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ABSTRACT

Understanding how cells use intracellular signaling to detect environmental changes

and alter behaviors is essential for understanding a wide range of biological processes. The

current gap of understanding resides in time-changing signals in individual cells (signaling

dynamics) and cell-cell communication in multicellular contexts. Here, we used theoreti-

cal and experimental approaches to study cell signaling in two eukaryotic model systems,

with a specific focus on processes that involve signaling dynamics and cell-cell commu-

nication. First, we focus on the starvation-induced population-level signaling oscillations

in the social amoebae, Dictyostelium discoideum. By constructing a unifying theoretical

framework, we were able to directly compare existing models and experimental data. From

this systematic investigation, we identified that the key features in single-cell signaling net-

works that coordinate population-level oscillations are adaptive spiking and fold-change

detection. We then applied experimental approaches to interrogate how temporal changes

in a signaling molecule modulate cell behaviors (“signal decoding") and how environmen-
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tal cues modulate the dynamics of a signaling molecule (“environment encoding") in mam-

malian fibroblast cells. First, we explored the impact of transient, direct activation of the

cAMP pathway on cell migration using an optogenetic tool. We found that cell migration

is inhibited by repetitive transient activation of the cAMP pathway, and the inhibitory ef-

fect depends on the extent of activation. By characterizing a series of single-cell behaviors,

we found that transient activation of the cAMP pathway induces reversible cell contrac-

tile force relaxation and actin cytoskeleton reorganization, both of which can potentially

mediate migration inhibition. Further, we confirmed that the induced actin cytoskeleton

reorganization is mediated by calcium signaling. Next, we investigated cytosolic calcium

dynamics in the presence of a common culture media supplement, serum. We found serum

induces trains of calcium spikes and further identified a major serum component mediat-

ing this response as lysophosphatidic acid (LPA). Although features of calcium spiking

display a great amount of variability among cells, the faction of spiking cells and spiking

frequency generally encode the concentration of environmental LPA. Through a series of

pharmaceutical inhibitor experiments, we identified major sources of calcium ions as well

as other pathways that shape calcium spiking. This body of work demonstrates the different

utilities of theoretical modeling and experiments in understanding cell signaling which pro-

vides an advanced understanding of biological processes that involve signaling dynamics

or cell-cell communication.
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Chapter 1

Introduction

1.1 Cell signaling is a process that takes environmental inputs and
modulates cellular outputs

Eukaryotic cells exist in a constantly changing environment. Single cells need to sense and

respond to those changes to maintain homeostasis at cellular, tissue, and organismal lev-

els. Like parts in any engineering system, single cells serve as essential components of the

multicellular biological systems, and the proper response of single cells is essential for the

normal functioning of the whole system. We can borrow the language from engineering to

describe the process of cells responding to environmental changes (an idea echoes that from

previous reviews such as [1, 2, 3]). Generally, cells perceive information inputs (environ-

mental changes) through sensing external cues such as changes in biochemical molecule

concentrations and changes in surrounding physical forces. The input is then fed into a

signal processing unit (cell signaling network) inside the cells, usually consisting of multi-

ple signal processing steps including chemical reactions, diffusion, and physical transport.

The outputs from those processing units are translated to generate cellular outputs (cell

behavioral change) such as gene expression, fate decision, cell migration, etc. The process

during which cells perceive and process external inputs, transmit information through the

intracellular networks, and eventually modulate cell behaviors is termed cell signaling (Fig

1·1).

An example of how cells use signaling to respond to environmental inputs and modulate

cellular outputs is the signaling molecule calcium [4, 5, 6]. Firstly, cytosolic calcium is reg-
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ulated by a wide range of environmental inputs. The environmental biochemical molecules

that can modulate cytosolic calcium activity include ATP which acts on fibroblasts [7], car-

bachol (CCh) which acts on HEK cells [8], peptide–MHC complex which acts on immune

cells [9, 10], and lysophosphatidic acid (LPA) which acts on astrocytes [11], fibroblasts

[12], and keratinocytes [13]. Cytosolic calcium can also be regulated by physical cues in

the environment, including stretch [14], squeeze [15], fluid shear stress [16], and substrate

stiffness [17, 18]. Secondly, calcium activity modulates a wide range of downstream effec-

tors including cellular contractility [19], actin cytoskeleton organization [14, 16], migration

[20, 21], proliferation [22], gene expression (reviewed in for example [4, 5]) and secretion

[23]. The example of calcium signaling highlights how detecting environmental cues and

coordinating cell behaviors is driven by complex cell signaling networks.

Figure 1·1: Two approaches for studying cell signaling.
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1.1.1 Challenges and gaps in studying cell signaling

Our knowledge of cell signaling has taken the form of signaling networks, static maps con-

sisting of hundreds of relevant signaling molecules and their interactions within a single

cell (for example, the cAMP network delineated in [24]). However, these maps lack two

essential types of information. Firstly, these maps do not reflect the dynamics of the sig-

naling molecules in the system. Secondly, these maps do not contain information about

communication between cells. As will be discussed below, both types of information play

important roles in regulating biological processes in multicellular contexts.

Over the past decade, more examples started to emerge which showed that the dynam-

ics, rather than the steady-state activity of signaling molecules, mediate cells’ response to

external cues (reviewed in [25]). For instance, in PC-12 cells, epidermal growth factor

(EGF) treatment leads to transient ERK activation which results in cell proliferation, but

nerve growth factor (NGF) treatment induces sustained ERK activation which results in cell

differentiation [26]. Another example is that UV and γ irradiation elicit different dynamical

profiles of p53 activity (pulsatile versus sustained activation) [27] which leads to different

gene expression profiles that determine diverging cell fates (DNA damage recovery versus

senescence) [28]. The last example is that multiple types of extracellular ligands are able to

induce trains of cytosolic calcium spikes, with the concentration of those ligands encoded

in the frequency or amplitude of the calcium spikes [29, 6]. The dynamical features of these

calcium activities in turn modulate cell behaviors such as migration and gene expression

[30, 31, 32]. These examples highlight the importance of studying the dynamic activity in

cell signaling networks.

Cell-cell communication is another area that has started to receive more attention in

the context of cell signaling. For example, communities of bacteria communicate with

each other through secreting chemicals that help them modulate behaviors in response to

changes in cell density or species composition, a process called quorum-sensing [33, 34].
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Similar mechanisms can be found in a group of yeast as they collectively resist heat-induced

damages [35] and cells in mammalian skin near hair follicles during hair regeneration [36].

Another type of cell-cell communication is characterized by cells modulating the dynam-

ics of their environment and responding to these dynamic cues (termed dynamical quorum

sensing [37]). For instance, the starvation-induced collective signaling in the social amoe-

bae cells is mediated by the pulsatile production and release of the signaling molecule

cAMP [38]. By detecting and responding to the dynamical changes of cAMP, cells are able

to coordinate group-level behaviors manifested as cAMP oscillations and waves. A similar

mechanism has been shown to drive metabolic oscillations in yeast populations upon nutri-

ent source change [39, 40]. These gaps, the need to study the dynamics of cell signaling,

and the need to study signaling in a native, multicellular context, have made understanding

cellular signaling a challenge. Strategies that have yielded insights into this challenge have

used both experimental and theoretical approaches.

1.2 Two approaches to study cell signaling

Two major approaches have been used to study cell signaling: theoretical modeling and

experiments (Fig 1·1). For processes whose signaling responses are well-characterized or

whose pathways are rather well-studied, theoretical modeling can be a powerful tool to

facilitate not only testing different mechanisms underlying a biological process by quanti-

tative formulation but also extracting basic principles or rules driving the biological pro-

cesses. On the other hand, for processes in which the relevant signaling molecules are yet to

be identified or the signal transduction is less well-characterized, experimental approaches

are usually used to unveil how external inputs alter signaling molecules inside the cells,

how the information is transmitted in the pathway, and how cellular outputs are modulated.
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1.2.1 Theoretical approaches to illuminate essential principles about cell signaling

In the context of studying cell signaling, theoretical modeling can be used in several ways:

(1) to quantitatively show the validity of potential mechanisms underlying a biological pro-

cess, (2) to estimate unknown parameters, (3) to distinguish alternative mechanisms by

generating falsifiable predictions, and (4) to distill essential mechanisms/principles that

drive processes [41, 42, 43, 44]. The last usage of theoretical models can be a powerful

way for us to understand cell signaling: it can help us identify the essential rules guid-

ing a process as well as distill common principles that are generalizable across different

processes.

An example that highlights this particular usage of modeling is the principles under-

lying collective oscillations in a group of cells that are coupled through environmental

signals. This behavior is widely observed in cells that can respond to time-varying envi-

ronmental signals and in turn alter the dynamics of these signals. Examples of this include

the abovementioned collective signal oscillations in the social amoebae cells [38] and gly-

colic oscillations in yeast [40, 39]. Theoretical work suggested generalized requirements

for initiating collective oscillations: cells need to anticipate the environmental signal and

the signals generated by cells need to have sufficient amplitude [45]. This simple princi-

ple was able to predict key system behaviors such as threshold cell density at the onset

of collective oscillations that were confirmed by experimental data in both the amoebae

cells and yeast. This work demonstrates the utility of theoretical models to extract essential

principles in signaling-mediated biological processes.

In addition to theory, other types of computational approaches, specifically bioinformat-

ics/systems approaches, have been developed to study cell signaling. Initially, when full

genome data became available, computational strategies were used to find and annotate

genes [46]. More recently, with the advancement of experimental techniques, researchers

are able to acquire large datasets containing information about mRNA translation (tran-
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scriptomics), protein expression (proteomics), and molecular interactions in response to

external inputs or in the contexts of different diseases [46, 47]. Based on these data, com-

putational approaches are developed to generate or infer signaling networks that consist of

interactions between molecular players. These networks can then be subjected to further

analysis such as parameter estimation, module identification, and network attribute anal-

ysis, all of which advance the understanding of the general principles as well as specific

characteristics of the networks [47, 48, 49]. For example, systems biology approaches were

used to study variability in calcium signaling responses. By reconstructing calcium signal-

ing networks and estimating model parameters based on experimental data, researchers

found that the calcium signaling variability is likely due to the differences in cell states

(model parameters) [50]. Although will not be the focus of this Dissertation, bioinformat-

ics/ systems biology methods have offered a path to extensive and in-depth investigations

into cell signaling networks.

1.2.2 Experimental approaches to study cell signaling

For signaling processes where the key signaling molecules and interactions are unclear,

people generally apply experimental approaches to identify the key molecules and delin-

eate the interactions. Experimental investigations into cell signaling can be roughly split

into two classes based on which part of the process (inputs versus outputs) the study fo-

cuses on. Studies about “environment encoding" focus on how environmental cues change

intracellular signaling pathways, whereas studies on “signal decoding" focus on how in-

tracellular signaling is translated to alteration in cell behavior. To understand environment

encoding, one can modulate the external environment and characterize the intracellular sig-

naling molecule of interest. One can also gather a more detailed picture of the network by

perturbing other potentially relevant nodes in the network. To understand signal decoding,

one of the best approaches is to directly and specifically modulate the signaling molecule(s)

of interest and characterize the resulting cell behavior.
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Technological advancements have enabled direct measurements of not only the steady-

state activity but also the dynamic changes of signaling molecules inside the cells [51].

Moreover, development in techniques such as microfluidics and optogenetics enabled ac-

curate control over the environmental cues as well as the dynamics of intracellular signaling

molecules [52].

A set of studies on intracellular calcium signaling exemplify how technological ad-

vancements allowed us to characterize and dissect the input-to-signaling dynamics, signal-

ing dynamics-to-output, and the role of cell-cell coupling. Generally, a calcium signaling

system functions by generating a pulse or trains of transients (spikes) of calcium activity

[4]. By visualizing calcium dynamics using genetically-encoded calcium reporters, re-

searchers established how calcium dynamics are modulated by changes in environmental

cues. For instance, the frequency of calcium spiking has been shown to encode the concen-

tration of external ligands in multiple cell types (reviewed in [6, 29]). Further, the use of

microfluidics allowed controlled input of extracellular ligands, specifically in consecutive

steps of different concentrations. These experiments helped suggest that calcium dynamics

encode fold difference of ligand concentrations [8]. On the other hand, by experimentally

modulating the calcium pathway using optogenetics, researchers were able to delineate how

the calcium dynamics affect cell behaviors such as gene expression [32], actin cytoskeleton

organization [53], and cell migration [54, 55]. Additionally, by modulating cell-cell com-

munication strength through changing cell density, researchers revealed that a potential

source for the large variability in calcium spiking frequency in a group of cells is calcium

ion exchange between cells [56]. These experiments helped formulate an understanding

of how external cues shape calcium dynamics, how these dynamics alter cell behaviors,

and the role of cell-cell communication in determining calcium dynamics in multicellular

contexts.
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1.3 Summary

In this Dissertation, we took two separate approaches, the theoretical approach and the

experimental approach, to study cell signaling in two eukaryotic model systems.

In Chapter 2, we focused on the single-cell level signaling processing features that

coordinate population-level signaling oscillations in the social amoebae, Dictyostelium

discoideum (Dicty). We took different models that suggest different single-cell signal-

ing mechanisms and applied a unified simulation framework. This allowed us to directly

compare the models and experimental measurements, which suggested single-cell adaptive

spiking and fold-change detection are the essential single-cell features driving population

signaling oscillations.

Using the experimental approach, we studied how an intracellular signaling molecule

modulates cellular outputs (Chapter 3) and how the dynamics of another intracellular sig-

naling molecule encode environmental inputs (Chapter 4) in the context of mammalian

cell culture. In Chapter 3, we studied how transient, direct activation of the cAMP/PKA

pathway modulates behaviors related to cell migration. Harnessing an optogenetic tool that

allowed for tunable activation of the cAMP/PKA pathway, we found that higher activity of

this signaling pathway inhibits cell migration. We further found that the inhibition of cell

migration potentially resulted from changes in cell contractile forces and actin cytoskeleton

structure, and the reorganization of the actin cytoskeleton is potentially mediated by cytoso-

lic calcium. Next, in Chapter 4, we characterized calcium signaling dynamics in response

to serum, a common component in cell culture media. We found that serum supplement

led to calcium spiking in fibroblast cells, and identified one of the key serum components

responsible for calcium spiking as lysophosphatidic acid (LPA). We then found that the

features of calcium dynamics encode information about LPA concentration. Further, we

identified major sources of calcium ions as well as other pathways that mediate and shape

calcium spiking that is induced by LPA.
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Together, these results demonstrate the different utilities of theoretical modeling and

experiments in understanding cell signaling in two different systems: the social amoebae

and mammalian cell culture. From these studies, we derived an advanced understanding of

biological processes that involve signaling dynamics or cell-cell communication.
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Chapter 2

Identifying key single-cell features driving robust
collective oscillatory signaling in Dictyostelium

2.1 Disclosure & Copyright Statement

This chapter is a modified version of “Robust collective oscillatory signaling requires

single-cell excitability and fold-change detection” by Chuqiao Huyan, Alexander Golden,

Xinwen Zhu, Pankaj Mehta, and Allyson E. Sgro, 2021. BioRxiv. © The Authors.

2.2 Introduction

Cellular populations often work together to engage in complex emergent multicellular

behaviors. These behaviors range from the computations performed by populations of

neurons [57], to coordinated growth within a biofilm composed of thousands of bacteria

[58, 59]. Remarkably, these population-level behaviors are often coordinated by biochem-

ical intracellular signaling networks. This decentralized control of population-wide be-

haviors by internal signaling networks is impressive given that individual cells often have

access to very limited information about their immediate surroundings. Furthermore, cell-

cell communication mechanisms commonly utilize only a handful of signaling molecules,

limiting information transmission between cells. This raises natural questions about the

strategies cells employ to use this limited information to robustly control emergent popula-

tion behaviors in a wide variety of contexts.

To address this question, we focus on one of the most notable and extensively-studied
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examples of collective multicellular phenomena, the starvation response of the social amoeba

Dictyostelium discoideum, where cells transition from a free-living unicellular state to a

multicellular aggregate [38, 60]. Upon starvation, Dictyostelium cells initiate a devel-

opmental program where some cells start releasing pulses of cyclic AMP (cAMP) into

the external space [61, 62, 63]. These oscillatory pulses are relayed through the popu-

lation, creating external cAMP waves that act as a chemoattractant directing cell migra-

tion toward the source of cAMP during aggregation. These waves allow Dictyostelium to

self-organize and develop into a stalk-and-spore structure in complex and ill-defined en-

vironments over group sizes that can vary by many orders of magnitude [38]. This type

of collective oscillatory phenomena is found across a wide range of biological systems,

ranging from pacemaker-driven electrical oscillations driving contractions in the heart [64]

to other biochemically-coupled microbial systems that synchronize their internal states in

response to environmental changes. For example, yeast exhibit sustained glycolic oscil-

lations under specific environmental conditions [40, 65] while bacterial collectives pause

and restart growth upon glutamate starvation and these are coupled to ion-driven electri-

cal oscillations [58, 59]. Identifying how this level of control is achieved at the molecular

level in these biochemically-coupled systems is still an open question as most studies on

design principles that coordinate multicellular phenomena have focused on developmental

networks in metazoans that use well-defined morphogen gradients to pattern their develop-

ment [66, 67, 68, 69, 70].

Despite decades of work on this elegant phenomenon Dictyostelium exemplifies, iden-

tifying the critical features of single-cell signaling networks that drive this type of emergent

population-level behavior poses a tremendous challenge as it requires identifying the spe-

cific underlying signaling network architecture. To begin to address this challenge, there

has been a grand tradition of mathematical modeling to link the observed molecular and

cellular behaviors to specific network architectures that can drive group-wide phenomena.
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These models originally focused on population-wide oscillations based on biochemical data

[71, 72, 73]. Recent experimental advances exploiting genetically-encoded cAMP sensors

and microfluidic platforms have enabled measurements of single-cell signaling dynamics

in both isolated cells and collectively-behaving populations, helping shed light on how the

single-cell signaling network may be configured. [62, 63, 74, 75].

While all the models describing Dictyostelium signaling reproduce population-wide

oscillations, not all of them produce the more complex single-cell and population behav-

iors revealed by these recent experiments. Furthermore, they make conflicting assump-

tions about the architectural features of single-cell signaling networks that lead to different

behaviors beyond coordinated oscillatory signaling. Resolving these issues represents a

major conceptual challenge because these models have different time and response scales

with different arbitrary units. Here, we address this challenge by exploiting our recent

single-cell measurements: when individual Dictyostelium cells are exposed to a threshold

level of external cAMP stimulation, they respond with a characteristic adaptive pulse of

internal cAMP with a reproducible timescale and magnitude [63]. We show below that

we can use this characteristic cellular response to normalize the time and response am-

plitude scales of different mathematical models to one another to directly compare their

behaviors. This allows us to screen for how accurately these mathematical models recapit-

ulate experimentally-observed population and single-cell signaling phenomena from mul-

tiple experimental sources [62, 63, 74]. This analysis identifies the key signaling network

features and single cell properties that are critical for driving population behaviors. Im-

portantly, we find that single-cell excitability and fold-change detection are critical single-

cell properties for robustly coordinating single cells through an external medium to drive

population-wide oscillations.
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2.3 Results

2.3.1 Simulation framework for comparing mathematical models of Dictyostelium
signal relay

Figure 2·1: Five major mathematical models describing dynamical signaling relay behaviors
in Dictyostelium. Models are abstracted as network diagrams with common signaling network

components. The activator in each model either stands for the enzyme that directly produces cAMP

(adenylyl cyclase) or internal cAMP itself. The top panel illustrates the bottom-up models based on

receptor desensitization (A) and a coupled direct and indirect negative feedback (CDINFB) architec-

ture (B) that use kinetic equations based on biological signaling networks. The bottom panel shows

top-down models that use well-studied mathematical equations to recapitulate dynamics from re-

cent experiments: a coupled phase oscillator model (C), an interlocking positive-negative feedback

(IPNFB) model that adapts the FitzHugh-Nagumo model framework and integrates a logarithmic

sensing receptor module (D), and an incoherent feedforward loop (IFFL) model (E)
.
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Figure 2·2: Normalizing model response and timescales to the characteristic adaptive spike in
single cells
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(A). Experimental data shows single Dictyostelium cells display an adaptive internal cAMP spike in

response to a 1 nM external cAMP step input (n = 3 example cells). Data adapted from Sgro, et al.

[63]. In each model, the time and response amplitude normalization parameters (time: red arrows;

amplitude: blue arrows) are set to the height and width of either the oscillations (B) or the spike the

model displays in response to 1 external arbitrary unit of cAMP (C – F). In the IPNFB and IFFL

models the response amplitude is offset to normalize their basal internal cAMP levels to 0 (offset:

black arrows) (E and F). In both the experimental data and model results, external cAMP is applied

at the black dashed line. Input external cAMP concentrations were determined as described in the

main text. Units shown in B-F are the original model units.

We analyze five major models that describe the Dictyostelium signal relay network

(Figure 2·1). These models were developed over the last thirty-five years based on exper-

imental observations and include both bottom-up mechanistic models that seek to directly

relate variables to specific proteins [71, 73] and top-down phenomenological models that

seek to abstract away molecular details yet still capture the observed dynamical behaviors

[62, 63, 74]. In order to identify common features required to reproduce the observed dy-

namical behaviors and illuminate the design principles required for collective coordination,

we classified models according to architecture and developed a unified simulation frame-

work that allowed us to compare their behavior to both population and single-cell level

experimental data. The different signaling network architectures are built up from different

network design features. These features include control loops, such as positive feedback,

negative feedback, and incoherent feedforward loops that can be integrated with one an-

other. Other design features are logarithmic sensing receptors that sense order of magnitude

changes in external cAMP inputs, and treating each cell as a phase oscillator. Furthermore,

given recent work suggesting that noise plays a prominent role in population-wide coor-

dination [62, 63], we constructed stochastic generalizations of the original deterministic

models to understand the effect of noise on population-level behaviors. The models are

implemented in Python using standard methods for solving ordinary differential equations

(Figure 2·1) and their stochastic counterparts. The models are summarized in detail in the

Appendix A, highlighting the underlying assumptions the models make about the network
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architectures.

To permit direct comparison between the models, as well as to experimental data, we

needed a common scale for three key parameters: external cAMP level, internal cAMP

level, and time. To accomplish this, we normalized each model to match a characteristic

experimental behavior: in response to a low-level 1 nM step of cAMP, single cells produce

a spike of internal cAMP with reproducible height and width before returning to baseline

(Figure 2·2A) [63]. For each model, we set 1 external arbitrary unit of cAMP equal to either

the amount designated as 1 unit or 1 nM in the model [63, 62, 74] or the minimum amount

of [cAMP]e that produced a robust spike of internal cAMP [71, 73] (Figure 2·2B-F). All

models except the Phase Oscillator model display this spike, whereas phase oscillators are

designed to bifurcate to oscillations at high levels of external stimulation, so we used either

this spike or the oscillations to establish common internal cAMP levels and time units.

Specifically, we set the internal cAMP response level of one arbitrary unit to the height of

the Phase Oscillator oscillations at the equivalent of 10 μm external cAMP (Figure 2·2B)

or the height of the internal cAMP response to 1 external arbitrary unit of cAMP (Figure

2·2C-F). Similarly, we set one arbitrary time unit to the intrinsic oscillation timescale in

the Phase Oscillator model (Figure 2·2B) [62], the time to return to 5% of the internal

cAMP amplitude over the post-stimulation lowest level of internal cAMP in the Receptor

Desensitization, the CDINFB, and the IFFL models (Figure 2·2C-E) [71, 73, 74], and the

adaptive spike timescale parameter set in the original paper in the IPNFB model (Figure

2·2F) [63].

2.3.2 Comparison of mathematical models to population and single cell experimen-
tal data

We compared dynamical behaviors displayed by the five different models against nine key

dynamical behaviors observed in cellular populations and isolated single cells. The perfor-

mance of the five models is summarized in Table 2.1 and full model details and simulation
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results can be found in the Appendix A. For brevity, in the main text we limit our discus-

sion to the four most informative behaviors for distinguishing between different network

design features.

Population Behaviors

I. Sustained population cAMP oscillations and their repression by background cAMP ap-

plication

Figure 2·3: Evaluating models against population phenomena: population oscillations are
suppressed by a step input of external cAMP.

The most distinctive signaling behavior Dictyostelium displays is synchronized cAMP

oscillations across populations. These oscillations are mediated by cell-cell communication



18

(A) Experimental data adapted from Sgro, et al. [63] shows population-wide oscillations slow down

upon low and intermediate external cAMP addition, and are completely suppressed by high con-

centrations of external cAMP. (B) The Phase Oscillator model does not reproduce the experimental

data. The rest of the models investigated all qualitatively reproduce the experimental data, despite

acting through two distinctive mechanisms. (C) In the IPNFB model, population oscillations slow

down due to desynchronization between single cells upon external cAMP addition. (D - F) In the

other three models, population oscillations slow down through inhibition of adaptive spike height in

single cells. For model simulation results, solid colored traces are the mean internal cAMP of all the

cells in the population, and gray traces represent single-cell dynamics from five cells in the popula-

tion. The low, intermediate, and high cAMP levels in each model are determined arbitrarily, with a

low external cAMP level slightly suppressing oscillations and a high level inhibiting the population

oscillations entirely, except in the Phase Oscillator model as its oscillations speed up with increas-

ing external cAMP. Gray dashed lines indicate the start of the step input of external cAMP. A gray

shaded background highlights experimental data. A green shaded background indicates models that

reproduce the experimental observations.

through a relay mechanism where cells produce cAMP internally upon detecting elevated

levels of external cAMP. All of the models investigated recapitulate this phenomenon of

synchronized population oscillations (Figure 2·3A, before external cAMP input). More

recently, experiments demonstrate these collective oscillations can be suppressed by sud-

denly increasing the concentration of external cAMP (Figure 2·3A) [63]. All the models

except for the Phase Oscillator model reproduce this behavior – the Phase Oscillator model

displays the opposite behavior with higher background cAMP levels leading to faster and

more coherent group oscillations (Figure 2·3B-F). This discrepancy suggests the observed

population oscillations do not arise from a mechanism where coupled individual cells os-

cillate autonomously even in the absence of external cAMP.

In the remaining models, group oscillations are suppressed by background cAMP be-

cause the added cAMP masks the cell-secreted external cAMP that propagates through the

population. However, this inhibition of population oscillations occurs through two distinct

mechanisms depending on the model. One mechanism, exploited in the IPNFB model,

is that raising background cAMP tunes the single-cell spiking rate and decreases the co-

herence of single-cell spiking events. As a result, the amplitude of the single-cell spikes
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remains constant (Figure 2·3C, see gray traces for single cells) and the loss of collective os-

cillations is due to desynchronization between cells. The other mechanism, common to the

remaining models, is that increasing background cAMP concentrations still result in coher-

ent population-level oscillations, but now with a reduced oscillation amplitude. This can

be seen in the simulation data where at intermediate background cAMP levels, single cells

within the population still oscillate coherently, while the spike heights are reduced (Figure

2·3D - F, see gray traces for single cells). It should be possible to distinguish between these

two mechanisms in future experiments by more extensively analyzing single-cell behaviors

within populations in response to the addition of external cAMP.

II. Population oscillations depend on environmentally-mediated cell-cell coupling

Collective oscillations in Dictyostelium are mediated by the signaling molecule cAMP

in a shared media. As a result, population-level oscillations depend strongly on envi-

ronmental cell-cell coupling parameters such as cell density and the cAMP degradation

rate (either through native enzymatic means using phosphodiesterases or through physical

means such as fluid flow around the cells). How these parameters coordinate the emergence

of population-wide oscillations can be experimentally explored by varying cell density and

altering media flow rates over cells. Previous experimental work demonstrates that in most

regimes, group oscillations emerge as cell-cell coupling strength increases through increas-

ing cell seeding density or decreasing media flow rate. (Figure 2·4A) [62].

All of the models investigated qualitatively recapture the emergence of group oscilla-

tions as cell-cell coupling increases (Figure 2·4B-F). However, there are two key experi-

mental features of the observed coupled oscillations that can be used to distinguish between

models. First, these population-wide oscillations are experimentally observed across a large

coupling parameter regime (Figure 2·4A). This observation is not reproduced by the Recep-

tor Desensitization model, which displays collective oscillations only in a narrow regime

(Figure 2·4B). The underlying reason is that sustained oscillations in this model are pos-
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Figure 2·4: Evaluating models against population phenomena: population oscillations depend
on cell density and external cAMP media flow rate.
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(A) Experimental population firing rate phase diagram for Dictyostelium cells in a perfusion cham-

ber with varying media flow rates and cell densities measured in fractions of a monolayer (ML)

from Gregor, et al. [62]. (B) Unlike the experimental data, the Receptor Desensitization model

only displays population oscillations in a narrow parameter range. (C and D) The CDINFB and

Phase Oscillator models successfully reproduce collective oscillations over a large range of param-

eter space, but do not capture the dynamic death region at low flow rates found in the experimental

data. (E and F) The IPNFB and IFFL models perform the best at reproducing the experimental data

because both models display robust oscillations over a large parameter space as well as display a

dynamic death regime at low flow rates. Inset in (F) shows simulation results plotted with a logarith-

mic x-axis to highlight the dynamic death regime in the IFFL model. We added noise to single cells

in the population simulations as detailed in the Methods. A gray shaded background highlights

experimental data. A green shaded background indicates models that reproduce the experimental

observations.

sible only when external cAMP concentrations are restricted to a narrow dynamic range

where the receptors are not saturated. Second, in the region where the external flow rate is

extremely low, the population oscillations die off at all but the highest cell densities, due to

a phenomenon known as "dynamic death" (Figure 2·4A, 1 mL/min Flow Rate). Past theo-

retical modeling efforts suggest dynamic death exists because external medium dynamics

are too slow to catch up with the faster internal cAMP dynamics [76, 77]. In model simu-

lations, only the IPNFB and IFFL models recapture this experimental observation (Figure

2·4E and inset in F).

Two major studies of population oscillations in Dictyostelium suggest a major role for

noise in initiating and maintaining population oscillations [62, 63]. For this reason, we

assessed how including noise alters population-level oscillations in each model by con-

structing stochastic generalizations of models without noise (Figure A·1). Simulation re-

sults show that for the Receptor Desensitization, CDINFB, and IFFL models, including

noise in the single cell networks leads to a more gradual transition between no population-

wide oscillations and collective oscillations but no other qualitative changes in behavior

(Figure A·1B, C, F). Both the Phase Oscillator and IPNFB models, which were designed

with stochasticity, display a change in behavior without noise. In the Phase Oscillator

model, both in the original study and in this new analysis, noise aids in the initiation of
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population oscillations by lowering the critical (lowest) cell density that allows for the

oscillations (Figure A·1D) [62]. However, in the IPNFB model, noise is required for ini-

tiating and coordinating population oscillations because the removal of noise completely

disables population-wide oscillations (Figure A·1E), suggesting noise is critical for driving

population behaviors in the IPNFB model [63].

Single-Cell Behaviors

I. Single cells bifurcate from adaptive spiking to sustained oscillations in response to exter-

nal cAMP step input

One of the most prominent experimentally-observed behaviors in isolated single Dic-

tyostelium cells is that a small step change in external cAMP concentrations results in a

large, sudden increase of internal cAMP concentration, which then returns back to near-

baseline levels [63, 62]. This response has been termed an adaptive spike as it is remi-

niscent of similar phenomena in neural systems (Figure 2·5A). Experiments further show

that if even higher levels of external cAMP are applied, single cells abruptly switch their

response from producing an adaptive spike to an adaptive spike followed by sustained oscil-

latory behavior where internal cAMP concentrations oscillate in time even though external

cAMP concentrations are constant (Figure 2·5B) [63]. These experiments suggest that ex-

ternal cAMP concentrations serve as a "bifurcation parameter" that drives the Dictyostelium

signaling networks across a bifurcation from an excitable to an oscillatory regime.

To identify which network architectures could reproduce the key experimental observa-

tions, we ran simulations to check if the models produced: (1) single, excitable spikes after

a low-level external cAMP step input and (2) a spike followed by a bifurcation to oscilla-

tions after a high-level cAMP step input. The Receptor Desensitization model, the IPNFB

model, and the IFFL model produce canonical adaptive spikes where internal cAMP lev-

els return back to near-baseline levels after a large response (Figure 2·5C). In contrast, the

CDINFB model produces a large spike in response to a small input but fails to return back
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to near-baseline levels, and the Phase Oscillator model fails to show any sort of adaptive

spiking dynamics (Figure 2·5C). For this reason, for the remainder of the single cell phe-

nomena tests beyond exploring the response to a large step input of external cAMP, we

focus on the three models that produced adaptive spiking, as this is critical for all single-

cell level phenomena. Further simulation results on the other models are in the Appendix

A.

Next, we simulated single cell responses to large step inputs of external cAMP, with a

specific interest in whether or not the the three models that show adaptive spikes also show a

bifurcation to oscillatory behavior at high levels of external cAMP. The height of this large

step input was chosen to be 104 times the low concentration based on experimental obser-

vations in Sgro, et al. that show robust oscillations at 10 μM external cAMP [63]. Only

the IPNFB network displayed the bifurcation from excitable adaptive spiking to sustained

oscillations (Figure 2·5D). The bifurcation to oscillations in the IPNFB model proceeds

through a standard supercritical Hopf bifurcation based on a negative feedback loop with

a time delay [78, 79]. Mechanistically, the origin of these oscillations is that the activator

must build up to a sufficiently high level to activate the inhibitor, which then turns off ac-

tivator production. The other two models lack either negative feedback (IFFL model) or a

time delay (receptor desensitization only depends on instantaneous cAMP levels), account-

ing for the lack of single cell oscillations (Figure 2·5D). However, as discussed above, these

later models can still support sustained population-level oscillations as the population-level

oscillations originate from synchronized adaptive spikes in single cells.

II. Fold-change detection of external cAMP levels

During development, robust collective cAMP oscillations are observed from approxi-

mately 4 hours until as late as 20 hours post-starvation [62]. During this process, external

cAMP levels vary dramatically because of changes in cell density due to cell migration.

Single cells must robustly respond to this constantly changing and noisy external signal.
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Figure 2·5: Evaluating models against single cell phenomena: cells bifurcate from adaptive
spiking to sustained oscillations in response to external cAMP step input.
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(A and B) Experimental data shows single Dictyostelium cells display a bifurcation in response to

an external cAMP concentration step input, from adaptive spiking (A) to sustained oscillations (B)
(n = 3 example cells per condition). Data is adapted from Sgro, et al. [63]. (C and D) Model simu-

lations with low and high external cAMP step inputs show that only the IPNFB model recapitulates

both behaviors, with the green-shaded upper panels displaying models that recapitulate the experi-

mental observations, specifically the adaptive spiking behavior (C) and the bifurcation to sustained

oscillations (D) and the lower panels showing models that do not recapitulate these phenomena. In

both the experimental data and model results, external cAMP is applied at the gray dashed line.

Figure 2·6: Evaluating models against single cell phenomena: cells are sensitive to fold
changes in external cAMP levels.
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(A) Experimental data shows Dictyostelium cells conduct fold-change detection. Left panel: dia-

gram depicting how fold-change detection is quantified in both experimental and simulation data.

Cells experience two consecutive external cAMP step inputs, with the first step height being the

“Priming Concentration" and the fold change of the second step height over the first step height

being the “Fold Change". The height of the internal cAMP spike in response to the second step

input is quantified as “Second Peak Prominence" throughout the figure. Right panel: experimental

data adapted from Kamino, et al. [74] shows single cells exhibit fold-change detection. (B - D)
Simulation of different model responses shows that only the IPNFB and IFFL models qualitatively

reproduce fold-change detection (B and C). The IFFL traces representing different priming con-

centrations collapse on a single line in (B). To account for single-cell noise in the IPNFB model,

we ran 50 simulations for each priming concentration-fold change pair and display the mean and

standard error of the mean from the simulations in (C). The Receptor Desensitization model re-

sponse traces to 3 and 10 unit priming concentrations collapse on a single line (D). In simulations

the one unit priming concentration is set to match the “low" cAMPe input level in Figure 2·5. A gray

shaded background highlights experimental data. A green shaded background indicates models that

reproduce the experimental observations.

Recent experiments show that single Dictyostelium cells conduct fold-change detection

[74]: the response of single cells is determined only by the relative change in input signal

(i.e. the ratio of the final cAMP concentration to the initial cAMP concentration), rather

than absolute changes (Figure 2·6A). An important feature of fold-change detection is that

it allows cells to operate in similar ways across a wide range of background cAMP con-

centrations [80]. This suggests that fold-change detection may underlie the ability of the

Dictyostelium signaling networks to function in spatially and temporally heterogeneous

environments during the development process.

To measure fold-change detection capabilities in the three models that reproduce single-

cell adaptive spikes, we ran simulations that mimic the experimental design of Kamino, et

al. where cells were subject to two consecutive step changes in external cAMP at differ-

ent concentrations (the priming concentration and the secondary concentration, see Fig-

ure 2·6A) [74]. As in the experimental work, fold-change detection was measured by the

prominence of the second adaptive spike and we scanned model responses to initial priming

concentrations of 0.1 external units through 10 external units of cAMP. For a network that

performs perfect fold-change detection, we expect the response curves for different priming
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concentrations to collapse on a single line, a phenomenon observed in experiments (Figure

2·6A). The model with the best fold-change detection capabilities is the IFFL model which

shows nearly perfect, deterministic fold-change detection over almost two orders of mag-

nitude changes in external cAMP levels (Figure 2·6B). The IPNFB model, which is built

with noise, also displays approximate fold-change detection (Figure 2·6C). In contrast, the

Receptor Desensitization model does not exhibit fold-change detection (Figure 2·6D).

Interestingly, the IFFL and the IPNFB models achieve fold-change detection through

two very different mechanisms. In the IFFL model, the response to fold-differences with

different step heights is identical [74]. In contrast, the IPNFB model achieves only approxi-

mate fold-change detection through a combination of logarithmic-sensing and stochasticity-

mediated modulation of the single cell firing rate (see Figure 2·6C) and Figure A·2).

Relating Network Architecture to Collective Behaviors

Our unified simulation framework allows us to identify the key components and network

features needed to reproduce specific experimental observations (Figure 2·7). The ana-

lyzed models include disparate design features such as negative and positive feedback con-

trol, logarithmic environmental sensing, incoherent feedforward loops, and modeling single

cells as phase oscillators. Nonetheless, there are some common themes that emerge from

our analysis.

First, we find that negative feedback or feedforward motifs appear to be especially criti-

cal to produce excitability (i.e. adaptive spiking) at the single-cell level. These two features

appear in all of the models except the Phase Oscillator model, the only model that fails to

reproduce adaptive spiking on the single-cell level. This suggests that negative feedback or

incoherent feedforward motifs drive single-cell excitability, consistent with past theoretical

findings that negative feedback and incoherent feedforward loops are the core topologies

that drive adaptive spikes [81]. Similarly, all of the models other than the Phase Oscillator

model reproduce the observation that background cAMP inhibits collective oscillations,
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Figure 2·7: Graphical summary of our analysis reveals which network features give rise to
single-cell and population-level experimental behaviors. All models except the Phase Oscillator

model partially or fully reproduce at least one of the experimentally-observed single cell behaviors.

These single-cell behaviors are driven by different network features in the models, suggesting there

are multiple ways cellular signaling network architectures can generate these behaviors. Further-

more, several of the single-cell behaviors are associated with population-level behaviors, suggesting

that the network features underlying the associated single-cell behaviors are critical for driving the

associated population-level behaviors.

suggesting single-cell excitability may be the driving mechanism for this behavior.

Another key design feature that seems to be important for coordinating Dictyostelium

behavior is positive feedback control. Positive feedback is a key element of the IPNFB

model, the only model of the five we analyzed that can completely recapitulate all experi-

mental observations at the single-cell level. The idea that positive feedback control might

facilitate the single-cell bifurcation to oscillations is again consistent with past theoretical

work demonstrating that interlocking positive-negative feedback loops give rise to more

robust and reliable oscillatory behaviors [82].

We also found that both incoherent feedforward loops – present in the IFFL model –

and logarithmic sensing – present in IPNFB model – enable fold-change detection [83,
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84]. This observation, along with the fact that only these two models reproduce this phe-

nomenon, suggests that one of these design features is necessary to drive fold-change de-

tection in this context.

Finally, we find that in order to have robust population-level oscillations that persist

despite environmental variations, single cells must either perform fold-change detection or

behave as a phase oscillator. Given the inability of phase-oscillator models to recapitulate

single-cell behavior, our analysis suggests that cells likely implement fold-change detection

in order to coordinate population behaviors.

2.4 Discussion

Many different properties of single cells and cellular populations have been proposed to be

conceptually important for coordinating collective oscillations in multicellular systems, in-

cluding Dictyostelium. Here, we exploited the stereotypical spiking behavior displayed by

single Dictyostelium cells to normalize models and directly compare them to each other, as

well as to experimental observations. Our results show two types of networks fully describe

the population-level behaviors: the IPNFB with a logarithmic pre-processing module and

the Incoherent Feedforward Loop (IFFL) (Table 2.1). These networks both display two key

single-cell level design features that are critical for coordinating the observed population-

wide dynamics: excitable single-cell level dynamics and fold-change detection (Table 2.1,

Figure 2·7). Furthermore, only the IPNFB model reproduces all of the observed single-cell

and population-level behaviors. This suggests that while both networks are potential path-

ways for the design of collective oscillatory systems, the IPNFB model more accurately

reflects the specific Dictyostelium signaling network. Through our analysis, we find that

the observed population-level phenomena can be driven by a key single cell network design

principle: excitable dynamics that respond to relative changes in external signals.

Excitability is a critical single-cell network design feature that drives collective oscil-
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lations that are tunable by cell-cell coupling (Figure 2·7). Molecular networks that display

excitable dynamics require two network features. The first feature is that the network in-

cludes either a negative feedback or incoherent feedforward motif that brings down the lev-

els of or activities of the molecular species that are activated by external inputs [81]. Nega-

tive feedback and incoherent feedforward loops that drive single-cell excitability are found

in the two models that succeed in recapitulating almost all experimental observations (Ta-

ble 2.1). The second feature aiding excitable dynamics is timescale separation/time delay

where after the increase of the activator species, the inhibitory interactions either respond

on a slower timescale or have a built-in delay. This allows the input activation to dominate

the early response before a strong inhibitory response begins, leading to an excitable spike

in the activator species. In both example networks with superior performance, there is a

time separation between the inhibitor species τI and the activator species τA facilitating ex-

citability in the networks (see Figure A·5 for the effect of decreasing timescale separation).

This timescale separation is naturally accompanied by refractoriness as is observed exper-

imentally in single Dictyostelium cells (Table 2.1, Figure A·4). This refractoriness leads to

unidirectional signal propagation in a population.

The second critical single-cell network design feature we identified is that internal dy-

namics must be dependent on the relative change of external signal as opposed to abso-

lute concentrations, a feature known as fold-change detection (Figure 2·7). This feature

coordinates robust population oscillations during development over a large range of en-

vironmental parameters such as large changes in cell density, varying ability to degrade

external cAMP, and noisy fluctuations (Figure 2·4). Previous work has identified several

major classes of fold-change detection-competent networks by conducting exhaustive scans

of network topologies [83, 84]. These scans found that fold-change detection-competent

models are extremely rare, and the two naturally occurring fold-change detection models,

the incoherent type I feedforward loop (I1FFL) and the non-linear integral feedback loop
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(NLIFL), are among the simplest networks suggested to achieve optimal response ampli-

tude, speed, and noise-resistance. Another possible mechanism for achieving fold-change

detection is logarithmic sensing at the receptor level which can theoretically be achieved

with an allosteric protein [85]. The best-performing example networks from our analy-

sis both fall into the canonical categories: one is an IFFL network and the other uses a

logarithmic-sensing module (Figure 2·1 and 2·6). Although both networks display fold-

change detection, we note there are subtle differences. With the IFFL model, the network

tunes spike height in response to input fold change. The IPNFB model, however, modulates

the probability of spikes in individual cells in response to input fold-change (Figure A·2),

tuning the average response of a group of cells and thus displaying fold-change detection

at the population level.

Additionally, our work also further reinforces previous findings that stochastic noise in

the single cell network potentially plays a role in coordinating population behaviors. Previ-

ous studies on bacterial competence suggest that noise combined with an excitable module

can explain both the initiation of and escape from the competent state, and that noise levels

modulate the percentage of cells entering into and exiting from the competent state in bac-

terial communities [86, 87]. In Dictyostelium, work on the cAMP signaling and chemotaxis

networks suggests that noise in network components with both positive and negative feed-

back loops plays a vital role in coordinating network dynamics [88, 63]. In our analysis,

in the model that most accurately recapitulates behaviors in Dictyostelium, noise is crucial

for fold-change detection and coordinating population oscillations (Table 2.1, Figure A·1).

Stochasticity could provide a mechanism for initiating and maintaining population-wide

oscillations without requiring specialized cells such as pacemaker cells for robustly coordi-

nating the population, allowing for decentralized control. To answer whether and how noise

modulates population-wide behaviors, better experimental techniques and longer timescale

experiments that quantify noise-driven phenomena and modulate potential sources of noise
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are required. Taken together, our analysis suggests that excitability that is insensitive to

absolute environmental signals acts as a key network design feature that allows for efficient

oscillations coordination in Dictyostelium populations, and noise in signaling networks

plays a role in population-behavior modulation.

Coordinated population behaviors not only require specific features in single-cell sig-

naling networks but also require coupling between cells. When the cells are coupled

through the external medium, the timescales of the internal and external signal dynamics

need to be effectively coupled. In the case of Dictyostelium populations, the time scale of

the external signal dynamics is modulated by cAMP degradation and this rate is determined

by phosphodiesterase concentrations and kinetics. At extremely high cAMP degradation

rates, single cells cannot effectively communicate. By contrast, if the degradation rates

are too low, the dynamics of the medium are too slow to follow the internal dynamics,

leading to desynchronization of single cells, or “dynamic death" [76, 77], a phenomenon

experimentally observed in Gregor, et al. and Sgro, et al. [62, 63]. In our analysis, the

IPNFB and IFFL models reproduce the dynamics death phase, suggesting that cells match

the timescales governing internal signaling networks and external signal propagation. Such

timescale coordination may also be crucial for chemotaxis in Dictyostelium cells [89].

While all of the models investigated here take a mean-field approach – neglecting space

and time for signal propagation between cells – in reality signals propagate through the pop-

ulation and create complex spatiotemporal patterns such as concentric waves and rotating

spirals [61]. Traveling waves are a natural analog of the kind of coherent population-level

oscillations discussed in this work and may represent an important design principle for co-

ordinating behavior across large spatial reasons. In support of this idea, we note that waves

are also observed during development, where mouse embryonic cells use excitable internal

YAP dynamics that are coupled by Notch signaling to achieve long-range oscillatory waves

for vertebrate segmentation [90], and Drosophila embryos use propagating Cdk1 waves to
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synchronize cell cycles across large spatial scales [91]. In synthetic biology, engineered

negative and positive feedback motifs can achieve excitability and robust waves across a

large bacterial population when coupled through diffusible molecules [92, 93].

Altogether, this work identifies excitability and fold-change detection as key design fea-

tures of internal signaling networks that allow for robust coordination of population-wide

oscillations in heterogeneous ill-defined environments. These network features found in

Dictyostelium are widely shared in natural and synthetic cell populations that display col-

lective oscillatory behaviors, suggesting these network features could be a common control

mechanism used by biological systems to coordinate signal transduction in multicellular

contexts. These features enable many desirable behaviors for multicellular populations in-

cluding coordination over orders of magnitude differences in population size, environmen-

tal insensitivity to small fluctuations, and fast, unidirectional long-range signal propagation.

Our work suggests that there are relatively few signaling network design motifs that can

robustly coordinate emergent multi-scale behaviors in biological systems.

2.5 Methods

Model equations were adapted from the literature [71, 73, 62, 63, 74], and the mathematical

expressions and parameters for each model are detailed in the Appendix A. All simulations

were solved by the Euler-Maruyama method. Time step sizes were empirically chosen to

make sure simulation outputs are reliable such that decreased time step sizes would not

produce alternative results. Exploring the emergence of population oscillations and their

dependence on cell-cell coupling (Figure 2·4) requires investigating a wide range of param-

eter space and thus smaller time step sizes were taken to make sure the simulation outputs

are reproducible. Models were normalized to one another as described in the Results sec-

tion.

Noise in single-cell networks was added as a Langevin noise term η(t) to the end
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of the equation representing the internal “activator" component. The noise term satisfies

< η(t)η(t ′)>= σ2δ(t − t ′), with σ2 denotes the noise strength. The noise strength in each

model was chosen either from the original literature for models with noise in the original

implementations, specifically the Phase Oscillator model and IPNFB model, or arbitrarily

determined such that noise allows for a slight quantitative change in the phase diagram de-

scribing the emergence of population oscillations but not a qualitative change (Figure A·1).

The respective noise strengths in the Receptor Desensitization model, CDINFB model,

Phenomenological Phase Oscillator model, IPNFB model, and IFFL model were set to 10,

0.1, 0.02, 0.15, 0.01.

Code Availability Experimental data and Python code for all simulations are available on

GitHub at https://github.com/sgrolab/dictymodels.
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Behaviors/Models
Receptor
Desensiti-
zation

Coupled
Direct and
Indirect
Negative
Feedback
(CDINFB)

Phase
Oscilla-
tor

Interlocking
Positive-
Negative
Feedback
(IPNFB)

Incoherent
Feedforward
Loop (IFFL)

Popul-
ation

Background cAMP
inhibits oscillations
(Fig 2·3)

� � � � �

Robust oscillations
over wide range of
environmental
conditions (Fig 2·4)

� � � � �

Dynamic death
reproduced at
low flow rates
(Fig 2·4)

� � � � �

Noise-driven
oscillations
(Fig A·1)

� � � � �

Single
Cell

Excitability/fully
adaptive spiking
(Fig 2·5)

� � � � �

Bifurcation from
adaptive spiking
to oscillations
(Fig2·5)

� � � � �

Fold-change
detection (Fig 2·6)

� N/A N/A � �

Sensitivity to
cAMP input
dynamics (Fig A·3)

� � N/A � �

Entrainable to
repetitive stimuli
and has refractory
period (Fig A·4)

� � N/A � �

Table 2.1: Population and single-cell behaviors evaluated in different models. Green check

marks indicate if the model successfully reproduces the specific experimental behavior. X marks

indicate the model is unable to reproduce the experimental behavior. N/A (not applicable) indicates

the experimental comparison cannot be made because the model either fails to produce single-cell

adaptive spikes (as for the Phase Oscillator model) or only shows partial adaptation (as for the

CDINFB model).



36

Chapter 3

Transient activation of intracellular cAMP
modulates migration and induces actin
cytoskeleton reorganization through calcium
signaling

3.1 Introduction

In Chapter 2, theoretical modeling was used to investigate the essential features of the

single-cell signaling networks that drive group-wide synchronous oscillations in the cellu-

lar slime mold. The extensive theoretical investigation is enabled by experimental measure-

ments of the dynamic changes of the signaling molecules within individual cells. However,

for many biological systems and processes, such data have not yet become available be-

cause of a lack of tools to measure and modulate the activity of the signaling molecules

with high spatial-temporal precision. With recent advances in molecular sensors, optoge-

netic tools, and imaging, it has become possible to experimentally investigate the input-

signaling-cellular outputs relations. Here in Chapter 3, new techniques that manipulate

and measure the signaling molecule cAMP were used to investigate how this signaling

molecule alters behavioral outputs related to migration in mammalian fibroblast cells.

Cell migration is a ubiquitous behavior that is essential for biological processes like

tissue development, wound healing, immuno-response, and cancer metastasis. Mesenchy-

mal migration, or crawling migration, is a major mode of cell migration that is observed in

a wide range of cell types including embryonic stem cells, fibroblasts, keratinocytes, and
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numerous cancer cells (reviewed in for example [21, 94, 95]). Mesenchymal migration

starts by establishing cell polarity with a front and a rear side. The front side of the cell

is characterized by extended dynamic protrusions that are driven by actin polymerization.

At the same time, new adhesion sites, protein complexes termed focal adhesions (FAs), are

formed and stabilized between the cell membrane and the substrate. The rear side of the

cell is characterized by thick actin fibers that can generate high contractility and disassem-

bly of the focal adhesions, both of which facilitate rear retraction and cell body movement.

Cell migration requires coordination of the cytoskeleton structure as well as tension reg-

ulation [96], both of which are regulated by numerous signaling molecules such as focal

adhesion kinase (FAK), Rho-GTPases, and calcium [21, 94, 95].

A key signal regulator of migration is the cyclic adenosine monophosphate/protein Ki-

nase A (cAMP/PKA) pathway [97, 98]. Its important regulatory roles on migration have

been shown in multiple cell types including epithelial cells [99], endothelial cells [100],

neuronal cells [101], and fibroblasts [102, 103]. It is believed that the cAMP/PKA path-

way affects migration mostly through modulating downstream signaling targets which then

regulate focal adhesion assembly, actin polymerization, and contractility (extensively re-

viewed in [97, 98]).

Despite decades of experimental effort investigating how the cAMP/PKA pathway reg-

ulates migration, the observations have been paradoxical. In particular, literature has shown

that either inhibition or hyper-activation of the pathway can lead to decreased migration (re-

viewed in [97, 98]). These observations suggest that proper spatial and/or temporal control

of the cAMP pathway is essential for migration modulation. A previous study measuring

static PKA activity at the protrusions suggests PKA is specifically activated at the protru-

sions and is essential for chemotactic migration [103]. More recent studies measured PKA

dynamics using reporters that are localized at the cell membrane and sugge st membrane-

localized PKA is essential for dynamic protrusion regulation [99, 104]. These studies have
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shown that spatiotemporal control of the cAMP pathway is important for cell migration.

However, existing studies are mostly based on pharmaceutical or genetic perturbations

that alter the steady state of this signaling pathway. Additionally, these perturbation strate-

gies suffer from nonspecific effects on other signaling pathways (e.g. a widely-used PKA

inhibitor H89 has multiple other kinase targets [105]) and/or changes in cell state, poten-

tially confounding the results. Additionally, it is still unclear how temporal, global con-

trol of the cAMP/PKA pathway affects cellular behaviors related to migration. Here, we

harness an optogenetic tool bPac [106] - a bacteria-derived adenyl cyclase that produces

cAMP upon exposure to blue light - to understand how this pathway regulates migration by

directly controlling cAMP dynamics in cells. This tool’s minimal dark activity, high sensi-

tivity, and fast on-and-off kinetics enable us to modulate cAMP/PKA activity at the minute

timescale. With this tool, we achieved reproducible and tunable activation of the cAMP

pathway. We observed inhibited migration in both 3T3 fibroblast and MDCK epithelial

cell lines upon direct, repetitive activation of the cAMP pathway, with the extent of inhibi-

tion depending on the strength of pathway activation. Further, we found that this inhibitory

effect is possibly due to decreased cell contractility as a result of the drastic reorganization

of the actin cytoskeleton structure induced by transient cAMP pathway activation. Lastly,

we found that the actin cytoskeleton reorganization is mediated by calcium signaling.

3.2 Results

3.2.1 bPac achieves temporal control of PKA activity with tunable duration and am-
plitude

To achieve direct, tunable control of the cAMP pathway, a tool needs to fulfill several major

requirements. The tool needs to have minimal off-target effects, display little or no basal

activity when turned off, be able to be activated reproducibly multiple times, be able to

be activated and deactivated on a physiologically-relevant time scale, and achieve tunable
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control of the cAMP pathway.

To meet these requirements, we chose to use the light-activated adenylyl cyclase, bPac,

originally found in bacteria [106]. This enzyme is orthogonal to those found in mammalian

cells, produces cAMP upon exposure to blue light, and has extremely low dark activity. To

confirm tool expression and measure expression level, we fused the optogenetic tool to a

mTurqoise2 fluorescent protein.

We first validated whether bPac can achieve repetitive activation of the cAMP/PKA

pathway in a mammalian fibroblast cell line (NIH 3T3) by co-expressing the bPac construct

and a reporter for the direct downstream effector of cAMP, protein kinase A (PKA) (Fig

3·1A). Because bPac activates in response to light with a spectra range below 500nm [106],

we chose to use a PKA reporter that consists of orange and far-red fluorescent proteins,

PKA-Booster [107] such that imaging the reporter signal would not activate bPac. The

PKA-Booster reporter is based on Förster Resonance Energy Transfer (FRET) between the

two fluorescent proteins, the FRET donor protein mKOκ, and the FRET acceptor protein

mKate2. The donor and acceptor proteins flank a PKA substrate peptide and an FHA1 do-

main which binds to the peptide when the substrate is phosphorylated by PKA. Upon bPac

activation, cAMP activates PKA which then phosphorylates the substrate in the reporter.

After phosphorylation, the reporter changes conformation and brings the two fluorescent

proteins closer, leading to FRET efficiency increase.

We first validated the reporter by treatment with forskolin, a drug that activates endoge-

nous adenylyl cyclases through G protein-coupled receptors (GPCRs) [108]. FRET sig-

nal from cells expressing the PKA-Booster reporter increased immediately upon forskolin

treatment (Fig B·1), confirming the reporter worked as expected. We then went on to vali-

date and characterize the bPac tool with the PKA-Booster reporter in 3T3 fibroblast cells.

By monitoring PKA activity with the PKA-Booster reporter while stimulating bPac with

a blue-colored laser, we observed activation of PKA in multiple cycles with reproducible
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dynamics, which is absent in control cells that did not express the bPac construct (Fig 3·1
A-B). The bPac tool activated PKA rapidly upon light stimulation, showing that the tool has

a fast on rate. The off dynamics are comparably slower, which was likely determined by

the concentration and kinetics of phosphodiesterases (PDEs) that degrade cAMP, and the

activity of phosphatases that hydrolyze the phospho-groups on the reporter substrates. In

summary, we have shown that in fibroblasts, expression of the bPac optogenetic construct

achieves repetitive, reproducible activation of the cAMP/PKA pathway, and has relatively

fast on and off rates.

To test whether we can modulate the extent of cAMP/ PKA pathway activation with

the bPac optogenetic tool, we applied different intensities and durations of blue light (i.e.

light dosages) to cells using the programmable Optoplate system [109], and quantified the

response height and width of the resulting PKA reporter signal. We found that either in-

creasing stimulation light intensity or duration increased the height and width of the PKA

activation response (Fig 3·1 C-D). We note that at intensities above 1000 (A.U.) and time

durations longer than 30 seconds, the amount of cAMP produced in cells saturated the

range of the sensor, shown as a flat peak sensor response (Fig B·2). However, at this am-

plitude saturation regime, there is still tuning of the PKA response width, suggesting that

bPac activation at those regimes remains tunable. Lastly, we asked whether the pathway ac-

tivation response is dominated by the expression level of this optogenetic construct. There

is no strong correlation between the expression level of the bPac construct (as is shown by

the mTurquoise2/CFP channel intensity) and the response width or height from the PKA

sensor (Figure B·3), suggesting that the different extent of PKA activation is dominated by

stimulation profiles (length and intensity). To summarize, our data shows the bPac optoge-

netic tool is able to achieve robust, reproducible, and quick activation of the downstream

effector PKA in a tunable manner.
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Figure 3·1: bPac construct validation and characterization in 3T3 fibroblast cells.
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(A). Graphical demonstration of the bPac optogenetic tool validation experiments. Upon light stim-

ulation (wavelength below 500nm), the bPac tool produces cAMP, activating the downstream PKA

whose activity is read out by the PKA-Booster FRET reporter. (B)-(C). FRET signal traces mea-

sured by the PKA-Booster sensor are shown in cells that are expressing the bPac construct (bPac-

mTurquoise2) in (B) or not expressing the bPac construct in (C). Traces are normalized to the base-

line signal before stimulation and the mean and S.E.M. are shown. Light stimulation was turned on

three times at the black dashed lines, with 445 nm laser at 25% power for 1 second. n = 7 cells for

each condition (expressing or not expressing bPac) are included. (D) - (E). PKA-Booster reporter

signal height (D) and width (half max height width, (E)) in response to different light stimulation

duration and intensity, with heatmap colors corresponding to the mean from multiple cells. The

signal traces are normalized to the baseline average before calculating the height and widths. For

each photostimulation condition, n = 12 to 21 cells are included. Light stimulation was conducted

using the 465 nm LED on the Optoplate system [109].

3.2.2 bPac activation inhibits 2D migration in a dose-dependent manner

To investigate whether and how cell migration is modulated by direct activation of the

cAMP/PKA pathway, we used the classic two-dimensional scratch assay (for example, re-

viewed in [110, 111]). In addition to stably expressing the bPac optogenetic construct

(bPac-mTurquoise2-NES), a red actin-labeling marker LifeAct-mScarlet(i) was also ex-

pressed to track gap closure over time without activating the optogenetic tool with bright-

field light. To rule out the possibility that blue light exposure might affect migration, we

included cells expressing the control construct (mTurqoise2-NES). For the bPac activation

protocol, we picked the stimulation cycle length (every 5 minutes) to allow for sufficient

degradation of cAMP after stimulation and to avoid potential toxicity from keeping intra-

cellular cAMP at a constant high level.

We were able to generate accurate gap masks over time with custom-written analysis

software and obtain gap areas as well as percentage gap closed measurements (Fig 3·2). As

is shown in both the gap area and fraction closed, there was an initial lag immediately after

gap creation followed by a regime where the gap area decreased at a constant rate before

the gap completely closed (Fig 3·2C). We used the slope of the linear fit during the linear

closure regime to quantify cell migration efficiency.
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Figure 3·2: 2-dimensional gap detection and closure rate quantification.

Example outputs from the automatic gap detection pipeline at 12 hours (A) and 24 hours (B) af-

ter gap creation. In (A) and (B), the left panels show the raw fluorescent images of the LifeAct-

mScarlet(i) marker, the middle panels show the binary masks generated, and the right panels show

masks overlaid on the images. Scale bar = 500 μm. (C) shows the gap area change (left panel) and

fraction area closed with regards to the initial gap area (right panel) over time. Black dots indicate

the area or percentage closed at specific time points, and green dashed lines show linear fits between

2 to 24 hours after gap creation. Area closure rate and fraction closure rate are measured from the

slope of the linear fitted lines (dashed green lines).
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Figure 3·3: bPac activation inhibits two-dimensional cell migration in a dose-dependent man-
ner in both 3T3 fibroblasts and MDCK cells. Fraction area closure rate was quantified with

different light stimulation lengths (dark, light on for 20ms, 100ms, 200ms, 500ms and 1000ms ev-

ery 5 minutes) in 3T3 fibroblasts (A) and MDCK cells (B). The left panels show the fraction closure

rate with cells expressing the bPac optogenetic construct (bPac-mTurquoise2-NES) while the right

panel shows that with cells expressing the control construct (mTurquoise2-NES). Each colored dot

represents an independent experiment (well). Black square dots and gray bars represent mean and

S.E.M. For (A) 9 to 10 wells are included for each stimulation length. In (B), 5 wells are included

for each stimulation length.

We first checked whether expressing the bPac optogenetic construct would affect mi-

gration. Fraction closure rates without light stimulation (dark) are similar for cells express-

ing the bPac and the control construct (Fig 3·3) for both 3T3s and MDCKs, confirming

stable expression of the bPac optogenetic construct has a neglectable influence on two-

dimensional cell migration. In both cell types, increased bPac activation dosage (longer

stimulation length per 5-minute cycle) led to a decrease in gap closure rate, whereas in
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cells expressing the control construct, light stimulation did not affect the gap closure rate,

ruling out the possibility that the decrease of migration efficacy was caused by exposure

to blue light. In 3T3 fibroblasts, the inhibition effect from bPac stimulation saturated at

around 200ms stimulation length, as increasing stimulation length beyond 200ms did not

lead to a further decrease of closure rate (Fig 3·3A). This observation holds true even when

the cells are exposed to up to 4000ms stimulation per 5-minute cycle (Fig B·4). This sug-

gests that in 3T3 fibroblasts, either the downstream effectors of the cAMP pathway that are

relevant in migration regulation are saturated beyond 200ms stimulation length, repetitive

activation of the cAMP pathway leads to processes that compensate the inhibitory effect

on migration, or the cells use mechanisms independent of the cAMP pathway to drive mi-

gration in this context. Interestingly, in MDCK cells, stronger bPac stimulation led to a

stronger inhibitory effect on migration up to 1000ms stimulation length, with the high-

est stimulation dosage leading to a nearly 70% decrease in migration efficiency (Fig B·4).

This suggests that properly-tuned cAMP pathway activity is essential for two-dimensional

migration in this cell type.

One potential caveat in our assay is that because both cell lines actively divide, bPac

activation could have a potential effect on cell proliferation which could contribute to the

inhibition of gap closure rate [112, 113]. However, we observe differences in gap closure

rate between different stimulation dosages as early as 3 to 4 hours after gap creation which

is too early for proliferation modulation to happen. Therefore, bPac activation likely in-

hibits 2D migration regardless of whether it has any effect on proliferation. In summary, we

have shown that transient, repetitive activation of the cAMP pathway with optogenetically-

activated bPac inhibits 2D migration in both 3T3 fibroblast cells and MDCK epithelial

cells, with the extent of inhibition related to the light stimulation dosage. In the following

sections, we will focus on the 3T3 fibroblast cell culture model.
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Figure 3·4: Activation of bPac led to changes in the nuclear area that is concurrent with PKA
activity response. FRET signal traces measured by the PKA-Booster sensor are shown in cells

expressing the bPac construct (bPac-mTurquoise2) in (A) or not expressing the bPac construct in

(B), whereas nuclear areas in the same cells are quantified in (C)-(D). Traces are normalized to the

pre-treatment values on a per-cell basis, and the mean and S.E.M. of traces are shown. Photostim-

ulation was turned on three times at the black dashed lines, with 445 nm laser at 25% power for 1

second. n = 7 cells are included for each condition.

3.2.3 bPac activation induces cellular relaxation and disrupts the actin cytoskeleton

After establishing that bPac activation inhibits migration, we then investigated how this

inhibition occurs. It has been shown that the cAMP/ PKA pathway modulates numerous

downstream effectors that are closely related to migration, such as focal adhesion turnover,

actin polymerization and cell contractility (reviewed in [97]). To investigate what mediates

bPac-induced migration inhibition, we turned to an observation from the bPac validation
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data (Fig B·1): upon bPac activation, the cell nucleus displayed a sudden, prominent, but

reversible shape change. This shape change is reflected by the rapid decrease of nuclear

area upon stimulation followed by a slower recovery, and its dynamics roughly match the

dynamics of the measured PKA activity signal (Fig 3·4). Structurally, the nucleus is con-

nected to the actin cytoskeleton fibers through the linker of nucleoskeleton and cytoskeleton

(LINC) complex [114]. Additionally, it has been shown that nuclear shape is regulated by

actin cytoskeleton contractility- the forces adhesive cells exert to the substrate that they re-

side on [115, 116]. Therefore, it is logical to hypothesize that the observed nuclear change

upon bPac activation is driven by a change in the contractility of the cells.

To test this hypothesis, we measured cell contractility using traction force microscopy

(TFM) [117, 118, 119]. In this assay, cells are seeded on elastic substrates containing

fluorescent beads embedded close to the surface. When the cells change contractility, the

traction force they exert on the surface changes, leading to the displacement of the beads.

The displacement can then be tracked and correlated to the forces that cells exerted on the

substrate. Upon blue light stimulation, cells expressing the bPac construct showed a rapid

change in traction force (Δ traction force) that is partially reversed after the withdrawal of

the stimulation (Fig 3·5 A-G). Because the cells are basally contracting the substrate, an

outwards change in the Δ traction force field upon bPac activation (Fig 3·5 B) indicates

relaxation of cell contractility. This behavior is not observed in cells expressing the control

construct (Fig 3·5 D-H), confirming that the cell contractility decrease is not induced by

blue light stimulation alone. The temporal profile of cellular relaxation also matched the

fast on and slower off dynamics as is shown in both the nuclear deformation data and PKA

response (Fig 3·4), suggesting that the cellular contractility change upon light stimulation

is likely through the increase of intracellular cAMP upon bPac activation, and nuclear area

change is at least partially mediated by change in cell contractility.

There are two major ways that cell contractility can be altered: through modulating
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Figure 3·5: bPac activation induces cell relaxation.
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A-F show the change in traction force (Δ traction force) vector field (left panels) and magnitude

(right panels) respective to the first frame. Screenshots of Δ traction force 4 min before light stim-

ulation (A, D), 6 min (B, E), and 20 min after light stimulation (C, F) are displayed, with (A)-(C)

showing an example cell expressing the bPac construct (bPac-mTurquoise2-NES), and D-F show-

ing an example cell expressing the control construct (mTurquoise2-NES). In both the vector and

magnitude fields, color indicates magnitude. In the vector field, the lengths of the arrows are nor-

malized for each frame. Cells are outlined in pink. Scale bars = 20 μm. (G) and (H) demonstrate the

Δ traction force magnitude over time, with magnitude traces normalized to the pre-treatment values

on a per-cell basis. Mean and S.D. of traces between n = 9 cells (bPac construct) and n = 4 cells

(control construct) are shown. Photostimulation is applied at the black dashed line using a 445 nm

laser at 25% power for 150 ms.

the myosin light chain phosphorylation state (by modulating myosin light chain kinase

and phosphatase, for example, reviewed in [120, 121]), or through directly affecting the

polymerization of monomeric actin that constitutes F-actin [122], both of which would

accompany a structural change in stress fibers in the cells. To test whether bPac-induced

cell relaxation is mediated through alternation to the actin cytoskeleton structures, we la-

beled F-actin with either LifeAct [123] (Fig 3·6 A) or fluorescently-tagged monomeric

actin [124, 125] (Fig 3·6 B). In dark conditions, the fibroblast cells display thick, promi-

nent stress fibers on the periphery and through the cell body mostly along the alignment

direction of the cells (Fig 3·6 A and B). The stress fiber structures match those seen in

earlier studies [126, 127]. Upon bPac activation with light, the thick stress fibers seemed to

be dissociated: they became less prominent, with some fiber structures even disappearing.

This observation is particularly prominent on the periphery of the cells where thick stress

fibers reside before light stimulation (Fig3·6 A and B, left panels). To quantify the stress

fiber structure change, we generated a metric we termed stress fiber integrity (SFI, Fig 3·6
C-D). The cell is first masked with an adaptive (local) thresholding algorithm to pick up

the median signal intensities on the stress fiber structures (Fig 3·6 C, pink outline). This

signal is then divided by the median signal intensity from the whole cell (Fig 3·6 C, blue

outline), providing a measurement normalized to the expression level of the actin marker

in the whole cell. This metric could reflect the structural change of stress fibers with one



50

caveat: the absolute quantities vary with the masking parameter (Fig B·5). As expected,

when we increased the block size parameter for masking the stress fibers (i.e. a larger local

area is used to determine the local threshold), fraction change in the SFI metric decreases

upon bPac activation (Fig B·5 D). Nevertheless, the SFI metric acts as a semi-quantitative

metric to measure stress fiber integrity.

When we plotted temporal changes of this metric, we see that there is a clear decrease

upon bPac activation, which persisted for around 15 minutes after the light stimulation was

turned off, followed by recovery (Fig 3·6 E and F, top panels). In the LifeAct-labeled cells,

we observed a transient increase of SFI after the light stimulation was turned off. This

could be due to the actin marker signal accumulating locally around the nucleus after bPac

activation (for example, in Fig 3·6 A, 4 minutes after stimulation started). SFI changes

are accompanied by nuclear area decrease (Fig 3·6 E-F, right panels), suggesting that the

previously observed nucleus area decrease is likely the result of structural changes of stress

fibers.

Variables that could potentially modulate the stress fiber structure change and nuclear

area change include the expression level of the optogenetic tool and passage of the cells

(with passaging on stiff culture plates, fibroblast cells tend to turn into a myofibroblast-

like state [128, 129, 130]). Additionally, the basal levels of these two metrics could affect

changes induced by bPac activation. Therefore, we tested whether the extent of stress fiber

disintegration or nucleus area change is determined by either the expression level of the

bPac tool, passage of cells, or the basal level of those metrics (Fig B·7). Correlation anal-

ysis reveals neither normalized decrease of SFI nor nucleus area is correlated with bPac

expression level (approximated by CFP median intensity) with both actin markers (Fig B·7
A-D). Additionally, the decrease in the normalized nucleus area does not seem to corre-

late with the basal nucleus area. However, the reduction in normalized SFI is positively

correlated with the basal SFI value, suggesting at this stimulation dosage, bPac stimulation
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Figure 3·6: bPac activation induces a structural change of the actin stress fiber.
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(A) and (B) show panels of images of the actin marker and the nucleus 1 minute before bPac stim-

ulation, a few minutes after bPac stimulation, and 25 min after the stimulation start. Cells are

expressing the optogenetic tool bPac, markers for actin cytoskeleton (LifeAct-mScarlet(i) in (A)

and mScarlet(i)-actin in (B)), and the nucleus is stained with NucSpot. White arrows point at thick

stress fibers that undergo disintegration upon bPac activation. Scale bars = 20 μm. (C) and (D)

demonstrate the quantification metric for stress fiber integrity (SFI). In (E) and (F), the top pan-

els show the quantification from cells expressing the bPac tool, whereas the bottom panel shows

results from cells expressing the control construct (mTurquoise2-NES). Temporal traces for stress

fiber integrity (SFI) and nucleus area are normalized to pre-stimulation values on a per-cell basis,

and the mean and S.E.M. are shown in the left and right panels of (E) and (F). Photo-stimulation is

applied at the grey-shaded region using a 490 nm LED at 10% power. Maximum decrease of SFI

and nucleus area are shown in (G) and (H), with each data point representing the mean value from

an independent experiment (cell seeding day), and different colors representing data from differ-

ent experiments. In (E)-(H), the total number of cells included for bPac construct with the LifeAct

marker, control construct with the LifeAct marker, bPac construct with the actin marker, and control

construct with the actin marker conditions are 72, 34, 58, and 40. Student t-test is used for testing

between-group differences in mean values from independent experiments. *: p < 0.05, **: p <
0.01, *** : p < 0.001.

decreases stress fiber integrity to a saturating extent (Fig B·7 A, C). We also found that

neither decrease of normalized SFI or nucleus area is dependent on cell passage, as the

distributions of both metrics are similar across different passages (Fig B·7 E-F).

The observed structural change of the stress fibers suggests the mechanism might in-

volve the depolymerization of F-actin. To test this hypothesis, we labeled cells with a

different actin marker, F-tractin [131], a small protein that binds with polymerized F-actin

but not monomeric G-actin, distinct from the previous two types of actin markers which

label both types of actin. Because the actin marker F-tractin-mScarlet(i) is relatively small

in size (around 30 kDa, [132] ), markers that dissociate from monomeric actin upon F-actin

depolymerization would freely diffuse through the nuclear pore into the nucleus [133].

Upon bPac activation, similar to what is observed with the LifeAct marker, F-tractin sig-

nal dissociated from the thick stress fibers accompanied by the signals enriched around the

nucleus (Fig 3·7 A-D, 2.5 min after stimulation). Interestingly, after bPac simulation was

turned off (i.e. during the recovery phase of actin structure), the F-tractin signal diffused to

the nucleus (Fig 3·7 A-B, yellow arrows), a phenomenon that is absent in cells labeled with
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LifeAct actin markers (Fig 3·7 C-D). To quantify this observation, we measured the actin

signal intensity within the nucleus. Upon stimulation, we observe a fast increase of nuclear

actin signal which quickly goes back down after light stimulation was turned off (Fig 3·7)

with both actin markers. This is likely due to F-actin dissociation from the stress fibers at

the boundary of the cells such that the actin marker signal diffused to areas above or be-

low the nucleus (which is counted as marker signal in the nucleus due to the use of max-z

projection). About two minutes after light stimulation was stopped, we noticed a second

peak of nuclear actin signal increase (Fig 3·7 E, yellow dot) that is absent in cells labeled

with LifeAct. This observation suggests that actin stress fibers break apart during bPac

activation phase, but depolymerization of F-actin into monomeric actin happens during the

recovery phase.

Figure 3·7: F-tractin marker dynamics reveals bPac activation induces F-actin depolarization.

Previous studies have shown that pharmaceutical activation of the cAMP pathway al-

ters actin cytoskeleton structures on a much longer time scale (hours) [134, 135]. To test

whether a similar actin stress fiber structure change on the sub-minute time-scale can be in-
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(A)-(D) show panels of images of different actin markers one minute before bPac stimulation, and

2.5 minutes, 12 minutes, and 24 minutes after the stimulation started in representative cells. Cells

are expressing the optogenetic tool bPac and actin cytoskeleton markers (F-tractin-mScarlet(i) in

(A)-(B) and LifeAct-mScarlet(i) in (C)-(D)). Nuclei are outlined with white dashed circles. Yellow

arrows point at F-tractin signal diffusing into the nucleus (A)-(B), suggesting depolymerization of

F-actin; and LifeAct signal mostly stays outside of the nucleus (C)-(D). Scale bars = 20 μm. In

(E)-(F), actin marker signal intensity inside the nuclear region is plotted, with (E) quantifying cells

with the F-tractin marker (n = 24 cells), and (F) quantifying cells with the LifeAct marker (n = 72

cells). Traces are normalized to the pre-stimulation values on a per-cell basis. Black and yellow dots

demonstrate data at the four time points as the image panels in (A)-(D). The solid lines and shading

show mean and S.E.M. Grey bars indicate when the photostimulation was on. Photostimulation was

applied for a length of 3 minutes using a 490 nm LED at 10% power.

duced with pharmaceutical activators of the cAMP pathway, we treated cells with a cocktail

consisting of endogenous adenylyl cyclase activator forskolin (fskn, [108]) and phospho-

diesterase inhibitor IBMX. Neither the stress fiber structure nor the nucleus area displayed

a significant change upon cAMP activator drugs addition compared to the controls (Fig

B·6) on the time scale of tens of minutes. This could be due to the fact that the amount

or speed of cAMP production induced by the bPac tool largely exceeds that induced by

pharmaceutical approaches. This highlights that the bPac tool uniquely allows us to study

cell behaviors in response to transient, acute activation of the cAMP pathway.

Our results also suggest a potential mechanism through which nuclear shape is main-

tained: the nucleus is basally under tension generated by the contractile actin cytoskeleton.

Upon bPac activation, the disintegration of the stress fibers leads to a decrease in these

forces. Since the nucleus is linked with the plasma membrane through the stress fibers

[136], our data suggest that the nucleus is under outwards tension basally. Therefore, stress

fiber tension relaxation leads to the observed nuclear area decrease.

3.2.4 bPac modulates actin cytoskeleton structures through calcium

After establishing that bPac activation induces structural changes in the actin cytoskeleton,

we investigated what mediates this response. The cAMP/ PKA pathway has been shown to
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modulate multiple protein targets involved in actin structure modulation including myosin

light chain, Rho GTPases, and calcium [97, 98]. Calcium is of particular interest because

cytosolic calcium activity has been shown as a key regulator for both cell contractility and

actin cytoskeleton organization [20, 19] and has extensive crosstalk with the cAMP/PKA

pathway [137, 138].

Calcium in the cytosol is modulated by calcium ion exchange between two major stores,

the intracellular store (endoplasmic reticulum, ER) and the extracellular space (reviewed

in [4, 5]). ER calcium release is generally induced by extracellular ligands activating G

protein-coupled receptors (GPCRs) that activate the phospholipase C (PLC) pathway. This

leads to inositol 1,4,5-trisphosphate (IP3) production, which sensitizes and promotes the

opening of the IP3 receptor (IP3R) on the ER membrane, causing ER calcium release. Cal-

cium influx from the extracellular space can take place when different calcium channels

on the plasma membrane open up, either upon the presence of external cues (for example,

stretch-activated calcium channels open upon stretch application), or when ER calcium

is depleted (leading to calcium influx through store-operated calcium channels). Litera-

ture shows the cAMP/PKA pathway modulates intracellular calcium by acting on various

aspects of the calcium pathway: including calcium release from the ER store (through

sensitizing IP3R), stretch-activated calcium channels (SACCs), and store-operated calcium

entry (SOCE) channels [137, 138].

Recent studies have demonstrated a behavior termed calcium-mediated actin reset (CaAR)

- a general stress response displayed in multiple cell types during which cortical actin cy-

toskeleton rapidly reorganizes upon cytosolic calcium increase either through mechanical

perturbation [14], pharmaceutical treatment [16] or optogenetic activation [53]. This cel-

lular response shares similarities with the bPac-induced actin fiber reorganization we ob-

served. We thus asked whether the acute actin structure reorganization is mediated through

calcium.
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Figure 3·8: bPac activation induces immediate intracellular calcium increase that accompa-
nies actin structure reorganization. (A) and (B) show representative images of cells expressing

the mTurquoise2 control (mT2 ctrl) construct and the bPac construct, respectively. The top pan-

els show actin cytoskeleton (labeled with LifeAct-mIRFP), and the bottom panels show calcium

activity dye (Calbryte 590) one minute before and one minute after the start of blue light stimula-

tion. Scale bars = 20 μm. In both (C) and (D), single-cell SFI traces over time are shown on the

left, and the average and S.D. of these traces are shown on the right. Traces are normalized to the

pre-stimulation levels on a per-cell basis. On the left panel, the black dashed line denotes the start

of bPac stimulation. On the right panel, the grey shaded regions mark the start to the end of the

stimulation. For the bPac and mT2 control construct, n = 101 and 52 cells are included respectively.

490 nm LED at 10 %power is used for photostimulation.

We first investigated whether bPac activation induces changes in cytosolic calcium lev-

els. To simultaneously visualize the cytosolic calcium activity and the actin cytoskeleton

structure, we used a red calcium dye (Calbryte 590) together with a far-red actin cytoskele-

ton label LifeAct-mIRFP. Fibroblast cells in culture media basally show sporadic calcium

spiking because of serum-residing signaling ligands such as LPA which induce periodic

calcium releases from the ER (Fig 3·8 C-D. For a more detailed discussion about serum-

induced calcium spiking, please refer to Chapter 2). Upon light activation, we observe
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immediate stress fiber disintegration (as is measured in the decrease of SFI) accompanying

a large pulse of intracellular calcium (Fig 3·8 B, D). Both changes were absent in cells

expressing the control tool mTurquoise2 (Fig 3·8 A, C), confirming that the responses are

due to bPac activation. Additionally, the increase in cytosolic calcium occurred at the same

time as the onset of SFI decrease, suggesting that both processes are induced immediately

(within 10 seconds) upon bPac activation.

After establishing that actin stress fiber reorganization and cytosolic calcium increase

are correlated upon transient cAMP activation using bPac, we further tested whether cal-

cium mediates bPac-induced actin reorganization. For cultured cells in steady-state, cy-

tosolic calcium concentration is in the 100 nM range [4]. Calcium increase in the cytosol

could come from two major stores: the extracellular space (in the 1 mM concentration

range) and the endoplasmic reticulum (ER, calcium concentration in the 100μM range) and

is regulated by numerous signaling components (calcium toolkit) [4].

To investigate whether calcium mediates bPac-induced actin reorganization, we first

tested cellular response to bPac activation in calcium-free media. Calcium-free media not

only eliminates calcium influx from the stretch-activated and voltage-gated channels but

also disables calcium from the SOCE process. In calcium-free media conditions, we ob-

served a calcium response of similar height as the cells in the control media (Fig 3·9 B

and E) upon bPac stimulation. However, the long tail—sustained high calcium levels after

the light stimulation stopped—disappeared in cells residing in calcium-free media, which

is reflected in the significant decrease of area-under-curve (AUC) measurement from the

calcium traces (Fig 3·9 E and I). Additionally, cells residing in calcium-free media also

displayed a decreased change in the SFI metric in response to bPac activation (Fig 3·9
E and J), suggesting that calcium response is essential for mediating bPac-induced actin

structure organization. Because we observed residual calcium activation response and SFI

response upon bPac activation under calcium-free media conditions, we asked whether cal-
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Figure 3·9: bPac-induced actin structure change is mediated through the calcium pathway.
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(A). Schematic demonstrating two major calcium stores (extracellular space and ER) and acting

mechanisms of inhibitor drugs. (B)-(F). Calcium and stress fiber integrity (SFI) in different me-

dia conditions, with top panels showing the calcium signal from the Calbryte 590 dye, and bottom

panels showing SFI. Both calcium and SFI traces are normalized to the pre-stimulation levels on a

per-cell basis. The mean and S.D. of the traces are displayed. Grey-shaded regions indicate blue

light activation. (G) demonstrate quantification metrics for calcium and SFI responses. Calcium

height (red arrow), calcium area-under-the-curve (AUC, red shaded region), and SFI max differ-

ence (pink arrow) are labeled on top of traces from an example cell. Scatter plots of these metrics

are shown in (H) (calcium height), (I) (calcium AUC), and (J) (stress fiber integrity maximum de-

crease). All cells in the experiments stably expressed the bPac construct and the LifeAct-mIRFP

actin marker and were stained with Calbryte 590 dye for calcium activity measurement. In (H)-(J),

the black square dot and grey bars mark the mean and standard deviation between individual cells

for each media condition, and large colored data points represent the mean value from independent

experiments (cell seeding days) and small colored data points mark data from individual cells, with

colors representing different experiments. For the control (DMSO) and the SKF (50 μM) media,

2APB (50 μM), calcium-free media, and calcium-free media plus 2APB (50 μM) conditions, n =

101, 76, 56, 41, and 64 cells are included respectively. 490 nm LED at 10%power is used for pho-

tostimulation. Statistical tests between conditions are conducted between independent experiments

with Tukey’s HSD method for data with equal variance and Games-Howell post-hoc test for data

that does not show equal variance. ns: not significant, **: p<0.05, **: p<0.01, ***: p<0.001.

Statistical results are only calculated between the control media and other treatment conditions.

cium from the ER store could explain these residual responses. To answer this question,

we further treated the cells with an IP3 receptor inhibitor 2-APB that inhibits ER-mediated

calcium release. Cells in calcium-free media that were treated with 2-APB showed calcium

response with a smaller height and AUC, accompanied by almost no change in actin stress

fiber organization (Fig 3·9 F, H-J). This suggests ER-mediated calcium release also plays a

role in bPac-induced actin stress fiber structure change.

To further investigate the respective roles of ER calcium release and SOCE, we mea-

sured cell response to bPac activation in regular culture media in the presence of either the

IP3 receptor inhibitor 2-APB or SOCE inhibitor SKF-96365 (SKF). Surprisingly, we ob-

served no apparent differences in the calcium response under IP3R inhibition (2-APB, Fig

3·9 D, H, and I). As expected, SOCE inhibitor treatment (SKF) led to a faster decrease in

calcium level after the withdrawal of light stimulation (Fig 3·9 C, also shown in the slight

decrease of calcium area-under-the-curve response in Fig 3·9 I), suggesting SOCE is likely
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involved in maintaining sustained high calcium levels upon bPac activation. However, there

is no significant decrease in calcium area-under-the-curve response when cells were treated

with the SOCE inhibitor SKF (Fig 3·9 I). Aligned with the unaltered calcium response, the

actin fiber reorganization induced by bPac activation was preserved under either IP3R in-

hibitor or SOCE inhibitor treatments (Fig 3·9 C, D, J). We suspect the reason to be at least

two-fold. Firstly, it has been suggested in the literature that cAMP increase induces cal-

cium release from an ER compartment that is independent of the calcium store released by

IP3 alone [139]. Therefore, it is possible that the acute cAMP increase in cells upon bPac

stimulation unmasks the ER calcium store that 2-APB can not fully inhibit. Secondly, the

effect of bPac activation could be too strong for both inhibitors to act against. Because the

SFI metric is normalized to the basal level and therefore only reflects relative changes in

actin fiber organization, we checked whether drug inhibition of the calcium pathway would

alter the basal level of SFI. When we quantified the basal level of the stress fiber integrity

(SFI) metric, we observed no significant difference between calcium-inhibited media con-

ditions compared to control media conditions (Fig B·8). This indicates that the observed

differences in actin fiber organization (quantified by SFI) under different media conditions

are likely not due to the differences in basal SFI. In summary, our data suggest that bPac-

induced actin stress fiber reorganization is mediated through increasing cytosolic calcium,

with the initial calcium peak dominated by ER-mediated calcium release and the sustained

high cytosolic calcium level mostly mediated by SOCE which requires extracellular cal-

cium.

3.3 Discussion

In this work, we harnessed an optogenetic tool bPac to investigate cell migratory behav-

iors under direct, transient control of the cAMP/PKA pathway. We first characterized the

optogenetic tool using a fluorescent reporter for PKA, and confirmed that the tool can
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achieve repetitive pathway activation at the minute-timescale upon light exposure. More

importantly, we have shown that the extent of pathway activation can be controlled by light

stimulation length and intensity. Using this tool, we applied different strengths of pathway

activation by using different light dosages to investigate the effect on cell migration in a

standard 2D scratch assay. We found that in both the fibroblast cell line and the epithelial

cell line, higher cAMP pathway activation led to lower 2D migration efficiency. By mea-

suring the cell-generated traction force and visualizing the actin cytoskeleton structure, we

found that optogenetic activation of the pathway led to a reduction in cell contractility and

disruption of stress fiber integrity, both of which can explain migration inhibition induced

by cAMP pathway activation. Lastly, we have shown that the optogenetically-induced

stress fiber structure change is mediated by cytosolic calcium increase that requires both

extracellular calcium influx and ER calcium release.

Our work here is the first work to my knowledge that investigates the modulation of

cell migration and actin cytoskeleton structure upon direct, transient control of the cAMP

pathway. Previous work has shown that pharmaceutical cAMP/PKA pathway activation

leads to a decrease in cell migration efficiency in endothelial cells [140] and epithelial cells

that are migrating through confined channels [141]. Additionally, pharmaceutical studies

have shown activation of the cAMP/PKA pathway leads to structural change in the actin

cytoskeleton in human neuroblastoma cells [134] and astrocytes [142]. Our results show

that direct transient activation of the cAMP pathway inhibits migration and induces stretch

fiber integrity decrease, which aligns with what was shown in the literature. The key dif-

ference between the actin cytoskeleton structure change induced by pharmaceutical studies

and bPac activation is that the two processes happen at drastically different timescales (1

to 2 hours for drug treatment, and within a minute for bPac activation, refer to Fig B·6 and

3·6). To understand the origin of this difference, we looked into previous work that com-

pared the effects induced by drug and bPac activation [106]. The work shows that in CA1
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pyramidal cells, the cyclic nucleotide-gated cation channel (CNG channel) current induced

by bPac is significantly faster and larger in amplitude compared to that induced by a strong

pharmaceutical treatment (100 μM fskn + 100 μM IBMX). This suggests that in our work,

the difference between bPac activation and the traditional drug treatment is likely domi-

nated by the rate at which cAMP is produced as well as the maximum level of resulting

cAMP, and that the actin cytoskeleton structure and migration could be modulated by the

time-integral of the cAMP pathway activation.

One unique observation that we had is the recovery dynamics of the cytoskeleton struc-

ture and cell contractility—the stress fiber integrity metric recovered around 50% within 10

minutes after integrity reached the lowest point after bPac activation(Fig 3·6 E, F), and the

cell contractility displayed a similar extent of recovery within 5 minutes after cells reached

maximum relaxation (Fig 3·5). This observation indicates cells are robust to changes in cy-

toskeleton structure and contractility in response to cAMP pathway activation. It is not clear

what cellular components and processes mediate the recovery. Further investigation into

these questions would help us understand how cells achieve restoration of the cytoskeleton

structure as well as cell contractility.

In this work, we found that bPac activation led to changes in both the structural integrity

of stress fibers and cell contractility. More importantly, in both processes, the dynamical

responses showed similar time scales: a fast disintegration of stress fibers/relaxation of cell

contractility and a slow recovery of stress fiber/cell contractility (Fig 3·6, 3·5). This led to

the question of whether the two processes have causal relations. Previous work has shown

that during cell adhesion, contractile displacements generated by cells temporally correlate

with the dynamics of the density of the actomyosin network, suggesting that actin density is

the key modulating parameter for cell contractility [143]. The simultaneous change in actin

structure integrity and cell contractility that we observed, although under perturbation of

a signaling pathway, echoes the observations in the previous work, and suggests that actin
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structure change could be a driver for cell contractility change. In our case, however, it

is unclear whether the bPac-induced relaxation is also due to the modulation of myosin

contractility. Previous literature suggests PKA can modulate both the myosin light-chain

kinase (MLCK) and myosin-light-chain phosphatase (MLCP) to decrease myosin contrac-

tility [97, 98]. This calls for further investigation into the potential role of myosin activity

in the context of cAMP pathway-induced contractility relaxation, especially with the aim

to tease apart the respective roles of actin structure and myosin activity.

In this Chapter, we used different light stimulation strengths for different assays to

characterize bPac activation-induced changes in cells, partially due to the fact that different

optics were used to deliver light stimulation. To be able to directly compare the responses

from different assays, it is necessary to measure the integrated light power applied within

each assay. Moreover, to be able to associate responses on the multicellular (cell sheet

migration) and single-cellular (contractility, stress fiber reorganization etc.) scales, future

work is needed to investigate these responses under identical light stimulation power.

We have shown cytosolic calcium mediates the bPac-induced actin cytoskeleton struc-

ture change. However, we have not probed what mediates the calcium-induced cytoskele-

ton change. There are two potential mechanisms by which calcium increase could lead to

the structural change of actin. The first mechanism is inspired by a phenomenon shown in

previous work termed "calcium-mediated actin reset" (CaAR) that roughly matches what

we observed in bPac-induced actin structure change. Specifically, CaAR describes that an

increase of cytosolic calcium (through fluid shear stress, mechanical stretch, drug treat-

ment, or optogentic control) leads to cortical actin disassembly and actin enrichment at

the peri-nuclear region [14, 16, 53]. This phenomenon is suggested to be mediated by the

formin protein INF2 that rapidly removes actin from the periphery of the cells and forms

new F-actin near peri-nuclear ER regions. However, there is a discrepancy between pre-

vious work and this work, especially in the cell migratory output. In the previous work,
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cytosolic calcium increase induced by extracellular ligand ATP led to increasing 2D migra-

tion efficiency in epithelial cells, an observation that is opposite from the bPac-induced mi-

gration inhibition that we showed. The second potential mechanism is through a calcium-

regulated actin filament-capping protein named gelsolin. Gelsolin is an F-actin filament

severing and capping protein whose activity is directly modulated by cytosolic calcium

concentrations. Upon binding to calcium ions, gelsolin is activated, which leads to F-actin

depolymerization and shorter-length actin filaments [144, 145, 146]. The potential roles of

INF2 and gelsolin in the context of bPac-induced actin structure reorganization still deserve

to be studied.

In this work, we studied how cAMP/PKA pathway modulates cell behaviors through

global control of cAMP. Previous work has shown that subcellular dynamics of the cAMP/PKA

pathway are important modulators of cell migration (reviewed by [97, 98]. Specifically,

PKA activation was exclusively detected at the protrusions but not in the whole cell [103].

Another work showed oscillatory PKA dynamics at the cell membrane that are correlated

with protrusion-retraction cycles. This work further established that protrusion-localized

PKA acts as an essential component of a signaling circuit comprising PKA, RhoA, and

Rho protein GDP dissociation inhibitor (Rho-GDI), and PKA activity sets the pace of the

protrusion-retraction cycles [104, 99]. More generally, cAMP molecules in cells are com-

partmentalized, and cells usually use the subcellular activity of the cAMP/PKA pathway to

execute signal transduction. Compartmentalization of cAMP is established through mech-

anisms such as PDE degradation [147] and buffering by liquid droplets formed by PKA

regulatory units [148]. In addition to regulating protrusion dynamics, subcellular dynamics

of the cAMP/PKA pathway also regulate a wide range of downstream effectors and cellu-

lar behaviors such as neuronal migration [149], Hedgehog signaling [150], and oncogene-

induced cell transformation [148]. Although we did not focus on subcellular control of the

cAMP pathway here, the bPac tool can potentially be used to study the role of subcellular
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pathway dynamics by tagging the tool to different cellular compartments or using a digital

micromirror device (DMD) to achieve subcellular activation.

Here, this body of work focuses on one cell type, the 3T3 fibroblasts, as the model.

However, it has been shown that cAMP increase leads to ER calcium release in multiple

cell types including HEK cells, DT40 cells, Hela cells, and cardiac cells (reviewed in [151,

138, 152]). Additionally, changes in cytoskeleton structure and cell contractility in response

to cytosolic calcium change have been observed in a wide range of cell types (for example,

[14, 16, 53, 153]. Therefore, similar phenomena likely exist in other cell types and await

further investigation.

In summary, our work provides an in-depth characterization and mechanistic investiga-

tion of how the cAMP/PKA modulates migration under direct control of the cAMP/PKA

pathway. This work suggests potential mechanisms related to cell contractility, actin cy-

toskeleton structure, and cytosolic calcium that relate the cAMP pathway activity to migra-

tory outputs.

3.4 Methods

Cell culture, transient transfection, and establishing stable cell lines

NIH 3T3 fibroblasts (American Type Culture Collection, ATCC, CRL-1658) were cultured

in DMEM with 4.5 g/L glucose, L-glutamine, and sodium pyruvate (Corning), supple-

mented with 10% bovine serum (Gibco) and 1% penicillin-streptomycin (Invitrogen). Pas-

sages under 12 were used in experiments. MDCK NBL-2 cells (American Type Culture

Collection, ATCC, CCL-34) were cultured under passage 21 in Eagle’s Minimum Essen-

tial Medium (EMEM, ATCC) supplemented with 10% fetal bovine serum (Gibco) and 1%

penicillin-streptomycin (Invitrogen). Cells were maintained at 37◦C and 5% CO2 and pas-

saged at 80-90% confluency with media changed every 2 to 3 days.

Transient transfection was conducted using the Lipofectamine 3000 Transfection Reagent
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kit (Invitrogen) according to the manufacturer’s instructions. To establish stable pools

of construct-expressing cells, the PiggyBac Transposase system [154] was used. Cells

were plated and co-transfected with the constructs and Super PiggyBac Transposase us-

ing the Lipofectamine 3000 Transfection Reagent kit (Invitrogen). The optogenetic con-

struct (bPac-mTurquoise2-NES) and its control (mTurqiouse2-NES) were co-expressed

with Zeocin-resistance gene and selected with media supplemented with 400 μg/mL Zeocin

(Invivogen); the actin label and PKA-Booster sensor constructs were co-expressed with a

Blasticidin-resistance gene and selected with 5 μg/mL media supplemented with Blasti-

cidin (Invivogen).

Transiently-transfected cells were used for Fig 3·1, B·1, B·3, 3·4, 3·5. Stable pools

were used for Fig 3·3, B·4, 3·2, B·5, B·6, B·7, 3·6, 3·7, 3·8, 3·9.

Scratch assay experiments

Cell seeding, optogenetic activation, and imaging

3T3 fibroblasts and MDCKs stably expressing the optogenetic construct, bPac - mTurquoise2-

NES, or the control construct, mTurquoise2-NES, and a red cytoskeleton marker LifeAct-

mScarlet(i) were seeded in 96-well plates and allowed to form a monolayer. The Auto-

Scratch platform (BioTek, Agilent) was used to achieve reproducible gaps in all experimen-

tal wells. Cells were maintained in a 37◦C and 5% CO2 environment during imaging. Light

stimulation and imaging experiment was done using the Cytation 5 plate reader/microscopy

system (Biotek, Agilent). Light stimulation was achieved by imaging specific wells using

the 488 nm excitation LED. To track cell migration, cells were imaged in TRITC channel

through a 4x air objective every 20 minutes. By programming acquisition in Gen5 soft-

ware (Biotek, Agilent), we multiplexed different temporal stimulation patterns while doing

imaging that allowed for tracking of the gap closure process.

Image analysis

Image analysis was conducted using Fiji [155] and Python [156]. Time stacks from the
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TRITC channel were first down-sampled to one image every 2 hours. Custom-written Fiji

macros were written to generate masks. Briefly, rolling-ball background subtraction was

applied to raw fluorescent images followed by contrast enhancement. The resulting images

went through a median filter, bandpass filter, variance filter, and maximum filter before

finally going through thresholding to generate binary masks. Custom-written Python code

was used to extract gap area information at each frame. The fraction of gap area closed was

calculated by normalizing the gap area to that at 2 hours after gap creation. Data between

2 hours to 24 hours were used for linear fitting and closure rates were determined by the

slope of the fitted lines.

Single-cell imaging experiments

Cell seeding and imaging

Cells were seeded on glass-bottom plates and placed in an incubator chamber main-

tained at 37◦C and 5% CO2 (OKO Labs) for imaging experiments. Confocal imaging was

conducted with Ti-2E Eclipse Microscope with a perfect focus system (Nikon Instruments)

with Dragonfly Spinning Disk Confocal System (Oxford Instruments), and time-series im-

ages were acquired with an iXon 888 Life EMCCD camera (Oxford Instruments). Samples

were imaged through a 20x air objective for Fig 3·1 and B·3; a 40x air objective with a

1.5x zoom in the microscope for Fig 3·6 ; a 40x air objective for Fig 3·4, B·1, 3·5, B·5, and

B·8; a 60x oil objective for Fig 3·7 and B·6. Specific imaging settings are detailed below.

Before imaging, culture media was replaced with imaging media consisting of Fluorobrite

DMEM (Gibco) supplemented with 1% Glutamax (Gibco) and 10% serum depending on

cell type.

Optogenetic activation

Optogenetic activation was conducted in one of the three following ways. In the first

way, the Optoplate system was built as instructed in literature [109], and was programmed

to apply different durations and intensities of 465 nm light stimulation. In a second way, the
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stimulation was applied with a 445 nm laser in the confocal microscope system. In the last

way, 490 nm LED on the PE4000 LED system (CoolLED) was used, and light intensity and

duration were controlled using a Mightex control pad. Specific light stimulation settings

are detailed in figure captions.

PKA-Booster sensor

For imaging PKA Booster sensor in the drug validation experiments (Fig B·1), samples

were imaged using a 445/514/561/640 dichroic. The donor-donor channel was imaged

using a 514 nm excitation laser, and 540/15 emission filter; the donor-acceptor channel

was imaged using a 514 nm laser and 698/77 emission filter; the acceptor-acceptor channel

was imaged using a 561 nm excitation laser and 698/77 emission filter. For imaging PKA

Booster sensor in the bPac stimulation experiments (Fig B·1 and 3·1), to prevent activating

bPac during sensor imaging, 561 nm excitation laser with 540/15 emission filter was used

for the donor-donor channel, and 561 nm excitation laser with 698/77 emission filter was

used for the donor-acceptor channel.

Actin cytoskeleton, nucleus, and calcium activity imaging

Actin was labeled with LifeAct [123], F-tractin [131], or actin monomer attached with

mScarlet (i) [132] or mIRFP670 [157]. Nuclei are labeled with NucSpot 650 Live Cell

Nuclear Stain (Biotium) following the manufacturer’s instructions. Samples were imaged

through a 445/514/561/640 dichroic. 561 nm excitation laser and 620/60 emission filter are

used for imaging the mScarlet-(i) signal, 634 nm excitation laser and 698/77 filter are used

to image the NucSpot650 signal or the miRFP670 signal. To visualize calcium dynamics,

cells were incubated with Calbryte 590AM calcium indicator dye (ATT Bioquest) accord-

ing to the manufacturer’s instructions for 40 minutes before imaging. Confocal imaging

using 40 μm pinholes was conducted. To capture actin fiber structures throughout cell

height, z-stack images were acquired for a total of 6 steps with 1 μm/ step. Max projections

of the z-stacks were used for visualizations and quantifications. The step size of z-stack was
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determined such that smaller sampling steps would neither improve resolution qualitatively

nor change the SFI metric quantification.

Optogenetic bPac construct imaging

At the end of time-series imaging, bPac-mTurquoise2-NES channel was imaged with a

445 nm excitation laser and 480/40 emission filter through a 445/514/561/640 dichroic.

Image analysis

All image analysis was conducted using Fiji [155] and custom-written Python [156]

scripts. For all quantification metrics (FRET signal, SFI, nuclear area, calcium intensity),

masks were generated by built-in functions from the scikit-image package [158]. The raw

traces generated from each time frame were normalized to the mean baseline values (mean

values across time points before light stimulation) before further analysis (e.g., peak detec-

tion, height/width measurement).

For FRET signal extraction, background subtraction was applied to each channel of the

multi-channel time series before further analysis. Cells were masked using the adaptive

thresholding method on the channel with the highest brightness. FRET signal was calcu-

lated from the pixel-by-pixel division of the donor-acceptor channel over the donor-donor

channel. Median pixel values from the mask were extracted as the FRET signal. PKA re-

sponse peaks were detected using the find_peaks function in Scipy package [159]. Height

was calculated by the prominence of the detected response peak, and width was calculated

by the full width at half maximum (FWHM) of the response peak.

To quantify actin stress fiber integrity (SFI), maximum z-projections from the z-stacks

of the actin channel images were first calculated. Whole-cell masks were generated by

adaptive thresholding followed by median filtering and filling-holes. Actin stress fiber

masks were generated by adaptive thresholding with a smaller neighborhood size followed

by median filtering. The median pixel intensity from the stress fiber mask is divided by

that from the cell mask to generate SFI measurements. Maximum difference of SFI was
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calculated by subtracting the minimum value of SFI after light stimulation from the baseline

SFI value.

The nuclear area was measured either from the dark void region in cells expressing the

PKA-Booster sensor with a nuclear escape sequence (NES), or from the nuclear channel

when the nucleus is labeled with NucSpot650 dye. In both cases, area measurements were

generated from masking with adaptive thresholding methods on every frame.

As for calcium activity, the whole cell mask generated with the actin label channel was

used, and the median intensity in the calcium channel was extracted. Calcium response

height was calculated from peak prominence detected by the find_peaks function in Scipy

package [159].

Traction force microscopy

Traction force microscopy was conducted following procedures published previously [117,

160]. Briefly, polyacrylamide hydrogel substrates with an elasticity of around 1.25 kPa

were made on glass bottom plates. Infrared-colored beads (Carboxylate-modified micro-

spheres, Thermo Scientific, 0.2 μm diameter) were used to track substrate deformation to

calculate the change in cell contractility. To allow for efficient coating of the extracellu-

lar matrix (ECM) protein onto the substrate, Sulfo-SANPAH (Sigma) was UV-crosslinked

to the polyacrylamide gel. The gel was then incubated with the ECM protein fibronectin

(from bovine plasma, Sigma) before being seeded with cells.

Cells and fluorescent beads embedded in the substrate were imaged using confocal

imaging with 40 μm pinholes through a 445/514/561/640 dichroic. Cells expressing mKO-

κ-NES were imaged with 561 nm excitation laser and a 540/30 emission filter to avoid

activating the bPac construct. Infrared beads were imaged with a 634 nm excitation laser

and 698/77 filter. Z-stack images were acquired for a total of 8 steps with 2.5 μm/step.

Max projections of the z-stacks were used for visualization and quantifications. Sets of two

images of the beads from the first frame and the following frames were used to calculate the
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change in traction force (Δ traction force). Δ traction force was calculated using custom-

written imageJ and Python scripts [161] taking advantage of the imageJ plugin PIV and

FTTC [162, 163]. The average magnitude across the whole FOV was used to quantify Δ

traction force at a specific time frame with a single cell.

Pharmaceutical inhibitor treatment

Calcium-free media consists of DMEM (high glucose, no glutamine, no calcium, Gibco)

and 1% Glutamax (Gibco). Cells were rinsed with calcium-free PBS before being changed

to calcium-free media. Calcium pathway inhibitors used are 2-APB (50 μM, Santa-Cruz)

and SKF 96365 (50 μM, hydrochloride, Cayman Chemical). The cAMP/PKA pathway

inhibitor cocktail includes 20 μM forskolin (Sigma) and 1 mM IBMX (Sigma). Cells were

incubated with inhibitor drugs for about 1 hour before imaging. For the PKA-Booster

sensor validation experiment (Fig B·1), 10 μM forskolin (Sigma) was injected into imaging

wells while imaging was paused.

Recombinant DNA

Plasmids used in this work were constructed with standard Gibson cloning methods [164],

with parts coming from different sources as detailed below.

Plasmid name Source Identifier
pCAGGS-4493NES (PKA-Booster) Addgene #138373
pCAG-4589NES (PKA-Booster(T/A)) Gift from Dr. Kenta Terai lab N.A.
pPBbsr-PKA-Booster-NES Custom made N.A.
pPBbsr-PKA-Booster(T/A)-NES Custom made N.A.
pPBbsr-mKOκ-NES Custom made N.A.
pPBzeo-bPac-mTurquoise2-NES Custom made N.A.
pPBzeo-mTurquoise2-NES Custom made N.A.
pPBbsr-LifeAct-mScarlet(i) Custom made N.A.
pPBbsr-LifeAct-mIRFP670 Custom made N.A.
pPBbsr-Ftractin-mScarlet(i) Custom made N.A.
pPBbsr-mScarlet(i)-actin Custom made N.A.
pCAG-SuperPiggybac Gift from Dr. Wilson Wong lab N.A.
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Chapter 4

Serum induces intracellular calcium spiking
through LPA-mediated ER calcium release

4.1 Introduction

In Chapter 3, we investigated how a behavioral output (migration) is controlled by the

intracellular signaling molecule (cAMP) in mammalian cells using new experimental tech-

niques. Here in Chapter 4, we turned to investigating how environmental input is encoded

in intracellular signaling molecule, again harnessing the new experimental tools. Specifi-

cally, this Chapter focuses on the signaling molecule calcium in response to the presence

of an external molecule.

Calcium is a ubiquitous signaling molecule that is important for regulating cell be-

haviors across cell types. Calcium signaling has been shown to play a significant role in

regulating biological processes like cell migration [165], embryonic development [166] and

cancer progression [167]. Cytosolic calcium is one of the master regulators that links a va-

riety of environmental inputs to various types of cellular outputs [4, 5]. Environmental cues

that modulate cytosolic calcium activity include biochemical ligands such as ATP released

from damaged cells [7] and applied forces such as stretch [14] and squeeze [15]. Cellular

outputs that are regulated by calcium include cellular contractility [19], actin cytoskele-

ton organization [14, 16], migration [20], proliferation [22], gene expression (reviewed in

for example [4, 5]) and secretion [23]. Understanding how environmental inputs modulate

cytosolic calcium (termed calcium encoding) is essential for understanding mechanisms
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coordinating a wide range of biological processes.

One outstanding feature of calcium signaling is that it generally functions by generating

changes in dynamics rather than steady-state levels to encode environmental information

and modulate downstream behaviors [4, 5, 6, 168]. Generally, there are two types of cal-

cium dynamical responses: an immediate increase of cytosolic calcium which eventually

returns to baseline (a calcium pulse), or persistent trains of calcium transients (commonly

called oscillations, or in this work, calcium spiking).

Cytosolic calcium dynamics can be modulated by environmental inputs. For exam-

ple, a calcium pulse can be elicited by lysophospholipid acid (LPA) in karatinocytes [13],

stretching forces in fibroblasts [14], fluid shear stress in multiple epithelial cell lines [16],

and electrical signals in muscle cells [169]. On the other hand, calcium spiking can be

induced by ATP in fibroblast cells [56], carbachol (CCh) in HEK cells [8], peptide–MHC

complex in immune cells [9, 10]), or culturing on stiff substrates in mesenchymal stem

cells [17, 18]. Calcium dynamics also play an important role in regulating downstream ef-

fects (reviewed in [30]). For example, by orthogonally controlling calcium oscillation fre-

quency and duty cycle (integrated calcium concentration over a period), researchers found

the calcium-regulated transcription factor NFAT is sensitive to the duty cycle rather than

the frequency of calcium activity [32]. These results highlight the important role of calcium

dynamics in both encoding external cues and regulating downstream behaviors.

When studying the environment encoding of calcium activity, there are three major

classes of questions: (1) how do calcium dynamics encode information about the environ-

ment, (2) where do the calcium ions come from, and (3) because there is crosstalk between

calcium and multiple other intracellular signaling pathways, how do these pathways mod-

ulate calcium?

Decades of work have investigated how external cues modulate calcium dynamics in

different cell types. A significant fraction of the previous work on in vitro cell culture mod-
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els was conducted under regular cell culture media conditions (with serum supplement),

likely to maintain cell health (for example, [17, 170, 171, 172]). However, a full charac-

terization of Ca2+ dynamics and their origins have not been made in standard cell culture

conditions. One component in culture media that could potentially shape calcium dynam-

ics is serum, which consists of numerous bioactive components such as growth factors,

albumin, and lipids.

In this work, we focus on the encoding of calcium dynamics in a mammalian fibroblast

cell line (NIH 3T3) under standard cell culture conditions. We found that serum supple-

ment in regular culture media induces repetitive calcium spiking in fibroblast cells. We

then identified one key serum-borne component accounting for serum-induced spiking,

lysophosphatidic acid (LPA), and characterized how different LPA concentrations shape

calcium dynamics. Further, we investigated which calcium toolbox components are rele-

vant in LPA-induced calcium spiking. We confirmed extracellular calcium is indispensable

for LPA-induced calcium spiking, and ER calcium release is the major source of calcium

spiking. Additionally, given LPA’s ability to activate a wide range of signaling pathways,

including ones that have extensive crosstalk with calcium, we investigated the role of those

pathways in shaping LPA-induced calcium dynamics. We identified PKA as one important

signaling molecule that shapes the LPA-induced calcium dynamics. Our work suggests

that future studies focusing on the environmental encoding of the calcium pathway take the

effect of serum into account.

4.2 Results

4.2.1 Serum induces calcium spiking in 3T3 fibroblast cells and LPA is the major
responsible component

To characterize calcium dynamics in regular culture media, we stably expressed the genet-

ically encoded calcium sensor jGCaMP7b [173] in 3T3 fibroblasts (Fig 4·1A). By simply
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incubating cells in culture media (basal media supplemented with 10% bovine serum),

nearly all cells displayed repetitive calcium spiking, with each spike characterized by a

sharp calcium increase in the whole cell body followed by a quick decrease to the baseline

(Fig 4·1B). By contrast, this whole-cell calcium spiking behavior was absent in cells in

basal media (without serum supplement, Fig 4·1E), suggesting that serum-residing compo-

nent(s) are responsible for the calcium spiking behavior. While for cells cultured in basal

media (media without serum supplement), we observed calcium fluctuations with small

amplitudes in subcellular compartments like protrusions, rarely did any cells show whole-

cell spiking (data not shown). To confirm that the calcium spiking behavior is not specific to

one serum preparation, we incubated cells in media containing serum from three different

vendors. All three lots of serum induced repetitive calcium spiking in a large percentage of

the population (Fig C·1), confirming that serum-induced calcium spiking in 3T3 fibroblasts

is a general phenomenon that is not specific to a particular serum lot.

After establishing that serum supplementation in basal culture media induces calcium

spiking in 3T3 fibroblast cells, we asked what serum component(s) are responsible for this

behavior. Serum is derived from animal blood whose components are usually poorly de-

fined. Serum components that can potentially regulate cell signaling include various growth

factors, hormones, and lipids. We investigated two serum components that could poten-

tially be responsible for serum-induced calcium spiking in fibroblast cells, manganese ions

(Mn2+) and lysophosphatidic acid (LPA). Both components exist in abundance in serum

but are not present in basal media. First, Mn2+ has been shown to induce the activation and

clustering of integrins [174, 175, 176]. Because integrin engagement has been shown to in-

duce cytosolic calcium increase in a variety of cell types [177, 178], we hypothesized that

Mn2+ could be a potential serum component that induces calcium spiking. Second, LPA

is a lysophospholipid usually bound to albumin that is naturally abundant in serum (100

nM to the micromolar range) [179, 180]. Previous studies have shown that LPA induces
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cytosolic calcium increase through calcium release from the endoplasmic reticulum (ER)

in several cell types including astrocytes [11], keratinocytes [13, 181], and human foreskin

fibroblasts [12, 22].

To investigate whether Mn2+ may account for serum-induced calcium spiking in fibrob-

lasts, we supplemented basal media with Mn2+ at concentrations similar to those found in

fetal bovine serum [182]. Mn2+ supplemented media did not induce calcium spiking in the

majority of fibroblast cells (Fig C·1A), indicating that it is unlikely the component respon-

sible for serum-induced calcium spiking.

To investigate whether LPA may act as a potential serum component inducing cal-

cium spiking, we first measured the calcium dynamics while incubating cells in serum-

supplemented media that was treated with activated charcoal. Activated charcoal strips

fatty acid components from the media [183, 184, 185], including LPA. The fraction of spik-

ing cells is reduced by more than half in charcoal-stripped media (Fig 4·1 C, E), suggesting

that the major calcium-inducing component in serum is likely a fatty acid. Supplementing

the charcoal-stripped media with 10 μM purified LPA rescued calcium spiking in almost all

cells (97.8%), a significant increase from the 33.8% of spiking cells in charcoal-stripped

media (Fig 4·1 D, E). Next, we asked whether LPA alone is sufficient for inducing calcium

spiking. Basal media supplemented with 10 μM LPA induced calcium spiking in almost

all cells with no significant difference between the LPA- and serum-supplemented media

conditions (Fig 4·1E).

To further confirm that LPA is the major serum component responsible for the observed

calcium spiking, we treated cells with an LPA receptor (LPAR) inhibitor Ki16425 (Ki),

which inhibits several subtypes of LPARs on the plasma membrane including LPA1, LPA2

and LPA3 [186, 187]. The addition of Ki to serum-supplemented media did not completely

abolish calcium spiking (Fig 4·1 F). However, the spiking frequency significantly slowed

down after Ki inhibitor addition (Fig 4·1 F). To quantify the change in spiking rate after
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Ki treatment, we first used the inverse of the mean calculated from interspike-intervals

(ISI, demonstrated in Fig 4·2A) to measure spiking frequency, and then calculated the

fold difference of spiking frequency between after and before Ki treatment. Indeed, Ki

inhibitor decreased spiking frequency significantly compared to treatment with the DMSO

control (Fig 4·1 G). The persistence of calcium spiking upon Ki inhibitor treatment, albeit

at decreased frequency, could be explained by the fact that Ki only strongly inhibits a

subset of LPA receptors (including LPA1 and LPA3), but weakly inhibits others such as

LPA2 which is expressed in 3T3 fibroblast cells [187].

Figure 4·1: Serum induces calcium spiking in 3T3 fibroblast cells and LPA is a major active
component in serum

It has been shown that biochemical inputs (composition and concentrations of ligand)

often encode the frequency of calcium dynamics [188, 168]. Therefore, we asked whether
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(A) Image of 3T3 fibroblasts expressing the genetically-encoded calcium sensor jGCaMP7b [173].

Green lines outline cell boundaries from automatic segmentation output. Scale bar: 25 μm. Tempo-

ral traces of calcium dynamics from 5 representative cells are shown for cells incubated in basal me-

dia supplemented with bovine serum (B), basal media supplemented with charcoal-stripped serum

(C), and basal media supplemented with 10μM LPA (D). Red cross marks represent detected spikes.

(E) Fraction of spiking cells in basal media, basal media supplemented with bovine serum, charcoal-

stripped serum, charcoal-stripped serum + 10μM LPA, and just 10μM LPA. Large colored dots rep-

resent data from individual wells. The total number of cells is n = 829, 710, 813, 681, and 823

for the five respective conditions. Each condition includes 3 independent experiments (cell seeding

days). Black squares and error bars represent the mean and S.D. from independent experiments.

(a) to (c) labels are used to distinguish conditions with significant statistical differences. (F) Cal-

cium dynamics of 3 representative cells in serum-supplemented media upon addition of the LPAR

inhibitor Ki16425 (Ki). At the dashed line, 20μM was added. (G) Percentage change of spiking

frequency before and after Ki inhibitor application. In (G), large colored dots represent the mean

frequency change in each experiment, while small colored dots represent data from individual cells.

Black squares and error bars represent the mean and S.D. between independent experiments. n =

197 and 273 cells from 3 independent experiments were included for Ki inhibitor or DMSO control,

respectively. In both E and G, colors represent different experiments. Statistical tests were con-

ducted with data from independent experiments. Tukey’s HSD method was used for data with equal

variance and Games-Howell post-hoc test was used for data that does not show equal variance. **

p<0.01, **** p<0.0001. The significance value is not marked for condition pairs that do not show

a significant difference.
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the spiking frequency is modulated by different media conditions. The mean spiking fre-

quency for cells cultured in charcoal-stripped media is 11.7 mHz, which is significantly

lower compared to 18.0 mHz measured from cells in regular serum-supplemented media

(Fig C·2). Both replenishing 10 μM LPA to serum-stripped media and supplementing basal

media with purified LPA rescued the frequency decrease (Figure C·2), indicating that LPA

in serum modulates the frequency of calcium dynamics.

These results show that serum in culture media induces calcium spiking in 3T3 fi-

broblasts and that LPA accounts for a major part of serum-induced calcium dynamics.

Previous studies investigating environmental encoding of calcium signaling often include

serum in the media, likely to maintain cell health throughout experiments (for example,

[18, 56, 170, 172]). Our findings suggest that the observed calcium activity in such cases

is potentially confounded by calcium spiking due to LPA in serum.

4.2.2 LPA concentration tunes the threshold, frequency, and potentially amplitude
of calcium spiking

Calcium dynamics induced by external ligands are often fine-tuned. Ligand concentration

can not only determine the type of calcium response (for example, one pulse or repetitive

spiking) but also in many cases modulate the frequency and amplitude of calcium spiking

(termed frequency encoding and amplitude encoding) [6, 30, 29, 189]. For example, cal-

cium spiking frequency is modulated by ATP concentration in fibroblast cells cultured on

soft substrates [171], and by carbachol (CCh) concentration in HEK cells [8]. However, a

lack of frequency modulation has also been observed in several cell and ligand types. For

example, frequency encoding does not seem to take place for calcium spiking in fibroblasts

cultured on stiff glass in response to ATP [56], for calcium spiking in mouse lacrimal cells

in response to methacholine [190], or for calcium spiking in fish cells in response to several

different ligands [191]. Another characteristic related to calcium dynamics is spike ampli-

tude. Amplitude encoding of calcium dynamics by external ligands is observed in various
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Figure 4·2: LPA concentration modulates the threshold, frequency, and amplitude of calcium
spiking in 3T3 fibroblast cells. (A). Representative calcium signal trace (gray) and quantification

metrics. Orange cross marks represent detected spikes. Calcium signal frequency is quantified by

the inverse of the mean of interspike intervals (ISI), and amplitude is quantified as peak promi-

nence. (B) Representative calcium signal traces under different LPA concentrations. (C) Fraction

of spiking cells with different LPA concentrations in basal media. n = 1390, 1539, 2061, 1135,

and 996 cells were included for the five respective conditions. Large dots represent the fraction

of spiking cells from independent experiments (cell seeding days). Black squares and error bars

represent the mean and S.D. from experiments. (D-E) show spiking frequency and amplitude under

different LPA concentrations. Large dots represent the mean metrics calculated from independent

experiments. Box plots show data from individual cells, with the upper and lower bars representing

the maximum and minimum value, box boundaries representing the 75th and 25th percentile, and

the center bar representing the median of data. n= 225, 1432, 740, and 968 cells were included for

the four respective conditions. In (C-E), different colors represent different experiments. Statistical

tests between conditions are done between independent experiments with Tukey’s HSD method for

data with equal variance, and Games-Howell post-hoc test for data that does not show equal vari-

ance. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. For condition pairs that do not show a

significant difference, significance values are not marked.
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cell types including hepatocellular carcinoma [192], fish hepatocytes [191], intestinal stem

cells [193], and macrophages [194]. In addition to encoding information related to the

average calcium concentration, amplitude encoding is also suggested to be more robust to

changes in environmental temperature [195]. Because in many cases, these detailed char-

acteristics of calcium dynamics are closely associated with cell behaviors and functions

(for example in [32] and reviewed in [30, 29]), delineating how they are shaped by external

cues is important for understanding the biological consequences of these cues. Along this

line, we asked how LPA concentration shapes calcium dynamics in 3T3 fibroblast cells.

To investigate how LPA concentration modulates calcium spiking, we recorded calcium

dynamics after injecting LPA of different concentrations (from 10 nM to 100 μM) into the

basal media. To capture a range of characteristic behaviors related to calcium dynamics,

we investigated the threshold, frequency, and amplitude of calcium spiking in fibroblast

cells. The spiking threshold for a population of cells is approximated by the fraction of

spiking cells. Because calcium spiking is sporadic in nature [8, 196], we used the mean

of interspike interval (ISI) to approximate spiking frequency. To measure spike amplitude,

we first normalized the signal intensity to baseline reporter intensity and used the mean

prominence of the spikes as an approximation to calcium spiking amplitude (Fig 4·2A).

Firstly, we observed time-dependent behavior in calcium spiking after LPA injection

into media (Fig C·3). Across all concentrations, after LPA injection, the fraction of spiking

cells, spiking frequency, and prominence all decrease over time. This could be explained

by lipid phosphate phosphohydrolase (LPP) that is naturally expressed on the plasma mem-

brane that degrades LPA over time [197, 198]. Additionally, the LPA receptor, like other

G-protein-coupled receptors, goes through desensitization and internalization upon sus-

tained LPA stimulation [199, 200, 201], which leads to decreased sensitivity to LPA over

time after the exposure to LPA, potentially leading to decreased calcium spiking over time.

The time-dependent reduction in calcium spiking was not observed in serum-induced cal-
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cium spiking. This could be in part due to the fact that binding to serum albumin protects

LPA against degradation by lipases [202]. To be able to compare calcium spiking dynam-

ics between LPA concentrations, we chose a common investigation time window (15 to 30

minutes after LPA injection) across all concentrations.

We observed the fraction of spiking cells increases as we applied a higher concentration

of LPA (Fig 4·2C). At low concentrations of LPA (10 nM and 100 nM), less than 20% of

cells were spiking. As LPA concentration was increased to 1 μM and 10 μM, more than half

the cells displayed calcium spiking. The effect of LPA appeared to saturate around 100 μM

with 97% of cells spiking. We observed a uniquely large range of variability in the fraction

of spiking cells incubated in 1 μM and 10 μM LPA, which is likely due to heterogeneity in

individual cells’ sensitivity to LPA activation at those concentrations [203].

We then investigated whether LPA concentration modulates calcium spiking frequency

in fibroblast cells. The first feature we noticed was the large variation between individual

cells within each LPA concentration, as is shown by the relatively large spread of spiking

frequencies (Fig 4·2D). This large variability was previously observed in the same cell type

under ATP stimulation [171, 56] as well as in other cell types in response to other ligands

(for example, phenylephrine-induced calcium spiking in hepatocytes and CCh-induced cal-

cium spiking in HEK cells [8]). LPA at a low concentration (100 nM) induced a mean

calcium spiking frequency of around 10 mHz, and a slightly higher spiking frequency at

intermediate concentrations (1 μM and 10 μM), around 12 mHz. As LPA concentration

was increased to 100 μM, the mean spiking frequency increased to around 20 mHz. These

results show that in 3T3 fibroblasts, although with high cell-cell variability, the frequency

of calcium spiking is tuned by LPA concentration.

After establishing that LPA concentration modulates the fraction of spiking cells and

spiking frequency, we tested whether it regulates spiking amplitude. Similar to spiking

frequency, a prominent observation is that spiking amplitude displayed high cell-cell vari-
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ability (Fig 4·2E). Nevertheless, we observed a significant increase in spiking amplitude

on the population level with increasing LPA concentration (Fig 4·2E). The population-

averaged amplitude increased 75% as LPA concentration increased from 100 nM to 1 μM,

and 30% as LPA concentration increased from 10 μM to 100 μM (Fig 4·2E). The fact that

there was no significant amplitude tuning at the sub-ten-micromolar concentration range

suggests that amplitude encoding of calcium dynamics in response to different LPA con-

centrations is non-linear, and that there is potentially a regime (1 μM to 10 μM) where

calcium spiking amplitude is robust to changes in LPA concentration. One caveat from our

data is that because we used a single-color calcium reporter, despite normalized to base-

line levels, the intensity does not reflect concentrations quantitatively. This caveat can be

potentially addressed by expressing a constitutive fluorescent protein at the same level as

the calcium reporter (similar approach adapted in [194]). In summary, our data showed

LPA concentration modulates the fraction of spiking cells and spiking frequency, and there

is large cell-cell variability in calcium spiking responses under the same environmental

conditions. Our data also suggested potential amplitude modulation in calcium spikes by

different concentrations of LPA.

4.2.3 LPA-induced calcium spiking requires extracellular calcium and is mediated
by ER calcium release.

It is well established that LPA acts through GPCRs, which induce ER calcium release

through IP3 production [179]. This mechanism accounts for the LPA-induced single-pulse

calcium response observed in astrocytes [11], keratinocytes [13], and human foreskin fi-

broblasts [12]. However, the mechanisms controlling repetitive calcium spiking, especially

in the context of LPA-induced calcium spiking, are less well understood. To this end, we in-

vestigated potential calcium toolbox components that could mediate LPA-induced calcium

spiking in 3T3 fibroblast cells.

Calcium in the cytosol is modulated by calcium exchange between two major stores,



84

Figure 4·3: LPA-induced calcium spiking requires extracellular calcium. Calcium traces from

example cells cultured in the basal media (A) and calcium-free media (B). At the black dashed line,

10 μM LPA was added to the media. (C) demonstrates the number of calcium spikes identified in

the 20 minutes after LPA addition. Each dot represents average data from cells in an independent

experiment, with the colors representing data from different experiments (cell seeding days). For

the control media condition, n = 1135 cells from 6 wells were included. For the calcium-free media

condition, n = 424 cells from 3 experiments were included. Box plots show data from individual

cells, with the upper and lower bars representing the maximum and minimum value, box boundaries

representing the 75th and 25th percentile, and the center bar representing the median of data. Grey

diamonds mark outlier dells. Statistical tests between conditions were done with mean data from

independent experiments with Games-Howell post-hoc test. ** p<0.01.
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the intracellular store (endoplasmic reticulum, ER) and the extracellular space (Fig 4·4A,

reviewed in [4, 5]). Generally, cytosolic calcium is maintained at around 0.1 μM, while the

ER calcium (around 100 μM) and the extracellular calcium (around 1 mM) concentrations

are at much higher levels. An increase in cytosolic calcium is usually mediated by the

opening of channels such that calcium ions are able to freely diffuse along the concentra-

tion gradient, whereas a decrease in cytosolic calcium is generally mediated by molecular

pumps that require energy consumption.

We first investigated whether extracellular calcium is required for LPA-induced cal-

cium spiking. We incubated cells in calcium-free media and measured calcium dynamics

in response to LPA treatment. Upon LPA addition, cells residing in the basal control media

displayed repetitive spiking, with an average of 11.13 spikes in the 20-minute time win-

dow that we recorded. On the contrary, cells cultured in calcium-free media displayed an

average of 0.079 spikes in the same time length, with the majority of cells either display-

ing a single spike or did not display any spikes at all. These results agree with literature

that suggests the maintenance of ER calcium store requires extracellular calcium and that

eliminating extracellular calcium drains the ER calcium store slowly over time [139]. This

result confirms that extracellular calcium is required for LPA-induced calcium spiking.

We then investigated potential calcium toolbox components that could mediate or mod-

ulate LPA-induced calcium spiking dynamics. We primed the cells with 10 μM LPA, and

then injected inhibitors targeting different molecular components from the calcium toolbox

[4], (Fig 4·4A). The toolbox components that we tested include ones that mediate ER cal-

cium release (IP3R and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump) and

membrane calcium channels including stretch-activated calcium channels (SACCs) and

voltage-gated calcium channels (VGCCs), all of which are expressed in 3T3 fibroblasts

[204, 205]. Before drug addition, most cells displayed repetitive calcium spiking behavior.

Upon drug addition, cells either continued repetitive spiking with possibly different spiking
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Figure 4·4: LPA-induced calcium spiking is mediated by ER calcium release and is shaped by
PKA activity.



87

A. Graphical schematic showing calcium toolbox components [4] as well as other signaling

molecules (PKA and RhoA) potentially involved in modulating calcium dynamics in response to

extracellular LPA ligand. Inhibitor drugs used to test the role of different components are marked

in red. Metrics used to quantify the change of calcium spiking behavior pre- and post-drug appli-

cation are demonstrated in (B) and (C). (B) shows cytosolic calcium dynamics in an example cell

in grey, with the black, dashed line marking the time point when the drug was applied, orange Xs

marking the spikes, and blue arrow marking the interspike interval (ISI) between two spikes. Two

ways of quantifying the change in calcium spiking behavior after and before drug addition (based

on the number of spikes and based on the mean of ISI) are displayed in (C). (D-E) show example

calcium traces with different types of inhibitor drugs (drugs added at the time point marked by black

dashed line). Change of frequency based on the number of spikes upon thapsigargin (TG) addition

is shown in (J). Change of frequency based on the interspike interval (ISI) with different calcium

toolbox inhibitor drugs is displayed in (K), and that with either RhoA or PKA pathway inhibitor

drugs is shown in (L). In (J-L), colored dots represent the mean metrics of cells from independent

experiments (cell seeding days), with colors representing different experiments. Black squares and

grey error bars demonstrate the mean and S.D. between the mean from independent experiments.

The violin plots display data distribution from single cells, with white dots representing the median,

thick black bars representing the interquartile range, and thin gray lines representing the rest of the

distribution. Statistical tests between conditions are done with mean data from individual experi-

ments with Tukey’s HSD method for data with equal variance, and Games-Howell post-hoc test for

data that does not show equal variance. * p<0.05, ****, p<0.0001, ns, not significant (p>0.05).

TG, thapsigargin; GsM, GsMTx4; Nif, Nifedipine; Y27, Y27632; PKI, protein kinase inhibitor

(14-22).
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frequencies or respond with a single large calcium pulse (upon thapsigargin treatment, Fig

4·4E). To measure the percentage change in spiking frequency between after and before

drug treatment, we used two metrics for the two types of responses. For drugs that did not

eliminate repetitive spiking in most cells, we used the inverse of the mean of interspike

intervals to calculate frequency; for drugs that eliminated repetitive spiking in most cells,

we calculated frequency using the number of spikes per unit time (Fig 4·4B-C).

When treated with thapsigargin (TG) which inhibits ER calcium release by inhibiting

the SERCA pump located on the ER membrane, cells displayed a single pulse of cytosolic

calcium (Fig 4·4E), and no repetitive spiking was observed. This response is also reflected

by an almost 100% decrease in spiking frequency after adding thapsigargin (Fig 4·4J). After

the initial pulse, cytosolic calcium stayed at a relatively high level, possibly due to store-

operated calcium entry induced by ER calcium depletion. This result matches those from

the previous studies where thapsigargin induced a pulse of calcium concentration increase

followed by prolonged high cytosolic calcium level (for example, [13, 17, 206]). To con-

firm whether IP3-mediated ER release mediates LPA-induced calcium spiking, we treated

the cells with IP3 receptor inhibitor, 2-APB. Upon treatment, we observed an immediate

decrease in spiking frequency (35.6% decrease on average from the pre-treatment values),

which was significantly different from the control treatment case (14.0% decrease)(Fig

4·4D and K). These results confirm that ER-mediated calcium release is essential for mod-

ulating LPA-induced calcium spiking.

To investigate whether stretch-activated calcium channels (SACCs) and voltage-gated

calcium channels (VGCCs) are involved in modulating LPA-induced calcium spiking, we

used specific inhibitors GsMTx4 (for SACCs [207]) and nifedipine (for VGCCs). Calcium

spiking persisted after the addition of both inhibitors (Fig 4·4 F-G). For both inhibitor treat-

ments, we observed an average percentage change of frequency that was slightly smaller

than the control treatment (Fig 4·4 K). However, neither the SACC inhibitor nor the VGCC
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inhibitor induced a significant difference compared to control treatments (Fig 4·4 K). The

result with nifedipine treatment matches previous work that shows VGCC inhibition in fi-

broblast cells only slightly alters the calcium dynamics induced by platelet-derived growth

factor (PDGF), which is another extracellular ligand that induces ER-mediated calcium

spiking [208]. In summary, we found that LPA-induced calcium spiking requires extra-

cellular calcium and is mediated by IP3- mediated ER calcium release. Our data also

suggested that LPA-induced calcium spiking is not likely to be mediated by the activity

of either stretch-activated calcium channels or voltage-gated calcium channels.

4.2.4 The cAMP/PKA pathway modulates LPA-induced calcium spiking

3T3 fibroblast cells express multiple subclasses of LPA receptors which can activate various

types of G-proteins [187]. Activation of different G-proteins can lead to the activation of

various downstream pathways including two pathways that have potential crosstalk with the

calcium pathway, the RhoA pathway and the cAMP/PKA pathway [179]. The RhoA path-

way is activated through Gα12/13, whereas the cAMP/PKA pathway is activated through

Gαs. Previous sudies have shown that the RhoA pathway can modulate calcium dynamics

by enhancing cell contractility through the RhoA-ROCK-myosin II axis [209, 210]. On

the other hand, the cAMP/PKA pathway modulates cytosolic calcium by acting on various

calcium toolbox components, usually by phosphorylation with PKA. Those components

include IP3R, stretch-activated calcium channels (SACCs), store-operated calcium entry

(SOCE) channels [137, 138], and membrane pumps. Because these two pathways are acti-

vated by LPA in parallel with the calcium pathway, and they have been shown to modulate

calcium activity, we hypothesize the activity of these two pathways might affect calcium

dynamics induced by LPA.

To test whether the RhoA pathway and the cAMP/PKA pathway shape LPA-induced

calcium spiking, we applied specific inhibitors of these two pathways, followed by quantifi-

cation of the percentage change in frequency after and before drug treatment (Fig 4·4 B-C).
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To inhibit the RhoA pathway, we chose Y-27632 (Y27) which directly inhibits the imme-

diate downstream effector of RhoA, ROCK [211]. To inhibit the cAMP/PKA pathway,

we chose the Protein Kinase A Inhibitor peptide (PKI) that has a much higher specificity

compared to other PKA inhibitors [212, 213]. Upon RhoA pathway inhibition, we ob-

served qualitative change in cell shape: cells shrunk in size and became star-like in shape,

confirming the inhibitor worked as expected. However, we did not observe a qualitative

change in calcium spiking behavior (Fig 4·4 H), nor did we observe a significant difference

between the frequency change from cells treated with Y27 inhibitor or the control (Fig 4·4
L).

Interestingly, PKA inhibition with PKI induced a significant increase in spiking fre-

quency, with the mean spiking frequency increased by 22% (Fig 4·4 I,L). This is surprising

because canonically PKA is thought to be able to enhance ER calcium release by phospho-

rylating and sensitizing the IP3 receptor on the ER. Previous work shows that activating

the cAMP/PKA pathway speeds up calcium spiking rate in other ligand-induced calcium

spiking cell culture models [8]. Along the same line, our own data shows direct activa-

tion of the cAMP/PKA pathway induces ER-mediated calcium release (Chapter 3). On the

contrary, our data in this experiment suggest the cAMP/PKA pathway exerts an inhibitory

effect on LPA-induced calcium spiking. In summary, we found that the cAMP/PKA path-

way, but not the RhoA pathway, shapes LPA-induced calcium spiking. Our data suggest

that in presence of LPA, PKA inhibits cytosolic calcium spiking.

4.3 Discussion

Here, we investigated cytosolic calcium dynamics under regular cell culture conditions

using a fibroblast cell culture model. We found cells display repetitive calcium spiking be-

havior in the presence of serum, and further identified LPA as the major serum component

responsible for inducing calcium spiking dynamics. By characterizing detailed features of
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calcium spiking, we found that LPA concentration determined the fraction of spiking cells

as well as population-averaged spiking frequency and amplitude. Through an inhibitor

screen, we confirmed that LPA-induced calcium spiking requires extracellular calcium and

is mediated by ER-calcium release. Additionally, we found that the cAMP/PKA pathway,

which is also activated by LPA, shapes calcium spiking, suggesting that LPA-activated

PKA exerts an inhibitory effect on cytosolic calcium. Although previous work has shown

serum or LPA induces a single pulse of cytosolic calcium [13, 12], we took a unique focus

on the repetitive spiking calcium dynamics induced by serum/LPA.

Our finding that the serum component LPA induces repetitive calcium spiking has im-

portant implications for studies about calcium signaling in standard cell culture media. We

found that LPA concentration encodes multiple aspects of calcium spiking. Specifically,

higher LPA concentrations increase the fraction of spiking cells, spiking frequency, and

spiking amplitude. Decades of previous work have focused on how external cues (including

biochemical cues and mechanical cues) modulate calcium dynamics. However, a signifi-

cant fraction of these studies, especially those using cell culture models, was conducted un-

der standard cell culture media conditions with serum supplement (example work includes

[17, 170, 171, 172]). Because LPA receptors are expressed in numerous cell types and the

molecular toolkit for calcium spiking exists across mammalian cell types [187, 4, 179],

LPA-induced calcium spiking is expected to be observed in other mammalian cell types.

This calls for attention to the presence of a bioactive molecule present in serum that in-

duces and regulates calcium dynamics in a wide range of cell types. Our work suggests

that past and future studies should be careful about interpreting calcium dynamics data in

serum-supplemented media, and include proper controls to tease apart the effect induced

by LPA.

We found that on the population level, calcium spiking frequency is positively tuned by

LPA concentration. However, we notice a rather large cell-cell variation across all concen-
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trations. This large variability has been reported in multiple existing works (for example,

[171, 56, 8]). With this high level of cell-cell variability, two questions emerge. Firstly,

what could be the origin of this variability? Secondly, how do cells reliably decode their

environment through reading these variable calcium dynamics?

One possible origin of this variability is strong cell-cell communication due to high cell

density and intrinsic noise within the signaling networks [56]. In our experiments, although

the cell density was kept low enough such that cells usually have less than two neighbors,

there were still patches of cells with relatively high density due to uneven seeding. There-

fore, it is likely that a similar cell-cell communication mechanism contributes to the large

cell-cell variability we observed.

In terms of how cells reliably encode extracellular ligand concentration with a signal

with enormous cell-cell variability, a possible answer is that cells detect relative changes

rather than the absolute levels of external ligand concentration. This mechanism success-

fully explained frequency tuning in response to ligand concentration change in multiple cell

types and multiple ligand types previously [214, 8]. In the case of LPA-induced calcium

spiking, whether a similar mechanism applies remains to be tested.

Matching what was shown in existing work that focused on a single calcium pulse in-

duced by LPA (for example, [11, 13, 181, 12, 22]), we confirmed that IP3-mediated ER

calcium release accounts for LPA-induced calcium spiking. When investigating what other

LPA-regulated pathways could shape LPA-induced calcium spiking, we found a surprising

effect— calcium spiking speeds up upon PKA inhibitor addition—suggesting that the PKA

pathway exerts inhibitory effects on cytosolic calcium. Our observation in Chapter 3, how-

ever, confirmed that activating the cAMP/PKA pathway can facilitate ER calcium release,

a finding that matches the literature [8, 139]. To resolve this discrepancy, one potential

explanation is compartmentalized regulation of the cAMP/PKA pathway in response to

LPA. The cAMP/ PKA pathway can inhibit cytosolic calcium through phosphorylating and
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activating either the SERCA pump which transports calcium into the ER, or the plasma

membrane Ca2+ ATPase (PMCA) pump which transports cytosolic calcium to the extra-

cellular space [215, 137]. Therefore, it is possible that LPA activates a subpopulation of

PKA that acts dominantly on the SERCA pump and the PMCA pump, possibly by spatial

compartmentalization. Upon phosphorylation by PKA, those pumps clear out cytosolic

calcium faster, therefore inhibiting the calcium spiking rate.

Together, we identified a serum component, LPA, that accounts for serum-induced

repetitive calcium spiking and characterized how LPA concentration is encoded in detailed

features of the calcium dynamics. We also confirmed the calcium toolbox components that

are responsible for regulating calcium spiking, and identified another LPA-induced signal-

ing pathway that takes part in shaping the LPA-induced calcium spiking. Although we only

systematically tested this phenomenon on one cell type, given the ubiquity of LPA recep-

tor [179] as well as the universal presence of calcium toolbox components [4] across cell

types, it is worth investigating whether this phenomenon exists in other cell types. It would

also be interesting to explore differences in response and regulation between cell types and

to relate these differences back to the differences in signaling networks.

4.4 Methods

Plasmid Construction

PCR fragments of jGCaMP7b were generated from pGP-CMV-jGCaMP7b (gift from Dou-

glas Kim & GENIE Project, Addgene plasmid #104484, [173]), and gene fragments con-

taining miRFP670 [157] and NES-T2A-H2B (Uniprot #B4DR52) were designed and pur-

chased from Genewiz. The fragments were inserted into the pMJB001-PB-pCAG vector

(gift from the laboratory of Dr. Wilson Wong) using NEB HiFi Assembly mix. Plas-

mids were sequence verified by Sanger Sequencing provided by Quintara Bioscience. The

plasmid expressing the Piggybac transposase (pCag-Super-Piggybac) is a gift from the lab-
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oratory of Dr. Wilson Wong.

Cell Culture and Reagents

NIH 3T3 fibroblasts (American Type Culture Collection, ATCC) were cultured from pas-

sages 1-12 in DMEM with 4.5 g/L glucose, L-glutamine, and sodium pyruvate (Corning),

supplemented with 10% bovine serum (Gibco) and 1% penicillin-streptomycin (Invitro-

gen). Cells were maintained at 37◦C and 5% CO2 and passaged at 80-90% confluency with

media changed every 2 to 3 days. PiggyBac Transposase system [154] was used to generate

stable pools of sensor-expressing cells. Cells were plated and co-transfected with the con-

structs with jGCaMP7b-T2A-H2B-miRFP670 and Super PiggyBac Transposase at a ratio

of 2:1 (w/w) DNA, respectively, using the Lipofectamine 3000 Transfection Reagent kit

(Invitrogen) according to manufacturer’s instructions. Stable pools were generated under

selection with media supplemented with 2 μg/mL puromycin (Invivogen).

Preparation of charcoal-stripped serum media

Media containing charcoal-stripped serum was prepared following procedures described

in [183, 185]. In brief, basal media was supplemented with 10% (v/v) bovine serum be-

fore being mixed with dextran-coated charcoal (Sigma). The mixture was incubated on a

rotating apparatus overnight. After centrifugation of the mixture at 600g for 10 min, the

supernatant was taken to go through a 0.45 μm filter and stored in the fridge.

Calcium Imaging and Microscopy

Changes in cytosolic calcium were recorded with live video microscopy. 24 hours before

imaging, NIH 3T3 cells stably-expressing H2B-miRFP670 and jGCaMP7b were plated in

growth media on glass-bottom 24-well plates at 30k cells / cm2. 15 minutes before imaging,

selection media was replaced with imaging media containing Fluorobrite DMEM (Gibco)

supplemented with 1% Glutamax (Gibco). Imaging media was supplemented with either
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varying concentrations of oleoyl-L-alpha-lysophosphatidic acid (LPA, Sigma-Aldrich), 3

different lots of 10% bovine serum (Gibco, Sigma, or Cytiva, lot number listed in the ta-

ble below), or calcium-free DMEM (Gibco) for respective experiments. Cells were then

moved to a stage-top incubator maintained at 37◦C and 5% CO2 (OKO Labs) and im-

aged through a 20X air objective on a Ti-2E Eclipse (Nikon Instruments) with Dragonfly

Spinning Disk Confocal System (Oxford Instruments). Time-series images were acquired

on an iXon 888 Life EMCCD camera (Oxford Instruments) through a 405/488/561/647

dichroic mirror (Chroma). For jGCaMP7b calcium sensor channel acquisition, an exci-

tation laser/emission filter combination of 488nm/525nm was used. For H2B-miRFP670

nuclei channel acquisition, an excitation laser/emission filter combination of 637nm/698nm

was used.

Drug Treatments

Pharmaceutical drugs were added to imaging wells using the following procedures. Imag-

ing was paused, then half of the media volume was taken out from the imaging well, mixed

with the drug, and added back in the well drop-wise to prevent mechanical perturbation

to the cells. Imaging was resumed after 2 minutes. For experiments with calcium-free

media, cells in the wells were rinsed twice with calcium-free PBS and then incubated in

calcium-free media for 40 minutes to 1 hour before imaging.

Data Processing and Analysis

Cell segmentation and tracking

Time courses from each experiment were converted to TIF files using Fiji [155]. In-

dividual cells in the time series were segmented and tracked with the Trackmate plu-

gin [216, 217] integrated with the open-source machine-learning based software Cellpose

[218], with segmentation running through a NVIDIA RTX A4000 GPU. Batch process-

ing was run through Fiji with a custom-written Jython script. Only cells that were tracked
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throughout the whole time series were included in the next steps of analysis.

Calcium dynamics analysis

Data analysis was conducted with custom-written scripts in Matlab (Mathworks Inc.)

and open-source software Python [156]. Calcium dynamics in individual cells were mea-

sured by the mean sensor channel intensity based on segmentation over time. Raw intensity

traces were normalized to the average intensity before LPA injection (for Fig.4·2, Fig C·3,

and 4·3) or the minimum intensity of the first 2 minutes of acquisition (for the remain-

ing figures). Spike detection was conducted using the built-in peak-finding algorithm in

the Scipy package [159]. Peak-finding metrics were empirically chosen, and peaks were

required to have 0.3 minimum prominence, 30-second minimum distance between peaks,

and 180-second maximum width. In Fig 4·1, cells that have more than 3 detected spikes

over a 12-minute time course were considered “spiking". Peak prominence is quantified as

the average prominence of the detected spikes, and only spiking cells are included in this

analysis. Because the spiking frequency is based on the average inter-spike interval, only

cells that display more than 3 spikes are included for frequency quantification.

Cells and Cell Culture

V

Name Manufacturer Lot/ Batch Number
MDCK (NBL-2) ATCC 70040764
DMEM Corning (10013CV) 3142008
EMEM ATCC (Catalog No. 30-2003) 80304222
Calcium Free DMEM Gibco (21-068-028) 2302078
Glutamax Gibco (35-050-061) N/A
Penicillin-Streptomycin Gibco (15140122) 2321129
Fluorobrite DMEM Gibco (A1896701) N/A
Bovine Serum Lot 1 Gibco (16170086) 1861237
Bovine Serum Lot 2 Sigma (B9433) 17M479
Bovine Serum Lot 3 Cytiva HyClone (SH30073.04HI) AF29689085
Fetal Bovine Serum Gibco 10457436
Charcoal Stripped Fetal Bovine Serum Gibco (A33821-01) 2437548
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Chemical Reagents

V

Name Manufacturer Lot Number
Oleoyl-L-α-lysophosphatidic acid sodium salt (LPA) Sigma-Aldrich (L7260) SLCG1241
GdCl3 Acros Organics (AC383560050) A0388697
LaCl3 Sigma-Aldrich (262072) MKCL3175
2-APB Santa Cruz (sc-201487) I1120
Thapsigargin Invitrogen (T7458) 2403704
Y-27632 Hello Bio (HB2297) E1039-1-1
U-73122 Sigma-Aldrich (U6756) 0000125649
Nifedipine Sigma-Aldrich (N7634) MKCL4570
PKI Santa Cruz (sc-471154) D0722
H89 Abcam (ab120341) GR3296093-29
cAMPs-Rp Hello Bio (HB0165) E0627-1-1
Manganese(II) chloride Sigma (M1787) SLBW2106
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Chapter 5

Conclusions

Understanding how cells use intracellular signaling to detect environmental changes and

coordinate behaviors is of paramount importance to understanding a wide range of bio-

logical processes. Major gaps in knowledge include the regulation and role of dynamical

changes in signaling molecules as well as how intracellular signals coordinate behaviors in

multicellular contexts. Here, we applied theoretical and experimental approaches to study

cell signaling processes that involve dynamical signaling or multicellular coordination.

In Chapter 2, we used theoretical modeling to identify the key network features that

coordinate population cAMP signaling oscillations in the social amoebae, Dictyostelium

discoideum (Dicty). We first selected five representative models describing the general co-

ordinated population oscillation behavior. To be able to directly compare models against

each other and against experimental data, we applied time scale and amplitude scale nor-

malization as well as single-cell-based simulation frameworks on all the models. Through a

systematic comparison between models and data, we suggested that the key single-cell level

features that coordinate population-wide cAMP oscillations in Dicty are adaptive spiking in

response to a step input and fold-change detection. Broadly, because coordinated oscilla-

tions and waves are widely observed in biology (for example, oscillatory YAP waves during

vertebrate segmentation [90] and Cdk1 waves that synchronize cell cycles across large spa-

tial scales [91]), the lessons we learned here can potentially be applied to understanding

these systems as well.

We then focused on experimentally delineating the decoding of mammalian cell mi-
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gration in response to transient activation of the cAMP pathway (Chapter 3). Harnessing

an optogenetic tool, we achieved transient, reproducible, and tunable control of the cAMP

pathway. We found that repetitive activation of the cAMP pathway inhibited migration

in a dose-dependent manner in both fibroblast cells and epithelial cells. By characterizing

single-cell level responses, we found that transient activation of the cAMP pathway induced

a decrease of cellular forces accompanied by structural alteration of the actin cytoskeleton.

We further identified one of the major mediators for the actin cytoskeleton reorganization

as cytosolic calcium. These single-cell level results suggest that calcium-mediated actin cy-

toskeleton reorganization could account for the inhibitory effect of cAMP activation on cell

migration. This work provides new insights into how transiently activated cAMP pathways

modulate cell behaviors related to migration.

Lastly, we experimentally interrogated how cytosolic calcium dynamics in fibroblasts

are encoded by serum supplement in culture media (Chapter 4). By measuring calcium

dynamics using a genetically-encoded calcium reporter in different media conditions, we

found serum supplementation in culture media induced trains of calcium spiking. We then

identified one of the key serum components responsible for calcium spiking to be lysophos-

phatidic acid (LPA). Our results showed that LPA concentration modulates the fraction of

spiking cells as well as the frequency of calcium spiking, and can potentially modulate the

amplitude of calcium spiking. Using inhibitors that target different calcium sources and

other signaling pathways that are parallelly activated by LPA, we found that LPA-induced

calcium spiking in fibroblasts is mediated by calcium release from the endoplasmic reticu-

lum (ER). Our results also suggested that the cAMP/PKA pathway plays a role in shaping

LPA-induced calcium spiking. Our work provides a detailed characterization and mecha-

nistic interrogation of LPA-induced calcium dynamics and informs future work on calcium

dynamics to take note of the effect of this serum-borne component.
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5.1 Future directions

Theoretical investigation in Chapter 2 provided a unifying framework that allowed us to

investigate the essential single-cell network features that Dictyostelium cells use to coor-

dinate population cAMP oscillations. What is worth noting is that for all the models, we

took a mean-field approach that neglets space and time for extracellular signal propagation.

However, naturally, the signaling process happens without well-mixing and there is signif-

icant spatial heterogeneity in the environment (for instance, from soil particles around the

cells and uneven diffusion efficiencies based on the heterogeneity in the moisture content

of the soil). Investigating mechanisms that are essential for determining the cAMP signal

spatial pattern in these more naturalistic contexts is an important future direction. Previ-

ous modeling work has proposed several mechanisms that modulate cAMP spatial patterns

such as waves and spirals [61, 219, 220, 221, 222, 77, 223, 224]. However, it is still not

clear what are the essential features both on single-cell signal processing and extracellular

signal molecule turnover that determine the formation and dynamical features of the spa-

tial patterns. The simulation framework we developed can be applied to interrogate these

related questions.

In Chapter 3, we showed transient, direct activation of the cAMP pathway inhibits

cell migration in a monolayer of migrating cells. Interrogation on single cells suggested

that migration inhibition could be a result of changes in actin cytoskeleton structure and

reduction in cell contractility. However, how single-cell level responses relate to changes

in migratory behavior in a group of cells remains to be investigated. Simultaneously visual-

izing cell contractility/actin cytoskeleton structure and cell migratory behaviors (direction,

velocity) could be a starting point of such investigation. Additionally, our work in Chapter

3 showed cytosolic calcium mediates the actin cytoskeleton reorganization. Future work on

the mechanisms underlying how calcium induces actin cytoskeleton reorganization would

provide an additional piece of information that helps us understand cell behaviors upon
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transient cAMP pathway activation.

In Chapter 4, we investigated the environmental encoding of calcium dynamics in

response to serum component LPA. Our data showed that calcium dynamics display high

cell-cell variability. It would be interesting to investigate the origin as well as the biological

implications of this variability. Previous work has shown that cell-cell communication

could potentially explain the variability [225], and that the fold difference of the external

ligand is reliably encoded in the signal-to-noise ratio of calcium dynamics. Therefore, one

possible future direction would be investigating the role of cell-cell communication and

ligand concentration fold-change in the context of LPA-induced calcium spiking. Further,

a surprising result from Chapter 4 is that cAMP/PKA pathway inhibition enhanced LPA-

induced calcium spiking. Further investigation into the mechanism driving this observation

would offer more insights into the crosstalk between calcium and the cAMP/PKA pathway.

5.2 Concluding perspectives: theory-experiment interplay

In this Dissertation, theoretical and experimental approaches are used separately to study

cell signaling in eukaryotic systems. Although the theoretical and experimental approaches

use different sets of techniques, they are usually reinforced by one another. Theoretical

models depend on data generated by experiments to formulate assumptions and quantita-

tive descriptions of the process of interest. Additionally, the best way to verify a theory is by

testing its predictions using experiments. Conversely, because models usually take a quan-

titative description of the mechanisms and use mathematical reasoning, they can be used to

verify whether a mechanistic understanding can explain the experimental data. More im-

portantly, models can be used to distinguish alternate mechanisms by generating falsifiable

predictions based on different mechanisms that can be tested using experiments. The most

powerful understanding can come from the tight interplay between the two approaches ( an

idea proposed in multiple reviews, for example, [41, 226, 43, 44]).
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Such interplay has been shown to be powerful in understanding the mechanisms driv-

ing coordinated cAMP signaling oscillations in the cellular slime mold (textitDicty) cells.

Because cells use dynamic changes of the signaling molecule cAMP and cell-cell com-

munication to coordinate group-wide oscillations, it is challenging just to use qualitative

models to test the validity of specific mechanisms and to distinguish different mechanisms.

Theoretical models were constructed to check the validity of mechanisms such as desensi-

tization of the surface receptor [227] that are suggested by previous experiments. Exper-

imental measurements have also inspired the construction of models which suggests new

important mechanisms such as noise in single cells [62, 228]. Additionally, as is shown in

Chapter 2, systematic analysis of models guides the design of new experiments that could

distinguish different mechanisms as is shown by the models. This type of tight interplay

between experiments and models will continue to yield insights and deepen understanding

of processes coordinated by cell signaling.
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Appendix A

Appendix: supplementary information for
Chapter 2

Model Details and Assumptions

I. Receptor Desensitization model

One of the earliest and most widely used models of population-level cAMP oscilla-

tions in Dictyostelium was developed by Martiel and Goldbeter [71] in response to the

experimental observation that the cAMP receptor CAR1 is desensitized as external cAMP

concentration increase [229, 230]. In this model, cells detect external cAMP using the

cAMP receptor CAR1 (R in Figure 2·1), leading to the production and release of internal

cAMP into the environment. As external cAMP concentrations increase, a negative feed-

back loop is triggered that leads to receptor desensitization and a corresponding decrease

in internal cAMP production and excretion. This well-understood mechanism based on a

negative feedback loop (i.e. receptor desensitization) with a time delay that naturally leads

to population-level oscillations [231].

II. Coupled Direct and Indirect Negative Feedback (CDINFB) model

The authors of Maeda, et al. [73], building on earlier works including the Laub-Loomis

model [72], developed a detailed mechanistic model of the Dictyostelium signal relay net-
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work. In this model, external cAMP binds to the CAR1 receptor (R in Figure 2·1), leading

to production of internal cAMP by the enzyme adenylyl cyclase (ACA, shown as A in Fig-

ure 2·1). The activation of ACA also triggers a pair of coupled negative feedback loops:

a direct negative feedback mediated through protein kinase A (PKA, shown as I in Figure

2·1) that turns off cAMP production, and an additional indirect negative feedback medi-

ated by the proteins RegA and ERK2 that activates PKA, once again leading to decrease

in cAMP production. Additionally, the ERK2-RegA path leads to internal cAMP decrease

through RegA acting as a internal phosphodiesterase that degrades cAMP.

III. Phenomenological Phase Oscillator model

Inspired by new experiments showing that even isolated single cells can oscillate in

response to elevated levels of external cAMP, the authors of Gregor et al. [62] constructed

a phenomenological model inspired by the Kuramoto model [232, 233] where the Dic-

tyostelium signaling network is modeled as a phase-oscillator, with the phases of different

cells coupled through the external cAMP concentration. Internal cAMP concentrations are

assumed to be directly proportional to the sine of the phase of the oscillator.

IV. Interlocking Positive-Negative Feedback (IPNFB) model

This phenomenological model introduced in Sgro, et al. and expanded on in Noor-

bakhsh, et al. [63, 77] captures the key behaviors of the Dictyostelium signaling network

using a generalization of the FitzHugh Nagumo (FHN) model, which commonly used in

neuroscience to model excitable neural dynamics [79, 78]. The model consists of two el-

ements: an activator species (A) and an inhibitor species (I). The presence of external

cAMP leads to increased production of the activator species, suggested to be representa-
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tive of adenylyl cyclase activity, which can trigger a fast positive feedback loop that results

in even more activator production. The activator also triggers a slower negative feedback

by producing an inhibitor species that suppresses production of the activator, though this

inhibitor species is suggested to be representative of a larger network structure and not a

specific molecular species. In this model, internal cAMP concentrations are assumed to

track the activator concentration, with cells releasing cAMP into the environment when the

activator is above a certain threshold.

V. Incoherent Feedforward Loop (IFFL) model

Like the IPNFB model, the incoherent feedforward loop (IFFL) model is a phenomeno-

logical model of the Dictyostelium signaling network that combines fast activation with

inhibition on longer time scales inspired by the experimental observations in Kamino, et

al. [74]. In the IFFL model, the receptor up-regulates both the activator (A) as well as the

inhibitor species (I). Crucially, while the inhibition varies linearly with the concentration

of external cAMP, the activator exhibits a Hill-like (sigmoid-like) kinetics in response to

external cAMP concentrations. This model displays interesting behaviors in the single-cell

context including fold-change detection [84, 80] and perfect adaptation [81].

VI. Model assumptions

Finally, we note that an important but subtle difficulty involved in comparing and contrast-

ing these models with experiments is that they make very different assumptions about how

the models are related to experimental observables. Model parameters are often specified in

arbitrary units, so it is a priori unclear how to relate predictions across the five models. To

address this problem, we chose to non-dimensionalize both the amplitudes and timescales

of internal cAMP responses in terms of the height and width of the adaptive spike induced

by one unit of external cAMP input in single cells. In almost all of the models cells respond

to a small, sudden change in external cAMP by producing a spike of internal cAMP. The
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height of this spike in each model gives a natural scale for measuring internal cAMP am-

plitudes whereas the width represents a natural time scale for normalizing times between

models (see Materials and Methods for details).

Model Equations and Parameters

Note: Variable names in this section are as presented in the original literature. Some vari-

able names in Figure 2·1 are renamed in order to emphasize which species act as different

network components that may be common between models.

I. Receptor Desensitization model

The Receptor Desensitization model [71] is composed of three differential equations.

ρT,i and βi denote the proportion of receptors in the active state and internal cAMP concen-

tration in the ith cell,and γ stands for external cAMP concentration.

dρT,i

dt
=− f1(γ)ρT,i + f2(γ)(1−ρT,i) (1)

dβi

dt
= qσΦ(ρT,i,γ,α)− (ki + kt)βi (2)

dγ
dt

= kt/h
∑N βi

N
− kc(γ− [cAMP]e,in) (3)

with:

f1(γ) =
k1 + k2γ

1+ γ
, (4)

f2(γ) =
(k1L1 + k2L2cγ)

1+ cγ
(5)

Φ(ρT,i,γ,α) =
α(λθ+ εY 2)

1+αθ+ εY 2(1+α)
(6)

Y =
ρT,iγ
1+ γ

(7)

[cAMP]e,in stands for cAMP concentration that is added externally and this notation is

used across all models.

Parameter values are from Table II of the original literature[71]. Specifically, k1 =
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0.036, k2 = 0.666, L1 = 10, L2 = 0.005, c = 10, λ = 0.01, θ = 0.01, ε = 1, q = 4000,

ki = 1.7, kt = 0.9,kc = 5.4, h = 5, N = 100.

In Figure 2·4B, cell density and external cAMP degradation rates are varied by altering

1
h and kc .

Time normalization parameters for the Receptor Desensitization model is 6.94, and its

height normalization parameter is 210.53.

II. Coupled Direct and Indirect Negative Feedback (CDINFB) model

The CDINFB model represents a signaling network consisting of seven molecular

species [73]. Within a population of N cells, respective concentrations of the biochemi-

cal species in the ith cell follow:

d[ACA]i
dt

= k1[CAR1]i − k2[ACA]i[PKA]i (8)

d[PKA]i
dt

= k3[cAMP]cyt,i − k4[PKA]i (9)

d[ERK2]i
dt

= k5[CAR1]i − k6[PKA]i[ERK2]i (10)

d[RegA]i
dt

= k7 − k8[ERK2]i[RegA]i (11)

d[cAMP]cyt,i

dt
= k9[ACA]i − k10[RegA]i[cAMP]cyt,i (12)

d[cAMP]e
dt

=ρk11
∑N [ACA]i

N

−k12([cAMP]e − [cAMP]e,in)
(13)

d[CAR1]i
dt

= k13[cAMP]e − k14[CAR1]i (14)

Parameters are k1 = 2,k2 = 0.9,k3 = 2.5,k4 = 1.5,k5 = 0.6,k6 = 0.8,k7 = 1.0,k8 =

1.3,k9 = 0.3,k10 = 0.8,k11 = 0.7,k12 = 4.9,k13 = 23,k14 = 4.5,ρ = 1,N = 100.

In Figure 2·4C, cell density and external cAMP degradation rates are varied by altering

ρ and k12 .

Time normalization parameters for the CDINFB model is 3.57, and its height normal-

ization parameter is 3.15.

III. Phenomenological Phase Oscillator model
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The Phase Oscillator model [62] considers each cell as a phase oscillator coupled by

cAMP in the external medium. [cAMP]cyt, i and θi denote the internal cAMP concentration

and internal phase of the ith cell. Equations describing [cAMP]cyt, i dynamics, θi, and

external cAMP [cAMP]e are:

[cAMP]cyt,i =
(−Amax +Abas)sinθi +Amax +Abas

2
(15)

dθi

dt
= ω(1−Φ([cAMP]e)cexcitesinθi) (16)

With Φ([cAMP]e) = K
K+[cAMP]e

d[cAMP]e
dt

=ρ
STVC

VT SC
csec

1

N

N

∑[cAMP]cyt,i

− k
Vt

([cAMP]e − [cAMP]e,in)

(17)

Parameter values are from the original paper [62]. Specifically, Amax = 20,Abas =

0.4,ω = π/3,VC = 1.1 · 10−9,ST = 1.33,SC = 1.3 · 10−6,K = 0.0004,csec = 3.6,cexcite =

1.01,N = 100,k = 5,ρ = 1/12,k = 5,Vt = 1.

In Figure 2·4D, cell density and external cAMP degradation rates are varied by altering

ρ and k .

Time normalization parameters for the Phase Oscillator model is 6, and its height nor-

malization parameter is 19.6.

IV. Interlocking Positive-Negative Feedback (IPNFB) model

In the IPNFB model [63, 77], the signaling network in each cell is modeled following

the FitzHugh-Nagumo framework [79]. The internal cAMP concentration and internal

inhibitor concentration are represented by Ai,Ri. Equations describing Ai,Ri and external

cAMPe dynamics are:

dAi

dt
= Ai − 1

3
A3

i −Ri + I([cAMP]e) (18)

dRi

dt
= ε(Ai − γRi + c0) (19)
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d[cAMP]e
dt

=[cAMP]e,in +ρα0 +ρS
1

N

N

∑Θ(Ai)

− (J+αPDE)[cAMP]e (20)

With I([cAMP]e) = a · log(1+ [cAMP]e
Kd

), and Θ(Ai) being the Heaviside function: equal

to 1 if Ai> 0 and otherwise equal to 0. Parameter values are from the original paper [63].

Specifically, ε = 0.1,γ = 0.5,c0 = 1.2,N = 100,α = 0.058,α0 = 800,αPDE = 1000,Kd =

10−5,S = 106,ρ = 10−3.5,J = 0.5. An offset of 1.5 is applied to Ai traces before outputs

are height-normalized.

In Figure 2·4E, cell density and external cAMP degradation rates are varied by altering

ρ and J .

Time normalization parameters for the IPNFB model is 27, and its height normalization

parameter is 3.5.

V. Incoherent Feedforward Loop(IFFL) model

For the IFFL model [74], there are two key molecular players in each cell: an activator yi

that approximates internal cAMP concentration and an repressor xi that represents internal

inhibitor concentration. Equations describing yi,xi and external cAMPe dynamics are:

dxi

dt
=

1

τ
([cAMP]e +δ− xi) (21)

dyi

dt
=

([cAMP]e +δ)n

([cAMP]e +δ)n +(Kxi)n − yi (22)

d[cAMP]e
dt

= ρktyi − γ([cAMP]e − [cAMP]e,in) (23)

δ is included for lower detection limit. Parameter values are from the original paper

[74]. Specifically, τ = 1.5,n = 2,K = 4,kt = 2,δ = 0.01,γ = 3,ρ = 0.01,N = 100. An

offset of 0.058 is applied to yi traces before outputs are height-normalized.

In Figure 2·4F, cell density and cAMPe degradation rates are varied by altering ρ and γ.

The time normalization parameter for the IFFL model is 5.23, and its height normaliza-
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tion parameter is 0.26.

Supplementary Figures

Figure A·1: The role of noise in the emergence of population-wide oscillations. (A) Experi-

mental population firing rate phase diagram for Dictyostelium cells in a flow chamber with varying

media flow rates and cell densities measured in fractions of a monolayer (ML) from Gregor, et al.

[62]. (B to F). Simulation results for all of the different models, with the upper panels displaying

the results including single cell noise as shown in Figure 2·4, and the lower panels omitting single

cell noise. Inset of (F) shows the same model output plotted with a logarithmic x-axis.
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Figure A·2: Probability density of IPNFB fold-change detection responses. The IPNFB model

has built-in single-cell noise so each simulation results in a different single-cell internal cAMP re-

sponse. For each priming concentration-fold change pair, the means of the second-peak prominence

(also shown in Figure 2·6C) are plotted as blue bars and the probability distributions are in shades

of gray.

Figure A·3: Different models have different internal cAMP responses to [cAMP]e input dy-
namics. (A) Experimental data show single Dictyostelium cells display an internal cAMP spike in

response to an abrupt 1 nM step input of external cAMP but remain mostly quiescent in response to

a slow ramp input to 1 nM external cAMP. Data adapted from Sgro, et al. [63]. Top panel: external

cAMP input temporal profile. Bottom panel: Experimental [cAMP]i traces from three example cells.

(B - E) Model simulations of cell responses. The first and second shaded region denotes when the

step and exponential ramp [cAMP]e inputs are applied respectively. The maximum concentration

of external cAMP input in each model is the same as in Figure 2·5C. A gray shaded background

behind the plots highlights experimental data. A green shaded background indicates models that

reproduce the experimental observations.



112

Figure A·4: Entrainment quality varies with [cAMP]e input cycle period and input peak width.
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Experimental measurements adapted from Sgro, et al. [63] of how cells respond to repetitive exter-

nal cAMP stimuli with different input peak widths and with different input cycle periods. This data

illustrates single cells are entrainable and have a refractory period. Entrainment quality is quantified

as the average Pearson’s cross correlation coefficient of each of the subsequent [cAMP]i response

spikes compared against the first response spike. (A) Left panel: [cAMP]i traces for three example

cells experiencing a step input to 10 nM external cAMP. Shaded region indicates external cAMP

input. Right panel: Entrainment quality increases with longer stimulation period and briefer peak

width. (B - E) Model simulations show that all models that display adaptive spiking, even if not

fully adaptive (Figure 2·5C), qualitatively match the experimental data. However, the entrainment

quality metric does not take into account height variation between the first and subsequent spikes.

The Receptor Desensitization model scores highly with this entrainment quality metric across the

parameter regime we probe, but the spike height is reduced in some regimes indicating it has a re-

fractory period (B). Based on what is used in experimental data, stimulation period and peak width

is sampled from 0.8-1.8 and 0.4-1.4 times the respective timescale normalization parameter for each

model. We set external cAMP input concentrations in each model to the same values as in Figure

2·5C. A gray shaded background behind the plots highlights experimental data. A green shaded

background indicates models that reproduce the experimental observations.
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Figure A·5: The effect of decreasing timescale separation on the single-cell response to step
inputs.
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Activator (approximating internal cAMP level) response traces and nullcline analysis with different

timescale separation parameters in the IPNFB circuit (A) and the IFFL circuit (B). Left and right

panels show model activator responses for large (IPNFB ε = 0.1, IFFL τ = 1.5) and small (IPNFB

ε = 1, IFFL τ = 0.5) values of the time scale separation parameter between the activator (A) and

inhibitor (I) species, respectively. In simulations, we applied one unit of external cAMP at the gray

dashed line. Solid black lines show how the activator trajectory in the phase plane. Solid gray dots

and gray circles mark the initial and end states of the systems. Solid and dashed blue lines are

activator nullclines before and after external cAMP input. Solid and dashed red lines are inhibitor

nullclines before and after external cAMP input. Gray lines with arrows display vector fields of the

systems. Both models are displayed in their native units from the original publications and given in

Model Equations and Parameters
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Appendix B

Appendix: supplementary figures for Chapter 3
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Figure B·1: PKA-Booster sensor validation. FRET signal from the PKA-Booster sensor (orange

traces) or the non-responsive control sensor Booster (T/A) (grey traces) upon stimulation with the

adenylyl cyclase activator forskolin. Traces of individual cells are shown in (A). The mean and

S.E.M. of each sensor construct are shown in (B). n = 8 cells for each construct are included. At the

black dashed line, 10 μM forskolin is applied.
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Figure B·2: Booster sensor is saturated at high light stimulation dose in cells expressing the
bPac construct. PKA-Booster reporter signal height (A) and width (half max height width, (B))

in response to different light stimulation duration and intensity, with heatmap colors corresponding

to the mean from multiple cells. The signal traces are normalized to the baseline average before

calculating the height and widths. For each photostimulation condition, n = 12 to 21 cells are

included. Light stimulation was conducted using the 465 nm LED on the Optoplatesystem [109].

Mean and S.E.M. from single-cell response traces with light stimulation dosages marked with the

pink and orange squares are shown in (C) and (D), respectively. At the grey-shaded regions, light

stimulation was turned on.
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Figure B·3: bPac- induced PKA activation is not dependent on the expression level of the bPac
construct. Each column shows the FRET signal (from the PKA-Booster reporter) width, height,

and maximum difference from baseline with a scatter plot with median CFP intensity, which acts as

an approximation of the bPac construct expression level. Each column shows data from a different

stimulation intensity. Each dot represents a response from a single cell, and different colors repre-

sent different stimulation lengths (5 seconds, 10 seconds, 30 seconds, 1 minute). The baseline of

the signal traces is normalized to the baseline signal before stimulation. For each photostimulation

condition, n = 12 to 21 cells are included.
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Figure B·4: bPac’s inhibition effect on two-dimensional cell migration plateaus at high activa-
tion dosage (stimulation length). Percentage area closure rate was quantified with different light

stimulation lengths (dark, light on for 100ms, 1000ms, 2000ms, and 4000ms every 5 minutes) in

3T3 fibroblasts expressing the bPac optogenetic construct (bPac-mTurquoise2-NES). Each colored

dot represents an independent well. Black square dots and gray bars represent mean and S.E.M. 10

independent wells are included for each condition.
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Figure B·5: The fiber integrity metric SFI is sensitive to masking parameter. In (A) to (C), the

stress fiber mask (boundary shown in pink) overlaid on top of an example image of a cell is on the

left, and the average and S.D. of stress fiber integrity of multiple cells are shown on the right. On the

right panels, the grey-shaded regions mark the start to the end of the light stimulation. (D) shows

the maximum decrease of normalized SFI after bPac activation with different fiber masking block

sizes. In the violin plot, white dots represent the median, thick black bars represent the interquartile

range, and the thin gray line represents the rest of the distribution. Large colored dots show average

values within the same experiment (well), and small colored dots show data from single cells, with

colors denoting different experiments. Cells express the LifeAct-mIRFP670 marker for tracking

actin fiber structure and the bPac construct. n = 73 cells are included. 490 nm LED at 10% power

is used for light stimulation.
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Figure B·6: Pharmaceutical activation of the cAMP pathway does not induce a similar rapid
change in the stress fiber structure. (A) and (B) show actin markers from two example cells at

1 minute before adding cAMP activating cocktail (20 μM adenyl cyclase activator forskolin and 1

mM PDE inhibitor IBMX), 13 and 17.5 minutes after drug addition. Cells are labeled with actin

cytoskeleton marker LifeAct-mScarlet (I) and the optogenetic tool bPac. A red light was used during

drug injection to avoid activation of the tool. Scale bars = 20 μm. Maximum fractional decrease

of SFI and nucleus area are shown in (C) and (D), with each large colored data point representing

the mean value from an independent experiment (cell seeding day). n = 14 and 8 cells are included

for drug (fskn 20 μM + IBMX 1mM) and control (DMSO) treatments respectively. Student t-test is

used for testing between-group differences of single cells. ns: not significant.
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Figure B·7: Investigating potential correlation between SFI/ nucleus area decrease and bPac
tool expression level, basal levels of the metrics, and cell passage.
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(A) and (C) show scatter plots to investigate potential correlations between the expression of the

bPac tool (CFP median), normalized SFI decrease (normalized SFI difference) after bPac stimula-

tion, and the basal SFI level. (B) and (D) show scatter plots between the expression of the bPac

tool (CFP median), normalized nucleus area-decrease upon bPac stimulation (normalized NA dif-

ference), and the basal nucleus area (basal NA). Pearson correlation coefficient r and corresponding

p values (rounded to three decimal places) are displayed on the graphs. In (A) and (B), cells express

the bPac construct and the LifeAct-mScarlet(i) marker or the mScarlet(i)-actin marker, respectively.

(E) and (F) show violin plots of normalized SFI decrease and normalized nucleus area decrease

with different passages, in which white dots represent the median, thick black bars represent the

interquartile range, and the thin gray line represents the rest of the distribution.

Figure B·8: Calcium inhibiting treatments do not significantly alter the basal level of stress
fiber integrity (SFI). Basal stress-fiber integrity (SFI) measurement is displayed for different cal-

cium inhibitor conditions. The large colored data points represent the mean value from an indepen-

dent experiment (cell seeding day), with colors representing different experiments. The violin plots

show the distribution of the basal SFI in individual cells, with white dots representing the median,

thick black bars representing the interquartile range, and thin gray lines representing the rest of the

distribution. Statistical tests between conditions are conducted between independent experiments

with Tukey’s HSD method for data with equal variance and Games-Howell post-hoc test for data

that does not show equal variance. ns: not significant. Statistical results are only calculated between

the control media and other treatment conditions.



125

Appendix C

Appendix: supplementary figures for Chapter 4

Figure C·1: Serum induces calcium spiking in most cells across 3 different serum lots, and
serum-induced spiking is not rescued by Mn2+ supplement. (A) Serum induces calcium spiking

in most cells across 3 different serum lots. For each serum lot, n = 760, 621, and 351 cells were

included. For each condition, data is from 3 independent experiments (cell seeding days). (B) Very

few spiking cells are observed in basal media and basal media supplemented with 1 μM Mn2+. n

= 829 cells in basal media condition and 931 cells in Mn2+ condition were included. In both (A)

and (B), colored dots represent the mean from independent experiments (cell seeding days), with

the colors representing different experiments. Black squares and error bars represent the mean and

S.D. between experiments. Statistical tests between conditions are done with Tukey’s HSD method

for data with equal variance and Games-Howell post-hoc test for data that does not show equal

variance. ns, not significant, (p>0.05).
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Figure C·2: The serum component LPA tunes calcium spiking frequency in 3T3 fibroblast
cells. Calcium spiking frequency was calculated by the mean of inter-spike interval in different me-

dia conditions: media supplemented with serum, charcoal-stripped serum, charcoal-stripped serum

with 10 μM LPA, and 10 μM LPA alone. For each condition, n = 662, 180, 661, and 727 cells

were included across 3 independent experiments (cell seeding days). Small colored dots represent

the frequency of single cells, and large colored dots represent the mean from cells in each exper-

iment, with the colors representing different experiments. Black squares and error bars represent

the mean and S.D. between different experiments. Statistical tests were conducted with data from

the means of independent experiments. Tukey’s HSD method was used for data with equal variance

and Games-Howell post-hoc test was used for data that does not show equal variance. * p<0.05.

The significance value is not marked for condition pairs that do not show a significant difference.
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Figure C·3: Both LPA concentration and time after LPA addition both modulate calcium
spiking. Fraction of spiking cells (A), spiking frequency (B), and mean prominence of normalized

spikes (C) are modulated by LPA concentration (10 nM, 100 nM, 1 μM, 10 μM, 100 μM) as well as

time after LPA injection. Each dot represents average data from cells from an independent experi-

ment. In (A), squares and error bars represent the mean and S.D. from different experiments. In (B)

and (C), box plots show data from individual cells, with the upper and lower bars representing the

maximum and minimum value, box boundaries representing the 75th and 25th percentile, and the

center bars representing the median of data.
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