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1 Brno University of Technology, Faculty of Civil Engineering
Institute of Mathematics and Descriptive Geometry
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Abstract: The analysis of dynamic contacts / impacts of several deformable
bodies belongs to both theoretically and computationally complicated prob-
lems, because of the presence of unpleasant nonlinearities and of the need
of effective contact detection. This paper sketches how such difficulties can
be overcome, at least for a model problem with several elastic bodies, using
i) the explicit time-discretization scheme and ii) the finite element technique
adopted to contact evaluations together with iii) the distributed computing
platform. These considerations are supported by the references to useful gen-
eralizations, motivated by significant engineering applications. Illustrative ex-
amples demonstrate this approach on structures assembled from a finite num-
ber of shells.
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1. Introduction

Reliable computational prediction of the behaviour of deformable bodies under
mechanical, thermal, etc. loads belongs to the priorities of both civil and mechanical
engineering, due to the development of advanced materials, structures and technolo-
gies, whose traditional analysis, coming from long-time experience, certified labo-
ratory measurements and heuristic computational formulae, is not available. Such
computational prediction should come from the numerical analysis of initial and
boundary value problems for systems of partial differential equations of evolution,
based on the principles of classical thermomechanics by [3], namely in the form
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of conservation of such scalar quantities as mass, (linear and angular) momentum
components and energy, supplied by appropriate constitutive relations, whose pa-
rameters have to be identified by experiments. A significant task is the modelling
and simulation of the rapid movement of several bodies with potential contacts and
impacts, accompanied by their deformation: in addition to the incorporation of var-
ious geometrical and physical nonlinearities, the design of an effective algorithm
needs e. g. some results from the graph theory and the distributed and parallel
computing.

After these motivational comments (Section 1) we intend to present a model
problem of multiple contacts / impacts of elastic (or viscoelastic) deformable bodies.
The overview of physical and mathematical background (Section 2) will be followed
by some details of the computational approach (Section 2), with special attention to
the advanced search for potential contacts, using a distributed computing platform
(Section 3). This will be demonstrated on two illustrative examples (Section 4) and
supplied by brief concluding remarks with future research priorities (Section 5).

2. Physical and mathematical background

As a first model problem, let us consider a deformable body occupying a single
domain Ω in the Euclidean space R3, supplied by a fixed Cartesian coordinate sys-
tem x = (x1, x2, x3) for simplicity, with the Lipschitz boundary ∂Ω, decomposed to
disjoint parts Θ (for homogeneous Dirichlet boundary conditions) and Γ (for Neu-
mann boundary conditions, inhomogeneous in general). The deformation of Ω will
be analyzed on a finite time interval I = [0, T ], T being a positive constant, i. e. for
any time t ∈ I. For any appropriate function φ we shall write φ,i instead of ∂φ/∂xi
with i ∈ {1, 2, 3} and φ̇ instead of ∂φ/∂t for brevity. The unit (formally outward)
normal vector ν = (ν1, ν2, ν3) can be constructed (almost everywhere) on ∂Ω. The
standard notation of Lebesgue, Sobolev, Bochner - Sobolev, etc. function spaces fol-
lowing [24, Parts 1 and 7], will be applied here. The basic unknown variable u(x, t),
working with x ∈ Ω and t ∈ I, introduced as the displacement of x ∈ Ω, with
possible extensions to Θ and Γ, in time t ∈ I related to the initial configuration
at t = 0, can be considered as an element of Lp(I, V ), with its first time deriva-
tive belonging to the same space and the second one (at least) to L2(I, V ∗). Here
V = {w ∈ W 1,p(Ω)3 : w = o on Θ} incorporates all body supports, V ∗ means the
dual to V , o denotes the zero vector from R3 and p, q ∈ [2,∞) are some fixed expo-
nents; satisfying 1/p + 1/q = 1 (for all linearized formulations always p = q = 2).
Let us notice that for any w ∈ V we have (at least) w ∈ L6(Ω)3, thanks to the
Sobolev embedding theorem. Let us also introduce X = Lq(Ω)3 and Z = Lq(Γ)3. To
avoid technical difficulties, we shall make use of the results of [21, Parts 1.2 and 6.7],
for elliptic (purely static) problems, referring to their natural generalization to hy-
perbolic (general dynamic) problems, thanks to the properties of Rothe sequences
by [24, Part 7]. All detailed derivations must be left to the curious reader, due to
the limited extent of this paper.
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Let the pair of Cauchy initial conditions u(0, .) = o and u̇(0, .) = û be introduced
on Ω, û ∈ V being some prescribed initial displacement rate. Let also the body forces
f ∈ Lq(I, X) and the surface forces g ∈ CL(I, Z) be given a priori, CL referring to
Lipschitz continuous functions on I (to avoid the difficulties with the properties of
traces from V on ∂Ω). Let i, j, k ∈ {1, 2, 3} be the Einstein summation indices. Then
the weak formulation of the conservation of linear momentum reads

(wi, ρüi) + (wk,i, τik + ατ̇ik) = (wi, fi) + 〈wi, gi〉 (1)

on I for any test function (virtual displacement) w ∈ V , However, the Piola stress
tensor τ ∈ Lq(Ω)3×3 in (1) is still undefined and must be evaluated from an ap-
propriate constitutive relation. Most frequently such relation uses the stress - strain
dependence between the symmetric Kirchhoff stress tensor σ (its symmetry can be
justified from the conservation of angular momentum, under the usual assumptions
on Boltzmann continuum) introduced as τik = σij(δkj + uk,j), with the help of the
Kronecker symbol δ, and the Almansi strain tensor εik(u) = (ui,k + uk,i + uj,iuj,k)/2.
Moreover, for appropriate functions ϕ and ϕ̃, (ϕ, ϕ̃) in (1) means the Lebesgue in-
tegral of ϕϕ̃ over Ω and 〈ϕ, ϕ̃〉 the similar Hausdorff integral over Γ; for p = q = 2
we can identify (ϕi, ϕ̃i) and 〈ϕi, ϕ̃i〉 just with scalar products on X and Z. In (1)
new positive material characteristics occur: ρ ∈ L∞(Ω) is the material density and
α ∈ L∞(Ω) introduces the structural damping factor, taking certain energy dissipa-
tion into account (because no closed physical systems occur in real applications).

The crucial choice for the practical implementation of (1) is the evaluation of σ
from ε. Here we shall present only the empirical Hooke law for the isotropic case

σij = ∂Ψ(ε)/∂εij , Ψ(ε) = λ1ε
2
kk/2 + λ2εijεij , (2)

containing just two positive Lamé factors λ1, λ2 ∈ L∞(Ω) (or the Young modulus
and the Poisson coefficient, derivable from them easily). Admitting the material
anisotropy, most of our considerations with a generalized stored-energy function Ψ
could be repeated, but with the duty to work with (up to) 21 independent material
characteristics on Ω instead of two Lamé factors; the same can be valid even for
a wider class of Ψ, introduced carefully, as discussed by [4]. Clearly the positive
values of α on Ω in (1) upgrade this formulation to the parallel viscoelastic Kelvin
model.

Unfortunately, the full procedure of verification of the existence and unique-
ness of u satisfying (1) including (2), due to both Cauchy initial conditions, is not
straightforward. For the time steps t = sh with s ∈ {1, . . . ,m}, h = T/m, with the
aim m → ∞ in all convergence considerations, we are allowed to search for some
us ∈ V instead of the unknown u(., sh) understanding τ(us) as the approximation
of τ(u(., sh)) by (2). Replacing u̇ and ü by the first and second relative differences
Dus = (us−us−1)/h and D2us = (Dus−Dus−1)/h, (1) can be rewritten in the form

(wi, ρD2uis) + (wk,i, τiks + αDτiks) = (wi, fis) + 〈wi, gis〉 (3)
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for any w ∈ V again; fis and gis can be taken e. g. as the Clément quasi-interpolations
of the components of f and g by [24, Part 7], together with u0 = o and u−1 = −hû.
Thus we come, step by step, to some particular nonlinear elliptic equations, which
should be solved iteratively, generating several types of Rothe sequences constructed
i) as linear Lagrange splines on I using the values uis and ii) as simple (piecewise
constant) abstract functions using the same values, and iii) as time-retarded modifi-
cations of i) and ii) (to cover semi-linearization in iterative processes), whose conver-
gence to u in a reasonable sense can be expected. However, the theoretical analysis of
these equations needs some assumptions on polyconvexity (or quasiconvexity, etc.)
for Ψ on Ω, together with the guarantee of mutual impenetrability of parts of Γ,
which must be seen as nontrivial problems beyond the scope of this paper. Since all
Rothe sequences i), ii), iii) are defined in infinite-dimensional function spaces, a finite
element (or similar) technique is needed for most numerical evaluations.

As a second model problem, let us consider Ω as a union of a finite number of
deformable bodies, whose frictionless contact is allowed now. Therefore three parts
of ∂Ω must be distinguished in any time t ∈ I, namely Θ, Γ and Λ where Λ ⊂ Γ
refers to all internal, adaptively activated interfaces; the lower index ∗ will identify
the integration over Λ (instead of Γ), the square brackets will be used for interface
jumps of function values on Λ. Consequently (1) gets the form

(wi, ρüi) + (wk,i, τik + ατ̇ik) = (wi, fi) + 〈wi, gi〉+ 〈[wiνi], T 〉∗ (4)

on I for any v ∈ V , containing the interface tractions T ∈ Lq(Λ)3 (not prescribed
explicitly) replacing gi on Γ by gi + T νi on Λ where [uiνi] = 0 is required. The
activation and deactivation of Λ can be explained as the conversion of (4) to certain
variational inequality of the Hertz - Signorini - Moreau type, as demonstrated by [33].
In some more details: in practical calculations, working with uν = uiνi, we need
[uiνi] T ≤ 0 for all potential contacts (including both Λ and some adjacent parts
of Γ) where always i) [uν ] = 0 and T ≤ 0 (on Λ) or ii) T = 0 and [uν ] ≤ 0
(outside Λ).

Following still [33], such formulation can be handled without the application
of explicit inequalities, using the penalty approach. This approach admits some
(sufficiently small) impacts, characterized by a positive part of [uν ]+, suppressed
by an artificial stiffness K → ∞ (constant frequently), occurring in one additional
constitutive equation τ = K[uν ]+. However, namely the searching for potential
couples for all evaluations [uν ] in arbitrary time t ∈ I can be seen as a serious
numerical problem, exceeding the set of usual numerical methods for the analysis of
differential equations, tending to the implementation of an appropriated distributed
computing platform. Nevertheless, repeating the approach for a first model problem
formally, (2) can be applied without any change and (3) has to be enriched by one
right-hand-side additive term 〈[wisνi], Ts〉∗ only.
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3. Computational approach

Unfortunately the computational algorithm induced by the generalized version
of (1) (including its above sketched generalization), applied to the study of conver-
gence of Rothe sequences successfully, is not optimal for practical calculations. Thus
we will sketch the derivation of a simple (nearly) explicit concurrent algorithm, up to
the evaluation in certain finite-dimensional space. First, let us notice the unpleasant
evaluations of sufficiently large discretized approximate values of u related to the
reference configuration of Ω at t = 0; in this case the simple remedy is some adaptive
setting of a new reference configuration after certain number of time steps, using
some a posteriori estimates, relevant for the time development of Ω. The following
task is then the full discretization of (1). For simplicity, as usual in the finite element
method, let us consider some (at least weakly) regular decomposition of Ω to finite
elements, using a set of n basis functions (with a small compact support, as derived
e. g. from linear 3-dimensional Lagrange splines) {φ1, . . . , φn} from an n-dimensional
space V n approximating V (in particular, for conforming finite elements, from such
subspace of V ). We shall use the notation D for a norm of such decomposition,
e. g. that introduced as the largest diameter of a ball containing all applied finite
elements, too; D→ 0 with n→∞ is expected.

Let us try to express u(., t) at t = sh by (3), using one more Einstein summation
index r ∈ {1, . . . , n} in its form uis = Uirsφr where i ∈ {1, 2, 3} and s ∈ {1, . . . ,m}
such that Uirs are, for simplicity, just the values approximating ui(xr, sh) in some
selected points xr from Ω and Γ (including Λ); thus φr = 1 for x = xr, being zero-
valued in all remaining cases. Thus the test functions are allowed to be wj = Wjrφr
where j ∈ {1, 2, 3}, just with one non-zero value Wjr equal to 1. As the result we
can compose the explicit time integration scheme, inspired by [11], in the form of
a system of 3n seemingly linear algebraic equations

MAs = h2Fs + (h2/D)Gs + (h2/D)G̃s([Us]))− (h/D2)C(V×s )− (h2/D2)K(Us) , (5)

for s ∈ {0, 1, . . . ,m} supplied by the auxiliary formulae

Vs+1/2 = Vs−1/2 + hAs , Vs = (Vs−1/2 + Vs+1/2)/2, Us+1 = Us + hVs+1/2 (6)

(for s = m without the last one) where M is a positive definite real symmetric
sparse matrix of order 3n (or even a diagonal one, using the well-known lumped
mass trick, working with the replacement of {φ1, . . . , φn} by simple functions where
no differentiation is needed). All other symbols (except h and D) in (5) and (6)
refer to vectors from R3n: As, Vs and Us approximate ü(., sh), u̇(., sh) and u(., sh),

C(.), K(.), Fs, Gs and G̃s(.) are known a priori, V×s ≈ Vs should be predicted as
V×s = Vs−1/2 + h(Vs−1/2 − Vs−1)/2 for the first guess and corrected by iterations (if
needed), U0 is zero-valued, V0 can be set using v̂(xr), V1/2 = V0 + hA0/2 (to avoid
undefined V−1/2 in the second formula of (6)).

In numerous papers written by engineers all considerations start with some dis-
crete formulae like (5) and (6), continuing with their various modifications and al-
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ternatives, which leads to the risk of misunderstanding with the language of math-
ematicians. Namely the common form of (5) is MAs = F Is + FEs + FCs where, as
inherited from Section 2, according to the full discretization above, MAs (as the
complete left-hand side of (5)) represents the inertia forces, F Is the internal forces,
expressed by the fourth and fifth right-hand-side additive terms of (5), FEs the ex-
ternal forces, expressed by its first and second additive terms, and FCs the contact
forces, expressed by its third additive term, whose effective evaluation is the most
delicate task. The following blocks of comments are motivated by the experience
with the development of the prototype of the computational tool for the effective
simulation of multiple contact of deformable bodies, applicable e. g. to crash testing
in the automotive industry.

General approach. Our numerical approach should ensure all computations re-
gardless of their environment, i. e. in sequential, parallel or hybrid manner, on a com-
puter network. Each cluster node, considered in the hybrid form of computation, as
suggested by [23], can be represented by some single workstation, which processes
computation of a set of associated macro-entities; it can comprise a multi-core CPU
capable of executing computational instructions in a fully parallel form. All compu-
tational procedures are activated within a global time loop. These computing cluster
nodes are called worker nodes. The parallel and hybrid types of computations re-
quire the synchronization of CPU threads between individual dependent parts of
the computation on each worker node. The synchronization is performed by means
of barriers, supplied by some supportive processes. This mainly concerns the func-
tionality focused on data exchange with the central server (master node) used in the
hybrid type of computation compatible with [22] and [8]. The procedures themselves
are called from another thread, focused purely on communication within the in scope
of a computer network.

Contact analysis. The computational platform is assumed to deal with the node-
to-segment type of contact in the sense of [33]. Due to its generality, the algorithm
should be applicable to all finite elements of a model to find all finite element (FE)
nodes suspected from the penetration of a finite element. A naive way to perform
contact detection, checking each body against all other ones, ignoring any available
information about the distribution of particular bodies in R3, has the very expen-
sive time complexity O(N 2), N being the number of items in a dataset. A more
suitable is offered by the nearest neighbour (NN) search, following [26]. The core of
such algorithm is defined as a collection of N objects (FE element nodes); this builds
a data structure which provides objects (FEs, their nodes, etc.) in the time as fast as
possible, based on the NN query. Two levels of such analysis can be distinguished:
i) search for penetration between bounding box volumes encapsulating individual
macro-entities, and ii) search for contacts betweens FE nodes and individual FEs,
using the node-to-segment approach. Even i) separately (as presented in both ex-
amples of Section 4) provides underlying support for the analysis of Macro Entity
Interaction Multi-graph (MEIM, see lower) regarding the data redistribution within
a computer cluster. The kd-tree data structure, utilized e. g. for machine learning
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and for composition of graphical (gaming) engines, is able to provide an algorithmic
support for both i) and ii).

Nearest neighbour search. Let us consider a given set Sp of points p in some
high-dimensional real space. Our aim is to construct, to any query point q, a data
structure able to find the point in Sp closest to q. Such NN problem belongs to
a larger class of proximity problems investigated in computational geometry. Geo-
metric range-searching data structures are constructed by subdividing R3 into several
regions with some predefined properties and recursive generation of a data structure
for each such region. Range queries are answered with such a data structure by
performing a depth-first search through the resulting recursive space partition. Such
data structure is created only once, until the development of situation (as of the
FE-based approximate solutions by (5)) does not force its dynamical changes; this
algorithm can be useful also for the MEIM analysis. The data structure used here
is the k-dimensional tree (kd-tree), designed by [1] as a powerful extension of one-
dimensional trees, i. e. the binary tree where the underlying space is partitioned using
the value of just one attribute at each level of the tree, instead of all d attributes,
unlike the quad-tree, introduced by [27], making such d-tests at each level. The basic
analysis of kd-trees can be found in [20]; for its development see [25] and [32]. To
compare other multi-dimensional data structures for spatial databases, cf. [19] for
R-trees and their mutations, [2] and [14] for X-trees and their mutations and [36]
for PH-tree.

Range search. An algorithm working with the kd-tree data structure consist i) of
the assembly of a kd-tree map from the appropriate set Sp and ii) of its subsequent
usage to obtain a set of nodes falling within the searching range query of any ex-
amined node belonging to an appropriate FE. Since the above sketched approach
to contact detection can include the topology of the discretized model for the ex-
plicit time integration using (5) with (6), no algorithm for deletion of nodes or tree
balancing algorithm are needed in i). In ii) we can traverse the kd-tree, but visit
only nodes whose region is intersected by the query rectangle. If a region is fully
contained in the query rectangle, we can report all the points stored in its sub-tree.
When the traversal reaches a leaf, we have to check whether the point stored at the
leaf is contained in the query region and, if so, report it.

Explicit integration scheme. Only one special type of FEs will be presented here
for simplicity of numerical simulation of a massive impact process, namely the flat
shell finite element with co-rotated coordinates of the Reissner - Mindlin type with
linear fields for rotations and transverse deflections, developed by [29]. It is very
effective in an explicit integration due to a smaller number of operations required
for numerical integration (single quadrature point). Their geometrically non-linear
behaviour was analyzed in [11] and [34] in details; its rate of convergence is ap-
proximately of quadratic order. The concrete form of explicit integration of FE
forces F Is , FEs and FCs for s ∈ {1, . . . ,m}, as required by (5), depends on the imple-
mentation of nonlinearities of various types; namely the approach of [34] expects the
large rotational kinematics in the small strain regime. Such procedure is performed
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by each hardware computational thread of a multi-core CPU; a specific number of
FEs is assigned to each thread to optimize the thread load.

Distributed and parallel analysis. Two levels occur in the explicit FE analysis:
i) standard process of both parallel integration of all FEs and explicit evaluation
of (5), working with parallel integration of internal, external and contact forces,
mapping FE ranges on the individual cores of a multi-core CPU, ii) parallel process-
ing of MEIM on computer cluster, representing a distributed computational process
able to run on a computer cluster within a cloud environment or some VPN (Virtual
Private Network). The TCP/IP protocols enable the interprocess communication
within clusters, with difficulties related to the CAP theorem (Consistency, Availabil-
ity, Partition tolerance) by [5]; for its improvements cf. [6] and [35]. The data dis-
tribution for numerical computations is based on the domain decomposition (DD).
From this class of methods we need to adopt the FE tearing and interconnecting
(FETI), suggested by [10] and developed by [9], [17], [7] and [16] to (5) and (6);
for many references (482 items) to particular variants of DD see [30], especially [30,
Part 6.3] for the one-level FETI, [30, Part 6.4] for the dual-primal FETI ana [30,
Part 8.5] for their applications to elasticity.

Advantages and drawbacks. In our approach each separate discretized domain is
able to interact with its surroundings through the contact forces. All domains that
come to contact then must be solved together within one worker node in a com-
puter cluster. A large number of moving domains is represented by MEIM, whose
edges are related to particular contacts. Such movement of domains is controlled,
following [12], by the autonomous character of Lagrangians; this can control even
the whole process of data distribution across the computer cluster. Nevertheless, the
distributed applications, sketched here, suffer from a number of issues that need to
be resolved gradually to reach an optimal model. Serious problems are: i) random
application freezing, ii) model data migration between individual worker nodes in
a computer cluster at runtime (input structural data, serialized contents of variables),
iii) type of transferred data (unstructured vs. structured protocol) and iv) merging
of data from individual worker nodes to get the final view on simulation results.

4. Illustrative example

The example presents the announced results for two benchmark problems, refer-
ring to the first and second model problem in Section 2. These results were obtained
from the in-house software at BUT for the type of shells introduced in Section 3.

Fig. 1 shows the time development of contacts / impacts of elastic shells in selected
time steps: i) for 1 big sphere falling to 1 fixed plane rectangle (3 upper graphs) and
ii) for 10 small spheres thrown to 3 moving plane rectangles (3 lower graphs).

5. Conclusions

The aim of this paper was to show the possibility of effective computational anal-
ysis of contacts / impacts of deformable bodies for selected model problems, referring
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Figure 1: Example of time development of contacts / impacts of some elastic shells.

to still unclosed problems both in mathematical theory and in information science,
too. Numerous improvements are required in distributed applications, as summa-
rized at the end of Section 3. The upgrade of the explicit calculation scheme, coming
from (5) with (6), could be inspired by the recent analyses of [13], [15] and [18].

For real engineering applications the next research step should be the careful
revision of physical formulations in the scope of classical thermomechanics, together
with the analysis of related mathematical and numerical problems, namely the proper
study of energy dissipation on contacts, independently introduced by [28] and [31].
Such dissipation can be accompanied by the formation of plastic or microscopic
damage zones, followed by the initiation and development of macroscopic cracks and
further phenomena, dangerous for the bearing ability and durability of materials and
structures.
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[28] Štekbauer, H., Němec, I., Lang, R., Burkart, D., and Vala, J.: On a new com-
putational algorithm for impacts of elastic bodies. Appl. Math. 67 (2022), in
print, 28 pp.

[29] Stolarski, H., Belytschko, T., Carpenter, N., and Kennedy, J. M.: A simple
triangular curved shell element. Eng. Comput. 1 (1984), pp. 210–218.

[30] Toseli, A., and Widlund, O.: Domain Decomposition Methods – Algorithms and
Theory. Springer, Berlin, 2005.

[31] Wang, G., Liu, C., and Liu, Y.: Energy dissipation analysis for elastoplastic con-
tact and dynamic dashpot models. Int. J. Mech. Sci. 221 (2022), pp. 107214 / 1–
14.

[32] Wehr, D., and Radkowski, R.: Parallel kd-tree construction on the GPU with an
adaptive split and sort strategy. Int. J. Parallel Program. 46 (2018), pp. 1139–
1156.

[33] Wu, S. R.: A variational principle for dynamic contact with large deformation.
Comput. Methods Appl. Mech. Eng. 198 (2009), pp. 2009–2015, and 199 (2009),
p. 220.

[34] Wu, S. R., and Gu, L.: Introduction to the Explicit Finite Element Method for
Nonlinear Transient Dynamics. J. Wiley & Sons, Hoboken, 2012.

[35] Yuan, L.-Y., Wu, L., You, J.-H., and Shanghai, Y. Ch.: A demonstration of
Rubato DB: a highly scalable NewSQL database system for OLTP and big data
applications. In: Proc. ACM SIGMOD Int. Conf. on Management of Data in
Melbourne (2015), pp. 907–912. Assoc. for Computing Machinery, New York,
2015.

279
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