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“I often sit

There in the sea

And dream dreams

And hope hopes

And wish wishes

And lately

As I listen to the wind song

As it dances a beautiful dance
for me

But these moments

Never seem to last too long

Because after the hopes

The dreams, and the wishes

You got the singin’ of the
dancin’ wind

After you and me

And a stolen moment of hap-
piness

After a glimpse

Of the timeless, natural uni-
verse

Moving in effortless effervesce

Starts when rhythm

Moving in effortless effervesce

Starts when beauty

Comes, comes the reality of
today

Grinning it’s all-knowing,
fiendish grin

Knowing everything I say

Everything I feel

Everything I think

Every gesture I make today,
today

Pressing his ugly face against
mine

Staring at me with lifeless eyes

Crumbling away all memories
of yesterday’s dreams

Crumbling away

Crumbling hopes and destroy-
ing wishes

Destroying dreams

Can’t even get close to no-
body no more

No matter how much you try

You can’t get close to nobody
no more

Because today is a killer

And only you can save us Lord
[...]

I never dreamed

I certainly never hoped

That one day

I’d be screamin’

’Bout something my mother
told me I needed

In the beginnin’ [...]

Today, who are you Lord

You are a killer !”

Excerpt from Nina Simone’s My Sweet

Lord / Today Is a Killer (from Emer-

gency Ward!, 1972), an adaptation of

David Nelson’s poem Today Is a Killer

and George Harrison’s song My Sweet

Lord.
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ABSTRACT

My research investigates three questions: How do we customize protocols and

implementations to account for the unique requirement of each setting and its target

community, what are necessary steps that we can take to transition secure computa-

tion tools into practice, and how can we promote their adoption for users at large?

In this dissertation I present several of my works that address these three questions

with a particular focus on one of them.

First my work on “Hecate: Abuse Reporting in Secure Messengers with Sealed

Sender” designs a customized protocol to protect people from abuse and surveillance

in online end to end encrypted messaging. Our key insight is to add pre-processing

to asymmetric message franking, where the moderating entity can generate batches

of tokens per user during off-peak hours that can later be deposited when reporting

abuse. This thesis then demonstrates that by carefully tailoring our cryptographic

protocols for real world use cases, we can achieve orders of magnitude improvements

over prior works with minimal assumptions over the resources available to people.

Second, my work on “Batched Differentially Private Information Retrieval” con-

tributes a novel Private Information Retrieval (PIR) protocol called DP-PIR that is

viii



designed to provide high throughput at high query rates. It does so by pushing all

public key operations into an offline stage, batching queries from multiple clients via

techniques similar to mixnets, and maintain differential privacy guarantees over the

access patterns of the database.

Finally, I provide three case studies showing that we cannot hope to further the

adoption of cryptographic tools in practice without collaborating with the very people

we are trying to protect. I discuss a pilot deployment of secure multi-party compu-

tation (MPC) that I have done with the Department of Education, deployments of

MPC I have done for the Boston Women’s Workforce Council and the Greater Boston

Chamber of Commerce, and ongoing work in developing tool chain support for MPC

via an automated resource estimation tool called Carousels.
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1

Chapter 1

Introduction

Since the 1970s, cryptographers have designed a myriad of protocols and techniques

which answer the questions of secure communication, computation, storage and ver-

ifiability. More recent years have seen a large number of industrial deployments

of private set intersection [144], multi-party computation [67, 109], zero knowledge

proofs [108,258] and a legislative push towards adopting secure techniques in the anal-

ysis, sharing and collection of data among (and within) governmental agencies [1,4,7].

Some have applauded these efforts and interpreted them as the beginning of a “pri-

vacy renaissance” especially within the crypto-currency space [174, 229]. I remain

skeptical of the broad claims about the impact of specific technologies [194,219] and

believe that we must reckon as cryptographers with the fact that we haven’t been

entirely successful in bringing privacy preserving tools to a wider audience. Have we

truly managed to protect people against the growing threat of surveillance capital-

ism [259]? And if not, who are we conducting our research for? This stance is of

course not new [153,213].

In this dissertation I explore the following questions:

How do we customize protocols and implementations to account for the

unique requirement of each setting and its target community, what are

necessary steps that we can take to transition secure computation tools

into practice, and how can we promote their adoption for users at large?

This thesis spans 8 published, submitted, and in-progress works that I have compiled
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to investigate these questions [8,13,14,24,93,169,170]. Each of my results was carefully

designed to address questions of efficiency and practical feasibility, strengthen people’s

privacy by design, and carefully consider its intended community in the design making

process. The solutions I propose are in no way exhaustive but rather record my

progress to date.

Motivation. In this section I briefly motivate my approach to address each of the

three main questions posed above.

We start with designing and analyzing customized cryptographic protocols to suit

emerging needs while maintaining people’s existing privacy guarantees. Recent years

have witnessed a global reckoning with the devastating impact of misinformation,

fake news and online abuse. A heated debate around the ways to combat these

campaigns ensured among legislators and governmental agencies on one hand and

big tech corporations on the other. At the heart of the discourse is the matter of

accountability: How do we hold users liable for illicit information that they share

on social media platforms especially when communication channels are end to end

encrypted? Many people on both sides of the debate seem to be converging towards

the dangerous and misinformed conclusion that accountability is inherently at odds

with privacy. Among the community of cryptographers and security experts on the

other hand, the conversation has primarily focused on either hampering at ill advised

legislation or critiquing proposed technical solutions by big corporations. While both

approaches are essential to the matter, neither is sufficient to ensure that people come

out of this debate with maximal privacy especially if content moderation becomes

legally codified. Our vantage point as experts needs to be one that deters the rise of

surveillance, and the core question as a result involves unifying accountability with

all existing security properties of private communication. In Chapter 2, I address

this question by taking a privacy maximalist approach in a setting where end to end
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encrypted communication needs to be extended with accountability.

With regards to efficiency and practical feasibility of secure computation, focusing

our research on improving the communication and computation complexity of proto-

cols at scale (e.g., with billions of people) can help further the adoption of privacy

tools by more people for several reasons. First, questions of efficiency and scalabil-

ity can be designed to be non-exclusionary by addressing concerns surrounding the

scarcity of computational resources among the most vulnerable people we are trying

to protect (e.g. low end phone, or limited data plan). Second, tech companies can be

incentivized to adopt privacy tools if their overheads atop existing solutions are min-

imal. Third, more efficient secure computation can limit tech giants from using any

unfounded argument of technical infeasibility vis a vis regulation and efforts towards

adopting more privacy preserving tools. To this end in Chapter 3, I present my work

on a special-purpose private information retrieval (PIR) construction called DP-PIR,

which is targeted specifically at the cases of high query rates in the third chapter.

Finally, we step away from operating in a technical cryptography vacuum and look

at the need to interact with our intended community in order to ensure that privacy

tools reach a larger and more diverse audience. I believe that most cryptographic work

that is motivated by real world settings cannot be conclusive because it is not well

equipped to answer the societal facets of a problem like: What are people’s privacy

concerns in the settings that we are considering? How do we make privacy accessible

and usable to different levels of technical literacy? How do we inform legislators in the

policy making process? How do we help developers follow the best security practices?

As security experts, we cannot foreshadow what people’s varying privacy needs are

and would quickly fall into the fallacy of technological solutionism [10] without outside

expertise. The general attitude of the cryptography research community has been

to dismiss these types of questions and works as not being technically challenging or
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novel. To these claims I go back to the starting point of this thesis: Have we managed

to protect people against the threat of surveillance capitalism? And if not, who are

we conducting our research for? It is then necessary to refocus the security and

privacy lens on the most important party in any computation—people—and inform

our decisions regarding all levels of our work (i.e. formal frameworks, protocols and

software) from the communities themselves. In Chapter 4, I present some work I have

done in this space and highlight the successes that I believe further the adoption of

privacy tools in practice.

1.1 Hecate: Accountability and Privacy for Abuse Reporting

The past few years have witnessed a growing discourse on content moderation fueled

primarily by the intractable rise of online abuse campaigns [88, 143, 181]. At the

heart of the conversation is the apparent tension between on one hand end to end

encrypted messaging systems (EEMS) and the privacy guarantees that they provide,

and on the other the notion of holding users accountable for messages that they

spread [3, 128,130,195].

In 2021, Apple responded to this conundrum in the context of combating Child

Sexual Abuse Material (CSAM), by announcing a new abuse detection mechanism [34,

51] that would automatically scan user’s messages against a known list of bad content

constructed by the National Center for Missing & Exploited Children (NCMEC).

There are several specific privacy concerns with Apple’s construction that have been

duly highlighted by the information security community [97,131] such as the possible

collisions that could lead to a non-negligible number of false positives, and its failure

to provide users with the means to verify the list’s provenance from NCMEC [156,216].

More generally, I believe that the notion of accountability neither suggests mecha-

nisms which automate the scanning of private messages, nor requires limiting people’s
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privacy. In this thesis, I present my work which corroborates my stance and answers:

Is abuse reporting necessarily at odds with the privacy guarantees of end

to end (E2E) encrypted messaging systems? How do we empower users

to report abuse in a manner that is consistent with E2E principles?

These questions are becoming more vital by the day with the looming legislation

that may enforce content moderation mechanisms on EEMS [3,128,130,195].

Our results. In our work on abuse reporting in EEMS, we approach the problem

by examining what privacy and security properties of network anonymous secure

messengers can be maintained alongside the notion of accountability. It’s important

to highlight that our work purposefully does not answer the question of whether or

not abuse reporting should be implemented in existing EEMS. This broader question

is societal in essence and requires a broader array of expertise than the one we present.

In this thesis, we focus on the existential question of whether such a system can exist

without breaking existing user guarantees of private communication.

At its heart, abuse reporting requires systems to hold users liable for messages

that they send. One of the core contributions of Hecate and other abuse reporting

schemes [178, 203, 237] is showcasing that accountability does not in fact necessitate

automated client or server side scanning.

Our work begins with defining the minimal requirements needed in order to achieve

our understanding of this notion. Accountability, as defined in Hecate and all prior

works in this space, ties the well formed structure of a message to its traceability. In

more detail, if a message is to be read by its intended recipient in an abuse reporting

scheme extending an EEMS, then it must be possible for it to trace back to its original

source. Otherwise it should be considered at the very least equivalent to any other

malformed message packet and dropped without ever being displayed to the user.
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Notice that nothing in this informal definition necessitates the automated scanning

of messages. That is by design: the matter of when moderation should happen and

who should enforce it is semantically distinct from what a report is. The added

insight of works like Hecate is that accountability can be syntactically/structurally

baked into existing EEMS by binding messages to tokens that trace back to the

identity of the original source of that message. The philosophical distinction between

automated content scanning and abuse reporting lies elsewhere. Abuse reporting

takes the position of empowering users by asking them to manually report received

content that they deem illicit. The recipient has to pass along the message and its

attached token to some moderating entity. Contrast this approach to Apple’s CSAM

detection, and other automated message scanning mechanisms, where the user has

no control over what list their messages get compared against.

Next, we must address the question of who gets to see which parts of a message. In

general, reports in these kinds of systems are relayed to a party called the Moderator

that is either separate or unified with the underlying EEMS platform/server. Users in

the forwarding path of a message are not allowed to read the token/tracing material

bound to the message. They are only able to learn their direct interlocutors, especially

when a message is forwarded along. Instead, only the moderator is able to decrypt

the token and learn the origin of a message in the event of a report.

Notice that we clearly confine accountability to only hold vis a vis the modera-

tor. Another crucial observation of abuse reporting systems like Hecate is that we

extend this definition to force the moderator’s knowledge of accountability to be

non-transferable, so that the moderator cannot convince anyone else that users sent

particular messages. Users can then always repudiate having sent messages to any-

one other than the moderator themselves. In doing so, abuse reporting systems can

inherit E2E properties such as deniability and confidentially.
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Variations in the literature then stem from four key design decisions: (1) the

level of network level anonymity and meta-data leakage provided by the underlying

EEMS [203, 237], (2) the content of the report and whether it should only include

information related to the originator rather than forwarders of a message [239], (3) the

optional separation of the role of the moderator and the platform [203, 237] and (4)

the additional functionalities and security guarantees that we may want from these

systems [178]. For instance, Asymmetric Message Franking (AMF) [237] provides full

network level anonymity at the cost of a computationally intensive protocol that does

not allow users to directly forward a message. Source Tracking [203] on the other

hand proposes an extremely efficient abuse reporting construction with forwarding

that leaks the originator and recipient of a message to the platform acting as a

moderator. The Fuzzy Anonymous Complaint Tally System (FACTS) [178] presents

even more interesting trade-offs via a construction that only reveals the origin of a

message after sufficiently many complaints have been made against it with meta-data

leakage akin to Source Tracking.

In Hecate, we instead ensure all the privacy guarantees of the most secure EEMS

while maintaining their core functionalities and their efficiency guarantees. We define

an abuse reporting scheme that: (1) maintains network level anonymity, (2) allows

users to forward messages, (3) guarantees all the properties of EEMS, (4) can separate

the roles of moderator and platform and (5) can easily be plugged into any existing

EEMS without overly modifying its main functionality. The core insight of Hecate

is to introduce a pre-processing stage during which the moderator can create a user-

specific batch of tokens that it can later receive at the time of a report. We effectively

offload all expensive public operations to an offline stage that can be periodically run

during off-peak hours and eliminate the need for the platform to know who the sender

of a message is.



8

Another unique aspect of our work is that we additionally answer the questions of

when are reports valid with respect to a compromise and what does recovery entail

in abuse reporting in EEMS. We define these notions as the duals of the existing

properties of backward and forward secrecy in EEMS. We emphasize that forward

and backward secrecy for abuse reporting are not trivially inherited from the corre-

sponding properties in the underlying EEMS, because users in an abuse reporting

system are held indefinitely accountable for reported messages. Without carefully

considering what happens when users recover from an attack in such a system, ad-

versaries may use any retrieved material during an attack to always pin messages on

those users. The abuse reporting pieces must therefore eventually become obsolete

just as different parts of the underlying EEMS normally are (e.g. via Double Ratch-

eting [191]). Additionally, we need to thoughtfully introduce these two notions in

harmony with all previously mentioned privacy guarantees.

One of the primary motivations of this thesis is to provide practically feasible

work, and Hecate is no stranger to the spirit of this dissertation. We provide a con-

struction that satisfies all aforementioned privacy guarantees without compromising

on the efficiency of the system. We achieve two goals in this regard: (1) providing a

construction that can be easily plugged into an existing EEMS, in our case Signal and

(2) showcasing that the computation and communication overhead of using Hecate

on top of said EEMS is minimal. We hope that our conclusive experimental results in

that regard will incentivize legislators and big corporations not to undermine users’

privacy in abuse reporting systems.

For more details, see Chapter 2 for our construction and results.
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1.2 DP-PIR: Private Information Retrieval for High query

loads

Private Information Retrieval (PIR) is a foundational cryptographic protocol that

considers the problem of users who want to privately retrieve data from a remote

database. Many variations of this problem have been extensively studied in the liter-

ature. However, the literature has largely left an interesting and important subspace

of PIR applications unexplored: scenarios where the query load is extremely high. In

this introduction, we briefly survey the prior investigations of PIR in order to high-

light what is still missing from the picture, and then we describe how our work on

Differential Private Batched PIR (DP-PIR) answers some of these shortcomings.

As a motivating example, imagine for instance that a developer wants to check

for updates for the software dependencies in their private code-base. Currently, de-

velopers do so in the clear and leak information about their library and code-base in

the process (e.g. to GitHub). This leakage could include vulnerabilities in the case

of outdated or legacy versions, or the functionality of the local code can be inferred

from the libraries that it depends on. PIR provides a privacy preserving mechanism

by which the user can check for those update without revealing to the server which

libraries they are querying for. However, prior PIR protocols cannot efficiently solve

this problem.

Background on PIR. The very first PIR protocol was a multi-server information

theoretic construction introduced in the late 90s by Chor, Goldreich, Kushilevitz

and Sudan (CGKS95) [83]. Several works then improved on the communication

and computational complexity of this foundational works. A key obstacle faced the

practicality of PIR, namely that the computational server-side work was prohibitively

large. Beimel et al. [44] showcased that this limitation, i.e. the Ω(n) computational



10

overhead of the server for a database of size n, was in fact inherent to any PIR

schemes. Intuitively PIR requires the server to perform work that is linear in the

size of the database per query in order to hide any access pattern leakage, namely

what the query is/is not. In order to address this shortcoming Beimel et al. proposed

two solutions that many works later improved: (1) staging the PIR scheme into an

offline/online phase and (2) batching queries to amortize the costs per query.

In the offline/online PIR schemes, the parties partake in a pre-processing phase

which handles the bulk of public key operations and results in material that users

or servers can later use for a much cheaper online stage. This kind of setting is

ideal in real world deployments where resources are more available and are cheaper

during certain times of the day. Batching techniques on the other hand utilize coding

theoretic techniques (e.g. Batch Codes [146]) to partition the PIR database so that

retrieving a batch of entries simultaneously is cheaper than doing otherwise.

Nowadays, practical constructions of PIR rely on these two techniques to achieve

sub-linear online computation and communication complexity. Most notably, Kogan

and Corrigan-Gibbs [162] proposed in 2021 one of the most practical PIR schemes,

Checklist, that can feasibly be deployed for block-list checking in the browser (e.g.

for certificate revocations). Their overheads are impressively low and can for instance

incur no more than a few seconds latency for a database of millions of elements.

Remaining Challenge. However, there are practical caveats in the research on

PIR because of how closely the community has stuck to its investigative tradition.

In general prior works, both practical and theoretical, have mostly looked at how to

lower the online latency without any deliberation to the throughput of the system.

In some sense, these works have managed to overlook the question entirely because

they have always treated efficiency as a property of a single isolated query. Consider

Checklist for instance. A query in Checklist requires
√
n online computation, where
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n is the size of the table. In an application with a high query rate, where a protocol

may need to handle O(n) (or even more) queries over a short period of time, the

overall computation becomes super-linear in n.

Real world systems on the other hand are customized for different loads and

throughputs in order to carefully allocate valuable resources. For example, databases

can be optimized differently based on whether the target load is read or write heavy.

In our starting example at the very top of Section 1.2, we can imagine that most

GitHub repositories are dependent at the very least on tens of libraries and may

be cloned or forked by tens if not hundreds of users. In this kind of scenario, it is

essential to design the private updating system for the specific use case where there

might be more than 100 times more incoming queries than there are dependencies to

check against.

A question hence remains unanswered:

How can we design a practical PIR protocol that is designed for high

throughput settings where the number of incoming queries exceeds the

size of the database?

Our results. In our work on differentially private multi-server private informa-

tion retrieval (DP-PIR), we provide a construction that handles a billion queries for

databases with millions of entries in a matter of minutes. DP-PIR achieves constant

amortized communication and computation complexity in the size of the database

when the volume of queries is large, as well as constant client work per query. An

important insight of DP-PIR is that specializing cryptographic protocols for specific

loads can lead to great efficiency gains. In our case, this specialization is intentional

and necessary: DP-PIR handles large batches so well for the same reason that it

handles small ones poorly. Our construction makes PIR usable in scenarios that were

previously impractical or unexplored.
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Prior work as I’ve mentioned have primarily focused on sequentially handling in-

coming queries. In these kinds of settings, the latency of the system is inversely

proportional to its throughput. Meaning that Checklist, DPF [63] and other PIR

works that focus on lowering the latency of their protocols, do indirectly improve

throughput as a consequence. However, due to the intrinsic lower bounds and over-

head that apply to any isolated PIR query, there is only so much that these protocols

can do to improve their latency, and thus their throughput. When the number in-

coming queries q approaches or exceeds the database size n, their complexities grow

multiplicatively in q and their isolated query cost, and become prohibitively large (for

instance, O(q
√
n) for Checklist).

If we instead opt to batch queries from different users, this will no longer neces-

sarily be the case. The latency and throughput are no longer directly related and

the PIR lower bounds no longer apply. This is precisely the starting point of DP-

PIR. Our work batches queries from multiple users and as a result our server-side

communication and computation complexity are O(n+ q) and hence additive rather

than multiplicative in the number of incoming queries. When q ≫ n, we effectively

amortize these complexities down to a constant amount of work per query.

Our key insight is to pay a fixed overhead independent of the number of queries

by providing differential privacy guarantees over the histogram of access patterns

of the PIR database: Differential Privacy requires making a bounded number of

noisy queries per database entry, while PIR needs the server to touch every element

in the database at least once for every query. It is not clear if it is possible to

achieve constant amortized complexity when batching queries from different clients

without allowing any leakage and our experience indicates that some leakage is almost

certainly required. Moreover, revealing a differentially private histogram of access

patterns over the database may also be beneficial since its gives servers insight over
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how to allocate their resources to accommodate users. In our motivating example for

instance, GitHub needs this kind of insight in order to determine which libraries are

most susceptible to typo-squatting attacks.

Notice that contrary to the traditional differential privacy problems, our construc-

tion trades privacy for efficiency and not accuracy by injecting dummy queries into

the system. This may seem unusual but is in fact similar to how mixnets use differen-

tial privacy [243] when providing cover traffic. The more noisy queries we introduce

into the system, the better privacy guarantees we provide users with, but the slower

the system becomes overall. We adjust the noise parameters (i.e. sensitivity, ϵ and

δ) according to our desired efficiency needs and the level at which we want the dif-

ferential privacy guarantees to hold, i.e. at the level of a query, or a user, or all

queries a user makes over a window of time. In all of these cases, the total amount

of noise injected is much smaller and independent of the number of incoming queries

and hence does not constitute a significant performance overhead.

We additionally split DP-PIR into an offline and an online stage, in order to allow

users to query the PIR database using only cheap arithmetic “crypto free” operations.

Our staging of PIR is similar at high level to prior works where the offline stage handles

the bulk of public key operations. One of the differences with previous work is that we

require parties to undergo a new offline stage after the previous offline stage material

has been consumed. However, this translates to little practical difference because our

offline work is also amortized over independent clients, and because existing work

invalidates past offline work when the database is updated.

For more details on our construction and results, readers are referred to Chapter

3.
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1.3 Transitioning Cryptographic Tools into Practice

In Chapter 4, I describe three projects I have worked on that focus on showcasing

the practicality of MPC to a wider and sometimes non-technical audience. In all of

these projects, I directly worked during the design making process with the people

for whom the cryptographic tools were developed. I believe that this is precisely why

these projects were successful.

1.3.1 Private Evidence Based Policymaking at the Department of Edu-

cation

In 2017, the US Commission on Evidence-Based Policymaking unanimously recom-

mended that inter-agency sharing of administrative data should be accompanied by

enhanced privacy protections:

“The Congress and the President should enact legislation establishing

the National Secure Data Service (NSDS) to facilitate data access for

evidence building while ensuring transparency and privacy. The NSDS

should model best practices for secure record linkage and drive the imple-

mentation of innovative privacy-enhancing technologies.” [9]

Unfortunately, current approaches for evidence building often involve outsourcing

data to third parties that are contractually obligated to safely and securely handle

the data while performing agreed-upon computation. In this pilot, we demonstrated

to the U.S. Department of Education how multiparty computation can efficiently

and securely perform any statistics needed for evidence-based policymaking between

agencies with no recourse to anyone outside the department itself and without any pri-

vacy risks. This project involved developing the private set intersection construction

of Pinkas et al. [206] in a Rust MPC framework called swanky [122], in order to re-

produce a portion of the annual 2015–16 National Post-secondary Student Aid Study.
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This work was deployed within the usual trust zones of the Department of Education

and required as a result making the pilot accessible, usable and understandable to

the non-technical people who demonstrated the prototype.

1.3.2 Web-MPC and JIFF: MPC for social welfare

In 2014, the Boston Women’s Workforce Council (BWWC) initiated a city wide study

to analyze the wage gap among gender, ethnicity and seniority as part of an effort to

advance the interests of women in the workforce. Initially, no third party was willing

to undertake the risk of receiving the raw salary data coming from multiple compa-

nies partaking in the study. As such, we developed and deployed a web based MPC

analytics system for the BWWC to allow them to run their statistics securely [170].

The success of this project was primarily due to our focus on the accessibility and

comprehensibility of the system to a wider audience, and on understanding the vari-

ous roles and dynamics of participants (e.g., asynchronicity of participation, possible

errors in data entry, etc.).

In 2018, the Greater Boston Chamber of Commerce (GBCC) launched the Pace-

setters Initiative which aimed to leverage the purchasing power of large and mid-sized

companies to create and promote economic opportunities for local minority-owned

businesses. In order to assess the progress of the initiative, we later adjusted and

deployed our web-based MPC to help the GBCC measure the initiative’s impact on

supplier diversity practices, including ways to increase spending with minority-owned

businesses. Both the BWWC and GBCC studies are periodic and are run and de-

ployed at least once a year. Later iterations of these deployments used my work on

JIFF, a general purpose MPC framework for the web, as a backend.
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1.3.3 Carousels: Tool chain support for emerging cryptography

The current landscape of cryptographic protocols consists of a plethora of primitives

and problems, each with a space of many solutions customized for specific classes

of security, functionality, performance, and application requirements. However, it is

often difficult to determine what cryptographic protocol would best fit a particular

problem because of the expansive nature of the set of possible solutions and the labo-

rious process of assessing each’s possible tradeoffs. For instance, at the macro level,

choosing the optimal PIR protocol for a specific application may require evaluating

many of the available protocols to identify which one is a good fit. On the other

hand, at the micro level, choosing the optimal multiplication protocol or comparison

circuit can also be challenging, especially given the number of dimensions that the

primitives may provide trade offs in e.g. round vs computation complexity, offline vs

online complexity, use of trusted dealers, and many others. In the space of MPC, the

problem is exacerbated even further with the construction of hybrid protocols (e.g.

ABY, JIFF) that switch between representations in a non-automated way [139]. In

short, there is a dire need for tools that help cryptographers and developers navigate

the realms of possible solutions according to their dimensions of interest. This is

critical for ensuring that continued progress in cryptography can be translated to real

world advances. To address this problem, I am currently working on designing and

developing Carousels: an automatic performance and resources analysis tool for MPC

programs that is language and protocol agnostic and that can reason about different

performance metrics, including communication, round, and computation complexity,

as well as memory use and cipher sizes. Carousels can be configured to understand

and analyze code written in different languages and currently supports analysis of pro-

grams written in OblivRust or JIFF. Furthermore, it relies on pluggable cost models

that specify how different protocols or primitives behave, including but not limited
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to BGW [49], SPDZ [95], Yao [256], and BGV [65].

1.4 Organization

In Chapter 2, I present a formalism and Hecate construction that showcase how

accountability can be maintained along side all the privacy guarantees of network

anonymous end-to-end encrypted messaging systems. In Chapter 3, I show how to

design a Private Information Retrieval protocol called DP-PIR for high throughput

use cases. In Chapter 4, I go over my experience with several successful projects that

have managed to bring cryptographic tools to a wider audience and some ongoing

work I have in this space.
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Chapter 2

Hecate: Abuse Reporting in Secure

Messengers with Sealed Sender

This chapter is based on joint work [14] with Nicolas Alhaddad and Mayank Varia.

2.1 Introduction

End-to-end encrypted messaging systems like Facebook Messenger, Signal, Telegram,

Viber, and WhatsApp are used by billions of people [250] due to their powerful

combination of cryptographic protections and ease of use. The security guarantees

provided by encrypted messengers are both varied and valuable [241]: confidentiality

and integrity from authenticated key exchange [62, 72, 168], deniability from the use

of symmetric authenticated encryption [61,102,132], and forward and backward (aka

post-compromise) security via key evolution [87, 134]. However, these very security

guarantees complicate efforts by secure messaging platforms to investigate reports of

abuse or disinformation campaigns, which can have serious consequences for individ-

uals and collective society [48,106,227,231,246].

To address these concerns, the security research community has developed three

methods to augment end-to-end messengers with privacy-respecting technologies to

assist with content moderation: message franking, source tracing, and automated

identification. First, message franking [102, 110, 132, 175, 178, 238] allows recipients

to manually report abusive messages with assurance that unreported messages retain

all guarantees of secure messengers, and reported messages are both accountable (the
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moderator correctly identifies the message’s sender) and deniable (the moderator

cannot prove this fact to anybody else). Second, source tracing [202, 240] allows the

moderator to pinpoint the original source of a viral message rather than the person

who forwarded the message to the eventual reporter. Finally, automated identification

[51,164] proactively matches messages against a moderator-provided list of messages

using a private (approximate) set membership test, with possible interventions like

rate-limiting or warning labels in case of a match [230]. We refer readers to [217] for

more details about content moderation in encrypted settings.

This work contributes a new construction called Hecate that simplifies, strength-

ens, and unifies the first two content moderation techniques: asymmetric message

franking and source tracing. We do not consider automated identification, focusing

instead on abuse reporting schemes that empower the people who receive messages

to choose the action they wish to take [154, 205]. To provide context for our work,

we describe the nascent space of message franking and source tracing in more detail

before explaining our improvements.

2.1.1 Prior work

There exists a long line of research into the security of end-to-end encrypted messaging

systems (EEMS) at both the protocol design and software implementation layers

(e.g., [27, 47, 53, 71, 85, 151]). Our work relies on these analyses in order to treat the

underlying messaging protocol in a black-box manner and abstract away its details,

so we can focus on the additions provided by content moderation protocols.

Message franking constructions involve four parties: a sender and receiver of a

message, plus the platform providing the secure messaging service and a moderator

who acts on abuse reports (see Figure 2·1). Symmetric message franking protocols

are limited to the setting in which the platform and moderator are the same entity

and have sufficient network-level visibility to pinpoint the sender of each message.
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At a high level, these constructions operate as follows: when a sender submits a

ciphertext corresponding to the message m, the platform signs an attestation binding

the sender’s identity to a commitment com(m) provided by the sender in the clear.

The receiver also sees this commitment (e.g., as part of a robust encryption scheme [15,

111,112]) and can check whether it is correct, dropping the packet if it is malformed.

Subsequently, the receiver can report the message as abusive by opening all [102,110,

132] or part [175] of the commitment; then, the platform can determine whether the

message is abusive and take appropriate action.

The work of Tyagi et al. [238], which is the starting point for this paper and which

we will henceforth refer to as TGLMR, introduces the notion of asymmetric message

franking (AMF) that removes the limitations from above. Specifically, AMF can

operate even when using Signal’s sealed sender [223] or an anonymous communication

system (e.g., [25, 90, 101, 244]) that hides the identity of the sender or receiver from

the platform. Furthermore, the system is secure whether the moderator and platform

are operated by the same or different entities.

Inspired by designated-verifier signatures [149,215], the TGLMR construction re-

quires the sender to make a Diffie-Hellman tuple ⟨g, gsksrc , gkmod , gsksrc·kmod⟩ involving

the moderator’s secret key and her own, as well as a non-interactive zero knowledge

proof that the tuple is well-formed. TGLMR achieves accountability and deniability

for the sender, but doesn’t provide forward and backward security due to the use of

long-lived secret keys. Moreover, it is complex and expensive to implement (see §2.7),

and requires a non-falsifiable knowledge of exponent assumption in the random ora-

cle model. Finally, TGLMR does not easily generalize to more complex conversation

graphs that allow for forwarding.

Another line of research investigates the ability for the moderator to trace the

original source of messages that might have been forwarded several times within
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an EEMS. Tyagi, Miers, and Ristenpart [240] began this line of study with their

Traceback scheme, which reveals to the moderator the entire path from the original

source to the reporter, but it requires server-side storage proportional to the number

of messages eligible to be traced. Two recent works provide source tracing, identifying

only the original source of a reported message. First, Peale, Eskandarian, and Boneh

[202] contribute a source tracing construction that inherits most security properties

from the underlying EEMS (see Table 2.1). Using more expensive crypto operations,

the stronger variant of their construction is the only one to date to achieve tree

unlinkability — namely, that a receiver who gets the same message twice cannot tell

if they originate from the same or different sources. Second, the FACTS scheme by Liu

et al. [178] provides source tracing along with a threshold reporting scheme so that the

moderator only learns when sufficiently many complaints have been lodged against

an abusive source client. However, none of these traceback or source tracing schemes

[178, 202, 240] considers backward security as part of their security model. Also,

none provides full anonymity of senders and receivers from the EEMS platform or

moderator; FACTS is compatible with a network that provides one-sided anonymity,

but it requires senders to identify themselves and request tokens from the moderator

on the fly whenever they wish to send a message.

This leaves the following open question:

Can we design a protocol that simultaneously provides asymmetric mes-

sage franking (AMF) and source tracing, achieves forward and backward

security, maintains anonymity of senders and receivers to the extent pro-

vided by the underlying EEMS network, and only makes black-box use of

standardized cryptography in the plain model?

In this work, we answer the question in the affirmative.
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Signal × × × ×

Tyagi et al. [238] × src ×
Traceback [240] path
FACTS [178] src
Peale et al. [202] src

Hecate (this work) src
: fully provided, : provided but not proven, : partially provided, : not provided, ×: not

applicable

Table 2.1: A comparison of features and security properties provided
by the Signal EEMS protocol as well as several abuse reporting con-
structions. Security properties are described in §2.2.2 and §2.6. For
the anonymity column, refers to providing anonymity at the level of
Signal’s sealed sender [223].

2.1.2 Our contributions

In this work, we provide a new definition and construction for asymmetric message

franking (AMF) that is more general, more secure, and faster than previous work. To

achieve this goal, we revisit the decision by TGLMR [238] to “restrict attention to

non-interactive schemes for which franking, verification, and judging requires sending

just a single message.” On its face, this restriction seems natural because end-to-end

encrypted messengers are designed to work asynchronously in situations with limited

network connectivity, so one-round (online) protocols are desirable. However, this

restriction also appears to direct the solution space toward expensive crypto tools

like designated-verifier signatures and zero knowledge proofs.

Our core insight is to introduce an AMF with preprocessing model as shown in
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Figure 2·1: Diagram of Hecate’s data flow for a message m, from
the source (top) to the forwarder (middle) and then to a reporting
receiver (bottom). The commands match our definition of AMF with
preprocessing (Def. 11), and the variables token, cfrank, cstamp, and report
are defined in Fig. 2·2.

Fig. 2·1. As before, the online work of message franking and transmission requires

only one round of communication from the source to platform to receiver. Before-

hand, we allow the source and moderator to engage in a single data-independent

preprocessing interaction to produce tokens that can be consumed during the online

phase. Preprocessing can be batched to produce many tokens at once, it can be

performed during off-peak hours when the source’s device is connected to power and

wifi, and it should be performed in advance rather than on the fly in order to avoid

network-level traffic linking attacks [184]. As with MPC [42] or PIR [45], we show

that adding a preprocessing round to AMF allows for more efficient protocols, and in

particular allows us to answer the open question from above.

Concretely, we contribute an AMF scheme called Hecate. Our construction lever-

ages the fact that, with preprocessing, the communication path of reported messages

begins and ends with the content moderator. Ergo, we can use techniques from

(faster) symmetric message franking whereby the moderator can prepare a token

(e.g., a symmetric encryption of the source’s identity) that is only intelligible to its

future self. The token is passed through the sender→ platform→ receiver communi-
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cation flow of an EEMS; that said, end-to-end encryption prevents the platform from

viewing the token.

Hecate also supports source tracing, in which receivers can forward messages along

with their corresponding tokens. Any recipient can choose to report an abusive mes-

sage; this only requires sending one communication to the moderator.

A big challenge in our construction is to combine message forwarding with our

AMF backward (or post-compromise) security requirement, which states that an at-

tacker who previously (but no longer) controlled a source’s device cannot blame the

source for new messages. To our knowledge, this work is the first one to consider

and formalize backward security within AMF. As we will discuss in more detail in

§2.2, the challenge in combining AMF with backward security stems from the fact

that indirect recipients of a message (after forwarding) cannot rely on the backward

security of the underlying encrypted messaging protocol to tell whether the token is

produced by the now-uncorrupted source or the attacker.

In summary, we make four contributions in this work.

• We rigorously define AMF with preprocessing (§2.3). We generalize the defini-

tion from TGLMR, formalize forward and backward security, and add source

tracing.

• We provide a construction called Hecate (§2.5). It requires only a few black-box

calls to standard crypto primitives.

• We formalize and prove (§2.6) that Hecate achieves all of the security guarantees

shown in Table 2.1.

• We implement Hecate (§2.7) and integrate it into a Signal client. We show that

Hecate’s performance compares favorably to prior work and is imperceptible in

practice.

Before continuing, we wish to stress that any decision to use content moderation
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within end-to-end encrypted messengers requires weighing all of its potential benefits

and risks, including the limitations of Hecate and prior works (see §2.8.2), and the

risk of abuse by (or coercion of) the moderator. This is a complex policy question

whose discussion should involve computer scientists, but not only computer scientists.

We take no stance on the policy question in this work; instead, we observe that these

policy discussions are already ongoing [21, 66, 210] and that a sub-optimal under-

standing of the technological possibilities may push a service provider or nation-state

policymakers toward a worse policy decision. We undertake this research in order to

demonstrate the feasibility of alternatives to blunt privacy-inhibiting legislation.

2.2 Overview

In this section, we describe our objectives for an asymmetric message franking (AMF)

system. We begin by describing the setting and threat model for our work, and then

we provide a high-level description of the security requirements and a brief description

of how our Hecate protocol will achieve them.

2.2.1 Setting and Threat Model

In this work, we consider an EEMS that might contain network-level anonymity

protections such as Signal’s sealed sender [223] or Tor [101]. We focus on two party

point-to-point communication; that said, our techniques translate directly to Signal’s

group messaging protocol as described in §2.8.1.

Within the context of any single message transmission, we refer to the partici-

pating clients using the following terminology: the source who initially produced the

message within the messaging platform, the receivers who receive the message and

can optionally decide to report it (in which case we call them a reporter) and the

forwarders who are receivers that decide to send the message along to others. All

clients only possess the computational power of a phone.
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Due to forwarding, the communication graph of each message has the structure of

a tree rooted at the source. Several messages can be sent concurrently, and a client

can have different roles in the communication trees of different messages.

In addition to the messenger clients, our model contains two (possibly separate,

and more computationally powerful) entities that everyone can communicate with:

(1) the platform that provides the messaging service, and (2) the content moderator

that receives reports and helps victims of abuse. We consider the platform and mod-

erator as possibly separate so that our model can capture settings where a platform

outsources moderation tasks to other, more qualified organizations (e.g., Facebook’s

oversight board [198]). We emphasize that our model and construction do not rely

upon separation of these roles in any way; they remain valid even if the platform and

moderator are operated by the same entity.

In general, the parties in the system view all other parties as potentially mali-

cious and colluding together. Every party wants confidentiality and integrity to the

strongest extent possible, even if some or all of their counterparty, the platform, and

the moderator are colluding against them. In particular, we wish to retain all of the

security goals that end-to-end encrypted messengers provide, as detailed in §2.2.2 and

§2.6.

The parties’ relationships toward the moderator are subtle and merit further dis-

cussion. The moderator and platform view each other as semi-honest; looking ahead

to our Hecate construction, the moderator trusts the accuracy of any timestamp ap-

plied by the platform but it need not trust the platform for any other purpose. Clients

have a choice: if they view the moderator and platform as malicious and colluding,

then they must be assured of limits to the moderator’s power; or, if they view the

moderator as semi-honest then they must be assured that the moderator can perform

its role.
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In this work, a malicious attacker has the power to compromise one or more

parties, in which case it can observe these parties’ local state (e.g., cryptographic keys)

and run arbitrary software for the duration of their control of a victim’s machine. A

semi-honest party, by contrast, is assumed to perform all actions honestly, and the

only objective against such a party is data minimization. We presume that the

software implementing the encrypted messenger faithfully reproduces the intended

specification so that the adversary cannot control the behavior of honest parties. Put

another way, supply chain attacks and formal verification are out of scope of this

work.

The objective of holding senders accountable for reported messages creates a ten-

sion with the security goals of end-to-end encrypted messengers. In particular, clients

no longer receive confidentiality, deniability, anonymity, or other privacy guarantees

against the moderator for reported messages. Moreover, an AMF scheme imposes a

limit on forward security, because messages sent in the past now can be revealed to the

moderator in the present. Our objective is to ensure security up to these fundamental

limits. We emphasize that even if the moderator is malicious and colluding with some

clients, all of the security guarantees for end-to-end encrypted messaging continue to

hold for all unreported messages communicated between non-colluding clients. More-

over, even for reported messages, security holds against all other parties who are not

colluding with the moderator.

Another tension exists between content moderation and network anonymity. For

example, sealed sender is a feature introduced by the Signal protocol to hide the

identity of the sender from the platform. It offers sender confidentiality and mini-

mizes the amount of metadata stored by the platform. But if the sender can deny

ever sending a message, then can we hold anyone responsible for sending an abusive

message? TGLMR [238] resolved this dilemma using zero-knowledge signatures. In
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this paper, we contribute an alternative construction based solely on black-box use

of standard crypto primitives.

2.2.2 Security goals

In an asymmetric message franking scheme, we aim to provide all of the security

and privacy goals of encrypted messengers [85, 241]. Some EEMS goals (cf. §2.4.1)

are already consistent with content moderation, in which case AMF constructions

can use these properties and must ensure that they don’t weaken them. To give a

concrete example for our Hecate protocol: we use the EEMS as a black box, and we

will take advantage of the receiver’s ability to authenticate the sender’s identity. On

the other hand, some security goals are not fully compatible with content moderation,

in which case we aim to make the smallest modification possible.

Below, we describe each security goal from Table 2.1 and highlight the extent to

which it is impacted by content moderation. These security goals apply to all clients

who construct properly formatted messages that adhere to the encrypted messaging

protocol, whether or not their messages are subsequently reported. That is: even

though malicious parties in a crypto protocol receive no security guarantees, the

mere act of sending a reported message does not render a client malicious.

• Confidentiality. Anyone not involved in the creation, forwarding, or reporting

of a message m must not learn anything about m except an upper bound on its

size.

• Anonymity. The AMF scheme should not allow the platform, receiver, or mod-

erator to learn anything about the source and forwarding path of a message

beyond what they would learn from the underlying EEMS or a report.

• Deniability. Every user should be able to deny a claim about the contents of

an unreported message made by any adversary (even other recipients of this
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message). Also, reported messages are deniable to anyone other than the mod-

erator, and if the moderator’s keys are breached then they become deniable to

everyone.

• Forward security. Adversaries that compromise users’ state in the present

should not be able to deduce anything about messages exchanged in the past.

This goal does not apply to messages that happen to remain on the phone in

the present, which can still be read and reported.

• Backward security. Once a client recovers from a compromise event, then the

compromised state becomes ‘useless’ after a short delay. That is, the adversary

cannot subsequently originate a new message that (if reported) would cause the

moderator to blame the victim client.

• Unforgeability. The adversary cannot send a message that appears to be sent

by another party. An honest receiver will reject any malformed or tampered

messages.

• Accountability. If a message passes a receiver’s verification check and is subse-

quently reported, the moderator will trace it back to its original source. That

is: nobody can falsely accuse someone who wasn’t the source of a message, and

the true source cannot evade detection and yet also have the message verified

by the receiver.

2.2.3 Protocol Overview

In this section, we give a high level overview of our Hecate protocol in two stages

(with and without message forwarding) and explain informally how it satisfies our

security goals.

Hecate without forwarding. At a high level, our Hecate construction can be

thought of as an interactive variant of designated-verifier signatures. Given a message
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mod src plat

pke, ske, idsrc, t1 m, r t2inputs

x1 := Enckmod(idsrc) x2 := H(m)⊕ x1shares

σ1 := Signskmod(x1∥pke∥t1) σ2 := Signske(x2)signatures

com := comr(x1∥x2) σ3 := Signskplat(com∥t2)stamp

[ x1, σ1, t1, pke ]payload [ x2, σ2, r ]payload, [ com ]envelope [ t2, σ3 ]envelopeske,

token

cfrank
cstamp

Figure 2·2: The construction of the different parts of a franked cipher.
The outputs of the diagram correspond to each party’s contribution to
the eventual stamped cipher cstamp. The source constructs the franked
cipher cfrank using a token provided by the moderator during prepro-
cessing. We denote by payload and envelope two different parts of the
ciphertext as defined in the Signal sealed sender protocol [223]; the
platform and receiver can read the envelope whereas only the receiver
can read the payload.

m, the source constructs a 2-out-of-2 secret sharing, say H(m) = x1 ⊕ x2. In Hecate,

the moderator binds x1 to the source’s identity (which on its own reveals nothing

about m), and then the source binds x1 to x2 without using any long-lived keys.

As shown in Fig. 2·2: since one of the two shares can be sampled even before

m is known, during preprocessing the moderator selects x1 as an encryption of the

source’s identity (which appears random to everyone else), samples an ephemeral

digital signature keypair (ske, pke), and signs both x1 and pke. The tuple of x1, pke,

and their signature constitute the preprocessing token token. During the online phase,

the source uses the ephemeral key ske to sign x2; we refer to the pair of x2 and its

signature as another token token.

The source provides both tokens to the receiver within the payload of an ordinary

Signal packet, as shown in Fig. 2·2; ignore the other elements of the franked ciphertext
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cfrank for now. Any receiver can check on its own whether the signatures are valid and

the underlying values x1 and x2 combine to form the real message m that the receiver

also gets from the underlying Signal communication; if verification fails, then the

message is malformed, so it is dropped without displaying on the receiver’s device.

If a verified message is later reported, the two tokens together will convince the

moderator that the source was the originator of message m.

Achieving our security goals. Many of our security guarantees follow directly

from the corresponding property of the underlying EEMS, so we focus on the most

challenging goals here. Hecate provides accountability for the same reason as symmet-

ric messaging franking schemes: the moderator created an authenticated encryption

of the source’s identity for its future self. Forward security holds because ephemeral

signing keys ske from the past were deleted before a compromise event in the present.

Deniability can be shown in two parts: if the moderator’s keys are breached then any-

one can produce signatures for any choices of x1 and x2, and otherwise the source’s

identity is hidden within the encrypted token so anyone could have ‘forged’ signatures

of an (x1, x2) pair using her own tokens rather than those of the real source.

Backward (or post-compromise [87]) security is more challenging to address, and

it is worth pausing for a moment to discuss what this guarantee means in the context

of content moderation. If an adversary corrupts the source’s phone, it can produce

messages whose reports blame the source; this is inevitable. Our goal is to ensure

that once the source recovers control of her phone, then (perhaps after a short delay

δ) any new message produced by the adversary cannot implicate the honest source.

To provide this guarantee within Hecate, the moderator includes a timestamp within

its attestation to x1, and receivers drop any message where this timestamp is too old.

This ensures that an adversary cannot use stale pre-processing tokens long after the

compromise event.
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Hecate with message forwarding. Next, we allow forwarding of messages and

consider source tracing, in which the moderator should identify only the original

source of a reported message. For the most part, our construction is already amenable

to source tracing: a forwarder can simply include the original source’s tokens within

a forwarded message rather than generating new tokens that would implicate herself.

However, our timestamp-based solution to backward security now fails because the

age of x1 is insufficient to determine whether the original source had control of her

cryptographic keys at the moment that the original message was sent (as opposed to

the time of the forwarding).

We solve this problem by appending a timestamp time as the data traverses

through the platform. To verify backward security, it suffices to verify whether the

pre-processed token (which contains the identity of the source to blame) was produced

close in time to the message transmission. Timestamps for forwarded messages are

disregarded; future recipients only care about the timestamp from the original source.

It only remains to bind the source timestamp to the message, so that it cannot be

tampered later. Note that we cannot reveal x2 to the platform, or else the platform

and moderator together could recover the content of messages. Blind signatures

are a possible solution to allow the platform to timestamp-and-sign obliviously, but

constructions that only require one message received and sent by the platform require

trusted setup [114], non-standard crypto assumptions [120,121], or a concretely slow

runtime with non-black-box reductions [115, 157]. Instead, we take advantage of the

fact that the platform’s actions need only be verified by recipients who already know

x1 and x2, so it suffices for the platform to produce a signature σ of the current time

together with a commitment to the two shares. The corresponding decommitment

randomness can be sent to the receiver within the encrypted messenger payload, so

that the recipient can verify that it is well-formed.
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2.3 Definitions

In this section, we present a nearly black-box model of the Signal protocol that we use

in this work, and then we detail a new definition for an asymmetric message franking

scheme that generalizes TGLMR [238].

2.4 Definitions of Cryptographic Building Blocks

This work uses four standard cryptographic building blocks that we use and adapt

from Boneh-Shoup [59] and Katz-Lindell [158]. In what follows, we define the message

space as M := {0, 1}∗, the key space as K := {0, 1}n, the ciphertext space as C :=

{0, 1}∗, the randomness space R := {0, 1}n and the signature space as Σ := {0, 1}n,

where n denotes the security parameter.

Definition 1 (Commitment scheme). A non-interactive commitment scheme is de-

fined by two algorithms Com and Vf.

• Com is an algorithm that takes a random string r←$R, and a plaintext message

m ∈M and outputs a commitment com := Com(m, r).

• Vf is an algorithm that takes a commitment com, a string r and a plaintext

message m and checks if Vf(m, com, r) := (Com(m, r)
?
= com).

Definition 2 (Binding commitment). A commitment scheme π = {Com,Vf} is com-

putationally binding if for all probabilistic polynomial time (PPT) adversaries A,

there is a negligible function negl(n) such that:

Advbindingcomπ (A) = Pr[Com(m, r, param) =

Com(m′, r′, param) | m ̸= m′] ≤ negl(n).

Definition 3 (Hiding commitment). Let π = {Com,Vf} be a commitment scheme.
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Let ComA
hiding be defined by the following experiment:

• The adversary A outputs a pair of messages m0,m1 ∈M.

• A uniform bit b ∈ {0, 1} and the randomness r← {0, 1}n are chosen.

• The adversary A is given access to the commitment oracle Ocom−hiding which on

messages m0 and m1 computes and returns the commitment com← Com(mb, r),

where Vf(Com(mb, r),mb, r) = 1.

• The output of the experiment is 1 if b′ = b and 0 otherwise.

A commitment scheme π is computationally hiding if for all PPT adversaries A there

is a negligible function negl(n) such that:

Advhidingcomπ (A) = Pr[ComA
hiding(n) = 1] ≤ 1

2
+ negl(n).

Definition 4 (Encryption scheme). A randomized private key encryption scheme is

defined by three algorithms EncKGen, Enc and Dec over a finite message spaceM.

• EncKGen is a probabilistic key generation algorithm that outputs a key sk sampled

uniformly at random from K.

• Enc is the randomized encryption algorithm that takes as an input sk and plain-

text message m ∈M and outputs c := Encsk(m) where c ∈ C.

• Dec is the decryption algorithm that takes as an input sk and a ciphertext c in

the ciphertext space C and outputs a plaintext message m := Decsk(c) such that

c := Encsk(m).

Definition 5 (CCA security). Let π = {EncKGen,Enc,Dec} be an encryption scheme.

Let ENCA
cca,π(n) denote the following experiment:

• EncKGen is run to obtain (pk, sk) and a uniform bit b ∈ {0, 1} is chosen. The

adversary A is given pk.
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• The adversary A is given access to the encryption oracle Oenc
cca which, on mes-

sages m0,m1, outputs a ciphertext c← Encpk(mb).

• The adversary A is given access to the decryption oracle Odecrypt
cca which outputs

the decrypted plaintext message m under sk when handed out a ciphertext c′.

• A continues to interact with the decryption and encryption oracles, but may not

request a decryption of any ciphertext c returned by Oenc
cca.

• Finally A output a bit b′. The output of the experiment is defined to be 1 if

b = b′, and 0 otherwise.

We say that π is secure under a chosen-ciphertext attack (CCA) if for all PPT

adversaries A, there exists a negligble function negl(n) such that:

Advencccaπ = Pr[ENCA
cca,π(n) = 1] ≤ 1

2
+ negl(n).

Definition 6 (CPA security). Let π = {EncKGen,Enc,Dec} be an encryption scheme.

Let ENCA
cpa,π(n) denote a similar experiment to ENCA

cca,π(n) where the adversary A

only has access to the encryption oracle that rename as Oenc
cpa. We say that π is secure

under a chosen-plaintext attack (CPA) if for all PPT adversaries A, there exists a

negligble function negl(n) such that:

Advenccpaπ = Pr[ENCA
cpa,π(n) = 1] ≤ 1

2
+ negl(n).

Definition 7 (Digital signature scheme). A signature scheme is defined as the triple

of algorithms SigKGen, Sign, Vf over the message space M and the signature space

Σ.

• SigKGen is a probabilistic key generation algorithm that output a key pair (pk, sk)

sampled from K, where pk is the public verification key and sk is the secret
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signing key.

• Sign is the probabilistic signing algorithm that takes the signing key sk and a

plaintext message m and outputs a signature σ ← Signsk(m), where σ ∈ Σ.

• Vf is the deterministic verification algorithm which checks the signature σ against

the plaintext message m and public key pk and outputs ⊥ or 1 such that:

Pr[Vf(pk,m, Signsk(m)) = 1] = 1.

Definition 8 (EU-CMA security). Let π = {SigKGen, Sign,Vf} denote a digital sig-

nature scheme. Let SigAeu−cma be the experiment defined as:

• SigKGen is run to obtain (pk, sk).

• The adversary A is given pk and access to the signing oracle Osign
eu−cma which

on message m computes and outputs the signature σ of that message under

the secret signing key sk. Let Q denote the set of all queries that A makes to

Osign
eu−cma.

• The adversary A then outputs (m′, σ′).

• The experiment outputs 1 if and only if Vfpk(m
′, σ′) = 1 and m′ ̸∈ Q, and 0

otherwise.

We say that π is existentially unforgeable under an adaptive chosen-message attack

(EU-CMA) if for all PPT adversaries A, there is a negligible function negl(n) such

that:

Advsigeu-cma
π (A) = Pr[SigAeu-cma(n) = 1] ≤ negl(n).

Definition 9 (Hash function). A hash function with output length l is defined by two

algorithms Gen and H.

• Gen is a probabilistic algorithm which outputs a key k ∈ K.
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• H is an algorithm which takes as input as key k and a string m ∈M and outputs

a string Hk(m) ∈ {0, 1}l(n).

Definition 10 (Collision resistance). Let π = {Gen,H} denote a hash function. Let

HashAcoll be the experiment defined as:

• Gen is run to obtain k.

• The adversary A is given access to the hashing oracle Ohash which on input m

returns Hk(m)

• The adversary then outputs m0 and m1.

• The experiment outputs 1 if and only if m0 ̸= m1 and Hk(m0) = Hk(m1).

We say that π is collision resistant if for all PPT adversaries A there is a negligible

function negl(n) such that:

Advhashcollπ (A) = Pr[HashAcoll(n) = 1] ≤ negl(n).

2.4.1 Modeling an EEMS

End-to-end encrypted messaging systems (EEMS) using the Signal protocol [225] are

a complex, delicate combination of standard cryptographic primitives. Starting with

Cohn-Gordon et al. [85], there is a long line of research that analyzes the security of

EEMS constructions such as the two-party Signal protocol itself (e.g., [27, 47, 151]),

modified versions that provide provide stronger guarantees (e.g., [148,150,208]), and

extensions to support group messaging (e.g., [69, 77,214]).

In this work, we wish to treat an EEMS as a black box and consider only an API-

level description of its operation and underlying security guarantees. For this reason,

we follow the UC models of an EEMS as shown by the recent works of Bienstock

et al. [53] and Canetti et al. [71], rather than the game-based definitions in the
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literature (e.g., [27, 47]). The ideal functionality FSignal in these works models the

creation, evolution, and destruction of communication ‘sessions’ between different

pairs of parties, and keeps track of the long-term and ephemeral state that parties

must hold for each operation.

We follow this abstract model, with three changes. First, we allow a sender to

attach public information outside of the encrypted message on the envelope that is

visible to the platform, as shown in Fig. 2·2. As defined by Signal’s sealed sender

construction [223], the envelope constitutes the outer shell of an encrypted message

and contains any data that is visible to the platform such as the ciphertext and the

recipient’s address. Second, in order to support an anonymous network, we allow

for inputs involving the parties’ identities to be optional. Third, we add an explicit

forgery method to highlight the fact that an EEMS achieves deniable authentication

[103] (which is implicitly true in universally composable security models [73]): that

is, the sender and receiver can forge a transcript showing that a message originated

with the other party.

Hence, our abstract model of Signal involves three methods. All of these methods

implicitly use the state of the party (or parties) that participate in each method.

• sendeems(m
∗; idsrc, idrec) → c: Run by the source client idsrc with message m∗,

this method sends a ciphertext c to the platform. This message m∗ might con-

tain payload and envelope components, similarly to how Signal’s sealed sender

operates. We sometimes omit the latter two inputs when they are clear from

context.

• delivereems(c; idrec)→ m∗: An interactive protocol in which the platform delivers

a ciphertext c to the receiver idrec. If this receiver was the intended target of a

previous sendeems that produced c, then they can decrypt using their local state

to recover m∗. As above, we presume that delivereems handles the payload and
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envelope of the message and splits c and m∗ accordingly. Here, it is unclear

whether to include idrec as an input: for an anonymous communication chan-

nel it is important that the platform not know idrec, but for non-anonymous

networks it may be required. We leave idrec as an optional parameter, and

throughout this work we focus on the stronger setting in which the network is

anonymous so this input is omitted.

• forgeeems(m
∗; idsrc, idrec) → c: A forgery algorithm executed by a party idrec

and requiring its state staterec. It forges a transcript that looks as though the

message m∗ were sent by its counterparty idsrc in an EEMS communication,

with a destination of idrec. The parameters idsrc and idrec are optional for the

same reasons as sendeems, and they will be omitted from this work.

2.4.2 Defining AMF with Preprocessing

Next, we present a rigorous definition for an asymmetric message franking system

with preprocessing. This definition extends the one from TGLMR [238] in two ways.

First, it includes an (optional) out-of-band communication between the moderator

and sender, which results in a one-time token that is consumed when sending a

message. Second, it is designed in a modular fashion so that it can be built on top of

any EEMS that adheres to the model in §2.4.1.

Definition 11. An asymmetric message franking scheme with preprocessing AMF

= (KGen, TGen, Frank, Forward, Stamp, Inspect, Verify, Forgemod, Forgerec) is a tuple

of algorithms called by different parties in the messaging ecosystem. We assume that

each party has a unique identifier id provided by the underlying EEMS, and we define

a state variable state for each party containing all keys and tokens generated by the

AMF scheme and the underlying EEMS that have not yet been deleted. (Note that

the user’s state does not contain a transcript of prior messages exchanged.) The
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algorithms operate as follows.

• (pk, sk)←$KGen(): The key generation algorithm accessed by any party in the

EEMS and used for creating (potentially multiple) cryptographic keys. The al-

gorithm is at least run once at the beginning of time to setup the long-term key

material for each party.

• TGen(idsrc, timemod, kmod) → token: An algorithm run by the moderator periodi-

cally that provides a one-time token for use when sending a message. An honest

moderator should only provide tokens to a participant that correspond to their

actual identity idsrc. It is assumed that the moderator can rely on the EEMS to

authenticate a user’s identity idsrc before running TGen.

• Frank(statesrc,m, idrec, token) → mfrank: The message franking algorithm that

allows a user with state statesrc to frank a plaintext message m that they wish

to send to a receiver idrec, using the token received during preprocessing. The

statesrc contains all key material produced by KGen and the underlying EEMS,

although Frank need not use this state. The resulting franked message mfrank can

be sent to the platform using sendeems.

• Stamp(cfrank, skplat, time)→ cstamp: The stamping procedure run by the platform

to authenticate and timestamp a franked cipher cfrank. The resulting stamped

cipher cstamp can then be delivered to its intended recipient using the delivereems

method. Stamp does not have the sender or receiver’s identity, even if delivereems

does.

• Forward(mfrank, statefwd, idrec)→ mfrank
′: Forwarding algorithm that allows a user

with franked message mfrank to produce a new franked message mfrank
′ intended

for a new recipient idrec. The format of mfrank and mfrank
′ are identical, so the

ciphertexts of new and forwarded messages look indistinguishable to the plat-
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form.

• Verify(mfrank, staterec) → (m, report) or ⊥: The report construction algorithm

that allows a receiver to validate a franked message mfrank with respect to its

state staterec. If valid, Verify returns the corresponding plaintext message m

along with a string report that the receiver can send to the moderator if they

choose to report an abusive message.

• Inspect(report, kmod) → (idsrc,m, time) or ⊥: The inspection algorithm that al-

lows a moderator to handle reported message report using their secret key kmod

by validating and possibly source tracing them. If the verification step succeeds,

the moderator produces the id of the source idsrc, the message contents m, and

a timestamp of the message time.

• Forgemod(idsrc, idrec,m, kmod) → mfrank: For deniability, this forgery protocol al-

lows a moderator with secret key kmod to forge a franked message with plaintext

m on behalf of a user with id idsrc and with an intended recipient with id idrec.

• Forgerec(idrec,m, staterec; idsrc) → cfrank: For deniability, this forgery algorithm

allows a receiver with id idrec and state staterec to forge a franked ciphertext as

though the message m was transmitted through the EEMS by the sender idsrc

to the receiver idrec. Note that idsrc is an optional parameter and may not be

needed by systems that support anonymous messaging. In this work, we omit it

from the presentation of this work since we are aiming for the highest level of

anonymity.

We say that an AMF scheme with preprocessing is secure if all computationally

bounded attackers have negligible advantage in winning the deniability, anonymity,

confidentiality, accountability, and backward secrecy games. These games are nuanced

to describe, so rather than doing so here, we defer our discussion to the security

analysis in §2.6.
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Command Actor KeyGen Sign Verify
TGen mod 1 1 0
Frank src 0 1 0
Stamp plat 0 1 0
Forward fwd 0 0 0
Verify rec 0 0 3
Inspect mod 0 0 3

Table 2.2: The number of public-key digital signature operations re-
quired for each of the interactive algorithms within Hecate (except for
the one-time KGen at setup). We only count the additional crypto-
graphic operations required for Hecate beyond those already required
by the EEMS.

2.5 Constructing Hecate

In this section, we describe the Hecate construction in detail. As per Def. 11, Hecate

has eight algorithms. We describe them within this section, and we provide the full

protocol specification of Hecate in Figs. 2·3-2·4. Because they are the most expensive

of our standard crypto primitives, we also count the number of public key operations

in each step here and in Table 2.2. For context, the prior AMF scheme from TGLMR

[238] required at least 11 modular exponentiations per algorithm.

Key generation. KGen initializes a few long-term keys: the moderator samples

an authenticated encryption key kmod and both the moderator and platform sample a

digital signature key pair (pkmod, skmod) and (pkplat, skplat). One strength of Hecate is

that individual parties do not need any long-term key material besides their existing

EEMS keys, which simplifies our analysis of forward and backward security.

Token generation during preprocessing. In TGen, the moderator creates a batch

of tokens for users at specific time intervals. Each token provides users with:

• Ephemeral session keys (pke, ske) that they can use to sign their message. None

of the keys tie to users’ long-term key material, thus giving the sender plausible

deniability and confidentiality with respect to other users.

• A dual purpose randomized encryption x1 := Enckmod(idsrc) of the user’s identity
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idsrc under the moderator’s secret key kmod that enforces accountability with re-

spect to the moderator, confidentiality with respect to other users, and provides

token integrity. The latter property is ensured by having the sender create a

share x2 that along with x1 reconstructs to a hash of the sent message.

• A timestamp t1 that provides backward security.

• A signature σ1 by the moderator of the entire token that guarantees integrity

and unforgeability of the token.

As shown in Table 2.2, the moderator requires two public key operations for token

generation: 1 keygen operation to produce the ephemeral key pair and 1 signature to

sign the public ephemeral key with the identity of the sender.

Message franking. The Frank method is executed every time the source wishes to

send a message. The constructfrank procedure requires an input plaintext message m

from the source and consumes a single token at a time, and it produces a franked

message mfrank. This can be combined with sendeems to relay a franked ciphertext cfrank

to the platform.

To produce the franked message, the sender begins by unpacking x1 from the

token and computes x2 such that these variables constitute a 2-out-of-2 sharing of

H(m). Next, x2 is signed via the ephemeral keys in the original token to produce

σ2. Collectively, x2, σ2, and elements of the pre-processing token (excluding the

secret ephemeral key) will constitute the payload of the franked message. Then, the

sender creates a commitment com of x1∥x2 using the randomness r. The user then

pushes com onto the envelope of the franked message and appends r to its payload.

In total, a sender only requires 1 public key operation to sign the second share x2.

The constructed franked message mfrank has several properties: x2 and com bind the

online and preprocessing stages together, the signature allows the receiver to check

the well-formedness of the message, and the use of an ephemeral signing key provides
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KGen [mod and plat, separately]

1 : kmod←$EncKGen(1n)

2 : (pkmod, skmod)←$SigKGen(1n)

3 : (pkplat, skplat)←$SigKGen(1n)

TGen [mod→ src]

1 : token := constructtoken(skmod, idsrc)

2 : return token

Frank [src→ plat]

1 : mfrank := constructfrank(token,m)

2 : cfrank := sendeems(mfrank)

3 : return cfrank

Forward [fwd→ rec]

1 : mfrank
′ := constructfwd(mfrank)

2 : cfrank := sendeems(mfrank
′)

3 : return cfrank

Stamp [plat→ rec]

1 : cstamp := stamptime(cfrank)

2 : cstamp
′ := sendeems(cstamp)

3 : return cstamp
′

Verify [rec→ mod/rec]

1 : mfrank := delivereems(cstamp)

2 : mfrank := movestamp(mfrank)

3 : (m, report) := vfRec(mfrank)

4 : if (m, report)
?
= ⊥ :

5 : return ⊥
6 : return (m, report)

Inspect [mod]

1 : if vfMsg(report) :

2 : return (Dec(report.x1), report.t2)

3 : return ⊥

Figure 2·3: Hecate’s construction along with the transmissions using
the encrypted messenger. The notation [a → b] means that party a
executes the method and sends the returned value to b. Note that the
plat relays messages between the src and the rec. The receiver of
a message may elect to forward or report it; we assume that Forward
is preceded by a successful invocation of Verify. See Fig. 2·4 for more
details on the methods used here.

deniability with respect to anyone other than the moderator.

Stamping. In Stamp, the platform timestamps and digitally signs the envelope of

a franked cipher cfrank; ergo, this procedure requires 1 public key operation. Then, the

platform relays the resulting stamped cipher cstamp to its intended recipient. Stamping

prevents a preprocessing token from being used indefinitely after a compromise to

blame a victim client for unsent messages.

Verification and reporting. Upon reception, the receiver executes Verify to validate

the signatures, timestamps, packet integrity, and envelope commitments. If a message
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constructtoken(kmod, skmod, idsrc)

1 : (pke, ske)←$SigKGen(1n)

2 : t1 := time()

3 : x1 := Enckmod(idsrc)

4 : σ1 := Signskmod(x1∥pke∥t1)
5 : token := (x1, t1, σ1, (pke, ske))

6 : return token

constructfrank(m, token)

1 : r←$ {0, 1}n

2 : (x1, t1, σ1, (pke, ske)) = token

3 : x2 := split(x1, H(m))

4 : σ2 := Signske(x2)

5 : com := comr(x1∥x2)
6 : envelope := com

7 : payload := (x1, x2, pke, r, t1, σ1, σ2)

8 : fwdpayload := ∅ // reserved for forwarder

9 : mfrank := (m, payload, fwdpayload, envelope)

10 : return mfrank

constructfwd(mfrank)

1 : mfrank := movestamp(mfrank)

2 : mfrank.envelope←$ {0, 1}n

3 : return mfrank

stamptime(cfrank, skplat)

1 : t2 = time()

2 : σ3 := Signskplat(com∥t2)

3 : cstamp.envelope := (com∥σ3∥t2)
4 : cstamp.payload := cfrank.payload

5 : return cstamp

movestamp(mfrank)

1 : if mfrank.fwdpayload
?
= ∅ :

2 : mfrank.fwdpayload := mfrank.envelope

3 : return mfrank

vfRec(mfrank)

1 : if vfMsg(mfrank) :

2 : report := mfrank

3 : return (mfrank.m, report)

4 : return ⊥
vfMsg(report)

1 : b1 := vfToken(report)

2 : b2 := vfCom(report)

3 : b3 := vfExp(report)

4 : return b1 ∧ b2 ∧ b3

vfToken(report)

1 : reveal := open(x1, x2)

2 : b1 := (reveal
?
= H(m))

3 : b2 := Vfpkmod(x1∥pke∥t1, σ1)

4 : b3 := Vfpke(x2, σ2)

5 : return b1 ∧ b2 ∧ b3

vfExp(report)

1 : b := |t1 − t2|
?
< expiry

2 : return b

vfCom(report)

1 : (com, σ3, t2)← report.fwdpayload

2 : b1 := Vf(x1∥x2, com, r)

3 : b2 := Vfpkplat(com∥t2, σ3)

4 : return b1 ∧ b2

Figure 2·4: Hecate’s subroutines. We omit writing out attribute access
notation when it is obvious from the context (i.e. com for instance is a
shorthand for cfrank.com).
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fails the verification check, then the receiver drops the packet and the application

never displays the plaintext message. Otherwise, Verify generates a plaintext message

m that can be displayed on the receiver’s phone, and a report that can be sent out to

the moderator if the receiver so chooses.

In Hecate, the report solely consists of the franked message mfrank. When the

moderator receives a report, they locally run the Inspect method which performs the

same verification procedure as the recipient, and if successful, decrypts the source’s

identity from the ciphertext x1 within the token. Both the receiver of a message and

a moderator who receives a report require 3 signature verifications to check that the

two shares are not tampered with and have the right timestamps.

Message forwarding. Verified messages can alternatively be forwarded using the

optional Forward method. There are two differences between Forward and Frank: the

forwarder creates a dummy commitment outside the Signal envelope, and it moves

the true commitment and signed timestamp into the payload of the franked message.

Because it reuses the prior signature, the forwarder doesn’t perform any public key

operations of its own. Note that Frank and Forward payloads are distinguishable

by the receiver but indistinguishable to the platform (meaning that it will stamp a

forwarded cipher); see Table 2.3 for the format of mfrank. The receiver of a forwarded

message executes Verify using the commitment, signature, and timestamp inside the

payload (ignoring the envelope).

We defer discussion of Hecate’s forgery algorithms to §2.6, since these are proof

artifacts of the deniability property rather than actual elements of the construction.

2.6 Security Analysis

In this section, we formally define the security properties of asymmetric message

franking (AMF) with preprocessing, and we prove that Hecate guarantees them. All
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sendamf(m, idsrc, idrec)

1 : statesrc := retrievestate(idsrc)

2 : fetch token from statesrc
3 : mfrank :=

4 : Frank(statesrc,m, idrec, token)

5 : cfrank := sendeems(mfrank)

6 : return cfrank

receiveamf(cfrank, idrec, timeplat, skplat)

1 : cstamp := Stamp(cfrank, idrec, timeplat, skplat)

2 : mfrank := delivereems(cstamp)

3 : staterec := retrievestate(idrec)

4 : if Verify(mfrank, staterec)
?
= 0 :

5 : return ⊥
6 : return mfrank

fwdamf(mfrank, idfwd, idrec)

1 : statefwd := retrievestate(idfwd)

2 : mfrank
′ :=

3 : Forward(statefwd,mfrank, idrec)

4 : cfrank := sendeems(mfrank
′)

5 : return cfrank

Ocorrupt(id)

1 : // globalt is only relevant in BAC

2 : corrupted = corrupted ∪ (id, globalt)

3 : stateid := retrievestate(id)

4 : return stateid

Orequest(id)

1 : // globalt is only relevant in BAC

2 : if (id, globalt) ∈ corrupted :

3 : create a batch of d tokens

4 : using TGen() for id

5 : T := T ∪ token

6 : globalt := globalt + 1

7 : return d tokens

8 : return ⊥

Figure 2·5: Game subroutines and oracles used in several games.
Here, d is a fixed parameter known to the moderator.

of our definitions are written as indistinguishability games GAMEA
b for b ∈ {0, 1}, and

we want to show that the adversary’s advantage

Advgame
Hecate(A) =

∣∣Pr[GAMEA
1 = 1

]
− Pr

[
GAMEA

0 = 1
]∣∣

is negligible for each game, if the adversary A is computationally bounded to proba-

bilistically polynomial time (PPT).
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2.6.1 Deniability

Deniability states that a sender should always be able to deny that they sent a partic-

ular message to anyone, except to the moderator when a message is reported. Denia-

bility could hold with respect to a colluding moderator and receivers, as shown in the

DENMA
b game in Fig. 2·6, or against malicious receivers who are not colluding with

an honest moderator, which corresponds to the DENRA
b game in Fig. 2·6.

Each deniability game provides the adversary A with polynomially-many queries

to an oracle ODENM
b or ODENR

b , respectively. For each query, the adversary chooses a

plaintext messagem and the sender idsrc and corrupted receiver idrecA of that message.

Both oracles behave similarly: depending on the parameterized choice bit b, the oracle

will either forge a message as a corrupted moderator/receiver as if originating from

idsrc, or ask the honest source idsrc to produce it themselves. Deniability requires

that no adversary can distinguish between forged and real messages, even with access

to the secret keys of malicious parties. In other words, we want to show that a

user can always repudiate having sent a message even when the moderator/receiver

provides access to their secret key material. The knowledge of the original source

of a message is non-transferable in that sense. Additionally, ODENR
b provides an

interesting guarantee: since the receiver forgery Forgerec does not depend on the

original sender of a message in any way, then it can be called by any user even if they

were not participating in the forwarding path of that message. This is a strong claim

since the number of possible senders of any particular message in Hecate is now as

large as the number of users in the EEMS.

In Hecate, Forgerec allows users to forge messages by using their own pre-processing

tokens and constructing their own franked messages that they send back to them-

selves. The receiver does not have any more capabilities than any other user, and

in particular the sender, without the secret key of the moderator. In other words,
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Source’s Payload Forwarder’s Payload Envelope
x1 x2 nonce pke r t1 σ1 σ2 envelope of source com σ3 t2
32B 32B 12B 32B 32B 8B 64B 64B 104B 32B 64B 8B

Table 2.3: The format of a franked message delivered to the receiver,
along with sizes in bytes for the implementation in §2.7. A franked
message sent by the source is similar, except the envelope does not yet
contain σ3 or t2.

DENMA
b

1 : s1, s2←$A
2 : kmod←$KGen(s1)

3 : (pkmod, skmod)←$KGen(s2)

4 : (pkplat, skplat)←$KGen(1n)

5 : b′←$AODENM
b (kmod, skmod)

6 : return b′

DENRA
b

1 : kmod←$KGen(1n)

2 : (pkplat, skplat)←$KGen(1n)

3 : b′←$AODENR
b

4 : return b′

Forgemod(idsrc, idrec,m, skmod)

1 : token := constructtoken(skmod, idsrc)

2 : mfrank := constructfrank(m, token)

3 : return mfrank

Forgerec(m, staterec)

1 : fetch token from staterec
2 : mfrank := constructfrank(m, token)

3 : cfrank := forgeeems(mfrank, staterec)

4 : return cfrank

ODENR
b (m, idsrc, idrec)

1 : if b = 0 :

2 : fetch staterec
3 : cfrank := Forgerec(m, staterec)

4 : mfrank
′ :=

5 : receiveamf(cfrank, idrec, time, skplat)

6 : else :

7 : cfrank := sendamf(m, idsrc, idrec)

8 : mfrank
′ :=

9 : receiveamf(cfrank, idrec, time, skplat)

10 : return mfrank
′

ODENM
b (m, idsrc, idrec)

1 : if b = 0 :

2 : mfrank :=

3 : Forgemod(idsrc, idrec,m, skmod)

4 : cfrank := sendeems(mfrank, idrec)

5 : mfrank
′ :=

6 : receiveamf(cfrank, idrec, time, skplat)

7 : else :

8 : cfrank := sendamf(m, idsrc, idrec)

9 : mfrank
′ :=

10 : receiveamf(cfrank, idrec, time, skplat)

11 : return mfrank
′

Figure 2·6: The security games for Deniability with respect to the
Receiver (DENRA

b ) and Moderator (DENMA
b ).
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the only thing that a receiver can do is construct the franked message themselves.

In Hecate, tokens and franked messages are not bound to the sender’s long term key

material and the origin of franked messages as a result is indistinguishable without

the secret key of the moderator.

In Forgemod on the other hand, the moderator can forge messages by using their

secret key to produce tokens for any user identity of their choosing, constructing

franked messages on their behalf and sending the resulting message to the receiver.

This is again a result of how Hecate does not bind the user’s long term key material

to a franked message.

Formalizing moderator deniability

Theorem 2.6.1. Hecate is deniable against a moderator. Any adversary A has ad-

vantage AdvdenmHecate(A) = 0.

The essence of Thm. 2.6.1 is the claim that Hecate’s real send routine is indis-

tinguishable from the moderator’s forgery. Intuitively, Hecate achieves moderator

deniability because Hecate implements algorithms TGen, Frank and Forward without

ever using the user’s long term key materials and instead relies on ephemeral keys

that the moderator generated. Additionally, the preprocessing token relies on an en-

cryption and signature by the moderator in a way that is not directly bound to the

message. This claim holds even against a distinguisher who also has the moderator’s

secret key – that is, if the moderator chooses to leak their own keys in an attempt to

convince the rest of the world about the actions of a sender.

Proof of Thm 2.6.1. We show via a series of hybrids that DENMA
0

c≈ DENMA
1 as

shown in Figure 2·6. This effectively boils down to showing that ODENM
0

c≈ ODENM
1 ,

and hence that sendamf is computationally indistinguishable from Forgemod (in Fig. 2·6)
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send0(n)

1 : statesrc := retrievestate(idsrc)

2 : fetch token from statesrc

3 : mfrank := Frank(statesrc,m, idrec, token)

4 : cfrank := sendeems(mfrank)

5 : return cfrank

send1(n)

constructtoken(kmod, idsrc)

mfrank := Frank(statesrc,m, idrec, token)

cfrank := sendeems(mfrank)

return cfrank

send2(n)

constructtoken(kmod, idsrc)

mfrank := constructfrank(m, token)

cfrank := sendeems(mfrank)

return cfrank

Figure 2·7: The hybrid steps modifying sendamf in the Moderator
Deniability game

and sendeems. Figure 2·7 shows the sequence of hybrid steps here, starting with the

existing sendamf subroutine as Game0.

Game1: In sendamf , we replace “fetch token from statesrc” with the moderator

token construction method constructtoken on the source’s id idsrc. We can do so because

the moderator in Hecate does not require any information from a user idsrc in order to

construct a token on their behalf. The adversary cannot observe the authentication

that occurs between the sender and the moderator since the oracle is acting on behalf

of the moderator in this game.

Game2: In sendamf , we can disregard the state passed to Frank and replace it

with its instantiation constructfrank. Similarly to constructtoken (and hence TGen),

constructfrank does not require the state of the sender to construct the franked message.

Notice that the resulting game from the prior series of hybrid has transformed

sendamf to look exactly like Forgemod. The resulting game is identical to DENMA
0 ,
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where only the branch corresponding to b = 0 is executed.

Formalizing receiver deniability

Theorem 2.6.2. Hecate is deniable against a malicious receiver. Concretely, for any

PPT adversary A, there exist PPT adversaries A′ and A′′ such that:

AdvdenrHecate(A) ≤ Adv
eemsdeniability
E (A′) + Adv

enccpa
E (A′′).

That is: Hecate’s deniability reduces to the deniability and CPA security properties of

the underlying EEMS scheme E.

The main difference with moderator deniability is that the adversary has to per-

form a forgery without the secret keys of the moderator. Intuitively, a forger can use

her own tokens to create a franked message of her choosing and claim that it came

from another source. Users with no access to the moderator’s secret key should not

be able to verify her claim without breaking the underlying encryption schemes.

Proof of Thm. 2.6.2. We show via a series of hybrids that DENRA
0

c≈ DENRA
1 , and

more precisely show that ODENR
0

c≈ ODENR
1 , and hence that sendamf is computationally

indistinguishable from Forgerec (Figure 2·6).

Game0: We start with ODENR
1 , we focus on the if-else branch corresponding to

b = 1 since its the only one executed. We can disregard the other branch.

Game1: In ODENR
1 , we replace statesrc in the sendamf subroutine with staterec (lines

1, 2, 4). This is equivalent to replacing sendamf with its instantiation constructfrank.

Since the adversary does not have access to the moderator’s secret key, then A has



53

send0(n)

1 : statesrc := retrievestate(idsrc)

2 : fetch token from statesrc

3 : mfrank := Frank(statesrc,m, idrec, token)

4 : cfrank := sendeems(mfrank)

5 : return cfrank

send1(n)

staterec := retrievestate(idrec)

fetch token from staterec

mfrank := constructfrank(m, token)

cfrank := sendeems(mfrank)

return cfrank

send2(n)

staterec := retrievestate(idrec)

fetch token from staterec

mfrank := constructfrank(m, token)

cfrank := forgeeems(mfrank)

return cfrank

CPA
EEMS Deniability

Figure 2·8: The hybrid steps modifying sendamf in the Receiver Deni-
ability game

negligible advantage in distinguishing between different x1 values in the constructed

pre-processing token and the franked message. Specifically, they cannot distinguish

between an encryption of idsrc and idrec without breaking the CPA security of the

symmetric key encryption scheme used by the moderator during preprocessing. We

formally show this by constructing an adversary B that can break the CPA security

game ENCA
cpa. When adversary A queries oracle ODENR

1 , B queries Oenc
cpa with idsrc and

idrec, constructs the franked message with the resulting cipher-text. When A submits

a choice bit b, B returns the same bit to ENCA
cpa and succeeds if and only if A can

distinguish between Games 0 and 1.

Game2: We replace sendeems with forgeeems since the underlying EEMS provides

receiver deniability and the receiver hence can forge a channel with themselves.

The resulting game is identical to DENRA
0 , where only the branch corresponding

to b = 0 is executed.
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2.6.2 Anonymity

Loosely speaking, the anonymity properties that we consider in this work restrict the

moderator and any client from learning the metadata about the senders, receivers,

and forwarders of messages that are transmitted between other people. We make

no claims here about the level of anonymity provided by the underlying network

environment (e.g., using sealed sender or Tor). Instead, our goal is to capture that

the cryptography does not weaken any anonymity guarantees that happen to be

provided by the underlying environment. Put another way: if we assume that the

underlying network provides perfect anonymity, we examine the amount of metadata

that each entity can learn through the abuse reporting system alone.

Anonymity with respect to the receiver

First, anonymity with respect to the receiver guarantees that receivers should not

be able to learn any other member of the forwarding path of a message beyond their

direct neighbors. For this security property, we assume that senders and forwarders

of a message are honest and wish to hide themselves from non-neighboring recipients

in the presence of an honest moderator.

We model this property in the ANONRA
b game. The adversary can send and

forward messages between parties using Osend
anon,b, O

fwd
anon,b and Odeliver

anon and is provided

with the resulting franked message mfrank.

In this game, we do not attempt to hide chat participants from on another. To that

end, both Osend
anon,b and Ofwd

anon,b call checktopology to ensure that the adversary provided

the same pairs of senders and recipients when either of the provided receivers is

corrupted. Without this check, A would trivially win the game by inspecting which

of their provided correspondents sent the message or who received it. Additionally,

checktopology ensures that Osend
anon,b and Ofwd

anon,b handle messages relayed from honest
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ANONRA
b

1 : s←$A
2 : kmod←$KGen(1n)

3 : (pkmod, skmod)←$KGen(1n)

4 : (pkplat, skplat)←$KGen(s)

5 : b′ := AOsend
b ,Ofwd

b ,Odeliver

(skplat)

6 : return b′

ANONMA
b

1 : s1, s2, s3←$A
2 : kmod←$KGen(s1)

3 : (pkmod, skmod)←$KGen(s2)

4 : (pkplat, skplat)←$KGen(s3)

5 : b′ := AOfwd
b ,Odeliver

(kmod, skmod, skplat)

6 : return b′

Ofwd
anon,b(mfrank, ⟨idfwd0, idrec0⟩, ⟨idfwd1, idrec1⟩, timeplat, skplat)

1 : if checktopology(⟨idfwd0, idrec0⟩, ⟨idfwd1, idrec1⟩) = ⊥ :

2 : return ⊥
3 : if checkreceived(mfrank, idrec0, idrec1) = ⊥ :

4 : return ⊥
5 : cfrank = fwdamf(mfrank, idsrc, idrec)

6 : mfrank
′ := receiveamf(cfrank, idrec, time, skplat)

7 : R := R ∪ ⟨mfrank
′, idrec0, idrec1⟩

8 : return mfrank
′

Osend
anon,b(m, ⟨idsrc0, idrec0⟩, ⟨idsrc1, idrec1⟩, timeplat, skplat)

1 : if checktopology(⟨idsrc0, idrec0⟩, ⟨idsrc1, idsrc1⟩) = ⊥ :

2 : return ⊥
3 : cfrank = sendamf(m, idsrc, idrec)

4 : mfrank := receiveamf(cfrank, idrec, time, skplat)

5 : R := R ∪ ⟨mfrank, idrec0, idrec1⟩
6 : return mfrank

Odeliver(cfrank, idrec, timeplat, skplat)

1 : mfrank := receiveamf(cfrank, idrec, timeplat, skplat)

2 : R := R ∪ ⟨mfrank, idrec, idrec⟩
3 : return mfrank

checkreceived(mfrank, idrec0, idrec1)

1 : if ⟨mfrank, idrec0, idrec1⟩ ̸∈ R :

2 : return ⊥
3 : return 1

checktopology(⟨idsrc0, idrec0⟩, ⟨idsrc1, idrec1⟩)
1 : if idsrc0 ∨ idsrc1 ∈ corrupted :

2 : return ⊥
3 : if idrec0 ∨ idrec1 ∈ corrupted :

4 : if idrec0 ̸= idrec1 ∨ idsrc0 ̸= idsrc1 :

5 : return ⊥
6 : return true

Figure 2·9: The security games for Anonymity with respect to the
Receiver and Moderator.
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senders and forwarders. Odeliver
anon on the other hand allows A to send franked messages

from corrupted nodes to an honest receiver. In Ofwd
anon,b, we also check that the queried

mfrank was initially received by either of the provided forwarders using the checkreceived

method in order to model the actual behavior of messages forwarders. Both Ofwd
anon,b

and Odeliver
anon check that the provided franked message are consistent with the recipient’s

state by calling Vf in the receiveamf subroutine, thus eliminating any trivial wins that

arise from malformed messages.

All three oracles, along with the corruption oracles Ocorrupt and Orequest, allow

the adversary to adaptively build any two message paths of their choice (modulo

the topological restrictions) and receive the transcript of the chosen path, effectively

encompassing the full power of a malicious recipient that may intercept messages

along the path. The adversary is tasked with guessing which of the two message

paths, with honest sources/roots, was chosen by the game. If they fail to distinguish

between them, then they would have failed to determine the original sender of that

message and the anonymity of that user and honest forwarder along the path is

preserved.

Theorem 2.6.3. Hecate is anonymous with respect to the receiver. For any PPT

adversary A, there exists an adversary A′ that can win the chosen plaintext attack

game with advantage AdvanonrHecate(A) ≤ Adv
enccpa
Hecate(A′).

Informally, this theorem holds because the preprocessing tokens in Hecate only

contain any information about the original sender’s identity in encrypted form; with-

out access to the moderator’s secret key, a receiver can’t distinguish between tokens

that originate from different senders. Additionally, Hecate stores no information

about forwarders of a message at all, thereby guaranteeing their anonymity as well.

We provide a rigorous proof of this theorem below.
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send0

1 : statesrc,0 := retrievestate(idsrc,0)

2 : fetch token from statesrc,0

3 : mfrank := Frank(statesrc,0,m, idrec,0, token)

4 : cfrank := sendeems(mfrank)

5 : return cfrank

send1

1 : statesrc,1 := retrievestate(idsrc,1)

2 : fetch token from statesrc,1

3 : mfrank := Frank(statesrc,0,m, idrec,0, token)

4 : cfrank := sendeems(mfrank)

5 : return cfrank

send2

1 : statesrc,1 := retrievestate(idsrc,1)

2 : fetch token from statesrc,1

3 : mfrank := Frank(statesrc,1,m, idrec,0, token)

4 : cfrank := sendeems(mfrank)

5 : return cfrank

send3

1 : statesrc,1 := retrievestate(idsrc,1)

2 : fetch token from statesrc,1

3 : mfrank := Frank(statesrc,1,m, idrec,1, token)

4 : cfrank := sendeems(mfrank)

5 : return cfrank

ENC-CPA

Figure 2·10: The hybrid steps of sendamf in the ANONRA
b game. We

refer the reader to ANONMA
b hybrids for fwdamf ’s hybrids (We omit the

final hybrid from this figure for ease of presentation).

Proof of Thm. 2.6.3. At a high level, Hecate guarantees sender anonymity for the

same reason it achieves receiver deniability: with no access to the moderator’s secret

key, message recipients cannot tell who the originator of a message is without breaking

the underlying encryption scheme. Additionally, since the commitment scheme used

for envelope commitments is hiding, then access to the platforms secret key does not

reveal anything about the sender of a message. On the other hand, forwarding franked

messages in Hecate does not utilize the forwarder’s state or identity. In other words,

no attribute in any franked message can be traced back to a forwarder guaranteeing

forwarder anonymity.

We show via a series of hybrids that ANONRA
0

c≈ ANONRA
1 .

Game0: We start with ANONRA
b with b = 0.
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Game1: We replace statesrc,0 with statesrc,1 in the sendamf subroutine that is called

by Osend
anon,b. The moderator in Hecate binds a sender to a token by encrypting their

identity on line 3 in constructtoken (Figure 2·4) and generating the sub-token x1. With-

out the moderator’s key, the adversary cannot decrypt the identity of the sender

within x1 in the token constructed in sendamf (Figure 2·5) on line 2 , without breaking

the CPA security of the underlying encryption scheme. The formalism here is similar

to Game 1 of DENA
rec.

Game2: We replace statesrc,0 with statesrc,1 in Frank in the sendamf subroutine that

is called by Osend
anon,b. The user’s state and long term keys are never used during the

construction of the franked message via constructfrank in Hecate. mfrank is only bound

to a particular user by x1 which we have discussed and handled in the previous hybrid.

Game3: We replace idrec0 with idrec1 in both Osend
anon,0 and Ofwd

anon,0. In Osend
anon, checktopology

enforces that idsrc0 = idsrc1 and idrec0 = idrec1 when either of the receivers is cor-

rupted (and similarly for Ofwd
anon). If both receivers are honest, then we can make this

replacement because Hecate does not use any information related to the receiver of

a message when constructing or forwarding a franked message (see constructfrank and

constructfwd respectively) and the adversary cannot hence distinguish between both

Games 2 and 3.

We have shown that Osend
anon,0

c≈ Osend
anon,1 in Hecate since both oracles are now identical.

The next series of hybrids are similar to the ones we have already seen.

Game4: We replace statefwd,0 with statefwd,1 in Forward in the fwdamf subroutine
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that is called by Ofwd
anon,b. The reason we can do so is two folds: (1) Hecate does not

use the forwarder states in constructing the franked message, (2) when the receiver

of a forwarded message is corrupted, checktopology enforces that idfwd,0 = idfwd,1 and

idrec0 = idrec1. In either case, the source or forwarder of a message have to be honest.

The resulting game is identical to ANONRA
1 . We conclude that Hecate is sender

and forwarder anonymous and the advantage of the adversary is equal to that of the

ENCA
cca.

Second, anonymity with respect to the moderator ensures that the moderator

should not be able to learn members of the forwarding path of a reported message

beyond the neighbors of colluding receivers and the reported source. Here, honest for-

warders want to be assured that, when their direct contacts are honest, only their

neighboring recipients know that they forwarded a specific message. Since the mod-

erator can directly trace the source of a franked message after receiving it, we can

additionally assume that for all intents and purpose the sender of a message in this

game is also colluding with them.

Anonymity with respect to the moderator

We show this property via the ANONMA
1 game, where the adversary now only has

access to Ofwd
anon,b, Odeliver

anon,b, Ocorrupt, Orequest oracles. Contrary to the prior property,

the adversary now chooses the moderator’s secret keys and controls the root of the

message path. They must now, as a result, use Odeliver
anon,b to deliver messages between the

compromised sender and honest recipients. If, by the end of the game, the adversary

cannot guess the correct message path chosen by the game then they could not have

distinguished between the different honest forwarders provided in each message path.

The adversary in this game is strictly stronger than the one in ANONRA
b because
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send0

1 : statefwd,0 := retrievestate(idfwd,0)

2 : mfrank
′ := Forward(statefwd,0,mfrank, idrec,0)

3 : cfrank := sendeems(mfrank
′)

4 : return cfrank

send1

1 : statefwd,1 := retrievestate(idfwd,1)

2 : mfrank
′ := Forward(statefwd,1,mfrank, idrec,0)

3 : cfrank := sendeems(mfrank
′)

4 : return cfrank

send2

1 : statefwd,1 := retrievestate(idfwd,1)

2 : mfrank
′ := Forward(statefwd,1,mfrank, idrec,1)

3 : cfrank := sendeems(mfrank
′)

4 : return cfrank

Figure 2·11: The hybrid steps of sendamf in the ANONA
mod,b game. We

refer the reader to the moderator anonymity game for fwdamf ’s hybrids.

of the gained source tracing capability from the moderators secret keys, and hence

implies the anonymity of forwarders in the presence of malicious receivers and an

honest moderator. However, ANONRA
b independently makes that guarantee because

of the way Ofwd
anon,b handles interactions between honest users. By the end of ANONRA

b ,

if the adversary could not guess the message path chosen by the game, then they could

not distinguish between honest forwarders with honest neighbors as well.

Theorem 2.6.4. Hecate is anonymous with respect to the moderator. Any adversary

A has advantage AdvanonmHecate(A) = 0.

Proof of Thm. 2.6.4. In this proof we need to show that a corrupted moderator can-

not learn the forwarding path of a message beyond senders/forwarders/receivers that

she has already corrupted and their neighbors. The reader is referred to the similar

receiver anonymity proof for more details.

We can show via a series of hybrids that ANONMA
0

c≈ ANONMA
1 .

Game0: We start with ANONMA
0 with b = 0.
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Game1: We replace statefwd,0 with statefwd,1 in Forward in the fwdamf subroutine

that is called by Ofwd
fwd,b. The reason we can do so is two folds: (1) Hecate does not

use the forwarder states in constructing the franked message, (2) when the receiver

of a forwarded message is corrupted, checktopology enforces that idfwd,0 = idfwd,1 and (3)

that both forwarders passed to Ofwd
anon,0 are honest.

Game3: We can replace idrec0 with idrec1 in the fwdamf and receiveamf subroutines

that are called by Ofwd
anon,b. checktopology enforces that idrec0 = idrec1 when either of the

receivers is corrupted (and similarly for Ofwd
anon,0). If both receivers are honest, then

we can make this replacement because Hecate does not use any information related

to the receiver of a message when constructing or forwarding a franked message (see

constructfwd) and the adversary cannot hence distinguish between both Games 2 and

3.

We can conclude that ANONMA
0 becomes indistinguishable from ANONMA

1 .

Note that our construction and security games do not consider forwarding graphs

(i.e. trees with cycles). In those cases, users can identify that the same message was

forwarded to them multiple times, a property called tree linkability in prior work [203].

Additionally, we allow users (but not the platform or the moderator) to distinguish

between a sent and a forwarded message as is the case in several messaging system.

We believe that an exciting opportunity for future work is to combine the ideas in

this paper with the tree unlinkability scheme by Peale et al. [203].
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CONF-FSA
b

1 : s1, s2←$A
2 : kmod←$KGen(s1)

3 : (pkmod, skmod)←$KGen(s2)

4 : F := ∅
5 : b′ := AO∗

(kmod, skmod)

6 : return b′

Osend
conf-fs,b(m0,m1, idsrc, idrec)

1 : if ∀id ∈ {idsrc, idrec}, id ∈ corrupted :

2 : return ⊥
3 : cfrank := sendamf(mb, idsrc, idrec)

4 : C := C ∪ cfrank

5 : return cfrank

Ofwd
conf-fs,b(mfrank0,mfrank1, idfwd, idrec)

1 : if ∀id ∈ {idfwd, idrec}, id ∈ corrupted :

2 : return ⊥
3 : cfrank := fwdamf(mfrankb, idsrc, idrec)

4 : return cfrank

Odecrypt
conf-fs (cfrank, idrec)

1 : if cfrank ∈ C :

2 : return ⊥
3 : mfrank :=

4 : receiveamf(cfrank, idrec, time, skplat)

5 : return mfrank

Figure 2·12: The security games for Message Confidentiality. Here,
we use O∗ to denote Osend

conf-fs,b, O
fwd
conf-fs,b, O

decrypt, Ocorrupt and Orequest.

2.6.3 Message Confidentiality and Forward Secrecy

Message confidentiality dictates that any party not involved in the creation, reception

or reporting of a message should not be able to learn anything about the message.

Moreover, forward secrecy guarantees that corrupted users should be guaranteed con-

fidentiality of all their messages and interactions prior to the time of compromise. In

this work, we consider the state of users to consist entirely of their key material and

their tokens; ergo, Hecate can only guarantee confidentiality for messages that have

been securely deleted from the local device prior to the compromise event.

We provide a combined definition of message confidentiality and forward security

in Figure 2·12. It guarantees message confidentiality because the CONF-FSA
b game

requires that content moderation does not break CCA security. Additionally, it guar-

antees forward security because the adversary in the CONF-FSA
b game is allowed to

corrupt any user of their choice, and in particular they can corrupt users who had pre-

viously honestly interacted using Osend
conf-fs,b and Ofwd

conf-fs,b. The game requires that the
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adversary cannot learn anything about their previously exchanged honest messages,

their prior keys, or states.

In this game, we note an important type difference between the franked messages

mfrank returned by Odecrypt
conf-fs on one hand, and the franked cipher cfrank returned by

Osend
conf-fs,b and Ofwd

conf-fs,b on the other. Osend
conf-fs,b and Ofwd

conf-fs,b produce a franked cipher

that is handed out to the platform for stamping before it gets relayed back to the

receiver. In other words, the platform cannot read any part of cfrank that is not

intended for it. Odecrypt
conf-fs returns the franked message after it has been delivered and

hence decrypted by the receiver. If a content moderation scheme does not handle

the distinction between the franked message and franked cipher properly, by say

appending the id of the sender to the envelope, then the adversary should be able to

easily win the game.

Theorem 2.6.5. Our scheme Hecate is message confidential and forward secure.

Concretely, for any PPT adversary A, there exist PPT adversaries A′ and A′′ such

that:

Advconf-fsHecate(A) ≤ AdvhidingcomHecate (A′) + AdvencccaHecate(A
′′).

Informally, the theorem holds because Hecate constructs franked messages by ap-

pending tokens to the payload of the message, and by adding a commitment and

timestamp to its envelope (see constructfrank and stamptime in Figure 2·4). The tokens

are encrypted alongside the plaintext message. The identifying content of the com-

mitment is encrypted, and we rely on the hiding properties of the commitment scheme

and the security of the connection that exists between parties and the platform. No

part of a Hecate franked message can therefore break this security property. We prove

this theorem in detail in what follows.

Proof of Thm. 2.6.5. In this proof, we show that Hecate does not break the CCA
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send0

1 : statesrc := retrievestate(idsrc)

2 : fetch token from statesrc

3 : mfrank0 := Frank(statesrc,m0,

4 : idrec, token)

5 : cfrank := sendeems(mfrank0)

6 : return cfrank

send1

1 : statesrc := retrievestate(idsrc)

2 : fetch token from statesrc

3 : mfrank0 := Frank(statesrc,m1,

4 : idrec, token)

5 : cfrank0 := sendeems(mfrank0)

6 : return cfrank0

send2

statesrc := retrievestate(idsrc)

fetch token from statesrc

mfrank1 := Frank(statesrc,m1,

idrec, token)

cfrank1 := sendeems(mfrank1)

return cfrank1

fwd3

statefwd := retrievestate(idfwd)

mfrank
′
0 := Forward(statefwd,

mfrank0, idrec)

cfrank0 := sendeems(mfrank
′
0)

return cfrank0

fwd4

statefwd := retrievestate(idfwd)

mfrank
′
0 := Forward(statefwd,

mfrank1, idrec)

cfrank0 := sendeems(mfrank
′
0)

return cfrank0

fwd5

statefwd := retrievestate(idfwd)

mfrank
′
1 := Forward(statefwd,

mfrank1, idrec)

cfrank1 := sendeems(mfrank
′
1)

return cfrank1

Com. Hiding ENC-CCA

Com. Hiding ENC-CCA

Figure 2·13: The hybrid steps of the CONF-FSA
b game

security of the underlying cryptographic scheme.

Game0: We start with CONF-FSA
0 .

Game1: In sendamf (called by Osend
conf-fs,b), we replace m0 with m1 in Frank on line 4.

Since the adversary does not have access to r, then they cannot only decommit com

with negligible property equal to breaking the secrecy of the commitment scheme. We

construct B that can uses an A that can distinguish between both games, to break

the secrecy of the commitment scheme. When A calls Osend
b on messages m0 and

m1, B queries Ocom-hiding with both messages and uses the returned com to construct

the franked cipher on behalf of the moderator and the users cfrank. If A succeeds in

picking a choice bit, then B will pick the same choice bit in ComA
hiding and will win
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with at least the same advantage.

Game2: In sendamf (called by Osend
conf-fs,b), we replace mfrank0 with mfrank1 in Frank.

Since the adversary does not have access to the source idsrc’s encryption secret keys,

then they can only notice this change with advantage equal to breaking the CCA

security ENCA
cca of sendeems and decrypting the contents of cfrank. WhenA calls Osend

conf-fs,b

on messages mfrank0 and mfrank1, B queries Oenc
cca with both messages and uses the

returned cipher text cfrank to construct the franked message on behalf of the moderator

and the users. When A calls Odecrypt on ciphertext c, B behaves similarly and requests

the decryption of the cipher-text from Odecrypt
cca . If A succeeds in picking a choice bit,

then B will pick the same choice bit in ENCA
cca and will win with at least the same

advantage.

Game3: In fwdamf (called by Ofwd
conf-fs,b), we replace mfrank0 with mfrank1 in Forward on

line 4. When a message is forwarded in Hecate, the commitment com in the original

franked message is replaced with a random commitment and the adversary cannot

distinguish this change.

Game4: In fwdamf (called by Ofwd
conf-fs,b), we replace mfrank

′
0 with mfrank

′
1 in Forward.

Since the adversary does not have access to the source idsrc’s encryption secret keys,

then they can only notice this change with advantage equal to breaking the CCA

security of sendeems and decrypting the contents of cfrank. The proof is similar to the

on in Game1.

The resulting CONF-FSA
0 is identical to CONF-FSA

1 and the adversary can only
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ACCA

1 : s←$A
2 : kmod←$KGen(1n)

3 : (pkplat, skplat)←$KGen(s)

4 : report←$AO∗
(skplat)

5 : (id, time,m) := Inspect(mfrank, kmod)

6 : if id ̸∈ {⊥, corrupted} ∧m ̸∈ M :

7 : return 1

8 : return 0

Odeliver
acc (cfrank, idrec, timeplat, skplat)

1 : mfrank :=

2 : receiveamf(cfrank, idrec, timeplat, skplat)

3 : return mfrank

Osend
acc (m, idsrc, idrec, timeplat, skplat)

1 : cfrank := sendamf(m, idsrc, idrec)

2 : mfrank :=

3 : receiveamf(cfrank, idrec, time, skplat)

4 : F := F ∪mfrank

5 : return mfrank

Ofwd
acc (mfrank, idsrc, idrec, timeplat, skplat)

1 : cfrank := fwdamf(mfrank, idfwd, idrec)

2 : mfrank
′ :=

3 : receiveamf(cfrank, idrec, time, skplat)

4 : return mfrank
′

Figure 2·14: The security games for Accountability. Here, we use O∗

to denote Osend,Ofwd, Odeliver,Orequest and Ocorrupt.

win the CONF-FSA
b game with advantage equal to twice the advantage of breaking

the CCA security of the underlying encryption scheme and the hiding property of the

commitment scheme.

2.6.4 Unforgeability and Accountability

These properties describe a scheme’s ability to bind senders to well-formed messages

while guaranteeing that no user can be accused of sending a message that they did not

send. They go hand-in-hand because well-formed messages are necessarily bound to

their original sender and cannot be attributed to anyone else. Note that these prop-

erties should hold with respect to an honest moderator who handles source tracing

reported messages. Ergo, in the unforgeability and accountability game, the adver-

sary attempts to create a message and fool the moderator into believing that it came

from a different user.
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We model accountability via the ACCA security game in Figure 2·14. The ad-

versary starts by making polynomially many queries to Osend, Ofwd, Odeliver, Ocorrupt,

and Orequest that collectively allow A to build any message path of their choice and

receive the resulting franked messages at each node within that path. Afterward, the

adversary is tasked with producing a franked message that: (1) can be reported back

to an existing user (line 5 in ACCA) (2) traces back to an uncorrupted party (line 6),

and (3) was not previously created during the challenge phase (line 6). In producing

a message that can pass these predicates, the adversary can effectively produce new

messages that can be traced back to other users. Note that who the message traces

back to, beyond being an existing honest user, is inconsequential: if the adversary

cannot find anyone else to blame them for a message, regardless of who they are, then

they cannot avoid accountability.

Theorem 2.6.6. Hecate holds users accountable. For any PPT adversary A that

makes at most q queries to its Osend oracle, there exist PPT adversaries A′ and A′′

such that:

AdvaccHecate(A) ≤ (q + 1) · Advsigeu-cma

S (A′) + AdvhashcollH (A′′).

By abuse of notation, in the following proof whenever we apply set inclusion syntax

like “token ∈ T” to tokens (which contain data and a signature on that data), we only

test set membership for the data components of token against the data components

of T, but allow for any valid signature. In other words, we do not require strong

unforgeability in our proofs.

Proof of Thm. 2.6.6. We show how the ACCA game can only be won in Hecate with

negligible probability. We note that the game’s win condition requires a well-formed
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vfToken0(n)

1 : b1 := (reveal
?
= H(m))

2 : b2 := Vfkmod(x1∥pke∥t1, σ1)

3 : b3 := Vfpke(x2, σ2)

4 : return b1 ∧ b2 ∧ b3

vfToken1(n)

b1 := (reveal
?
= H(m))

b := token
?
∈ T

b3 := Vfpke(x2, σ2)

return b1 ∧ b ∧ b3

vfToken2(n)

b1 := (reveal
?
= H(m))

b := ⟨t, token, ∗⟩
?
∈ F

return b1 ∧ b

vfToken3(n)

b := mfrank

?
∈ F

return b

EU-CMA
q.EU-CMA col. resist.

Figure 2·15: The hybrid steps modifying vfToken in the Accountabil-
ity game

mfrank that traces back to an existing id (line 6) and that contains a plain-text message

that was not previously submitted and stored in statechal (line 6). ACCA verifies the

message integrity via Verify (on line 5), which returns an id in the case of a well

formed message and ⊥ otherwise. Verify is composed of vfMsg (as seen in Figure 2·3

of Hecate’s construction) which itself makes three separate calls to vfExp, vfCom and

vfToken (line 1-2) based on which it determines the validity of the message. For a

franked message mfrank to be viable, all three functions must evaluate to true. vfExp

and vfCom are envelope commitment verification steps and are hence inconsequential

for the accountability property. It’s sufficient for the sake of this proof to show that

vfToken can never return true in Hecate. We handle the other two verification checks

in backward security.

In order for vfToken to return true, all three clauses lines (2-4) must also evaluate

to true.

Game0: This game is equivalent to vfToken, since this is the only method in vfMsg

(Inspect’s instantiation in Hecate) that is relevant for Hecate.
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Game1: We replace line 3 of vfToken with a new boolean predicate b := token
?
∈ T

that checks whether a token was generated by Orequest, and hence by a legitimate call

to TGen. Note that the only available way for the adversary to retrieve pre-processing

tokens is through a call to Orequest with the id of a corrupted party and that every

such token is stored in T on line 5. Since the adversary does not have access to

the moderator’s secret key, then A has a negligible advantage in distinguishing this

change by breaking the EU-CMA of the underlying signature scheme, forging the

signature of the moderator and creating their own token without using Orequest. We

formally show this by assuming that there exists an adversary A that can distinguish

between Games 0 and 1, and showing how to construct an adversary B that breaks

EU-CMA. We primarily show how B constructs Orequest, all other oracles outputs can

be trivially generated by B in Hecate since they are ephemeral and only depend on the

pre-processing token and additionally do not depend on the moderator’s secret key.

When A requests a pre-processing token, B locally construct x1, t1 and (pke, ske), then

signs their concatenation by making a query to SigAeu−cma. B then sends the resulting

token to A and waits until A submits an mfrank . B additionally checks franked

messages delivered using Odeliver
acc that pass the verification step and the predicates on

line 6 in the accountability game. If A does not fail, B can strip mfrank of everything

except the moderator’s pre-processring signature σ1 and submit that to the EU-CMA

game. Since this A is required to submitted a new franked message originating from

uncorrupted parties, then the moderator signature in mfrank will not correspond to
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any of outputs of SigAeu−cma, and B will win the EU-CMA games when A does.

Game2: Let t := (x2, σ2), i.e. the subset of the franked message constructed during

the online stage. We replace and combine lines 3 and 4 with the boolean predicate

b := (⟨t, token, ∗⟩
?
∈ F) that checks that the immutable tuple ⟨t, token⟩ is a subset of

some franked message in F. Recall that Osend
acc is the adversary’s only way to instruct

honest parties to construct and send messages. All such messages are saved in F on line

4. Since the adversary does not have access to honest parties’ ephemeral keys, then A

has negligible advantage in distinguishing between the original signature verification

and the predicate we replaced it with by breaking the EU-CMA of the underlying

signature scheme, forging the signature of the an honest party and creating their

own franked message originating from that user without using Osend
acc . We formally

show this by assuming that there exists an adversary A that can distinguish between

Games 1 and 2, and showing how to construct an adversary B that breaks EU-CMA.

Let q be an upper bound on the number of queries A can make to Osend
acc . We construct

an B that has access to q different EU-CMA games (with their own Osign
eu−cma) for q

ephemeral key pairs (where q ∈ poly(λ)) and that will try to win at least one of

these games. B starts by sampling and fixing the moderator’s secret key and uses

it to sign pre-processing tokens. When A queries Osend
acc , B picks one of the unused

q ephemeral public keys, constructs the pre-processing token for that public key by

randomly sampling its secret ephemeral key, and generates the rest of the franked

message by asking the Osign
eu−cma associated with that public key to sign x2. Note
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that B can trivially generate all other fields in the franked message since they have

access to the moderator’s secret key. Additionally, B can entirely act on behalf of the

moderator when A calls Orequest. B then waits until A submits an franked messages

or delivers a well formed mfrank using Odeliver
acc that pass predicates on line 6. B can win

the EU-CMA game SigAeu−cma by stripping that mfrank of everything except its online

signature σ2 and its ephemeral public key pke that it submits to the corresponding

SigAeu−cma game. If A succeeds at distinguishing Games 1 and 2 using mfrank, then B

will win SigAeu−cma since mfrank will need to be a new franked message originating from

an uncorrupted party and could not have have been generated by Osign
eu−cma. Since each

SigAeu−cma game is defined by a separate pair of ephemeral keys generated i.i.d., then

these games are independent of one another and by the union bound the advantage

of the adversary is at most equal to q × Adv
sigeu−cma

A (n) .

Game3: Finally, we can replace and combine all three lines in vfToken with the

boolean predicate b := ⟨token, t,m⟩
?
∈ M, which is in essence equivalent to b := mfrank

?
∈

M. The adversary can distinguish the change made with negligible advantage equal to

the likelihood of finding a collision m′ ̸∈ M of the collision resistant hash function H,

such that ∃mfrank.m ∈ M,H(m) = H(m′). Let’s assume that there exists an adversary

A that can distinguish between Games 2 and 3. We construct an adversary B that

will try to win the collision resistance hash game. When A queries Osend
acc , B requests

the hash of m from Ohash of the collision resistance hash game, then constructs the

rest of the franked message honestly. Note that all other oracles can be run by B
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since they act on behalf of the moderator and honest users. B then waits until A

submits an franked messages or delivers a well formed mfrank using Odeliver
acc that pass

predicates on line 6. If A succeeds at distinguishing Games 2 and 3 using mfrank, then

B will win the collision resistance hash game since the only way A can distinguish

between both games is if finds a collision m′ of H(m) that was not stored in M.

Now notice that there can be no franked message mfrank that can satisfy the hybrid

predicate mfrank

?
∈ M and the winning condition of the game id ̸∈ {⊥, corrupted} ∧

mfrank.m ̸∈ M, since we have shown that the adversary has to necessarily submit a

stored franked message in M. The adversary cannot therefore construct a franked

message mfrank that can win this game. We can reduce the attacker’s advantage in

winning the accountability game to the sum of its advantage in breaking the collision-

resistance or (q + 1) the EU-CMA games.

2.6.5 Backward Security

Backward Security requires that an adversary who controlled the state and keys of a

device pre-compromise should not be able to benefit from them after device recovery.

In particular, the adversary should be unable to craft new messages from a recovered

user or claim that during-compromise messages were sent out (not forwarded) after

the compromise period.

This kind of property is not inherently handled in the context of abuse reporting

by the traditional notion of backward secrecy of end to end encrypted messengers

because of the existence of tokens that can live indefinitely in the system. Abuse
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BACA
δ

1 : kmod←$KGen(1n)

2 : (pkplat, skplat)←$KGen(1n)

3 : done← AO∗

4 : Tpre := T

5 : corrupted := ∅,F := ∅
6 : recoverystart,t := globalt
7 : mchal←$M
8 : globalt := globalt + δ

9 : recoverydelay,t := globalt

10 : mfrank ← AO∗
(mchal)

11 : if checkreport(mfrank) :

12 : return 1

13 : return 0

checkreport(mfrank,mchal)

1 : (m, report) := Verify(mfrank)

2 : (idsrc, time,m) := Inspect(report)

3 : if idsrc
?

̸= ⊥∧

4 : (idsrc, ∗)
?

/∈ corrupted ∧mfrank ̸∈ F :

5 : if m
?
= mchal ∨ time > recoverydelay,t :

6 : return 1

7 : return 0

Odeliver
bs (cfrank, idrec)

1 : mfrank :=

2 : receiveamf(cfrank, idrec, timeplat, skplat)

3 : return mfrank

Osend
bs (m, idsrc, idrec)

1 : cfrank := sendamf(m, idsrc, idrec)

2 : mfrank := receiveamf(cfrank, idrec, time, skplat)

3 : F := F ∪mfrank

4 : return mfrank

Ofwd
bs (mfrank, idfwd, idrec)

1 : cfrank := fwdamf(mfrank, idfwd, idrec)

2 : mfrank
′ := receiveamf(cfrank, idrec, time, skplat)

3 : return mfrank
′

Ostamp
bs (cfrank)

1 : cstamp := Stamp(cfrank)

2 : return cstamp

Figure 2·16: The security games for Backward Security, where O∗

denotes Osend, Ofwd, Odeliver, Ostamp, Ocorrupt and Orequest.
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reporting in essence requires careful handling of user’s recovery post-compromise so

that no compromised state can be used to indefinitely hold users accountable for

messages that the adversary might have sent.

To codify backward security, we design the game BACA
δ in Figure 2·16. We provide

the adversary with oracle access to Ocorrupt, Orequest, Osend, Ofwd, Odeliver that allow them

to perform any possible interaction between users.

Similarly to prior games, the adversary can corrupt users using Ocorrupt and request

their pre-processing tokens via Orequest. However contrary to prior games, handling

time in BACA
δ is necessary since backward security is a property of the corruption

recovery period. In BACA
δ , corruption is not indefinite and we define it with respect

to the global time variable globalt. When A calls Ocorrupt, the oracle stores the id of

the corrupted user along with the time of corruption at globalt in the set corrupted.

When A calls Orequest to request pre-processing tokens for corrupted users, the oracle

first checks that the requested user is in corrupted at the current global time and

increments the global time if that check succeeds. In other words, the global time is

incremented each time a pre-processing token is returned to A, effectively requiring

them to re-corrupt users at the new global time. By defining time in this manner,

we capture how an adversary can no longer impersonate recovered users and request

tokens on their behalf. The adversary can also stamp any franked cipher that they

create using Ostamp. This effectively allows the adversary to transmit its own messages.

The adversary can additionally send and forward messages between any two users

regardless of their corruption status via Osend, Ofwd and Odeliver. Osend in particular

grants the adversary the power to request that an honest user creates a new franked

message that the oracle stores in the set F. Otherwise, with access to Orequest, the

adversary can create franked messages on their own before sending/forwarding them

along. Ofwd allows them to forward a franked message between honest users, and
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Odeliver allows them to send/forward messages from a corrupted user to an honest one.

With access to all these oracles, we model an all powerful adversary that can fully

control and build a forwarding tree of their choice.

The BACA
δ games proceeds in three phases.

The first phase marks the pre-recovery or compromise phase where the adversary

is given access to all aforementioned oracles and can interact with users as they see

fit (line 3).

When the adversary is done, the second phase begins and the game master sets

up the post-recovery period by: (1) sampling a challenge mchal uniformly at random

from the message space excluding plain-text messages sent in the first phase (line 7),

(2) saving the time at which the first phase ended in recoverystart,t (line 6), (3) and

advancing the current time by a grace period delta to mark the delayed beginning of

the recovery period recoverydelay,t (line 9).

The final phase marks the post-recovery period when the adversary is given mchal

and asked to provide a franked message mfrank that is well formed, traces back to an

honest user and either: (1) contains the plain-text challenge or (2) is timestamped

after the the delayed recovery period, after they are done interacting with the provided

oracles. These possibilities provided to the adversary to win the game encompass

this work’s notion of backward security: the adversary should neither (1) be able to

produce a message that they did not think of during compromise, nor should (2) they

circulate a message that was not timestamped during the time of compromise.

The first point codifies how backward secrecy is not concerned with messages

created prior to the time of recovery and the adversary should not be able to trivially

win the game for any such messages. Instead, the challenger forces the adversary

to submit a franked message that they could not have thought of pre-recovery by

providing them with a plaintext message that they had not seen before.
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The later point essentially captures how abuse reporting systems may deem mes-

sages that were sent during known data breach periods as unaccountable and possibly

invalid. This is especially important in an era where the number of cyber-attack cam-

paigns is on a rise, and where the adversary may attempt to create many messages

during the compromise period and delay reporting them or further circulating them

until an opportune time after the recovery period begins. This is especially critical in

the case where a public official’s device is hacked and when the time at which their

leaked messages were sent can influence public opinion.

Note that the game master resets both the corrupted and F sets on line 5 since

they are not useful in the first phase when the recovery period has not yet begun.

Both sets will allow the game master to evaluate the response of A with respect to

the winning condition. Since backward security is a property of corruption recovery,

the winning condition is itself a function of that period. In this essence, we define

recovery after some fixed δ has passed on line 9, to model how recovery in practice

is not instantaneous and may require a grace period. And finally the game master

saves any corrupted token that the adversary has created during the pre-recovery

stage (line 4). This allows the challenger to determine the time difference between

the token and the time of stamping later.

Theorem 2.6.7. Hecate is backward secure when the underlying EEMS and commu-

nication channel with the moderator are backward secure. For any PPT adversary A,

there exist PPT A′, A′′ and A′′′ such that:

AdvbacHecate(A) ≤ AdvaccHecate(A′) + 2 · Advsigeu-cma(A′′) + Advbindingcom(A′′′) +
q

|M|
,

where q is the number of queries made to Odeliver
bs ,Osend

bs .

By abuse of notation, in the following proof whenever we apply set inclusion syntax
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like “token ∈ T” to tokens (which contain data and a signature on that data), we only

test set membership for the data components of token against the data components

of T, but allow for any valid signature. In other words, we do not require strong

unforgeability in our proofs.

Proof of Thm. 2.6.7. The winning condition of the game requires the chosen mfrank to

trace back to an honest user. mfrank may then either contain the challenge mchal chosen

by the game master, or be timestamped after the recovery period delay recoverydelay,t

on line 9. The game requires mfrank to be traceable by the moderator via Inspect in

checkreport. In Hecate, Inspect is a conjunction of three separate verification steps:

vfExp that checks the expiry of the different time components of the franked message,

vfCom that checks the envelope commitment, and vfToken which checks all other parts

of the franked message and which we discuss in depth in the accountability game.

In this proof we distinguish between the payload of the franked message that we

denote by mfrank.payload and its envelope mfrank.envelope. In what follows, mfrank is

equivalent to (mfrank.payload, mfrank.envelope), mfrank.envelope is equivalent to (com,

σ2, t2). We use the regular expression operator ∗ to denote that a field can take any

value and is not specified by a specific game reduction. Each game hybrid will allow

us to specify different pieces of the eventual franked message.

Game1: We replace vfToken with checking that mfrank’s preprocessing token is

either (token, ∗)
?
∈ F or token

?
∈ T (where token is a shorthand for mfrank.payload.token).

The adversary can distinguish this change with negligible probability equal to the: (1)

probability of winning the EU-CMA game since the adversary does not have access to
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vfMsg0(n)

1 : b1 := vfToken(token,m)

2 : b2 := vfCom(token)

3 : b3 := vfExp(token)

4 : return b1 ∧ b2 ∧ b3

vfMsg1(n)

b := (token, ∗)
?
∈ F ∨ token

?
∈ T

b2 := vfCom(token)

b3 := vfExp(token)

return b ∧ b2 ∧ b3

vfMsg2(n)

EU-CMA EU-CMA

vfMsg2(n)

b := (token, ∗)
?
∈ F

∨(token
?
∈ Tpre

∧time ≤ recoverystart,t)

b2 := vfCom(token)

b3 := vfExp(token)

return b ∧ b2 ∧ b3

vfMsg3(n)

b := (token, ∗)
?
∈ F

b2 := vfCom(token)

return b ∧ b2

vfMsg4(n)

b := (mfrank.payload, ∗)
?
∈ F

b2 := vfCom(token)

return b ∧ b2

vfMsg5(n) vfMsg6(n)

b := mfrank

?
∈ F

return b

q
|M|

Accountability Commit. Bind.

vfCom3(n)

1 : b1 := Vf(x1∥x2, com, r)

2 : b2 := Vfpkplat
(com∥t2, σ3)

3 : return b1 ∧ b2

vfCom4(n)

1 : b := (mfrank.payload, com, ∗) ∈ F

2 : b2 := Vfpkplat
(com∥t2, σ3)

3 : return b ∧ b2

vfCom5(n)

1 : b := mfrank ∈ F

2 : return b

Figure 2·17: The hybrid steps modifying vfMsg and vfCom in the
Backward Security game. We use the shorthand token to refer to
mfrank.payload.token and use the regular expression wildcard operator
”∗” throughout.



79

the moderator’s secret key and has therefore a negligible chance in constructing well

formed tokens for a user of their choice locally. Recall that T is the set of corrupted

users tokens constructed by Orequest and that (token, ∗) ∈ F refers to the set of honest

user tokens constructed by Osend
bs . We refer the reader to Game 1 in the accountability

game for more details.

Game2: We parameterize expiry := δ and replace vfExp with (token, ∗)
?
∈ F or

token
?
∈ Tpre ∧ time ≤ recoverystart,t (i.e. that the token was generated prior to the

time of recovery and that mfrank was time stamped prior to the time of recovery).

The adversary can distinguish this change with negligible probability equal to the

probability of winning the EU-CMA game since the adversary does not have access

to the platform’s secret key. vfExp requires that |t2 − t1| < expiry, i.e. that mfrank’s

moderator and platform time stamps are within a set expiry time from one another

(line 1). The winning condition of the game requires idsrc ̸∈ corrupted. The only

possible way for token to have been created by a call Ocorrupt and Orequest must happen

prior to the beginning of the recovery time, i.e. token.t1 < recoverystart,t. Recall

that users can only be corrupt for one epoch at the current globalt before being

considered as honest and requiring the adversary to call Ocorrupt and Orequest if they

wish to corrupt them again. This definition of corruption is enforced by Orequest: if

the id passed is not corrupted at the current globalt, the oracle returns ⊥, otherwise

it returns the appropriate token and increments globalt. Additionally, since the game

master increments the global time by δ after recoverystart,t on line 9 in BACA
δ then
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unless the adversary can forge the platform’s signature and create its own timestamps

(we refer the reader to the reduction in Game 1 of the accountability game), then if

t1 > recoverystart,t, then envelope.t2 > recoverystart,t + δ (where envelope is a shorthand

for mfrank.envelope).

Game3: We replace vfExp with (token, ∗)
?
∈ F, i.e. we drop the token

?
∈ Tpre ∧

time ≤ recoverystart,t from the disjunction in Game2. The adversary can distinguish

this game with negligble probability equal to the probability of guessing mchal before

the challenger picks it. If time ≤ recoverystart,t then according to the winning condition

of the game on line 5,A must have included mchal in their report. Since the mchal is

picked after recoverystart,t, thenAmust have guessed mchal prior to the time of recovery.

They can do so with probability q
|M| , since mchal is sampled uniformly at random from

the message sample space.

Game4: We replace vfToken with checking that (mfrank.payload, ∗)
?
∈ F, where

payload refers to all elements of the franked message that are not on the envelope of

the message. The adversary can distinguish this change with negligible probability

equal to the advantage of the accountability game since they do not have access to

the secret ephemeral keys of users for token constructed with Osend. We refer the

reader to that proof for more details and not that both Games 1 and 3 are jointly

upper bounded by the advantage of the accountability game.

Game5: In vfCom, we replace line 2 with b1 := (mfrank.payload, com, ∗) ∈ F. We

show that the adversary can distinguish between Games 1 and 2 with negligible ad-
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vantage equal to the probability of breaking the binding property of the commitment

scheme. Let’s assume that there exists an adversary A that can distinguish both

games, we construct an adversary B that can break the commitment game. When-

ever A calls either Osend
bs , Ofwd

bs or Odeliver
bs , B constructs/modifies the franked message

honestly on behalf of the moderator, the platform and the users and returns the result

back to A. Note that B stores every single such message. When A returns a challenge

mfrank back to B or successfully delivers an mfrank to an honest user that was not pre-

viously logged in F using Odeliver
bs , B strips the resulting mfrank of everything except the

commitment and its corresponding decommitment, and submits these values along

with the original decommitment stored in F to the commitment game. If A succeeds

then they will have necessarily submitted a decommitment that is different than the

original one stored in F and B will win its corresponding game.

Game6: In vfCom, we replace line 2 with b2 := (mfrank.payload, com, t2, σ2) ∈ F,

which effectively implies replacing vfCom with (mfrank.payload,mfrank.envelope) ∈ F

(i.e. mfrank ∈ F). We can show similarly to Game 1 in the accountability game that,

without the platform’s secret key, the adversary can distinguish between Games 2 and

3 with negligible advantage equal to the probability of breaking EU-CMA security

property of the underlying signature scheme.

Game7: We replace vfMsg with ⊥ since we have shown that mfrank ∈ F and the

game’s winning condition requires otherwise.

We can therefore conclude that the adversary has negligible advantage in winning
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the BACA
δ game in Hecate equal to:

AdvbacHecate(A) ≤ AdvaccountabilityHecate (A)

+ 2.Advsigeu-cma(A)

+ Advbindingcom(A)

+
q

|M|
.

where q is the number of queries made to Odeliver
bs ,Osend

bs .

Informally, this theorem holds because Hecate requires the moderator and platform

timestamps to be close to one another. Hecate also binds each of these timestamps

to the franked message and the source’s identity, but in a confidential way, to ensure

that the adversary cannot evade backward secrecy by using unexpired timestamps

from other messages.

2.7 Implementation and Evaluation

We implemented Hecate as a Rust library that can be used as a back-end by other

systems. Our implementation uses Signal’s official platform agnostic API library

libsignal-client [224] for our encryption, commitment and hashing building blocks. To

that effect, we use libsignal-client’s implementation of AES-256 GCM for symmetric

encryption and HMAC with SHA-256 for commitments. We use the ed25519-dalek [94]

crate for ed25519 signatures and their associated functions and SHA256 from the sha2

crate for our hash functions. Our implementation is open source and available at [140].

In this section, we show experimental results when executing each component of

Hecate in isolation. Then, we measure the overhead of Hecate when integrated into a

Signal client.
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2.7.1 Performance Cost and Comparison

In this section, we measure the runtimes and transmission sizes for each component

within Hecate using Criterion, a Rust benchmarking suite. We also evaluate prior

open-source message franking systems on the same machine and compare them to

Hecate.

Experimental setup. We ran all experiments on Amazon Web Services in the US

East-Ohio Region, using a t3.small EC2 virtual machine running Ubuntu 20.04 LTS

with 2GB of RAM on a 3.1 GHz Intel Xeon Platinum Processor. Each data point

shown is the average of 300 trials, with outliers removed. We chose this machine and

number of experiment trials to align with prior work [202,238].

Hecate communication costs. We list the size of Hecate’s franked ciphers in Ta-

ble 2.3. The sizes in Table 2.3 stem from the fact that our libraries yield 32 byte

commitments with 32 byte long commitment randomness, 32 byte ciphertexts, 64

byte signatures, 32 byte symmetric and public keys, 12 byte nonces for symmetric

encryption, and 8 byte Unix timestamps. We remark that there exist more compact

instantiations of these primitives; our choices were motivated by ease of implementa-

tion on top of libsignal-client.

Hecate’s online runtime. Fig. 2·18 shows the performance of each component of

Hecate for message sizes ranging from 10 bytes to 10 kB. Overall, the runtime costs

remain low especially when compared to the cryptography already required within

an end-to-end messaging system (cf. §2.7.2).

Most components require executing a SHA-256 hash function (to calculate x2)

whose runtime is linear in the message size, along with 0-3 digital signature operations

whose cost is independent of message size (cf. Table 2.2). As a result, the signature(s)
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Figure 2·18: Online runtime of Hecate’s components as a function of
message size in bytes

dominate the cost for small message sizes and the hash function dominates the cost for

large messages. The two costs are balanced at a message size of 7.5 kB, where hashing

and digital signing each take about 33µs. Verify and Inspect are slower because they

require about 192µs to verify 3 signatures. On the other hand, Forward, Stamp and

TGen all have fast runtimes that are independent of message size. We remark that a

forwarder is assumed already to have verified a message at reception time, so its only

work during Forward is to move the envelope contents into the payload.

Hecate’s preprocessing cost. We also measure TGen over various batch sizes from

1 to 10,000 tokens. Fig. 2·19 shows the runtime and computational cost based on a

rate of 2.09¢ per hour for a t3.small AWS instance at the time of this writing. Our
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Figure 2·19: Runtime and dollar pricing of pre-processing token gen-
eration (TGen) as function of the token batch size.

measurements show that the price of generating a batch of 104 tokens is 3.45× 10−6

USD. Extrapolating to the scale of 1011 tokens (the approximate number of messages

sent through WhatsApp daily [183]), we estimate the cost of token generation to be 35

cents per day. We also highlight that the moderator does not need to remember these

ephemeral signing keys in between preprocessing and reporting; in fact the moderator

doesn’t require any storage cost at all.

Comparison with prior work. In this section, we compare our Rust implemen-

tation with the open-source software by TGLMR [238] and Peale et al. [202]. To

ensure a level comparison: we re-ran the benchmarks from prior work [202, 238] on

our t3.small AWS instance, we only considered the tree-linkable version of Peale et
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Sent Received Report

Tyagi et al. [238] 489 B 489 B 489 B
Peale et al. [202] 256 B 320 B 160 B

Hecate 380 B 484 B 380 B

Table 2.4: Communication overhead of Hecate and other message
franking schemes, in bytes.

TGen Frank Verify Inspect Forward Stamp

Tyagi et al. [238] – 6339 µs 5461 µs 5939 µs – –
Peale et al. [202] – 8.98 µs 69.56-138.19 µs 73.64 µs 8.46 µs 24.53 µs

Hecate 58.4 µs 38.24 µs 199.15 µs 203.87 µs 1.16 µs 29.17 µs

Table 2.5: Runtimes of message franking schemes, in microseconds, for
a message size of 1 kB. The runtime of Verify within Peale et al. [202]
differs based on whether the message is authored (left) or forwarded
(right).

al., and we removed the double ratchet encryption within the benchmarks of Peale et

al. in order to measure only the overhead of their message franking scheme.

We show a comparison of communication overhead in Table 2.4, and we compare

computation overhead in Table 2.5 for a message size of 1 kB. The benchmarks of

TGLMR [238] were orders of magnitude slower than the other works because their

construction of designated verifier signature performs more group operations; their

communication overhead was also the highest. The comparison between Hecate and

Peale et al. [202] is more nuanced. We stress that Hecate achieves additional security

properties like anonymity and backward security. As a consequence, senders perform

more work in Hecate and transmit more data, whereas Peale et al. leverage a non-

anonymous network so that the platform can tag the originator of a message. On

the other hand, Peale et al. require a forwarder to generate a commitment, whereas

Hecate only requires generating a random 32 byte string (which could even be sampled

beforehand).
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Hecate No Hecate Diff

Send 2.55 ms 2.38 ms 0.16 ms
Receive 3.19 ms 2.52 ms 0.67 ms
Total 5.74 ms 4.91 ms 0.83 ms

E2E Latency 37.28 ms 36.3 ms 0.98 ms

Table 2.6: Computation and communication costs for signal-cli with
and without Hecate, for a message size of 1 kB. Send and Receive
(104 trials) correspond to local computation prior to sending or after
receiving the message over the network. E2E Latency (600 trials) starts
at the beginning of Send and stops at the end of Receive, with network
latency included.

2.7.2 End-to-End Prototype Deployment

In this section, we integrate Hecate into an existing Signal client and show that Hecate

adds minimal overhead.

Implementation. To test the end-to-end overhead of sending and receiving mes-

sages, we integrated our Rust Hecate library into the Java tools signal-cli [220] and

libsignal-client [224]. The sender’s Frank procedure adds the Hecate payload to a mes-

sage before encrypting it using the EEMS, and then appends the Hecate envelope.

The receiver decrypts the franked message and runs Verify. Our modified libraries are

available as open source repositories [141, 142]. The sender gets tokens by running

the Rust library prior to the start of the experiment.

We deployed the sender and receiver signal-cli instances on one machine with a

1.90GHz Intel i7-8650U CPU and 16GB of RAM running Ubuntu 20.04 LTS. They

were connected over a wide-area network to an instance of signal-server [226].

Evaluation. We measured the client side overhead of running signal-cli with and

without Hecate on messages of size 1 kB. In both cases, we measured the average

of 10,000 trials of running local signal-cli operations and 600 trials of end-to-end
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(E2E) latency, with outliers removed. Our timer for the end-to-end latency test

starts as soon as the source’s signal-cli begins franking a message, and it ends when

the receiver’s signal-cli completes processing the franked ciphertext and outputs the

message. These sample sizes are larger than in §2.7.1 to overcome the noise added

by the network latency, the polling rate of the receiver, and the warm-up time of the

jvm instance of signal-cli for each of the parties.

Our results are shown in Table 2.6. They showcase how the findings from Table

2.5 translate to imperceptible overheads in an actual deployment of Hecate on a Signal

client. The inclusion of Hecate adds less than a millisecond of runtime locally and

over the network, on average. Moreover, this difference is dwarfed by the sample

variance of signal-cli due to the sources of measurement uncertainty.

2.8 Conclusion and Discussion

In this work, we constructed the first abuse reporting protocol that combines asym-

metric message franking and source tracing. We integrated this construction into a

Signal client and showed that its performance impact was imperceptible. Along the

way, we generalized the AMF model to accommodate preprocessing, and we formal-

ized security properties that hadn’t previously been considered by message franking

schemes.

In this final section, we discuss some extensions of Hecate, known limitations, and

opportunities for future work.

2.8.1 Extensions

We extend Hecate’s communication from the two-device setting to more realistic flows

supported by Signal.

Group Messaging. Hecate’s definitions and constructions can be ported in a

straightforward manner to Signal’s group messaging protocol, in which broadcasts
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to a group of size N are implemented via N individual point-to-point messages, after

a server-assisted consensus protocol to determine the group [77]. We note that there

exist recent works and an IETF standardization effort on sub-linear ends-to-ends en-

crypted group chats [28, 29, 52, 86, 218]; it remains an open problem to design abuse

reporting mechanisms for these protocols. We do not yet know if there are any ef-

ficiency gains and added benefits to federating content moderation among different

members of a group.

Multiple Devices. Hecate can easily support multiple devices for the same user

(e.g., a phone and laptop) by giving each device its own independent set of tokens.

The moderator can use the same idsrc for both sets of tokens, so that reports only

name an identity rather than a device.

2.8.2 Limitations

We discuss a few limits of our approach.

Reporting Benign Messages. Our construction allows receivers to report messages

that may later be deemed to be non-abusive. While it might be possible to require

the receiver to prove to an honest moderator that the message they are reporting is

actually abusive, this question is incredibly delicate and is therefore out of scope for

this and all prior works on end-to-end abuse reporting. In the special case that the

receiver is colluding with the moderator, we remark that (a) there is little that can

be done to prevent false reports, and (b) the overall leakage is no worse than what

EEMSs would already reveal to this colluding set.

Distinguishing Forwarded vs. Original Messages. In our construction, receivers

can distinguish between sent and forwarded messages. While this may be a desirable

feature in a messaging app, it is still a leakage in our system.

Forwarding Cycle Linkability. If the forwarding path of a message contains a cycle,

i.e. a receiver receives the same forwarded message multiple times, then they can tell
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that these messages originate from the same source. This is an inherent weakness of

Hecate as a result of forwarding the same tokens per message that we do not attempt

to protect against. It may be possible to combine Hecate with Peale et al.’s techniques

to remove this leakage [202].

Forwarding Tree Up-Rooting. Receiver’s of a message may “up-root” its for-

warding sub-tree by acting as the original senders of that message instead of forward-

ing it themselves. In general, we do not believe that this poses a concern as users do

not have the incentive to incriminate themselves with bad messages. Moreover, prior

work [240] suggests that this problem warrants an application side solution, if any,

and not a cryptographic one that would restrict users from copying received messages

and acting as their creators.

2.8.3 Future Work

Looking ahead, we believe there exist at least five possible avenues of future research

in the space of privacy-respecting content moderation.

Content Censorship. Content moderation systems can be misused for censorship

purposes. Questions surrounding what constitutes misinformation or a “bad” message

fall outside the scope of this work and into the realm of policy making and social media

regulation. We believe however that it may be interesting to federate the role of the

moderator in: (1) defining bad messages, (2) verifying reports, (3) taking actions with

respect to flagged contents and users.

Super Spreaders. A recent line of work [227,254] on misinformation spread in social

media distinguishes between honest users who forward misinformation and malicious

actors that act as super spreaders of misinformation. Honest users can mistakenly

forward or send misinformation content without ever realizing it. Super spreaders

on the other are adversarially creating or spreading bad content. Future work could
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examine aggregate behavior in order to distinguish malicious vs. mistaken users.

Partial opening. Known AMF constructions like Hecate only allow the receiver

to report all or none of a message. It should be possible to achieve partial opening

to the moderator by extending the message franking techniques of Leontiadis and

Vaudenay [175] to the asymmetric setting.

Stronger Notions of Backward Security. Backward security makes no guarantees

with respect to anything created during the time of compromise. In the context of

content moderation, this implies that the adversary can blame users for old com-

promised messages. We encourage future research into ways to limit the damage

of adversarial moderation reports or to allow honest parties to correct the record

post-recovery.

Ensuring System Security. Finally, we emphasize that our study of abuse reporting

has been primarily through a cryptographic lens, and as a result does not capture all

aspects of security. For example, many of our crypto definitions assume that clients

already have sufficient preprocessing tokens in hand. When implementing Hecate,

careful attention is required to ensure that adversaries cannot obtain a side channel

by, for example, influencing when preprocessing is run. We encourage cryptographers,

systems security researchers, usability experts, and domain specialists to investigate

whether and how to integrate Hecate (or any abuse reporting mechanism) into an end-

to-end encrypted messaging system in a matter that promotes online trust, safety,

and security.
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Chapter 3

Batched Differentially Private Information

Retrieval

This chapter is based on joint work [13] with Kinan Dak Albab, Mayank Varia and

Kalman Graffi.

3.1 Introduction

Private Information Retrieval (PIR) [84,165] is a cryptographic primitive that allows

a client to retrieve a record from a public database held by a single or multiple

servers without revealing the content of her query. PIR protocols have been developed

for a variety of settings, including information theoretic PIR where the database is

replicated across several servers [84], and computational PIR using single server [165].

The different settings of PIR are limited by various lower bounds on their computation

or communication complexity. In essence, a server must “touch” every entry in the

database when responding to a query, or else the server learns information about the

query, namely what the query is not!

Recent PIR protocols [91, 162, 179, 200] achieve sub-linear computation and com-

munication by relying on a preprocessing/offline stage that shifts the bulk of com-

putation into off-peak hours [46], relaxing security to allow limited leakage [233], or

batching queries, mostly in the case when they originate from the same client. These

advances allowed PIR to be used in a variety of applications including private presence

discovery [60,199], anonymous communication and messaging [32,80,166,189], private
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media and advertisement consumption [129, 135], certificate transparency [179], and

privacy preserving route recommendation [253].

Existing sublinear PIR protocols are able to handle medium to large databases

of size n and still respond to queries reasonably quickly. However, they scale poorly

as the number of queries increase: the sub-linear cost (e.g.
√
n for Checklist [162])

of handling each query quickly adds up when the number of queries approaches or

exceeds the size of the database into a super-linear overall cost (e.g. n
√
n). Efficiently

batching such queries and amortizing their overheads is an open problem when these

queries are made by different clients: existing work that batches such queries assumes

the number of queries is much smaller than the database size [179], burdens clients

with making noise queries [233], or requires clients to closely coordinate and share

secrets when preprocessing is used [46]. This complicates efforts to deploy PIR in a

variety of important applications including software updates, contact tracing, content

moderation, blacklisting of fake news, software vulnerability look-up, and similar

large-scale automated services. We demonstrate this empirically in section 3.2.

In this work, we introduce DP-PIR, a novel differentially private PIR protocol

tuned to efficiently handle large batches of queries approaching or exceeding the

size of the underlying database. Our protocol batches queries from different non-

coordinating clients. DP-PIR is the first protocol to achieve constant amortized

server computation and communication, as well as constant client computation and

communication.

While the details of our protocol are different from earlier work, at a high level

our construction combines three ideas:

1. Offloading public key operations to an offline stage so that the online stage

consists only of cheap operations [91, 200].

2. High throughput batched shuffling of messages by mixnets and secure messag-
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ing systems [172,173,236,243].

3. Relaxing the security of oblivious data structures and protocols to differentially

private leakage [186].

DP-PIR Overview Our protocol is a batched multi-server PIR protocol opti-

mized for queries approaching or exceeding the database size. DP-PIR is secure up

to selective aborts against a dishonest majority of malicious servers, as long as at

least one server is honest. Our protocol induces a per-batch overhead linear in the

size of the database; this overhead is independent of the number of queries q in that

batch, with a total computation complexity of O(n+ q) per entire batch. When the

number of queries approaches or exceeds the size of the database, the amortized com-

putation complexity per query is constant. Furthermore, our protocol only requires

constant computation, communication, and storage on the client side, regardless of

amortization. We describe the details of our construction in section 3.5.

Our protocol achieves this by relaxing the security guarantees of PIR to differential

privacy (DP) [105]. Unlike traditional PIR protocols, servers in DP-PIR learn a noised

differentially private histogram of the queries made in a batch. Clients secret share

their queries and communicate them to the servers, which are organized in a chain

similar to a mixnet. Our servers take turns shuffling these queries and injecting

generated noise queries similar to Vuvuzela [243]. The last server reconstructs the

queries (both real and noise) revealing a noisy histogram, and looks them up in the

database. The servers similarly secret share and de-shuffle responses, while removing

responses corresponding to their noise, and then send them to their respective clients

for final reconstruction. The noise queries are generated from a particular distribution

to ensure that the revealed histogram is (ϵ, δ)-differentially private, so that the smaller

ϵ and δ get, the more noise queries need to be added. The distribution can be

configured to provide privacy at the level of a single query or all queries made by the
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same client in a single batch or over a period of time. The number of these noise

queries is linear in n and 1
ϵ
and independent of the number of queries in a batch. The

noise does not affect the accuracy or correctness of any client’s output. Section 3.3

describes our threat model and provides an interpretation of what this differentially

oblivious [76] access pattern privacy means (as compared to traditional PIR).

Our protocol offloads all expensive public key operations to a similarly amortizable

offline preprocessing stage. This stage produces correlated secret material that our

protocol then uses online. Our online stage uses only a cheap information-theoretic

secret sharing scheme, consisting solely of a few field operations, which modern CPUs

can execute in a handful of cycles. The security of our protocol requires that this

secret sharing scheme, which we define in section 3.4, is both incremental and non-

malleable. Finally, section 3.6 describes how our protocol can be parallelized over

additional machines to exhibit linear improvements in latency and throughput.

Our Contribution We make three main contributions:

1. We introduce a novel PIR protocol that achieves constant amortized server

complexity with constant client computation and communication, including both its

offline and online stage, when the number of queries is similar to or larger than the

size of the database, even when the queries are made by different clients. Our offline

stage performs public key operations linear in the database and queries size, and the

online stage consists exclusively of cheap arithmetic operations.

2. We achieve a crypto-free online stage via a novel secret sharing scheme that

is both incremental and non-malleable, based only on modular arithmetic for both

sharing and reconstruction. To our knowledge, this is the first information theoretic

scheme that exhibits both properties combined. This scheme may be of independent

interest in scenarios involving Mixnets, (Distributed) ORAMs, and other shuffling

and oblivious data structures.



96

3. We implement this protocol and demonstrate its performance and scaling to

loads with hundreds of millions queries, while achieving throughput several fold higher

than existing state of the art protocols. The experiments identify a criterion describ-

ing application settings where our protocol is most effective compared to existing

protocols, based on the ratio of the number of queries over the database size.

3.2 Motivation

Private Information Retrieval is a powerful primitive that conceptually applies to a

wide range of privacy preserving applications. Existing PIR protocols are well suited

for applications with medium to large databases and small or infrequent number of

queries [32,129,197,253]. However, they are impractical for a large class of applications

with a large number of queries.

Motivating example One example that we consider throughout this work is

checking for software updates on mobile app stores. The Google Play and iOS app

stores contain an estimated 2.56 and 1.85 million applications each [145], and the

number of active Android and iOS devices exceed 3 and 1.65 billion, respectively

[92]. These devices perform periodic background checks to ensure that their installed

applications are up to date. Currently, these checks are done without privacy: the

app store knows all applications installed on a device, and can perform checks to

determine if they are up-to-date quickly. However, the installed applications on one’s

device constitute sensitive information. They can reveal information about the user’s

activity (e.g. which bank they use), or whether the device has applications with

known exploits.

It is desirable to hide the sensitive application information from the app store

as well as potential attackers. A device can send a PIR query for each application

installed, and the servers can privately respond with the most up-to-date version
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label of each application. If the installed application is out of date, the device can

then download the updated application via some anonymous channel, such as Tor.

However, unlike DP-PIR, existing PIR protocols cannot scale to such loads, where

the number of devices is about 1000x larger than the size of the database, each with

tens of applications installed, given how quickly the sub-linear overheads per query

add up. We demonstrate this empirically with three state of the art PIR protocols:

Checklist [162], DPF [63], and SealPIR [31].

Additional Applications We believe that a large class of applications demon-

strate similar properties ideal for DP-PIR. In privacy-preserving automated exposure

notification for contact tracing [75, 234, 235], the number of recent cases in a city or

region (i.e. the size of the database) is far smaller than the total population of that

area (i.e. the number of queries). Similarly, identifying misinformation in end-to-end

encrypted messaging systems [163] usually involves a denylist far smaller than the

total number of messages exchanged in the system within a reasonable batching time

window.

Our protocol relies on having two or more non-colluding parties that together

constitute the service provider. This is a common assumption used by many other PIR

protocols. Secure multiparty computation (MPC) has been applied in many real world

applications over the last decade. This includes services federated over somewhat-

independent subdivisions within the same large organization [20, 228], or additional

parties that volunteer to participate to promote common social good [89, 212]. A

third category, which we believe is most suited for the app store example, involves

providers actively seeking out third parties to federate their services [55, 170] under

contractual agreements for privacy or compliance reasons, usually in exchange for

financial or reputation incentives. This has spurred various startups [192, 196] that

provide their participation in secure multiparty computations as a service.
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We believe that the differential privacy guarantees of DP-PIR suffice for applica-

tions where the primary focus is protecting the privacy of any given client, but not

overall trends or patterns. Such as applications where it is also desirable for the (ap-

proximate) overall query distribution to be publicly revealed, e.g. an app store that

displays download counts or a private exposure notification service that also identi-

fies infection hotspots. DP-PIR is ideal for such applications, since it reveals a noised

version of this distribution, without having to use an additional private heavy hitters

protocol [56]. In practice, we emphasize that our relaxed DP guarantees should be

viewed as an improvement over the insecure status-quo, rather than a replacement for

PIR protocols that have stronger guarantees but impractical overheads in our target

settings.

Comparison to Existing PIR Protocols Private Information Retrieval (PIR)

has been been extensively studied in a variety of settings. Information theoretic

PIR replicates the database over several non-colluding servers [43], while computa-

tional PIR traditionally uses a single database and relies on cryptographic hardness

assumptions [68,82,176].

Naive PIR protocols require a linear amount of computation and communication

(e.g. sending the entire database over to the client), and several settings have close-

to-linear lower bounds on either computation or communication [177].

Modern PIR protocols commonly introduce an offline preprocessing stage, which

either encodes the database for faster online processing using replication [46,57,91,162]

and coding theory [64,70,137,200], performs a linear amount of offline work per client

to make the online stage sub-linear [70,91,162,162], or performs expensive public key

operations so that the online stage only consists of cheaper ones [91,162,200]. Other

protocols rely on homomorphic primitives during online processing [23,31,248].

Finally, some protocols allow batching queries to amortize costs. When combined
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Protocol Computation Communication
Online Offline Online Offline

BIM04 [46] n0.55 − n0.55 −
CK20 [91]

√
n n λ2 log n

√
n

Checklist [162]
√
n n λ log n

√
n

Naive † n - n/q∗ -
PSIR [200] † q∗n n logc n n/q
CK20 [91] † q∗

√
n n

√
n

√
n/q∗

BIM04 [46] ‡§ qn
w
3 − n

1
3/q −

LG15 [179] ‡¶ q0.8n −
√
n −

This work ‡∥ cϵ,δn+ q cϵ,δn+ q 1 1
†: support batching of queries made by the same client.
‡: supports batching of queries made by different clients.
§: amortizes to n

w
3 , w ≥ 2 is the matrix mult. exponent.

¶: up to q =
√
n.

∥: amortizes to a constant when q ∼ n.

Table 3.1: Computation and communication complexity of various
existing PIR protocols. Here, n is the database size, q∗ and q are the
number of queries made by a single or different clients. For protocols
that support batching, computation complexity represents the total
complexity to handle a batch. Communication is always per query
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Figure 3·1: Checklist and DP-PIR Total completion time (y-axis,
logscale) for varying number of queries (x-axis, logscale) against a 2.5M
database

with preprocessing, batching is only supported for queries originating from the same

client [91,162,200], or ones that share secret state [46]. Batching queries from differ-

ent clients without preprocessing is possible [147] but has limitations. Earlier work

induces a sublinear (but non constant) amortized computation complexity [46, 179].

Our work amortizes the computation costs of queries made by different queries down

to a constant, while also requiring constant client work. In section 3.8, we discuss

ϵ-PIR [233] which also amortizes such queries but burdens clients with generating the

noise queries required for differential privacy.

Experiment Setup Our experiments measure the server(s) time needed to process

a complete set of queries with ϵ = 0.1 and δ = 10−6. While the trends shown in these

results are intrinsic properties of our protocol design, the exact numbers depend on

the setup and protocol parameters. Section 3.7 discusses our setup and the effects of

these parameters in detail.

Checklist. Figure 3·1 shows the server computation time of Checklist and DP-
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the ratio approaches∞. For a database with 2.5M elements, our experiments demon-

strate that we outperform Checklist by at least 2x, 5x, and 10x after the ratio exceeds

1.5, 3.9 and 8.1 respectively. We note that the largest data-point in the two figures

are extrapolated.

The ratio required for achieving a particular speedup is not identical for all

database sizes. As shown in Figure 3·2, DP-PIR prefers larger databases: the larger

the database, the smaller the ratio required by DP-PIR to achieve a particular

speedup, and the larger the maximum speedup that DP-PIR can achieve as q →∞.

We extrapolate from our empirical results to three possible scenarios for our

Google Play store example, where the database contains roughly 2.5M elements with

3B active users, with the same setup and parameters as above. First, we assume

each user makes exactly a single query (corresponding to a single app on their phone)

resulting in a batch of size q = 3B, and q
n
= 1200. In the second scenario, we assume

each user checks the updates for all apps on their phone (e.g. say at most 100 apps),

but only configure our system to provide DP guarantees only at the level of a single

query (i.e. event-DP). In the last scenario, each user similarly makes 100 queries,

but we configure our system to provide user-level DP guarantees protecting all the

queries of the same user (i.e. user-DP), which results in adding 100 times the amount

of noise. Our estimates indicate that our protocol will exhibit speedups of 161x, 180x,

and 161x over checklist in these scenarios respectively. We discuss the different DP

configurations in section 3.3.

The setup and parameters in both comparisons below is identical to what we’ve

seen with Checklist.

DPF. Boyle, Gilboa, and Ishai [63] propose a PIR protocol based on distributed

point functions (DPF). Unlike the offline-online protocol introduced in Checklist that

uses punctured pseudorandom sets, DPF requires linear work in the database size to
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ecuted in one shot during off-peak hours when resources are cheaper (e.g. the night

before). The clients can choose to make their queries at any time after preprocessing,

but client states from several uncombined offline stages should not be used in a single

online batch, to avoid allowing the adversary to identify the origin of the query by

diffing out clients that participated in different stages.

Our protocol assumes that T and its signatures are provided as input. Thus, the

servers must agree on T and produce signatures for it ahead of time. The same T and

signatures can be reused by many offline/online stages; servers need only compute

new signatures when the underlying database changes, and may rely on timestamps

to enable clients to reject expired responses. The servers never sign or verify any

signatures during either the offline or online stages, and each client needs to verify

one signature per received response. Therefore, the efficiency of signing/verification

is secondary. Instead, our protocol prefers signature schemes that produce shorter

signatures for lower bandwidth.

3.3.2 Threat Model

Our construction operates in the ‘anytrust’ model up to selective abort. Specifically,

we tolerate up to m− 1 malicious servers and d− 1 malicious clients.

In terms of confidentiality, our protocol differs from traditional perfectly-private

PIR protocols in that it leaks noisy access patterns over the honest clients’ queries,

in the form of a differentially private noisy histogram H(Q) = Hhonest(Q) +χ(ϵ, δ, ϕ).

As for integrity, our protocol is secure up to selective abort, and does not guaran-

tee fairness. Adversarial servers may elect to stop responding to queries, effectively

aborting the entire protocol. Furthermore, they can do so selectively: any server can

decide to drop queries at random, the frontend server can drop queries based on the

identity of their clients, and the backend server can drop queries based on their value.

We stress that an adversary cannot drop a query based on the conjunction of the
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client’s identity and the value, regardless of which subset of servers gets corrupted.

Also, an adversary can only drop a query, but cannot convince a client to accept

an incorrect response, since clients can validate the correctness of received responses

locally.

3.3.3 Interpreting Privacy

Our protocol can be configured to provide different levels of (ϵ, δ)-differential pri-

vacy by selecting the parameters of the underlying distribution used to sample noise

queries. The most efficient (and easiest to understand) configuration is often called

event-DP, which provides guarantees at the level of any single honest query. Another

DP configuration, commonly termed user-DP, provides guarantees at the level of all

queries made by any honest client. We use event-DP throughout the paper except

when otherwise noted.

We provide either guarantee at the level of a single isolated batch. In particular,

we consider two batches of queries Q and Q′ over the honest clients’ queries to be

ϕ-neighboring batches when they consists of identical queries except for ϕ queries. In

event-DP, it is enough to consider ϕ = 1. While in user-DP, we set ϕ to the number

of queries a client can make within a batch (or an upper bound of it). In either case,

the sensitivity is 2ϕ, which means that for the same ϵ, δ the expected number of noise

queries we add grows linearly in ϕ.

Definition 12 (Differentially Private PIR Access Patterns). For any privacy param-

eters ϵ, δ, and every two ϕ−neighboring batches of queries Q,Q′, the probabilities of

our protocol producing identical access pattern histograms are (ϵ, δ)-similar when run

on either set:

Pr[H(Q) = H] ≤ eϵPr[H(Q′) = H] + δ

Our definition uses the substitution formulation of DP, rather than the more
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common addition/removal; see [242, §1.6] for details. Substitution is commonly used

in secure computation protocols involving DP leakage [186]. We use this variant since

our protocol does not hide whether a client made a query in a batch or not: the

adversary already knows this e.g. by observing IP addresses associated to queries.

Instead, we hide the value of the query itself. Substitution is more conservative adding

twice the expected amount of noise queries, since its sensitivity is 2ϕ compared to ϕ

in the other.

So far, we only discussed guarantees within a single online stage. In any long

running DP system where clients can make unbounded queries, it is impossible to

achieve user-DP globally. Instead, practical systems [180] often rely on the user-

time-DP model, where the guarantees extend over all queries made by a client over

a set moving time window (e.g. a week). We can achieve this by setting ϕ to the

number of queries that a client may make over a time window, regardless of how the

client distributes the queries over the batches in that window. This follows from DP’s

composition theorem.

One way to interpret our DP guarantees (aka “differential obliviousness” [76]) is

that they provide any client with plausible deniability: a client that made queries

q1, ..., qϕ over some period of time can claim that her true queries were any different

q′1, ..., q
′
ϕ, and external distinguishers cannot falsify this claim since the probability of

either case inducing any same observed histogram of access patterns is similar.

Whereas traditional differential privacy mechanisms trade privacy for accuracy,

differential obliviousness trades privacy for performance while always providing ac-

curate outputs. In DP-PIR, increasing privacy (by lowering ϵ and δ or increasing ϕ)

results in additional noise queries, making our protocol proportionally slower, and

requiring a proportionally larger batch of queries to achieve the same amortization,

and thus speedup, over other protocols. The amount of noise queries scales linearly
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in ϕ and 1
ϵ
and sub-linearly in δ (see Table 3.3).

3.4 Incremental Non-Malleable Secret Sharing

Our protocol relies on shuffling real queries with noise queries by our chain of servers,

similar to Vuvuzela and other mixnets where public key onion encryption is used to

pass secrets through that chain. However, this induces a large number of public key

operations, proportional to m × |batch|. We use a novel cheaper arithmetic-based

secret sharing scheme instead of onion encryption during our online stage.

The secret sharing scheme provides similar security guarantees to onion encryp-

tion, to ensure that input and output queries are untraceable by external adversaries:

1. Secrecy: As long as one of the shares is unknown, reconstruction cannot be

carried out by an adversary.

2. Incremental Reconstruction: A server that only knows a single secret share and

a running tally must be able to combine them to produce a new tally. The new tally

must produce the original secret when combined with the remaining shares.

3. Independence: An adversary cannot link any partially reconstructed output

from a set of outputs to any shared input in the corresponding input set.

4. Non-Malleability: An adversary who perturbs any given share cannot guaran-

tee that the output of reconstruction with that perturbed share satisfies any desired

relationship. In particular, the adversary cannot perturb shares such that reconstruc-

tion yields a specific value (e.g., 0), or a specific function of the original secret (e.g.,

adding a fixed offset).

Formally, we define a secret sharing scheme with incremental reconstruction with

the usual sharing mechanism but a new method to recover the original secret.

Definition 13. An incremental secret sharing scheme S over a field F and m parties

contains two algorithms.
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• Sh(q) disperses a secret q into a randomly chosen set of shares q⃗ = q1, . . . , qm ∈

F and some initial tally l0.

• Rec(li−1, qi) → li performs party i’s partial reconstruction to produce running

tally li.

The scheme is correct if for all sharings (q⃗, l0) ← Sh(q), the overall reconstruction

returns lm = q.

Non-malleability is critical for preserving security when the last (backend) server

is corrupted. The backend can observe the final reconstructed values of all queries

to identify queries perturbed by earlier colluding servers. If the perturbation can be

undone (e.g. by removing a fixed offset), then the backend can learn the value of the

query and link it to information known by other servers, such as the identity of its

client.

We formally define non-malleability through the following indistinguishability

game. It guarantees that if an adversarial set of m − 1 parties submits a tampered

partial tally l∗i−1 to the honest party i, then the tally l∗i returned by the honest party

is uniformly random. As a result, l∗i is independent of (and therefore hides) the secret

q, and it only completes to a reconstruction of q with probability 1/|F|.

Definition 14. Consider the following two games that only differ in the final step.

Call them Left and Right respectively.

Adversary A Challenger C
secret q, honest party i

q⃗, l0 = Sh(q)

calculate all lj
adversary shares l0, {qj}j ̸=i

modified tally l∗i−1 ̸= li−1
l∗i = Rec(l∗i−1, qi)

r ← Fl∗i or r
return bit b
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We say that an incremental secret sharing scheme S = (Sh,Rec) is non-malleable

if for all adversaries A, the Left and Right games are (perfectly) indistinguishable.

Several non-malleable secret sharing schemes exist [37,127]. However, they are not

incremental: their reconstruction is a one-shot operation over all shares. Conversely,

known incremental schemes, such as additive or XOR-based sharing, are vulnerable

to malleability. It would have been possible to use different primitives in our protocol

that satisfy our desired properties, such as authenticated onion symmetric-key en-

cryption. However, these operations remain more expensive than simple information

theoretic secret sharing schemes that can be implemented with a handful of arithmetic

operations.

Our Incremental Sharing Construction Given a secret q, a prime modulus z,

and an integer m, our scheme produces m+1 pairs q0 = (x0, y0), q1 = (x1, y1), ..., qm =

(xm, ym), where each pair represents a single share of q. All x and y values are chosen

independently at random from Fz and F∗
z respectively, except for the very first pair

x0, y0, whose values are set to:

x0 = ⟨[(q − xm)× y−1
m ] ...− x1⟩ × y−1

1 mod z, y0 = 0.

All shares except the first one can be selected prior to knowing q. This is important

for our offline stage. The modulus z must be as big as the key size in the underlying

database (32 bits in our experiments). To reconstruct the secret q, we show below

the incremental reconstruction operations Rec(li−1, qi) to construct the first partial

tally and all subsequent ones:

l0 = y0 × 1 + x0 mod z,

lj = yj × lj−1 + xj mod z.

Correctness (i.e., lm = q) stems from our choice of (x0, y0).
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Theorem 3.4.1 (Non-malleability of our Incremental Secret Sharing Scheme). Let

S = (Sh,Rec) denote our incremental secret sharing construction from §3.4. This

scheme satisfies the non-malleable property of Def. 14.

Proof. Let A be an adversary who plays the non-malleability game. Suppose that it

chooses a secret q and honest party i in the first round of the game. The adversary

receives back in response the shares q⃗′ = {qj}j ̸=i and the initial tally l0, from which

it can compute all legitimate partial tallies including li−1 and li.

Our aim is to show that for any modified partial tally l∗i−1 ̸= li−1 that the adver-

sary might choose in the second round of the game, the resulting partial tally after the

honest party l∗i ≡ r is (perfectly) indistinguishable from random even given the adver-

sary’s knowledge of q and q⃗′. In the Right game, the random value r ∈ {0, 1, . . . , z−1}

is uniformly sampled from the space of all elements in Fz. Ergo, it suffices to show

that any value of l∗i within {0, 1, . . . , z − 1} is equally probable in the Left game,

where this probability is taken over the challenger’s sampling of the honest party’s

share (i.e., the one piece of randomness that is hidden from the adversary).

Fix an arbitrary choice of l∗i−1 and l∗i , subject to the game’s requirement that

l∗i−1 ̸= li−1. Let qi = (xi, yi) denote the honest party’s share, which the adversary A

does not know. We observe that there exists exactly one choice of qi that is consistent

with both (i) the secret q and associated partial tallies li−1 and li and (ii) returning

l∗i in the Left game. These constraints impose the following system of two linear
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equations in two unknowns:

xi + yi × li−1 = li mod z

xi + yi × l∗i−1 = l∗i mod z

Since li−1 ̸= l∗i−1 and z is prime (meaning that nonzero entries are invertible mod z),

this system of equations has exactly one solution:

xi = li − li−1 × (li − l∗i )× (li−1 − l∗i−1)
−1 mod z

yi = (li − l∗i )× (li−1 − l∗i−1)
−1 mod z

Therefore, even with l∗i−1 chosen by the adversary, any execution of the Left game

results in l∗i having the uniform distribution conditioned on A’s view, so it is perfectly

indistinguishable from the Right game as desired.

3.5 Our DP-PIR Protocol

Offline Stage Our offline stage consists of a single sequential pass over them servers.

Clients generate random secrets locally, and submit them after onion encryption to

the first server in the chain. The first server receives all such incoming messages from

clients, until a configurable granularity is reached, e.g. after a certain time window

passes or a number of messages is received. All incoming messages at that point

constitutes the input set for that server. The server outputs a larger set. This set
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Algorithm 1 Client i Offline Stage

Input: Nothing.

Output state at the client: a list of anonymous secrets [ai0, ..., a
i
m], one per each

of the m servers. The client uses these secrets in the online stage.

Output to s1: Onion encryption of ai1, ..., a
i
m.

1. Generate Random Values: For each Server sj, the client generates 4 values

all sampled uniformly at random: (1) A globally unique identifier tij. (2) Two

incremental pre-shares xi
j ∈ Zz and yij ∈ Z∗

z. (3) An additive pre-share eij ∈

[0, 2b). We define ei = Σ eij mod 2b which the client uses to reconstruct the

response online.

2. Build Shared Anonymous secrets: The client builds aij =

(tij, t
i
j+1, x

i
j, y

i
j, e

i
j), for every server 1 ≤ j ≤ m, using the generated ran-

dom values above, with tim+1 = ⊥. These secrets are stored by the client for

later use in the online stage.

3. Onion Encryption: The client onion encrypts the secrets using the corre-

spond server’s public key, such that OEncim = Enc(skm, aim) and OEncij =

Enc(skj, aij :: OEncij+1).

4. Secrets Submission: The client sends the onion cipher OEnci1 to server s1.

The client can leave the protocol as soon as receipt of this message is acknowl-

edged.
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Algorithm 2 Server sj Offline Stage

Configuration: The underlying database T : K → (V,Σ), and privacy parameters

ϵ, δ, ϕ.

Input from sj−1 or clients if j = 1: A set of onion ciphers of anonymous secrets,

one per each incoming request.

Output state at sj: A mapping M of unique tag tij to its corresponding shared

anonymous secrets aij used to handle incoming queries during the online stage. A

list of generated anonymous secrets L used to create noise queries during the online

stage. A sampled histogram N of noise queries to use in the online stage.

Output to server sj+1: A set output onion ciphers corresponding to input onion

ciphers and noise generated by sj.

1. Onion Decryption: For every received onion cipher OEncij, the server de-

crypts the cipher with its secret key skj, producing aij and OEncij+1.

2. Anonymous Secret Installation: For every decrypted secret aij =

(tij, t
i
j+1, x

i
j, y

i
j, e

i
j), the server stores entry (tij+1, x

i
j, y

i
j, e

i
j) at M [tij] for later use

in the online stage.

contains both the processed input messages, as well as new messages inserted by the

server.

The client-side protocol is shown in algorithm 1. Concretely, for each server j,

client i generates secret aij = (tij, t
i
j+1, x

i
j, y

i
j, e

i
j), where tij and tij+1 are random tags

chosen from a sufficiently large domain that the client uses online to point each

server to its secret without revealing its identity, xi
j and yij are secret shares from our
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Algorithm 2 Continued: Server sj Offline Stage

If j < m:

5. Noise Pre-Sampling: The server samples a histogram representing counts of

noisy queries to add for every key in the database N ← χ(ϵ, δ, ϕ), and computes

the total count of this noise S =
∑
N .

6. Build shared anonymous secrets for noise: The server generates S many

anonymous secrets and onion encrypts them for all sj′ with j′ > j, using the

same algorithm as the client. The server stores these secrets in L.

7. Shuffling and Forwarding: The server shuffles all onion ciphers, including all

OEncij+1 decrypted in step (1) or generated by step (4), and sends them over

to the next server sj+1.

incremental secret sharing scheme used to reconstruct the query, and Σ eij mod 2b =

ei are additive secret shares used to mask the response. The exponent b corresponds

to the bit size of values and signatures (instantiated to 32+ 384 in our experiments).

Our offline protocol uses onion encryption from CCA-secure public key encryption

to pass secrets through the servers (here, :: denotes string concatenation):

OEnci1 = Enc(sk1, ai1 :: Enc(sk2, ai2 :: ... Enc(skm, aim) ... ))

In addition to secrets from clients, each server must inject sufficiently many secrets

at subsequent servers to handle all noise queries that the server needs to make in the

online stage. This corresponds to steps 3 and 4 in algorithm 2, where the server

computes the exact noise amount by pre-sampling.

The output set of each server contains onion ciphers, encrypted under the keys of

the subsequent servers in the chain. None of the plaintexts decrypted by the current
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Algorithm 3 Client i Online Stage

Input: A query qi.

Input state at the client: a shared anonymous secrets aij = (tij, t
i
j+1, x

i
j, y

i
j, e

i
j) per

server sj generated by the offline stage.

Output: A value vi corresponding to T [qi].

1. Compute Final Incremental Secret Share: Client computes li1 = xi
0, so

that (xi
0, 0) combined with (xi

1, y
i
1), ..., (x

i
m, y

i
m) is a valid sharing of qi, per our

incremental secret sharing scheme.

2. Query Submission: Client sends (ti1, l
i
1) to server s1.

3. Response Reconstruction: Client receives response ri1 from s1 and recon-

structs (vi, Sigi) = ri1 − ei mod 2b.

4. Response verification: The client ensures that Sigi is a valid signature over

(qi, ri) by s1, ..., sm−1.

server survives, they are all consumed and stored in the server’s local mapping for use

during the online stage. No linkage between messages in the input and output sets is

possible without knowing the server’s secret key, since the ciphers in the input cannot

be used to distinguish between (sub-components of) their plaintexts, and since the

output set is uniformly shuffled. This is true even if the adversary perturbs onion

ciphers prior to passing them to an honest party (by CCA security), which in-essence

denies service to the corresponding query.

Online Stage The client-side online protocol is shown in algorithm 3. The server-

side online stage (algorithm 4) is structured similarly to the offline stage. However,
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Algorithm 4 Server sj Online Stage

State at sj: The mapping M , list L, and noise histogram N stored from the offline

stage.

Input from sj−1 or clients if j = 1: A list of queries (tij, l
i
j).

Output to sj−1 or clients: A list of responses rij corresponding to each query i.

1. Anonymous Secret Lookup: For every received query (tij, l
i
j), the server finds

M [tij] = (tij+1, x
i
j, y

i
j, e

i
j).

2. Query Handling: For every received query, the server computes output query

(tij+1,Rec(l
i
j, (x

i
j, y

i
j))), where Rec is our scheme’s incremental reconstruction

function.

If j < m:

3. Noise injection: The server makes output queries per stored noise histogram

N , using the stored list of anonymous secrets L and the client’s online protocol.

By construction, there are exactly as many secrets in L as overall queries in N .

4. Shuffling and Forwarding: The server shuffles all output queries, both real

and noise, and sends them over to the next server sj+1. The server waits until

she receives the corresponding responses from sj+1, and de-shuffles them using

the inverse permutation.

it requires going through the chain of servers twice. The first phase (steps 1-4) moves

from the clients to the backend server, where every server incrementally reconstructs
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Algorithm 4 Continued: Server sj Online Stage

If j < m:

5. Response Handling: Received responses corresponding to noise queries gen-

erated by this server are discarded. For every remaining received response rij+1,

the server computes the output response rij = rij+1 + eij mod 2b.

6. Response Forwarding: The server sends all output responses rij to sj−1, or

the corresponding client ci if j = 1.

If j = m:

7. Response Lookup: The backend server does not need to inject any noise

or shuffle. By construction, step (2) computes (⊥, qi) for each received query.

The backend finds the corresponding T [qi] = (vi, Sigi). If qi was not found in

the database (because a malicious party mishandled it), we return an arbitrary

random value.

8. Response Handling: The backend computes responses rij = (vi :: Sigi) +

eij mod 2b, and sends them to sj−1.

the values of received queries using the stored secrets (steps 1-2), and injects its

noise queries into the running set of queries (step 3). The second phase moves in

the opposite direction (steps 5-6), with every server removing responses to their noise

queries, and incrementally reconstructing the received responses, until the final value

of a response is reconstructed by its corresponding client. The backend operates

differently than the rest of the servers (steps 7-8). It computes the reconstructed
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query set, and finds their corresponding responses in the database via direct look-

ups. The backend need not add any noise queries, which alleviates the need for

shuffling at the backend.

Discussion The security of both offline and online stages rely on the same intuition.

First, an adversary that observes the input and output sets of an honest server should

not be able to link any output message to its input. Second, the adversary must not

be able to distinguish outputs corresponding to real queries from noise injected by

that server.

The honest server shuffles and re-randomizes all its input messages, which guaran-

tees that the adversary cannot link input and output messages. In the offline stage this

re-randomization is performed with onion-decryption, while the online stage performs

it using our non-malleable incremental reconstruction and additive secret sharing for

its two phases respectively. We do not need to use a non-malleable secret sharing

scheme for response handling, since the adversary cannot observe the final response

output, which is only revealed to the corresponding client, and thus cannot observe

the effects of a perturbation.

Shuffling in the noise with the re-randomized messages ensure that they are in-

distinguishable. A consequence of this is that a server cannot send out any output

message until it receives the entirety of its input set from the previous server to avoid

leaking information about the permutation used. Idle servers further along the chain

can use this time to perform input independent components of the protocol, such as

sampling the noise, building and encrypting their anonymous secrets, or sampling a

shuffling order.

A malicious server may deviate from this protocol in a variety of ways: it may

de-shuffle responses incorrectly (by using a different order), attach a different tag to a

query than the one the offline stage dictates, or set the output value corresponding to
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a query or response arbitrarily (including via the use of an incorrect pre-share). The

offline stage does not provide a malicious server with additional deviation capability:

any deviation in the offline stage can be reformulated as a deviation in the online

stage, after carrying out the offline stage honestly, with both deviations achieving

identical effects. Finally, a backend server may choose to provide incorrect responses

to queries by ignoring the underlying database.

Each of these deviations has the same effect: the non-malleability of both our

sharing scheme and onion encryption ensures that mishandled messages reconstruct to

random values, and mishandled responses will not pass client-side verification unless

the adversary can forge signatures. In either case, the affected clients will identify

that the output they received is incorrect and reject it. Ergo, servers can only use

this approach to selectively deny service to some clients or queries. A malicious

frontend can deny service to any desired subset of clients since it knows which queries

correspond to which clients, a malicious backend can deny service to any number

of client who queried a particular entry in the database, and any server can deny

service to random clients. The backend and frontend capabilities cannot be combined

even when colluding since at least one honest server exists between the frontend and

backend. These guarantees are similar to those of Vuvuzela [243] and many other

mixnet systems.

Formal Security We rigorously specify our security guarantee in Theorem 3.5.1,

which refers to the ideal functionality defined in Algorithm 5. The ideal functionality

formalizes our notion of “selective” abort. In particular, it formalizes capabilities of

the adversary to deny service to a specific query based on at most one of its value or

its origin client.

Theorem 3.5.1 (Security of our protocol Π). For any set A of adversarial colluding

servers and clients, including no more than m−1 servers, there exists a simulator S,
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Algorithm 5 Ideal Functionality F
Input: A set of queries qi, one per client, the underlying database T : K → (V,Σ),

and privacy parameters ϵ, δ, ϕ.

Output: A set of outputs vi, one per client, either equal to the correct value or ⊥.

Leakage: A noisy histogram H revealed to sm.

1. if s1 is corrupted, F receives a list of client identities from the adversary. These

clients are excluded from the next steps, and receive ⊥ outputs.

2. F reveals the noised histogram H = Hhonest + N to the backend server sm,

where Hhonest is the histogram of queries made by honest clients not excluded

by the previous step, and N is sampled at random from the distribution of noise

χ(ϵ, δ, ϕ).

3. if the backend is corrupted, F receives a list of counts ci for every entry in

the database ki, and outputs ⊥ to ci-many clients, randomly chosen among the

remaining clients that queried ki.

4. if any server, other than sm and s1, is corrupted, F receives a number c, and

outputs ⊥ to c-many clients, randomly chosen among the remaining clients.

5. if s1 is corrupted, F receives an additional list of client identities to receive ⊥.

6. F outputs vi such that T [qi] = (vi, Sigi) for every client i not excluded by any

of the steps above.

such that for client inputs q1, ..., qd, we have:

ViewReal(Π, A, (q
1, ..., qd)) ≈ ViewIdeal(F ,S, (q1, ..., qd))
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Input: T : K → (V,Σ), and ϵ, δ.

Simulating the Offline Stage: The offline stage has no inputs on the client side,

and only needs access to T, ϵ, and δ on the server side. The simulator can simulate this

stage perfectly by running our protocol when simulating honest parties, and invoking

the adversary for corrupted ones.

Simulating Client Online Queries: The simulator uses “junk” queries for this

simulation. The actual queries are injected by the simulator later during the query

phase.

1. The simulator assigns random query values to each honest client in its head. The

simulator then runs our client protocol for these input query values, providing

each client with the anonymous secrets the simulator selected when simulating

that client’s offline phase.

2. The simulator runs the adversary’s code to determine the query message of each

corrupted client.

Simulating Server Online Protocol - First Pass: The simulator goes through

the servers in order, from s1 to sm−1.

1. If si is corrupted: The simulator runs the adversary on the query vector

constructed by the previous step, which outputs the next query vector.

2. If si is the first non-corrupted server:

• Neither s1 nor the backend are corrupted: The simulator executes

step 3 below.

• If s1 is corrupted: The simulator begins by identifying any mishandled

honest client queries in the current query vector. For each honest client

query, the simulator looks for it by its tag, which the simulator knows

because she simulated the offline stage of that client. The simulator val-

idates that the associated tally has the expected value, furthermore, it
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checks that the anonymous secret installed at si during the offline stage

match the ones the simulator generated when simulating the client portion

of that offline stage. All of these checks depend on the honest client and

honest server si offline state, which the simulator knows.

If any of tags, tallies, or shares do not match their expected value, or are

missing, then the simulator knows that the adversary has mishandled this

client’s query (or corresponding offline stage) prior to server si. The simu-

lator sends the identities of all such clients to the ideal functionality (step

1 in F).

• If backend is corrupted: The simulator receives a noised histogram

Hhonest from the ideal functionality. The simulator identifies all honest

queries that have not been mishandled so far. Say there are k such queries.

As part of simulating si, the simulator will replace the tallies of these

queries with new tallies, such that the tally of honest query w ≤ k would

reconstruct to the value of the w-th entry in Hhonest, when combined with

the remaining shares that the simulator generated for that client during

its offline stage.

Furthermore, the simulator needs to inject noise queries for si. The simula-

tor chooses the tallies for these queries so they reconstruct to the remaining

values in Hhonest. This guarantees that all correctly handled honest client

queries combined with this server’s noise have the distribution Hhonest.

The simulator shuffles the updated query vector and uses it as the output

query vector for this server.

3. If Neither Above Cases are True: The simulator executes our protocol hon-

estly, including using the same noise queries from the offline stage, to produce

the next query vector.
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Simulating The Backend: The simulator executes our protocol truthfully, if the

backend is not corrupted, or runs the adversary’s code if the backend is corrupted,

and finds the next response vector.

Simulating Server Online Protocol - Second Pass: The simulator goes through

the servers in reverse order, from sm−1 to s1.

1. If si is corrupted: The simulator runs the adversary on the current response

vector, outputting the next response vector.

2. If si is the first encountered non-corrupted server:

• If the backend is corrupted: The simulator identifies all responses

corresponding to honest queries that were misshandled. The responses do

not have tags directly embedded in them. However, they should be in the

same order as the queries at si, which do have these tags. Furthermore,

the correct value of the response is know to the simulator, since she can

compute it using the T , the value of the corresponding query, and the

additive pre-share installed during the offline stage.

The server sends a histogram over the count of these mishandled responses

to the ideal function, grouped by their corresponding query value (step 3

in F).

• If the backend is not corrupted: The simulator executes step 3 below.

3. If si is not corrupted: The simulator identifies all honest queries that were

mishandled, using the same mechansim as above. The simulator ignores mis-

handled queries that were detected in either of the two cases above (the special

cases of the first server or backend being corrupted). The simulator only needs

to keep count of such mishandled query.

If si is the last honest server, she sends this count to the ideal functionality

(step 4 in F).
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Simulating Client Online Responses: For every honest client, the simulator

checks that her corresponding response, as outputted by s1, reconstructs to the ex-

pected response value. If the response does not match, then it could have been

mishandled by the adversary earlier, and have been already identified by the simula-

tor, such responses are ignored.

The remaining mishandled responses must have been mishandled after the last honest

server was simulated. The simulator sends a list of identities of all clients with such

responses to the ideal function (step 5 in F).

Proof. The view of the adversary consists of all outgoing and incoming messages from

an to adversary corrupted parties. We show that these messages are indistinguishable

in the real protocol from their simulator-generated counterparts.

First, note that all output messages from honest clients in the offline stage are

cipher of random values. This is true in both the real and ideal world, and thus

these messages are statistically indistinguishable. The same is true for messages cor-

responding to noise anonymous secrets created by an honest server. The adversary

only receives such messages in the offline protocol, and therefore behaves identically

in both real and ideal worlds.

Case 1: The backend server sm is honest.

1. The access patterns are not part of the view, and therefore do not need to be

simulated.

2. The corrupted clients are simulated perfectly and has identical outgoing message
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distributions in the real and ideal worlds.

3. The honest clients are choosing their queries randomly in the ideal world. How-

ever, their messages only include a tag and a tally. The tag is itself selected

randomly during the offline stage, and thus has identical distribution. The tally

is indistinguishable from random, regardless of the query it is based on, provided

that at least one secret share remains unknown, by secrecy of our incremental

sharing scheme. In particular, the honest server share is computationally in-

distinguishable to the adversary from any other possible share value, by CCA

security of the onion encryption scheme.

4. The input messages of the first malicious server have indistinguishable distribu-

tions in the real and ideal worlds, and therefore the outgoing messages of that

malicious server has indistinguishable distributions, since any honest servers

prior to this malicious server are simulated according to the protocol perfectly.

Inductively, this shows that all malicious servers have indistinguishable distri-

butions during the first pass of the online stage.

5. The backend executes the honest protocol in both worlds. While the backend

sees different distributions in either worlds, since honest clients make random

queries when simulated, the honest protocol is not dependent on that distri-

bution, and only output responses in the form of secret shares. These secret

shares are selected at random during the offline stage by the client, without

knowing the response or the query. Therefore, the output of the backend is
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indistinguishable in both worlds.

6. Finally, a similar argument shows that the adversary input and output response

vectors are all indistinguishable from random in both worlds, since the last secret

share of honest queries remains unknown.

Case 2: The backend server sm is corrupted.

1. The access patterns are part of the view, the simulator must yield a view con-

sistent with them.

2. The outgoing messages of each corrupted client has identical distributions in

the real and ideal worlds.

3. The honest client queries are selected randomly. However, they are secret

shared. Their secret share component (tally) is indistinguishable from random

in both worlds, given that the honest server share is unknown to the adversary.

Therefore, their initial tallies are also indistinguishable (but not the access pat-

terns they induce).

4. The input vector to the first server has identical distributions in both worlds,

if that server is malicious, then its output vector will also have identical distri-

butions. This argument can be applied to all malicious servers up to the first

honest server.

5. The first honest server retains all queries from malicious servers and clients,

and handles them as our honest protocol would. However, the server discards

all client noise and injects its own queries into it from the provided H. This
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is indistinguishable to the following server from the case where these queries

are handled truthfully: (1) the tag component of the query is handled honestly

and adversarial perturbations on their enclosing onion ciphers during the offline

stage fail due to CCA-security, (2) the tally component of the honest client

queries are the result of an incremental reconstruction in our protocol, since

the server’s share being reconstructed is unknown, the output of this operation

is indistinguishable from random even knowing the input. (3) the total count

of queries induced by H is exactly the count of honest client queries that this

server discards, plus an amount of noise queries sampled according to the honest

noise distribution, this count has the same distribution as the count induced by

the honest protocol.

6. The output of the first honest server is indistinguishable, and all the remaining

servers are simulated truthfully, therefore their outputs are also indistinguish-

able., up to the backend.

7. The backend server is corrupted, and can reconstruct the access patterns from

the input. However, these access patterns are now indistinguishable between

the two worlds, this is because the access patterns of the secret shared queries

as outputted by the first honest server in both worlds are indistinguishable:

they are both equal to H + malicious clients and servers queries + mishan-

dled queries. The mishandled queries are guaranteed to reconstruct to random,

by our incremental secret sharing non-malleability property, even when their
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original queries are different (random in the simulated world).

8. The same argument from Case 1 demonstrates that the view from the second

pass of the online stage is indistinguishable in both worlds.

The only thing that remains is to show that the interactions of the simulator and

adversary with the ideal function F are indistinguishable. There are at most 4 such

interactions. All of these interactions depend on the simulators ability to detect when

a query or response has been mishandled.

A query may be mishandled by (1) corrupting its tag (2) corrupting its tally by

setting it to a value different than the one determined by the associated offline anony-

mous secrets. Both of these cases can be checked by the simulator, since she has access

to the expected uncorrupted anonymous secret values created by every honest client

and server. Either of these cases result in the query reconstructing to random, the

second case follows from our non-malleability property, the first induces the following

honest server to apply an incorrect share when incrementally reconstructing, and thus

follows from our non-malleability property as well.

On the other hand, a response can be mishandled by (1) corrupting its tally/value

(2) corrupting its relative order within a response vector. The first case arises when

an adversary sets the tally value to one different than the sum of its previous value

and additive pre-share from its corresponding anonymous secret, as well as when

a backend server disregards the underlying database, and assigns a different initial

value to a given response. Maliciously perturbing onion ciphers or tallies in the view



132

of the adversary fall under this case, since this essentially amounts to dropping the

corresponding queries, as they are protected by the non-malleability of CCA encryp-

tion and our secret sharing scheme. The second case happens when the adversary

does not deshuffle responses with the inverse order of the corresponding shuffle. The

simulator can check these two cases as well: if a deshuffle was performed correctly,

then every response and query at the same index must correspond to one another,

and the simulator can compute the expected value of that response from its query

value, database T , and additive pre-shares. If the response and query did not match,

then either the shuffling or tally computation was corrupted.

We can consider consecutive servers that are adversarially controlled to be a single

logical server, since they can share their state and coordinate without restrictions. For

example if the first and second server are corrupted, the second server can identify

the identities of clients of corresponding to each of its input queries, because the

first server can reveal its shuffling order to the second. Similarly with the backend

and previous server. This shows that the correct points to check for mishandling is

when an honest server is encountered, rather than after every malicious server, since

consecutive servers may perform operations that each appear to be mishandling, but

consecutively end up handling queries and responses correctly.

Our simulator does the mishandling checks at the level of an honest server. Fur-

thermore, the simulator assumes that any mishandling was done according to the

strongest identification method available to the adversary at that point. For exam-



133

ple, it assumes that the first server always mishandles queries based on their clients

identities, even though that server may mishandle queries randomly. In either cases

these result in indistinguishable distributions. An adversary that mishandles queries

randomly has the same distribution as a simulator that copies that random choice

and translates it to identities. No server has the capability to mishandle based on

both identity and value, since there must be at least one honest server somewhere

between the backend and first server (including either of them).

Finally, intermediate servers (those surrounded by honest servers on both ends) see

only query and response vectors that have been shuffled honestly by at least one server,

and have a random share applied to their tally by that server as well. So their inputs

are indistinguishable from random, and thus they can only mishandle randomly. The

first server (and its adjacent servers) see query and response vectors whose tallies are

random (because at least one share corresponding to them is unknown), but have

a fixed order, since no shuffling has yet occurred, therefore they mishandle queries

based on the order (i.e. client identity) as well as randomly. Lastly, the backend (and

its adjacent servers) see queries and responses that have been shuffled by at least

one honest server, but whose values are revealed, since no shares of these values are

unknown. The backend can mishandle queries based on their known value, but not

based on their client identity, since mishandling based on index/order is identical to

mishandling randomly, because the order is random.
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Algorithm 6 Noise Query Sampling Mechanism χ(ϵ, δ, ϕ)

Input: The size of the database |T |, privacy parameters ϵ, δ, and the number of

protected queries ϕ.

Output: A histogram N over T representing how many noise queries must be issued

for each database entry.

1. Clamping threshold B := |CDF−1
Laplace(0,2ϕ/ϵ)(

δ
2
)|.

For every i ∈ |T |:

2. Sample ϵ-DP Laplace noise: ui ←− Laplace(0, 2ϕ
ϵ
).

3. Clamp negative noise: u′
i := max[0, B +min(B, ui)]).

4. N [i] = floor(u′
i)

Differential Privacy Our security theorem contains leakage revealed to the back-

end server in the form of a histogram over queries made by honest clients and honest

servers. Our privacy guarantees hinge on this leakage being differentially private,

which entails adding noise to that histogram from a suitable distribution. Algo-

rithm 6 shows the mechanism each server uses to sample the noise queries N , and

we prove that it indeed achieves (ϵ, δ)-differential privacy. Step (2) is a Laplace sub-

stitution (ϵ, 0)-DP histogram release, which may produce negative values. Step (3)

ensures values are non-negative by clamping into [−B,B] and shifting by B, where

B is carefully selected in (1) to yield a privacy loss of exactly δ. Table 3.3 shows the

expected number of noise queries per server and database element for different ϵ and

δ.

Theorem 3.5.2 (Leakage is Differentially Private). H = Hhonest + χ(ϵ, δ, ϕ) is (ϵ, δ)-
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Differentially Private.

Proof. We define (ϕ-)neighboring histograms over access patterns to differ in ϕ or

less queries. In other words, no more than ϕ queries from one can be substituted

in the other. Therefore, the sensitivity is 2ϕ, corresponding to a change to the first

histogram where all ϕ queries are removed from one bin, which thus decreases by ϕ,

and added to a different bin, which similarly increases by ϕ. Hence adding noise from

Laplace0,2ϕ/ϵ constitutes an (ϵ, 0)-differentially private histogram release mechanism,

this corresponds to value ui in our mechanism from algorithm 6.

Our mechanism selects B such that Prob[ui ≤ −B] = Prob[ui ≥ B] = δ
2
. Note

that u′
i ̸= ui + B iff either of these disjoint cases is true, so Prob[u′

i ̸= ui + B] = δ.

This implies that using u′
i constitutes an ϵ, δ-differentially private mechanism.

Finally, taking the floor of u′
i is equivalent to taking the floor of u′

i + c, where c is

the true count of honest queries, since c is guaranteed to be integer. Therefore, floor

maintains differential privacy by post-processing.

3.6 Scaling and Parallelization

Existing PIR protocols can be trivially scaled over additional resources, by running

completely independent parallel instances of them on different machines. This ap-

proach is not ideal for our protocol: each instance would need to add an independent

set of noise queries, since each reveals an independent histogram of its queries. In-

stead, our protocol is more suited for parallelizing a single instance over additional
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resources, such that only a single histogram is revealed without needing to add ancil-

lary noise queries.

In a non-parallel setting, the notions of a party and a server are identical. For

scaling, we allow parties to operate multiple machines. These machines form a single

trust domain. This maintains our security guarantees at the level of a party. Par-

ticularly, the protocol remains secure if one party (and all its machines) is honest.

Machines owned by the same party share all their offline secret state and the noise

queries they select.

A machine mj
i belonging to party j communicates with a single machine mj−1

i

and mj+1
i from the preceding and succeeding parties, in order to receive inputs and

send outputs respectively. The machine also communicates with all other machines

belonging to the same party j for shuffling.

Distributing Noise Generation Our protocol generates noise independently

for each entry in the database, we can parallelize the generation by assigning each

machine a subset of database entries to generate noise for, e.g. mj
i is responsible for

generating all noise queries corresponding to keys {k| k % j = 0}. This distribution

is limited by the size of the database. If parallelizing the noise generation beyond

this limit is required, an alternate additive noise distribution (e.g. Poisson [236]) can

be used instead, which allows several machines to sample noise for the same database

entry from a proportionally smaller distribution.

Distributed Shuffling Machines belonging to the same party must have identical

probability of outputting any input query after shuffling, regardless of which server it

was initially sent to. An ideal shuffle guarantees that the number of queries remains

uniformly distributed among machines after shuffling. We choose one that requires

no online coordination to ensure it maintains perfect scaling. Machines belonging to

the same party agree on a single secret seed ahead of time. They use this shared
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seed locally to uniformly sample the same global permutation P using Knuth shuffle.

Given a total batch of size l, each machine mj
i need only retain P [ i×l

m
: (i+1)l

m
], which

determines the new indices of each of its input queries. The target machine that each

query q should be sent to can be computed by P [q]% l
m
. This algorithm performs

optimal communication l
m

per machine but requires each machine to perform CPU

work linear in the overall number of queries to sample the overall permutation. This

work is independent of the actual queries, and can be done ahead of time (e.g. while

queries are being batched or processed by previous parties).

Distributing Offline Anonymous Secrets We require all machines belonging to

the same party to share all secrets they installed during the offline stage, so that any

of them can quickly retrieve the needed ones during the online stage. Maintaining a

copy of all secrets in the main memory of each machine may be suitable for smaller

applications. At larger scales, it may be more appropriate to use shared key-value

storage or in-memory distributed file system [33,167,188,255].

3.7 Evaluation

Experiment Setup Our various experiments measure the server completion time

for a batch of queries. For the online stage, this is the total wall time taken from

the moment the first server receives a complete batch ready for processing, until that

batch is completely processed by the entire protocol, and its outputs are ready to

be sent to clients. For the offline stage, the measurements start when the complete

batch is received by the first server, and ends when all servers finished processing

and installing the secrets. Measurements include the time spent in CPU performing

various computations from the protocol, as well as time spent waiting for network IO

as messages get exchanged between servers. Our measurements do not include client

processing or round-trip time.
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Figure 3·8: Completion time for a batch consisting only of noise
queries against varying database sizes (logscale)

1000

2000

3000

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of Parties

0
25C

om
p
le
ti
on

T
im

e
(s
ec
) Offline

Online

Figure 3·9: Completion time for varying number of parties with 100K
queries against a 10K database

added by our protocol. The offline stage is about 500x more expensive than our online

stage. This is expected since the offline stage performs a public key operation for each

corresponding modular online arithmetic operation.
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Machines / Party Server time (seconds)
Offline Online

1 5010 11
2 2560 8.2
4 1296 4.0
8 664 2.2

Table 3.2: Horizontal scaling with 1M queries and a 100K DB

δ
ϵ

1 0.1 0.01 0.0001

10−5 23 230 2302 23025
10−6 27 276 2763 27631
10−7 32 322 3223 32236

Table 3.3: Expected number of noise queries B per database element
as a function of different ϵ (columns) and δ (rows)

Figure 3·9 shows how our protocol scales with the number of parties. Our protocol

is most efficient when only two parties are involved. When the number of parties

increases, a query has to pass through more servers as it crosses the chain. This is

more pronounced in the offline stage, as it additionally increases the size and layers

of each onion cipher, causing the offline stage to scale super-linearly in the number of

parties. In addition, each server naively adds the full amount of noise queries required

to independently tolerate up to m− 1 corrupted parties. Adding less noise by relying

on additional assumptions (e.g., honest majority) is an open problem, which can help

improve our scaling with the number of parties, and can have important consequences

to mixnets, the DP shuffling model, and DP mechanisms in general. Techniques such

as noise verification [172] may be useful to ensure that (partial) noise generated by

an honest server is not tampered with by future malicious servers.

Table 3.2 demonstrates how our protocol scales horizontally. Parallelizing the

online stage primarily parallelizes communication. However, parallel shuffling intro-

duces an additional round of communication per party. As a result, our online stage

speed up when using 2 machines is not 2x. We exhibit linear speedups as the number
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of machines exceeds 2.

Finally, the expected number of noise queries added per database element is a

function of ϵ and δ. Table 3.3 lists this expected number for various combinations

of ϵ and δ. The expectation increases linearly as ϵ decreases but scales better with

δ. This means that the amount of noise overhead (and thus the number of queries

required for that overhead to amortize effectively) grows linearly with 1
ϵ
. Our protocol

trades security for performance. It can efficiently amortize the cost of independent

queries due to its relaxed DP security guarantees. As ϵ becomes smaller, this re-

laxation becomes less meaningful, as the DP security guarantees approach those of

computational security. While linear scaling with 1
ϵ
appears to be intrinsic to our pro-

tocol, we believe it may be possible to reduce the scaling constant, by using different

basis distributions that are inherently non-negative or discrete (e.g. Poisson [236] or

Geometric [186]), or by adapting recent work on privacy amplification [81, 107] that

achieves the same level of privacy using less noise with oblivious shuffling.

Latency Latency in Checklist and similar systems includes the computation cost

of a single query in isolation (which is low), and any queuing delays experienced by

the query after its arrival if the computational resources are busy handling previ-

ous queries. This delay depends on the rate at which queries come in, and can be

significantly larger than the batching overheads in applications with a large query

load. In contrast, our protocol is primarily throughput oriented and its latency is a

secondary concern determined by two components: the idle waiting time required to

collect the batch of queries from different clients, which we call the batching window,

and the active processing time of that batch after collection. The first component

depends on the configuration. The later component is precisely the total computation

time measured in the various experiments in earlier parts of the paper. Lowering the

batching window beyond a certain point can have a negative impact on latency (and
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even throughput), since it can result in smaller batches dominated by noise where

amortization is not effective. Furthermore, it can introduce queuing delays at the

level of batches, where a previous ongoing batch still occupies system resources after

the next batch has been collected.

We summarize three important observations: (1) Queuing delays in existing sys-

tems are significant and can cause them to exhibit latency worse than DP-PIR with

a large number of queries. (2) Both DP-PIR and existing systems can be scaled hor-

izontally to exhibit lower latency. Traditional PIR protocols can achieve sub-second

latencies if given enough resources, but this can be prohibitively expensive when the

query rate is high. (3) For our target large query loads, DP-PIR can be configured

to exhibit decent latency with a much lower budget than existing systems.

The Offline Stage PIR protocols with an offline stage typically do so to improve

their online latency, which is less critical in our target applications. It is possible

to combine both DP-PIR stages into a single stage that performs onion-encryption

of the query directly, without the need to install anonymous secrets. This combined

protocol would exhibit similar trends to our current design, but will be around two

orders of magnitude slower than our online protocol on its own. A fair comparison

here must also account for the offline cost of existing protocols, which can be sig-

nificantly larger than our offline cost. For example, Checklist relies on an expensive

per-client offline stage linear in the size of the database, which we observe takes up to

7 seconds per client in our experiments. In DP-PIR, the offline cost for a single query

amortizes to a few milliseconds. One key difference is that a client can reuse the hint

produced by Checklist’s offline stage to make many following queries, rather than a

fixed number of queries in DP-PIR. However, the hint becomes invalid whenever the

database is updated. Checklist provides an updatable offline construction, where a

single update to the database can be carried over to a previous offline computation
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in cost logarithmic in the database size.

We believe the that the offline-online design provides better deployment cost and

performance, and allows DP-PIR to meet the availability and liveness requirements of

many applications, including our App store example. Concretely, the offline-online de-

sign allows greater control over the batching window, which governs the effectiveness

of amortization, client latency, and the duration needed for updates to the database

to become visible to clients at the next batch. For example, it may be desirable to

allow clients to query the App store multiple times a day, e.g. every hour, in order

to discover important app updates earlier. A natural way to achieve this is to use

a batching window of one hour or less. However, this is only effective if this win-

dow includes sufficient queries for amortization, and has sufficient time to complete

processing before the next batch. The offline setup lowers both requirements, mak-

ing smaller windows practical (or alternatively, cutting the online cost of the same

window by 500x).

The offline stages for multiple online stages can be pooled together and executed

ahead of time. Clients can choose to issue less queries than they signed up for in the

pooled offline stage without privacy loss. Service providers can use this to execute

the combined offline stages during off-peak hours when resources are cheaper (e.g.

overnight). Furthermore, providers can use different setups for each stage to optimize

the effectiveness of their budget. The offline stage is CPU-intensive due to its public

key operations, while the online stage is entirely network bound.

3.8 Related Work

Section 3.2 discusses existing work on Private Information Retrieval. Here, we discuss

related work from other areas.

Mixnets Traditional mixnets [78] consist of various parties that sequentially process
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a batch of onion-ciphers, and output a uniformly random permutation of their corre-

sponding plaintexts. Various Mixnet systems [50, 119] add cover traffic to obfuscate

various traffic patterns. However, ad-hoc cover traffic is shown to leak information

over time [185].

Recent work mitigates this by relying on secure multiparty computation [26] or

differential privacy. Vuvuzela [243] adds noise traffic from a suitable distribution

to achieve formal differential privacy guarantees over leaked traffic patterns, and

Stadium [236] improves on its performance by allowing parallel noise generation and

permutation. Similar techniques have been used in private messaging systems [172],

and in differential privacy models that utilize shuffling for privacy amplification [107]

or for introducing a shuffled model that lies in between the central and the local

models [81].

Differential Privacy and Access Patterns Using differential privacy to efficiently

hide access patterns of various protocols has seen increasing interest in the literature.

ϵ−PIR relaxes the security guarantees of PIR to be differentially private [233] in the

semi-honest setting. Their two AS schemes are closest to our protocol: they require

clients (rather than servers) to generate noise queries along with their real queries,

and send all of them through an anonymous network for mixing. When the number

of clients is large enough, this can amortize the number of queries any of them have

to generate to a constant. However, this approach generates far more total load on

the system. For example, in our app store example with 2 servers, a 2.5M database,

and 3B clients, each client needs to generate 282 noise queries to hide a single query

with ϵ = 0.1, which results in close to 850B queries to the system in total, compared

to the < 4B total load on our system (but with δ = 10−6 ̸= 0). These constructions

do not provide integrity guarantees, and will require further noise queries to protect

against potential malicious or unavailable clients.
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Others relax the security of Oblivious RAM (ORAM), a primitive where a sin-

gle client obliviously reads and writes to a private remote database [124, 125], to

be differentially private. Extensions of ORAM address multi-client settings [182].

Differentially oblivious RAM [76, 247] guarantees that neighboring access patterns

(those that differ in the location of a single access, i.e. event-DP) occur with similar

probability. DP access patterns have been studied for searchable encryption [79] and

generic secure computation [186].

Secret Sharing Shamir Secret Sharing [221] allows a user to split her data among n

parties such that any t of them can reconstruct the secret. Secret sharing schemes with

additional properties have been studied for use in various applications. Some schemes,

such as additive secret sharing, allow the secret to be reconstructed incrementally

by combining a subset of shares of size k into a single share that can recover the

original secret when combined with the remaining n−k shares. Non-malleable secret

sharing schemes [37, 127] additionally protect against an adversary that can tamper

with shares, and guarantees that tampered shares either reconstruct to the original

message or to some random value. Aggarwal et al. [22] show generic transformations

to build non-malleable schemes from secret sharing schemes over the same access

structure.

3.9 Conclusion

This paper introduces a novel PIR protocol targeted exclusively at applications with

high query rates relative to the database. This focus is intentional and necessary: DP-

PIR handles large batches so well specifically because it handles small ones poorly.

Our construction makes PIR usable in scenarios that were previously impractical

or unexplored. DP-PIR is primarily geared towards amortizing total server work

(i.e. throughput), but not for sub-second client latency, and only provides relaxed
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differential privacy guarantees.

The performance of DP-PIR is closely tied to its configurations, which determine

the number of noise queries generated by our system, and thus the number of queries

required to amortize their overheads effectively. Our experiments meet or extend

beyond standard configurations suggested by existing work. Checklist [162] supports

exactly two parties, and PIR schemes are rarely instantiated with more than three.

For small databases (e.g. n < 100K), the naive solution of sending the entire DB

to the client may be desirable. Vuvuzela [243] recommends ϵ ∈ [0.1, ln(3)] and sets

δ = 10−4, and other work [186,233] also mostly focuses on ϵ ≥ 0.1.

The ratio of queries to database size q
n
is the primary performance criteria that

governs how effective DP-PIR is compared to existing protocols. Within the space of

typical configurations outlined above, our experiments demonstrate that applications

with q
n
< 1

10
are unsuited for DP-PIR, while applications with q

n
> 10 are almost

always guaranteed to exhibit speedups of several folds when using DP-PIR. Applica-

tions with ratios in [ 1
10
, 10] may or may not be suited to DP-PIR, depending on their

exact configurations. For example, we can achieve better performance than existing

work for a ratio of 0.8 when the database size is 2.5M , but not when it is of size 1M

(section 3.2). Thus, such applications require individual analysis to determine the

best way to realize them.

Our protocol shifts expensive public key operations to an offline stage. This allows

for more flexibility over the batching window to meet application requirements, and

a more efficient allocation of computational resources. However, applications were

these factors are not a concern may elect to combine the two stages into a single

one, that still exhibits similar trends to our online stage, but is about two orders of

magnitude more expensive. Finally, these ratios, and the number of noise queries,

also depend on the level (and duration) of protection offered to users (e.g. event-DP
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vs user-time-DP) as expressed by ϕ. DP-PIR intentionally relaxes its guarantees for

increased performance. This relaxation becomes less meaningful as ϵ and ϕ approach

perfect security.
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Chapter 4

Cryptographic Tools for a Wider

Audience

In this chapter I go over some of my projects that helped further the adoption of

secure computation in practice, through extensive collaborations with the various

communities the privacy tools were designed for. All of these projects went through

an iterative design process with feedback from the target community and had similar

flavors of challenges:

1. They required some level of “de-mystification” of the secure computation to

non-experts so that we could instill trust in these tools.

2. They had to carefully consider the different resources and time restrictions avail-

able to different parties in the computation.

3. They handled human errors in incorrectly formatted data to the computation.

4. The end software delivered to the community had to be usable and accessible

by non-experts.

Its important to clarify what I mean in this chapter by “usable and accessi-

ble”. There is a long line of beautiful and essential research in usable security

[16–18, 38, 74, 96, 100, 113, 123, 126, 133, 136, 159, 193, 201, 209, 232, 251, 252, 257] that

aims to systematize properties and techniques for making secure and privacy pre-

serving tools more usable by their intended audience. This kind of work is integral

to the goal of ensuring that privacy reaches a wider audience and making sure that
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people understand how to use these tools (e.g. password specification, security warn-

ings, etc.). However, the challenges and solutions I present in this chapter do not

directly fall into this line of research. My projects were carefully tailored for their in-

tended community and require more work before they can be deployed at scale while

maintaining their usability and accessibility features. It’s worth noting that in the

case of my work with Boston’s Women’s Workforce Council and the Greater Boston

Chamber of Commerce, my co-authors went on to do precisely some of this work in

systematizing ways of making MPC more usable [211].

4.1 Private Evidence Based Policy Making at the Depart-

ment of Education

In this section, I describe a pilot [2,6,8,35] I have worked on for the U.S. Department

of Education to demonstrate that their common statistical studies can be performed

privately using MPC without a trusted third party contractor and at very little ad-

ditional resource costs. I was in charge of all technical aspects of this project with

occasional advice/guidance from Dave Archer and Brent Cramer at Galois. We also

collaborated with Stephanie Straus and Amy O’Hara from the Georgetown’s Massive

Data Institute on the policy and data science aspects of the project.

4.1.1 Background

In 2017, the US Commission on Evidence-Based Policymaking [11, 12] unanimously

recommended that inter-agency sharing of administrative data should be accompanied

by enhanced privacy protections. Later in 2019, Congress heeded the recommenda-

tions of the Commission and revised the earlier Confidential Information Protection

and Statistical Efficiency Act of 2002 by enacting the Evidence Act [4]. This bill

pushes federal agencies to modernize their data sharing, collection and analysis pro-

cesses in order to inform better policy making decisions. Most notably, the Evidence
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Act requires agencies to protect the confidentiality of participants in statistical studies

while promoting data sharing among agencies. Unfortunately, current approaches for

doing so often involve outsourcing any computation that is performed on said data to

third parties that are contractually obligated to safely and securely handle the data.

4.1.2 Our Work and Design Goals

Our pilot demonstrates to the Department of Education how MPC can efficiently and

securely perform any statistics needed for evidence base policy making in-between

agencies with no recourse to anyone outside the department itself and without any

privacy risks. The Department of Education instructed us to securely reproduce a

portion of the annual 2015–16 National Post-secondary Student Aid Study (NSPAS)

[117], a commonplace statistic performed by its National Center for Education Statis-

tics (NCES) division. This study determines how post-secondary students across the

U.S. finance their education in order, for instance, to inform how to allocate federal

financial aid funds in subsequent years.

Currently, NCES compiles this study by hiring a third party contractor, who we

will call NPSAS for simplicity, to perform the necessary computation since federal

law prohibits it from holding individual student records. NPSAS starts by select-

ing students that will contribute to the study based on their social security number

(SSN) and assigning them weights that determine how representative they are of the

overall population. NPSAS then queries the National Students Loan Data System

(NSLDS) with the selected SSNs to obtain relevant federal student aid information

for each. NPSAS then categorizes the data and computes a weighted average per cat-

egory and sends the resulting report to NCES. In the process, NSLDS learns which

students were selected by NPSAS, while NPSAS learns a significant amount of sensi-

tive information pertaining to each student like their enrollment status, their family’s

financial information, their loan forbearance data, their federal financial aid across
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several academic years, their contact information, etc.

The primary goal of the pilot was to demonstrate to the Department of Education

that MPC could eliminate this leakage and maintain the guarantees outlined by the

Evidence Act, or in other words that MPC (1) could be practical and usable, (2) could

produce correct and reproduceable results, (3) could be efficient and (4) eliminates

the need for outsourcing the computation to a trusted third party.

4.1.3 Practicality and Usability

To showcase the practicality of MPC, our protocol and software had to rely exclusively

on the technical infrastructure available to NPSAS and NSLDS. To that effect, we

tested our work in an environment that emulated the environments of NPSAS and

NSLDS prior to the time of the demo. We specifically tested our work on an Amazon

EC2 r5.4xlarge instance with 128GB of RAM running Microsoft Windows Server 2016

Datacenter edition, and an Amazon EC2 r5.2xlarge instance with 64GB of RAM

running Microsoft Windows Server 2012 edition, in both cases using 4 cores of the

underlying Intel Xeon Platinum 8259CL, 2.50GHz CPUs.

The goal of usability informed several aspects of our work. First, the pilot was

demonstrated and tested on real student records by a policy fellow with no prior

cryptographic knowledge. This meant that the software that I developed had to be

easy to use by someone with little technical expertise and easy for me to remotely

debug with no access to the underlying data or the machine on which the demonstra-

tion was run. All that was asked of the policy fellow was to: (1) fill out a text file

where they would specify the directory of the student records and an upper bound

on the number of entries in the data, and (2) run an executable. The cryptographic

intricacies of the code were hence completely hidden from them. Second, a large

portion of this project’s time was dedicated to explaining to the policy fellow how

MPC and specifically Private Set Intersection (PSI) works in order for them to later
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convey these core concepts to the Commissioner of the NCES during the period of

demonstration. This was an essential part of explaining to policy makers and lawyers

why MPC in this context would not constitute a disclosure under FERPA in order

to later certify it as non-disclosing.

4.1.4 Correctness and Reproduciability

While it may be intuitive to cryptographers that an MPC computation designed for

a specific functionality can be provably “correct” and reproducible, we still had to

exhibit these properties to the Department of Education and test the correctness

of our program. The policy fellow compared the outputs of our MPC protocols

with the “in the clear” computation of the Department of Education. At first we

observed a disparity in the results because of an incorrect specification from NCES

of how the NPSAS report is computed. It was non-trivial to determine the source

of this disparity since we initially had to check that gates in the MPC circuit were

behaving correctly before realizing that the error was not from our implementation.

The true error came from a misunderstanding of how exactly STATA, a proprietary

software, computes averages. After rectifying our functionality, we found minimal

differences that amounted to rounding errors. Additionally, only the policy fellow

had the required clearance to handle the student records. As such, we synthesized

data-sets from public parameters from the 2016 study report [117] (e.g. standard

deviation, mean, etc.) to illustrate the reproducibility of our protocol and test our

software prior to the time of the demonstration.

4.1.5 Protocol Choice and Performance

For our MPC protocol, we implemented Pinkas et al. [207] as the basis of our pilot be-

cause it offered the best combination of computational and communication efficiency

and computational expressiveness. Since NCES did not disclose how they computed



153

the results of the National Post-secondary Student Aid Study until near the end of

this project, we opted for a generic PSI framework that could encompass any possi-

ble computation. While we may have picked a more efficient PSI construction, the

timeline of this work did not allow us to do so, especially since the window of access

to the real student data was very brief. A protocol that allowed for fast development

and easy modifications to the underlying computation was key to the success of this

project. Pinkas et al. is roughly structured as a PSI protocol followed by a circuit

over the elements of the intersection and their associated data. Modifications to the

computation in our case translated to changes in the circuit.

In terms of performance, we had to find the right balance between communication

and computational efficiency versus ease of making changes rapidly as we learned

more about the Department of Education’s needs. Recent years have seen large scale

deployments of PSI such as Ion et al. [144], which optimizes for monetary costs and

communication effectiveness but provides only a limited set of statistics that can be

computed over the associated data; and Buddhavarapu et al. [67], which optimizes

for setups where intersected identifiers are not readily at hand and may be re-used.

Neither of those protocols could suit our needs because they did not provide the right

trade-off between efficiency and expressiveness. While industrial deployments of PSI

typically prioritize minimizing bandwidth, we had to demonstrate to NCES that the

MPC computation would not take too long as per their specifications. With our

optimizations, a test with 1 million synthetically-generated records per party ran in

30 minutes and used 100 GB of communication, and the real demonstration (on an

unknown size) ran in 4.8 hours.

At a high level, our circuit amounted to computing the weighted average of ele-

ments in the intersection of SSNs. Our optimizations were hence three-fold.

First, we used techniques from Ball et al. [39, 40] to represent the circuit arith-



154

metically and lower the communication costs during the exchange stage of the gar-

bled circuit. Ball et al. has the added advantage of rendering addition gates for

free. Hence, the computational bottlenecks in these circuits are due to multiplica-

tions and comparisons, and these gates can be made more efficient, as we did, using

mixed-moduli representations. The weighted average circuit only contains a single

final division gate which did not hamper the efficiency of the protocol.

Second, because computational efficiency was essential, we parallelized the com-

putation of the circuit and “soldered” each thread’s output in a joining circuit that

computed the final result. This overall increased the communication of the protocol

but vastly improved the runtime of our code. Finally, we implemented our software in

Rust because it allowed for better performance and memory safety. However, we first

had to get clearance for Rust as a “software” before being able to run our code within

the Department of Education. This meant that we had to additionally explain to the

NCES representatives why were using Rust, why it was a safe language and how it was

not only a standard but also best practice programming language for cryptographic

use cases. Our implementation uses the Rust MPC framework swanky [122], and it

is available open source on GitHub [5].

4.2 Accessible privacy-preserving web-based data analysis for

assessing and addressing economic inequalities

In this section, I describe a web-based MPC system I worked on for the Boston

Women’s Workforce Council and the Greater Boston Chamber of Commerce that

enabled them to perform their studies privately. I was part of a larger team that

developed, designed and deployed these tools. I was also one of the two PhD students

who created and designed JIFF. This section is based on joint work [169, 171] with

Kinan Dak Albab, Andrei Lapets, Frederick Jansen, Peter Flockhart, Lucy Qin, Ira
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Globus-Harris, Wyatt Howe, Mayank Varia and Azer Bestavros.

4.2.1 Background

In 2014, the Boston Women’s Workforce Council (BWWC) was created by the City of

Boston to advance the interest of women in the workplace. One of its aims is to close

the wage gap between genders, races and ethnicities. Their 100% Talent Compact

initiative now includes over 250 businesses that collectively measure the wage gap and

make the necessary changes to close it. From the start of this project, a fundamental

challenge presented itself: no entity was willing to handle the wage data as a trusted

third party because of the legal liability involved.

4.2.2 Web-MPC: Our Work and Design Goals

During my time at the Software & Application Innovation Lab (SAIL) at Boston

University, we helped the BWWC address this concern by developing and deploying

an MPC system called Web-MPC that computes all the BWWC’s statistics without a

trusted third party. Web-MPC takes into account the asymmetric roles and resources

available to parties and the various needs of the BWWC. The BWWC has since

been able to run the analysis securely every 1-2 years since 2016. Subsequently, the

Greater Boston Chamber of Commerce (GBCC) requested a similar deployment from

us and launched the Pacesetters Initiative in 2018 where they could securely measure

spending with Minority Business Enterprises (MBEs) in the greater Boston area.

The success of both of these projects stems from requirements that are very simi-

lar to the use case of the Department of Education, as we will soon see. The synthesis

of these properties in both the BWWC and Department of Education cases, all origi-

nated from extensively interacting with the people for whom the cryptographic tools

were being designed and built. Both of these cases would not have succeeded without

involving policymakers and stakeholders into the process of designing and deploying
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our MPC protocols. In particular, it was essential to explain our protocols and their

guarantees to these people in the most accessible way possible.

4.2.3 Practicality and Usability

One of the first barriers that we encountered in the BWWC project surrounded

the question of practicality. Different parties have access to different resources, and

no other party on the BWWC’s end had the computational resources needed to

enable or catalyze any possible MPC deployment. By contrast, we at SAIL were

both willing and able to fill this computational gap. This asymmetry of resources

was the motivating factor in the architectural design of our protocol. Using MPC, we

could outsource the computation to SAIL without ever requiring anyone at SAIL to

hold the data at rest. As a result, we designed the MPC protocol so that the client-

side software would share the companies input data between SAIL and the BWWC’s

data analyst which then handle the computation.

Moreover, the BWWC’s analysis could take several weeks to conclude because

a larger data collection window incentivized more businesses to participate in the

study. In other words, our protocol had to take into account that the BWWC’s data

analyst was only available to partake in the MPC protocol at the very end of the

data collection time-frame, and the businesses asynchronously shared their data. To

that effect, we required businesses to submit both their shares to us in such a way

that the BWWC’s share was encrypted under the BWWC’s public key. When the

data collection period was complete, we would hand out the encrypted shares to the

BWWC data analyst and begin the MPC protocol.

Similarly to the Department to Education, we could not assume any specialized

software or hardware capabilities for the parties in our protocol. All business who were

participating in the 100% Talent Compact initiative had various software restrictions

on company owned devices. The only software that they all had in common were web
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browsers and Excel spreadsheets. As a result, both the BWWC and GBCC use cases

suggested the need for a general purpose web based framework for MPC.

As such, we developed the Javascript-based JIFF [93] to support MPC appli-

cations that (1) run on web and mobile platforms in which parties join and leave

the computation dynamically, (2) require that computations occur asynchronously,

and (3) require mechanisms for recovery from network and crash failures. JIFF is

highly customizable to accommodate the idiosyncrasies of these kinds of deployment

scenarios. It can be easily integrated within server-client(s) web and mobile appli-

cations, and server(s)-to-server(s) systems, in which the essential non-MPC features

have been built by developers who do not necessarily possess extensive cryptographic

know-how. In addition to the BWWC and GBCC studies, JIFF has been used in

two other notable applications by other groups: (1) a secure accountability of elec-

tronic surveillance system for the US federal courts [118], and (2) a decentralized and

encrypted gun registry [155]. By integrating JIFF into Web-MPC, we were able to

easily compute all statistics desired by either the BWWC or the GBCC, including

standard deviations and finer resolution statistics grouped by cohort or sector.

4.2.4 Correctness and Error Handling

One thing to highlight here is that the system we designed for both the BWWC

and GBCC was constructed to handle common failures, and with end-user usability

front and center. Our experience demonstrates that usability is a critical requirement

that governs whether a particular application of MPC is successful. Usability here

extends from the cryptographic building blocks (e.g. sharing scheme) and how easily

they can be explained to non-technical stakeholders to inspire trust in the protocol,

to the design of the protocol itself (e.g. the asynchronousity mentioned earlier), and

up to the user interface for data entry and for retrieval of aggregate statistics.

Although many of these usability concerns are similar to non-MPC traditional
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software applications, they take on new dimensions given the cryptographic nature of

MPC. One crucial complication we highlight is handling human error in input data.

Traditional MPC protocols do not reason about the syntactic or semantic correctness

of inputs to the protocol, even though such errors can have a catastrophic impact

on the fidelity of the computation and its outputs. Unlike insecure computations,

where inputs are available for manual inspection (and if need be, correction), it is

hard to detect or correct such errors when using MPC, as all inputs are secret and

unavailable for manual inspection. In fact, during one of the earlier deployments

of GBCC, some users entered incorrect data because of bad unit conversions. The

results of the computation was orders of magnitude larger than it was expected to

be. It was infeasible to ask participants to resubmit their data and we could not

pinpoint the source of the error because of the input anonymity guarantees of MPC.

Instead, we had to develop a custom MPC protocol using JIFF that processed the

stored additive shares submitted by input parties, transformed them into Shamir

secret shares, compared each share under MPC against some heuristics we designed

given our suspicions about what the errors could be, and then attempted to correct

these errors under MPC if the heuristics were a match, e.g. by performing the unit

conversion ourselves. This process was extremely tedious: we had to develop this

correction protocol while “flying blind”, because we could not see the data. It also

was expensive to run, taking several hours to complete, and required the involvement

of the GBCC as they controlled one share of each value.

Given this experience, we improved the UI of Web-MPC for future deployments

to perform several syntactic checks (e.g. ensuring values are within specified ranges),

and consistency checks across the input spreadsheets. Our UI highlights to users the

violated checks in red or yellow depending on the severity of the violation, and displays

various summaries to users that they have to check and agree to prior to submission.
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This was a continuous effort that spanned multiple deployments and that some of

my collaborators later formalized and extended in a paper on the usability of secure

computation [211].

4.3 Carousels: Tool chain support for emerging cryptogra-

phy

In this final section, we direct our attention towards ongoing work I have on automated

resource estimation of MPC protocols, in order to further the adoption of MPC tools

by improving its toolchains to better support developers. This section is based on

joint work with Kinan Dak Albab, Peter Flockhart and Wyatt Howe.

4.3.1 Background

Developers currently face several unique challenges when developing, maintaining,

and reasoning about MPC software. The MPC paradigm differs greatly from its in-

secure counterpart, with seemingly well known operators and constructs taking on

new security and performance properties that sometimes depend on its cryptographic

realization. Furthermore, there is a large space of MPC protocols and implementa-

tions each associated with its own configurations, security guarantees, and perfor-

mance implications. Meanwhile, the MPC ecosystem lacks the software abstractions

and toolkits that aids developers in navigating the tangled multi-dimensional space

of protocols, configurations, security, and performance, especially for non-experts.

These challenges and the need for better abstractions and tooling support has been

highlighted in the literature [36, 138, 169, 204]. Here, we will focus specifically on as-

sisting developers in reasoning about the performance of their MPC implementations

and in applying optimizations to improve it.

Reasoning about the performance of secure programs is challenging for develop-

ers. Different secure primitives have radically different costs, even when their insecure



160

counterparts are similar (e.g. + and ×). Secure frameworks [30, 54, 93, 98, 161, 187,

190,222,245,249] provide transparent abstractions that purposely hide cryptographic

details, and thus do not reflect underlying costs. Finally, the performance of secure

programs is governed by domain-specific resources, including communication round

complexity in secret sharing, or the noise growth in homomorphic encryption. These

resources depend on the program control flow, specifically its critical path or multi-

plicative depth. As a result, the optimal secure algorithm and implementation for a

certain problem and a specific region of the configurations space may differ from an

insecure one, especially given the oblivious control flow of secure programs.

The high dimensionality of the secure protocols and configurations space has well-

known negative consequences on the ease of developing and optimizing secure so-

lutions. Existing work [36, 204] shows that secure protocols can vary along several

dimensions that influence their applicability and usability to various application sce-

narios, and that relate to setup (e.g. the number of parties, the use of pre-processing),

security (e.g. the tolerated collusion threshold), and performance (e.g. online commu-

nication rounds per primitive). In practice, the number of dimensions becomes even

larger when framework implementation and architecture dimensions are accounted

for [138].

As a result, developers must implement secure programs while co-reasoning about

correctness, security, performance and all the above dimensionalities. This process is

particularly painful because of three unique observations. First, the performance and

resources used by a secure program are governed by an entangled web of unfamiliar

parameters. Second, the programming abstractions provided by secure frameworks

are purposely opaque, and thus do not reflect the underlying costs nor the actual

execution of the program. Finally, the wall-time performance of secure programs as

experienced by end-users is heavily influenced by non-traditional resources such as
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network rounds and noise levels in ciphertexts, which depend on how the program is

executed rather than how it appears as written.

4.3.2 Motivating Example: Battleships

We demonstrate these challenges by analyzing the resource usage of three im-

plementations of the game Battleships with square boards of length N , shown in

Figure 4·1. In this thought experiment, we will play the role of a developer attempt-

ing to implement a secure Battleships game via the BGW [49] secret sharing-based

protocol with two distrusting players and a server. For simplicity, we do not show the

secret sharing or reconstruction stages, but instead focus on the comparison step be-

tween guesses and real locations. The guess or locations of a player’s ships cannot be

revealed to the other player or untrusted server. Instead, comparing the guesses and

locations must be done securely such that only the matching locations are revealed.

A reasonable starting implementation represents each secret guess and ship loca-

tion as a pair of secret x and y coordinates on the grid, as shown in battleships1.

For a single guess, battleships1 executes |ships| secure ANDs and XORs, and

2 × |ships| secure equality checks. The equality checks are all independent and can

be performed concurrently, and secure XORs are cheap and can be computed without

communication. A single secure AND or equality check can be carried out in 1 and

b − 1 network rounds respectively, where b is the number of bits in the underlying

finite field, making the entire program executable in exactly b rounds. However, note

that the field needs to be large enough to represent the input values. Thus b must be

at least ⌈log(N)⌉. On the other hand, the total bandwidth exchanged between the

players is in O(|ships| × b2) per guess, since each comparison sends b − 1 messages

each of size b.

A logical subsequent refinement is to reduce the number of comparisons executed

overall, such as in battleships2. Instead of checking equality of coordinates, we
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fn battleships1(guesses: Vec<Pair<Secret<int>>>,

ships: Vec<Pair<Secret<int>>>) -> Vec<Secret<boolean>> {

let mut result = Vec::new();

for gx, gy in guesses {

let matched = 0;

for lx, ly in ships

matched ^= (gx == lx && gy == ly);

result.push(matched);

}

return result;

}

fn battleships2(guesses: Vec<Pair<Secret<int>>>,

ships: Vec<Pair<Secret<int>>>) -> Vec<Secret<boolean>> {

let mut result = Vec::new();

for gx, gy in guesses {

let matched = 1;

for lx, ly in ships

matched *= (gx - lx) + (gy - ly);

result.push(matched == 0);

}

return result;

}

fn battleships3(guesses: Matrix<Secret<bool>>,

ships: Matrix<Secret<bool>>) -> Matrix<Secret<bool>> {

let mut matrix = matrix::new();

for i in 0..BOARD_DIMENSION {

for j in 0..BOARD_DIMENSION

matrix[i][j] = guesses[i][j] && ships[i][j];

}

return matrix;

}

Figure 4·1: Three Secure Battleships Implementation in Oblivious
Rust. Syntax is lightly edited for readability.
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compute the L1 norm of the locations distance, which is 0 only if the ship and guess

are equal. To avoid leaking information about the distance between wrong guesses and

ship locations, we clamp the product of L1 norms to [0, 1] with a single equality check.

As a result, the total bandwidth now improves to O(|ships| × b + b2). However, the

multiplications in each iteration cannot be executed concurrently, and thus the round

complexity is |ships|+b−1. Note that developers can improve this to O(log(|ships|)+

b− 1) by structuring the multiplication as a tree rather than sequentially.

An alternative refinement, shown in battleships3 requires only a single round

overall by using a sparse matrix representation identical to the board in size. A cell

in the matrix is set to 1 only if it corresponds to a ship or a guess. A side effect of

this is that b can be as small as 1. As a result, the total communication exhibited

here is N2.

We observe that the given implementations offer us a trade-off between optimiz-

ing rounds vs total bandwidth. The last implementation seems incomparable to the

others, as it is the only one to depend on N (explicitly), and it does not depend on

|ships|. However, these parameters are correlated in practice. We know b ≥ log(N),

and the number of ships (and guesses) usually depends on the board size (e.g. too

many ships can make the game too easy). When looking at a batch of guesses,

battleship3 becomes more attractive as both its network rounds and bandwidth are

independent of the number of guesses. More realistic programs exhibit further com-

plex interactions between different parameters. Furthermore, we have not considered

the choice of underlying protocols and setup which increases the size of the space.

We show the output of our in-progress resource estimation tool, Carousels, when

run on these implementations comparatively in Figure 4·2. We only show online

network rounds and bandwidth. Carousels also produces plots for other resources

including pre-processing. In these plots, we interactively select b = ⌈log(N)⌉ and
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Figure 4·2: The online network bandwidth (top, in bits) and rounds
(bottom) for the three battleship implementations.
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|ships| = N , with only a single guess. In both plots, lower is better. We confirmed

the accuracy of these predictions experimentally. Round estimates are exact, and

total bandwidth is a close approximation that accounts for all network traffic ex-

cept metadata packet headers set by the network stack, which are omitted by the

underlying cost model.

These factors demonstrate a clear need for developing tools for resource estima-

tion and space exploration. However, toolkit support for secure computation re-

mains thin. Existing frameworks attempt to simplify development process using a

variety of embedded programming abstractions [54, 93], or heuristic optimizations

(e.g. via domain-specific rewriting rules [245]). Recent toolchains support protocol-

agnostic programming [41], provide (slow and at times inaccurate) emulators for

performance [54], allows developers to specify security policies for compilers that syn-

thesize distributed programs [19]. In the end, developers are largely left on their own

when it comes to analyzing the costs of their programs or attempting ad-hoc opti-

mizations, while also concurrently reasoning about the implications of any potential

changes on the correctness, security, and configurations of their programs.

4.3.3 Carousels: Our results

We are currently working on an interactive resource estimation tool for secure com-

putations called Carousels. We are designing Carousels with developers in mind so

that they can use it to analyze secure programs and plot concrete resource costs for

user-specified regions of the configuration space. Carousels can be used to compare

the resource cost of alternative implementations, or explore the protocol and config-

urations space for a given implementation. We envision Carousels to eventually be

used by compilers to guide various heuristic and re-writing based optimizations.

Carousels is framework and protocol agnostic. It operates on a generic intermedi-

ate representation; input programs can be transformed into this representation using
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plugable front-end parsers. Carousels’ type system is extensible with external JSON

configurations to support language-specific idiosyncrasies and external library calls.

At the heart of Carousels are two resource estimation program logics, parameter-

ized over an external cost model. These components allow us to transform programs

into a system of symbolic cost recurrences, which Carousels interactively evaluates to

produce estimates and plots for user-provided regions of the design space.

Carousels is inspired by existing work on deriving and analyzing cost recur-

rences [116, 160]. However, it relies on several key design decisions specific to secure

computation. One key takeaway is that the fidelity and success of static resource

estimation can significantly improve when designs are specialized to a single appli-

cation domain. Our design is geared towards common secure programs. These are

usually perfectly secure, and thus completely oblivious: their resource costs are com-

pletely determined by their public configurations and input sizes, and not by their

actual secret inputs. It is tractable to “lift” this constant set of relevant parameters,

as well as dynamic program flow over them, into our static analysis which we carry

out using a dependent type system and a novel resource logic. In rare cases, secure

programs may explicitly leak intermediate values to save costs, causing the resource

use to depend on leaked information in complex ways. In this case, Carousels follows

a best-effort approach and attempts to provide upper bound costs, potentially with

user assistance.

Carousels is still work in progress and there are many interesting directions for

future work. One possible next step involves performing a larger scale human com-

puter interaction study to determine the usability and effectiveness of our tool among

developers and identify key aspects that we can modify and improve. We believe that

this would be necessary for the success of any MPC development tool chain and thus

MPC itself.



167

Chapter 5

Conclusion

In this work, I have discussed some of the ways with which we can transition crypto-

graphic tools into practice and bring them to a wider audience.

In Chapter 2 I presented Hecate, a new abuse reporting protocol for end-to-end

encrypted messaging systems. With Hecate I showed how emerging questions of

accountability do not require the elimination of any of people’s existing privacy guar-

antees of their secure communication. Hecate is a new construction for asymmetric

message franking that is more efficient and more secure than prior works on the topic.

Hecate’s main insight is to introduce a pre-processing stage where a moderator can

handout batches of tokens to users bound to their identities. These tokens serve a

dual purpose: (1) they only allow the moderator to trace the origin of a message

and provide confidentiality with respect to everyone else, (2) they allow users to deny

having sent any particular message to all non-moderating parties.

In Chapter 3 I presented DP-PIR, a new batched differentially private informa-

tion retrieval protocol. With DP-PIR I showed one example of practical questions

that had until now been completely overlooked in cryptography, and presented an

extremely efficient construction that addresses this research gap. DP-PIR is a proto-

col specifically designed for use cases where the query rate far exceeds the size of the

PIR database. In DP-PIR, we amortize the communication and computation work

(in the size of the database) of servers down to a constant by relaxing the security

guarantees to hold for differential private leakage on the access patterns of the un-
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derlying database. Our system batches queries from many users and securely mixes

them with dummy queries coming from several servers in order to break the user

to query association. We additionally offload expensive public key operations to an

offline stage where servers receive the necessary material from users to perform the

online stage.

In Chapter 4, I went over some of my work and experience in bringing MPC, and

more broadly cryptography, to a wider audience. I believe that the primary reason

that these projects succeeded can be attributed to how we directly involved the people

in question in the design and development process of our tools. All of these projects

focused on understanding the needs and available resources of the people involved.

Our works ensured that the end tools are usable, accessible and explainable to a

non-technical audience. I then ended the chapter by presenting an ongoing project

that I am currently working on that directly builds on this experience with this time

developers with no cryptographic background in mind. To that end, I presented

Carousels a resource estimation tool-chain that helps developers navigate the large

space and many dimensions of MPC protocols.

The common thread among all my work remains the same: refocusing the crypto-

graphic lens on the most important party in any computation, people. In my thesis I

demonstrated how by carefully considering and tailoring the various levels of crypto-

graphic work (i.e at the level of formalisms, protocols and software) to suit the various

settings and needs of communities at large we can further the adoption of privacy

tools in practice. I envision my future collaborations to continue this line of work

and include people with even more diverse backgrounds and expertise. I hope that

my work and the work of others will eventually show that a road towards hampering

surveillance capitalism exists and it starts with ensuring that more people have access

to privacy as a first order right.
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[107] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal
Talwar, and Abhradeep Thakurta. Amplification by shuffling: From local to
central differential privacy via anonymity. In SODA, pages 2468–2479. SIAM,
2019.

[108] Ethereum. Ethereum: Privacy.
https://docs.ethhub.io/ethereum-roadmap/privacy/. Accessed: 2022-06-17.

[109] Facebook. The value of secure multi-party computation.
https://privacytech.fb.com/multi-party-computation/. Accessed: 2022-06-17.

[110] Facebook. Messenger secret conversations: Technical whitepaper (version 2.0).
https://about.fb.com/wp-content/uploads/2016/07/
messenger-secret-conversations-technical-whitepaper.pdf, 2017.

[111] Pooya Farshim, Beno5̂t Libert, Kenneth G. Paterson, and Elizabeth A.
Quaglia. Robust encryption, revisited. In Kaoru Kurosawa and Goichiro
Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 352–368. Springer,
Heidelberg, February / March 2013.

[112] Pooya Farshim, Claudio Orlandi, and Răzvan Rocsie. Security of symmetric
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[115] Marc Fischlin and Dominique Schröder. On the impossibility of three-move
blind signature schemes. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 197–215. Springer, Heidelberg, May / June 2010.

[116] Antonio Flores-Montoya and Reiner Hähnle. Resource analysis of complex
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Privacy-preserving shortest path computation. In NDSS. The Internet Society,
2016.

[254] Liang Wu, Fred Morstatter, Kathleen M Carley, and Huan Liu.
Misinformation in social media: definition, manipulation, and detection. ACM
SIGKDD Explorations Newsletter, 21(2):80–90, 2019.

[255] Jian Yang, Joseph Izraelevitz, and Steven Swanson. Orion: A distributed file
system for non-volatile main memory and RDMA-capable networks. In 17th
USENIX Conference on File and Storage Technologies (FAST 19), pages
221–234, 2019.



193

[256] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986), pages 162–167,
1986.

[257] Ka-Ping Yee. User interaction design for secure systems. In International
Conference on Information and Communications Security, pages 278–290.
Springer, 2002.

[258] Zcash. How zk-snarks are constructed in zcash.
https://z.cash/technology/zksnarks/. Accessed: 2022-06-17.

[259] Shoshana Zuboff. The Age of Surveillance Capitalism: The Fight for a Human
Future at the New Frontier of Power. 1st edition, 2018.



Curriculum Vitae

194



195



196



197




