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PERFORMANCE ANALYSIS OF LEAST SQUARES
ALGORITHM FOR MULTIVARIABLE STOCHASTIC
SYSTEMS

Ziming Wang, Yiming Xing and Xinghua Zhu

In this paper, we consider the parameter estimation problem for the multivariable system.
A recursive least squares algorithm is studied by minimizing the accumulative prediction error.
By employing the stochastic Lyapunov function and the martingale estimate methods, we
provide the weakest possible data conditions for convergence analysis. The upper bound of
accumulative regret is also provided. Various simulation examples are given, and the results
demonstrate that the convergence rate of the algorithm depends on the parameter dimension
and output dimension.
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1. INTRODUCTION

As a famous and significant issue, parameter estimation or filtering plays an important
role in the areas of identification, adaptive control, and statistical learning, which appears
in diverse scientific and engineering applications, including radar system [11], power
system [23] and twin-rotor system [22]. The theoretical analysis of the estimation and
filtering algorithms has attracted the great interest of scientists, see [2, 3, 17] for some
references.

Great progress has been made in parameter estimation of discrete-time models in
the past half-century. The unknown parameters to be estimated in the model include
time-variant and time-invariant parameters. For time-variant parameters, the existing
literature mainly focuses on the stability and performance analysis of the identification
algorithm. For example, [6, 7, 10, 26] respectively studied the stability and performance
of the forgetting factor least squares, the least mean square (LMS) algorithm, and
the Kalman filter. For time-invariant parameters, Moore established the convergence
analysis for the well-known recursive least square (RLS) algorithm under the persistent
excitation (PE) condition [18]. Furthermore, the PE condition was generalized to the
weakest possible excitation condition by Lai and Wei [13]. Other theoretical analyses of
identification algorithms for time-invariant parameters have also been widely studied,
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including the bias compensation least squares methods [27, 28], the stochastic gradient
algorithm [1], the weighted LS algorithm, the maximum likelihood algorithm [14, 24]
and Bayes methods [19, 20]. However, these theoretical analyses only consider the case
where the output vector y is one-dimensional, which may fail to hold in some practical
scenarios, such as Multiple Input Multiple Output (MIMO) radar systems [15] and neural
networks [25].

In this paper, we consider the multivariable cases of the linear stochastic regression
model, whose dynamics can be written as follows:

y(k + 1) = ΦT (k)θ + v(k + 1), (1.1)

where y(k) = [y1(k), y2(k), . . . , ym(k)]
T ∈ Rm is the output vector containing all the

system output variables, Φ(k) ∈ Rn×m is the regression matrix containing the input and
output data, θ ∈ Rn is the parameter vector consisting of all the system parameters to
be estimated, and v(k) = [v1(k), v2(k), . . . , vm(k)]

T ∈ Rm is a random noise vector.
The multivariate linear regression form (1.1) for multivariable systems was early

studied by Sen and Sinha [21]. They described the original model as a transfer function
matrix and proposed a recursive pseudo-inverse algorithm based on least squares to avoid
large matrix inverse calculation in the offline least squares method. In [16], the RLS
algorithm was presented for the multivariable systems with the linear form in (1.1), and
its convergence properties were theoretically analyzed under the PE condition. However,
the PE condition is often difficult to verify in the commonly used feedback control
systems [4]. In this paper, we devote to generalizing the PE condition used in [16] to
the weakest possible Lai-Wei excitation condition [13], in the convergence analysis of the
RLS algorithm for the multivariable systems. Moreover, an upper bound is provided on
the accumulative regret.

The rest of this paper is organized as follows. In Section 2, we introduce the RLS
algorithm for the multivariable system. After that, our main theoretical results are shown
in Section 3, and the corresponding proof processes are listed in Section 4. Section 5
provides simulation examples to show the effectiveness of the RLS algorithm. Finally,
the concluding remarks are made in Section 6.

2. RECURSIVE LEAST SQUARE ALGORITHM FOR MULTIVARIABLE
SYSTEMS

In this section, in order to identify the unknown parameter vector θ, in (1.1), we introduce
the RLS algorithm for multivariable systems. We first recall some basic notations, then
introduce the RLS algorithm for the estimation problem (1.1).

2.1. Basic notations

In the sequel, X ∈ Rn is viewed as an n-dimensional column vector, and A ∈ Rm×n is
viewed as an m × n dimensional matrix. Let λmax(·) and λmin)(·) denote the largest
and the smallest eigenvalues of the corresponding matrix, respectively. Throughout this
paper, we use | · | to denote the determinant of the corresponding matrix, which should
not be confused with the absolute value of a scalar from the context.
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For any matrix A ∈ Rm×n, ‖A‖ denotes the operator norm induced by the Euclidean

norm, i. e.,
(
λmax

(
AAT

))1/2
, where (·)T denotes the transpose operator. For two

symmetric matrices A ∈ Rn×n and B ∈ Rn×n, A > B(A ≥ B) means A−B is a positive
definite (semidefinite) matrix. The symbol E[·] is used to denote the mathematical
expectation operator, and E [· | Fk] denote the conditional mathematical expectation
operator, where {Fk} is a sequence of nondecreasing σ-algebras [5]. We also use log(·)
to denote the natural logarithm function, and tr(·) to denote the trace of a symmetric
matrix.

Let {Ak, k ≥ 0} be a matrix sequence and {bk, k ≥ 0} be a positive scalar sequence.
Then Ak = O (bk) means that there exists a constant M > 0 such that ‖Ak‖ ≤
Mbk,∀k ≥ 0. Also, Ak = o (bk) means that limk→∞ ‖Ak‖ /bk = 0.

2.2. Recursive least squares algorithm for multivariable systems

To estimate the unknown parameter vector in model (1.1), we introduce the following
accumulative prediction error:

J(θ) :=

t∑
j=0

‖y(j + 1)− ΦT (j)θ‖2. (2.1)

We can obtain the following recursive least squares (RLS) algorithm by minimizing the
above prediction error,

θ̂(k + 1) = θ̂(k) + P(k)Φ(k)A(k)
[
y(k + 1)− ΦT (k)θ̂(k)

]
, (2.2)

A(k) =
(
Im + ΦT (k)P(k)Φ(k)

)−1
, (2.3)

P(k + 1) =
(
In −P(k)Φ(k)A(k)ΦT (k)

)
P(k), (2.4)

where P(k) is the covariance matrix of dimension n× n. The initial estimate of θ̂(k) is

generally set as θ̂(0) = C11n, and the initial positive definite matrix P(0) can be taken
as P(0) = C2In, where C1 ∈ R and C2 > 0 are two constants. We remark that for the
RLS algorithm (2.2)–(2.4), it does not require computing the matrix inverse P−1(k) at
each recursion. For the convenience of subsequent theoretical analysis, we can obtain
the following equivalent recursive form of RLS algorithm [16] by applying the matrix
inversion lemma [9] (A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1:

θ̂(k + 1) = θ̂(k) + P(k + 1)Φ(k)[y(k + 1)− ΦT (k)θ̂(k)], (2.5)

P−1(k + 1) = P−1(k) + Φ(k)ΦT (k), P(0) = p0In. (2.6)

3. ASYMPTOTIC RESULTS OF THE ALGORITHM

3.1. Analysis of parameter convergence

In this section, we give our main convergence results. We start by introducing some basic
assumptions to be used throughout this paper. For the system in (1.1) and the RLS
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algorithm in (2.5) – (2.6), we assume that {v(k),Fk} is a martingale difference vector
sequence defined on a probability space {Ω,F , P}, i. e.,

E [v(k + 1) | Fk] = 0, a.s. (3.1)

where Fk is the σ-algebra generated by the observations up to and including time k.
Moreover, we assume that

E
[
‖v(k + 1)‖2 | Fk

]
= σ2 <∞, a.s. (3.2)

We denote by I the identity matrix with appropriate dimensions. Define the parameter
estimation error vector as

θ̃(k) := θ − θ̂(k). (3.3)

Inserting (1.1) into (2.2) gives the following recursive form of the error vector:

θ̃(k + 1) =
(
I−P(k)Φ(k)A(k)ΦT (k)

)
θ̃(k)−P(k)Φ(k)A(k)v(k + 1). (3.4)

The following theorem provides some properties of the error vector, which is crucial in
the convergence analysis.

Theorem 3.1. Assume (3.1) – (3.2) hold. As t→∞, we have

1) θ̃
T

(t+ 1)P−1(t+ 1)θ̃(t+ 1) = O(log rt), a.s. (3.5)

2)

t∑
k=0

‖A 1
2 ΦT (k)θ̃(k)‖2 = O(log rt), a.s. (3.6)

where rt is defined by rt = 1 +
t∑

k=0

‖Φ(k)‖2.

By using result 1) of Theorem 3.1, we can obtain the following theorem on the
convergence rate of the RLS algorithm:

Theorem 3.2. Assume (3.1) – (3.2) hold. As t→ ∞, we have

‖θ̃t+1‖2 = O

(
log rt

λmin (P−1(t+ 1))

)
, a.s.

Remark 3.1. Theorem 3.2 shows that if

lim
t→∞

log

(
1 +

t∑
k=0

‖Φ(k)‖2
)

λmin

(
P−1(0) +

t∑
k=0

Φ(k)ΦT (k)

) = 0, a.s. (3.7)

then the RLS estimate θ̂(t) will converge to the true unknown parameter. In the
traditional single variable case (where m = 1 ), (3.7) reduces to the well-known Lai-Wei
excitation condition, which is known to be the weakest possible data condition for the
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convergence of the classical LS estimates [13], and is much weaker than the well-known
persistence of excitation (PE) condition or sufficient excitation (SE) condition usually
used in the parameter estimation of finite-dimensional linear control systems. The PE or
SE condition is defined as follows:

0 < aIn <

t+h∑
k=t

Φ(k)ΦT (k) ≤ bIn <∞, ∀ t ≥ 0, (3.8)

where h is a positive integer, a and b are two positive constants. By this inequality, we
can easily derive that (3.7) holds. But the reverse does not.

Remark 3.2. We remark that Theorem 3.2 gives the rate of convergence of the estima-

tion error as O
(

log rt
λmin(P−1(t+1))

)
, whereas Theorem 1 in [16] gives the rate of convergence

as O
(

rct
λmin(P−1(t+1))

)
with c ∈ (0, 1). It is clear that the convergence result in Theorem

3.2 is much better than Theorem 1 in [16].

3.2. Regret analysis

We all know that regret is an important performance metric for measuring online learning
algorithms. In this section, we will analyze the adaptive prediction ability of the proposed
algorithm.

The result 2) of Theorem 3.1 is important for the analysis of the regret of the RLS
algorithm, where the regret of RLS algorithm is defined as

Rk =
{

E [y(k + 1)|Fk]− ΦT (k)θ̂(k)
}2

=
{

ΦT (k)θ − ΦT (k)θ̂(k)
}2

, (3.9)

in which θ is the true parameter and θ̂(k) is the estimation of the parameter at kth step.

Remark 3.3. Since the noise sequence {v(k),Fk} is a martingale difference vector
sequence, the best prediction to the future observation y(k + 1) at any time instant

k ≥ 1 is E [y(k + 1)|Fk] = ΦT (k)θ. Its adaptive predictor is constructed as ΦT (k)θ̂(k).
The squared difference between the best prediction and the adaptive prediction can be
regarded as the regret, i. e.,

Rk =
{

ΦT (k)θ − ΦT (k)θ̂(k)
}2

= θ̃
T

(k)Φ(k)ΦT (k)θ̃(k),

where θ̃(k) = θ − θ̂(k) is the parameter estimation error vector.

We develop the following theorem concerning the upper bound on the accumulative
regret for the above adaptive predictor.
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Theorem 3.3. Assume (3.1) – (3.2) hold. Then, the sample path of the accumulated
regrets has the following bound as t→∞ :

t∑
k=0

Rk = O (log rt) , a.s.

provided that ‖ΦT (t)P (t)Φ(t)‖ = O(1), a.s.

Remark 3.4. We remark that the order O (log rt) for the accumulated regrets may be
shown to be the best possible among all adaptive predictors in a certain sense, as is
already known in the traditional single variable case. And the proposed upper bound
on the accumulative regret, O(log rt), is the minimum order of magnitude that one may
expect to achieve (cf. [12]). Moreover, the precise constant in O(·) may be determined if
we have further conditions on the regressors (see [8] in the single variable case).

4. PROOF

In this section, we give proof of our main results. We start by proving the following
elementary lemma.

Lemma 4.1. (Theorem 2.8 in [3]) Suppose that {ak,Fk} is an adapted process and
{vk,Fk} is a martingale difference sequence (ak and vk can be a random number or a
random matrix) satisfying supt E[‖vt+1‖β |Ft] < ∞ for some β ∈ (0, 2]. Then for any
η > 0, we have

t∑
k=0

akvk+1 = O
(
Qt(β) log

1
β+η(Qt(β) + e)

)
, a.s.

where Qt(β) is defined by Qt(β) =
(∑t

k=0 ‖ak‖β
) 1
β

.

The following lemma gives a property about the trace of positive semidefinite matrices,
which is useful in the following analysis.

Lemma 4.2. If A > 0, 0 ≤ B ≤ C are symmetric matrices of the same dimension n, we
have

tr
(
(A+B)−1B

)
≤ tr

(
(A+ C)−1C

)
.

P r o o f . By A > 0, there exists an invertible matrix PA such that PAAP
T
A = I. Since

PABP
T
A and PACP

T
A are also positive semidefinite, there exist orthogonal matrices QB

and QC such that

QBPABP
T
AQ

T
B = ΛB , QCPABP

T
AQ

T
C = ΛC ,

where ΛB and ΛC are diagonal matrices. We denote by 0 ≤ λ1(ΛB) ≤ · · · ≤ λn(ΛB) and
0 ≤ λ1(ΛC) ≤ · · · ≤ λn(ΛC) the eigenvalues of ΛB and ΛC , respectively. Meanwhile, it
is obvious that

QBPAAP
T
AQ

T
B = I, QCPAAP

T
AQ

T
C = I.
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Thus,

tr
(
(A+B)−1B

)
= tr

(
(P−1A Q−1B (I + ΛB)Q−TB P−TA )−1P−1A Q−1B ΛBQ

−T
B P−TA

)
= tr

(
PTAQ

T
B(I + ΛB)−1ΛBQ

−T
B P−TA

)
=

n∑
i=1

λi(ΛB)

1 + λi(ΛB)
.

(4.1)

Similarly,

tr
(
(A+ C)−1C

)
=

n∑
i=1

λi(ΛC)

1 + λi(ΛC)
. (4.2)

By B ≤ C we have ΛB ≤ ΛC , i. e. λi(ΛB) ≤ λi(ΛC) for i = 1, . . . , n. Hence, by (4.1)
and (4.2), we can finish the proof. �

Lemma 4.3. We have

tr
(
A(k)ΦT (k)P(k)Φ(k)

)
≤ m2 |P−1(k + 1)| − |P−1(k)|

|P−1(k + 1)|
. (4.3)

P r o o f . From the definition of P(k), we have

P−1(k + 1) = P−1(k) + Φ(k)ΦT (k)

≥ P−1(k) + φi(k)φTi (k) = P−1(k)
[
I + P(k)φi(k)φTi (k)

]
.

(4.4)

Taking determinant on both sides and using the fact that |I +BC| = |I + CB|, we have

|P−1(k + 1)| ≥ |P−1(k)||I + P(k)φi(k)φTi (k)| = |P−1(k)|
(
1 + φTi (k)P(k)φi(k)

)
. (4.5)

Therefore, we have

φTi (k)P(k)φi(k) ≤
∣∣P−1(k + 1)

∣∣− ∣∣P−1(k)
∣∣

|P−1(k)|
. (4.6)

Thus,

tr
(
ΦT (k)P(k)Φ(k)

)
≤

m∑
i=1

φTi (k)P(k)φi(k) ≤ m×
∣∣P−1(k + 1)

∣∣− ∣∣P−1(k)
∣∣

|P−1(k)|
. (4.7)

We denote

tk =

∣∣P−1(k + 1)
∣∣− ∣∣P−1(k)

∣∣
|P−1(k)|

,

then (4.7) leads to

ΦT (k)P(k)Φ(k) ≤ mtkI. (4.8)
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Noticing that A(k) =
(
I + ΦT (k)P(k)Φ(k)

)−1
, by Lemma 4.2 and (4.8) we have

tr
(
A(k)ΦT (k)P(k)Φ(k)

)
≤ tr

(
(I +mtkI)

−1
mtkI

)
= m2 × tk

1 +mtk

≤ m2 × tk
1 + tk

= m2 |P−1(k + 1)| − |P−1(k)|
|P−1(k + 1)|

,

(4.9)

which completes the proof. �

We are now in the position to complete the proof of Theorem 3.1.

P r o o f . of Theorem 3.1. Multiplying P−1(k) to both sides of (2.4), we have

P(k + 1)P−1(k) = I−P(k)Φ(k)A(k)ΦT (k). (4.10)

Similarly, multiplying P(k) to both side of (2.6), we have

P−1(k + 1)P(k) = I + Φ(k)ΦT (k)P(k). (4.11)

Now (3.4) can be written as

θ̃(k + 1) = P(k + 1)P−1(k)θ̃(k)−P(k)Φ(k)A(k)v(k + 1). (4.12)

Consider the Lyapunov function V (k) = θ̃
T

(k)P−1(k)θ̃(k). Using (4.10) – (4.12), we
have

V (k + 1) = θ̃
T

(k + 1)P−1(k + 1)θ̃(k + 1)

=
[
θ̃
T

(k)(I− Φ(k)A(k)ΦT (k)P(k))− vT (k + 1)A(k)ΦT (k)P(k)
]

×
[
P−1(k)θ̃(k)−P−1(k + 1)P(k)Φ(k)A(k)v(k + 1)

]
= θ̃

T
(k)P−1(k)θ̃(k)− θ̃

T
(k)Φ(k)A(k)ΦT (k)θ̃(k)− 2θ̃

T
(k)Φ(k)A(k)v(k + 1)

+ vT (k + 1)A(k)ΦT (k)P(k)P−1(k + 1)P(k)Φ(k)A(k)v(k + 1)

= V (k)− θ̃
T

(k)Φ(k)A(k)ΦT (k)θ̃(k)− 2θ̃
T

(k)Φ(k)A(k)v(k + 1)

+ vT (k + 1)A(k)ΦT (k)P(k)Φ(k)v(k + 1). (4.13)

Taking sum of (4.13) from 0 to t, we have

V (t+ 1) +

t∑
k=0

θ̃
T

(k)Φ(k)A(k)ΦT (k)θ̃(k)

= V (0)− 2

t∑
k=0

θ̃
T

(k)Φ(k)A(k)v(k + 1) +

t∑
k=0

vT (k + 1)A(k)ΦT (k)P(k)Φ(k)v(k + 1)

≤ V (0)− 2

t∑
k=0

θ̃
T

(k)Φ(k)A(k)v(k + 1) +

t∑
k=0

tr
(
A(k)ΦT (k)P(k)Φ(k)

)
‖v(k + 1)‖2.

(4.14)
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Next, we evaluate the last two terms of (4.14). Noticing that 0 < A(k) ≤ I and

θ̃
T

(k)Φ(k)A(k) ∈ Fk, for any δ > 0 we can use Lemma 4.1 to get the following estimation
of the second last term of (4.14):

t∑
k=0

θ̃
T

(k)Φ(k)A(k)v(k + 1) = O

{ t∑
k=0

∥∥∥A 1
2 (k)ΦT (k)θ̃(k)

∥∥∥2} 1
2+δ
 . (4.15)

Taking 0 < δ < 1/2, we have

t∑
k=0

θ̃
T

(k)Φ(k)A(k)v(k + 1) = O(1) + o

(
t∑

k=0

∥∥∥A 1
2 (k)ΦT (k)θ̃(k)

∥∥∥2)

= O(1) + o

(
t∑

k=0

θ̃
T

(k)Φ(k)A(k)ΦT (k)θ̃(k)

)
.

(4.16)

To evaluate the last term of (4.14), we first use Lemma 4.3 to get

t∑
k=0

tr
(
A(k)ΦT (k)P(k)Φ(k)

)
≤ m2

t∑
k=0

|P−1(k + 1)| − |P−1(k)|
|P−1(k + 1)|

≤ m2
t∑

k=0

∫ P−1(k+1)

|P−1(k)|

1

x
dx = m2(log |P−1(t+ 1)|+ log |P(0)|).

(4.17)

Since
{
‖v(k + 1)‖2 − E[‖v(k + 1)‖2|Fk],Fk

}
is a martingale difference sequence and

sup
k

E
[∣∣‖v(k + 1)‖2 − E[‖v(k + 1)‖2|Fk]

∣∣ |Fk

]
≤ 2 sup

k
E
[
‖v(k + 1)‖2|Fk

]
<∞,

we can use Lemma 4.2 and (4.17) to get

t∑
k=0

tr
(
A(k)ΦT (k)P(k)Φ(k)

)
{‖v(k + 1)‖2 − E[‖v(k + 1)‖2|Fk]}

= O

(
t∑

k=0

tr
(
A(k)ΦT (k)P(k)Φ(k)

)
· log1+η

(
t∑

k=0

tr
(
A(k)ΦT (k)P(k)Φ(k)

)
+ e

))
= o(log |P−1(t+ 1)|) +O(1) a.s.
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Thus by (4.17), the last term of (4.14) satisfies

t∑
k=0

tr
(
A(k)ΦT (k)P(k)Φ(k)

)
‖v(k + 1)‖2

≤ σ2
t∑

k=0

tr
(
A(k)ΦT (k)P(k)Φ(k)

)
+ o(log |P−1(n+ 1)|) +O(1)

≤ m2 log |P−1(t+ 1)|+ o(log |P−1(t+ 1)|) +O(1)

≤ m2n log λmax
(
P−1(t+ 1)

)
+ o(log |P−1(t+ 1)|) +O(1)

≤ m2n log rt + o(log |P−1(t+ 1)|) +O(1) = O(log rt).

(4.18)

Inserting (4.16) and (4.18) into (4.14), we have

V (t+ 1) +

t∑
k=0

‖A 1
2 (k)ΦT (k)θ̃(k)‖2 = O(log rt),

thus we conclude that (3.5) – (3.6) hold. �

Based on the results of Theorem 3.1, the rest of the theorems can be proved.

P r o o f . of Theorem 3.2. By Theorem 3.1 and the fact that P(t+ 1) > 0, we have

‖θ̃t+1‖2 ≤
θ̃
T

(t+ 1)P−1(t+ 1)θ̃(t+ 1)

λmin (P−1(t+ 1))
= O

(
log rt

λmin (P−1(t+ 1))

)
a.s.

�

P r o o f . of Theorem 3.3. By the definition of A(k) in (2.3), we have

Φ(k)ΦT (k) = Φ(k)A(k)ΦT (k) + Φ(k)
(
A(k)ΦT (k)P(k)Φ(k)

)
ΦT (k).

Then by ‖ΦT (k)P (k)Φ(k)‖ = O(1) a.s. and Theorem 3.1, we know that

t∑
k=0

Rk =

t∑
k=0

θ̃
T

(k)Φ(k)ΦT (k)θ̃(k)

=

t∑
k=0

θ̃
T

(k)Φ(k)A(k)ΦT (k)θ̃(k) +

t∑
k=0

θ̃
T

(k)Φ(k)
(
A(k)ΦT (k)P(k)Φ(k)

)
ΦT (k)θ̃(k)

= O

(
t∑

k=0

‖A 1
2 (k)ΦT (k)θ̃(k)‖2

)
= O(log rt),

which completes the proof. �

5. SIMULATION EXAMPLES

In this section, we present numerical examples to illustrate the performance of the
proposed algorithm. Specifically, we test the convergence property of the proposed
algorithm in two cases, where in the first, PE and condition (3.7) are both satisfied, while
in the second, condition (3.7) is satisfied but the PE condition is not.
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5.1. Convergence property when PE and condition (3.7) are both satisfied

Consider a multivariate linear regression system with m = 3 and n = 4,

y(t) = ΦT (t)θ + v(t), (5.1)

where y(t) = (y1(t), y2(t), y3(t))T ∈ R3 is the system output, Φ(t) ∈ R4×3 is the regression
matrix of input and output data, v(t) = (v1(t), v2(t), v3(t))T ∈ R3 is a white noise vector
sequence with zero mean and variances σ2

1 = 0.102 for v1(t), σ2
2 = 0.202 for v2(t) and

σ2
3 = 0.302 for v3(t), respectively, and θ ∈ R4 is the parameter vector to be determined.

Here, the true θ is taken as

θ = [1.78, 2.75, 0.97, 4.26]T .

The initial value is selected as θ̂(0) = [0.01, 0.01, 0.01, 0.01]T , P (0) = I4. In the simulation,
the regression matrix {Φ(t)} is designed to be a 4× 3 matrix sequence containing pseudo-
random values generated from a normal distribution. One may check that {Φ(t)} satisfies
the exciting condition (3.7). Using the true parameters, we calculate the response values
y(t), t = 1, 2, . . . by the linear regression form (5.1). Then RLS algorithm is used to get

the parameter estimation θ̂(t) from the input-output data {y(t),Φ(t)}. The estimation
accuracy is evaluated by the relative error, which is defined by

ε :=
‖θ̂(t)− θ‖
‖θ‖

.

The averaged accumulative regrets is defined by

Regrett =
1

t

t∑
k=0

Rk.

In this simulation study, we collect 1000 data {Φ(t),y(t), t = 1, 2, . . . , 1000}, where the
first 500 data is used to estimate the parameter of the linear regression model, and the
rest 500 data is used for model validation. The predicted output can be obtained by

ŷ(t) = Φ(t)θ̂(500), t = 501, 502, . . . , 1000.

The estimated parameters are shown in Table 5.1 and Figure 5.1, which shows that all
the estimations converge fast to their true values as t increases. The relative error and
averaged accumulative regrets are shown in Figure 5.2. It is clear that the relative errors
ε and averaged accumulative regrets approach zero very fast. The predicted outputs and
the true outputs are illustrated in Figure 5.3. It shows that the estimated model can fit
the validation data well.

5.2. Convergence property when Condition (3.7) is satisfied but the PE/SE
condition is not

In this subsection, we consider a case where the condition (3.7) is satisfied but the PE/SE
condition is not satisfied. The results show that both the parameter estimates and the
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k θ̂1 θ̂2 θ̂3 θ̂4 ε(%)

5 1.01205 2.36697 0.77317 3.36507 22.10651
10 1.44907 2.51318 0.71106 3.60785 13.13711
20 1.67966 2.59640 0.87289 3.96180 6.62003
50 1.70344 2.68361 0.92971 4.12768 3.00724
100 1.74821 2.73247 0.96986 4.15996 1.92715
200 1.75337 2.72663 0.96776 4.21953 1.00738
500 1.77032 2.74553 0.97514 4.25187 0.26291

True values 1.78000 2.75000 0.97000 4.26000

Tab. 5.1. The parameter estimates and their errors against time k.

Fig. 5.1. The parameter estimates against time k.
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(a) Relative error (b) Regret

Fig. 5.2. The relative errors and the averaged accumulative regrets

against time k.

Fig. 5.3. The prediction outputs and the true outputs against time k.
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regrets can converge even if the PE/SE condition is not satisfied, which fully validates
our theoretical results.

Consider a multivariate linear regression system with m = 5 and n = 5,

y(t) = ΦT (t)θ + v(t),

where v(t) = (v1(t), v2(t), . . . , v5(t))T ∈ R5 is a white noise vector sequence with zero
mean and variances σ2

i = 0.102 for vi(t), i = 1, 2, . . . , 5. The true θ is taken as

θ = [1.13, 0.75, 3.73, 0.18, 0.94]T .

Let the regression matrix Φ(t) ∈ R5×5 be given by the following state space model:

u(t) = A(t)u(t− 1) +B(t)

Φ(t) = C(t)u(t),

and the state coefficient matrices are taken as follows:

A(t) = diag

{√
t

t+ 1
,

√
t

t+ 1
, · · · ,

√
t

t+ 1

}
∈ R5×5,

B(t) = diag

{
0.7

2t
,

0.4

2t
,

1.1

2t
,

0.9

2t
,

1.3

2t

}
∈ R5×5,

C(t) =


1.0 0.5 0.8
0.5 1.7 0.2 0.1

0.2 1.6 0.6
0.8 1.1

0.1 0.6 1.3

 ∈ R5×5.

Let u(0) = diag{1.0, 1.0, · · · , 1.0} ∈ R5×5 be the initial state.

By the definition of u(t), we have

‖u(t)‖ =

∥∥∥∥∥∥ 1√
t+ 1

u(0) +

t∑
i=1

B(i)

t∏
j=i+1

A(j)

∥∥∥∥∥∥
=

∥∥∥∥∥ 1√
t+ 1

u(0) +

t∑
i=1

(
B(0)

2i
·
√
i+ 1

t+ 1

)∥∥∥∥∥
<

∥∥∥∥ 1√
t+ 1

(u(0) + 3B(0))

∥∥∥∥
=

4.9√
t+ 1

.

Thus, we have

‖Φ(t)‖ ≤ ‖C(t)‖‖u(t)‖ < 2.28 · 4.9√
t+ 1

=
11.172√
t+ 1

. (5.2)
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Based on this, we can see that the regression vector Φ(t) does not satisfy the PE/SE
condition, since for any fixed h,∥∥∥∥∥

t+h∑
k=t

Φ(k)ΦT (k)

∥∥∥∥∥ ≤
t+h∑
k=t

‖Φ(k)‖2 <
t+h∑
k=t

125

k + 1
<

125h

t+ 1
→ 0, as t→∞,

which implies (3.8) is not satisfied because the positive constant a in (3.8) does not exist.

On the other hand, condition (3.7) is satisfied because λmin

(
t∑

k=0

Φ(k)ΦT (k)

)
goes to

infinity as t increases. Specifically,

λmin

(
Φ(t)ΦT (t)

)
= λmin

(
C(t)u(t)uT (t)CT (t)

)
≥
λmin

(
C(t)CT (t)

)
t+ 1

>
0.02

t+ 1
.

By (5.2) and the fact that

λmin

(
t∑

k=0

Φ(k)ΦT (k)

)
≥

t∑
k=0

λmin

(
Φ(k)ΦT (k)

)
>

t∑
k=0

0.02

k + 1
,

we have

log

(
1 +

t∑
k=0

‖Φ(k)‖2
)

λmin

(
P−1(0) +

t∑
k=0

Φ(k)ΦT (k)

) <

log

(
1 +

t∑
k=0

125
k+1

)
t∑

k=0

0.02
k+1

→ 0, as t→∞,

which validates condition (3.7).

With initial value selected as θ̂(0) = [0.01, 0.01, 0.01, 0.01, 0.01]T and P (0) = I5, we
perform 500 iterative steps to estimate the parameters. The resulting relative errors and
average accumulative regrets are shown in Figure 5.4.

(a) Relative error (b) Regret

Fig. 5.4. The relative errors and the averaged accumulative regrets

against time k. Here, the PE condition is not satisfied.

Clearly, the relative errors ε and the averaged accumulative regrets approach zero
even if the PE/SE condition is not satisfied, which fully demonstrates that our theory is
effective and the PE/SE condition is not necessary.
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6. CONCLUSION

For a stochastic regression model, we studied the RLS algorithm to identify the unknown
parameter vector for multivariable systems. We established the almost sure convergence
results of the RLS algorithm under the weakest possible condition. The accumulated
regret analysis is also provided. Simulations are included, which illustrate the convergence
results. Some interesting problems deserve to be further investigated, e. g., the design of
the distributed algorithm to estimate the unknown parameter using local measurement.

(Received May 9, 2022)
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