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K Y B E R N E T I K A — V O L U M E 5 9 ( 2 0 2 3 ) , N U M B E R 3 , P A G E S 4 6 1 – 4 8 3

CONSENSUS OF MULTI-AGENT SYSTEMS AND
STABILIZATION OF LARGE-SCALE SYSTEMS WITH TIME
DELAYS AND NONLINEARITIES - A COMPARISON OF
BOTH PROBLEMS

Branislav Rehák and Volodymyr Lynnyk

The problem of stabilization of large-scale systems and the consensus problem of multi-agent
systems are related, similar tools for their solution are used. Therefore, they are occasionally
confused. Although both problems show similar features, one can also observe important dif-
ferences. A comparison of both problems is presented in this paper. In both cases, attention
is paid to the explanation of the effects of the time delays. The most important fact is that,
if the time delays are heterogeneous, full synchronization of the multi-agent systems cannot be
achieved; however, stabilization of the large-scale network is reachable. In the case of nonlinear
systems, we show that the stabilization of a large-scale nonlinear system is possible under more
restrictive assumptions compared to the synchronization of a nonlinear multi-agent system.

Keywords: large-scale interconnected systems, multi-agent systems, time delays, nonlin-
earity

Classification: 93A14, 93B36

1. INTRODUCTION

The stabilization of a large-scale interconnected system and the synchronization of a
multi-agent system are two important problems of the recent control theory. Both
problems share several similar features; however, many differences between these two
types of problems exist. This paper focuses on highlighting the commonalities and
differences between these problems.

The large-scale interconnected system is a dynamical system which can be decom-
posed into a set of subsystems that mutually interact through interconnections. Fre-
quently, these interconnections are physically present in the system. Examples of large-
scale interconnected systems include, but are not limited to, power networks, parallel
chemical reactors with common precooling, flexible structures, etc. [2]. Since large-
scale interconnected systems usually cannot be controlled or stabilized in a centralized
manner (such control would be overly complicated, prone to failures, etc.), one seeks a
decentralized control law (see, e. g. [14]). Here, the goal is to find a control law identical
for all subsystems so that, for any given subsystem, the proposed controller makes use
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of the state information of this particular subsystem only. In other words, the control
action is independent of the states of other subsystems. This means the control law
must be sufficiently robust to mitigate the effects of the other subsystems interfering
through interconnections; see [1] or [8], among others. Recently, the formulation of the
algorithms for finding decentralized control is conducted with the help of linear matrix
inequalities (LMI).

In this paper, it is assumed that the subsystems are identical. This assumption,
although it may seem to be overly restrictive, is valid in many real-world applications
[2, 14], among others. The goal pursued in this paper is to find a control law that is
identical for all subsystems. Moreover, the complexity of the control design problem
(measured, e. g., in the number of variables in LMIs to be solved) should be independent
of the number of subsystems.

Controlling large-scale systems is usually dependent on the use of communication
networks for signal transmission, whether from the sensors to the controllers or from
the controllers to the actuators, hence, a cost-effective implementation of the control
scheme can be achieved. Nevertheless, this also brings certain difficulties: time delays
caused by the transmission of the signal through the network or due to the occurring
packet dropouts are inevitable. The control law must be capable of stabilizing the
system under fast-varying time delays (the derivative of the time delay equals 1), see
e. g. [3, 4] or [5]. Here, the Razumikhin functional is used to find the desired control
algorithm. Application of the Razumikhin functional yields methods useful for systems
with the aforementioned fast varying delays; unfortunately, these results tend to be
rather conservative. Therefore, the recently developed descriptor approach (based on
the Lyapunov–Krasovskii functional, but, despite this fact, still applicable to systems
exhibiting fast-varying delays, as shown in [9]) is useful. Its application to large-scale
systems yields good results, [21]. Moreover, let us mention that the sampled control of
large-scale systems is presented in [20] or the quantized control studied in [22], among
other sources.

The second problem considered in this paper - the synchronization problem of multi-
agent systems - sees also many applications in practice: control of platoons of vehicles,
control of swarms of autonomous drones, to name a few; it has also been intensively
studied in the recent past. One can distinguish two basic problems: the leader following
problem and the consensus problem. For a detailed description, the reader is referred to
[12] or [16]. In this paper, only the consensus problem is considered. The characteris-
tic feature of the multi-agent synchronization problem is the restricted communication
between agents. The agents are able to communicate only with the neighboring agents,
the number of these agents is typically much smaller than the total number of agents.

If one attempts to solve the synchronization problem of multi-agent systems with the
application of communication networks, the same challenges as described in the case of
the networked control of large-scale systems have to be overcome. Many papers deal
with multi-agent systems with homogeneous delays (delays of all agents are equal). This
assumption simplifies the analysis considerably, even though it is rather unnatural; see
[10] or [30] for details. Paper [18] uses Lyapunov–Krasovskii functionals for the synchro-
nization problem of nonlinear multi-agent systems, they are analogous to the functionals
used in this paper. The main focus of [23, 28] is the consensus problem of nonlinear



Multi-agent systems and large-scale systems 463

multi-agent systems with input delay. It was shown that, even if full synchronization is
not achievable, a bound on the synchronization error can be derived.

The presence of heterogeneous time delays in the multi-agent systems makes the syn-
chronization problem more challenging. As shown in [24] for the case of symmetric graph
topology or in [26] (where general interconnecting topologies are considered), heteroge-
neous delays may cause a steady synchronization error. This error does not, for time
increasing to infinity, converge to zero. Fortunately, one can derive an estimate of this
error, see also [13, 15, 32]. Let us also note that [17, 33], and [31] investigate synchroniza-
tion of multi-agent systems such that time delays are different in every communication
channel.

The large-scale interconnected systems control and the synchronization of multi-agent
systems were compared in [7], however, only for systems without delays and nonlineari-
ties. In this paper, a similar comparison is presented for nonlinear problems and systems
with delays. Analogies between both problems, such as methods for computation of the
control in both cases, are described. It will be demonstrated that the asymptotic stabi-
lization of the large-scale system can be achieved with heterogeneous time delays in the
system. On the other hand, this is not always the case of the full synchronization of the
multi-agent system. In this case, we derive a bound on the synchronization error.

Purpose of this paper

• to provide a comparison of the properties of the control of large-scale intercon-
nected systems subject to delayed control signals with multi-agent systems, again
with time delays. Special attention is paid to the effects caused by uncertainties
in the systems as well as to the effects of heterogeneous time delays,

• to present algorithms derived with the descriptor approach for both the large-
scale system stabilization and for the multi-agent consensus synchronization; these
algorithms lead to effective and not overly conservative design methods,

• to conduct an analogous comparison for nonlinear multi-agent and large-scale sys-
tems.

Notation

1. The LMI P > 0 means matrix P is a square symmetric positive definite matrix.

2. The elements below the diagonal are not written explicitly, they are replaced by
an asterisk for symmetric matrices:

(
a b
bT c

)
= ( a b∗ c ) .

3. If no confusion can arise, the time argument t is often omitted for brevity, and the
time delay is written using subscript: x = x(t), x(t − τ) = xτ (t) = xτ . However,
if the time argument is different from t, it is written in full.

4. The m-dimensional identity matrix is denoted by the symbol Im.

5. The symbol ‖.‖ stands for the Euclidean norm (even for matrices).

6. The Kronecker product is denoted by the symbol ⊗.

7. For a square matrix A we define H(A) = A+AT .
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2. DEFINITION OF LARGE-SCALE INTERCONNECTED SYSTEMS
AND MULTI-AGENT SYSTEMS

2.1. Large-scale interconnected system

Throughout this and the following sections, the subsystems composing the large-scale
system are assumed to be identical and linear, and their number is denoted by N . Let
n,m, p be integers; consider matrices A, Ã ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×p. The ith
subsystem, resp. the ith agent can be defined using these matrices:

ẋi = Axi +Bui + Ii +Gwi, x(0) = x0. (1)

The state is denoted by the symbol xi(t) ∈ Rn, the control is represented by the symbol
ui ∈ Rm; the symbol wi ∈ Rp stands for the external disturbance. Finally, the symbol
Ii denotes the interconnection term: Ii =

∑N
j=1 lijÃxj . To be specific, lij = 1 if

there is a direct connection from subsystem j to subsystem i, in another case, we set
lij = 0. Matrix L = (lij) is called the interconnection matrix in the case of large-scale
interconnected systems.

Assumption 2.1. For all i = 1, . . . , N holds lii = 0.

This assumption guarantees that no subsystem is connected ”with itself” (the inter-
connection of subsystems has no loops). This is a natural condition, as the interconnec-
tions are intended only for the description of interference between different subsystems;
hence the existence of such connections is not meaningful in this setting.

Assumption 2.2. Matrix L is symmetric.

This assumption is not necessary (the subsequent analysis can be conducted under
the assumption of the directed communication topology), but will simplify the presenta-
tion considerably. It is noteworthy that this assumption is satisfied in many real-world
systems.

2.2. Multi-agent system

A multi-agent system is composed of autonomous systems (agents); the control of an
agent is computed using information from its neighboring agents only. In the sequel, we
assume the number of agents is N ; moreover, the agents are supposed to be identical.

ẋi = Axi +Bui +Gwi, x(0) = x0. (2)

The dimensions of all involved vectors and matrices, as well as their meaning, remain
the same as in the case of the large-scale system. One can see that the main differ-
ence from the large-scale systems is the absence of the term describing the physical
interconnections.

Let x̄ = 1
N

∑N
i=1 xi. The goal of the consensus synchronization problem of a multi-

agent system is to achieve the consensus defined as:

lim
t→∞

N∑
i=1

‖xi − x̄‖ = 0. (3)
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This means that all agents have to follow the same trajectory in the limit, despite dif-
ferent initial conditions. To reach this goal, knowledge of the interconnection topology
is vital for the controller design. This knowledge is concentrated in the so-called inter-
connection matrix E ∈ RN×N defined as follows: if the agent j has access to the state
of the agent j, then set εij = 1; otherwise, set εij = 0. Then, matrix E is defined as
E = (εij). Again, we assume no agent is connected to itself: εii = 0.

The control of the ith agent is computed using the state of the ith agent as well as
from the values of the agents that send information to the ith agent.

Note also that there are no terms Ii in the multi-agent systems. This is because the
agents are not physically interconnected, the connection between them is established
through the control signal.

The Laplacian matrix L̄ is defined as L̄ = (l̄ij), l̄ij = −εij for i 6= j and l̄ii =
∑N
j=1 εij .

Assumption 2.3. Matrix L̄ is symmetric.

Assumption 2.2 (for the interconnected systems) or Assumption 2.3 (for multi-agent
systems) imply the existence of a real diagonal matrix D and an orthogonal matrix T
that satisfy (in the case of the large-scale system)

L = TTDT, (4)

or, for multi-agent systems
L̄ = TTDT. (5)

Furthermore, without loss of generality, we assume that D = diag(d1, . . . , dN ) and d1 ≤
· · · ≤ dN .

Remark 2.4. In the consensus problem of multi-agent systems, we have d1 = 0. This
case is related to the average dynamics; this eigenvalue is not important for the syn-
chronization of the multi-agent system. On the other hand, d2 > 0. For a more detailed
discussion on this topic, see, for instance, [6].

Remark 2.5. Let us note that the analysis can be conducted for more general intercon-
nection topologies (see, e. g., [26]), Assumptions 2.2 and 2.3 being superfluous. However,
this leads to some technical complications. Thus, to simplify the presentation, these as-
sumptions are supposed to be valid. The most important conclusions of this paper
remain valid even for systems with these more general interconnection topologies.

2.3. Time delays in the large-scale and multi-agent systems

Let x = (xT1 , . . . , x
T
N )T , u = (uT1 , . . . , u

T
N )T . In the subsequent text, it is supposed that

the delayed states are used to compute the control input. This is realistic - the delays
are caused by information transmission throughout the communication network. The
delays need not be equal for all subsystems or agents; however, they are assumed to be
uniformly bounded. The existence of the upper bound on the delays (and the availability
of this quantity to the control designer) is a common requirement imposed on systems
with time delays; the analysis would be impossible to conduct without knowledge of the
maximal time delay.
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Assumption 2.6. Let τ̄ > 0 be a constant denoting the maximal delay which can occur
in the entire system. Then the delay of the ith agent, resp. subsystem is a measurable
function τi : [0,∞)→ [0, τ̄ ]. This constant is known and available for the control design.

Then we define vector x̃ by

x̃ = (xT1,τ1 , . . . , x
T
N,τN )T . (6)

This vector contains the state values used to compute the control inputs ui; this proce-
dure is detailed in the subsequent sections in detail.

The problem of stabilization of the large-scale system can be formulated as follows:
find matrix K ∈ Rm×n so that, if

ui = Kx̃i = Kxi,τi . (7)

for all i = 1, . . . , N , the large-scale interconnected system is asymptotically stabilized.
The important feature is that all control gain matrices are equal for all subsystems. As
will be shown, this requirement allows us to simplify the controller design.

In the multi-agent system, the control signal of the ith agent (i = 1, . . . , N) equals to

ui =

N∑
i=1

εjiK(x̃j − x̃i) =

N∑
i=1

εjiK(xj,τj − xi,τi) (8)

Matrix K is again equal for all agents.

2.4. Compacted formulation of large-scale and multi-agent systems

To facilitate the notation, the set of the differential equations describing the N subsys-
tems of a large-scale system or agents in the multi-agent system can be written in a
compact form using the Kronecker product. To be specific, the dynamics of the overall
large-scale system can be written as

ẋ = (IN ⊗A+ L⊗ Ã)x+ (IN ⊗BK)x̃+ (IN ⊗G)w (9)

while the dynamics of the multi-agent system is described as

ẋ = (IN ⊗A)x+ (L̄⊗BK)x̃+ (IN ⊗G)w. (10)

As one can see, the interconnection term is different.

Remark 2.7. The first important difference between both problems is that the dynam-
ics (9) is directly used for the design of the stabilizing control of the large-scale system,
however, the so-called disagreement vector e defined as ei = xi − x̄, e = (eT1 , . . . , e

T
N ),

must be introduced to find the synchronizing control of a multi-agent system. This
vector has no analogy in the theory of large-scale systems. It is necessary to introduce
this vector since in the problem of the multi-agent system synchronization, the absolute
value of the states of the agents is not important; the differences from the average dy-
namics matter. Note that (as shown, for example, in [25]), with 1 = (1, . . . , 1)T ∈ RN ,
one has

L̄1 = 0. (11)
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One can see that the average dynamics is governed by the autonomous equation (with

w̄ = 1
N

∑N
i=1 wi)

˙̄x = Ax̄+Gw̄. (12)

Eq. (12) combined with (10) yields

ė = (IN ⊗A)e+ (L̄⊗BK)x̃+ (IN ⊗G)(w − 1⊗ w̄). (13)

This is the most important equation for the design of a synchronizing control for a
multi-agent system. Thus, Eq. (13) can be regarded as the counterpart of Eq. (9) that
is used to design the stabilizing control of large-scale systems.

3. PROBLEMS WITH DELAYED CONTROL - EQUAL DELAYS, NO EXTERNAL
DISTURBANCES

In the absence of disturbance signals (G = 0, w = 0) and identical delays in all subsys-
tems, resp. identical delays in all agents, the controller design methods for the stabiliza-
tion of the interconnected large-scale system and for the consensus synchronization of the
multi-agent system are more or less identical. The procedure can be briefly summarized
as follows:

1. A suitable Lyapunov–Krasovskii functional V is proposed. It is defined using
matrices Pi ∈ Rn×n, Pi > 0 (the number of matrices Pi depends on the specific
choice of this functional) so that the functional V is formulated using matrices
IN ⊗ Pi.

2. A set of LMIs that guarantees negative definiteness of the derivative of V (denoted
as V̇ ) is derived; the dimension of this set of LMI depends on N .

3. One can prove that the LMI given in the previous step is equivalent to another set
of LMIs whose dimension is independent of N .

4. A control gain K is found by satisfying this set of LMIs.

The size of the controller design problem can be reduced; thanks to a set
of LMIs defined in the fourth step, the size is independent of the number of
subsystems or agents. This is a common feature for both large-scale inter-
connected systems as well as multi-agent systems. Moreover, the dimension
reduction method in Step 4 is in both cases identical.

Let us describe the procedure in a more detailed way. Assume τ1 = · · · = τN = τ .
This assumption is rather unrealistic, nevertheless, it facilitates the analysis.

Using (11), the disagreement vector with delays eτ is useful in reformulating the
disagreement dynamics as

ė = (IN ⊗A)e+ (L̄⊗BK)eτ . (14)

The dynamics of the large-scale system (9) is rewritten similarly:

ẋ = (IN ⊗A)x+ (L⊗ Ã)x+ (IN ⊗BK)xτ . (15)
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For example, for the control design of the large-scale interconnected system, the
Lyapunov–Krasovskii functional V (given in [9] by Eq. (3.101)) can be used. Assume
n×n-dimensional symmetric matrices P̄1 > 0, P̄2 > 0, P̄3 > 0 are given. Then we define
the functional V as

V =xT (IN ⊗ P̄1)x+

∫ t

t−τ̄
xT (s)(IN ⊗ P̄2)x(s) ds

+ τ̄

∫ 0

−τ̄

∫ t

t+θ

xT (s)(IN ⊗ P̄3)x(s) dsdθ.

To design the synchronizing control of a multi-agent system, one can merely replace x by
e to derive the design method: to solve the synchronization problem for the multi-agent
system, the Lyapunov–Krasovskii functional V ′ is defined as

V ′ =eT (IN ⊗ P̄1)e+

∫ t

t−τ̄
eT (s)(IN ⊗ P̄2)e(s) ds

+ τ̄

∫ 0

−τ̄

∫ t

t+θ

eT (s)(IN ⊗ P̄3)e(s) dsdθ.

The following theorem guarantees the stability of the interconnected system (14) or
synchronization of the multi-agent system (1).

Assume there are n× n-dimensional matrices P > 0, R > 0, S > 0, Q (non-singular)
and M , a m × n-dimensional matrix Y , as well as a constant ε > 0. In the case of
a large-scale interconnected system, define using these matrices the following auxiliary
matrices φi,j by

φ11 =H
(

(IN ⊗Q)(IN ⊗A+ L⊗ Ã)
)

+ (IN ⊗ (S −R)),

φ12 =(IN ⊗ (P −Q)) + ε(IN ⊗QT )(IN ⊗A+ L⊗ Ã)T ,

φ14 =(IN ⊗BY ) + (IN ⊗ (R−M)),

φ24 =(IN ⊗ εBY ),

φ13 =(IN ⊗M),

φ22 =(IN ⊗ (−ε(Q+QT ) + τ̄2R)),

φ33 =− (IN ⊗ (R+ S)),

φ34 =IN ⊗ (R−MT ),

φ44 =IN ⊗ (M +MT − 2R),

while in the case of synchronizing the multi-agent system, these matrices are changed
as follows:

φ11 =H
(

(IN ⊗Q)(IN ⊗A)
)

+ (IN ⊗ (S −R)),

φ12 =(IN ⊗ (P −Q)) + ε(IN ⊗QT )(IN ⊗A)T ,

φ14 =(L̄⊗BY ) + (IN ⊗ (R−M)),
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φ24 =(L̄⊗ εBY ).

Then, let matrix Φ be given as

Φ =


φ11 φ12 φ13 φ14

∗ φ22 0 φ24

∗ ∗ φ33 φ34

∗ ∗ ∗ φ44

 .

Proposition 5.3 from [9] (reformulated to suit our problems) yields the following:

Proposition 3.1. Let matrices P , Q, R, S, Φ and scalar ε satisfy the above conditions.
If the pair of LMIs

0 >Φ, (16)

0 >IN ⊗
(
−R M
∗ −R

)
(17)

is satisfied, then the control gain given by K = Y Q−1 is such that the interconnected
system (15) is stable and multi-agent system (1) is synchronized by the control signals
ui given by (8).

Remark 3.2. Matrices P̄1, P̄3, P̄2 used in the definition of functional V are closely re-
lated to matrices P,R, S from the preceding proposition: P = QT P̄1Q, S = QT P̄2Q and
R = QT P̄3Q; moreover V̇ < 0 if x 6= 0.

The interconnections appear only in two terms: φ11 and φ22 for the large-scale in-
terconnected system; the interconnections appear in φ14 and φ24 for the multi-agent
system. Nevertheless, from this point on, the way how to deal with these LMIs is iden-
tical for both cases. To begin, define matrix T = (T ⊗ In, T ⊗ In, T ⊗ In, T ⊗ In) where
T is defined in (4) or (5). Then, let

Γ = T−1ΦT.

The properties of the Kronecker product imply that matrices Γ and Φ are closely related:
with exception of elements containing matrices L or L̄, their elements are equal. To be
more specific, the expression IN ⊗A+L⊗ Ã in the case of the large-scale interconnected
system is replaced by IN ⊗ A + D ⊗ Ã. Also, the expression L̄ ⊗ BY is replaced by
D ⊗ BY in the case of synchronizing the multi-agent system. Let us introduce the
following matrices and matrix-valued functions (depending on real parameters d′, d′′):

λ11(d′) =H(Q(A+ d′Ã)) + S −R,
λ12(d′) =P −Q+ εQT (A+ d′Ã)T ,

λ14(d′′) =d′′BY +R−M,

λ24(d′′) =d′′εBY,

λ13 =M,

λ22 =− ε(Q+QT ) + τ̄2R,
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λ33 =− (R+ S),

λ34 =R−MT ,

λ44 =M +MT − 2R,

Λ(d′, d′′) =


λ11(d′) λ12(d′) λ13 λ14(d′′)
∗ λ22 0 λ24(d′′)
∗ ∗ λ33 λ34

∗ ∗ ∗ λ44


The procedure described above yields that there exists a permutation matrix
Π ∈ R4nN×4nN such that the following is true for the large-scale interconnected system

ΠTΓΠ = diag
(

Λ(d1, 1), . . . ,Λ(dN , 1)
)

(18)

while one has a slightly different relation for the multi-agent system:

ΠTΓΠ = diag
(

Λ(0, 0),Λ(0, d2), . . . ,Λ(0, dN )
)

(19)

(here, note that d1 = 0; as explained above, this eigenvalue is irrelevant to the control
design as it corresponds to the average dynamics). In both cases, the dependence on
d, d′ is convex. Thus it suffices to verify only Λ(d1, 1) < 0 and Λ(dN , 1) < 0 (for the
large-scale interconnected system) or Λ(0, d2) < 0 and Λ(0, dN ) < 0 (for the multi-agent
system; here, one cannot assume Λ(0, 0) < 0 since this case corresponds to the average
dynamics that is not affected by the synchronizing control). As a result, one gets

Theorem 3.3. Let there exist n× n-dimensional matrices M , P > 0, R > 0, S > 0, Q
non-singular, a m× n-dimensional matrix Y and a scalar ε > 0 satisfying

0 >

(
−R M
∗ −R

)
. (20)

Then

1. If 0 > Λ(d1, 1), 0 > Λ(dN , 1) then the control (7) with the control gain K = Y Q−1

asymptotically stabilizes the large-scale interconnected system (14).

2. If 0 > Λ(0, d2), 0 > Λ(0, dN ) then the multi-agent system (14) achieves consensus
by the control (8) with K = Y Q−1. That means, limt→∞ ‖e(t)‖ = 0.

Remark 3.4. The case of equal time delays is simple, the procedures to obtain the
stabilizing or synchronizing control law are more or less identical. It is noteworthy that
the presence of the parameter ε is somewhat problematic as this parameter has to be
defined a-priori. It cannot be obtained as part of the LMIs solution because it appears
in a multiple with other variables. However, as [9] points out, this approach tolerates a
fairly wide range of this parameter.

In the case of equal delays, the large-scale system (9) is asymptotically
stabilized and the full consensus synchronization of the multi-agent system
(10) is achieved.
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4. PROBLEMS WITH DELAYED CONTROL WITH PERTURBATIONS AND WITH
HETEROGENEOUS DELAYS

In this section, we investigate large-scale systems and multi-agent systems with external
disturbances first. As will be seen, the state of the large-scale system cannot converge
to 0; analogously, one cannot expect the full synchronization of the multi-agent system.
However, the errors caused by these disturbances can be estimated using the methods
of the H∞ control.

First, let us recall the definition of the H∞-stability.

Definition 4.1. The dynamical system

ξ̇ = Aξ + Gw (21)

is H∞-stable, if the following conditions hold:

1. if w = 0 on [0,∞), system (21) is asymptotically stable;

2. there exists a constant γ > 0 so that, if the initial conditions are zero, inequality∫ T
0
‖x(s)‖2 ds ≤ γ

∫ T
0
‖w(s)‖2 ds is satisfied for all T ≥ 0.

As noted, e. g., in [19], this definition can be generalized to time-delay systems.
Let us consider the case of identical delay for both large-scale as well as multi-agent

systems in the presence of disturbances expressed by the vector w.
Consider first the large-scale interconnected system with external disturbances (1)

with G 6= 0.
According to the Proposition 5.3 in [9], when applied to the case of a large-scale

interconnected system composed of subsystems (1), the H∞ stability of this large-scale
interconnected system holds if the following LMI

Φ

IN ⊗G IN ⊗QT
εIN ⊗G 0

0 0
0 0

∗ −γ2IpN 0
∗ −InN

 < 0 (22)

is satisfied in combination with (17). Then, one can conduct dimension reduction as
in the previous case. Let us define the (matrix-valued) function Λ′ by the following
formula:

Λ′(d′, d′′) =


Λ(d′, d′′)

G QT

εG 0
0 0
0 0

∗ −γ2Ip 0
∗ −In

 . (23)

The MIMO version of Proposition 5.3 in [9] is required to prove H∞-stability of the
large-scale interconnected system. Nevertheless, a close inspection of its proof shows



472 B. REHÁK AND V. LYNNYK

that this generalization is straightforward, hence its proof is omitted here. Due to this
Proposition, LMI (22) together with (17) imply H∞-stability of (9). This means, the

relation
∫ T

0
‖x(s)‖2 ds ≤ γ

∫ T
0
‖w(s)‖2 ds holds for all T > 0 if the initial conditions are

zero; moreover, in absence of disturbances, the large-scale system (9) is asymptotically
stabilized. The fact that the inputs are delayed with different delays does not play a role
here. Note also that validity of (22) and (17) is implied by Λ′(d1, 1) < 0, Λ′(dN , 1) < 0
in combination with (20). Hence, one arrives at

Proposition 4.2. Consider system (9) where the control loop time delays satisfy As-
sumption 2.6. Let Λ′(d1, 1) < 0, Λ′(dN , 1) < 0 and (20) hold. Then there exists a

constant γ > 0 so that
∫ T

0
‖x(s)‖2 ds ≤ γ

∫ T
0
‖w(s)‖2 ds if all initial conditions are zero.

Moreover, if w = 0 for all t ≥ 0, then system (9) is asymptotically stabilized.

If the delays in the multi-agent system (10) are equal, then, using the similar reasoning
one obtains

Proposition 4.3. Consider multi-agent system (10). Let the delays in all agents be
equal and e(t) = 0 for t ∈ [−τ̄ , 0]. Let also Λ′(d2, 0) < 0, Λ′(dN , 0) < 0 and (20) hold.

Then there exists a constant γ > 0 so that
∫ T

0
‖e(s)‖2 ds ≤ γ

∫ T
0
‖w(s)− 1⊗ w̄(s)‖2 ds.

Moreover, if the disturbance is equal for all agents, the synchronization error converges
asymptotically to zero (this case reduces to the problem solved in the previous section).

The situation becomes more complicated in the problem of synchronization of multi-
agent systems with heterogeneous delays. From (8) follows that the control of one
particular agent needs not only knowledge of its own state but also knowledge of the
states of its neighbors.

Eq. (8) can be rewritten as

ui =

N∑
j=1

eij

(
K(xi,τi − xj,τi) +K(xj,τi − xj,τj )

)
. (24)

Define also ûi =
∑N
j=1 eijK(xj,τi − xj,τj ) and vector û = (ûT1 , . . . , û

T
N )T . Let also

ẽ = (eT1,τ1 , . . . , e
T
N,τN

). Then (13) attains the form

ė = (IN ⊗A)e+ (L̄⊗BK)ẽ+ (L̄⊗B)û+G(w − 1⊗ w̄). (25)

We can consider the sum of the last two terms as a disturbance.
Assume now for the sake of simplicity that the delays are heterogeneous but w = 0.

For the subsequent analysis, matrix

Λ̃(d′′) =


Λ(0, d′′)

d′′B QT

εd′′B 0
0 0
0 0

∗ −γ2Ip 0
∗ −In

 (26)
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will be useful.
The H∞-stability conditions for multi-agent systems are similar to the conditions for

H∞-stability of large-scale interconnected systems. Inequality (22) is, however, replaced
by 

Φ

L̄⊗B IN ⊗QT
εL̄⊗B 0

0 0
0 0

∗ −γ2IpN 0
∗ −InN

 < 0 (27)

in the case of heterogeneous delays. Now, the diagonalization procedure from the previ-
ous section is applied. Its output is the equivalence of the condition (27) and inequalities

Λ̃(di) < 0 for all i = 2, . . . , N . Thanks to the linearity of matrix-valued function Λ̃, one
arrives at

Proposition 4.4. Consider system (25), and assume moreover that w = 0, e(t) = 0
for t ∈ [−τ̄ , 0]. Assume also the delays in all agents satisfy Assumption 2.6. Let also

Λ̃(d2) < 0, Λ̃(dN ) < 0 and (20) hold and let K = Y Q−1. Then there exists a constant

κ > 0 so that
∫ T

0
‖e(s)‖2ds ≤ κ

∫ T
0
‖û(s)‖2 ds.

The heterogeneity of delays prevents the synchronization error from converging to
zero. Fortunately, the H∞-control can be used to estimate the limit of the norm of the
synchronization error (for time increasing to infinity). The estimate was also derived in
the above papers.

To sum up, we obtain

Theorem 4.5. (Rehák and Lynnyk [27]) Assume there exist a scalar ε > 0, n × n-
dimensional matrices P > 0, R > 0, S > 0, Q non-singular and M and a m × n-
dimensional matrix Y . Let also Assumption 2.6 holds and suppose also 0 >

(−R M
∗ −R

)
.

1. If 0 > Λ′(d1, 1), 0 > Λ′(dN , 1) then the large-scale interconnected system (9) is
asymptotically stabilized by the feedback (7) with

K = Y Q−1. (28)

2. If 0 > Λ̃(d2), 0 > Λ̃(dN ) and w = 0 then the disagreement dynamics (25) is
H∞-stable with K = Y Q−1. In other words, there exists a constant κ > 0 (that
depends on γ, K, B and L̄) such that, if e(t) = 0 for all t ∈ [−τ̄ , 0], one has:∫ T

0

‖e(s)‖2 ds ≤ κ
∫ T

0

‖û(s)‖2 ds. (29)

Furthermore, if û = 0, then system (25) is asymptotically stable.

Remark 4.6. If the delays are heterogeneous and an external disturbance acts on the
system, it is not difficult to see that there exists a constant κ > 0 so that for the

disagreement dynamics (25) holds
∫ T

0
‖e(s)‖2ds ≤ κ

∫ T
0

(‖û(s)‖2 +‖w(s)−1⊗ w̄(s)‖) ds.
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Large-scale systems with non-identical delays in the controls in each sub-
system can achieve asymptotic stabilization; however, multi-agent systems
with non-identical delays in the control signal cannot be fully synchronized.
The H∞ control design methods can be used to find a bound on the limit of
the norm of error for t→∞.

5. NONLINEAR LARGE-SCALE AND MULTI-AGENT SYSTEMS

In this section, nonlinear large-scale systems and nonlinear multi-agent systems are
studied. In both cases, it is assumed that the subsystems or agents admit the full exact
feedback linearization; see the Appendix for details.

5.1. Stabilization of nonlinear large-scale systems

Assume there exist functions f, g, λ satisfying Assumption A.1. Furthermore, suppose
that matrix L has the same properties as presented in Subsection 2.1. Let there also
exist vector ã ∈ Rn so that the interconnection term Ii is defined as

Ii =

N∑
j=1

lij ãλ(xj). (30)

The ith subsystem of a nonlinear large-scale system is defined as

ẋi = f(xi) + g(xi)ui + Ii, xi(0) = xi,0, i = 1, . . . , N. (31)

Let ξi = T (xi). It is worth noting that, thanks to the definition of transformation T ,
one has ξi,1 = λ(xi). As a result, for the interconnection term Ii holds

Ii =

N∑
j=1

lij ãξj,1. (32)

The exact feedback linearization converts the system ẋ = f(x) + g(x)u into a linear
form. Hence the transformed subsystem (without interconnections) reads (with vi being
the transformed input of the ith subsystem)

ξ̇i = Aξi +Bvi, i = 1, . . . , N. (33)

On the other hand, taking the interconnections into account makes the situation some-
what complicated. From the definition of the subsystem and from (52) follows that

ξ̇i = Aξi +Bvi +
∂

∂x
T
(
T −1(ξi)

) N∑
j=1

lij ãξj,1. (34)

In line with the procedure presented in [21], assume there exist matrices D′ ∈ Rn×n,
E′ ∈ Rn×n and measurable matrix-valued functions Fi : [0,∞) → Rn×n, i = 1, . . . , N ,
such that ‖Fi(t)‖ ≤ 1 and

∂

∂x
T
(
T −1(ξi)

)
= D′Fi(t)E

′ (35)
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for all t ≥ 0.

Let Z ∈ Rn×(n−1) be a zero matrix and let matrix Ã ∈ Rn×n and function F be
defined as

Ã =
(
ã|Z
)
, F(t) = diag(F1(t), . . . , FN (t)).

Let ζ = (ξT1 , . . . , ξ
T
N )T ), ω = (v1, . . . , vN )T . Then, the overall system in the transformed

coordinates obeys

ζ̇ = (IN ⊗A)ζ + (IN ⊗B)ω + (IN ⊗D′)F(t)(L⊗ E′Ã)ζ. (36)

As one can see, the problem of stabilization of a nonlinear large-scale interconnected
system has been converted into the problem of robust stabilization of a linear uncertain
system.

The only remaining issue is how to adopt the robust control algorithm in such a way
that the resulting control design procedure is independent of the number of subsystems.
This is conducted in a similar way as in the previous section. Thanks to the well-known
properties of the Kronecker product, one has (L⊗ E′Ã) = (L⊗ In)(IN ⊗ E′Ã). Let us
define the matrix-valued function F̃ and scalar µ by

µ = sup
t≥0
‖F(t)(L⊗ In)‖, F̃(t) =

1

µ
F(t)(L⊗ In), (37)

The scalar µ exists since function F is bounded. Then, with help of (37), one can rewrite
(36) as

ζ̇ = (IN ⊗A)ζ + (IN ⊗B)ω + µ(IN ⊗D′)F̃(t)(IN ⊗ E′Ã)ζ. (38)

This set of equations is coupled through the matrix-valued function F̃ . However,
throughout the process of the robust control design (which can be applied as ‖F̃(t)‖ = 1
for all t ≥ 0, hence the problem is in the standard setting of robust control problems), this
function is removed thanks to the application of the Young inequality, provided that the
Lyapunov function used to design the control law is sought in the form V = ζT (IN⊗P )ζ
where P ∈ Rn×n, P > 0, one can obtain a decentralized control law ωi = Kζi, i =
1, . . . , N (where matrix K is equal for all subsystems). As the particular control design
procedure is quite standard, the detailed description of this design procedure is omitted.

After the control for the large-scale system in the transformed coordinated has been
designed, it is necessary to express this control in the original coordinates by (51). This
yields

ui =
1

Ψ(T (xi))

(
KT (xi)− Φ(T (xi))

)
, (39)

This control asymptotically stabilizes the interconnected large-scale system composed
of N subsystems (31).
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5.2. Synchronization of nonlinear multi-agent systems

The multi-agent system to be considered in this section is composed of a set of N agents
in form

ẋi = f(xi) + g(xi)ui, i = 1, . . . , N. (40)

where functions f, g satisfy Assumption A.1 for a (chosen by the designer of the control
law) output λ. As a result, the exact feedback linearization can be conducted and the
transformation T is equal for all agents.

Remark 5.1. The output λ is chosen in the process of the controller design. Hence the
transformation T and, subsequently, the result is also dependent on this choice. On the
other hand, Assumption A.1 guarantees the existence of at least one function λ that can
be chosen as the output.

For the feedback design, we assume that only the delayed values of the state variables
are available.

The goal is to find a continuous function k : Rn ×Rn → R so that, with input signal
ui of the ith agent defined as

ui = k(xi,

N∑
j=1

εi,j(xi − xj)) (41)

the condition (3) is satisfied.
Applying the exact feedback linearization of every agent we get (with ξi = T (xi) and

vi = Ψ(ξi)ui + Φ(ξi))
ξ̇i = Aξi +Bvi. (42)

Hence, a linear multi-agent system appears.
Matrix L̄ defined as in the previous text allows us to find a compact form of the

multi-agent system: let

ζ =

 ξ1
...
ξN

 , ω =

 v1

...
vN

 . (43)

Then
ζ̇ = (IN ⊗A)ζ + (IN ⊗B)ω. (44)

As this system is linear, it is straightforward to design a linear synchronizing controller
for it. In this case, we are looking for a matrix K ∈ R1×n such that multi-agent system
(40) is synchronized if the control signal of the ith agent is equal to vi = Kξi. Then,
since the exact feedback linearization is a diffeomorphism, this implies synchronization
of the original system. Thus, we get

ζ̇ = (IN ⊗A+ L̄⊗BK)ζ. (45)

This is a standard compact description of a linear multi-agent system; to be specific, it
is free of any uncertainties. Thus, finding such a matrix K guaranteeing synchronization
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of system (45) is a standard matter; therefore, this topic is not elaborated in this paper
in more detail. The algorithms to find such a matrix are described, e. g., in [6].

In the original coordinates, the control signal is given by

ui =
1

Ψ(T (xi))

[
K
(
T (xj)− T (xi)

)
− Φ(T (xi))

]
, (46)

hence by a similar relation as in the case of interconnected large-scale systems.

A nonlinear multi-agent system can be converted to a linear one through
the exact feedback linearization. The construction of a synchronizing con-
troller for the linearized system does not require any further robustness.
Moreover, one has some degree of freedom by choosing the auxiliary output
λ for the exact feedback linearization - the only requirement is the validity
of Assumption A.1.

On the other hand, the application of the exact feedback linearization-
based method to the stabilization of the large-scale system, the output λ
appears is the definitions of the interconnections between the subsystems, it
cannot be arbitrarily chosen. Moreover, to stabilize the large-scale system,
some extra robustness of the controller is required.

6. EXAMPLE

The results of Sec. 4 suggest that the synchronization of a multi-agent system with not
equal delays is not achievable. This example demonstrates this effect.

As an example, we consider four linear oscillators with inputs, the input is denoted
as ũi

ẋ1,i = x2,i, ẋ2,i = −x1,i + ũi, i = 1, . . . , 4. (47)

To define the large-scale system, it is necessary to define the interconnection terms
Ii = 0.1(x1,i−1 + x1,i+1) for i = 2, 3, I1 = 0.1(x1,4 + x1,2) and I4 = 0.1(x1,1 + x1,3).
Then, for the large-scale system, let ũi = Ii + ui. The control ui is given as ui = Kxi
where the control gain K is obtained by (28).

In our example, we suppose the delays in the control are uniformly bounded by the
constant τ̄ = 0.25s. Hence the initial conditions are defined on the interval [−0.25, 0]s.
Solution of the LMI problem from Section 4 yields the control gainK = (0.1194, −1.0959).

The multi-agent system is composed of four systems described by Eq. (47) (agents).
We suppose the agents are interconnected with the ring topology: ui = ũi = K(2xi −
xi+1−xi−1) for i = 2, 3, u1 = K(2x1−x2−x4) and u4 = K(2x4−x1−x2). The bound
on the maximal delay in the control was in this case also set to 0.25s. The control gain
computed by the LMIs presented in Section 4 is K = (0.0233, −0.2019).

The first state of all four oscillators is shown in the following figures. Note that,
in case all delays are equal to 0.25s in all oscillators, the full synchronization can be
achieved as can be seen from Figure 1. However, if the delays satisfy the given bounds
but are not equal (we set in the example τ1 = 0.1s, τ2 = 0.15s, τ3 = 0s and τ4 = 0.25s),
full synchronization is not achieved. This is illustrated by Figure 2. On the other hand,
the large-scale interconnected system can be stabilized even if the delays are τ1 = 0.1s,



478 B. REHÁK AND V. LYNNYK

τ2 = 0.15s, τ3 = 0s and τ4 = 0.25s, the large-scale system can be asymptotically
stabilized. This means x(t)→ 0 for t→∞. as seen from Figure 3.

0 5 10 15 20 25 30

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Graphic 1

t

x
 1

i

Fig. 1. Multi-agent system, state x1,i, delays equal.

0 5 10 15 20 25 30

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Graphic 1

t

x
 1

i

Fig. 2. Multi-agent system, state x1,i, delays different.
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Fig. 3. Large-scale system, state x1,i, delays different.

7. CONCLUSIONS

The paper delivers a comparison of various aspects of the multi-agent and large-scale
interconnected systems. First, the problems of synchronization of a linear multi-agent
system and the stabilization of a linear large-scale system, in both cases with heteroge-
neous delays in the control loop were investigated. This pair of problems share several
similarities: both problems lead to a solution of a set of LMIs whose size is reduced
up to the size of one subsystem/agent; this reduction is more or less analogous. The
second problem studied in this paper was the problem of synchronization of a nonlinear
multi-agent system followed by the problem of stabilization of a nonlinear large-scale
system.

Table 1 summarizes the differences between the problems of stabilization of the large-
scale interconnected system and synchronization of multi-agent systems.

A. EXACT FEEDBACK LINEARIZATION

For the sake of completeness, the most important facts about the exact feedback lin-
earization are stated here, albeit without proofs and further details. A more extensive
treatment can be found e. g. in [11]. These facts presented in this Appendix are useful
for both the stabilization problem of a large-scale system as well as for the problem of
synchronization of a nonlinear multi-agent system.
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Large-scale intercon-
nected system

Multi-agent system

homogeneous delays stabilization possible full synchronization possi-
ble

heterogeneous delays stabilization
possible

full synchronization not
possible

nonlinear systems robust control design
needed

no additional robustness
required

nonlinear systems output λ is determined by
the problem

output λ can be defined by
the control designer

Tab. 1. Comparison of both problems.

Assume we are functions f : Rn → Rn, λ : Rn → R as well as a continuous function
g : Rn → Rn sufficiently smooth so that the Lie derivative Ln−1

f λ(x) exists (the Lie

derivative L is defined as Lfλ(x) = ∇λ(x).f(x) and Lkfλ(x) = LfLk−1
f λ(x)). Then,

define the auxiliary system

ẋ = f(x) + g(x)u, y = λ(x). (48)

Assumption A.1. System (48) has relative degree n (for the definition of the relative
degree, see [11]).

This assumption guarantees that all the states of the system affect the output - the
controlled system has no hidden dynamics. It can be relaxed to the minimum-phase
requirement (this means that the hidden dynamics may be present but is supposed to
be asymptotically stable). For our presentation, such a generalization would not be too
useful; the synchronization of minimum-phase multi-agent systems is described in [29].

The exact feedback input-output linearization defines the transformation T of the
state variables x of (1) into new coordinates ξ as follows:

ξ = T (x) = (λ(x),Lfλ(x), . . . ,Ln−1
f λ(x))T . (49)

Let matrices A ∈ Rn×n, B ∈ Rn×1 defined by

A =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0

 , B =


0
...
0
1

 .

Then, Assumption A.1 ensures the existence of continuous functions Φ,Ψ : Rn → R,
Ψ(ξ) 6= 0 for any ξ ∈ Rn on some neighborhood U of the origin so that system (48) is
transformed into the linear form

ξ̇i = Aξ +Bv, v = Ψ(ξ)u+ Φ(ξ). (50)
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This transformation is used to handle nonlinear large-scale as well as multi-agent systems
in the subsequent text.

The process to design a control law can be summarized as follows: after finding the
transformation T , the controller design is conducted for the linearized system (50). This
yields a control law in form v = ϕ(ξ) for some function ϕ : Rn → R. Since Ψ(ξ) 6= 0,
one arrives to the following expression of the control signal in the original coordinates:

u =
1

Ψ(T (x)

(
ϕ(T (x))− Φ(T (x))

)
. (51)

Remark A.2. This section was intentionally kept short. For more details see [28].

Let ∂
∂xT (x) be the Jacobi matrix of the mapping T . One can see that since ξ = T (x),

we have

Aξ +Bv = ξ̇ =
∂

∂x
T (x)ẋ =

∂

∂x
T (x)

(
f(x) + g(x)u

)
. (52)

This relation is used to derive Eq. (34).

(Received November 4, 2022)
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