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MODELING PREMALIGNANT LUNG SQUAMOUS

CARCINOMA VIA GENE EXPRESSION CHANGES

ASSOCIATED WITH EP300 KNOCKOUT

DANY FU

ABSTRACT

Lung cancer is the third most common type of cancer and the leading cause of

cancer death, in both men and women, and prognosis for lung carcinoma remains

poor due to late diagnosis. While lung squamous cell carcinoma (LUSC) makes up

20-30% of all lung cancer cases, identification of genetic signatures and successful tar-

geted therapies remain limited. An ongoing effort is being made to create an in vitro

system for modeling the early stages of lung squamous carcinoma and premalignancy,

which will ultimately serve as a model for drug discovery. A previous effort performed

whole exome and targeted DNA sequencing to reveal the somatic mutations in endo-

bronchial biopsies that harbored lung squamous premalignant histology. EP300 was

identified as a candidate gene which may act as a driver for carcinogenesis, but re-

mains understudied when compared to prominent oncogenic driver genes such TP53,

NOTCH1, or NFE2L2 in LUSC. The p300 protein is a histone acetyltransferase that

regulates gene expression by means of chromatin remodeling and has been impli-

cated in various diseases, including cancer. My objective as part of my thesis was to

first generate stable EP300 knockout (KO) clones from the NL20 bronchial epithelial

cell line utilizing the CRISPR/Cas gene editing system. Using the NL20 clones and

EP300 KO clones in the HBEC-3KT cell line generated in a previous effort, I then

validated the knockouts at the DNA, RNA, and protein levels. Literature review

was also conducted to identify possible cellular pathways that EP300 participates in
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and validate its role in those pathways by observing changes in downstream protein

targets. Finally, I generated RNA sequencing data from the functionally validated

clones to identify differentially expressed genes and cellular pathways perturbed by

EP300 knockout. Through these efforts, I developed sets of gene signatures unique

to each cell line and found that EP300 is associated with bronchial carcinogenesis

progression and likely functions as an oncogene in LUSC.
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Chapter 1

Introduction

1.1 Lung Cancer

Despite recent advances in lung cancer therapy and increased survival rates, lung

cancer still remains the leading cause of cancer death worldwide, and more than two

thirds of predicted lung cancer deaths in 2022 in the United States will be related to

cigarette smoking [1, 2]. The two major types of lung cancer are small (SCLC) and

non-small cell (NSCLC) lung cancer, with the latter being the dominant type making

up 85% of all cases. Most of NSCLC can be subcategorized as lung adenocarcinoma

(LUAD) which makes up 40% of all lung cancer, or lung squamous cell carcinoma

(LUSC) (20-30%) depending on the location of origination in the lungs and cellular

morphology. The five-year survival rate of those diagnosed with stage I NSCLC is

68.4% but this rate drops drastically to 5.8% for stage IV patients. However, less

than one third of all NSCLC cases in the US were detected at stage I [3], driving the

need for improvements in early detection and intervention.

The shift towards personalized medicine, aided by the falling cost and advances in

next generation sequencing technologies, has enabled genomic profiling of cancer on

a large scale. The Cancer Genome Atlas (TCGA) program was established in 2005

and has since generated over 2.5 petabytes of genomics, epigenomic, transcriptomic,

and proteomic data spanning 33 cancer types [4]. Data driven research within and

across cancer types has both shed light on substantially more oncogenic driver genes,

tumor subtyping, and identification of genomic alterations for targeted therapeutics.
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Comprehensive analysis of LUAD and LUSC using TCGA data and other sources

have found that their mutational profiles are largely distinct [5, 6, 7], and as such,

successful targeted therapies aimed at prominent oncogenic pathways such as EGFR

and KRAS remain almost exclusively to LUAD as these mutations are rarely found in

LUSC [7, 8, 9]. There remains significant motivation to discover targetable biomarkers

that drive carcinogenesis in LUSC.

1.2 Premalignant Lung Squamous Cell Carcinoma

Prior to becoming invasive (ie. malignant), tumors go through a series of molecular

changes in a premalignant phase. The steps in this progression are recognizable

histologically and also at the genomic and epigenetic levels. The nine stages of LUSC

carcinogenesis (stages 0 - 8) can be divided into four distinct molecular groups based

on the gene expression profiles of each of the stages. Tissues progress from normal

histology to ‘low grade’ lesions, to ‘high grade’ lesions (including carcinoma in situ),

before finally becoming invasive [10]. Bronchial dysplasia lesions at each stage have

the ability to progress, regress, or remain the same [11]. Although progression to

malignancy becomes more likely in higher-grade histology, invasion occurs only in

5-10% of the highest grades [12], and carcinoma in situ (CIS) lesions still revert

to normal tissue in 30% of cases [13]. Given the invasive nature and clinical risks

associated with oncological intervention, it may be inappropriate to do so at the

first detection of such lesions. There is considerable clinical potential in these earliest

stages of tumor formation if patients could be advised on the likelihood of progression

towards malignancy.

While Teixeira et al. created a proof of concept that successfully demonstrated the

possibility of making such predictions based on biopsies from 85 patients with prein-

vasive LUSC lesions, a larger data set involving international cooperation would in-
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variably provide a more exhaustive set of predictive signatures including less-common

genomic mutations [13]. Other studies have emerged in recent years to illustrate the

power of studying the earliest phases of carcinogenesis [14]. For example, an FDA

approved drug for advanced metastasized breast cancer was found to also decrease

premalignant lesions and therefore has the potential to be used in preventing a certain

type of breast cancer [15]. Motivated by the advance in research that the TCGA data

has enabled, our group has made a push for the creation of the Pre-Cancer Genome

Atlas (PCGA), a database of comprehensive genomic profiles of premalignant tis-

sues [16]. This goal will require coordinated effort from dozens of medical institutions

to systematically collect and annotate clinical samples across cancer types. By fol-

lowing the progression of tumors that become invasive, and indirectly, those that do

not, we can identify molecular markers that arise during the invasion process and

develop biological models to be used for therapeutic discovery.

1.3 Current Understanding of EP300 in Lung Cancer

The E1A Binding Protein P300 (p300), encoded by the gene EP300, is a histone

acetyltransferase that regulates gene expression by means of chromatin remodeling via

the acetylation of all four core histones, which is generally associated with increased

gene transcription. It is also capable of self-acetylation and functions as a coactivator

of non-histone targets such as tumor protein 53 (p53) [17, 18]. It is therefore involved

in numerous cellular pathways including cell proliferation and differentiation. The 31

exons of EP300 create a full length protein composed of several granular domains in-

cluding the kinase-inducible domain interacting (KIX) domain, bromodomain, really

interesting new gene (RING), and histone acetyltransferase (HAT) domain. Notably

implicated in Rubinstein-Taybi syndrome, there is growing evidence that EP300 acts

as a driver mutation in lung cancer and is mutated in pre-invasive CIS lesions [13, 19].
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A recent review found that EP300 mutation occurs in 7-12% of SCLC [19], and an

unpublished analysis from our group found EP300 to be mutated in 11% of samples

harboring premalignant LUSC histology (Fig 1·1). A cBioPortal [20, 21] search of

EP300 found that the gene is mutated in 3.75% (3 out of 80) of LUSC samples in

the Clinical Proteomic Tumor Analysis Consortium (CPTAC) data and 5.13% (25

out of 487) of LUSC samples in the TCGA Pan-Cancer Atlas database [22, 23]. A

schematic of the exons and domains of EP300 can be see in Figure 1·2, along with

the locations of mutations within the gene found in patient samples. A hot spot for

EP300 mutations occur most frequently in the HAT domain. All three in the CPTAC

data are missense mutations, as are the majority of the ones in the TCGA data set.

Figure 1·1: Oncoplot of top 10 altered genes from targeted exome
sequencing of 144 samples from PCGA lung data. EP300 mutations
are found in 11% of samples.

There is evidence to suggest that EP300 could be involved in either oncogenic [24,

25, 26] or tumor suppressing activities [27, 28, 29]. However, in NSCLC or related can-

cers, EP300 so far has been described as a gene that drives proliferation and invasion.
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(a)

(b)

(c)

Figure 1·2: Mutation plots of EP300 mutation types and locations in
gene from a) PCGA b) CPTAC c) TCGA Pan-Cancer data sets. Most
alterations are missense mutations. Figures b and c were generated by
cBioPortal. Color code: missense truncating splice

Bi et al. investigated the role of EP300 in esophageal squamous carcinoma (ESCC),

another type of cancer closely associated with smoking, and found that EP300 was

not only highly mutated in ESCC patients but that a higher expression correlated

with a shorter survival outcome. The authors knocked down EP300 in two highly

upregulated ESCC cell lines and found that proliferation, colony formation, migration

and invasion capabilities were all negatively impacted. RNA sequencing analysis of
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one of the cell lines identified differentially expressed genes in pathways involved in

angiogenesis, hypoxia, and epithelial-to-mesenchymal transition (EMT) [24]. Specif-

ically, p53 signaling pathway and nucleotide excision repair were implicated. These

findings are echoed in an analogous study in NSCLC; an analysis of 169 primary

patient samples (106 LUAD, 52 LUSC, 11 adenosquamous carcinoma) found that

those with higher expression of EP300 had lower survival rates [25]. The same group

knocked down EP300 in two highly expressed NSCLC cell lines, and overexpressed

the gene in two cell lines that had low endogenous levels. They confirmed that the

expression of EP300 had a positive correlation with proliferation, colony formation,

migration and invasion rate and that genes in the EMT pathway were also affected

[26]. Although Kim et al. similarly found decreased proliferation in SCLC cell lines

after EP300 knockout, they did not see the same effect in three NSCLC cell lines [30].

Determination of the physical structure of p300 protein has increased our under-

standing that its mutational effects could be domain specific [17, 30, 31]. Delvec-

chio et al. engineered mutations into various subdomains of the full p300 protein

and found that it had different effects on p300 autoacetylation and p53 acetylation:

while inactivation mutations of the protein depleted autoacetylation and decreased

p53 acetylation, mutations that targeted the RING domain considerably increased

both [17]. Kim et al. demonstrated in vitro that knocking out at EP300 exon 27

(start of the HAT domain) in a precancerous neuroendocrine cell-based model of

SCLC development led to higher colony formation in soft agar. Using the “HAT-

less” cell line, subsequent knockout of exon 16 (start of the bromodomain) showed no

change in colony formation. However, knockout at both exon 9 (start of KIX domain)

and exon 2 (start of the TAZ domain) significantly decreased colony formation [30].

One analysis of TCGA data linked EP300 mutations to be associated with genome

instability, which results in an increase in genomic mutations throughout the life



7

cycle of a cell and is one of the hallmarks of cancer. The pan-cancer analysis of 11

cancer types from TCGA, including LUAD, found significantly higher tumor mutation

burden in EP300 mutated cancers compared to EP300 wild type. Specifically, genes

involved in DNA repair such as base and nucleotide excision, mismatch repair, and

damage sensor were co-mutated. The p53 signaling pathway was found to be highly

enriched in EP300 mutated pan-cancer, which the authors described as an indicator

of increased DNA damage repair activity [32]. However, this upregulation could be

futile given the presence of co-mutational frequency of EP300 and DNA repair genes.

In addition to the association between p300 and p53 already described, there is

substantial evidence that the two proteins interact and are coactivators of one an-

other. The gene TP53, which encodes the protein p53, is of significant interest in

the study of cancer as it is the most commonly mutated gene across all cancer types.

It has been dubbed the “Guardian of the Genome” because of the essential role it

plays in DNA repair and cell cycle regulation such as apoptosis and senescence [33].

Given the crucial role TP53 has in either repairing mutations or eliminating unre-

coverable cells, it is unsurprising that mutations in the gene itself or dysregulation

of it could lead to aberrant cellular growth. Evidence of regulation of p53 by p300

was summarized over two decades ago, which suggest that p300 can stabilize p53 to

prevent degradation and is necessary for transactivation [34]. Since then, the advance

in 3D imaging of protein structures has further confirmed the interactions between

the two proteins [35]. This naive model of the interaction between EP300 and TP53

seem to suggest that overexpression of EP300 could be beneficial in its role as a

helper to the ”Guardian”, but this is in contrast to what was previously discussed in

ESCC and NSCLC. Needless to say, this relationship is complex and warrants further

investigation in cancer both at the genomic and epigenomic levels.

The growing evidence of EP300 ’s mutational presence across cancer types and
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premalignant tumors, association with genomic instability, and relationship with tu-

mor suppressor p53 all make the gene an attractive candidate for further investigation

in tumorigenesis and targeted therapeutic development. In fact, the biotechnology

company CellCentric announced in 2018 that the small molecule inhibitor the com-

pany had developed for p300/CBP was entering clinical trials for late stage prostate

cancer patients. In 2019, the trial expanded to patients with hematological malignan-

cies such as acute myeloid leukemia and certain lymphomas. However, the effects of

EP300 mutations in NSCLC and its gene signature remains unclear due to the fact

that it is a less common mutation when compared to more prominent cancer genes

in NSCLC such as TP53, NOTCH1, or NFE2L2 [7].

1.4 Preclinical NSCLC Models

The ultimate challenge of cancer treatment lies in efficiently targeting cancer cells:

eliminate the malignant cells that proliferate uncontrollably but leave the normal

healthy cells unharmed. Traditional approaches such as chemotherapy and radiation

do not differentiate between the two. After identifying unique hallmarks of tumor

cells in silico, the goal is to then replicate the mutational profiles in vitro and in

vivo to create therapeutic approaches to specifically target those mutations. Cancer

research relies on preclinical platforms such as cell lines, primary patient samples,

and animal models to study disease progression and ultimately for drug discovery

and validation. Cell lines are the most common NSCLC models used as they are

widely available, inexpensive, can be genetically manipulated easily, and provide an

unrestricted platform to study cellular behavior and toxicology in response to novel

therapeutic treatments. Nevertheless, a recent review of preclinical NSCLC mod-

els pointed out several limitations on cell line models including the low number of

modern LUSC models available and the uneven distribution of models across disease
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progression, notably in the premalignancy space [36].

As part of a larger effort to create an in vitro system for modeling the early

stages of LUSC and premalignancy, seven genes were identified in a prior effort to be

commonly mutated between LUSC and premalignant lung squamous lesions including

TP53, NOTCH1, FAT1, FGFR1, NFE2L2, EP300, and PIK3CA. Alterations in six

of the seven had already been completed, so my aim was to generate at least three

stable EP300 knockout (KO) cell lines in NL20, an immortalized, nontumorigenic

human bronchial epithelial cell line, utilizing the CRISPR/Cas gene editing system.

EP300 KO was also carried out in another immortalized human bronchial epithelial

cell line, HBEC3-KT, in a previous effort and were simultaneously validated alongside

the NL20 clones at the DNA, RNA, and protein levels in order to identify the clones

with a functional deletion. My second aim was to generate RNA sequencing data and

create gene signatures unique to EP300 KO, and validate whether the same signature

can be associated with existing data from clinical samples.
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Chapter 2

Methods

2.1 Cell Culture

NL20 cells were cultured in F12K Medium (ATCC) and supplemented according

to ATCC instructions. HBEC-3KT cells were cultured in Airway Epithelial Cell

Basal Medium (ATCC) supplemented with the Bronchial Epithelial Cell Growth Kit

(ATCC). All cells were grown in a humidified incubator at 37◦C and 5% CO2.

2.2 CRISPR/Cas9 Transfection

Wild type NL20 cells were transfected following Synthego’s “CRISPR Edit-

ing of Immortalized Cell Lines with RNPs Using Lipofection” protocol. EP300

CRISPR gRNAs were ordered from Synthego (guide 1 sequence: CTAGAAGT-

CATTCCTGGTTG, guide 2 sequence: GGAACCATGCCTGCAGCATT, guide 3

sequence: AGATTTTCTCAGCTAGAAGG). Transfection conditions were optimized

for NL20 cells using the TRAC gene following Synthego’s “Transfection Optimization

Kit (Multi-guide)” protocol. RNP was complexed in a 8:1 gRNA to Cas9 ratio for

EP300 knockout and 0:1 ratio for control, and incubated with 2 x 104 cells per well.

Media was replaced on day 2 (one day after transfection). DNA was extracted on day

5 for knockout efficiency analysis. Cells were sorted into single cell colonies on day 9.
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2.3 Fluorescence Activated Cell Sorting (FACS)

Cells were detached and resuspended in 500 µL DPBS and 1uL of 5mM Calcein

Blue (Invitrogen) for a final concentration of 10 µM, followed by an incubation period

of 30 minutes at room temperature. The cells were centrifuged, washed and resus-

pended in FACS buffer (2% FBS and 2mM EDTA in PBS). Live cells were sorted

from dead and single live cells were placed in 500uL of media per well in 96-well

plates.

2.4 Cell Proliferation Assay

Three replicates of 4 x 104 cells were seeded per well with 1mL of medium in

24-well plates. Cells were collected each day for 4 days and counted with Nexcelom

Cellometer Auto 1000 Cell Viability Counter.

2.5 PCR & Gel Electrophoresis

DNA was isolated from cell pellets using QuickExtract DNA Extraction Solu-

tion (Lucigen). EP300 PCR was performed using Kapa HIFI plus dNTPs (Roche)

with an annealing temperature of 65◦C for 30 cycles. EP300 primers were ordered

from IDT (forward sequence: AGTAGCGACTTAACTGTTGTTC; reverse sequence:

CAAGCCAGTCTC AGAGAAATC). DNA was visualized in 90% agarose gel and 5%

ethidium bromide.

2.6 DNA Sequencing & ICE Analysis

Unpurified PCR products were sent to Azenta for Sanger sequencing. Results

were uploaded to Synthego’s Inference of CRISPR Edits (ICE) [37] analysis tool

(https://ice.synthego.com) in order to analyze knockout efficiency.
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2.7 RNA Extraction & RT-QPCR

Total RNA was extracted from cell pellets using 1mL of Qiazol followed by 250 µL

of chloroform. Upper aqueous phase was incubated with 100% ethanol at either -80◦C

for 1 hour over 4◦C overnight. The solution was centrifuged for 45 minutes at 20,000xg

at 4◦C. Supernatant was discarded and the pellet washed with 100% ethanol three

times. RNA was reverse transcribed to cDNA using the Transcriptor First Strand

cDNA Synthesis Kit (Roche). EP300 Hs00914204 m1 (ThermoFisher, FAM-MGB)

was used to target the region between exons 10 and 11. All experiments were done

in triplicates with PPIA primer Hs04194521 s1 (ThermoFisher,FAM-MGB) as the

endogenous control gene.

2.8 Western Blot

Protein was extracted with NE-PER™ Nuclear and Cytoplasmic Extraction Reagents

(ThermoFisher Scientific). Detection of the EP300 protein was performed on 3-8% tris

acetate gel (ThermoFisher Scientific), 1:500 p300 Monoclonal Antibody (Invitrogen,

RW128), 1:2000 anti-vinculin control (Abcam, ab91459), and 1:1000 HRP conjugated

anti-mouse secondary (Cell Signaling Technologies, 7076). Detection of H3K27Ac was

performed on 4-12% bis tris gel (ThermoFisher Scientific, NW04120), 1:200 Anti-

Histone H3 (acetyl K27) (Abcam, ab4729), 1:1000 beta actin control (Santa Cruz

Biotechnology, 47778), and 1:500 HRP conjugated anti-rabbit secondary (Cell Signal-

ing Technologies, 7074). Membranes were incubated for 5 minutes in SuperSignal™

West Pico PLUS Chemiluminescent Substrate (ThermoFisher Scientific) for chemilu-

minescent imaging, followed by 10 minute incubation in Pierce™ DAB Substrate Kit

(ThermoFisher Scientific) for colorimetric detection.
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2.9 RNA Sequencing & Analysis

Total RNA was extracted from all cell lines with miRNeasy Kit (Qiagen). RNA

quality control and sequencing was completed at Azenta. Samples were prepared us-

ing the NEBNext Ultra II RNA Library Preparation Kit (Illumina) and sequenced on

the Illumina HiSeq platform to generate paired-end 150 base pair reads. Sequencing

reads were aligned to reference genome hg38 using 2-pass STAR [38] alignment. Gene

and transcript level counts were calculated using RSEM [39] using Ensembl v100 an-

notation. Trimmed mean of M-values (TMM) scaling factors were generated using

EdgeR [40] and TMM-normalized log-2 counts per million (CPM) values were used for

figures containing boxplots, multidimensional scaling analysis, and heatmaps. Linear

modeling and differential expression analysis were performed on gene-level counts af-

ter voom-transform with limma [41] utilizing the Benjamini-Hochberg Procedure [42]

for false discovery rate (FDR) adjustment. The fGSEA R package [43] and the hall-

mark gene set from the Molecular Signatures Database (MSigDB) [44] was used to

carry out Gene Set Enrichment Analysis [45]. Datasets used for Gene Set Variation

Analysis (GSVA) [46] can be found in NCBI Gene Expression Omnibus under ac-

cession codes GSE109743 and GSE109743. Three biological replicates per clone was

used for all bioinformatics analysis.
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Chapter 3

Results

3.1 EP300 Knockout and Validation

CRISPR mediated targeting of EP300 at exon 10 (KIX domain) was carried out

in parental NL20 cells, and the initial transfection achieved an editing efficiency of

100% according to Inference of CRISPR Edits (ICE) analysis [37] (Fig 3·1). The

knockout cell pool underwent fluorescence activated cell sorting to isolate single-cell

clones; of the 23 clones that proliferated from the initial cell sorting, two were lost due

to contamination (clones 6 and 16), and six were eventually lost after varying (2-4)

passage numbers due to stoppage of growth (clones 3, 8, 12, 19, 21, and 22). In the

latter group, although a few attached cells were still present after several weeks, they

did not divide and grow into robust colonies, suggesting possible cellular senescence

associated with the loss of EP300.

Figure 3·1: Sanger chromatograms showing the target sites of the
three gRNAs of the pooled EP300 KO population versus the control.
Horizontal black line indicates the sequences of the gRNA and the
dotted red line indicates the PAM sequences. The vertical dotted line
represents where the edit occurred. Chromatograms were generated
from Synthego’s ICE analysis tool.
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(a)

(b)

Figure 3·2: Gel electrophoresis images of a) HBEC3-KT and b) NL20
EP300 KO cell lines . Red dotted line represents the expected length of
the wild type. NL20 clone 18 and HBEC3-KT clone 6 did not amplify
after multiple attempts.

Validation at the DNA level was carried out by PCR with primers flanking the

deleted region (Fig 3·2). Notably, NL20 clone 18 and HBEC3-KT clone 6 did not am-

plify after multiple attempts. It is possible that the primer binding sites were deleted,

or DNA rearrangement occurred post Cas9 cleavage. Different sets of primers, pos-

sibly further out from the CRISPR target site, could be used to confirm genomic

editing. More than one band was present in some of the clones suggesting a heterozy-

gous deletion. Sanger sequencing of the PCR products and subsequent ICE analysis

gave a knockout score of greater than 90% in all except NL20 clones 2 and 10, and a

knockout score of 100 in HBEC3-KT clones 2, 3, 4, and 5, signifying a high likelihood

of the editing to result in a functional knockout. RNA expression was measured using

RT-qPCR with a primer specifically targeting the exon boundaries between 10 and
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11 and fold change was calculated with double delta Ct analysis (Fig 3·3).

(a) (b)

Figure 3·3: Analysis of knockdown efficiency of a) HBEC3-KT and
b) NL20 EP300 KO cell lines via mRNA expression by RT-qPCR. A
primer targeting the unction between exons 10 and 11 was used.

The efficiency of the knockout was further confirmed at the protein level by western

blot on both the cell lines (Fig 3·4a, 3·4b). All these results together suggest that

NL20 clones 1, 11, 18, and 20, and HBEC3-KT clones 2, 5, and 6 achieved functional

knockout of the EP300 gene. The four NL20 clones underwent further validation

via examination of the level of histone 3 lysine 27 acetylation (H3K27ac) via western

blot. Consistent with previous findings [31], all four clones showed reduced H3K27ac

compared to the parental line (Fig 3·4c), further confirming a functionally successful

CRISPR mediated knockout of EP300. H3K27 acetylation level changes could not

be confidently determined in the HBEC3-KT clones due to the low endogenous level

observed in the control cells. Alternate targets such as p53 or p300 acetylation could

be investigated. Proliferation rate of the four NL20 clones was also recorded as a

preliminary investigation of its phenotypic profile (Fig 3·5), which agreed with some

but not all previous findings [24, 26, 30] .
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(a)

(b)

(c)

Figure 3·4: Analysis of knockdown efficiency of a) HBEC3-KT and b)
NL20 EP300 KO cell lines via protein expression by western blots. c)
Western blot of H3K27 acetylation in NL20 clones that exhibited the
strongest knockdown of EP300



18

Figure 3·5: Cell growth curve of the four NL20 clones that exhibited
the strongest evidence of a functional knockout compared to the control.
Error bars represent standard deviation.

3.2 EP300 RNA Sequencing Analysis

Biological triplicates of each of the NL20 clones 11, 18, and 20 and HBEC3-KT

clones 4, 5, and 6 were selected for bulk next generation RNA sequencing. The

perturbed clones were analyzed against control cells in their respective cell lines to

identify differentially expressed genes (DEGs) in order to understand the effect that

knocking out EP300 has on genome-wide RNA expression in lung cells and to create

a unique gene signature. EP300 expression was specifically evaluated as a form of ini-

tial quality control and confirmed knockdown of the gene in all CRISPR/Cas9 edited

samples compared to its respective controls (Fig 3·6a, 3·6b). Although EP300

mRNA levels were not completely eliminated in any of the clones, all knockdowns

were statistically significant and were used as a benchmark for setting false discov-

ery rate (FDR) adjusted p-values and log2-fold change (LFC) cutoffs to determine

DEGs. Given the relationship between EP300 and TP53 previously discussed, TP53
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levels were also evaluated (Fig 3·6c, 3·6d) and while expression did decrease in the

NL20 clones, EP300 knockdown level did not have a direct relationship with TP53

expression level. TP53 levels were not significantly altered in HBEC3-KT clones.
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Figure 3·6: Boxplots showing NL20 RNA expression levels of a)
EP300 b) TP53 and HBEC3-KT RNA expression levels of c) EP300 d)
TP53. TP53 expression did not have a directly correlation with EP300
expression levels. Significance was determined by Student’s t-test. ***
p≤0.001, ** p≤0.01, * p≤0.05, ns=not significant.
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Figure 3·7: Multidimensional scaling plots of a) All EP300 KO sam-
ples, b) HBEC3-KT only, c) NL20 only. Samples clustered closer to-
gether indicate more expression similarity than those further apart.
Expression variance is best described by the first dimension (x axis)
than by the second (y axis).

Exploratory examination of gene expression was carried out by multidimensional

scaling (MDS) and revealed that the greatest expression variance came from inher-

ent biological differences between the two cell lines (Fig 3·7a). Unexpectedly, the

HBEC3-KT clones clustered closely to its controls while the NL20 samples did not.

This signaled that the NL20 clones will have stronger differential gene expression when

compared to its control than the HBEC3-KT clones. Nevertheless, MDS analysis of

the cell lines separately indicated that expression differences can still be discerned

in the HBEC3-KT line if analyzed on its own (Fig 3·7b). Therefore, all down-

stream analysis was carried out separately between the two cell lines. Interestingly,

the HBEC3-KT clones showed greater internal variance amongst biological replicates

than NL20 cells, particularly clone 4 (Fig 3·7b, 3·7c). ICE analysis of clone 4’s PCR

product showed four separate fragments that contributed to more than 10% of the

overall sequence pool (23%, 21%, 15%, 10%). Under perfect PCR and sequencing
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conditions, only one fragment contributing to 100% of the sequencing would be ex-

pected for a homozygous deletion, and two fragments (50%/ 50%) for a heterozygous

deletion. Given the mixture of fragments detected and their percentage of contri-

bution, it is possible that clone 4 is not a homogenous population. This may have

occurred due to reasons such as failure to isolate a single clone during initial sorting

or spontaneous mutation during initial proliferation.

Table 3.1: Number of differentially expressed genes of individual
EP300 KO clones. The two clones with the lowest knockdown rate
(NL20 clone 20 and HBEC3-KT clone 4) has the least number of DEGs,
but the clones with the highest knockdown rate (NL20 clone 18 and
HBEC3-KT clone 6) did not always have the most number of DEGs.

FDR <0.01, LFC>1.5

NL20 Clone # of DEGs

11 1860

18 1869

20 861

FDR <0.05, LFC>0.6

HBEC3-KT Clone # of DEGs

4 860

5 3701

6 1906

As suggested by preliminary MDS analysis (Fig 3·7a), NL20 EP300 KO clones

yielded more DEGs than its HBEC3-KT counterparts even with more stringent FDR

and LFC cutoffs (Fig 3·8, 3·9). Using FDR <0.01 and LFC>1.5, 560 DEGs were

revealed in the NL20 clones: 479 genes were downregulated and 81 genes were up-

regulated. In HBEC3-KT clones, only 82 DEGs were found using FDR <0.05 and

LFC>0.6. Again, more genes were found to have reduced expression than increased,

59 and 23, respectively. TP53 was not found in either of the gene signature sets.

Each clone was also analyzed individually as a quantitative measure of variance from

the control (Table 3.1). Expectedly, NL20 clone 20 and HBEC3-KT clone 4, which

had the lowest knockdown rate in its respective cell lines, demonstrated the least de-

viation of gene expression from the controls. NL20 clones 11 and 18 had no significant

differences in number of DEGs, but more surprisingly, HBEC3-KT clone 5 produced
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explanation did not extend to HBEC3-KT clones, as none of the CREBBP expression

levels changed significantly from the control (Fig 3·10b). Theoretically, a complete

knockout should have taken place given that the CRISPR target site is near the

front of the gene at exon 10, but considering the stochastic nature of DSB repair and

the complex functionality of the different subunits of the p300 protein, it is difficult

to speculate without more insight to the genomic or proteomic alteration that took

place. Sanger sequencing and ICE analysis revealed a 58 base pair deletion in clone 5,

which could have rendered the protein to be still active but carry out a reprogrammed

function. Similar to a dominant negative effect, the mutated p300 protein could lead

to more aberrant behavior in a cell than a complete knockout. The possibility of

CRISPR off-target effects also cannot be completely ruled out in clone 5, which could

exaggerate the mutational profile independent of EP300 levels. DNA perturbation in

clone 6 could not be determined due to unsuccessful PCR amplification (Fig 3·2a).
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Figure 3·10: Boxplots showing CREBBP, a functional paralog of
EP300, RNA expression levels in a) NL20 b) HBEC3-KT. Significance
was determined by Student’s t-test. *** p≤0.001, ** p≤0.01, * p≤0.05,
ns=not significant.
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Pathway enrichment results with FDR<0.5 using Gene Set Enrichment Analysis

(GSEA) [45] and the Hallmark gene set from the Molecular Signatures Database

(MSigDB) [44] are shown in Figure 3·11. Only two negatively enriched pathways
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Figure 3·11: Gene Set Enrichment Analysis. a) Number of DEGs
used for pathway analysis. b) HBEC3-KT clones 5 and 6 using DEGs
with FDR<0.05, LFC>0.6 only revealed upregulated pathways. NL20
pathways revealed using DEGs with FDR <0.01, LFC>1.5 c) All NL20
clones d) NL20 clones 11 and 18 and e) clone 18 only. Gene sets are
from the MSigDB Hallmark collection. All pathways have FDR<0.5.
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emerged when using the 560 NL20 DEGs from all three clones, including the EMT

pathway which echoes results from previous publications [24, 26]. To increase the

number of potential pathways involved, the weakest EP300 KO clone (ie. clone 20)

was removed and DEGs were re-identified using only clones 11 and 18. Using the

same FDR and LFC cutoffs as before, eight negatively enriched pathways emerged

from 1191 DEGs when NL20 clone 20 was excluded. Negatively enriched pathways

increased to 16 when clone 18 was analyzed on its own with 1869 DEGs, includ-

ing hypoxia and the p53 signaling pathway, further confirming previous research ef-

forts [24, 26, 32]. Additionally, the prominent oncogene MYC and the set of genes

that it regulates are shown to be strongly negatively enriched when clone 20 was ex-

cluded from GSEA. The downregulation of these cancer pathways suggest that EP300

likely operates as an oncogene in lung cancer. The same analysis using HBEC3-KT

DEGs in Figure 3·9 did not yield any enriched pathways, but two positively enriched

pathways emerged when the clone with the weakest knockdown (clone 4) was excluded

(Fig 3·11b), including the TNFA Signaling Via NFKB pathway which is prominently

negatively enriched in NL20. The other pathway, E2F Targets, is also notable for

its role in cancer and did not manifest in the NL20 clones even when FDR and LFC

cutoffs were lowered to the same as HBEC3-KTs. The contrasting GSEA results

indicates that EP300 perturbation manifests differently between the two cell lines.

To investigate the clinical significance of the EP300 KO gene signature, DEGs

used in GSEA in Figures 3·11e and 3·11b were further examined using Gene Set

Variation Analysis (GSVA) [46] against human endobronchial lesion biopsies from two

separate studies [12, 47]. Guided by the results of the pathway analysis, a subset of

the genes (847 downregulated genes from the NL20 signature, 173 upregulated genes

from HBEC3-KT signature) were evaluated against PCGA mRNA (GSE109743) and

Merrick et al.’s microarray (GSE109743) data sets. Genes that were not common to
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both the gene signature and the data set were removed prior to GSVA score calculation

and are shown grouped by histology in Figure 3·12. Results from the PCGA data

set show that the set of downregulated genes found in the NL20 EP300 KO have a

positive association with increased histology (P=2.55e−9). In the HBEC3-KT KO

clones, the set of upregulated genes also increase in expression with higher histology

(P=4.47e−11). Although the results were not always significant in the Merrick data

set, the trend supports that seen in the PCGA data set (NL20 P=0.717, HBEC3-KT

P=0.0185). These trends suggest that the EP300 KO gene signature is associated

with premalignant lesion progression in LUSC.



28

Normal Hyperplasia Metaplasia MildD ModD SevD

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

EP300 NL20 GSVA scores vs PCGA:DN

Histology

G
S

V
A

 S
co

re
s

Anova P value  2.55e 09

(a)

1 2 4 5 6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

EP300 NL20 GSVA scores vs Merrick:DN

Grade

G
S

V
A

 S
co

re
s

Anova P value  7.17e 01

(b)

Normal Hyperplasia Metaplasia MildD ModD SevD

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

EP300 HBEC GSVA scores vs PCGA:UP

Histology

G
S

V
A

 S
co

re
s

Anova P value  4.47e 11

(c)

1 2 4 5 6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

EP300 HBEC GSVA scores vs Merrick:UP

Grade

G
S

V
A

 S
co

re
s

Anova P value  1.85e 02

(d)

Figure 3·12: Boxplots showing GSVA scores of selective EP300 gene
signature during premalignant LUSC disease progression. a-b) Down-
regulated genes found in NL20 clones 11 and 18 show increase in expres-
sion as disease progresses towards malignancy in PCGA and Merrick
et al. data sets c-d)Upregulated genes found in HBEC3-KT clones 5
and 6 show increase in expression with higher histology in PCGA and
Merrick et al. data set.



Chapter 4

Discussion

Motivated by the need for early detection of lung cancer and lack of premalignant

in vitro models in the LUSC space, our group has generated seven cell lines with single

gene perturbations identified to be significantly altered in clinical LUSC and prema-

lignant samples, including EP300 knockout clones as demonstrated in this thesis. The

knockout was functionally validated at the DNA, RNA, and protein levels, and in the

case of the NL20 clones, also by observing variations in downstream acetylation levels.

RNA sequencing data generated from selected clones identified differentially expressed

genes in both NL20 and HBEC3-KT cell lines. Pathway enrichment analysis was also

carried out using DEGs from clones that exhibited the strongest EP300 knockdown

and confirmed pathways found in previous studies as well as notable pathways impli-

cated in cancer. Finally, gene signatures were evaluated against bronchial dysplasia

samples from two separate cohorts and revealed a positive association between EP300

perturbed genes and tumor histological progression.

MDS analysis, DEG discovery, and pathway analysis all indicate that the HBEC3-

KT clones had weaker overall expression variance from its controls than the NL20

clones, despite EP300 knockdown levels being similar and significant. Inherent bio-

logical variability such as method of immortalization could account for some of the

differences. The NL20 cell line was established via transfection of a viral oncoprotein,

SV40 large T plasmid, which could compromise p53 functions. In fact, this cell line

did spontaneously become tumorigenic at one time [48]. HBEC3-KT, on the other

29
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hand, was immortalized while retaining wild-type p53 functions [49], which could

influence it to be more resistant to oncogenic mutations in comparison to NL20. An-

other question this raises is whether the TP53 gene expression level and p53 pathway

alteration seen in Figures 3·6c and 3·11e, respectively, were an artifact of the cell

line or a true effect of EP300 KO. Creating EP300 perturbations in other human

bronchial epithelial cell lines could be carried out to further investigate this finding.

As previously mentioned, several studies have suggested that depletion of EP300

results in decreased cell proliferation. Although the four functional NL20 KO clones

did not show a significant change in proliferation as compared to the parental line, the

six clones that were eventually lost suggest a tentative link between the loss of EP300

and cellular senescence. Cellular senescence possibly evolved as a mechanism for

tumor suppression, as the definition of cancer is unchecked cellular growth. Stressors

including DNA damage (eg. double stranded break (DSB)), oncogene activation, or

chromatin perturbation could induce a senescent response. Moreover, TP53 is also

a well known regulator of senescence [50], and given the evidence that p300 is a

coactivator of p53, it is plausible that mutations in EP300 could trigger p53 induced

senescence. Phenotypic changes of a senescent cell includes arrested growth and

resistance to apoptosis, both of which were observed in clones 3, 8, 12, 19, 21, and 22.

Gene expression changes or emblematic biomarkers such as senescence-associated-β-

galactosidase were not investigated as part of this thesis. Furthermore, additional

investigation would be necessary to determine whether CRISPR-induced editing and

subsequent DSB may have been the cause of senescence rather than the mutation in

EP300.
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