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FIXED-TIME SAFE TRACKING CONTROL OF
UNCERTAIN HIGH-ORDER NONLINEAR PURE-FEEDBACK
SYSTEMS VIA UNIFIED TRANSFORMATION FUNCTIONS

Chaoqun Guo, Jiangping Hu, Jiasheng Hao, Sergej Čelikovský, and
Xiaoming Hu

In this paper, a fixed-time safe control problem is investigated for an uncertain high-order
nonlinear pure-feedback system with state constraints. A new nonlinear transformation function
is firstly proposed to handle both the constrained and unconstrained cases in a unified way.
Further, a radial basis function neural network is constructed to approximate the unknown
dynamics in the system and a fixed-time dynamic surface control (FDSC) technique is developed
to facilitate the fixed-time control design for the uncertain high-order pure-feedback system.
Combined with the proposed unified transformation function and the FDSC technique, an
adaptive fixed-time control strategy is proposed to guarantee the fixed-time tracking. The
novel original results of the paper allow to design the independent unified flexible fixed-time
control strategy taking into account the actual possible constraints, either present or missing.
Numerical examples are presented to demonstrate the proposed fixed-time tracking control
strategy.

Keywords: fixed-time safe control, nonlinear pure-feedback systems, state constrains, dy-
namic surface control, unified transformation function

Classification: 93D15, 70K20

1. INTRODUCTION

Convergence rate has been an important performance index of control systems. Finite-
time control can ensure that the system state reaches the desired equilibrium in finite
time [2, 12, 14] and it has become widely employed in many practical scenarios, such
as variable length pendulum swing [4], vehicle tracking [6,24] and finite-time consensus
in dynamic networks [10]. However, the so-called settling time, needed to reach the
equilibrium, is generally dependent on initial states and no finite bound of settling times
is guaranteed for noncompact sets of initial conditions. To overcome this drawback, the
concept of homogeneity in bi-limit was introduced in [1] to provide conditions for the
so-called fixed-time stability, i. e. the existence of a finite bound of the settling time.
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Unfortunately, homogeneous approach does not allow to adjust or even estimate the
settling time. To overcome this problem, [25] introduced a special modification of the
so-called nested (terminal) second order sliding mode control algorithm that provided
fixed-time stability of the origin and allowed to adjust the global settling time of the
closed-loop system. An indirect method based on a comparison principle was developed
in [13] to compute the upper bound of the settling time of uncertain integrator systems.

In this paper, the so-called pure-feedback systems will be considered. Pure-
feedback systems were introduced and thoroughly studied in [17] along with their more
specific version – the so-called strict feedback system. Alternatively, the terminology
“triangular form system” was used in the literature, see e.g [5] and references within
there. Note that, the references [5, 17] provided “classical” asymptotical stabilization
only, though [5] used nonsmooth homogeneous approximation, yet with a positive degree,
unlike the negative degree homogeneity used for finite-time stability.

Up to now, only a few studies were presented for the fixed-time control of pure-
feedback systems having nonaffine connections between cascades, unlike less general
strict-feedback systems where the cascade connection is affine and therefore easier to
handle. In particular, [27, 28] provided the design of the fixed-time controllers for high-
order integrator systems and strict-feedback systems only. At the same time, as correctly
noted already in [17], many practical systems are commonly modelled as pure-feedback
systems.

Besides the fast convergence rate, safety is also a crucial requirement for control
systems. In recent years, safe controls have attracted much attention with the develop-
ment of practical safety-critical systems, such as robotic systems, chemical plants, and
autonomous vehicles [11, 23]. The output or state variables in safety-critical systems
are usually constrained to ensure safeties [15]. In order to address safe control prob-
lems, barrier Lyapunov function (BLF) methods were commonly applied in the control
design. For example, log-type BLF [18], tan-type BLF [8] and log-type integral BLF
(IBLF) [20] methods were proposed to deal with static output/full-state constraints.
Moreover, reference [7] employed BLF method to tackle a dynamic full-state constraint
problem. However, BLF-based controls often depend on some feasibility conditions [26],
which need extra complex offline calculations and even have no solution due to small
thresholds of output/state constraints. In order to overcome such drawbacks, a nonlinear
transformation function (NTF) technique was developed in [30], which can transform
the original system with state constraints into an unconstrained system. Then, the
boundedness of the transformed system can ensure that the constraints of the original
system were satisfied. Moreover, NTF methods do not need additional feasibility con-
ditions. Therefore, NTF methods have been widely concerned so far. In [31], a new
NTF structure was proposed to solve a tracking control problem for state-constrained
strict-feedback systems.

It is worthy of noting that in some scenarios, control systems have constrained and
unconstrained states, simultaneously. Unfortunately, most of the existing safe control
strategies are just proposed for control systems with state constraints. Reference [16]
introduced a barrier function to tackle this situation, which relied on some complex fea-
sibility conditions. Recently, reference [3] proposed a nonlinear transformation function
to deal with the constrained and unconstrained cases in a unified way. Additionally,
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another unified nonlinear transformation function was proposed in [21] for stochastic
systems. However, the safety-critical methods presented in the references mentioned
above can only achieve asymptotic convergence or finite-time convergence. At the same
time, the existing fixed-time controls established for state constrained systems fail in the
cases with both constrained and unconstrained states. Although reference [22] designed
a unified fixed-time controller for robotic systems with state constraints, it was only
applicable to second-order systems.

As far as we know, fixed-time control of pure-feedback nonlinear systems with both
constrained and unconstrained states has not been studied and suffers from the fol-
lowing two difficulties: construction of nonlinear transformation functions and design
of fixed-time controllers. Motivated by the above discussions, this paper attempts to
study the fixed-time control of uncertain high-order pure-feedback nonlinear systems
with or without state constraints. To overcome the first difficulty, we construct a unified
nonlinear transformation function to handle both constrained and unconstrained cases.
For the second difficulty, we develop a new fixed-time dynamic surface control (FDSC)
technique to facilitate fixed-time control design and reduce computational complexity.

In view of the previous exposition, the contributions of this paper are as follows:

1. A unified nonlinear transformation function is proposed to transform the original
constrained system into an unconstrained one. The proposed nonlinear transfor-
mation can ensure that an unconstrained system is a special case of the constrained
system. At the same time, the safe fixed-time control problem of the constrained
system can be transformed to a fixed-time control problem of an unconstrained
system.

2. A new FDSC technique is developed to facilitate fixed-time control design for
the high-order pure-feedback nonlinear system. In contrast to dynamic surface
control (DSC) technique proposed in [30], the new FDSC technique developed
in this paper not only reduces computational cost, but also achieves fixed-time
convergence. Compared to the DSC technique proposed in [19], the new FDSC
technique can simplify the fixed-time convergence analysis.

3. Based on the proposed unified nonlinear transformation function and FDSC tech-
nique, an adaptive neural network based fixed-time control strategy is proposed
for the high-order pure-feedback nonlinear system with unknown dynamics. Thus,
the proposed control strategy, in addition to handling the constrained and un-
constrained cases in a unified way, even ensures practical fixed-time tracking for
uncertain systems.

The rest of the paper is organized as follows. Section 2 presents some preliminaries
and problem formulation. In Section 3, the construction of a unified nonlinear trans-
formation function and the design of an adaptive fixed-time control strategy are given.
Simultaneously, practical fixed-time convergence is analyzed for the closed-loop system
under the proposed control strategy. Simulation examples are given to validate the
proposed fixed-time safe control strategy in Section 4. Conclusions are presented in
Section 5.
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2. PRELIMINARIES AND PROBLEM FORMULATION

2.1. Preliminaries

Throughout the paper, the following dynamical system having the equilibrium at the
origin will be considered

ẋ = f(t, x), f(t, 0) ≡ 0, x ∈ D ⊂ Rn, (1)

where the right hand side f(t, x) : R+ × D 7→ Rn satisfies the assumptions for the
existence of the solution in the Fillipov’s sense [9]. More specifically, f(t, x) is piecewise
continuous with respect to t ≥ 0 for any fixed x ∈ D and for any fixed t > 0 it
is continuous with respect to x ∈ D except some smooth submanifolds of D where
it is discontinous and has a finite collection of limit points when x approaches that
discontinuity manifold. Here, D is a domain (open simply connected subset) in Rn
containing its origin. Further, denote by x(t, x0) the solution of (1) such that x(t0, x0) =
x0, where t0 ≥ 0 is the initial time. Unless stated otherwise, in the sequel t0 = 0 and
D = Rn.

Definition 2.1. (Polyakov [25]) The origin of system (1) is said to be globally finite-
time stable on Rn, if it is globally asymptotically stable and ∀x0 ∈ Rn there exists a
positive constant T (x0) such that x(t, x0) = 0,∀t ≥ T (x0). The function T (x0) : Rn 7→
R+ is further referred to as the settling function.

Definition 2.2. (Polyakov [25]) The origin of system (1) is said to be fixed-time stable
if it is globally finite-time stable and the settling time function T (x0) is globally bounded
on Rn, i. e., ∃Tmax > 0: T (x0) ≤ Tmax, ∀x0 ∈ Rn.

Definition 2.3. The origin of system (1) is said to be practically fixed-time stable on
Rn, if it is stable and ∀ε > 0 there exists a positive constant Tmax(ε) such that ∀x0 ∈ Rn
there exists T (x0), Tmax(ε) > T (x0) ≥ 0 and ∀t > T (x0) it holds that ‖x(t, x0)‖ ≤ ε.
The function T (x0) is further referred as the practical settling time.

Lemma 2.4. (Liu et al. [22]) The system (1) is practically fixed-time stable if ∀δ > 0
there exist a positive definite function Vδ(t, x) and parameters k1 > 0, k2 > 0, 0 < γ < 1,
β > 1, and 0 < θ < 1 such that

V̇δ(t, x) ≤ −k1Vδ(t, x)γ − k2Vδ(t, x)β + δ.

Furthermore, there exists a settling time T such that

Vδ(t, x) ≤ min
{( δ

k1θ

) 1
γ ,
( δ

k2θ

) 1
β

}
,

when t ≥ T , and the upper bound of the settling time T is given by:

T ≤ 1

k1(1− θ)(1− γ)
+

1

k2(1− θ)(β − 1)
.

The following Lemmas are straightforward and were used e. g. in [29].
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Lemma 2.5. (Yang and Ye [29]) For arbitrary constants x1 > 0, x1 ≥ x2, and p > 1,
it holds:

(x1 − x2)p ≥ xp2 − x
p
1.

Lemma 2.6. (Yang and Ye [29]) For arbitrary constants p > 0, x1 ≥ 0, and x2 > 0, it
holds:

xp1(x2 − x1) ≤ 1

1 + p
(x1+p

2 − x1+p
1 ).

Lemma 2.7. (Yang and Ye [29]) For arbitrary constants xi ∈ R and p > 0, it holds:

(

n∑
i=1

|xi|)p ≤ max(np−1, 1)

n∑
i=1

|xi|p.

Radial basis function neural networks are widely employed to approximate the un-
known continuous nonlinear functions in the fields of adaptive control and machine
learning. A linearly parameterized model can be used to approximate an unknown
continuous function F (x) ∈ R as follows:

F (x) = W>S(x) + ε(x), x ∈ Rn, (2)

where W ∈ RN is the weight vector of a radial basis function neural network and
S(x) = [S1(x), . . . , SN (x)]T ∈ RN is the basis function vector. More specifically,

Si(x) = exp
[
− (x− τi)T (x− τi)

ψ2
i

]
, i = 1, . . . , N, (3)

where ψi ∈ R, τi ∈ Rn are the so-called width and the so-called center of the basis
function, respectively. Finally, ε ∈ R is the estimation error.

Assumption 2.8. In the linearly parameterized model (2), ‖W‖ ≤ W̄ , |ε| ≤ ε1, where
W̄ and ε1 are unknown positive constants. In the sequel, denote w = max{W̄ , ε1}.

2.2. Problem formulation

Consider the following pure-feedback system [5]:
ẋi = fi(x̄i, xi+1), i = 1, . . . , n− 1

ẋn = fn(x̄n, u),

y = x1,

(4)

where x = [x1, . . . , xn]T ∈ Rn is the state; x̄i denotes [x1, . . . , xi]
T ∈ Ri; y ∈ R is the

scalar output; u ∈ R is the the scalar control input and fi(·) (i = 1, . . . , n) are unknown
continuous nonlinear functions. The system is required to satisfy the following state
constraints:

− hi1(t) < xi(t) < hi2(t), i = 1, . . . , n, (5)

where the time-varying bounds hi1(t) and hi2(t) are strictly positive functions.
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Assumption 2.9. The functions hi1(t), hi2(t) and their derivatives are uniformly bounded
on R+.

Assumption 2.10. The initial states satisfy −hi1(0) < xi(0) < hi2(0) for i = 1, . . . , n.

Assumption 2.11. fi(x̄i, xi+1) (i = 1, . . . , n−1) and fn(x̄n, u) are continuously differ-
entiable for all x ∈ Rn.

Assumption 2.12. Let gn(x̄n, u) := ∂fn(x̄,u)
∂u . It holds that g

n
≤ gn(·) ≤ gn, where g

n
,

gn are unknown positive constants.

Further, assume that the reference output yd is given to be followed by the output of
the nonlinear system (4).

Assumption 2.13. The reference output yd(t) satisfies the constraint (5), i. e., −h11(t) <
yd(t) < h12(t). Moreover, the reference output yd(t), its first and its second derivatives
are uniformly bounded on R+.

The aim of this paper is to design a practical fixed-time controller for the system (4)
providing the given reference output tracking, that is,

|y(t)− yd(t)| ≤ ζ, ∀t > T,

where T, ζ are some positive constants and at the same time the designed controller
guarantees that the state constraints (5) are not violated at any time.

3. MAIN RESULTS

This section is divided into two parts. Subsection 3.1 introduces a unified nonlinear
transformation function to transform the original constrained system (4) to a new un-
constrained system. Subsection 3.2 gives the practical fixed-time controller to achieve
the previously formulated tracking goal.

3.1. Unified nonlinear transformation function

Consider the system (4) and the constraint (5). A unified nonlinear transformation
function is proposed as follows:

ξi(t) =
hi1(t) + hi2(t)

4
ln
hi1(t) + xi(t)

hi2(t)− xi(t)
. (6)

The nonlinear transformation (6) has the following property. For any t ≥ 0 it holds:
(i) lim

xi(t)→−hi1(t)
ξi(t) = −∞;

(ii) lim
xi(t)→hi2(t)

ξi(t) = +∞;

(iii) lim
hi1(t)=hi2(t)→+∞

ξi(t) = xi(t).

(7)
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The properties (i) and (ii) can be easily obtained. When hi1(t) = hi2(t) → +∞, by
straightforward computations, we can also verify that the property (iii) holds.

According to the properties (1) and (2), one can obtain that if ξi(t) is bounded,
then the condition −hi1(t) < xi(t) < hi2(t) holds for any −hi1(0) < xi(0) < hi2(0).
Therefore, in order to ensure that the constraints are not violated, just ensure that ξi(t)
is bounded. For the property (3), hi1(t) = hi2(t) = +∞ means that there is no state
constraint and thus ξi(t) = xi(t). Consequently, the proposed transformation (6) can
deal with the cases with and without state constraints in a unified manner.

Remark 3.1. The proposed transformation function (6) is different from the existing
transformation functions given in [30, 31], which can only deal with the case with state
constraints. In this paper, the proposed transformation function (6) can be applied to
safe control problems in the following situations: 1) All states are constrained; 2) All
states are not constrained; 3) Partial state variables are constrained while the remaning
state variables are not constrained. From this perspective, the proposed NTF (6) can
deal with the case with constrained and unconstrained states in a unified way.

Using (4), (6), and differentiating ξ = [ξ1, . . . , ξn]T yields:{
ξ̇i = ϕi[Fi(x̄i+1, ξi+1) + ξi+1] + ψi, i = 1, . . . , n− 1,

ξ̇n = ϕn[Fn(x̄n) + gnu] + ψn,
(8)

where

ϕi =
∂ξi
∂xi

=

(
hi1(t) + hi2(t)

)2
4
(
hi1(t) + xi(t)

)(
hi2(t)− xi(t)

) ,
ψi =

hi1(t) + hi2(t)

4

( ḣi1(t)

hi1(t) + xi(t)
− ḣi2(t)

hi2(t)− xi(t)

)
+
ḣi1(t) + ḣi2(t)

4
ln
hi1(t) + xi(t)

hi2(t)− xi(t)
,

Fi(x̄i+1, ξi+1) = fi(x̄i, xi+1)− ξi+1, i = 1, . . . , n− 1,

Fn(x̄n) = fn(x̄n),

and fn(x̄n) = fn(x̄n, 0).
Obviously, the original system (4) with the state constraint (5) is transformed to an

unconstrained system (8). The constraints on the state x can be guaranteed by ensuring
the boundedness of the variable ξ. In sequel, based on the transformed system (8), we
need to design a fixed-time controller to not only ensure that the state constraints are
not violated, but also realize the practical fixed-time output tracking.

3.2. Control design and convergence analysis

According to the unified nonlinear transformation function (6) and Assumption 2.13,
a nonlinear transformation function is given for the reference output yd as follows:

ξd(t) =
hi1(t) + hi2(t)

4
[ln(hi1(t) + yd)− ln(hi2(t)− yd)]. (9)
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Define an error system as follows:{
ζ1 = ξ1 − ξd,
ζi = ξi − αif , i = 2, . . . , n,

(10)

where αif is a dynamic variable designed by the following fixed-time dynamic surface
control (FDSC) technique:

λiα̇if = (αi−1 − αif )r1 + (αi−1 − αif )r2 + αi−1 − αif , i = 2, . . . , n, (11)

where r1 = m
n , r2 = p

q , and m < n, p > q are positive odd numbers, λi is a positive
constant, and αi−1, i = 2, . . . , n, are the virtual controllers to be designed latter.

Remark 3.2. Obviously, the equilibrium point of (11) is αi−1, thus the state αif will
converge to αi−1. Then we can regard αif in (11) as an estimation of αi−1, and its
derivative α̇if as an estimation of α̇i−1. Here, the FDSC technique is used to generate the
derivative α̇ifand replace α̇i−1 appearing in the backstepping design process. Thus there
is no need to calculate the derivative of the virtual controller αi−1. In contrast to the
dynamic surface control (DSC) method proposed in [29], the fixed-time dynamic surface
control (FDSC) (11) not only reduces computational cost in the control design, but
also ensures the fixed-time convergence. Moreover, compared with the DSC technique
proposed in [30], the FDSC (11) had an additional term αi−1 − αif , which can bring a
faster estimation speed and improve the fixed-time convergence rate of the closed-loop
system.

According to the error system (10) and backstepping-like design method, we design
the controller u as follows:

u =− ρnϕnânµ2
nζn −

ψ2
nζn
ϕn

−
α̇2
nfζn

ϕn

−
ϕ2
n−1ζ

2
n−1ζn

ϕn
− kn1

ϕn
ζr1n −

kn2

ϕn
ζr2n ,

(12)

˙̂an = ρnϕ
2
nµ

2
nζ

2
n − σn1â

r1
n − σn2â

r2
n , (13)

where ρn, σn1, and σn2 are positive constants, µn is a positive variable defined in con-
troller design process. The design process of the controller u is shown in Appendix A.

Under the controller (12), the main control results are shown in Theorem 3.3

Theorem 3.3. Consider the uncertain high-order pure-feedback system (4) with the
state constraints given by (5). Under the Assumptions 2.8 – 2.11, the proposed controller
(12) can achieve the following objectives:

(1) The closed-loop system is practically fixed-time stable.

(2) The output tracking error e = y − yd is bounded in fixed time.

(3) The state constraints are satisfied all the time.

P r o o f . See the Appendix B. �
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4. SIMULATION EXAMPLE

In this section, two examples are presented to demonstrate the proposed fixed-time safe
control strategy. Example 4.1 verifies the effectiveness of the fixed-time control strategy
for the system with full state constraints. Example 4.2 shows that the proposed control
strategy can still work for the system with partial state constraints.

Example 4.1. Consider the following pure-feedback nonlinear system:
ẋ1 = x1 + x2 + x2

2,

ẋ2 = x1x2 + u+ 0.1 sin(u),

y = x1.

(14)

The state constraint functions are given by h11(t) = 0.5 + 0.3 sin(t), h12(t) = 0.6 −
0.2 sin(t), h21(t) = 0.5 + 0.2 cos(t), and h22(t) = 0.5 + 0.2 cos(t). The reference output
is given by yd = 0.1 sin(0.5t).

The initial states are given as x(0) = [0.2,−0.2]T . The parameters in the controller
(43) are selected as follows: k11 = k12 = k21 = k22 = 2, σ11 = 0.2, σ12 = 0.5, σ21 = 0.3,
σ22 = 0.4, ρ1 = ρ2 = 0.0005, λ2 = 0.1, r1 = 97/99, and r2 = 99/97. The parameters
of the neural network approximation of F1(X1) are choosen as follows: ψi = 3, τi =
[−τii, 0, τii]T (i = 1, . . . , 5). The parameters of the neural network approximation of
F2(X2) are choosen as follows: ψi = 3, τi = [−τii, τii]T (i = 1, . . . , 5). Here, τii are
selected as 1, 2, 3, 4 and 5, respectively.

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 1. The trajectories of the state x1 and the reference output yd.

Figure 1 illustrates the trajectories of the state x1 and the desired output yd. In
Figure 1, we can see that state x1 can track the reference output yd at about T = 5s under
the proposed safe controller (43). Moreover, the state x1 satisfies the given constraint
all the time. Figure 2 illustrates the trajectory of the state x2. From Figure 2, we can
see that x2 is always within the constraint. Figure 3 shows the trajectory of the tracking
error and demonstrates that the output tracking error is bounded in fixed time, that is,
|e| ≤ 0.05 for t ≥ 5s. Additionally, the evolution of the controller u is shown in Figure 4,
which shows that the controller changes smoothly.
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Fig. 2. The trajectory of the state x2.
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Fig. 3. The trajectory of the output tracking error e.
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Fig. 4. The trajectory of controller u.
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0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 5. The trajectories of the state x1 and the reference output yd.
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Fig. 6. The trajectory of the state x2.
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Fig. 7. The trajectory of the output racking error e.
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Fig. 8. The trajectory of the control input u.

Example 4.2. For the pure-feedback nonlinear system (14), we assume that the state
x1 is constrained by h11(t) = 0.5 + 0.3 sin(t) and h12(t) = 0.6 − 0.2 sin(t), while the
state x2 has no constraint, that is h21(t) = h22(t) ≡ +∞. The initial state is given by
x(0) = [0.2,−0.3]T . Set k11 = 2, k12 = 1, k21 = k22 = 2. Other parameters are similar
with those in Example 4.1.

The trajectories of the states x1 and x2 are shown in Figure 5 and Figure 6, respec-
tively. From Figure 5 and Figure 6, it can be found that x1 and x2 are bounded while
x1 does not violate its constraint all the time. Moreover, the output tracking error
|e| ≤ 0.05 for t ≥ 4.3s, which is illustrated in Figure 7. Figure 8 shows the smooth
trajectory of the controller u.

The above simulation results show that the proposed fixed-time safe controller can
deal with the output tracking problem for the uncertain pure-feedback nonlinear system
with and without state constraints while keeping one control structure.

5. CONCLUSIONS

This paper has solved the fixed-time output tracking problem for uncertain high-order
pure-feedback systems with and without state constraints in a unified way. A non-
linear transformation function method has been proposed to deal with the cases with
and without state constraints. With the help of the unified nonlinear transformation,
the fixed-time safe control problem has been transformed to just a fixed-time control
problem. At the same time, a fixed-time dynamic surface control technique has been de-
veloped to facilitate the fixed-time controller design. Thus, an adaptive neural network
based fixed-time control strategy has been proposed for the uncertain pure-feedback
nonlinear system. Theoretical results have shown that the fixed-time convergence of the
output tracking error can be achieved and all the state constraints can always be sat-
isfied under the proposed control strategy. Moreover, the effectiveness of the proposed
control strategy has been validated by numerical simulations.
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APPENDIX

A. DESIGN PROCESS OF THE CONTROLLER U

In this subsection, we present the design process of the controller u by backstepping-like
design method. First, define

yi = αif − αi−1, i = 2, . . . , n, (15)

where αif is generated by the FDSC technique in (11), αi−1 is the virtual controller designed
latter. Next, we design the virtual controller αi−1 at the (i− 1)th step, and the controller u at
the nth step.

Step 1: Differentiating ζ1 yields:

ζ̇1 = ϕ1[F1(x1, x2, ξ2) + ξ2] + ψ1 − ξ̇d. (16)

According to (10) and (15), it follows that ξ2 = ζ2 + y2 + α1. Then, we have

ζ̇1 = ϕ1[F1(x1, x2, ξ2) + ζ2 + y2 + α1] + ψ1 − ξ̇d. (17)

Using the neural network based approximation (2), F1(x1, x2, ξ2) = F1(X1) can be approx-
imated as follows:

F1(X1) = WT
1 S(X1) + ε1(X1), (18)

where X1 = [x1, x2, ξ2]T , W1 ∈ RN and S(X1) ∈ RN are the ideal weight vector and basis
function vector respectively, and ε1(X1) is the estimation error. According to Assumption 2.8,
we have ||W1|| ≤ W̄1, |ε1| ≤ ε11, where W̄1 and ε11 are unknown positive constants.

Let w1 = max{W̄1, ε11}, then one has

F1(X1) ≤ w1µ1(X1),

where µ1(X1) = ||S(X1)||+ 1.

Next, the virtual controller α1 is designed as follows:

α1 =− ρ1â1ϕ1µ
2
1ζ1 − ϕ1ζ1 +

ξ̇d
ϕ1
− ψ1

ϕ1

− k11
ϕ1

ζr11 −
k12
ϕ1

ζr21 ,

(19)

where k11, k12, and ρ1 are positive constants, r1 and r2 are defined in (11). Let â1 be the
estimation of a1 = w2

1, which is determined by the following adaptive law:

˙̂a1 = ρ1ϕ
2
1µ

2
1ζ

2
1 − σ11â

r1
1 − σ12â

r2
1 , (20)

where σ11 and σ12 are positive constants.
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According to Young’s inequality, we have the following inequalities:

ϕ1ζ1F1 ≤ |ϕ1ζ1w1µ1| ≤ ρ1w2
1ϕ

2
1µ

2
1ζ

2
1 +

1

4ρ1
, (21)

ϕ1ζ1y2 ≤ ϕ2
1ζ

2
1 +

y22
4
, (22)

where ρ1 is defined in (19).
Then, we construct a Lyapunov function as follows:

V1 =
1

2
ζ21 +

1

2
ã21 +

1

2
y22 , (23)

where ã1 = a1 − â1.
Calculating the derivative of V1 and employing the virtual controller (19), and inequalities

(21), (22), we have

V̇1 ≤ρ1ã1ϕ2
1µ

2
1ζ

2
1 + ϕ1ζ1ζ2 − k11ζ1+r11 − k12ζ1+r21 +

y22
4

+
1

4ρ1
+ ã1 ˙̃a1 + y2ẏ2

=ρ1ã1ϕ
2
1µ

2
1ζ

2
1 + ϕ1ζ1ζ2 − k11ζ1+r11 − k12ζ1+r21 +

y22
4

+
1

4ρ1
− ã1 ˙̂a1 + y2ẏ2.

(24)

Using the adaptive law (20), we have

−ã1 ˙̂a1 = −ρ1ã1ϕ2
1µ

2
1ζ

2
1 + σ11ã1â

r1
1 + σ12ã1â

r2
1 .

Since ã1 = a1−â1, thus σ11ã1â
r1
1 and σ12ã1â

r2
1 can be written as σ11â

r1(a1−â1) and σ12â
r2
1 (a1−

â1), respectively. By analyzing the adaptive law (20), it can be verified that for any given
initial value â1(0) ≥ 0, one has â1(t) ≥ 0 if ˙̂a1(t) ≥ 0. It is noted that σ11 and σ12 are positive
constants. If ˙̂a1(t) < 0, then â1(t) will decrease until â1(t) = 0 at a certain time td. Due to the
fact that ρ1ϕ

2
1µ

2
1ζ

2
1 ≥ 0, it can be found that ˙̂a1(t) ≥ 0 when â1(t) = 0. Therefore, â1(t) ≥ 0

after t ≥ td. Thus, if we choose an initial value â1(0) ≥ 0, then we have â1(t) ≥ 0.
According to Lemma 2.6, we have

σ11â
r1
1 ã1 = σ11â

r1
1 (a1 − â1)

≤ σ11
1

1 + r1
(a1+r11 − â1+r11 )

= σ11
1

1 + r1
(a1+r11 − [a1 − ã1]1+r1).

When â1(t) > 0, we have a1(t) > ã1(t). From Lemma 2.5, we have

σ11â
r1
1 ã1 ≤ σ11

1

1 + r1
(a1+r11 + a1+r11 − ã1+r11 )

=
2σ11

1 + r1
a1+r11 − σ11

1 + r1
ã
2× 1+r1

2
1 .

(25)

Similarly, we also have

σ12â
r2
1 ã1 ≤

2σ12

1 + r2
a1+r21 − σ12

1 + r2
ã
2× 1+r2

2
1 .
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Thus we have

−ã1 ˙̂a1 ≤−
σ11

1 + r1
ã
2× 1+r1

2
1 − σ12

1 + r2
ã
2× 1+r2

2
1

+
2σ11

1 + r1
a1+r11 +

2σ12

1 + r2
a1+r21

− ρ1ã1ϕ2
1µ

2
1ζ

2
1 .

(26)

From equations (11) and (15), we have

y22
4

+ y2ẏ2

=
y22
4

+ y2[− 1

λ2
yr12 −

1

λ2
yr22 −

1

λ2
y2 − α̇1]

=
y22
4
− 1

λ2
|y2|1+r1 −

1

λ2
|y2|1+r2 −

1

λ2
y22 − y2ν2

≤ y22
4
− 1

λ2
|y2|1+r1 −

1

λ2
|y2|1+r2 −

1

λ2
y22 +

y22
4

+ ν22

= − 1

λ2
|y2|1+r1 −

1

λ2
|y2|1+r2 − (

1

λ2
− 1

2
)y22 + ν22

≤ − 1

λ2
(y22)

1+r1
2 − 1

λ2
(y22)

1+r2
2 + ν22

(27)

for 0 < λ2 < 2, where ν2 = α̇1 = ∂α1
∂ζ1

ζ̇1 + ∂α1
∂ϕ1

ϕ̇1 + ∂α1
∂ψ1

ψ̇1 + ∂α1
∂â1

˙̂a1 + ∂α1
∂µ1

µ̇1 + ∂α1

∂ξ̇d
ξ̈d.

Then, applying the inequalities (26) and (27) to (24) yields:

V̇1 ≤ϕ1ζ1ζ2 − k11(ζ21 )
1+r1

2 − k12(ζ21 )
1+r2

2

− σ11

1 + r1
(ã21)

1+r1
2 − σ12

1 + r2
(ã21)

1+r2
2

− 1

λ2
(y22)

1+r1
2 − 1

λ2
(y22)

1+r2
2 + Λ1,

(28)

where Λ1 = 2σ11
1+r1

a1+r11 + 2σ12
1+r2

a1+r21 + ν22 + 1
4ρ1

.

Step i (i=2,. . . ,n-1): Differentiating ζi results in:

ζ̇i = ϕi[Fi(x̄i+1, ξi+1) + ξi+1] + ψi − α̇if . (29)

Since ξi = ζi + yi + αi−1, thus ζ̇i can be rewritten as follows:

ζ̇i = ϕi[Fi(x̄i+1, ξi+1) + ζi+1 + yi+1 + αi] + ψi − α̇if . (30)

According to the neural network approximation (2), we approximate Fi(x̄i+1, ξi+1) as fol-
lows:

Fi(Xi) = WT
i S(Xi) + εi(Xi), (31)

where Xi = [x̄i+1, ξi+1]T , Wi ∈ RN , S(Xi) ∈ RN , εi(Xi) ∈ R. From Assumption 2.8, it
follows that ||Wi|| ≤ W̄i, |εi| ≤ εi1, where W̄i and εi1 are unknown positive constants. Define
wi = max{W̄i, εi1}, then the following inequality holds:

Fi(Xi) ≤ wiµi(Xi), (32)

where µi(Xi) = ||S(Xi)||+ 1.
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Design the ith virtual controller αi as follows:

αi =− ρiâiϕiµ2
i ζi − ϕiζi −

ψi
ϕi

+
α̇if
ϕi
− ki1ζr1i

− ki2ζr2i −
ϕi−1

ϕi
ζi−1,

(33)

where ki1, ki2, and ρi are positive constants, r1 and r2 are defined in (11). âi is employed to
estimate ai = w2

i and determined by the following adaptive law:

˙̂ai = ρiϕ
2
iµ

2
i ζ

2
i − σi1âr1i − σi2â

r2
i , (34)

where σi1 and σi2 are positive constants.
Using the Young’s inequation, the following inequalities can be obtained:

ϕiζiFi ≤ |ϕiζiwiµi| ≤ ρiw2
iϕ

2
iµ

2
i ζ

2
i +

1

4ρi
,

ϕiζiyi+1 ≤ ϕ2
i ζ

2
i +

y2i+1

4
,

(35)

where ρi is defined in (33).
Next, we construct the Lyapunov function Vi as follows:

Vi =
1

2
ζ2i +

1

2
ã2i +

1

2
y2i+1, (36)

where ãi = ai − âi.
Using the virtual controller αi (33), the adaptive law (34), and inequalities (35), and calcu-

lating the derivative of Vi, we have

V̇i ≤ρiãiϕ2
iµ

2
i ζ

2
i + ϕiζiζi+1 − ϕi−1ζi−1ζi − ki1ζ1+r1i

− ki2ζ1+r2i +
y2i+1

4
+

1

4ρi
+ ãi ˙̃ai + yi+1ẏi+1

≤ϕiζiζi+1 − ϕi−1ζi−1ζi − ki1ζ1+r1i − ki2ζ1+r2i

+
y2i+1

4
+

1

4ρi
+ σi1ãiâ

r1
i + σi2ãiâ

r2
1 + yi+1ẏi+1.

(37)

For the adaptive law (34), it follows that âi(t) > 0, ∀t > 0 for a positive initial value âi(0).
Thus ai > ãi when âi(0) > 0. According to Lemma 2.5 and Lemma 2.6, we have

σi1â
r1
i ãi = σi1â

r1
i (ai − âi)

≤ σi1
1

1 + r1
(a1+r1i − â1+r1i )

= σi1
1

1 + r1
(a1+r1i − [ai − ãi]1+r1)

≤ σi1
1

1 + r1
(a1+r1i + a1+r1i − ã1+r1i )

=
2σi1

1 + r1
a1+r1i − σi1

1 + r1
ã
2× 1+r1

2
i .

(38)

Similarly, we also have

σi2â
r2
i ãi ≤

2σi2
1 + r2

a1+r2i − σi2
1 + r2

ã
2× 1+r2

2
i . (39)
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Furthermore, from the definitions of yi in (15) and the dynamic variable αif in (11), we
have

ẏi = − 1

λi
yr1i −

1

λi
yr2i −

1

λi
yi − νi,

where νi = α̇i−1. Then we have

y2i+1

4
+ yi+1ẏi+1

= − 1

λi+1

(
|yi+1|1+r1 + |yi+1|1+r2 + y2i+1

)
+
y2i+1

4
− yi+1νi+1

≤ − 1

λi+1
|yi+1|1+r1 −

1

λi+1
|yi+1|1+r2

− (
1

λi+1
− 1

2
)y2i+1 + ν2i+1

≤ − 1

λi+1
(y2i+1)

1+r1
2 − 1

λi+1
(y2i+1)

1+r2
2 + ν2i+1

(40)

when 0 < λi+1 < 2.

Applying the inequalities(38)-(40) to (37), we have

V̇i ≤ϕiζiζi+1 − ϕi−1ζi−1ζi − ki1(ζ2i )
1+r1

2 − ki2(ζ2i )
1+r2

2

− σi1
1 + r1

(ã2i )
1+r1

2 − σi2
1 + r2

(ã2i )
1+r2

2

− 1

λi+1
(y2i+1)

1+r1
2 − 1

λi+1
(y2i+1)

1+r2
2 + Λi,

(41)

where Λi = 2σi1
1+r1

a1+r1i + 2σi2
1+r2

a1+r2i + ν2i+1 + 1
4ρi

.

Step n: In this step, a fixed-time safe controller will be given. Differentiating ζn yields:

ζ̇n = ϕn[Fn(x̄n) + gnu] + ψn − α̇nf . (42)

It is noted that Fn(x̄n) can be approximated by:

Fn(x̄n) = WT
n S(x̄n) + εn(x̄n) ≤ wnµn(x̄n),

where ||Wn|| ≤ W̄n, |εn| ≤ εn1, wn = max{W̄n, εn1}, and W̄n, εn1 are unknown positive
constants. According to Young’s inequality, we have the following inequalities:

ϕnζnFn ≤ g
n
ρnϕ

2
nw

2
nµ

2
nζ

2
n +

1

4ρng
n

,

ψnζn ≤ g
n
ψ2
nζ

2
n +

1

4g
n

,

− ζnα̇nf ≤ g
n
α̇2
nfζ

2
n +

1

4g
n

,
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where ρn > 0, g
n
> 0 is the lower bound of gn. Define an = w2

n, then we have

ζnζ̇n = ϕnζnFn + ϕnζngnu+ ζnψn − ζnα̇nf

≤ g
n
ρnϕ

2
nanµ

2
nζ

2
n +

1

4ρng
n

+ g
n
ψ2
nζ

2
n + g

n
α̇2
nfζ

2
n

+
1

2g
n

+ ϕnζngnu.

It is time to design the controller u as follows:

u =− ρnϕnânµ2
nζn −

ψ2
nζn
ϕn

−
α̇2
nfζn

ϕn

− ϕ2
n−1ζ

2
n−1ζn

ϕn
− kn1
ϕn

ζr1n −
kn2
ϕn

ζr2n ,

(43)

where ân is the estimation of an and determined by the following adaptive law:

˙̂an = ρnϕ
2
nµ

2
nζ

2
n − σn1âr1n − σn2âr2n , (44)

and σn1, σn2 are positive constants.
When we choose ân(0) ≥ 0, we have ân ≥ 0. Then, according to Assumption 2.12, we have

ϕnζngnu

= −gnρnϕ2
nânµ

2
nζ

2
n − gnψ2

nζ
2
n − gnα̇2

nfζ
2
n

− gnϕ2
n−1ζ

2
n−1ζ

2
n − gnkn1ζ1+r1n − gnkn2ζ1+r2n

≤ −g
n
ρnϕ

2
nânµ

2
nζ

2
n − gnψ

2
nζ

2
n − gnα̇

2
nfζ

2
n

− g
n
ϕ2
n−1ζ

2
n−1ζ

2
n − gnkn1ζ

1+r1
n − g

n
kn2ζ

1+r2
n .

Substituting the above inequality to ζnζ̇n yields:

ζnζ̇n ≤ g
n
ρnãnϕ

2
nµ

2
nζ

2
n − gnkn1ζ

1+r1
n − g

n
kn2ζ

1+r2
n

− g
n
ϕ2
n−1ζ

2
n−1ζ

2
n +

1

4ρng
n

+
1

2g
n

.
(45)

Now we construct a Lyapunov function Vn as follows:

Vn =
1

2
ζ2n +

1

2
ã2n. (46)

Using the inequality (45) and the adaptive law (44), we have

V̇n ≤− g
n
kn1ζ

1+r1
n − g

n
kn2ζ

1+r2
n − g

n
ϕ2
n−1ζ

2
n−1ζ

2
n

+
1

4ρng
n

+
1

2g
n

− g
n
σn1ãnâ

r1
n − gnσn2ãnâ

r2
n

≤− g
n
kn1(ζ2n)

1+r1
2 − g

n
kn2(ζ2n)

1+r2
2 − g

n
ϕ2
n−1ζ

2
n−1ζ

2
n

− g
n

σn1
1 + r1

(ã2n)
1+r1

2 − g
n

σn2
1 + r2

(ã2n)
1+r2

2 + Λn,

(47)

where Λn = g
n

2σn1
1+r1

a1+r1n + g
n

2σn2
1+r2

a1+r2n + 1
4ρngn

+ 1
2g
n

.
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Define

V = V1 + . . . , Vn.

Using the inequalities (28), (41), and (47), we have

V̇ =

n∑
i=1

V̇i

≤ −
n−1∑
i=1

ki1(ζ2i )
1+r1

2 −
n−1∑
i=1

ki2(ζ2i )
1+r2

2

−
n−1∑
i=1

σi1
1 + r1

(ã2i )
1+r1

2 −
n−1∑
i=1

σi2
1 + r2

(ã2i )
1+r2

2

−
n∑
i=2

1

λi
(y2i )

1+r1
2 −

n∑
i=2

1

λi
(y2i )

1+r2
2 − g

n
kn1(ζ2n)

1+r1
2

− g
n
kn2(ζ2n)

1+r2
2 −

g
n
σn1

1 + r1
(ã2n)

1+r1
2 −

g
n
σn2

1 + r2
(ã2n)

1+r2
2

− g
n
ϕ2
n−1ζ

2
n−1ζ

2
n + ϕn−1ζn−1ζn +

n∑
i=1

Λi.

It is noted that

ϕn−1ζn−1ζn ≤ g
n
ϕ2
n−1ζ

2
n−1ζ

2
n +

1

4g
n

,

then we have

V̇ ≤ −
n−1∑
i=1

ki1(ζ2i )
1+r1

2 −
n−1∑
i=1

ki2(ζ2i )
1+r2

2

−
n−1∑
i=1

σi1
1 + r1

(ã2i )
1+r1

2 −
n−1∑
i=1

σi2
1 + r2

(ã2i )
1+r2

2

−
n∑
i=2

1

λi
(y2i )

1+r1
2 −

n∑
i=2

1

λi
(y2i )

1+r2
2 − g

n
kn1(ζ2n)

1+r1
2

− g
n
kn2(ζ2n)

1+r2
2 −

g
n
σn1

1 + r1
(ã2n)

1+r1
2 −

g
n
σn2

1 + r2
(ã2n)

1+r2
2

+ Λ,

(48)

where Λ = 1
4g
n

+
∑n
i=1 Λi.

B. PROOF OF THEOREM 1

P r o o f . Define

Ξ1 = 2
1+r1

2 min
i=1,...,n−1

{ki1, g
n
kn1,

σi1
1 + r1

,
g
n
σn1

1 + r1
,

1

λi
}, (49)

Ξ2 = 2
1+r2

2 min
i=1,...,n−1

{ki2, g
n
kn2,

σi2
1 + r2

,
g
n
σn2

1 + r2
,

1

λi
}, (50)

where parameters ki1, ki2, σi1, σi2, and λi are all positive constants. r1 = m
n

, r2 = p
q
, where

m < n, p > q are positive odd numbers.
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From the inequality (48), we have

V̇ ≤− Ξ1

n−1∑
i=1

[
(
1

2
ζ2i )

1+r1
2 + (

1

2
ã2i )

1+r1
2 + (

1

2
y2i+1)

1+r1
2

]
− Ξ1

[
(
1

2
ζ2n)

1+r1
2 + (

1

2
ã2n)

1+r1
2

]
− Ξ2

n−1∑
i=1

[
(
1

2
ζ2i )

1+r2
2 + (

1

2
ã2i )

1+r2
2 + (

1

2
y2i+1)

1+r2
2

]
− Ξ2

[
(
1

2
ζ2n)

1+r2
2 + (

1

2
ã2n)

1+r2
2

]
+ Λ.

Furthermore, according to Lemma 2.7, we have:

V̇ ≤− Ξ1

n∑
i=1

(
V

1+r1
2

i

)
− Ξ2

n−1∑
i=1

(
3

1−r2
2 V

1+r2
2

i

)
− Ξ2

(
2

1−r2
2 V

1+r2
2

n

)
+ Λ

≤− Ξ1V
1+r1

2 − 3
1−r2

2 Ξ2

(
n

1−r2
2 V

1+r2
2

)
+ Λ

≤− Ξ1V
1+r1

2 − Ξ̄2V
1+r2

2 + Λ,

(51)

where Ξ̄2 = (3n)
1−r2

2 Ξ2.
Finally, from Lemma 2.4, there exists a settling time T such that

V ≤ R = min
{( Λ

Ξ1θ

) 2
1+r1 ,

( Λ

Ξ̄2θ

) 2
1+r2

}
,

when t ≥ T , where

T ≤ 2

Ξ1(1− θ)(1− r1)
+

2

Ξ̄2(1− θ)(r2 − 1)
,

and 0 < θ < 1 is a constant.
Therefore, the closed-loop system (8) is practically fixed-time stable. Since V ∈ L∞, then

all the states of the closed-loop system are bounded, that is, ζi ∈ L∞, ãi ∈ L∞, and yi ∈ L∞.
Furthermore, it is noted that V ≤ R when t ≥ T , thus we have |ζ1| ≤

√
2R when t ≥ T .

Recalling the transformation functions (6) and (9) and applying the mean value theorem, there
exists a constant ξ̂ such that

|x1 − yd| =
∣∣∣∣h11(t) + h12(t)

2
tanh

(
2ξ1

h11(t) + h12(t)

)
− h11(t) + h12(t)

2
tanh

(
2ξd

h11(t) + h12(t)

)∣∣∣∣
=
h11(t) + h12(t)

2

∣∣∣∣ 1

cosh2(ξ̂)
× 2(ξ1 − ξd)
h11(t) + h12(t)

∣∣∣∣
≤h11(t) + h12(t)

2
× 2

h11(t) + h12(t)

∣∣ξ1 − ξd∣∣
=|ξ1 − ξd|
=ζ1,
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where ξ̂ ∈ ( 2ξ1
h11(t)+h12(t)

, 2ξd
h11(t)+h12(t)

). Thus the output tracking error satisfies |e| = |x1−yd| ≤
|ζ1| ≤

√
2R when t ≥ T , which means that the tracking error is bounded in fixed time.

Finally, we verify that all the state constraints are satisfied all the time. According to
Assumption 2.13, we know that ξd is bounded. It is noted that ζi ∈ L∞, thus ζ1 is also
bounded. Therefore, ξ1 = ζ1 + ξd is bounded, which implies that −h11(t) < x1(t) < h12(t) is
satisfied when −h11(0) < x1(0) < h12(0). Additionally, according to the fact that y2 ∈ L∞,
α2f = y2 + α1 is bounded, and α̇2f is bounded. Then, the boundedness of ζ2 and α2f ensures
that ξ2 = ζ2 + α2f is bounded, which implies that the constraint −h21(t) < x2(t) < h22(t) is
satisfied when −h21(0) < x2(0) < h22(0). Using similar analysis, it can be shown that all the
state constraints are satisfied all the time.

The proof is thus complete. �
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