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“Professor,” replied Captain Nemo.
“You must not confuse static and dynamic situations,
or else you will fall into serious errors.”

Jules Verne, 20,000 Leagues Under the Sea

“Of course you know. You’re brilliant. Everyone says so.”
“What else can they say? I do neurochemistry.
No one knows what that is.”

Don DeLillo, White Noise
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ABSTRACT

Cells sense their environment and process changes through intracellular signaling

networks to coordinate behavioral changes, such as cell fate decisions. In bacterial

systems, these changes often occur over time periods longer than a single cell cy-

cle. While we are now able to experimentally track and monitor these behavioral

changes over multiple generations, we have a limited conceptual understanding of

how these decisions are mediated by signaling pathways. Here, I present two projects

that build predictive frameworks for understanding signaling pathway dynamics over

multiple generations informed by the signal network architectures. In the first section,

I use computational simulations to understand how signaling pathway architecture

controls the duration over which related cells maintain similar concentrations of sig-

naling pathway components following division from a common mother cell. I find that

signal amplification is a requirement for similarity between related cells. In the sec-
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ond section, I take a joint theory-experiment approach to analyze the accumulation

timescale of the signaling molecule cyclic di-GMP during biofilm initiation in the soil

bacterium B. subtilis. Here I predict that the accumulation occurs over many genera-

tions, suggesting the possibility cyclic di-GMP is used as a cellular timer mechanism

during biofilm initiation. These results both explain previous experimental findings

as well as generate new predictions for how signaling pathways mediate single-cell

behaviors in bacterial populations. Together, my work demonstrates the power of a

joint theory-experiment approach to understand the long-term, dynamical behavior

of intracellular signaling pathways by linking their architecture to their dynamical

function.
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Chapter 1

Introduction

1.1 Disclosure and Copyright Statement

This chapter adapts portions of “Exploiting noise to engineer adaptability in syn-

thetic multicellular systems” by Mark S. Aronson, Chiara Ricci-Tam, Xinwen Zhu,

and Allyson E. Sgro, 2020 Current Opinion in Biomedical Engineering. 2020; 16

(52-60). © The Authors

1.2 Overview

A defining feature of cellular life is a cell’s ability to sense environmental inputs and

respond with some output. The connection between these sensed inputs and outputs

is a processing step, which, in cells, is done by intracellular signaling pathways. The

specific architectures of these signaling pathways dictates their properties, such as the

time it takes for an input signal to elicit a response. Often such a response is gene

expression which, in rapidly dividing cells like bacteria, occurs on a timescale longer

than a single cell cycle. In the case of such multigenerational processes, cell signaling

is complicated by two factors: first, cellular noise arising from the stochastic nature

of biochemical interactions and second, how the signaling is maintained upon cell

division. Different network architectures can limit, increase, or exploit cellular noise,
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but how signal network architecture affects signaling on a multigenerational timescale

remains an open area of inquiry. In this dissertation, I take a theoretical approach to

understand how network architecture can enable cell similarity over multiple gener-

ations and how that duration can be altered with different network architectures. I

then take a joint theory-experiment approach to quantitatively hypothesize and lay

the groundwork to test if a natural pathway related to biofilm formation operates

as a cellular timer mechanism, integrating information over multiple cell generations.

These studies serve to further our knowledge in how cell signaling network design

functions in the context of multigenerational processes.

1.3 Signaling networks process information between cellular

inputs and outputs

Bacteria make decisions about how to behave by sensing changes in their environ-

ment, often through membrane-bound receptor proteins [1]. Bacterial receptors are

capable of sensing a variety of environmental changes, including chemical [2], electri-

cal [3], and mechanical [4]. These receptors then transduce the sensed input through

signaling networks in order to alter the cell’s behavior, whether that is to tune flagel-

lar turn bias so bacteria may chemotax up a gradient [5], to initiate group behaviors

through quorum sensing [6], or to self-program cell death [7]. But signal pathways are

more than just conduits of information; their diverse structures and dynamic proper-

ties enable them to perform more complex functions than simple relay [8]. Feedback

loops enable pathways to respond differently to different exposures of the same lig-

and [9]. Other network architectures enable a cell to not only change behavior upon

exposure to an input signal, but to maintain that behavior after the signal has been

withdrawn, a form of “cellular memory” [10]. To understand how cells sense and
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respond to their environment requires a deep comprehension of the signal pathways

connecting the sense and response: their static structure along with their dynamical

properties [11]. Doing this experimentally requires a suite of tools, from effective

biosensors [12] to high spatiotemporal resolution imaging [13] to well-developed algo-

rithms for segmenting and tracking the resulting image data [14]. Even with many

advances in these areas, from improved sensors to novel deep-learning algorithms,

interpreting experimental data from these pathways remains challenging [11]. To ad-

dress these challenges, joint theory-experiment approaches have proven effective at

dissecting between possible different mechanisms and structures underlying experi-

mental results [15, 16, 17] and have served as an effective strategy to advance our

understanding of signal pathway dynamical structure and function. To illustrate the

utility of joint-theory approaches for dissecting the impact of signal network archi-

tecture on signaling dynamics, let’s first examine, as a useful case study, a collection

of studies mapping out the impact of network architecture for the timing of sim-

ple gene activation. While my work focuses on second messenger signal molecules

and their pathways, not transcriptional gene networks, this example will serve as a

methodological framing for the approaches I take in the later chapters.

1.4 Signaling network architecture defines timing of gene ac-

tivation in bacteria

The simplicity of single gene activation in a bacterial system makes it a useful exam-

ple for understanding how signal pathway structure alters dynamics. This is because

proteins in growing bacteria are rarely actively degraded [18], resulting in the concen-

tration of protein being determined only by gene expression and dilution due to cell

division. In this example, consider a bacterial cell responding to some environmental
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signal. A common signal motif in bacteria is the two-component system [19], in which

a transmembrane histidine kinase senses an external ligand, autophosphorylates, and

then transfers the phosphyl group to a response regulator protein. This response reg-

ulator, when phosphorylated, acts as a transcription factor and proceeds to turn on

expression of a target gene. Nearly all of the steps of this pathway happen quickly:

ligand binding to the membrane receptor, autophosphorylation of the histidine ki-

nase, transphosphorylation of the response regulator, and binding of the response

regulator to the promoter all happen on the order of milliseconds to seconds. Even

the mechanics of gene expression, transcription and translation, occur on the order of

five minutes for a single protein. What does set the timescale of gene activation is the

amount of time it takes to accumulate the newly expressed protein to steady-state

levels. In fact, for any protein activated with this architecture, accumulation of new

protein to half of its new level takes an entire cell cycle [20], which, in growing E.

coli, can range from 30 min to hours. This time duration of one cell cycle serves as a

benchmark for what a typical response time is in a bacterial gene activation network.

Different signal network architectures can modify the dynamics around this bench-

mark. One modification often seen in nature is to have the protein product regulate

itself [21]. If the protein product negatively regulates itself, that is, represses its own

production, it is possible to have the response time be faster than a cell cycle [22, 23].

This simple change in how the network is structured leads to a different timing of

the output. On the other hand, positive regulation enables a slower response time

[24]. By adding different versions of autoregulation, that is, changing the network

architecture, the dynamics of the response in simple gene activation is changed.

While these insights into the relationship between network architecture and dy-

namics are useful, they rely on assumptions that the molecules involved behave in a

deterministic and continuous manner. In reality, bacterial systems are composed of
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a discrete number of molecules whose interactions are driven by probabilistic, ther-

modynamic laws. The randomness of these interactions leads to variations across

systems and across time, variations that have been coined biological noise.

1.5 Biological noise

The term ‘noise’ originates from electrical engineering and broadly refers to random

disturbances to a signal. Noise has been well studied and characterized in neuro-

science, where it is recognized to play a prominent role in determining the structure

and function of nervous systems [25]. As appreciation for the information process-

ing abilities of single cells grew, the concept of noise was ported over to cell biology,

where noise refers to variations in the numbers of molecules, such as mRNAs or

proteins, that arise from biochemical reactions. A landmark quantitative examina-

tion of noise in cell biology classified it as coming from two sources: extrinsic noise,

variations arising between cells, and intrinsic noise, variations arising within a cell

[26]. This phenomenon has been incredibly well studied over the past twenty years

[27, 28, 29, 30, 31, 32, 33], but exact definitions of biological noise and its origins are

the source of some debate in the field [33]. Regardless of its exact nature, cellular

noise, or at least variation, is a real phenomenon, one that often has negative conno-

tations. But bacterial systems, in some cases, have evolved to use noise as a feature,

especially when driving differentiation of isogenic populations.

1.6 Network design and cellular noise

Bacterial systems can use noise to drive phenotypic differentiation among genetically-

identical cells in a population. One canonical case is the Bacillus subtilis competence

circuit [34, 35]. Competence is a bacterial survival strategy in which cells readily take
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up DNA from the surrounding environment. However, the strategy is risky, as DNA

in the surrounding environment could include hostile entities such as bacteriophages.

To balance the risk of uptaking surrounding DNA with the potential benefit of gaining

a gene useful for survival, this circuit couples noise and feedback loops in a way such

that only a subset of a population will enter the compentent state at a given time.

As a growing culture reaches high density, quorum sensing plays a key role in driving

noisy ComK protein expression that dictates whether a cell enters into a state of

competence. If ComK levels with a single cell exceed a certain threshold, the cell

transiently enters a competent state, as enforced by feedback loops, before reverting

back to a noncompetent state. This circuit, using noisy levels of one protein coupled

to feedback loops that create stability, is an example of signal network architecture

can exploit noise to achieve many behaviors when viewed in a dynamical context.

Returning to the example of gene activation, different signal network architectures

are more prone to noise than others [36]. Negative autoregulation, in addition to

speeding up response time, has been shown to reduce noise in gene expression [37],

while positive autoregulation has been shown to increase noise. Additionally, the

common bacterial sensory motif of the two component relay is also an effective noise

filter [38]. While different signal network architectures can minimize the effect of

cellular noise, there is another entirely different source of variation that bacterial

cells contend with: the variations arising from cell division.

1.7 Noise arising from cell division

When a bacterial cell divides, its volume is split in half and its internal contents

are divided between the resulting daughter cells. Single molecule tracking has shown

that these contents are divided according to binomial probability [39, 40]. As this
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binomial partitioning is not an exact 50-50 split of the contents, one daughter cell

will inherit more of a given molecular species than the other. This difference in

number of a molecular species inherited between daughter cells, or partition error,

when quantified, is on the same scale as fluctuations in stochastic gene expression

[41]. Additionally, the random nature of cell division timing adds an additional layer

of noise [42]. Cells may employ mechanisms for ordered partitioning, such as volume

exclusion, spindle formation, or pair formation, but the parameter demands for these

strategies to significantly reduce partition error largely lie outside of the physiologic

range, with the notable exception of chromosomal segregation, where it is rational

to invest large amounts of cellular resources [43]. Noise arising from cellular division

becomes a significant limitation when considering cellular processes that occur on

timescales longer than a single cell cycle.

1.8 Outline: Examination of signal network architecture gov-

erning multigenerational processes in bacterial cells

These two sources of noise, the stochastic nature of biochemical reactions and the

partition error from cell division, affect cell signaling in the case of signal networks

responsible for driving multigenerational processes. Which network architectures are

capable of resulting in signaling that is robust to these sources of noise, as well as the

design parameters that define that robustness remains an open question. Simulation

and theoretical analysis can be used to broadly explore possible network architectures

and their behavior over many generations.

In the first part of this dissertation, I develop a theoretical and computational

approach to explore some basic governing rules of how network architecture impacts

the state of a cell signaling network over multiple generations (Chapter 2). By
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simulating toy models of signaling circuits and examining in which components related

cells are more similar to each other than to any random cell in the population, I

find that doubly stochastic processes, and the variance they generate, is essential to

generating a signal that is maintained in related cells. I also investigate the kinetic

boundaries of this behavior as well as how the duration of nongenetic similarity can

be decreased by network architecture. I end with an analysis of how the duration of

this nongenetic similarity connects to the ability to modulate noise levels amongst a

population of cells.

While a computational and theoretical approach offers the ability to unearth pos-

sible rules governing multigenerational processes, an experimental study dissecting an

existing cellular network that drives a multigenerational process can examine a case

where evolution has actually implemented one possible incarnation of these design

rules. In bacterial systems, multigenerational processes are commonly employed in

cell fate decisions, in which cells opt between phenotypes or lifestyles to adapt to

environmental conditions [44]. A model system to study such cell fate decisions is

the aforementioned soil microbe Bacillus subilits. One of its possible cell fate deci-

sions is sporulation, where, under extreme or starvation conditions, B. subtilis will

form a dormant but durable spore that has the ability to germinate in more favorable

conditions [45]. This sporulation decision has been shown to be made over multiple

generations [46, 47]. In addition to sporulation, B. subtilis has other cellular processes

that occur over multiple generations [48]. The uniting network architecture between

these sporulation and competence, among other cell fates, is the master regulator

Spo0A. An underexplored aspect of Spo0A signaling is its impact on cyclic di-GMP

[49], a second messenger commonly implicated in biofilm formation [50].

In Chapter 3, I then investigate the dynamics of the cyclic di-GMP pathway in

B. subtilis with a joint theory and experiment approach. I develop a theoretical model
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that shows how the kinetics of the enzymes regulating cyclic di-GMP concentration,

along with the network architecture, enables accumulation of c-di-GMP to occur

over multiple generations. I then proceed to develop an approach for experimentally

testing this prediction, first by developing an assay for imaging biofilm phenotype

activation in single B. subtilis cells using timelapse fluorescence microscopy and then

by testing a series of genetically-encoded biosensors, including a newly-designed circu-

larly permuted GFP sensor, for their sensitivity to c-di-GMP dynamics in B. subtilis.

Combining these approaches enables the ability to measure c-di-GMP accumulation

in single cells and to validate if the c-di-GMP circuit in B. subtilis is functioning as

a part of a multigenerational signal network.

Finally, in Chapter 4, I reflect on future directions suggested by this work. On

the theory and computation side, I consider elements that could move these models

beyond toy circuits and incorporate sufficient complexity for predictive power. On

the experimental work examining biofilm formation, I consider how understanding of

individual single cell pathways could be combined to understand development on the

scale of the whole biofilm. I then end on a note reflecting on how theoretical design of

new circuits and their behavior could be experimentally implemented for advancing

the design space of synthetic biological systems.
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Chapter 2

A toy model describes the requirements

for nongenetic similarity in dividing cells

2.1 Introduction

While cell identity is often thought of in terms of genetic identity, the actual behavior

of a cell is driven by the myriad of RNAs, proteins, ions, and other molecules contained

within a cell. From sensing and responding to environmental signals to metabolism,

the processes of a cell are driven by these nongenetic components. Indeed, this idea of

the variation of nongenetic components leading to different behaviors of isogenic cells

has a long history [51]. Different expression levels of different proteins can lead to

different behavior, as can different metabolic states. For instance, bacterial cells with

certain expression levels of efflux pumps can survive an antibiotic challenge while the

remaining cannot [52].

When a cell divides, great care is taken to ensure its genetic contents, the DNA

composing its genome, are copied and divided equally between the resulting daugh-

ter cells. The remaining contents of the cell are also divided: the proteins, ions,

RNAs, and lipids that make up the remainder of the cellular infrastructure [53]. As

cell behavior stems from specific concentrations of these components, the division

of said components between resulting daughter cells leads to similar concentrations



11

being passed down a generation, and thus similar behavior [54]. This idea has been

recently studied and quantified at a single cell level. One experimental study demon-

strated that 70% of the motility behavior in E. coli daughter cells can be explained by

nongenetic inheritance [55]. Another experimental study showed that, in an isogenic

population of E. coli, sister cells had correlations of cell size and cycle time beyond

correlations between unrelated cells in the population [56]. However, while the sister

cells were correlated immediately post-division, the correlation decayed after a six or

eight generations. Other studies have found similar timing for the phenotypic diver-

gence of E. coli [57]. One explanation for this decay is the random nature in which

nongenetic factors are partitioned between daughter cells. Similar ideas hold when

examining multigenerational correlations of cycle time in both human and mouse can-

cer cell lines [58]. Other work has shown that there is an optimal level of nongenetic

inheritance to aid in bacterial chemotaxis [59, 60].

The nongenetic factors of bacterial cells, in absence of subcellular organelles, have

been shown to be partitioned according to binomial probability, as shown in studies

tracing single molecules of RNA [39] and fluorescent proteins [40]. With binomial

probability, there is some deviation away from a perfect halving of the contents into

each daughter cell. The deviation from this perfect split is referred to as partition

error. These partition errors can accumulate over a few generations to yield large

heterogeneities in protein count from a single cell, akin to the variation explained by

stochastic gene expression [41]. Other theoretical work has shown that overcoming

partition error requires extreme parameters, unrealistic in a biological context [43].

Further studies have quantified the levels of noise of a single protein in a system with

stochastic production and cell cycle timing [42].

To investigate over what timescales the accumulation of differences in nongenetic

factors as a result of binomial partitioning occur, we turned to toy model simulations
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of signaling circuits. These simple models are a tractable system in which to under-

stand the minimal requirements for nongenetic similarity in related cells. We found

that not a single protein, but a simple pathway, in which a protein produces a signal

molecule, is sufficient for inherited nongenetic similarity. We then found that adding

an additional component, a degrading enzyme, was sufficient to alter the duration

of this nongenetic similarity. These two or three component, one or two interaction

systems, provide a base of understanding of how inheritance of nongenetic factors can

generate similarity in related cells that persists for multiple generations.

2.2 Results

2.2.1 Construction of a stochastic model to simulate a minimal signaling

circuit

The simplest signaling circuit one can create to explore the minimal requirements for

multigenerational similarity is a “Production Only” circuit, composed of an enzyme,

M, which makes a signal molecule, A, at a constant rate, kcat,M (Fig 2·1A). In this

architecture, the production probability of the signal molecule A is described using

Equation 2.1:

Pprod,A = kcat,M ∗M (2.1)

where M is the number of M in a given cell. The enzyme M is produced with a fixed

probability, Pprod,M , where one M is produced every 1/Pprod,M time units on average

[61, 62]. Note that this functions as the definition of a Poisson random variable. The

intracellular events, specifically production of the enzyme M or signal molecule A,

were simulated using a Gillespie algorithm [63]. This was chosen in order to examine
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Figure 2·1: Minimal signaling circuit components result in different un-
derlying distributions — (A) The Production Only circuit architecture used in
this study. An enzyme M, produced at rate Pprod,M , reacts to form a signal molecule
A at a fixed rate kcat,M . Decreases in counts of enzyme M and signal molecule A in
each cell come solely from dilution due to cell division. (B) Distribution of counts of
the M enzyme in cells immediately prior to division. The model was run for 1000 cell
cycles and the counts of M enzyme prior to each of the 1000 division events is shown
here (red histogram). The distribution fits a Poisson model based on the mean M
enzyme count (dotted black line). (C) Distribution of counts of the signal molecule
A in cells immediately prior to division. The same model run of 1000 cell cycles was
used and the counts of signal molecule A immediately prior to division are plotted
here (blue histogram). A Poisson model based on the mean value was attempted to
fit the distribution, but the variance was much wider than a Poisson (black dotted
line). (D) Each instance of a mother cell in this work can be considered as a cell
with counts of enzyme M and signal molecule A independently pulled from these
distributions.
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the performance of a circuit stochastically in a manner that is robust at all levels of

enzyme counts. Following the algorithm, we first calculated the sum of probabilities

for this Production Only circuit, as shown in Equation 2.2:

Rtotal = Pprod,A + Pprod,M (2.2)

The length of the time step between events is then given by Equation 2.3:

τ = (1/Rtotal) ∗ ln 1/r1 (2.3)

where r1 is a random number pulled from a uniform random distribution spanning 0

to 1.

To simulate cell growth we preset a fixed cell cycle time, Tcc. At each event time

determined from the Gillespie simulation, we then calculated the new cell volume

using Equation 2.4:

Vnew = Vold +
τ

Tcc

(2.4)

Cell division is triggered when V > 2, upon which the intracellular contents are

divided up between daughter cells using a binomial random variable and the volume

is reset to 1.

For the initial run of the model, we took inspiration for our parameters from

the c-di-GMP circuit in B. subtilis. The typical kcat of the c-di-GMP forming DGC

enzymes is 1 min−1 [64] and their copy numbers are in the tens per cell, or in the 10

nM range [65]. Given our time units approximate seconds, we set kcat,M = 10−2 s−1

and Pprod,M = 10−2 s−1. Lastly, given E. coli ’s doubling time of 20 minutes in rich

conditions [66], we set our initial cycle time to 1000 time units.
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Running the model for n cell generations produces a series of n pre-division con-

ditions, all of which can be seen as possible Mother Cell states (Fig A·1A, enzyme

concentration trace; B, signal molecule concentration trace). To generate a large pool

fully sampling the possible pre-division parameter space, we ran the model for 1000

generations. This initial condition set of the number of enzyme M molecules at all

timepoints immediately prior to division falls on a distribution, indicating the effects

of stochastic gene production and binomial partitioning (Fig 2·1B, red bars). Given

the simulation for M follows a stochastic process with a fixed rate, we analytically

derived the mean as a function of the model variables (see A2, Part 3) and found

a Poisson distribution with this mean matches the simulated distribution (Fig 2·1B,

black dotted line).

Given that possible values of M follow a Poisson distribution, we wanted to explore

what this means for the distribution of possible signal molecule A values. As the

signal molecule is produced stochastically with a rate proportional to the stochastic

production of the enzyme M, the production of A falls under a category of doubly

stochastic processes known as Cox Processes [67]. A known property of these doubly

stochastic systems is that the variance of the doubly stochastic variable is greater than

that of the singly stochastic variable. To confirm if this was true for the production

of signal molecule A, we compared the distribution of the counts of A (Fig 2·1C, blue

bars) to a Poisson distribution with the a mean derived from our analytical solutions

(see A2, Part 5) (Fig 2·1C, dotted black line). As expected from the Cox Process,

the variance of counts of A was wider than a Poisson.

We can now think of any Mother Cell in this model as having its counts of enzyme

M or signal molecule A as realizations of these distributions (Fig 2·1D), allowing us

to explore how this impacts nongenetic similarity in the system.
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2.2.2 Nongenetic similarity is present only in signaling molecule concen-

tration

This simple model not only allows us to explore how a single cell lineage varies over

time, but also how similar related cells are to other cells in the population. To

quantify the presence of nongenetic similarity, we constructed a metric inspired by

experimental findings that properties such as cell cycle time and cell size appear to

be more similar for multiple generations of a lineage of cells than would be expected

between two random cells in a population [56]. Specifically, we simulated divisions

from 1000 different mother cells and calculated pairwise differences between the re-

sulting sister and random cells (Fig 2·2A, top). In each case we then also calculate the

variance of the distribution of these differences (Fig 2·2A, bottom). If the variance of

the differences between sister cells is less than the variance of the differences between

random cells, the sister cells are more similar to each other than to a random cell in

the population, and thus nongenetic similarity exists in the system. We then ran the

model with the resulting sister cells and random pairs for 10 generations, as this was

the time period in which it was found experimentally all nongenetic similarity would

decay [56]. We performed this variance of difference calculation at each time point

for both the concentration of enzyme M and signal molecule A.

Looking at the variance of the differences in the enzyme M, we found the sister

pairs and random pair variances well-tracked one another (Fig 2·2B). Each division

doubles the variance value, which then decays downwards until the following division

raises the variance between the cells again, creating a sawtooth-like pattern in the

variance trace (Fig 2·1B). This sawtooth comes the fact the variance of number of

signal molecule doubles while the variance of the concentration is proportional to the

variance of the number of signal molecules over the volume squared. As the volume
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Figure 2·2: Nongenetic similarity is present only in signaling molecule con-
centration — (A) Schematic of nongenetic similarity metric. To see if nongenetic
similarity is present in the system, variance of the distribution of pairwise differences
between sister cells (∆sister, left) were compared to the variance of the distribution of
pairwise differences between unrelated cells (∆random, right). Nongenetic similarity
is present when σ2

sis < σ2
rnd. (B) Variance of distributions of pairwise differences in

counts of enzyme M. 1000 pairs of sister cells and random cells were simulated for 10
generations and the variances of their distributions of pairwise differences in counts
of M were calculated at each time point. The values were identical between the sister
(red line) and random pairs (gray line) over the ten simulated cell cycles. (C) Vari-
ance of the distributions of pairwise differences in counts of the signal molecule A.
1000 pairs of sister cells and random cells were simulated for 10 generations and the
variances of their distributions of pairwise differences in counts of A were calculated
at each time point. The random pairs had a constant variance over the ten simulated
generations (gray line) while the sister pairs started at a low value, which then in-
creased until saturating at the value of the variance of the random pairs (blue line).
(D) Normalized difference of variances plot for enzyme M and signal molecule A. To
compare nongenetic similarity across values, the difference between the variance of
the random pairs and sister pairs was divided by the difference between random pairs
(see Equations 2.5 and 2.6). While the value for the enzyme M hovered near 0 (red
line), the value for the signal molecule A started high before decreasing down to the 0
(blue line). Nongenetic similarity is present anytime this normalized difference value
is greater than 0. n = 1000 pairs of cells for each calculation.
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doubles, the denominator of the variance of the concentration quadruples, creating

the decay by one half each generation pattern in both sisiter and random pairs. This

matching between the sister and random pairs suggests that there is no point in

which the variance of the sister cell differences is less than that of the random pairs,

which means the sister cells are just as dissimilar to each other as to any random cell

in the population. This lack of similarity between sister cell pairs suggests that no

nongenetic similarity exists with respect to the concentration of the enzyme M.

This changes when we examine the variance of the pairwise differences in the signal

molecule A (Fig 2·2C). The variance of A of the random pairs stays at a consistent

and high level (Fig 2·2C, gray line). This suggests a consistent level of variance in

the system, consistent with the variance of the mother cell distribution (Fig 2·1C).

Meanwhile, the sister cell pairs start at a low level of variance, which then steadily

increases over time until it levels out at the random pair variance (Fig 2·2C, cyan

line). The low level of variance in A in the sister cells means that the sister cells are

more similar to each other than other random cells in the population. This suggests

that nongenetic similarity exists in the concentration of the signal molecule A. To

confirm this is not due to our choice of partitioning model, we additionally tested

two other partition models: (1) a “correlated binomial” partition model, in which

the same binomial random variable is used to partition both the enzyme M and the

signal molecule A, which mimics the clustered volume partition model described in

[43] (see Fig A·3, second column) and (2) a “perfect partition” model, in which the

subcellular contents were divided perfectly in half upon each division (Fig A·1, third

column). In both alternate models, we also found nongenetic similarlity to be present

in the concentration of the signaling molecule A (Fig A·3C).

To better visualize and compare this nongenetic similarity, we defined a normalized

metric using the variances of the sister and random pairs by taking the difference in
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variances and dividing it by the variance of the random pairs (defined for the enzyme

M in Equation 2.5 and the signal molecule A in Equation 2.6):

∆σ̂2
∆[M ](t) =

σ2
∆[M ],rnd(t)− σ2

∆[M ],sis(t)

σ2
∆[M ],rnd(t)

(2.5)

∆σ̂2
∆[A](t) =

σ2
∆[A],rnd(t)− σ2

∆[A],sis(t)

σ2
∆[A],rnd(t)

(2.6)

Using this metric to consider the multigenerational behavior of M and A, we see

the normalized difference of variances value for the enzyme M hovers around 0 (Fig

2·2D, red line) while the value for the signal molecule starts near 1 before decreasing

down to 0 (Fig 2·2D, cyan line). Any time this metric is greater than zero is when

the sister cells are more similar to each other than the random pairs, suggesting

the presence of nongenetic similarity. To ensure this was not simply a product of a

single run of the simulation, we ran the simulation sequentially ten times from the

same random seed, achieving similar results each time (Fig A·2). Furthermore, as

experimental findings have demonstrated heterogenity in bacterial growth rates (i.e.

Salmonella enterica [68]), we also explored how the uniform cell cycle time influences

nongenetic similarity by simulating cells whose cycle times changed each generation,

pulled from a distribution around the set Tcc value. We found this did not impact the

presence of nongenetic similarity in the signal molecule concentration nor its duration

(Fig A·4).

2.2.3 Nongenetic similarity magnitude is sensitive to reaction rate and

tied to cell cycle length

Our minimal model has three tunable parameters: the enzyme reaction rate (kcat,M),

the enzyme production rate (Pprod,M) and the cell cycle time (Tcc). To understand
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which of and how these parameters affect the presence/duration of nongenetic similar-

ity, we bounded the parameter ranges with physiologically-relevant values and varied

them across orders of magnitude.

For the kcat values, a study of E. coli enzyme max turnover rates in vivo found

a range of 10−3s−1 - 103s−1 [69]. In varying the value of the enzyme reaction rate

(kcat,M) over these six orders of magnitude, we found nongenetic similarity present at

all values except the lowest value tested (kcat,M = 10−3s−1, Fig 2·3A, darkest green

line). Above this value, the magnitude did not change the duration of the nongenetic

similarity.

For the enzyme production rate (Pprod,M), one large-scale measurement of protein

copy number in E. coli found copy numbers ranging from 1 to 300,000 [70]. To

translate this into a production rate, we analytically solved our the mean counts of

M as a function of our model parameters (see Supplemental Note 1) and found we

could relate the equilibrium copy number of enzyme M ([M ]eq) to the Pprod,M value

using Equation 2.7:

[M ]eq = Pprod,M ∗ Tcc (2.7)

This results in a range for Pprod,M of 10−3 - 103 s−1. However, given that we saw

no nongenetic similarity present at the lower end of the kcat,M range, we used the first

magnitude value of kcat,M where nongenetic similarity was present for this sweep. As

both Pprod,M and kcat,M increase, so too does the equilibrium concentration of signal

molecule A. To identify an upper bound for Pprod,M , an additional study quantified

the concentration of all secondary metabolites in E. coli and found the largest value

in 100 µM range [71]. As we had done with the mean values of enzyme M, we

analytically-derived an expression for the mean concentration of signal molecule A as
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a function of the model parameters (see A2, Part 5) using Equation 2.8:

[A]eq = 3/2 ∗ kcat,M ∗ Pprod,M ∗ T 2
cc (2.8)

Therefore, we set an upper bound of Pprod,M to values that would result in an [A]eq

value of 100 µM or less. This left us with a range of Pprod,M = 10−3− 102s−1. Across

all five orders of magnitude, the enzyme production rate did not appear to have an

effect on the presence of nongenetic similarity nor its duration (Fig 2·3B).

For the cell cycle time, we again looked to the literature for lower and upper

bounds. For the lower bound, we took inspiration from Pseudomonas natriegens, the

fastest-recorded growing bacteria, with a cell cycle time under 10 minutes [72], and set

the lower bound of Tcc to 500s. For the upper bound, we were inspired by the 2-6 hour

doubling time of Sinorhizobium meliloti [73], and set the maximum screened value of

Tcc to 10,000s. Varying the cell cycle time over this range we observed a change in

the nongenetic similarity duration (Fig 2·3C), with longer cell cycle times leading to

longer nongenetic similarity duration. To understand how absolute time of nongenetic

similarity duration was related to the number of cell cycles the similarity persisted

over, we also calculated the duration in cell cycles for each Tcc value (Fig 2·3C′).

Interestingly, the normalized differences of variance curves collapsed on one another

when calculated for cell cycles, suggesting that number of cell cycles, not absolute

amount of time, is the critical time parameter in the system. We additionally found

this duration constant across the other two partition models (Fig A·3D).
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Figure 2·3: Nongenetic similarity extent changes with reaction rate and
duration changes with cell cycle time — (A) Normalized difference of variances
plot for enzyme reaction rate (kcat,M) parameter sweep. At the lowest tested value of
kcat,M , the difference of variance line stayed near 0, suggesting little nongenetic simi-
larity present. All tested values above kcat,M = 10−3, spanning five additional orders
of magnitude, had high values of variance difference which then decayed similarly,
suggesting consistent presence and duration of nongenetic memory above this thresh-
old. (B) Normalized difference of variances plot for enzyme production rate (Pprod,M)
parameter sweep. The presence/absence and duration of nongenetic memory was en-
tirely unchanged over five orders of magnitude tested. (C) Normalized difference
of variances for different cell cycle times. Memory duration was longer with longer
cell cycle times. To see if it was a function of number of cell cycles, the data were
replotted in (C′). Here, the curves collapsed to the same duration, suggesting that
it is number of cell cycles, or generational time, that sets the duration of nongenetic
memory, rather than the absolute number of time units. n=1000 pairs of sister and
random cells for each difference of variance calculation.
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2.2.4 Nongenetic similarity in signal molecule concentration requires sig-

nal amplification

To understand why the reaction rate (kcat,M) parameter sets a bound on the presence

of nongenetic similarity in the system, we first needed to define the presence of non-

genetic similarity mathematically. Using our normalized difference of variance metric

(Equations 2.5 and 2.6), we defined nongenetic similarity as existing when the value

of the normalized pairwise difference was greater than 0. In order to understand how

our model parameters shape the boundaries of nongenetic similarity, we first needed

to solve the equations for the variances of these comparison distributions, for both

the enzyme M and the signal molecule A, and for both the sister and random pairings

of cells. We did this using an analytical derivation (see Appendix A) and found the

following for the variance of differences in the enzyme M:

σ2
∆M,sister = 2Pprod,MTcc (2.9)

σ2
∆M,random = 2Pprod,MTcc (2.10)

Comparing our derivations to variance values calculated from numerical simula-

tions shows good agreement across orders of magnitude of our parameter values (Fig

2·4A, Fig A·6). In examining these derivations, we immediately noticed that the vari-

ance equations are the same for the sister and the random cells (Equations 2.9 and

2.10). This indicates that, over all possible parameter combinations for the Produc-

tion Only circuit, the variances will be equal and our normalized difference of variance

metric will always be 0 (Fig 2·4B). This calculation further validates our earlier find-

ing of identical variances of differences in concentration of M over the simulated time
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in Fig 2·2B.

Moving over to the signal molecule A, a different story plays out. Our analytical

derivation (see A2, Part 10) found the following equations describing the variance of

the pairwise differences for signal molecule A:

σ2
∆A,sister = 3kcat,MPprod,MT 2

cc (2.11)

σ2
∆A,random = 3kcat,MPprod,MT 2

cc +
20

9
k2
cat,MPprod,MT 3

cc (2.12)

The scaling of these equations is such that, at low values of kcat,M or Tcc, the

variances are similar, suggesting a decrease of nongenetic similarity in the system (Fig

2·4C, lower values), but at increasing values of kcat,M or Tcc, the variances begin to

diverge, with the variance of random pairs increasing more rapidly than the variance

of sister pairs (Fig 2·4C, larger values). We can better visualize this by using the

analytical equations to calculate the normalized difference of variance value at each

parameter combination of kcat,M and Tcc (Fig 2·4D). Here we see a region of parameter

space where little to no nongenetic similarity exists (Fig 2·4D, red triangle in the lower

left corner) and a region where nongenetic similarity does exist (Fig 2·4D, blue region).

The boundary of white values, indicating when ∆σ̂2
∆A = 0.5 is marked by when

kcat,MTcc = 3/2. This boundary means that, as long as there is on average more than

3/2 of a reaction per enzyme occurs per cell cycle, nongenetic similarity will be present

in the system. This mathematically underlies the idea of signal amplification, that

each step of a signaling pathway results in amplification of a signal. We see this here in

that, as long as each enzyme produces more than one signal molecule A per cell cycle,

the signal of the enzyme concentration is amplified in the signal molecule. We found

this result particularly interesting, as it gave a mathematical explanation behind the
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Figure 2·4: Nongenetic similarity in signal molecule requires amplification
— (A) Comparison of analytically-derived solutions (solid, light red line, sister pairs;
dotted, dark red line, random pairs) with numerically-calculated values (light red
dots, sister pairs; dark red dots, random pairs) for variance of difference of cell pairs
in concentrations of enzyme M. The enzyme production rate parameter (Pprod,M)
was swept over three orders of magnitude and, at each value, 1000 pairs of cells were
simulated. Other parameters were held constant over this sweep (kcat,M = 10−2, Tcc =
1000). (B) Nongenetic similarity in concentration of enzyme M over two-dimensional
parameter sweep. As the variance of differences for sister and random pairs are
equal, the variance of the difference between sister pairs will never be less than the
variance of difference between random pairs, therefore nongenetic similarity will never
exist in the concentration of the enzyme M. (C) Comparison of analytically-derived
solutions (solid, light blue line, sister pairs; dotted, dark blue line, random pairs) with
numerically-calculated values for variance of difference of cell pairs (light blue dots,
sister pairs; dark blue dots, random pairs) in concentrations of enzyme A. The reaction
rate parameter (kcat,M) was swept over five orders of magnitude. At each value, 1000
pairs of sister and random cells were simulated and the variance of their difference
in concentration of A was calculated. The difference in variances is negligible at
small values of kcat,M and diverges at larger values. Other parameters were held
constant over this sweep (Pprod,M = 10−2, Tcc = 1000). (D) Nongenetic similarity in
concentration of signal molecule A over two-dimensional parameter sweep. For each
parameter combination of Kcat,M and Tcc, the analytically-derived formulas were used
to calculated the ∆σ̂2

[A] value. The values are plotted here where absent is a ∆σ̂2
[A]

of 0 and present is a ∆σ̂2
[A] of 1. A transition between presence and absence occurs

where kcat,MTcc = 3/2, indicated by the dashed grey line (where ∆σ̂2
[A] = 1/2).
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usefulness of signal amplification. Signal amplification is often noted as a key feature

of signal pathways, such as in the MAPK mating response pathway in Saccharomyces

cerevisiae, where the final transcriptional factor, Fus3, has a copy number of 20,000,

compared to the first protein in the cascade, Ste11, with a copy number of 4000 [74].

With an understanding of the basis behind the amplification requirement, we turn

our attention to what sets the duration of the nongenetic similarity.

2.2.5 Cell divisions bound the duration of nongenetic similarity

Given that signaling molecule amplification is important for the presence of non-

genetic similarity, it suggests that the level of signaling molecule may be important

for tuning the timescale of this similarity. However, our parameter sweep over differ-

ent cell cycle times (Fig 2·3C′), which correspond to different concentrations of signal

molecule A (as set by Equation 2.8), have similar durations of nongenetic similarity

when examined in units of cell cycles. This suggests a relationship between the du-

ration of nongenetic similarity and the number of cell cycles. To explore this idea,

we developed a conceptual and mathematical hypothesis for the nongenetic similarity

duration based on dilution over cell divisions and compare this model to our simulated

data from the cell cycle time sweep.

The conceptual hypothesis (diagrammed in Fig 2·5A) is as follows: as any given

mother cell in our simulation has counts of A pulled from the Amother distribution

(as seen in Fig 2·1C), any given mother cell’s counts of A represent some offset

from the mean of this distribution (µA). When a mother cell divides, its resulting

daughter cells inherit this offset from the mother (Fig 2·5A, gen 1). However, over

the subsequent cell cycle (gen 1), the two daughter cells produce their own new signal

molecule A (whose expected value corresponds to half of the mean of the mother

cell distribution), effectively diluting the offset from the mother by one half. This
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Figure 2·5: Nongenetic similarity decay is geometric along cell genera-
tional time — (A) Cartoon of conceptual model for nongenetic memory duration.
Any given mother cell has counts of the signal molecule A pulled from the Amother

distribution (Fig 2·1C). Any particular instance will have some offset from the mean
count of A (open circles in red dashed box). This offset is then passed to the next
generation. During growth, the daughter cells will, on average, accumulate the ex-
pected amount of A over the first generation (light grey circles). This dilutes the
relative influence of the offset from the mother (now two open circles instead of four).
This generation then undergoes its own division, producing daughter cells that then
go on to accumulate the expected counts of A (dark grey circles). This further dilutes
the original offset from the original mother cell again by half. Under this model, it
is hypothesized the memory will decay by half each generation. (B) Initial value
for the normalized difference of variances metric as a function of reactions/cell cycle
(kcat,MTcc). This relationship was solved using the derived formulas for variances of
the pairwise differences (Equation 2.14) and gives the initial value for the memory
decay curves as a function of the reaction rate (kcat,M) and cell cycle time (Tcc). (C)
Normalized difference of variance curves for different cell cycle times along with the
conceptual model plotted on top. 1000 pairs of sister and random cells were run for
each cell cycle time and the normalized difference of variances curve was plotted for
Tcc = 500 (i), Tcc = 1000 (ii), and Tcc = 2000 (iii). The conceptual model describing
memory decay was then plotted on top (Equation 2.16, red dashed lines). Agreement
between model and simulated data indicate the memory does follow a geometric de-
cay as a function of the number of elapsed cell cycles, with the model parameters
only adjusting the initial value.
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is repeated in the following generation (Fig 2·5A, gen 2), in which the cells again

divide and again, produce their own signal molecule A over the following cell cycle,

again diluting the original offset from the Mother Cell by one half. This suggests the

nongenetic similarity decays follows a geometric function as described by Equation

2.13:

∆σ̂2
∆A(n) = (1/2)n (2.13)

where n is number of elapsed cell cycles. While this hypothesis describes the dynamics

of the decay, it is missing a description of the magnitude of that original, inherited

offset. This offset can be described by the value of the normalized difference of

variances immediately following division from the mother cell (Equation 2.14).

∆σ̂2
∆A(n = 0) = 1−

σ2
∆A,sis

σ2
∆A,rnd

(2.14)

Thus, we use our derived equations for the variance formulas to obtain a function

describing the initial value of the normalized difference of variances as a function of

the model parameters. Plugging in Equations 2.13 and 2.14, we get Equation 2.15:

∆σ̂2
∆A(n = 0) = 1− 3

2kcat,MTcc

(2.15)

Here, we see that the initial normalized difference of variances is a function of the

enzyme reaction rate and the cell cycle time (Fig 2·5B). It follows that the initial

value would change as we sweep through different values of the cell cycle time. We

see that the function increases until saturating at a value of 1. This saturation makes

sense, given that at high values of kcat,MTcc, the concentration of A is so high that

the relative impact from the initial binomial partition approaches zero. It also makes
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sense that this value becomes positive at the critical value (kcat,MTcc = 3/2), as that

was the minimal requirement for nongenetic similarity we saw earlier (Fig 2·4D). With

the original offset quantified, we then derived an equation that combines a geometric

decay function and the original offset using Equation 2.16:

∆σ̂2
∆A(n) = (1− 3

2kcat,MTcc

)(1/2)n (2.16)

We could then compare our mathematical hypothesis to the simulated model data

with respect to duration of nongenetic similarity (Fig 2·5C i, ii, and iii). There is

good agreement between the simulated model data (colored solid lines) and our math-

ematical hypothesis (red dashed lines), suggesting that all of the nongenetic similarity

decays by one half each generation with an initial offset based on the reaction rate

(kcat,M) and the cell cycle time (Tcc) (model curves for all cell cycle sweep data plotted

in Figure A·8). Interestingly, as the duration is set by cell division cycles, there is

nothing in the model parameters that suggests the ability to extend duration of this

type of nongenetic similarity within this Production Only circuit architecture.

2.2.6 Degradation enzyme activity decreases duration of nongenetic sim-

ilarity

To explore more complex signaling circuit architectures and how they may tune non-

genetic similarity, we also considered a “Production and Degradation” model in which

we added an enzyme, B, that breaks the molecule A (Fig 2·6A). The degradation of

A by the enzyme B follows Michaelis-Menten Kinetics [75], as described by Equation

2.17:

Pbreak,A =
kcat,B[B][A]

KM,B + [A]
(2.17)
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in which [B] is the concentration of the breaker enzyme B, kcat,B is its maximum

reaction rate, and KM,B is its half-saturation constant. We wanted B to operate in

its linear range, so we set KM,B = [A]eq calculated using Equation 2.18:

[A]eq = KM,B = kcat,MPprod,MT 2
cc −

kcat,B
2

Pprod,BT
2
cc (2.18)

Equation 2.18 also reveals the requirements to ensure B does not degrade all of

A. In order to have [A]eq > 0, Equation 2.19 must hold:

kcat,MPprod,M >
kcat,B
2

Pprod,B (2.19)

We can define Vmax = kcatPprod for each enzyme and simplify this to Equation

2.20:

Vmax,M >
Vmax,B

2
(2.20)

An additional way to formulate this boundary is by defining a maximum on the

ratio of Vmax values, as in Equation 2.21:

Vmax,B

Vmax,M

< 2 (2.21)

With that bound set, we can then define the production of the breaker enzyme

B. Similar to the maker enzyme M, B is produced stochastically with probability,

Pprod,B. The rate total equation for the Production and Degradation model is shown

by Equation 2.22:

Rtotal = Pform,A + Pbreak,A + Pprod,M + Pprod,B (2.22)



31

Figure 2·6: Ratio of formation and degradation enzyme activity tunes du-
ration of nongenetic similarity — (A) Schematic of the Production and Degra-
dation circuit. Here, we add a degrading enzyme that breaks down the signal molecule
A according to Michaelis-Menten kinetics. (B) Quantifying decay of nongenetic sim-
ilarity in Production and Degradation circuit. Decay of nongenetic similarity in Pro-
duction and Degradation curve (cyan line) is faster than the y = (1/2)n curve from
the decay timing of the Production Only circuit (dotted grey line). Instead, a new
curve is fit following the form of y = χn. For this parameter combination, the decay
root value χ = 0.35 (dotted red line). (C) Decay root quantification over Vmax ratio
sweeps that hold signal molecule concentration constant. To analyze the memory du-
ration of signal molecule A without changing its equilibrium concentration, pairs of
kinetic parameters for the maker enzyme M and the breaker enzyme B were changed
in tandem (see legend). Regardless of which parameters were altered, increasing the
Vmax ratio decreased the decay root (χ) and thus, the nongenetic similarity duration.
n=1000 pairs of cells for each parameter combination.
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Intuition suggests that a degradation enzyme would more quickly dilute the inher-

ited offset in the original mother cell (Fig 2·5A), decreasing the duration of nongenetic

similarity. Indeed, in our initial run of this model where we selected parameters in

the middle of our physiologic range estimates, setting kcat,M , Pprod,M , kcat,B, and

Pprod,B = 10−1, we saw that the nongenetic similarity decayed faster in the Produc-

tion and Degradation circuit (Fig 2·6B, cyan line) compared to the the y = (1/2)n

curve from the Production Only circuit (Fig 2·6B, gray dotted line). To quantify

how much faster, we fit a y = χn curve to the data (Fig 2·6B, red dotted line) and

backed out the value of the base constant, χ. For this parameter set, the fitted value

was χ = 0.35, demonstrating that the addition of a degrading enzyme leads to faster

decay of nongenetic similarity.

To see how the kinetic parameters of the degrading enzyme B affected this decay

rate, we performed this analysis over a broad parameter range. To ensure the faster

decay rate was due not to lower concentration of the signal molecule, but to faster

turnover of A, we swept our parameters but maintained a constant level of signal

molecule (a sweep where only the parameters for the breaker enzyme B were altered

was also run, Fig A·9). To do this, as we increased the value for kcat,M or Pprod,M , we

also increased the value of kcat,B or Pprod,B such that the equilibrium concentration of

signal molecule was constant at 5 µM (Fig A·10). We found that, over 1000 sister cell

simulations, the decay root (χ) of the normalized difference of variances of the signal

molecule A (∆σ̂2
∆[A]) decreased as the Vmax ratio increased (Fig 2·6C). This indicates

that, as the activity of the degrading enzyme B increases, the duration of similarity

between sister cells decreases until it essentially eliminates all duration of nongenetic

similarity.
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2.2.7 Inverse relationship between nongenetic similarity duration and

population noise can be overcome with low enzyme noise

So far, our analysis has been restricted to comparisons between pairs of cells. In

the Production Only circuit, we demonstrated nongenetic similarity between sister

cells that decays with each generation. We then demonstrated this duration can

be decreased with increasing activity of a degrading enzyme. With this in mind, we

wanted to explore the consequences of this difference of nongenetic similarity duration

at the population level (Fig 2·7A).

To evaluate the consequences of nongenetic similarity duration on cellular popu-

lations, we considered the coefficient of variation (CV) of the concentration of signal

molecule A, which has been used as a measure of population heterogeneity or noise

in other studies [26, 76, 77]. We find low values of CV[A] at long durations of non-

genetic similarity, regardless of the parameter pairing (Fig 2·7B, large values of χ).

This result is in concurrence with our previous finding (Fig 2·6C), where the choice

of parameter pairing did not change the inverse relationship between the nongenetic

similarity duration and the Vmax ratio. However, at shorter durations of nongenetic

similarity, we find different relationships between CV[A] and the nongenetic similarity

duration (Fig 2·7B, smaller values of χ). When changing the kcat values, we find

shorter duration of nongenetic similarity corresponds to a more heterogeneous, or

noisier, population (Fig 2·7B, grey dots). This inverse relationship between popula-

tion noise and nongenetic similarity duration is seen to a lesser degree when only one

of the parameters being changed is a kcat, value (Fig 2·7B, red and blue dots). Finally,

we see a decrease in CV[A] values when both parameters being tuned at Pprod values

(Fig 2·7B, black dots). This divergence can be explained by examining the under-

lying CV values of the enzymes themselves (Fig A·11). At high Pprod values, where
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the enzyme counts are higher, the CV values decrease (as has been seen elsewhere

[41]). These less noisy enzyme concentrations then “trickle up” to less noise across

the concentrations of A (Fig 2·7B, black dots). In short, the general consequence

of shorter nongenetic similarity duration at the population level is increased hetero-

geneity, and this cell-cell heterogeneity can only be reduced through lower noise in

enzyme concentration levels.

2.3 Discussion

With each additional component to the toy models of signaling pathways in this work,

we found new properties and features of the behavior. Simple stochastic production

and binomial partition of one molecule, represented by our enzyme M, is sufficient

to create a heterogeneity of concentration values across a population (Fig 2·1B). It is

insufficient, however, to generate nongenetic similarity (Fig 2·2B,D). But if that one

molecule produces another, even stochastically at a constant rate, as with our signal

molecule A in the Production Only circuit (Fig 2·1A), nongenetic similarity can exist

in the system (Fig 2·2C,D) under conditions of signal amplification (Fig 2·3A, 2·4) and

this similarity lasts for a fixed time, set by cell divisions (Fig 2·5). Lastly, the addition

of a degrading enzyme, as in our Production and Degradation circuit (Fig 2·6A), is

sufficient to tune down the duration of this similarity to the point of nonexistence (Fig

2·6C). At a population level, the implications of this decreasing duration of nongenetic

similarity was typically to increase noise in the system (Fig 2·7B). However, this

relationship with population noise depended on which parameters were changed to

lower the nongenetic similarity duration (Fig 2·7B).

Another interpretation of what the degrading enzyme B does in lowering the du-

ration of nongenetic similarity is enable the population to exist at a variety of noise
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levels. While low noise is often desirable in engineered biological systems, natural

systems use noise as a feature in ways that could be useful in biological circuit design

[78]. When the degrading enzyme is less active, resulting in longer duration of non-

genetic similarity, the system is constrained as to which levels of noise it can have (Fig

2·7B). In that sense, these results align the conclusions of previous experimental work

[56], in concluding that nongenetic inheritance serves to constrain population hetero-

geneity. With this conclusion in mind, we next want to revisit the measurements

from experimental work on nongenetic similarity duration.

While the toy models in this work recreate the existence of nongenetic similarity

that then decays over time, the timescales in our simulations of two or three gener-

ations do not match the six or eight generations measured experimentally [56]. One

possible explanation for the discrepancy is the timescale of gene expression. The

toy models here bundle the processes of transcription, translation, and protein fold-

ing into a single protein producing event. In reality, these processes can play out

over the order of tens of minutes. In exponentially growing bacteria, these tens of

minutes could account for one or two generations worth of time. However, a simple

time delay function is insufficient to fully explain these differences. Another factor

is that experimentally-measured behaviors for nongenetic inheritance, whether cell

growth and division time [56] or cell motility [55], are complex behaviors that involve

interactions of tens if not hundreds of molecular species. As we had seen in our mod-

els, where adding components widened variances amongst a population and enabled

nongenetic similarity to exist at all (Fig 2·2), perhaps the involvement of these large

numbers of players would increase the duration of nongenetic similarity all the way to

the measured six or eight generations. Such expansion of these models is one possible

future direction for this work.

The most complex model in this work, the Production and Degradation circuit,
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had three components with two interactions. While this was sufficient to produce

a range of nongenetic similarity durations and relationships to population noise, it

still represents a simple pathway. The addition of more components, say turning

A into a transcription factor that then activates production of protein C, may be

sufficient to further widen the variance and produce longer durations of nongenetic

similarity. Along with more components, more types of interactions and regulation

could change behavior. Negative feedback is a common motif used to reduce noise in

biological circuits [79, 80, 81]. What would happen if M negatively regulated itself

as to decrease noise and how would that change the duration of nongenetic similarity

as well as its relationship to population noise? One could also test feedback using

the signal molecule A or add in positive feedback, which is commonly associated with

increasing noise [82]. Further exploration of a variety of circuit architectures using

toy models enables the ideation of new circuit designs to achieve cell behavior as well

as could provide new ways to understand the biological design of signaling circuits.

2.4 Methods

Code writing

All code was written in Python 3.9.12 using Spyder 5.3.3 for an IDE and compiled

using IPython 7.31.1. Packages used included NumPy 1.22.4 [83], SciPy 1.8.1 [84],

and Matplotlib 3.5.2 [85].

Random number generation

Random number generation was done using NumPy’s random generator function with

seed 1000.
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Simulation hardware

Code for shorter simulations and analysis was run locally on a Dell Latitude 5420

running Windows 10 Enterprise 21H1 and using an Intel 11th Gen Core i7 proces-

sor (3.0 GHz). Code involving longer simulations was run on the Janelia Compute

Cluster, which runs on Oracle Linux 8.3 and uses IBM Spectrum LSF 10.1 for job

management. Cores were composed of either Intel SkyLake (2.7GHz Platinum 8168)

or Intel Cascade Lake (3.0 GHz Gold 6284R) processors.
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Figure 2·7: Short nongenetic similarity duration corresponds to wide popu-
lation noise parameter space — (A) Schematic of experiment motivation. Given
our metric of memory in the signal molecule is tunable, we wondered how these differ-
ent durations would affect the behavior of a population. (B) Population heterogeneity
(as measured by coefficient of variation of concentration of signal molecule A, CV[A])
as a function of nongenetic similarity decay root (χ). Different combinations of vari-
ables swept over this range resulted in different relationships between noise and the
χ value. In three of the four cases (ones where at least one of the parameters being
altered was the kcat value: gray, red, and blue dots), the population noise increases as
the nongenetic similarity duration decreases. The exception is the case where both
variables being altered are the Pprod variables (black dots), where the noise decreases
at low nongenetic similarity duration values. Lines are quadratic fits intended as
guides for the eye. n=1000 cells for each parameter combination.
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Chapter 3

Biophysical investigation of cyclic di-GMP

as a temporal filter for biofilm formation

in Bacillus subtilils

3.1 Introduction

3.1.1 Bacterial biofilms as a model system for multigenerational behavior

In considering natural systems in which to investigate signaling pathway architecture

underlying multigenerational processes, it is hard to imagine a more prolific example

than bacterial biofilm formation. This is because it is estimated that over half of the

cells on Earth are bacterial cells living in biofilms [86]. This chapter will begin with

a review of what bacterial biofilms are, the general steps of their formation, and how

signaling pathways underlying biofilm formation commonly use cyclic nucleotides as

signal molecules. I will then focus on what is known about B. subtilis biofilms in par-

ticular, and why the relatively unknown role of cyclic nucleotides in B. subtilis biofilm

formation represents an opportunity to understand signaling pathway behavior and

cell fate in a natural multigenerational process. Lastly, I will give a brief overview

of tools used for experimental measurements of intracellular c-di-GMP before diving

into the results of my joint theory-experiment approach.
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3.1.2 Biofilm formation is a multigenerational process

Bacterial biofilms are multicellular communities of bacteria adhered to a surface and

protected by an extracellular matrix [87]. The predominance of this lifestyle is due

to the protections biofilms offer from the external environment, such as resistance to

antibiotics [88].

Though it can differ by species, biofilms are generally formed when a motile cell

adheres to a surface. As that cell divides, subpopulations of its progeny will start

to produce biofilm matrix. The biofilm will then mature into a three-dimensional

structure [89, 90]. Ultimately, the biofilm will degrade a portion of its matrix and

release some cells into the surrounding environment [91]. As biofilms can start from

a single cell and grow to hundreds of thousands [92], the process of building a biofilm

often takes days and many cell generations. This long-term process also requires a

large metabolic investment [93], and the decision to stop expressing flagellar genes can

take three generations to reverse [94]. Therefore, bacteria are highly incentivized to

undergo biofilm formation only under certain conditions. One of the strategies they

have in which to process environmental conditions is through the intracellular signal-

ing. A common class of intracellular signaling pathways related to biofilm formation

is the family of cyclic nucleotides.

3.1.3 The role of cyclic nucleotides in bacterial biofilm formation

The first discovery of a cyclic nucleotide molecule playing a role in intracellular sig-

naling in bacteria was that of cyclic diguanylate (cyclic di-GMP, c-di-GMP, or cdG)

in 1987 [95]. Since this initial discovery, its role in signaling and behavior has been

widely studied [96, 97, 98, 50, 99, 64, 100], along with the roles of several subse-

quently discovered cyclic nucleotides [101, 102, 103]. In particular, cyclic di-GMP
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signaling has been implicated broadly for its role in bacterial biofilm formation [104].

Direct evidence for the role of cyclic di-GMP in biofilm formation has been shown in

microbes as diverse as Acinetobacter baumannii [105], Shewanella putrefaciens [106],

Pseudomonas aeruginosa [107], the pathogenic Escherichia coli O104:H4 [108], Vibrio

cholerae [109], and Salmonella enterica serovar Typhimurium [110].

However, despite all of these studies in a diversity of microbes, the role of cyclic di-

GMP signaling in gram-positive bacteria remains relatively understudied [111]. This

is true even in the model gram-positive organism, the soil microbe Bacillus subtilis.

This gap in knowledge is notable, as B. subtilis has served as a model organism for

cell fate and decision-making for decades.

3.1.4 Bacillus subtilis as a model organism for cellular decision-making

Initially drawing interest for its sproulation process, Bacillus subtilis has long been

studied, even adored [112], as a model organism for cell fate decisions [113]. As

discussed in Chapter 1, the functional role of noise in biological circuits was mapped

out by examining the competence circuit in B. subtilis [34] and expanded on in looking

at its response to stress [114] as well as its entry into sporulation [48, 35]. In fact,

much of our understanding in how cellular noise works with feedback loops to create

bet hedging decisions came from studies in B. subtilis [115].

Additionally, the multitude of phenotypes B. subtilis takes on during biofilm for-

mation has been an area of intense study [116, 117, 118]. Of particular note is the

“mutually repressing repressors” motif that leads to a binary cell fate decision be-

tween motility and matrix production [119]. Even slight mutations on one of these

regulators, SinR, causes changes in the frequency of different phenotypes [120]. This

switch has been shown to be memoryless [121] and has been recreated synthetically

in vivo [122].
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A critical component underlying all of these cell fate decisions, from competence to

biofilm formation to sporulation, is what is referred to as the “central phosphorelay”

in B. subtilis : a chain of kinases whose activity terminates in the phosphorylation of

the central regulator Spo0A [123]. Spo0A alone is known to regulate over 120 genes

in the B. subtilis genome [124] and has pulsatile activity tied to the replication of

the genome during a cell cycle [125]. Other regulators that affect the phosphorelay

have been shown to be critical in biofilm formation [126]. In addition to its role in

sporulation, biofilm formation, and competence, Spo0A has also been shown to have a

role in c-di-GMP regulation in B. subtilis, where active Spo0A represses trancsription

of the sole cdG-degrading PDE enzyme in the B. subtilis genome [127]. Yet despite the

link between the c-di-GMP pathway and a key regulator in B. subtilis fate decisions,

the role of c-di-GMP in B. subtilis remains relatively unknown.

3.1.5 The understudied role of cyclic di-GMP in Bacillus subtilis biofilm

formation

To the extent it has been studied in B. subtilis, c-di-GMP is largely associated with

swarm motility. The first comprehensive study of c-di-GMP in B. subtilis showed

high concentrations led to a inhibition of general motility [128] before other evidence

exhibited an inhibition of swarm motility in particular [129]. The mechanism of this

motility inhibition is likely c-di-GMP’s role in binding to the DgrA protein, which

acts as a clutch on the flagellar stator [130]. As motility halting is a typical step in

biofilm formation, and swarm motility often precedes biofilm [131], this link between

c-di-GMP and motility offers hints at its role in biofilm formation as a whole.

Other prior work has shown more direct links between c-di-GMP and B. sub-

tilis biofilm formation. A few molecular-level studies have examined the putative

c-di-GMP receptors in B. subtilis [132, 133] and shown that high levels of c-di-GMP
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is associated with production of a non-canonical component of the biofilm matrix.

Critically, it was shown that the proteins responsible for this non-canonical matrix

component localized to cell poles, where it has been shown cdG-producing DGC

molecule in B. subtilis also localize to [65]. The first single-cell study of c-di-GMP

levels in B. subtilis [49] showed correlation between c-di-GMP levels and cells produc-

ing biofilm matrix. However, when intracellular c-di-GMP was artificially increased

using a knockout strain, this did not lead to a higher percentage of cells expressing

the matrix-producing phenotype, suggesting that c-di-GMP was not a causative sig-

nal molecule in driving this phenotypic differentiation. While c-di-GMP has been

implicated in aspects of B. subtilis biofilm formation, a full picture of its role in

combination with known cell fate decisions remains unknown.

There exist hypotheses in the field as to the role of c-di-GMP signaling that

remain untested due to a lack of tools to do so. One hypothesis in the field is

that second messengers serve in a capacity for “sustained sensing” [134]. And, more

broadly, nucleotide second messengers are often implicated in cell decision making

[135]. However, these different pictures of c-di-GMP, and second messenger signaling,

have not been unified in the context of other cell fate decisions. B. subtilis offers a

system with well-defined cell fate decisions but also a relative gap in understanding

of the interplay of c-di-GMP signaling with these cell fate decisions. Others have

argued that a critical gap in the field is the measuring of c-di-GMP at the single cell

and subcellular level, which can now be enabled with new tool development [136];

in particular, genetically-encoded fluorescent sensors are highlighted as an effective

class of tools to make these measurements.
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3.1.6 Existing approaches for live-cell imaging of cyclic di-GMP

There have been many strategies developed over recent years for live-cell imaging

of c-di-GMP levels in individual cells, but all have limitations that prevent them

from being useful for studying the pathway dynamically. Some groups have taken

the strategy of promoter-based reporter systems, in which a c-di-GMP responsive

promoter is cloned upstream of a fluorescent protein such that, in the presence of

cyclic di-GMP, the fluorophore is produced and fluorescence values can be read as a

proxy for cyclic di-GMP concentration [137]. Especially in gram-negative bacteria,

cyclic di-GMP often binds to transcription factors to activate expression of biofilm-

related genes, such as the cdrA gene in P. aeruginosa [138]. While these systems are

likely to respond to physiologic levels of c-di-GMP, their response time is bounded by

the delay between a change in the level of c-di-GMP and the change in the fluorescence

level. In the case of an increase in cyclic di-GMP, the reporter only responds after

gene expression of the fluorophore and cyclization reaction, which occurs on the order

of tens of minutes to over an hour, depending on the fluorophore [139]. In the case of

a decrease in cyclic di-GMP, if the lifetime of the fluorophore is long, the cell relies on

dilution from cell division to decrease the signal. In the case of dynamics, promoter-

based reporters lack sensitivity in cases of both increase and decrease of the target

molecule.

Another strategy for live-cell imaging of cyclic di-GMP that lacks temporal res-

olution is the riboswitch-based reporter. One design created a sensor by placing a

c-di-GMP binding site between a constitutive promoter and a YFP gene such that, in

the presence of c-di-GMP, the riboswitch is bound and translation cannot occur, lead-

ing to a decrease in YFP fluorescence [49]. Similar to the promoter-based reporter,

this sensor is temporally limited by the timing of protein dilution from cell division
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(now for the on dynamics, rather than the off) and by the timing of fluorescent protein

maturation (now for the off dynamics, rather than the on).

Rather than relying on fluorescent protein expression and maturation timing,

other sensors have been developed that use protein-based, genetically-encoded sen-

sors. One strategy for c-di-GMP sensor development came from using the FRET-

based class of reporters [140]. Here, the c-di-GMP binding domain PilZ was placed

between two fluorophores such that, in the presence of c-di-GMP the fluorophores

were pulled apart and the FRET between them deceased. The ratio of the FRET

between fluorophores to the fluorescence of the donor CFP could then be used as

a proxy for c-di-GMP concentration. While this FRET sensor was not temporally

bound by gene expression in the way the other sensors were, its KD value exhibited

a high temperature dependence and had small signal to noise ratio due to a dim

CFP. Another genetically-encoded sensor is a split GFP sensor, in which the GFP

protein was broken into three pieces, one with barrels 1-9, one with one barrel and

the FimX c-di-GMP binding domain, and the last with the final barrel and a PilZ

c-di-GMP binding domain [141]. The three pieces of the sensor are constitutively

expressed and, in the presence of cyclic di-GMP, the PilZ and FimX domains are

brought together. With those bound, binding of the remainder of the GFP allows the

fluorophore to fully bind and mature, producing fluorescence. These sensors have the

necessary features to yield high spatiotemporal resolution measurements of c-di-GMP

concentrations in live cells.

3.1.7 A joint theory-experiment approach to c-di-GMP dynamics in B.

subtilis

Given B. subtilis biofilm formation is a multigenerational process with many cell fate

processes mapped out but lacks comprehensive study of the dynamics of the c-di-GMP
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pathway, I found this a compelling system in which to study the multigenerational

behavior of a known signaling pathway. I began my approach by developing a kinetic

model to simulate c-di-GMP regulation in B. subtilis before moving on to experimen-

tal implementation of genetically-encoded biosensors to generate data to compare to

the predictions of the model.

3.2 Results

3.2.1 Construction and parameterization of a model to simulate the c-di-

GMP pathway in Bacillus subtilis

To build a predictive model for c-di-GMP dynamics in Bacillus subtilis, I first needed

to identify all of the molecular agents involved and parameterize their kinetic parame-

ters. c-di-GMP is formed by three different diguanylate cyclases in B. subtilis : DgcK,

DgcP, and DgcW. Previous single molecular work has quantified the distribution of

counts of both DgcK and DgcP [65]. Using these distributions along with the typical

bacterial mRNA transcript burst frequency of 10 transcripts per burst [142, 143], I

could tune a burst frequency parameter to match these distributions (Fig 3·1). Based

on these values, I could then estimate the copy number of DgcW based on a study of

global transcriptome levels in B. subtilis [144].

With the copy numbers estimated from known values in the literature, I then

considered the production of c-di-GMP. As this is an enzymatic reaction, one can

think about the production rate in terms of Michaelis-Menten kinetics [75], as in

Equation 3.1:

Rprod,cdG =
kcat,DGC(DGC)(GTP )2

KM,DGC + (GTP )2
(3.1)
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Figure 3·1: DGC production simulation tuned to single molecule data —
(A) Data from [65] on counts of DgcK in single cells. (B) Counts of DgcK in 1000
simulated cells. With a burst size of 10, the burst frequency was tuned to match
the experimental data. (C) Data from [65] on counts of DgcP in single cells. (D)
Counts of DgcP in 1000 simulated cells. With a burst size of 10, the burst frequency
was tuned to match the experimental data. For simulated data, 1 count of DgcK
and DgcPs were taken from each cell at a randomized time point over a three hour
simulated time period.
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where kcat,DGC is the maximal reaction rate per enzyme, DGC is the number of DGCs

in the cell, GTP is the number of GTP, and KM,DGC is the half-saturation constant

of the DGC. Typical kcat for a DGC is 1 min−1 [64] and KM values are on the order

of 2µM [145]. Here, we can make a simplifying assumption. Given a typical KM

value of 2µM and a typical GTP concentration on the order of 5 mM [71], the DGCs

would be operating at saturation, simplifying the production equation to Equation

3.2:

Rprod,cdG = kcat,DGC(DGC) (3.2)

For the c-di-GMP degrading phosphodiesterase, PdeH, I similarly considered the

copy numbers and kinetic parameters. I ballparked the copy numbers using the same

transcriptomic profile we used for DgcW [144]. The typical kcat value of a PDE is on

the order of 1 s−1 [145, 146]. Note that this is much faster than the typical kcat of

the DGC enzymes. I was not able to find literature estimates of the KM value, so

that has been left as a free parameter in the system I will explore later. I can then

describe the rate of degradation of cdG as follows:

Rdeg,cdG = −kcat,PDE(PDE)(cdG)

KM,PDE + (cdG)
(3.3)

where kcat,PDE is the maximal reaction rate, PDE is the number of PDE molecules

in a cell, cdG is the number of cdG molcules, and KM,PDE is the half-saturation

constant. For the initial parameterization of the burst frequency of PdeH and the

KM,PDE value, I made use of the fact it is estimated that previous reports indicated a

threefold difference in cyclic di-GMP concentration between a strain with PdeH and

without [49]. I simulated 1000 cells of the ∆spo0A strain and the ∆pdeH strain and

compared concentrations of cyclic di-GMP until a threefold difference was achieved
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(Fig 3·2). Note that the fluorescence values of the ∆pdeH strain in the experimental

data run close to 0 counts, suggesting the possibility the sensor may be pushed up

against its dynamic range, leading to a narrow peak in values (Fig 3·2A).

Figure 3·2: Parameters for cdG-degrading enzyme tuned to match ex-
perimental data — A. Replot of data from [49] showing difference in reported
cdG concentrations using riboswitch-based fluorescent reporter. The two knockout
strains correspond to a low (∆spo0A) and high (∆pdeH) subpopulation of cdG con-
centration. (B) Distribution of c-di-GMP concentrations in simulated cells matching
knockout strains from experimental data. The production rate and KM value of the
PdeH enzyme was tuned to match the threefold difference in c-di-GMP noted in the
experimental literature. n=1000 cells for each strain.

With all the kinetics fitted, I could then fully simulate the dynamics of cdG

using a Gillespie algorithm. Stochastic simulation was chosen to account for behavior
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stemming from low copy numbers in the enzyme counts. The full Gillespie rate

equation for the model is as follows:

Rtotal = Rprod,DGC +Rprod,PDE +Rprod,cdG +Rdeg,cdG (3.4)

The length of the time step between events is then given by Equation 3.5:

τ = (
1

Rtotal

) ∗ ln 1

r1
(3.5)

where r1 is a random number pulled from a uniform random distribution spanning 0

to 1.

To simulate cell growth I preset a time parameter for a fixed cell cycle time of

Tcc = 30min, as has been observed experimentally [147, 148]. At each event time

determined from the Gillespie simulation, I then calculated the new cell volume using

Equation 3.6:

Vnew = Vold +
τ

Tcc

(3.6)

The model then assumes linear growth of the cell body over this cell cycle time,

doubling from a volume of 0.8 to 1.6 µm3 [149]. When a cell divides, the intracellular

contents are divided up between daughter cells using a binomial random variable

and the volume is reset to 0.8 µm3. This division approach was chosen because

previous single-molecule studies have indicated that, in well-mixed bacterial systems,

the inheritance of single molecules follow binomial probability [39, 40]. This setup

provided all of the key pieces in order to make predictions of the dynamics of cyclic

di-GMP in B subtilis.

With the kinetics of the signal pathway fitted to data and the Gillespie algorithm
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used to simulate stochastic events, the model could then simulate any given numbers

of cells for any given number of generations (Fig 3·3).

Figure 3·3: Sample time traces for three simulated strains — With ki-
netic parameters fitted to data, the Gillespie algorithm stochastically simulates the
dynamics of cyclic di-GMP. Here, three cells of three different strains were simulated
to exemplify the stochasticity. The wild-type cells (WT, grey line) start with Spo0A
repression off, but stochastically switch it on, leading to c-di-GMP accumulation and
ending the simulation at high concentrations. The ∆spo0A cells (maroon) are unable
to repress the pdeH operon, maintaining expression of the degrading PdeH enzyme,
keeping c-di-GMP levels low throughout the simulation. Lastly, the ∆pdeH strain
(blue) start with a small amount of c-di-GMP, which quickly increases in the absence
of c-di-GMP degradation.

The picture that the parameterized model leaves is one of the Spo0A repression

on the pdeH operon creating a bimodal distribution in c-di-GMP concentrations.

When the repression is off, as in the ∆spo0A strain, the PdeH enzyme is expressed

and degrades c-di-GMP, keeping the cellular levels low. Upon repression, the PdeH

enzyme is diluted out, causing c-di-GMP levels to rise.
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3.2.2 Quantitative prediction of c-di-GMP accumulation time in Bacillus

subtilis

With the parameters of the model that had data fitted, I then examined the output of

the model and its predictions. As previous studies had examined the distribution of

c-di-GMP values at a static point in time [49], I was mostly focused on the dynamical

predictions of the model. Given the hypothesis that the bimodal distribution of c-

di-GMP was stemming from the repression of the Spo0A regulator, I wanted to see

what the predicted time scale of that switch would be: how long would it take, once

Spo0A repression was active, to accumulate to the high concentrations of c-di-GMP.

To do this, I ran a version of the model in which the wild-type cells would stochas-

tically switch on Spo0A repression and, once it was turned on, not turn it off, mim-

icking a one-way stress response, as might be seen in biofilm or sporulation-inducing

media. I then took the concentration of c-di-GMP curves for each of 1000 cells and

plotted them as a function of time since Spo0A repression was turned on (Fig 3·4,

black lines). To get a sense of the characteristic accumulation time, I then took an

average of all of these accumulation curves (Fig 3·4, magenta line). The model pre-

dicts the accumulation to take around 3 hours, corresponding to six cell generations

in the model. This likely stems from the need to dilute out the fast-acting PdeH

enzymes and time for the slow-producing DGCs to catch up. Thus the asymmetry in

the kinetics of the pathway enable the long-term accumulation.

This prediction of a 3 hour accumulation time following activation of Spo0A re-

pression is contingent upon the model parameters, two of which were left as free

parameters with order-of-magnitude estimations (the production rate of PdeH and

the half saturation constant of PdeH). I next wanted to assess the effect of these free

parameters on the accumulation dynamics of c-di-GMP. To do this, I turned to a
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Figure 3·4: cyclic di-GMP accumulates in B. subtilis over six generations
following Spo0A Activation — To quantify the duration of cyclic di-GMP ac-
cumulation, 1000 cells were simulated for a 10 hour period with irreversible Spo0A
activation. The time step that Spo0A was activated was identified and the c-di-GMP
concentration curve for that cell was plotted from that time point as t=0. This was
done for all 1000 cells (black lines in trace). To quantify the characteristic time,
an average accumulation curve was computed over all the time traces and shown
(magenta). The accumulation is predicted to take 3 hours, corresponding to six cell
generations in the simulation.
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deterministic version of the model, which uses continuous equations rather than the

discrete, stochastic ones. The model simulates the change in cyclic di-GMP concen-

tration and PdeH concentration, starting with a set copy number and then turning

off production, as Spo0A repression would, and plotting the accumulation curve. The

change in c-di-GMP concentration is modeled with Equation 3.7 and the change in

PdeH is modeled with Equation 3.8:

d(cdG)

dt
= kcat,DGC(DGC)− kcat,PDE(PDE)(cdG)

KM,PDE + (cdG)
− ln(2)

Tcc

(cdG) (3.7)

d(PDE)

dt
= − ln(2)

Tcc

(PDE) (3.8)

where cdG is the amount of c-di-GMP in the cell, DGC is the total amount of DGC

molecules, PDE is the total amount of PDE molecules, and Tcc is the cell cycle time.

Figure 3·5: Effects of free model parameters on c-di-GMP accumulation
time — (A) Effect of different values of KM,pdeH on cyclic di-GMP accumulation
time. The deterministic version of the model was run with a sweep of values for the
half saturation constant of the PdeH enzyme. Different values affect both the set
point at low cyclic di-GMP (Spo0A repression off) and the timing of accumulation.
(B) Effect of different steady-state copy numbers of PdeH on c-di-GMP accumulation
time. While altering the value of the low set point for c-di-GMP, the copy number
mostly does not affect timing of accumulation. Together, these free variables can be
tuned to fit a range of possible accumulation times.
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I first swept the half saturation constant (KM,PDE) over two orders of magnitude,

from 100 nM to 10,000 nM . As the KM,PDE value increased, the low set point

for concentration of c-di-GMP decreased and the accumulation time increased (Fig

3·5A). This indicates how the half saturation constant affects both the fold change

between the low and high states as well as the accumulation time. I then varied the

steady-state copy number of PdeH from 0-10. As the copy number increased, the set

point for low c-di-GMP decreased, but the accumulation time did not significantly

change (Fig 3·5B). This indicates that, by changing both parameters in tandem, the

model allows for some explanation of a range of accumulation times, as could be fit

to experimental data. But, the predictions fell within a 2-5 hour accumulation time

(Fig 3·5A), and so the idea of c-di-GMP accumulation as a timer mechanism remains

plausible over a wide parameter range. To verify this hypothesis from the model, I

then turned to experimental methods to measure this accumulation in vivo.

3.2.3 Imaging single-cell biofilm activation in Bacillus subtilis

In order to experimentally measure the predictions from the model, I needed a method

to visualize biofilm activation in single B. subtilis cells over many cell generations.

To do this, I adapted the strategy of agarose pad imaging of bacterial microcolonies

[150] with the biofilm-inducing media MSgg [151]. Agarose pad imaging involves

sandwiching bacterial cells between a glass imaging dish and an agarose pad composed

of bacterial media. The bacteria are provided nutrients from the pad and are forced to

grow in a two-dimensional monolayer. This enables imaging of microcolonies grown

from single cells.

To adapt this strategy for biofilm activation in B. subtilis, the pads were made

with the biofilm-inducing media MSgg, which is widely used in studies of B. subtilis

biofilm formation [152]. Cells were grown up in LB to reach exponential phase before
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being resuspended in MSgg in liquid culture before being placed on the pads. To

see if the cells were indeed activating the biofilm phenotype, I verified this method

with a well-defined reporter for B. subtilis biofilm formation. This reporter uses a

promoter fusion of the tapA operon, responsible for the protein component of the B.

subtilis biofilm matrix, to a fluorescent protein. Thus, when the cell begins to produce

matrix, the fluorescent protein is also produces, providing a fluorescent indicator the

phenotype is active (Fig 3·6A).

Figure 3·6: Example microcolony of biofilm matrix production at the
single-cell level — (A) Schematic of biofilm phenotype reporter. Upstream biofilm
signals activate matrix production through the tapA operon. A fusion of the tapA
promoter with an mCherry2 fluorescent protein provides a fluorescent readout when a
cell is actively producing biofilm matrix. (B) Length traces of single cells in a sample
microcolony. As a cell grows, its length increases until the point of division, upon
which two daughter cells are produced. The two daughter cells then repeat the cycle,
creating the sawtooth pattern. (C) Single cell mean RFP traces during microcolony
growth. As this sample microcolony grew, a few cells activated biofilm matrix pro-
duction, as indicated by the rise in RFP signal in a few of the traces. The phenotype
is transient, as the fluorescence begins to decrease after peaking. (D) Filmstrip of
RFP channel during microcolony growth. The raw RFP channel is seen along with
cell segmentation calls (yellow outlines). Cells that initially turn on the reporter go
on to divide and pass the signal to daughter cells.
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The properties of single cells were analyzed by segmenting and tracking single cells

and lineages using the DeLTA algorithm [153]. DeLTA uses phase contrast images

to track individual cell behavior over time. Length plots of single cells over time

give a picture of microcolony growth dynamics (Fig 3·6B). The single-cell RFP traces

indicate a few of the cells in this microcolony turned on biofilm matrix production (Fig

3·6C). This activity is evident in the images as well (Fig 3·6D). These traces provide a

quantitative, spatiotemporal picture of biofilm phenotype activation in MSgg agarose

pad microcolonies.

3.2.4 Biofilm phenotype activation is stochastic and difficult to predict

While I had some success in seeing biofilm activation at the single-cell level in this

assay, the results proved difficult to make repeatable. Broadly, I saw three behaviors

of single cells in this assay: activation (as in a few of the cells in Fig 3·6), deactivation,

in which cells started with high expression of the reporter that then faded over time,

and no activation in a microcolony at all. Figure 3·7 exemplifies these behaviors at

the single cell level. Most of the microcolonies (I quantify this proportion in the

next section) had no activation of the phenotype during imaging (Fig 3·7A,B). The

microcolony grew and divided, but no RFP signal was seen during imaging. In some

cases, cells that started in the phenotype turned off the reporter (Fig 3·7C,D). As

the reporter is a cytosolic mCherry2, and the cells got dimmer with each division, it

appears the phenotype was already switched off and I am measuring the dilution of the

signal (Fig 3·7D). Lastly, I saw activation in a handful of traces (Fig 3·7E,F), where

a single cell will activate the biofilm phenotype and quickly increase its fluorescence

(Fig 3·7F).

To get a sense of how common these different behaviors were, I first traced the

lineage of each cell to get a full timecourse plot of RFP values for each cell’s full
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Figure 3·7: Example single-cell behaviors from biofilm phenotype reporter
— (A) Film strip of single cell in a microcolony in which no activation or deactivation
occurred. Segmentation calls are made from the phase channel (top row) and applied
to the RFP channel (bottom row). (B) Single-cell mean RFP traces for microcolony
depicted in (A) (grey lines) and the highlighted cell (black line). (C) Film strip of
phase channel (top row) and RFP channel (bottom row) featuring a single cell in a
microcolony where biofilm phenotype deactivation occurred. (D) Single-cell mean
RFP traces for microcolony depicted in (C) (grey lines) with highlighted cell (black
line). (E) Film strip of phase channel (top row) and RFP channel (bottom row)
highlighting a single cell that activated biofilm phenotype during imaging. (F) Single-
cell mean RFP traces for microcolony depicted in (E) (grey lines) with highlighted
cell (black line). Scale bar = 2µm.
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lineage. By placing a simple threshold value, I sorted the cells into either Activating

(starting below threshold and, at some point, increasing above it, Fig 3·8A, red lines),

Deactivating (starting above threshold and decreasing below it, Fig 3·8A, blue lines),

or having No Activation (staying below threshold the entire timecourse, Fig 3·8A,

grey lines). To then quantify the frequencies of these behaviors, I looked at this

from the single-cell (Fig 3·8B) and microcolony level (Fig 3·8C). Over ≈ 7500 cells

and 85 microcolonies, the proportions were roughly similar, with around 90% of both

cells and microcolonies having no activation, and about 5% of cells and microcolonies

either activating or deactivating.

Figure 3·8: Biofilm activation and deactivation is infrequent on MSgg
agarose pads — (A) Single-cell RFP timecourse traces of all cells in PtapA reporter
experiments. Cells are color-coded depending on whether they activated the biofilm
phenotype reporter (red), deactivated it (blue), or had no activation at all (grey).
(B) Frequency of activation, deactivation, and no activation in single cell traces. For
the majority of single-cells examined (> 90%), neither activation nor deactivation
occurred (nnone = 6483, nact = 199, ndeact = 501). (C) Frequency of activation,
deactivation, and no activation at the microcolony level. If a microcolony had at
least one cell that activated the phenotype, it was considered active. If it had at
least one cell that deactivated, it was considered deactive. If neither occurred, it was
categorized with “no activation” (nnone = 72, nact = 6, ndeact = 7). Most microcolonies
examined (≈ 85%) had no activation during imaging.

In pursuit of a reliable methodology for measuring biofilm activation under MSgg

agarose pads, I then went back into the experimental data to ask if there were specific
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conditions prior to the cells being placed on the scope that would be predictive of

whether they activated, deactivated, or did not activate the biofilm phenotype. To

do this, I looked at the microcolony level to see if the behavior of the microcolony

was a function of different steps of the pre-imaging growth protocol. I found little

correlation between microcolony biofilm behavior and the OD600 of the cells from the

initial LB grow-up step (Fig 3·9A), the OD600 following resuspension in MSgg (Fig

3·9B), the OD600 of the MSgg culture directly prior to placement on the agarose pads

(Fig 3·9C), nor the fold-change in growth in the MSgg culture (Fig 3·9D).

Figure 3·9: Pregrowth conditions are not predictive of microcolony biofilm
phenotype behavior — Microcolony behavior was plotted as a function of different
stages of the pre-imaging conditions: the OD600 in LB culture prior to MSgg resus-
pension (A), the OD600 following MSgg resuspend (B), the OD600 in MSgg prior to
placing on the pads (C), and the fold-change in OD600 during MSgg growth (D). No
one measurement appeared to be a predictive parameter. A slight random value was
applied to each data point to offset overlapping values.

From these data, I concluded that, while this imaging strategy showed promise
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in visualizing biofilm activation at the single-cell level, the protocol requires further

optimization to make this a reliable method.

3.2.5 Adaptation of a split GFP sensor for c-di-GMP narrowly distin-

guishes control strains

In order to measure intracellular concentrations of c-di-GMP, I turned to genetically-

encoded, fluorescent biosensors. These sensors, in theory, offer the ability to noninva-

sively measure c-di-GMP in live cells, making them ideal for the kind of quantitative,

temporal analysis required to check the predictions of the model. As discussed in

the introduction of this chapter, there have been a number of attempts to create

effective fluorescent biosensors for c-di-GMP, each with their own shortcomings. In

this section, I will show work validating a split GFP-based sensor in B. subtilis but

also its shortcomings, as well as work on a novel sensor designed to overcome the

shortcomings of the published sensors.

I first employed a split GFP-based sensor for c-di-GMP initially created for re-

porting a synthetic asymmetric division system in E. coli [141]. The sensor breaks

an eGFP into three parts and fuses two with the c-di-GMP binding domains PilZ

and FimX (Fig 3·10A, left). In the presence of c-di-GMP, the PilZ and FimX bind,

bringing the two barrels of the eGFP together. Association of the remaining barrels

of the protein then bind, enabling the cylcization reaction that can produce fluores-

cence (Fig 3·10A, right). To adapt the sensor for expression in B. subtilis, I designed

an operon that would express the three components under the same, high-expressing,

constitutive promoter (Pveg). I then transformed this sensor construct into three

strains: wild-type cells, a ∆DGC knockout strain to serve as a negative control, and

a ∆PDE knockout strain to serve as a positive control (see Table 3.2).

When tested in static conditions, the sensor exhibited the expected response.
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Figure 3·10: Split GFP sensor distinguishes knockout strains in static
imaging condition — (A) Schematic of split GFP sensor. The sensor is expressed
in three transcriptional units: barrel 10 of GFP fused to a PilZ domain, barrel 11
fused to a FimX domain, and barrels 1-9. In the presence of cyclic di-GMP, the
PilZ domain binds followed by the FimX domain. The sensor then associates with
the remaining barrels 1-9 fragment and the GFP undergoes cyclization, producing
green fluorescence. (B) Single-cell mean sensor readout in cyclic di-GMP pathway
knockout strains. Cells of each strain were grown to OD600 = 1 and pipetted onto
agar pads for imaging. Single cells were segmented and mean GFP values over the cell
area were calculated, following a background subtraction (small dots). Violin plots
indicate distribution of values and large dots indicate means. * indicates p < 10−3.
For the ∆DGC strain, n=1064; for WT, n=1312; for ∆PDE, n=1024.
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Colonies of each of the strains were inoculated in LB media and grown up until the

culture OD600 was about 1.0. These cultures were then diluted tenfold and pipetted

onto agarose pads made of the biofilm-inducing media MSgg (see Methods). These

pads were then flipped onto a glass imaging dish, pressing the cells between the glass

and the pad. The cells were then imaged in phase and GFP channels, segmented,

and the mean GFP value for each cell was calculated. In analyzing the distributions,

the expected trend was observed, with the ∆DGC strain exhibiting the lowest mean

fluorescence value, the wild-type in the middle, and the ∆PDE strain with the highest

mean value (Fig 3·10B). Also as expected, the wild-type cell distribution spanned the

width of both the ∆DGC and ∆PDE strains (Fig 3·10B, grey violin). This test

suggested the sensor was sensitive to the c-di-GMP range in B. subtilis, as it could

discriminate between the lower and upper ranges of c-di-GMP concentrations. With

this confirmed in a static imaging experiment, I next went on to observe the dynamics

of the sensor signal in these strains.

To test the sensor in these strains over time, I imaged growing microcolonies from

single cells expressing the sensor (see Methods, Sample preparation for timelapse

experiments). Each microcolony was cropped out from the timelapse an segmented

and tracked using the DeLTA pipeline. The negative control strain had low, but

increasing levels of GFP fluorescence during imaging (Fig 3·11A, bottom). This is

born out in the mean GFP traces for single cells (Fig 3·11B, red lines) as well as

the microcolony mean (Fig 3·11B, black line). The increase in signal may be due

to a lack of irreversibility in the sensor, as once the GFP components cyclize, there

is no way for the molecule to come undone. Any off-target activity in this strain

could then accumulate completed sensor over time, increasing signal. The wild-type

strain also had a general increase in GFP over the timelapse (Fig 3·11C, bottom and

D, black line) but also exhibited significant heterogeneity in the final few hours of
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imaging (Fig 3·11C, last three frames of bottom row). This amount of heterogeneity

was expected, due to the range of GFP values seen in the static imaging (Fig 3·10).

Lastly, the ∆PDE strain similarly exhibited a general increase in fluorescence, with

the exception of a noticeable decline in hours 11-12 (Fig 3·11E, bottom row and F,

black line). The final frames exhibited a similar level of heterogeneity to the wild-type

strain. With the individual cell traces and the microcolony traces quantified, I could

then ask if the sensor could distinguish the strains in these timelapse experiments.

Mean traces for each of the microcolonies in a strain (Fig 3·11, thin lines) were

further averaged together and plotted over time (Fig 3·11G, thick lines). The means

for the control strains are fully distinct during the timelapse, though they narrow

in the dip in mean GFP values for the ∆PDE strain in hours 10-12. These data

further validate the results from the static experiment that the sensor dynamic range

can match that of these knockouts. However, the change is narrow, less than a 50%

fold change between the two. This narrow readout is further complicated with the

wild-type strain, whose mean value over all of the microcolonies closely follows that

of the ∆PDE strain (Fig 3·11, thick blue and grey lines). This was not all that

surprising, given how close the means of the WT and ∆PDE strains were in the

static imaging experiment (Fig 3·10B). This combination of a narrow output range,

which would make quantifying accumulation from a low to high state difficult, along

with the increase baseline of fluorescence, likely due to the irreversible assembly of the

sensor, suggest this sensor would be difficult to utilize in measuring the accumulation

time of c-di-GMP, making it unfit for answering the question posed by the model.

Having used an existing tool, I next turned to development of a novel sensor that had

the possibility of addressing the shortcomings of the split GFP sensor.
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Figure 3·11: Split GFP sensor output shows narrow range in timelapse
context — Sample microcolony timelapses (top: phase, bottom: GFP) of strains
expressing the split GFP sensor for (A) ∆DGC, (C) WT , and (E) ∆PDE. For
each colony, the single cell mean GFP traces are shown (colored lines in (B) ∆DGC,
(D) WT , and (F) ∆PDE), as well as the mean of the single cell traces for the whole
microcolony (black lines in (B), (D), and (F)). All traces show a general increase of
signal, suggesting lack of reversibility in the sensor. n=65 cells in ∆DGC trace, n=210
cells inWT trace, n=260 in cells ∆PDE trace. (G) Time traces of mean microcolony
GFP values (thin colored lines), along with experiment means (thick colored lines)
for ∆DGC (red), WT (grey), and ∆PDE (blue) strains. While negative control
(∆DGC) and positive control (∆PDE) strains show good separation throughout
imaging, WT cells show little difference from ∆PDE strain. n=6 microcolonies for
∆DGC trace, n=16 microcolonies for WT trace, n=9 microcolonies for ∆PDE trace.
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3.2.6 A novel circularly permuted GFP sensor is entangled with cell

growth dynamics

With concerns about the reversibility of the split GFP-based sensor, I turned to a

collaboration to develop a novel sensor for intracellular c-di-GMP based on the family

of circularly permuted biosensors (reviewed in [154], first developed by [155]). The

sensor was designed with the same c-di-GMP binding domains from the split GFP

sensor and attached to a sfGFP. In the presence of c-di-GMP, the binding domains

cause a conformational change in the sfGFP, allowing it to cyclize and produce fluo-

rescence (Fig 3·12A). In vitro characterization of the sensor validated that its binding

kinetics operated with µM sensitivity, as is expected in vivo (Fig 3·12B). The sensor

was then transformed into the same three strains used in testing the split GFP sen-

sor: wild-type, negative control ∆DGC, and positive control ∆PDE. These strains

underwent similar testing to the split GFP sensor.

Figure 3·12: A novel circularly permuted GFP sensor for c-di-GMP ex-
hibits signal modulation over physiologic range in vitro — (A) Schematic of
a circularly permuted GFP sensor for cyclic di-GMP. The FimX and PilZ cdG-binding
domains are fused to a GFP such that, in absence of cdG, the fluorophore is pulled
apart such that it cannot cyclize and produce fluorescence. In the presence of cdG,
the binding domains cause the GFP to undergo a conformational change that enables
it to cyclize and fluoresce. (B) In vitro binding data for purified sensor. Isolated
sensor was titrated with known quantities of cdG and change in fluorescence was
measured. Many sensor configurations did not respond (grey dots) while a leading
candidate saw a 50% change in fluorescence at saturating values (green dots).
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When performing timelapse testing of the cpGFP-based sensor, a peculiar pattern

was observed in the sensor signal in the context of the cell growth rates. In the

timelapse experiments, the single cells divided two or three times before having a

slowdown in growth (Fig 3·13A, upper row, time stamps 6:45-11:15). During this

slowdown, the GFP signal from the cells appeared to increase (Fig 3·13A, lower row,

time stamps 6:45-11:15), before decreasing after resuming growth. I hypothesized the

increase in signal was not due to an increase in c-di-GMP concentration, but rather

a decrease in the growth rate and thus an accumulation of sensor in the cells. To

quantify this, took the length traces of single cells (Fig 3·13B, left axis) and took the

timepoint-by-timepoint difference to get an estimate of the growth rate (Fig 3·13B,

right axis). Indeed, this metric captured a slowdown in growth during the middle

hours of this experiment, followed by a resumption. To see if this growth slowdown

corresponded with the increase in fluorescence, I plotted the growth rate for each

cell in the experiment (Fig 3·13C, left axis) along with the inverse of its mean GFP

value (Fig 3·13C, right axis). The decrease and increase in the growth rate nearly

perfectly corresponds with the decrease and increase in inverse fluorescence (meaning

increase then decrease in absolute fluorescence). From these data, it was clear the

growth rates of the cells were intervening with the sensor signal, making it impossible

to determine if the sensor was detecting differences between the strains. While the

architecture and in vitro performance of the sensor remain promising, future design

iterations will be needed in order to determine if it is functioning in the context of B.

subtilis.
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Figure 3·13: cpGFP sensor signal is dominated by growth rate impacting
sensor concentration — (A) Timelapse of a microcolony expressing the circularly
permuted GFP sensor. Segmentation calls from the phase imaging (top) are used to
calculate the mean GFP value on a per cell basis (bottom). Scale bar = 10µm. Time
stamps are hh:mm. (B) Example single-cell trace for calculating growth rate metric.
Smoothed derivatives of the cell length over time trace (left axis, grey) were taken to
get a metric for instantaneous growth rate at each time point (right axis, black). The
point-to-point difference was taken between each point of the length trace. Highly
negative points originating from cell division were smoothed by taking the average of
the two surrounding values. Lastly, a moving average of 20 frames was applied to get
the growth rate metric. (C) Overlay of growth rate and inverse GFP fluorescence
traces. Normalized growth rates for each cell in the microcolony (imaged in (A))
are shown (left axis, black) along with the normalized inverse of the mean GFP for
each cell (right axis, cyan). The near overlap indicates a strong correlation between
growth rate slowing down and the GFP signal increasing, suggesting the possibility of
sensor accumulation driving increase in signal as opposed to c-di-GMP accumulation.
n=115 growth rate and GFP traces.
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3.3 Discussion

In setting out to examine the multigenerational dynamics of the c-di-GMP circuit

in B. subtilis, I employed two approaches. In the first, I used simulations of the

kinetics of the circuit, based on measured values and fitted to published studies, to

make a prediction of the time for c-di-GMP between its low and high subpopulation

[49] (Fig 3·4). In the second, I used a number of tools in order to take experimental

measurements to compare to the predictions from the model. I adapted the bacterial

agarose pad imaging strategy to examine B. subtilis biofilm activation on the single

cell level in growing microcolonies (Fig 3·7) and then used two different sensors to

attempt to measure intracellular c-di-GMP concentrations. While the first sensor, a

split GFP-based design, did show signal differences between control knockout strains

(Fig 3·10), the limited output range as well as an increasing baseline observed during

timelapse imaging (Fig 3·11), hypothesized to be due to the inability of the sensor

to turn off once cyclized, rendered it ineffective at taking accurate measurements of

c-di-GMP accumulation. I then turned to a novel circularly permuted design, which

has off dynamics and does not depend on dilution from cell division to decrease signal.

This sensor, however, exhibited a strong dependency on growth dynamics (Fig 3·13)

and any signal from intracellular c-di-GMP, if it was sensitive to it, was likely being

subsumed by signal changes due to sensor accumulation during periods of slow cell

growth.

Future work includes a number of new strategies for improving on the use of

the existing biosensors. To normalize out the effects of cell growth in the circularly

permuted GFP sensor, a normalizing fluorophore can be fused to the sensor. An

effective strategy would be to fuse the HaloTag system [156] to bind with a bright dye

[157, 158] to normalize the signal. This design improvement would enable validation
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of the sensor’s dynamic range matching the range of c-di-GMP concentrations in B.

subtilis. Another strategy would be to use a previously-published FRET sensor [140]

for intracellular c-di-GMP concentration. Improved single-cell imaging and analysis

would make the sensor easier to implement in my experimental pipeline. Another

technical shortcoming of the experimental design is the limitation of imaging cells

in a monolayer. As the cells begin to stack, the phase images render it impossible

for the segmentation and tracking algorithm to distinguish cells in different layers.

One strategy would be to simply confine analysis to the monolayer edge of growing

microcolonies, as has been done elsewhere [159]. This would enable longer term

imaging, as the image stacks would not have to be cropped immediately prior to

cell stacking in the microcolonies. These improvements in the experimental approach

have the potential to yield high-quality data for c-di-GMP dynamics in single cells,

enabling full comparison to the model predictions.

While perfect matching between theory and experiment would validate the pre-

dictions of the model as it stands, discrepancies would lead to formulation of new

hypotheses to understand the system. One possible cause for discrepancy could be

accounted for by tweaking the free parameters of the model (as illustrated in Fig 3·5).

The two parameters could be used to explain a range of difference in timing. One

phenomena they could not explain, however, is a decrease in c-di-GMP concentration.

The model assumes a one-way transition from low Spo0A activity to high Spo0A ac-

tivity, but experimental work has shown that Spo0A activity occurs with a baseline

increase punctuated with pulses synchronized to the cell cycle [160]. In fact, this par-

ticular architecture of Spo0A pulsing speaks to a larger design for multigenerational

behavior.

The slow accumulation of active Spo0A through pulsing is part of a robust B.

subtilis differentiation network. The nature of the Spo0A activity pulses arises from
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the placement of its kinase and phosphatase on opposite ends of the genome. As

the genome begins to be replicated, extra copies of the kinase operon exist, pushing

up phosphorylated levels of Spo0A. As the genome replication finishes, the copy

number of the phosphatase operon catch up, lowering phosphorylated Spo0A levels

[125]. The long term accumulation of active Spo0A allows for B. subtilis to decide

between competing fate decisions [48] and the pulsing behavior has been shown to be

an effective design for delaying cell fate decisions [46]. This behavior of an increase

through pulsing has been termed polyphasic feedback, and has been shown to be

the most robust activation network architecture to cell cycle timing [161]. As Spo0A

activity increasing is already a robust, multigenerational process, it is an interesting

open question of how its dynamics combine with repression of the pdeH operon to

drive c-di-GMP accumulation, here predicted to be its own multigenerational process.

Indeed, multigenerational accumulation of a signal is a cellular design with its own

associated term: cellular timer.

Cellular timers are a well-characterized class of multigenerational cell signal ar-

chitecture. In general, the definition is any circuit that enables the long-term accu-

mulation of critical signal molecules is a cellular timer [162]. The structure of cellular

timers, in addition to the other strategies listed above, enable their operation to be

robust in the face of cellular noise [163]. Spo0A achieves cellular timer behavior

through a carefully-tuned polyphasic feedback network. The model results here for

c-di-GMP, on the other hand, predict long accumulation coming from dilution of the

degrading PDE and slow production from the DGCs. What happens then, when one

cellular timer is driving the activity of another cellular timer? Also interesting to ask

is how the effects of cell division impact both the Spo0A activity and the c-di-GMP

components of this polyphasic feedback circuit. Oscillating c-di-GMP concentrations

are not unheard of in the bacterial context, and have been shown to be important for
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driving Caulobacter crescentus cell cycle [164] and Pseudomonas aeruginosa surface

attachment [165]. Further exploration of c-di-GMP dynamics in B. subtilis offers

the possibility for insights for processes coupled to polyphasic feedback circuits and

perhaps new designs for cellular timers, furthering our understanding of bacterial

differentiation in the biofilm lifestyle.

3.4 Methods and Materials

Code writing

All code was written in Python 3.9.12 using Spyder 5.3.3 for an IDE and compiled

using IPython 7.31.1. Packages used included NumPy 1.22.4 [83], SciPy 1.8.1 [84],

and Matplotlib 3.5.2 [85].

Random number generation

Random number generation was done using NumPy’s random generator function with

seed 1000.

Simulation hardware

Code for shorter simulations and analysis was run locally on a Dell Latitude 5420

running Windows 10 Enterprise 21H1 and using an Intel 11th Gen Core i7 processor

(3.0 GHz).

Bacillus subtilis transformation

All transformations were done in the transformable 3610 comIQ12L strain, which

has been shown to have identical characteristics as the wild-type 3610, but is more

naturally transformable [166]. The desired strain for transformation was streaked out
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on LB plates and grown overnight at 37◦C. The following day, a colony was inoculated

in 2mL of LM Media (LB + 3 mM MgSO4) and grown for 3 hours (37◦C, shaking

250rpm). Once the colony reached an OD600 between 0.8 and 1.2, 100 µL was pipetted

into 2mL of MD media (9.25 mL of 1.1x PC Buffer, 400 µL of 50 % glucose, 30 µL

of 1M MgSO4, 250 µL of 100mg/mL K-aspartate, and 50 µL of 2.2mg/mL ferric

ammonium citrate). Glucose solution was made day of, all other solutions were made

from stocks. K-aspartate and ferric ammonium citrate were stored in the fridge, PC

Buffer and MgSO4 were stored at room temperature. 1.1x PC Buffer was made from

diluting 165 mL of a 10x stock solution (107g K2HPO4, 60g KH2PO4, 10g trisodium

citrate dihydrate, pH’ed to 7.5 with KOH in 1L of diH20) in 1335mL diH20 and

autoclaving. After 3 hours of growth in the MD medium (37◦C, shaking 250rpm),

200 µL of cells are placed in a new 15mL culture tube with DNA (1ng of plasmid DNA

or genome extract, but no more than 20µL) and incubated for 60min (37◦C, shaking

250rpm). 200 mL of this culture was then plated on agar plates with antibiotic (for

spectinomycin selection, final concentration of 100µg/mL) and incubated overnight

at 37◦C. The following day, colonies are restreaked again on selective agar plates and

incubated overnight at 37◦C. The next day, colonies are picked from the restreaked

plate and grown in LB for 3 hours to OD600 ≈ 1 and then stored in glycerol stocks

made from a 1mL LB culture, 1mL 50 % glycerol mixture and stored at -80◦C.

Generation of Bacillus subtilis knockout strains

To generate knockouts in the competent comIQ12L strain, strains from the Koo knock-

out collection [167] were ordered from the Bacillus Genetic Stock Center (Table 3.1).

The genomes were extracted using a Qiagen DNA Mini Kit following the protocol

modification for gram-positive bacteria. Extracts of knockout strain genomes were

then transformed into the transformable 3610 comIQ12L strain of B. subtilis using
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Strain Name Genotype
BKE09120 ∆dgcK::erm
BKK09120 ∆dgcK::kan
BKE29650 ∆dgcP::erm
BKK29650 ∆dgcP::kan
BKE13420 ∆dgcW::erm
BKK13420 ∆dgcW::kan
BKE31740 ∆pdeH::erm
BKK31740 ∆pdeH::kan
BKE24220 ∆spo0A::erm
BKK24220 ∆spo0A::kan

Table 3.1: Knockout strains from Bacillus Genetic Stock Center

standard B. subtilis transformation protocol (see above). In the case of the triple

DGC knockout, the dgcP gene was knocked out using the genome extraction from a

triple DGC knockout strain from other work [129] while the dgcK and dgcW genes

were knocked out using genome extractions from the Koo collection.

Bacillus subtilis strains used in this study

Strain Name Genotype
WT pB186 3610 comIQ12L ∆amyE::PtapA-R0-mCherry2 specR

WT pB147
3610 comIQ12L

∆amyE::Pveg-R0-GFP10-Pilz-R0-FimX-GFP11-R0-GFP1−9

∆DGC pB147
3610 comIQ12L ∆dgcW ::ermR ∆dgcK::kanR ∆dpc::tetR

∆amyE::Pveg-R0-GFP10-Pilz-R0-FimX-GFP11-R0-GFP1−9

∆PDE pB147
3610 comIQ12L ∆pdeH::ermR

∆amyE::Pveg-R0-GFP10-Pilz-R0-FimX-GFP11-R0-GFP1−9

WT pB190 3610 comIQ12L ∆amyE::Pveg-R0-FimX-cpGFP-PilZ specR

∆DGC pB190
3610 comIQ12L ∆dgcW ::ermR ∆dgcK::kanR

∆dpc::tetR ∆amyE::Pveg-R0-FimX-cpGFP-PilZ specR

∆PDE pB190
3610 comIQ12L ∆pdeH::ermR

∆amyE::Pveg-R0-FimX-cpGFP-PilZ specR

Table 3.2: Bacillus strains generated for this study
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Biofilm media preparation

1x MSgg solution was created as follows. 2.4µL of MSgg LMP salt/ion mix was

created with 1000µL of 50% glycerol, 1000µL of 50 % glutamate monosodium salt,

100µL of 0.7M CaCl2, 100µL of 2M MgCl2, 100µL of 0.1M FeCl3 − 6H2O, 100µL

of 0.05M MnCl2, 1µL of 0.1M ZnCl2, and 2µL of 0.1M thiamine HCl. The 50 %

glutamate and 0.1M FeCl3 − 6H2O solutions were made day of, all other salt mixes

were stored at room temperature. This mixture was then passed through a 0.22 µm

syringe filter. 1x MSgg was then made in 25mL batches with 21.6mL of ddH20,

2.5mL of 1M MOPS buffer (pH 7.0 with KOH), 250µL of 0.5M potassium phosphate

buffer (2.72g K2HPO4 and 1.275g of KH2PO4 in 50mL at pH 7.0), and 601µL of

MSgg salt mix.

Sample preparation for timelapse experiments

The day prior to starting overnight timelapse experiment, cells were streaked from

glcyerol stocks on selective plates and grown overnight at 37◦C. In the morning, a

colony was inoculated in 2mL LB media and incubated (37◦C, shaking 250rpm) until

mid-exponential (OD600 ≈ 0.8). Cells were then spun down (1min, 2100rcf), LB

poured off, resuspended in 1mL MSgg (made day of, see above), spun down again

(1min, 2100rcf), and resuspend in 2mL of MSgg. Cells were further incubated (37◦C,

shaking 250rpm) to enculturate to the media ( 2hr, between 1 and 2 doublings). MSgg

agarose pads were made by adding 0.15g of agarose powder to 10mL of MSgg media,

microwaving the solution until the agarose dissolved (15-20s), and then pipetting the

solution onto a standard 1” x 1” coverslip. A second coverslip was then placed on

top. Pads were allowed to dry for at least 45 min before being sliced into quarters.

After cells had enculturated to the MSgg, the OD600 value was taken and the culture
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was diluted to OD600 = 10−4 using 1x PBS. 5µL of this diluted culture was then

dropped on the 1/4 agarose pad and allowed to air dry for 10-15min. The dried pad

was then inverted onto a glass imaging dish (WillCo) using a 1mL pipet tip. The

dish was then stuffed with damp Kimwipes and sealed using parafilm and placed on

the scope at temperature (30◦C) for one hour prior to starting image acquisition.

Time-lapse Microscopy

All timelapse images were taken on a Nikon Ti2 Eclipse (Nikon) using a CFI Plan Apo

DM Lambda 100X Oil objective (MRD31905, Nikon) equipped with an ORCA-Fusion

BT CMOS camera (Hamamatsu Photonics) and illuminated with a SPECTRA Light

Engine (Lumencor, Inc.). Temperature was maintained at 30◦C using an oko Bold

Line cage incubator (Okolab s.r.l.). For phase imaging, exposure was 20ms with 50%

light power. For RFP imaging, the 594mm source from the SPECTRA was used with

an MXR00254 dichroic and a Texas Red HYQ emission filter (608-683nm) with 80%

laser power and a 200ms exposure. For GFP imaging, the 488nm light source from

the Spectra was used with the same MXR00254 dichroic mirror and a FITC emission

filter (515-555nm) with 80% laser power and a 200ms exposure. Unless otherwise

stated, images were taken every 5 minutes during overnight timelapses. Timelapse

experiments were acquired using Nikon Elements software (version 5.41.02, Nikon).

Image Analysis

Raw .nd2 files were cropped around microcolonies and trimmed just before the mi-

crocolony was disrupted by stacking of cells or swarming of motile cells. The cropped

.nd2 files were then analyzed using the DeLTA 2.0 pipeline [153] on the Janelia Com-

pute Cluster, which runs on Oracle Linux 8.3 and uses IBM Spectrum LSF 10.1 for

job management. Cores were composed of either Intel SkyLake (2.7GHz Platinum
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8168) or Intel Cascade Lake (3.0 GHz Gold 6284R) processors. GPUs were either

GeForce RTX 2080Tis, Quadro RTX 8000s, Tesla T4 PCIe cards, Tesla V100 32GB

PCIe cards, Tesla V100 SXM2s, or Tesla A100 SXM4s. Further analysis was done

in Python 3.9.12 using Spyder 5.3.3 for an IDE and compiled using IPython 7.31.1.

Packages used included NumPy 1.22.4 [83], SciPy 1.8.1 [84], and Matplotlib 3.5.2 [85].
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Chapter 4

Conclusions

4.1 Summary

In Chapter 2, I used simulations of toy signaling circuits to develop some key rules

around the impact of cell division on signaling states. I did this by examining whether

nongenetic similarity existed in the concentrations of the different components of the

toy signal pathway. In the Production Only pathway with a single enzyme producing

a signal molecule, I found that nongenetic similarity existed only in the concentration

of the signal molecule. That is, sister cells were more similar to each other than

random cells in their concentrations of signal molecule, and not of the enzyme. I

found this was due to the super-Poisson distribution of the signal molecule, stemming

from the doubly stochastic process dictating its formation. Through a collaboration

to analytically derive formulas for these variances (Appendix A), I found the key

parameter separating the variance of the signal molecule in sisters from random pairs

was the number of reactions per enzyme per cell cycle.

I then found that the duration of this nongenetic similarity was the same over

all kinetic parameter combinations in the Production Only circuit, and followed a

decay curve by one half each generation. This duration could be tuned down with

the addition of a degrading enzyme to the circuit, due to the faster turnover of the

signal molecule in the presence of a degrading enzyme. Lastly, I assessed the impact
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of these circuit architectures on population noise, finding that, at short nongenetic

durations, the noise in the enzyme concentrations dictated noise levels in the signal

molecule while at high durations of nongenetic similarity, the population had a similar

level of noise regardless of the parameter combinations underlying the circuit. From

this work, I showed that doubly stochastic processes can create nongenetic similarity

that remains robust to noise introduced from cell division and that duration is tuned

down as the turnover rate of the signal molecule increases.

After doing a theoretical examination of possible circuit architectures, I then ex-

amined a natural signaling circuit in the c-di-GMP pathway in Bacillus subtilis. I

built a model simulating the production and degradation of the cyclic nucleotide with

parameters based on values from literature or fitted to published data. This model

predicted that, upon Spo0A repression of the pdeH promoter, accumulation of cyclic

di-GMP to its high state would occur over six generations. This slow accumulation

was due to a combination of diluting the highly active PDEs and the slow reaction

rates of the DGCs.

To test the model predictions, I turned to developing a method for visualizing

c-di-GMP dynamics in single cells. I first adapted the technique of agarose pad

imaging for bacteria by creating pads with the biofilm-inducing media MSgg. I vali-

dated that this approach could image biofilm activation by showing activation of the

matrix production phenotype using a matrix phenotype reporter strain. By segment-

ing single-cells using the DeLTA pipeline, I could track the proportions of cells that

turned on, turned off, and did not activate the biofilm phenotype in growing micro-

colonies. Wit the approach validated, I then turned to evaluating tools for measuring

intracellular c-di-GMP.

I began with implementing a split GFP-based sensor previously only used for E.

coli. Static imaging of single cells showed significant differences between wild-type
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cells, a ∆DGC negative control strain, and a ∆PDE positive control strain. I then

examined the readout of this sensor over time. I found the structure of the sensor

resulted in a lack of signal decrease and concluded the sensor would not be adequate

for validating the predictions of the model. Through another collaboration, I imple-

mented a novel, circularly permuted GFP sensor for c-di-GMP. During validation of

the sensor, I found that cell growth rate had a major impact on sensor readout and

could not determine if the sensor was appropriately sensing intracellular c-di-GMP

concentrations.

Lastly, in Appendix B, I performed back-of-the-envelope style calculations to

evaluate if a hypothesis that ventral stress fiber formation during fibroblast to myofi-

broblast transition could be responsible for the creation of cytosolic pockets that could

pool cytosolic fluorophores. I found that the energy required to bend the membrane

and to contract the fibers fell well within the energy budget of a typical fibroblast

cell over the time period the phenomenon was observed, validating the hypothesis.

4.2 Future Directions

In the era of the -omics revolution, our ability to identify biological components has

accelerated while our understanding of these systems have lagged. New technologies

capable of identifying all components of signaling circuits across an entire cell continue

to develop and improve [168, 169]. At the same time, we have come into an appre-

ciation that the identification of components in biological systems is insufficient to

understanding how the system operates, as these static maps lack a sense of dynam-

ical properties. While these dynamical properties are encoded into the architecture

of biological circuits, their functions are often only elucidated through temporal ap-

proaches such as dynamic modeling and timelapse imaging. Thus, to advance our
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understanding of how biological systems operate, it is critical to continue to identify

networks but then to study those networks from a temporal lens.

The study of bacterial biofilm development exemplifies the shortcomings of current

approaches and the promise of new ones. Bacterial biofilms use complex, overlapping

signal pathways to determine cell fate in a developing, multicellular system [117]. In

B. subtilis, these developmental phenotypes have been shown to be tightly spatially

and temporally regulated [170]. And while we know a lot of about how signaling

circuits underlie cell fate decisions in individual cells [47, 46, 125], we lack a picture

of how this operates on a multicellular level. Advances in 3D, timelapse imaging

with the ability to track thousands of single cells [92] offers a potential solution to

understand how single cell pathways and differentiation programs interact and whole

biofilm developmental programs emerge. Such studies would advance our knowledge

of systems as they operate, but would tell us less about unifying features or motifs in

signal pathway design.

The use of theory, such as toy model simulations, is useful for identifying the simple

rules governing signal pathway behavior in complex systems, and could be especially

applied, as shown here, to the context of multigenerational processes, such as biofilm

formation. The toy models in this work used assumptions about gene expression, but

layering of more thermodynamic models could enhance their applicability to natural

systems [171]. Additionally, the investigation of other circuit architectures, such as

feed-forward loops [172], could make further predictions about the behavior of signal

pathways in multigenerational contexts and the impact of circuit architecture on

nongenetic inheritance and population-level noise. These models serve as a tool not

only for identifying rules and motifs but also for exploring designs beyond the scope

of what evolution has generated in biological systems.
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4.3 Outlook

Furthering our understanding of biological systems as they have evolved to operate

is critical to new advances in human health, but represents only a piece of potential

future directions. New knowledge in the operation of signaling pathways has the

potential to advance our ability to treat complex diseases such as cancer [173] and

Alzheimer’s [174]. But the work from the theory side also explores designs that have

not been evolved by biological systems, opening up new opportunities in synthetic

biological systems. Synthetic biologists have made advances in programming novel

signaling pathways [175] and engineering complex behavior into synthetic multicellu-

lar systems [176]. We have previously suggested the engineering of biological noise

for synthetic applications in the multicellular context as well [78]. These types of ap-

proaches can be used to engineer signal pathways to design smart, living drugs [177].

Strategies for engineering biology such as these illuminates horizons of technology

beyond what has already evolved in the natural world.

In a way, this brings us full circle back to the idea introduced in Chapter 1

of designing around the physical constraints of biological life. The example of sim-

ple gene activation illustrated how, by evolving new signal network architectures,

bacterial systems could speed up or slow down the timing of gene expression. The

constraint of the inherent noisiness of biochemical reactions was designed around by

using the noisiness of circuits to drive phenotypic differentiation in a bet hedging

strategy. Constraints on the noise introduced upon cell division have been designed

around through the evolution of biological timer mechanisms. But evolution itself is

a process defined by the physical constraints of genetic drift and natural selection;

it is only capable of generating new solutions within the criteria of passing genetic

information to future generations. The advent of synthetic biology then, the design
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of novel biological systems not selected for by nature, perhaps represents the ultimate

design around physical constraints as we, human beings, ourselves are a product of

the constraints of evolutionary design. How profound that, in the human engineering

of biological life, evolution has yielded a biological system that can design around the

constraints of its own process of selection.
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Appendix A

Supplemental Information for Chapter 2

A.1 Acknowledgements

Analytical derivations were done by James Fitzgerald (Group Leader, Computation

and Theory, Janelia Research Campus, HHMI).

A.2 Derivations of variance variables as functions of model

parameters

Part 1: Effect of binomial partition on variance

Let X denote some molecular species (either enzyme M or signal molecule A). The

initial number of molecules is a binomial partition of the number present before cell

division. We thus write

P (X0|XT ) = Bin(XT , 1/2) (A.1)

where XT is the amount of molecule X in the mother cell and X0 is the amount

in a daughter cell. By direct calculation:

⟨X2
0 ⟩X0 = ⟨X2

0 ⟩X0,XT
(A.2)
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⟨X2
0 ⟩X0 = ⟨⟨X2

0 ⟩X0|XT
⟩XT

(A.3)

⟨X2
0 ⟩X0 =

〈
XT

4
+

(
XT

2

)2〉
XT

(A.4)

⟨X2
0 ⟩X0 =

1

4
(⟨XT ⟩XT

+ ⟨X2
T ⟩XT

) (A.5)

note that:

⟨X0⟩ =
1

2
⟨XT ⟩ (A.6)

Thus,

V ar(X0) = ⟨X2
0 ⟩X0 − ⟨X0⟩2X0

(A.7)

V ar(X0) =
1

4

(
⟨X2

T ⟩+ ⟨XT ⟩
)
−
(
1

2
⟨XT ⟩

)2

(A.8)

V ar(X0) =
1

4
(⟨X2

T ⟩ − ⟨XT ⟩2 + ⟨XT ⟩) (A.9)

V ar(X0) =
1

4
(V ar(XT ) + ⟨XT ⟩) (A.10)

Part 2: Effect of Poisson Signal Accumulation

During cell growth, new molecules are added with some stochastic rate. By definition:

XT = X0 +∆XT (A.11)
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The variance addition formula says

V ar(XT ) = V ar(X0) + V ar(∆XT ) + 2Cov(X0,∆XT ) (A.12)

Note that at steady state, we expect that both equations will hold, as the statistics

of XT are unchanging across generations.

Part 3: Statistics for the Variance of Enzyme M

For the enzyme M,

Cov(M0,∆MT ) = 0 (A.13)

Moreover, ∆MT is generated by a Poisson process with rate Pprod,M . Therefore:

V ar(∆MT ) = ⟨∆MT ⟩ = Pprod,MTcc (A.14)

This implies (from Part 2) that,

V ar(MT ) = V ar(M0) + Pprod,MTcc (A.15)

similarly (by Part 1),

⟨MT ⟩ = ⟨M0⟩+ ⟨∆MT ⟩ (A.16)

⟨MT ⟩ = ⟨M0⟩+ Pprod,MTcc (A.17)

⟨MT ⟩ =
1

2
⟨MT ⟩+ Pprod,MTcc (A.18)

⟨MT ⟩ = 2Pprod,MTcc (A.19)
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⟨M0⟩ = Pprod,MTcc (A.20)

Therefore (by Part 1),

V ar(M0) =
1

4
(V ar(MT ) + 2Pprod,MTcc) (A.21)

V ar(M0) =
1

4
(V ar(M0) + Pprod,MTcc + 2Pprod,MTcc) (A.22)

3V ar(M0) = 3Pprod,MTcc (A.23)

V ar(M0) = Pprod,MTcc (A.24)

V ar(MT ) = 2Pprod,MTcc (A.25)

From these, we can calculate the variance of differences between our sister and

random pairs. For the sister pairs

∆Msis = Msis,1 −Msis,2 = M0 − (MT −M0) = 2M0 −MT (A.26)

Given ⟨∆Msis⟩ = 0, we get the variance as

V ar(∆Msis) = ⟨∆M2
sis⟩ = 4⟨M2

0 ⟩ − 4⟨M0MT ⟩+ ⟨M2
T ⟩ (A.27)

We first consider that

⟨M0MT ⟩ = ⟨⟨M0⟩M0|MT
MT ⟩MT

=
1

2
⟨M2

T ⟩MT
(A.28)

Therefore
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V ar(∆Msis) = 4⟨M2
0 ⟩ − ⟨M2

T ⟩ (A.29)

Plugging in our derived formulas, we find

V ar(∆Msis) = 4((Pprod,MTcc)
2 + Pprod,MTcc)− ((2Pprod,MTcc)

2 + 2Pprod,MTcc)

(A.30)

V ar(∆Msis) = 2Pprod,MTcc (A.31)

It follows that the variance of the two random cells would be two times the variance

of each individual cell:

V ar(∆Mrnd) = 2V ar(M0) (A.32)

V ar(∆Mrnd) = 2Pprod,MTcc (A.33)

Note that the variance of difference formulas for sister and random pairs are

equivalent when considering M.

Part 4: Persistence of Poisson Statistics

Suppose

P (XT ) = Poiss(X̄T ) (A.34)

P (X0|XT ) = Bin(XT , 1/2) (A.35)
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Then X0 ~Poiss(X̄T/2). We proceed by direct calculation

P (X0) = ΣXT
P (X0, XT ) (A.36)

P (X0) = ΣXT
P (XT )P (X0|XT ) (A.37)

P (X0) = Σ∞
XT=X0

(X̄T )
XT e−X̄T

XT !

XT !(1/2)
XT

(XT −X0)!X0!
(A.38)

P (X0) =
e−X̄T

X0!
Σ∞

XT=X0

(X̄T/2)
XT

(XT −X0)!
(A.39)

P (X0) =
e−X̄T

X0!
Σ∞

k=0

(X̄T/2)
X0+k

k!
(A.40)

P (X0) =
e−X̄T

X0!
(
X̄T

2
)X0eX̄T /2 (A.41)

P (X0) =
(X̄T/2)

X0e−X̄T /2

X0!
(A.42)

P (X0) = Poiss(X̄T/2) (A.43)

Thus a Poisson random variable is still Poisson after it is partitioned binomially.

As a corollary:

P (Mt) = Poiss(Pprod,MTcc + Pprod,M t) (A.44)
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for all time points.

Part 5: Calculating the mean of the signal molecule A

We write

At = A0 +∆At (A.45)

where ∆At is generated from a double stochastic Poisson process with

rate kcat,MMt. Thus

⟨At⟩ = ⟨A0⟩+ ⟨∆At⟩ (A.46)

⟨At⟩ = ⟨A0⟩+ kcat,M

t∫
0

dt′Mt′ (A.47)

⟨At⟩ = ⟨A0⟩+ kcat,M

t∫
0

dt′(Pprod,MTcc + Pprod,M t′) (A.48)

⟨At⟩ = ⟨A0⟩+ kcat,MPprod,MTcct+
1

2
kcat,MPprod,M t2 (A.49)

setting t = Tcc and noting that ⟨A0⟩ = 1
2
⟨AT ⟩, we get

⟨AT ⟩ =
〈
AT

2

〉
+

3

2
kcat,MPprod,MT 2

cc (A.50)

⟨AT ⟩ = 3kcat,MPprod,MT 2
cc (A.51)

⟨A0⟩ =
3

2
kcat,MPprod,MT 2

cc (A.52)
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⟨At⟩ =
3

2
kcat,MPprod,MT 2

cc + kcat,MPprod,MTcct+
1

2
kcat,MPprod,M t2 (A.53)

Part 6: Variance of accumulated signal molecule A

We next aim to calculate V ar(∆AT ). As a first step, we calculate

⟨∆A2
T ⟩ = ⟨⟨∆A2

T ⟩∆AT |Mt⟩Mt (A.54)

Since ∆AT is Poisson when conditioned on Mt, we have

⟨∆A2
T ⟩ =

〈
kcat,M

Tcc∫
0

dtMt +

kcat,M

Tcc∫
0

dtMt

2〉
Mt

(A.55)

⟨∆A2
T ⟩ = kcat,M

Tcc∫
0

dt⟨Mt⟩Mt + k2
cat,M

Tcc∫
0

dt

Tcc∫
0

dt′⟨MtMt′⟩Mt (A.56)

Relabeling integrated variables such that t ≤ t′, we can write

Mt′ = Mt + (∆M)(t,t′) (A.57)

where (∆M)(t,t′) is the number of molecules of enzymes M added between t and t′.

Therefore,

⟨∆A2
T ⟩ = kcat,M

Tcc∫
0

dt⟨Mt⟩+ k2
cat,M

Tcc∫
0

dt

t∫
0

dt′⟨MtMt′⟩+ k2
cat,M

Tcc∫
0

dt

Tcc∫
t

dt′⟨MtMt′⟩

(A.58)
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⟨∆A2
T ⟩ = kcat,M

Tcc∫
0

dt⟨Mt⟩+ k2
cat,M

Tcc∫
0

dt

t∫
0

dt′⟨(Mt′ +∆M(t′,t))Mt′⟩+

k2
cat,M

Tcc∫
0

dt

Tcc∫
t

dt′⟨Mt(Mt +∆M(t,t′))⟩ (A.59)

⟨∆A2
T ⟩ = kcat,M

Tcc∫
0

dt(Pprod,MTcc + Pprod,M t)

+ k2
cat,M

Tcc∫
0

dt

t∫
0

dt′(⟨M2
t′⟩+ ⟨∆M(t′,t)⟩⟨Mt′⟩)

+ k2
cat,M

Tcc∫
0

dt

Tcc∫
t

dt′(⟨M2
t ⟩+ ⟨Mt⟩⟨∆M(t,t′)⟩) (A.60)

The first integral is

I1 = kcat,M

(
Pprod,MT 2

cc +
1

2
Pprod,MT 2

cc

)
(A.61)

I1 =
3

2
kcat,MPprod,MT 2

cc (A.62)

The second integral is

I2 = k2
cat,M

Tcc∫
0

dt

t∫
0

dt′(Pprod,M t′ + Pprod,MTcc + P 2
prod,M(Tcc + t′)2

+ Pprod,M(t− t′)Pprod,M(Tcc + t′)) (A.63)
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I2 = k2
cat,M

Tcc∫
0

dt

t∫
0

dt′(Pprod,MTcc + P 2
prod,MT 2

cc + P 2
prod,M tTcc+

t′(Pprod,M + 2P 2
prod,MTcc + P 2

prod,M t− P 2
prod,MTcc) + (t′)2(P 2

prod,M − P 2
prod,M)) (A.64)

I2 = k2
cat,M

Tcc∫
0

dt(Pprod,MTcct+ P 2
prod,MT 2

cct+ P 2
prod,MTcct

2 +
1

2
Pprod,M t2+

P 2
prod,MTcct

2 +
1

2
P 2
prod,M t3 − 1

2
P 2
prod,MTcct

2) (A.65)

I2 = k2
cat,M

Tcc∫
0

dt(t(Pprod,MTcc + P 2
prod,MT 2

cc)+

t2(
3

2
P 2
prod,MTcc +

1

2
Pprod,M) + t3

1

2
P 2
prod,M) (A.66)

I2 = k2
cat,M

(
1

2
Pprod,MT 3

cc +
1

2
P 2
prod,MT 4

cc +
1

2
P 2
prod,MT 4

cc +
1

6
Pprod,MT 3

cc +
1

8
P 2
prod,MT 4

cc

)
(A.67)

I2 = k2
cat,M

(
2

3
Pprod,MT 3

cc +
9

8
P 2
prod,MT 4

cc

)
(A.68)

The third integral is
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I3 = k2
ca,M

Tcc∫
0

dt

Tcc∫
t

dt′(Pprod,MTCc + Pprod,M t

+ P 2
prod,M(Tcc + t)2 + Pprod,M(Tcc + t)Pprod,M(t′ − t) (A.69)

I3 = k2
ca,M

Tcc∫
0

dt

Tcc∫
t

dt′(Pprod,M(Tcc + t)

+ P 2
prod,M(Tcc + t)2 − P 2

prod,M(Tcc + t)t+ P 2
prod,M(Tcc + t)t′) (A.70)

I3 = k2
ca,M

Tcc∫
0

dt((Pprod,M(Tcc + t)(Tcc − t) + P 2
prod,M(Tcc + t)Tcc(Tcc − t)+

1

2
P 2
prod,M(Tcc + t)T 2

cc −
1

2
P 2
prod,M(Tcc + t)t2) (A.71)

I3 = k2
ca,M

Tcc∫
0

dt(Pprod,MT 2
cc +

3

2
P 2
prod,MT 3

cc + t(
1

2
P 2
prod,MT 2

cc)+

t2(−Pprod,M − P 2
prod,MTcc −

1

2
P 2
prod,MTcc) + t3(−1

2
P 2
prod,M)) (A.72)
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I3 = k2
ca,M(Pprod,MT 3

cc

3

2
P 2
prod,MT 4

cc +
1

4
P 2
prod,MT 4

cc−

1

3
Pprod,MT 3

cc −
1

2
P 2
prod,MT 4

cc −
1

8
P 2
prod,MT 4

cc) (A.73)

I3 = k2
cat,M

(
2

3
Pprod,MT 3

cc +
9

8
P 2
prod,MT 4

cc

)
(A.74)

Note that, as expected, I2 = I3. Putting these terms together

⟨∆A2
T ⟩ =

3

2
kcat,MPprod,MT 2

cc +
4

3
k2
cat,MPprod,MT 3

cc +
9

4
k2
cat,MP 2

prod,MT 4
cc (A.75)

V ar(∆AT ) = ⟨∆A2
T ⟩ −

(
3

2
kcat,MPprod,MT 2

cc

)2

(A.76)

V ar(∆AT ) =
3

2
kcat,MPprod,MT 2

cc +
4

3
k2
cat,MPprod,MT 3

cc (A.77)

Part 7: Signal molecule covariance statistics

The final quantity to compute is Cov(A0,∆AT ). This is nonzero because both are

correlated with the amount of enzyme in the mother cell. However, they become

independent when conditioned on M0:
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P (A0,∆AT ) = ΣM0P (A0,∆AT ,M0) (A.78)

P (A0,∆AT ) = ΣM0P (M0)P (A0,∆AT |M0) (A.79)

P (A0,∆AT ) = ΣM0P (M0)P (A0|M0)P (∆AT |M0) (A.80)

This implies that

Cov(A0,∆AT ) = ⟨⟨δA0⟩A0|M0⟨δ∆AT ⟩∆AT |M0⟩M0 (A.81)

note that

P (∆AT |Mt) = Poiss

kcat,M

Tcc∫
0

dtMt

 (A.82)

P (∆AT |Mt) = Poiss

kcat,M

Tcc∫
0

dt(M0 +∆Mt)

 (A.83)

P (∆AT |M0) = ΣMt>0P (∆AT ,Mt>0|M0) (A.84)

P (∆AT |M0) = ΣMt>0P (Mt>0|M0) (A.85)

P (∆AT |Mt) = Σ∆MtP (∆Mt)P (∆AT |M0,∆Mt) (A.86)

we then get
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⟨δ∆AT ⟩∆AT |M0 = kcat,M

Tcc∫
0

dt

(
(M0 + ⟨∆Mt⟩)−

3

2
kcat,MPprod,MT 2

cc

)
(A.87)

⟨δ∆AT ⟩∆AT |M0 = kcat,MM0Tcc + kcat,M

Tcc∫
0

dt

(
Pprod,M t− 3

2
kcat,MPprod,MT 2

cc

)
(A.88)

⟨δ∆AT ⟩∆AT |M0 = kcat,MM0Tcc +
1

2
kcat,MPprod,MT 2

cc −
3

2
kcat,MPprod,MT 2

cc (A.89)

⟨δ∆AT ⟩∆AT |M0 = kcat,MM0Tcc − kcat,MPprod,MT 2
cc (A.90)

To compute ⟨A0⟩A0|M∞ , we note linear relationship between the A and M variables,

which translates into a linear relationship between the means

⟨A0⟩A0|M0 =
1

2
⟨AT ⟩AT |M0 (A.91)

⟨MT ⟩MT |M0 = 2M0 (A.92)

⟨Mt⟩Mt|M0 = ⟨MT −∆M(t,T )⟩MT,∆M|M0
(A.93)

⟨Mt⟩Mt|M0 = 2M0 − Pprod,M(Tcc − t) (A.94)
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⟨At⟩At|M0 = kcat,M

t∫
0

dt′⟨Mt′⟩Mt|M0 (A.95)

⟨At⟩At|M0 = kcat,M

t∫
0

dt′(2M0 − Pprod,MTcc + Pprod,M t′) (A.96)

⟨At⟩At|M0 = 2kcat,MM0t− kcat,MPprod,MTcct+
1

2
kcat,MPprod,MT 2

cc (A.97)

⟨AT ⟩AT |M0 = 2kcat,MM0Tcc −
1

2
kcat,MPprod,MT 2

cc (A.98)

⟨A0⟩A0|M0 = kcat,MM0Tcc −
1

4
kcat,MPprod,MT 2

cc (A.99)

⟨δA0⟩A0|M0 = ⟨A0⟩A0|M − 3

2
kcat,MPprod,MT 2

cc (A.100)

⟨δA0⟩A0|M0 = kcat,MM0Tcc −
7

4
kcat,MPprod,MT 2

cc (A.101)

Putting the pieces together

Cov(A0,∆AT ) =

〈(
kcat,MM0Tcc −

7

4
kcat,MPprod,MT 2

cc

)
(
kcat,MM0Tcc − kcat,MPprod,MT 2

cc

)〉
M0

(A.102)
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Cov(A0,∆AT ) =
7

4
k2
cat,MP 2

prod,MT 4
cc − k2

cat,MPprod,MT 3
cc⟨M0⟩−

7

4
k2
cat,MPprod,MT 3

cc⟨M0⟩+ k2
cat,MT 2

cc⟨M2
0 ⟩ (A.103)

Cov(A0,∆AT ) = k2
cat,MT 2

cc(Pprod,MTcc + P 2
prod,MT 2

cc)− k2
cat,MP 2

prod,MT 4
cc (A.104)

Cov(A0,∆AT ) = k2
cat,MPprod,MT 3

cc (A.105)

Part 8: Putting it all together

From Part 1,

V ar(A0) =
1

4
(V ar(AT ) + ⟨AT ⟩) (A.106)

V ar(A0) =
1

4
(V ar(AT ) + 3kcat,MPprod,MT 2

cc) (A.107)

Substituting this into the equation from Part 2,

V ar(AT ) =
1

4
(V ar(AT ) + 3kcat,MPprod,MT 2

cc) +
3

2
kcat,MPprod,MT 2

cc

+
4

3
k2
cat,MPprod,MT 3

cc + 2k2
cat,MPprod,MT 3

cc (A.108)
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3

4
V ar(AT ) =

9

4
kcat,MPprod,MT 2

cc +
10

3
k2
cat,MPprod,MT 3

cc (A.109)

V ar(AT ) = 3kcat,MPprod,MT 2
cc +

40

9
k2
cat,MPprod,MT 3

cc (A.110)

This implies, by direct substitution, that

V ar(A0) =
1

4
(3kcat,MPprod,MT 2

cc +
40

9
k2
cat,MPprod,MT 3

cc + 3kcat,MPprod,MT 2
cc) (A.111)

V ar(A0) =
3

2
kcat,MPprod,MT 2

cc +
10

9
k2
cat,MPprod,MT 3

cc (A.112)

Note that each variance expression looks like a Poisson variance plus an excess

variance that can be attributed to the doubly stochastic part.

Part 9: Sister cell variance

Finally, we calculate the variance of the difference between sister cells

∆Asis = Asis,1 − Asis,2 = A0 − (AT − A0) = 2A0 − AT (A.113)

Clearly

⟨∆Asis⟩ = 0 (A.114)

Therefore

V ar(∆Asis) = ⟨∆A2
sis⟩ = 4⟨A2

0⟩ − 4⟨A0AT ⟩+ ⟨A2
T ⟩ (A.115)
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The piece of this we haven’t considered yet is

⟨A0AT ⟩ = ⟨⟨A0⟩A0|AT
AT ⟩AT

=
1

2
⟨A2

T ⟩AT
(A.116)

Therefore

V ar(∆Asis) = 4⟨A2
0⟩ − ⟨A2

T ⟩ (A.117)

Plugging in the formulas from Part 8, we find

V ar(∆Asis) = 4((
3

2
kcat,MPprod,MT 2

cc)
2+

3

2
(kcat,MPprod,MT 2

cc +
10

9
k2
cat,MPprod,MT 3

cc))

− ((
3

2
kcat,MPprod,MT 2

cc)
2 +

3

2
(kcat,MPprod,MT 2

cc +
10

9
k2
cat,MPprod,MT 3

cc)) (A.118)

V ar(∆Asis) = 3kcat,MPprod,MT 2
cc (A.119)

Part 10: Random pair variance

It follows that the variance of two random cells would be two times the variance of

each individual cell

V ar(∆Arnd) = 2V ar(A0) (A.120)

V ar(∆Arnd) = 3kcat,MPprod,MT 2
cc +

20

9
k2
cat,MPprod,MT 3

cc (A.121)
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A.3 Supplemental Figures

Figure A·1: Initial model time trace — Our initial parameter set, as inspired by
the cyclic di-GMP circuit in B. subtilis (kcat,M = 10−2, Pprod,M = 10−2, Tcc = 1000),
was run for 1000 cell cycles. (A) Concentration trace of the enzyme M over the 1000
cell cycles. The value stochastically hovers around the mean (µ[M ] = Pprod,MTcc). (B)
Concentration trace of the signal molecule A over the 1000 simulated cell cycles. The
value of [A] stochastically fluctuates around the mean (µ[A] = 3/2kcat,MPprod,MT 2

cc).
We then identified the timepoints prior to cell division (when V > 2) and pulled out
the counts of the enzyme M (C) and signal molecule A (D). Plotting these values
against each other for each timepoint reveals a cross correlation between enzyme
count and signal molecule (E).
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Figure A·2: Signal molecule memory result robust to random seed of model
— Simulations were started with the typical random seed for Numpy’s generator
(seed=1000), but run successively ten times, ensuring each iteration used a different
sequence of random numbers. (A) Variance of pairwise differences for enzyme M.
Across all ten computational repeats, the results had the same behavior as Fig 2·2B,
with the sawtooth pattern in the variance of both the enzyme and signal molecule
pairs. (B) Variance of pairwise differences for the signal molecule A. Similarly, across
all ten repetitions, the same behavior of the variance of the sister pairs starting at
a low value before increasing to meet the constant variance of the random pairs is
seen. (C) Normalized difference of variances of pairwise differences for enzyme M
(red lines) and signal molecule A (blue lines). As in Fig 2·2D, the memory exists only
in the signal molecule across all ten sequences of random numbers.
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Figure A·3: Nongenetic memory in signal molecule occurs in all partition
models — Along with the binomial partition model used in the main text, two
other partition models were tested: a correlated binomial partition model, in which
the random number pull for partitioning of the enzyme M and signal molecule A
was the same, and a perfect partition model, in which exactly half of each molecule
were allotted to each daughter cell. (A) Variance of pairwise differences in enzyme
M for binomial (left), correlated binomial (center) and perfect (right) partition mod-
els. While binomial partitioning generated large variance between cells, correlated
partition models and perfect partition had one generation of memory between sister
cells before reverting to the level of variance of the random pairs (gray lines). (B)
Normalized difference of variances for pairwise differences of enzyme M in the three
partition models. Here, the one generation of memory in the perfect and correlated
partition models is evident, while no memory is present in the binomial partitioning.
(C) Variances of pairwise differences in the signal molecule A for the three partition
models. Across all cases, the sister cells (colored lines) have a few generations of
memory while the random pairs have a consistent level of variance. (D) Normalized
difference of variances for pairwise differences in the signal molecule A across the three
partition models. Despite the three different models used, the duration of nongenetic
memory in the signal molecule remains similar. n=1000 pairs for each simulation.
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Figure A·4: Memory encoded in signal molecule concentration occurs un-
der variable cell cycle time — To see if the fixed cell cycle time was necessary
for memory to occur in the signaling molecule concentration, we created a version of
the simulation in which the cell cycle time for each cycle was chosen from a normal
distribution centered with a mean of Tcc. We then performed our same variance of
pairwise difference analysis for the enzyme M and signal molecule A. While the varied
cell cycle time (B) smoothed out the sawtooth pattern seen in the uniform cycle time
(A), the was similarly no memory held in the concentration of the M enzyme (C).
The same general trend occurred in the signal molecule A, with the varied cell cycle
time (E) smoothing out the variance curves from the uniform cycle time (D) but not
changing the duration of the memory (F). n=1000 pairs for each trace.



106

Figure A·5: Comparison of analytically-derived and numerical simulations
for variable means across parameter sweeps — To check the validity of the
analytically-derived equations, we ran simulations along sweeps of the parameters in
the Production Only circuit, calculating the mean values for the amount of enzyme
M and signal molecule A in the mother and daughter cells (dots). These values
were compared to the predictions from the analytically-derived formulas (grey lines).
Across all variables and parameter sweeps, the analytical models concurred with the
numerical simulations of the data. n=1000 cells for each mean calculation.
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Figure A·6: Comparison of analytically-derived and numerical simulations
for variance of M-related variables across parameter sweeps — To check the
validity of the analytically-derived equations, we ran simulations along sweeps of the
parameters in the Production Only circuit, calculating the variance of values amount
of enzyme M in mother cells (top row), enzyme in daughter cells (second row), dif-
ference between sister cells (third row), and difference between random cells (bottom
row). These values were compared to the predictions from the analytically-derived
formulas (grey lines). Across all variables and parameter sweeps, the analytical mod-
els concurred with the numerical simulations of the data. n=1000 cells for each mean
calculation.
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Figure A·7: Comparison of analytically-derived and numerical simulations
for variance of A-related variables across parameter sweeps — To check
the validity of the analytically-derived equations, we ran simulations along sweeps
of the parameters in the Production Only circuit, calculating the variance of values
amount of signal molecule A in mother cells (top row), enzyme in daughter cells
(second row), difference between sister cells (third row), and difference between ran-
dom cells (bottom row). These values were compared to the predictions from the
analytically-derived formulas (grey lines). Across all variables and parameter sweeps,
the analytical models concurred with the numerical simulations of the data. n=1000
cells for each mean calculation.
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Figure A·8: Geometric decay fits for all tested cycle times Full data set
for model fits seen in Fig 2·5C. For each cell cycle time (Tcc), 1000 pairs of sister
and random cells were simulated for 10 generations and the normalized difference of
variance metric was calculated for the time course (Equation 2.8) and plotted as a
function of cell generations (blue-colored lines). Additionally, the conceptual model
described in Fig 2·5A was applied using Equation 2.22 for each value of Tcc (red
dashed lines). Across the entire tested range of Tcc values, the conceptual model fits
well with the data, suggesting that geometric decay by cell cycle sets the limit on the
nongenetic memory described here.
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Figure A·9: Sweep of breaker enzyme parameters alone entangles non-
genetic similarity duration with concentration of signal molecule — (A)
Heatmap of Vmax ratio values when breaker enzyme B parameters (maximal reaction
rate kcat,B and production rate Pprod,B) were swept over a linear range. As either pa-
rameter increases, the overall Vmax ratio increases until its limit at 2 (over which the
breaker is too active and degrades all signal molecule in the system). (B) Heatmap
of equilibrium concentration of signal molecule A as a function of breaker enzyme B
parameter sweep. When only the parameters of breaker enzyme B are increased, the
equilibrium concentration of A decreases until it reaches 0. (C) Nongenetic similarity
duration as a function of the Vmax ratio when only the parameters for breaker enzyme
B are altered. As the Vmax ratio increases, the value of the decay constant (χ) for
the nongenetic similarity of signal molecule A decreases. (D) Nongenetic similarity
duration as a function of the equilibrium concentration of signal molecule A. In this
parameter sweep, the decrease in nongenetic memory duration (as represented by the
decay root χ) was entangled with the decrease in the concentration of signal molecule
A. To untangle these, a sweep was performed altering parameters in both maker en-
zyme M and breaker enzyme B (Fig SA·10). n=1000 pairs of sister cells and 1000
pairs of random cells for each trace fitted to a value of χ in (C) and (D).
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Figure A·10: Sweep of Vmax ratio while maintaining concentration of signal
molecule — (A) Function describing relationship between parameters for maker en-
zyme M (kcat,M and Pprod,M , y-axis) and parameters for breaker enzyme B (kcat,B and
Pprod,B, x-axis). Both parameters were altered in order to maintain a constant equi-
librium concentration of the signal molecule A at 5 µM . (B) Relationship between
parameters for breaker enzyme B (kcat,B and Pprod,B, x-axis) and the corresponding
Vmax ratio (y-axis). Altering parameters for both the maker enzyme M and breaker
enzyme B enabled a sweep over the full range of 0 < Vmax < 2 while maintaining
a constant equilibrium concentration of signal molecule A. (C) Decay root of non-
genetic similarity of signal molecule A as a function of the Vmax ratio. Across all four
combinations of parameters, an inverse relationship exists between the nongenetic
similarity duration (as quantified by the decay root χ) and the Vmax ratio. n = 1000
pairs of sister and 1000 pairs of random cells for each calculation of the decay root.
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Figure A·11: CV values of enzymes and signal molecule A over Vmax ratio
sweep — (A) Coefficient of variation of maker enzyme M over Vmax ratio sweep. As
parameters are altered to change the Vmax ratio while maintaining a constant Meq, the
CV[M ] values changes only under the conditions when the Pprod,M value is included in
the pairs of parameters being altered (blue and black dots), as opposed to conditions
where kcat,M is being altered (red and grey dots). The high CV[M ] value of the Pprod,M

conditions at low Vmax ratio values contributes to the high CV[A] values at low Vmax

ratio values of those conditions (blue and black dots). (B) Coefficient of variation
of breaker enzyme B over Vmax ratio sweep. As parameters are altered to change
the Vmax ratio while maintaining a constant Meq, the CV[B] values change only under
the conditions when the Pprod,B value is included in the pairs of parameters being
altered (red and black dots), as opposed to conditions where kcat,B is being altered
(blue and grey dots). (C) Coefficient of variation of signal molecule A over Vmax

ratio sweep. In general, as the Vmax ratio increases, the CV[A] value also increases.
The exception to this is the scenario in which both Pprod parameters were altered to
achieve the Vmax ratio sweep (black dots). For this condition, at the upper range
of the Vmax ratio sweep, the CV[A] values decreases. This is due to the decrease in
the noise contributions from each enzyme in this part of the parameter sweep (small
values of CV[M ] in (A), black dots, and small values of CV [B] in (B), black dots).
CV values were calculated from n=1000 cells for each parameter combination.
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Appendix B

Quantitative Hypothesis Testing of Stress

Fiber-Induced Plasma Membrane

Deformation

B.1 Disclosure and Copyright Statement

This chapter adapts portions of “Ventral stress fibers induce plasma membrane defor-

mation in human fibroblasts” by Samuel J. Ghilardi, Mark S. Aronson, and Allyson

E. Sgro, 2021 Molecular Biology of the Cell. 2021; 32 (18). © The Authors

B.2 Introduction

This section describes some quantitative hypothesis testing I did in collaboration

with Sam Ghilardi. During induction of myofibroblast transition, it was observed

that cytosolic fluorphores illuminated long, fiber-like structures in the cells (Fig B·1).

It was found that these fluorescent structures were colocalized to ventral actin

stress fibers (Fig B·2).

With these data, we generated a hypothesis that contraction of the ventral stress

fibers during the fibroblast-to-myofibroblast transition created pockets that the cy-

tosolic fluorophores could flow into, creating the fluorescent structures (Fig B·3).
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Figure B·1: Fluorescent Structures are Visible in Human Dermal Myofi-
broblasts Loaded with a Cytosolic FluorophoreAfter 96 hours of TGF-β1 treat-
ment, Human Dermal Fibroblasts transition into myofibroblasts and separately de-
velop fluorescent structures on the ventral side of the cell (examples marked by white
arrows). These ridges can be observed in naive cells labeled with (A) cell permeable
dye, or cells expressing fluorescent proteins such as (B)mNeonGreen or (C)mScarlet-
i. Note that, at this magnification, fluorescent puncta can be seen in cells expressing
either mScarlet-i, but not mNeonGreen. There is also some visible bleedthrough from
the blue (Hoechst) channel into the green (cell explorer/mNeongreen) channel. Scale
Bar = 25 µm. Each experiment was conducted in parallel in three separate wells, and
a representative confocal slice from one well is shown.
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Figure B·2: Fluorescent Structures Colocalize with Ventral Actin Stress
Fibers (A&B) Cells either stained with green Cell Explorer dye or expressing
mNeonGreen (C&D) were fixed and stained with Hoechst (nuclei), phalloidin-
California Red (actin), and an anti-phospho-paxillin primary antibody (focal ad-
hesions) with an Alexa Fluor-647 secondary. The fluorescent structures (examples
marked with white arrows) observed with either the (A) Cell Explorer dye or (C)
mNeonGreen colocalize with phalloidin-stained stress fibers. The colocalized fibers
have focal adhesions on both ends of the fiber (B&D), identifying them as ventral
stress fibers. Scale Bar = 25 µm A&B and C&D are different channels for the same
field of view (note: There is some bleedthrough from the Hoechst Channel into the
green channel.In addition, there is some accumulation of fluorophore in the nucleus,
as they all have a molecular weight below the 40 kDa nuclear diffusion limit [178]).
Each experiment was conducted in parallel in three separate wells, and a representa-
tive confocal slice from one well is shown.
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Figure B·3: Schematic of a proposed mechanism for the development of the
observed fluorescent structures. As fibroblasts transition into myofibrobolasts,
ventral actin stress fibers (magenta rods) originating from focal adhesions (magenta
circles) deform the plasma membrane, creating cytosolic pockets (grey) for the fluo-
rescent dye or proteins to flow into, leading to the observed fluorescent structures.

Before experimentally testing this, I performed some simple modeling to ensure

that the energy requirements for this hypothesis fell within reasonable bounds of the

cellular energy budget.

B.3 Results

B.3.1 Estimation of energy required for membrane curvature

I first estimated if the forces and energy required to create these ridges are both

possible and reasonable within the constraints of the cellular energy budget. To

estimate the energy cost of membrane deformation by the ventral stress fiber, I started

with calculating the free energy, Gbend, required to bend a membrane:

Gbend[h(x, y)] =
Kb

2

∫
[κ1(x, y) + κ2(x, y)]

2da (B.1)
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where h(x,y) is the height of the membrane at position (x,y) relative to some reference

height, Kb is the membrane bending rigidity (typically on the order of 10-20 kBT ),

κ1 is the curvature of the membrane in the x dimension at position (x,y), κ2 is the

curvature of the membrane in the y dimension at position (x,y), and da is differential

area.

Figure B·4: Model conceptualization of stress fiber-induced membrane
deformation (A) The ventral stress fiber is modeled as a cylinder deforming a planar
membrane. As the y dimension is uniform, the model is collapsed to one dimension.
(B) Membrane deformation model used for membrane energy calculation. A stress
fiber was modeled as lowering into a membrane, causing the membrane to curve. This
fell into two regimes: one where the membrane is only deforming around the fiber
and one where parts of the membrane beyond the fiber are deforming. The energy
requirement for bending the membrane were calculated across both regimes.

To simplify my calculations, I assumed the fibers to be a straight cylinder indenting

a planar membrane (Figure B·4A). This collapses the curvature consideration to one

dimension, as all of the curvature along the y-axis will be the same at any given x

(Figure B·4B). This simplified my free energy equation calculation to Equation B.2:
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Gbend[h(x, y)] =
Kb ∗ L

2

∫
[κ1(x)]

2dx (B.2)

where L is the length of the fiber cylinder. Curvature of a 1D line is calculated using

Equation B.3:

κ(x) =
|f ′′(x)|

(1 + f ′(x)2)3/2
(B.3)

where f(x) is the function describing the change in height of a line. I built some

simple fitting equations to model this profile of the membrane around the fiber (see

Methods). The range of free energy requirements fell into two regimes: when the

center point of the fiber was modeled above the plane of the membrane and when the

center point of the fiber was below the plane of the membrane. In the first regime, the

free energy requirements were calculated using the assumption that the membrane

bent directly around the fiber (Figure B·4B, first two panels). The calculated energies

fell in the range of 0-500 kBT. In the second regime, along with bending around

the fiber, parts of the membrane extending out past the fiber diameter were also

simulated as bending (Figure B·4B, last three panels). While the exact energy values

depend on how these bending equations describe the membrane bending, we found

the estimates generally fell in the range of a few thousand kBT. As a comparison

point, the free energy of vesicle formation is about 500 kBT, so the first regime of this

membrane bending phenomenon is estimated to be in the same order of magnitude,

while the second regime, the one that predicts the pocket where fluorescent molecules

would diffuse (Figure B·4B, final panel), falls no more than one order of magnitude

above this known phenomenon. After examining the overall energy requirements, we

then examined if the actual energy budget required to induce this phenomenon was

reasonable given the time frame and estimated energy requirement.
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B.3.2 Estimation of energy required for fiber contraction

To see if the energy of the membrane bending hypothesis fell within a reasonable

energy budget of a fibroblast cell, I estimated the number of ATP molecules required

to contract the stress fibers to cause sufficient bending in the membrane. While we

recognize that the addition of actin filaments to a ventral stress fiber is a dynamic

process, we assumed a static bundle of fibers for the purposes of this calculation. I

started by assuming a range of possible radii for the stress fibers. I then calculated

the number of individual actin filaments in a given cross-section based on an actin

filament radius of 8 nm. This allowed us to calculate the number of individual fibers

of actin that needed to contract using Equation B.4:

Nactinfilaments =
CSAV SF

CSAactinfilament

=
CSAV SF

8nm
(B.4)

Actin polymers are contracted by myosin motors, whose step size has been es-

timated at 5 nm [179]. It has also been measured that a myosin motor requires 1

ATP/step [180]. Using these estimates, I explored a range of ATP requirements for

a variety of fiber radii and contraction lengths. Given the assumptions and estimates

made, I calculated a linear relationship between energy requirement and how much

length the fiber contracts, as shown by Equation B.5:

NATP =
Lcontraction

Lstepsize

∗NATP/step ∗Nactinfilaments (B.5)

I calculated this relationship over a range of potential radius values for the fibers

(Figure B·5). Even for the largest estimate of fiber radius (250 nm), we calculated

the energy requirement to be on the order of millions of ATP molecules.
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Figure B·5: Calculation results from stress fiber contraction calculation.
In our proposed model, the contraction of the ventral stress fibers by myosin II motors
drives the formation of the cytosolic pockets. Here, we consider the energy required
for that contraction over a range of observed fiber radii (50-250 nm) and contraction
distances (0-15000 nm). The calculated ATP (left y-axis) and kBT equivalents (right
y-axis) indicate the proposed model is reasonable given the timeframe of cytosolic
pocket formation.

B.4 Discussion and conclusions

To understand if these values were reasonable, I compared the ATP requirement we

calculated with an estimate of the total ATP budget for a fibroblast cell. One calcu-

lation estimated fibroblast ATP production at 1 billion ATP/sec/cell [181], putting a

multi-day formation of these fibers comfortably within the energy budget of the cell,

ensuring that energy constraints were not a reason to rule out our hypothesis that

the contraction of ventral stress fibers causes the formation of these structures.
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B.5 Materials and Methods

Plasmid Construction

pLenti CMV Puro Dest ERK-KTR was digested with BsrgI to remove the ERK-KTR

gene. The appropriate primers for each gene (see primer table) were used to generate

PCR fragments of the gene and add 20-25 base homology arms to each end of the

PCR fragment. The digested pLenti CMV Puro Dest vector and PCR fragment were

assembled using NEB HiFi Assembly mix, and the mixture was transformed into

NEBstable E. coli and grown at 30◦C overnight. Plasmids were sequence verified by

Sanger Sequencing provided by Quintara Biosceince using the in-house CMV Forward

(BP0002) and WPRE (BP0156) reverse primers.

Viral Production

HEK 293FT cells (passages 3-15) were plated at 90% confluency in a T-25 flask in

HEK cell media (DMEM, 10% FBS, 1X Glutamax, 1x NEAA). After 24 hours, the

flask was transfected with the pLenti plasmid and the packaging VSV-G and PSPAX-

2 plasmids using Lipofectamine 3000, according to the manufacturer’s protocol. After

12 hours, the media in the dish was discarded and replaced. Media from the flask

containing viral particles was collected 24 hours later, replaced and collected again

24 hours later. The viral media was spun at 300 x g for 10 minutes to pellet any cells,

and the supernatant was then passed through a .45 µm syringe filter. The resulting

media was aliquoted in 500 µL tubes and stored at -80◦C.

NHDF Cell Culture

Neonatal Human Dermal Fibroblasts (passages 1-8) were cultured in fibroblast media

(FGM media supplemented with an FGM-2 OneShot kit) in an incubator at 37◦C and
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5% CO2. Cells were passaged at 80-90% confluency, and media was changed every 48

hours. To generate stably expressing pools of cells, fibroblasts were lifted from a flask

by incubating the cells in .05% trypsin and then pelleted by centrifugation at 300 x g

for 5 minutes. The cells were then resuspended in fresh fibroblast media and seeded

in a 24 well plate at a concentration of 20,000 cells/well. 500 µL of viral media and

500 µL of fibroblast media were then added to the well, and the dish was incubated

at 37◦C for 48 hours. The media in the well was then changed to fibroblast media

with 1 µg/mL puromycin to select for positively transduced cells. After 48 hours, the

cells were transferred to either a 6 well dish for continued passaging, or a new 24 well

plate for experimentation.

Stress Fiber Induction

Fibroblasts were seeded at 20,000 cells/well in a glass bottomed 24 well dish. After 24

hours, stress fibers were induced by changing the cell media to a serum-free induction

media (DMEM, 2% B-27, 10 ng/µL TGFβ-1) which was refreshed every 48 hours.

Cells were used after 96 hours of induction.

Confocal Microscopy

After 96 hours of induction, the cells were stained with various live cell stains ac-

cording to the manufacturer’s instructions, which generally involved diluting a stock

solution 1000x (10,000x for Cell Mask Actin stain) in DMEM, and incubating the cells

for 15 - 30 minutes at 37◦C and 5% CO2. After staining, the cell media was changed

to imaging media (Fluorobrite DMEM, 1% Glutamax, 1% OxyFluor). Cells were im-

aged on a Ti-2E Eclipse (Nikon Instruments) with a Dragonfly Spinning Disk confocal

system (Oxford Instruments) in a 37◦C and 5% CO2 stage top incubator (OKO labs).

Images were acquired on an iXon 888 Life EM-CCD camera (Oxford Instruments).
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Fluorescent dyes were imaged through a 405/488/561/647 dichroic mirror using the

following excitation laser/emission filter combinations: Ex.405 nm-Em.445/50, Ex.

488 nm-Em. 515/30, Ex. 561 nm-Em. 590/60, Ex. 647- Em. 698/60. All staining

and drug treatments were repeated in 3 separate wells, and a representative confocal

slice was selected from each treatment for display in a figure. Staining images were

acquired in a 5x5 grid with 10% overlap and stitched using the Fiji Grid/Collection

Stitching plugin [182]. To display the small structures clearly, a 1024x1024 region of

the stitched image is displayed in each figure.

Immunofluorescence

After 96 hours of induction, cells were fixed in 4% Paraformaldehyde in PBS and

permeabilized using 0.1% Triton-x. Non-specific interactions were blocked using 10%

normal goat serum in PBS. The cells were then incubated overnight with the primary

antibody (anti-paxillin 1:50 and anti-ERM 1:100), washed in PBS, and then followed

by incubation with the appropriate Alexa Fluor 647 secondary antibody (1:200) in

10% normal goat serum for 1 hour at room temperature. In experiments where

phalloidin or membrane stain was used, it was added after the secondary at 1:1000

in PBS and incubated for 30 minutes at room temperature. Cells were washed 3X

in PBS and then imaged using the same parameters as previously described using

a Plan Apochromatic 100x silicone oil immersion objective (Nikon), but at room

temperature with no CO2.

Membrane Bending Energy Calculations

All model calculations were carried out using a Python script in Spyder (version 4.1.5)

using the NumPy [83], Matplotlib [85], and SciPy [84] packages. To calculate mem-

brane bending, the profile of the membrane wrapping around the fiber was defined
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as follows: until the midpoint of the fiber is level with the membrane, the membrane

wraps directly around the fiber using a square root function. As the midpoint of

the fiber dips below the level of the membrane, parts of the membrane to either side

begin to bend. This is modeled by fitting hyperbolic curves that start at the y value

at the midpoint of the fiber and have a length half the distance from the fiber mid-

point to the resting level of the membrane. After the profile of the membrane has

been defined, the curvature at each point was calculated using the derivative function

from the SciPy package. The bending energy equation is applied for each point of

curvature and summed over the whole stretch of membrane modeled to get the total

bending energy. Code available online at https://github.com/sgrolab/ventralsfpaper.
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J. Garcia-Ojalvo, and G. M. Süel, “Temporal competition between differentia-
tion programs determines cell fate choice,” Molecular Systems Biology, vol. 7,
p. 557, Jan. 2011.



129

[49] C. A. Weiss, J. A. Hoberg, K. Liu, B. P. Tu, and W. C. Winkler, “Single-Cell
Microscopy Reveals That Levels of Cyclic di-GMP Vary among Bacillus subtilis
Subpopulations,” Journal of Bacteriology, vol. 201, pp. e00247–19, July 2019.

[50] H. Sondermann, N. J. Shikuma, and F. H. Yildiz, “You’ve come a long way:
c-di-GMP signaling,” Current Opinion in Microbiology, vol. 15, pp. 140–146,
Apr. 2012.

[51] J. L. Spudich and D. E. Koshland, “Non-genetic individuality: chance in the
single cell,” Nature, vol. 262, pp. 467–471, Aug. 1976.

[52] I. El Meouche and M. J. Dunlop, “Heterogeneity in efflux pump expression
predisposes antibiotic-resistant cells to mutation,” Science, vol. 362, pp. 686–
690, Nov. 2018.

[53] I. Adrian-Kalchhauser, S. E. Sultan, L. N. Shama, H. Spence-Jones, S. Tiso,
C. I. Keller Valsecchi, and F. J. Weissing, “Understanding ’Non-genetic’ Inher-
itance: Insights from Molecular-Evolutionary Crosstalk,” Trends in Ecology &
Evolution, vol. 35, pp. 1078–1089, Dec. 2020.

[54] C. S. Gokhale, S. Giaimo, and P. Remigi, “Memory shapes microbial popula-
tions,” PLOS Computational Biology, vol. 17, p. e1009431, Oct. 2021.
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memories of growth and cycle speed correlate cell cycles in lineage trees,” eLife,
vol. 9, p. e51002, Jan. 2020.

[59] A. J. Waite, N. W. Frankel, Y. S. Dufour, J. F. Johnston, J. Long, and
T. Emonet, “Non-genetic diversity modulates population performance,” Molec-
ular Systems Biology, vol. 12, p. 895, Dec. 2016.

[60] H. H. Mattingly and T. Emonet, “Collective behavior and nongenetic inher-
itance allow bacterial populations to adapt to changing environments,” Pro-
ceedings of the National Academy of Sciences, vol. 119, p. e2117377119, June
2022.



130

[61] D. R. Rigney, “Stochastic model of constitutive protein levels in growing and
dividing bacterial cells,” Journal of Theoretical Biology, vol. 76, pp. 453–480,
Feb. 1979.

[62] O. G. Berg, “A model for the statistical fluctuations of protein numbers in
a microbial population,” Journal of Theoretical Biology, vol. 71, pp. 587–603,
Apr. 1978.

[63] D. T. Gillespie, “Exact stochastic simulation of coupled chemical reactions,”
The Journal of Physical Chemistry, vol. 81, pp. 2340–2361, Dec. 1977.

[64] T. Schirmer, “C-di-GMP Synthesis: Structural Aspects of Evolution, Catalysis
and Regulation,” Journal of Molecular Biology, vol. 428, pp. 3683–3701, Sept.
2016.

[65] S. Kunz, A. Tribensky, W. Steinchen, L. Oviedo-Bocanegra, P. Bedrunka, and
P. L. Graumann, “Cyclic di-GMP Signaling in Bacillus subtilis Is Governed
by Direct Interactions of Diguanylate Cyclases and Cognate Receptors,” mBio,
vol. 11, pp. e03122–19, Mar. 2020.

[66] S. Cooper and C. E. Helmstetter, “Chromosome replication and the division
cycle of Escherichia coli Br,” Journal of Molecular Biology, vol. 31, pp. 519–
540, Feb. 1968.

[67] D. R. Cox, “Some Statistical Methods Connected with Series of Events,” Jour-
nal of the Royal Statistical Society: Series B (Methodological), vol. 17, no. 2,
pp. 129–157, 1955.

[68] K. P. Koutsoumanis and A. Lianou, “Stochasticity in Colonial Growth Dy-
namics of Individual Bacterial Cells,” Applied and Environmental Microbiology,
vol. 79, pp. 2294–2301, Apr. 2013.

[69] D. Davidi, E. Noor, W. Liebermeister, A. Bar-Even, A. Flamholz, K. Tummler,
U. Barenholz, M. Goldenfeld, T. Shlomi, and R. Milo, “Global characteriza-
tion of in vivo enzyme catalytic rates and their correspondence to in vitro
k cat measurements,” Proceedings of the National Academy of Sciences, vol. 113,
pp. 3401–3406, Mar. 2016.

[70] B. Soufi, K. Krug, A. Harst, and B. Macek, “Characterization of the E. coli
proteome and its modifications during growth and ethanol stress,” Frontiers in
Microbiology, vol. 6, 2015.

[71] B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van Dien, and J. D.
Rabinowitz, “Absolute metabolite concentrations and implied enzyme active
site occupancy in Escherichia coli,” Nature Chemical Biology, vol. 5, pp. 593–
599, Aug. 2009.



131

[72] R. G. Eagon, “Pseudomonas natriegens, a marine bacterium with a generation
time of less than 10 minutes,” Journal of Bacteriology, vol. 83, pp. 736–737,
Apr. 1962.

[73] X. Dai, Z. Shen, Y. Wang, and M. Zhu, “Sinorhizobium meliloti, a Slow-
Growing Bacterium, Exhibits Growth Rate Dependence of Cell Size under Nu-
trient Limitation,” mSphere, vol. 3, pp. e00567–18, Nov. 2018.

[74] T. M. Thomson, K. R. Benjamin, A. Bush, T. Love, D. Pincus, O. Resnekov,
R. C. Yu, A. Gordon, A. Colman-Lerner, D. Endy, and R. Brent, “Scaffold num-
ber in yeast signaling system sets tradeoff between system output and dynamic
range,” Proceedings of the National Academy of Sciences, vol. 108, pp. 20265–
20270, Dec. 2011.

[75] K. A. Johnson and R. S. Goody, “The Original Michaelis Constant: Translation
of the 1913 Michaelis–Menten Paper,” Biochemistry, vol. 50, pp. 8264–8269,
Oct. 2011. Publisher: American Chemical Society.

[76] A. Amir, O. Kobiler, A. Rokney, A. B. Oppenheim, and J. Stavans, “Noise in
timing and precision of gene activities in a genetic cascade,” Molecular Systems
Biology, vol. 3, p. 71, Jan. 2007.

[77] E. A. Arriaga, “Determining biological noise via single cell analysis,” Analytical
and Bioanalytical Chemistry, vol. 393, pp. 73–80, Jan. 2009.

[78] M. S. Aronson, C. Ricci-Tam, X. Zhu, and A. E. Sgro, “Exploiting noise to
engineer adaptability in synthetic multicellular systems,” Current Opinion in
Biomedical Engineering, vol. 16, pp. 52–60, Dec. 2020.

[79] C. L. Kelly, A. W. Harris, H. Steel, E. J. Hancock, J. T. Heap, and A. Pa-
pachristodoulou, “Synthetic negative feedback circuits using engineered small
RNAs,” Nucleic Acids Research, vol. 46, pp. 9875–9889, Oct. 2018.

[80] M. M. Hansen, W. Y. Wen, E. Ingerman, B. S. Razooky, C. E. Thompson,
R. D. Dar, C. W. Chin, M. L. Simpson, and L. S. Weinberger, “A Post-
Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabi-
lization,” Cell, vol. 173, pp. 1609–1621.e15, June 2018.

[81] K. S. Farquhar, D. A. Charlebois, M. Szenk, J. Cohen, D. Nevozhay, and
G. Balázsi, “Role of network-mediated stochasticity in mammalian drug re-
sistance,” Nature Communications, vol. 10, pp. 1–14, June 2019.

[82] C. Tan, F. Reza, and L. You, “Noise-Limited Frequency Signal Transmission in
Gene Circuits,” Biophysical Journal, vol. 93, pp. 3753–3761, Dec. 2007.



132

[83] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe,
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subtilis biofilm formation and social interactions,” Nature Reviews Microbiology,
vol. 19, pp. 600–614, Sept. 2021.

[119] Y. Chai, R. Kolter, and R. Losick, “Paralogous Antirepressors Acting on the
Master Regulator for Biofilm Formation in Bacillus subtilis,” Molecular micro-
biology, vol. 74, pp. 876–887, Nov. 2009.

[120] J. Kampf, J. Gerwig, K. Kruse, R. Cleverley, M. Dormeyer, A. Grünberger,
D. Kohlheyer, F. M. Commichau, R. J. Lewis, and J. Stülke, “Selective Pressure
for Biofilm Formation in Bacillus subtilis: Differential Effect of Mutations in
the Master Regulator SinR on Bistability,” mBio, vol. 9, pp. e01464–18, Sept.
2018.

[121] T. M. Norman, N. D. Lord, J. Paulsson, and R. Losick, “Memory and modu-
larity in cell-fate decision making,” Nature, vol. 503, pp. 481–486, Nov. 2013.

[122] N. D. Lord, T. M. Norman, R. Yuan, S. Bakshi, R. Losick, and J. Pauls-
son, “Stochastic antagonism between two proteins governs a bacterial cell fate
switch,” Science, vol. 366, pp. 116–120, Oct. 2019.
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