to 88% for the two-block 

inception model. The best result was obtained for an inception architecture with two inception blocks 

and dropout layer regularization, which gave an average validation accuracy of 92%, a value which is 

acceptable for such a complex classification task and which we believe would be suitable for large 

scale automatic phase characterization of liquid crystals. 

 

5.5 Smectic I – Smectic F Classification 

As a last classification, we have chosen a rather challenging task in the field of hexatic liquid crystal 

phases, that of classifying between SmI and SmF, two phases that are only distinguished by the 

difference of their tilt direction, tilted either towards the apex or the side of the hexagon. Accordingly, 

the difference between textures of these two phases is mostly minute, thus the complexity of the 

task is high. Given that from the previous task we knew that satisfying results could most likely be 

obtained by use of a two or three block inception architecture, we were interested in characterizing 

how far one could push a conventional CNN by simply increasing the number of layers and applying 

some regularization, such as dropout layers and flip augmentations. A summary of the results is 

depicted in Figure 11. 

 

Figure 11: Average validation accuracy as a function of varying regularization for increasing number of CNN 
layers – thus increasing network architecture complexity. 

It should first be noted that this classification task was carried out on the least number of image data 

input and would thus definitely benefit from an increased image input source which would most likely 

improve the overall average validation accuracy. Nevertheless, it is also clear that a one or two layer 

CNN is not sufficiently complex to handle a classification task like this, because the validation accuracy 

below 50% clearly indicates that this is in the area of guessing, rather than the network learning 

features to classify the two phases. Increasing the architecture to three and especially four layer CNNs, 

increases the average validation accuracy by about 30%, which is certainly a step in the right direction, 

although an accuracy of roughly 70% is still too small to be considered useful in a general 
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characterization of liquid crystal phases. It is interesting to notice that the validation accuracy 

decreases again if the architecture is made more complex via the addition of more layers, in this case 

using a 5-layer CNN architecture. This is an indication of overfitting, which, together with the relatively 

small amount of image textures, means that the machine learning model is practically starting to learn 

the textures by heart. The best performing architecture was a 4-layer CNN with dropout layers and 

flip augmentation, which gave an average validation accuracy of 71%. This is still insufficient for a real 

liquid crystal characterization tool but provides proof-of-principle that this is indeed possible. To 

enhance performance, there are several possibilities available: (i) a considerable increase in the 

number of data input images and (ii) an increase in the complexity of the architecture, for example 

by using a two- or three-block inception model with regularization. These possibilities do of course 

imply additional experimental work and longer machine learning training times. The results of this 

part of the investigation are summarized in Figure 12, showing the average performance over all 

regularizations as a function of increasing CNN layers. 

 

Figure 12: Average validation accuracy as a function of CNN layers over all regularizations and augmentations 
employed. The network performance increases through 1- to 3- layer CNN architectures to a maximum for 4-
layer CNNs and then decreases again. 1- and 2-layer architectures are too simple for the classification task, 
while at the 5-layer architecture one can see the setting in of overfitting, due to the complexity of the network. 
Overall, the accuracy values are too small to be of use in the characterization of liquid crystals, which can be 
accounted for by the small number of data input images for training. Also, for this type of classification task, a 
two- or three-block inception architecture would most likely be more suitable. 

 

From our recent work [30,31] it has become clear that both convolutional neural networks, as well 

as inception algorithms, are capable of automatically identifying different phases. This is particularly 
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valid for phases which exhibit clear differences in textures between phase transitions. For more 

similar textures a larger number of images is needed and the complexity of the machine learning 

algorithm needs to be adopted to the complexity of the problem investigated, while paying close 

attention to avoid overfitting. With these requirements in mind it is in principle possible to identify 

all known liquid crystal phases, given that the training and validation set of images is large enough. 

Yet, one does need to keep in mind that phases which exhibit in some cases equivalent textures, for 

example in series with orthogonal hexatic phases (like SmA and SmB transitions[45]), or in chiral 

series (like MHPOBC with  SmA* and SmCα* transitions[46]), these may not be identified as different 

phases.  

Being a supervised machine learning technique, CNNs and equivalent algorithms as used here, are in 

principle incapable of predicting novel phases, simply because the signifying features of their 

textures are not yet known or have not been trained. For example, without any training data in the 

form of textures, the recently discovered twist-bend nematic phase (NTB)[47] or the ferroelectric 

nematic phase[48] would not be discovered as such. The only indication that a novel phase might be 

present could possibly be in the form of a low identification accuracy. This would correspond to the 

attempted identification of a phase which has never been seen before and obviously needs further 

methodologies. Only after a novel phase is discovered, identified independently, sufficient texture 

image data is taken and the neural network is trained, can this phase also be identified by 

supervised machine learning. Nevertheless, even though machine learning is no predictive tool, we 

believe that the automatic identification of the zoo of already known phases is a large step forward 

in the characterisation of liquid crystals. 

 

 

6. Conclusions 
 

A number of different classification tasks of increasing complexity with a range of varied convolutional 

neural network and inception architectures were investigated. The numbers of layers in CNN models 

were varied, as were the number of inception blocks. Furthermore, a range of regularization and 

augmentation procedures were included in the respective network architectures to study their effects 

on the performance. While for simple classification tasks, like the classification between isotropic and 

nematic or cholesteric, a 2-layer CNN architecture was already sufficient to yield validation accuracies 

in excess of 99%, more complex tasks, like the nematic or cholesteric to smectic classification also 

demanded more complex machine learning models in the form of inception architectures. It was 

demonstrated that a single inception block is generally not sufficient to produce adequate accuracies 

and one needs to resort to 2-block inception architectures to increase accuracies. These accuracies 

may further be increased by applying regularization and augmentation procedures like dropout layers 

and image flipping. The latter measures can reduce overfitting and artificially increase the training 

data, respectively. It was demonstrated that classification between fluid and hexatic smectics is 

possible, even between different hexatic phases to some extent. The latter classification task 
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somewhat suffered from the lack of sufficient input data but at least provided proof-of-principle 

results.  

In conclusion, provided that sufficient input data and a balanced dataset is available for all liquid 

crystalline phases, together with sufficient computational resources, we have provided evidence and 

a pathway via machine learning that automatic phase sequence determination would be possible. 

From the presented results, the pathway will depend on the complexity of the classification task. For 

simple phase sequences, for instance Iso-N-Cryst, Iso-SmA-Cryst, or Iso-N-SmA-Cryst a 2- or 3-layer 

CNN architecture would probably be sufficient to classify the whole sequence with very good accuracy 

larger than 95%. For more complex phase sequences, for instance Iso-N*-SmA*-SmC*-SmI*-SmF*-

Cryst, or Iso-N-SmA-SmB-SmE-Cryst, an inception architecture with two or three inception blocks and 

regularization via dropout layers would most likely be required. In any case, one would need to match 

the complexity of the machine learning architecture with that of the classification task and closely 

monitor for under- or overfitting. 
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Graphical abstract 
 

 
 
 
Different convolutional neural network and inception network architectures were trained for the 
classification of liquid crystal phases through textures to test the prediction accuracy for each one of 
these models varying the number of layers, inception blocks and regularization methods. 


