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Abstract 

Motivation 

The detection of distinct cellular identities is central to the analysis of single-cell RNA 

sequencing experiments. However, in perturbation experiments, current methods typically fail to correctly 

match cell states between conditions or erroneously remove population substructure. Here we present the 

novel, unsupervised algorithm ICAT that employs self-supervised feature weighting and control-guided 

clustering to accurately resolve cell states across heterogeneous conditions.  

 

Results 

Using simulated and real datasets, we show ICAT is superior in identifying and resolving cell 

states compared to current integration workflows. While requiring no a priori knowledge of extant cell 

states or discriminatory marker genes, ICAT is robust to low signal strength, high perturbation severity, 

and disparate cell type proportions. We empirically validate ICAT in a developmental model and find that 

only ICAT identifies a perturbation-unique cellular response. Taken together, our results demonstrate that 

ICAT offers a significant improvement in defining cellular responses to perturbation in single-cell RNA 

sequencing data. 

 

Availability and implementation 

https://github.com/BradhamLab/icat 
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Introduction 

From deconstructing tumor cell compositions (Schelker et al., 2017), to reconstructing 

developmental pathways (Wagner et al., 2018), single-cell RNA sequencing (scRNA-seq) has 

revolutionized scientists’ ability to explore complex tissues and systems. Clustering of individual cells is 

central to the analysis of scRNA-seq data, in which cell states are identified by grouping cells with similar 

gene expression profiles (Luecken and Theis, 2019). Whether to ascertain the effect of drug treatment on 

cancer viability or to infer the mechanistic role of a given gene in tissue specification, perturbation 

experiments have long been used to dissect and understand complex biological systems. Oftentimes this 

analysis is formalized by identifying changes in the abundance of cell identities between treatments 

(Luecken and Theis, 2019; Kang et al., 2017; Haber et al., 2017). Inherently, such analyses are based on 

the assumption that cell states are readily identified and matched between treatments. Recently, graph-

based community detection algorithms such as the Louvain and Leiden methods have become best 

practice for identifying cell states in single-condition scRNA-seq datasets (Luecken and Theis, 2019). 

However, these methods often fail to match identities in datasets containing perturbing treatments, which 

present particular difficulties due to dominating treatment effects (Fig. S1), where it is typical that 

scRNA-seq datasets segregate by treatments rather than cellular identities (Fig. S1), similar to the impact 

of batch effects (Luecken and Theis, 2019; Kang et al., 2017; Lähnemann et al., 2020; Kagohara et al., 

2020). This challenge presents significant difficulties in correctly evaluating cellular responses to 

perturbation in scRNA-seq experiments. 

Common techniques for identifying cell states in scRNA-seq perturbation experiments rely on 

either reference datasets to map cells onto known cell identities (Regev et al., 2017; Schaum et al., 2018), 

or an integration algorithm to minimize differences between control and perturbed cells by transforming 

cells into a shared space prior to clustering cells (Luecken and Theis, 2019; Perillo et al., 2020). The first 

scenario is problematic for non-model systems, where such atlases may not exist, and is inappropriate 

when the goal of a given experiment is discovery of novel cell identities or subtypes; for these reasons, 
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the latter approach is often preferred. Toward that end, scRNA-seq algorithms have been developed that 

broadly integrate heterogeneous datasets (Luecken and Theis, 2019; Stuart and Satija, 2019; Hie et al., 

2019). Originally developed to remove batch effects (Haghverdi et al., 2018), many of the most widely 

used  integration algorithms work by matching mutual nearest neighbors between batches in order to learn 

non-linear transformations that minimize neighbor distance in an embedded space (Haghverdi et al., 

2018; Stuart and Satija, 2019; Hie et al., 2019; Korsunsky et al., 2019).While useful for removing 

technical variation from datasets, integration algorithms are unable to discriminate technical from 

biological noise: thus their use may be inappropriate when biological differences exist between samples, 

such that a one-to-one correspondence between cell states cannot be assumed. This difficulty is reinforced 

by recent findings which show that integration methods often smooth over and eliminate biologically 

meaningful signals, leading to incorrect cell state identification and possibly wholesale erasure of real cell 

states (Luecken and Theis, 2019; Luecken et al., 2022; Büttner et al., 2019; Tyler et al., 2021).  

We therefore developed a two-step algorithm to robustly and sensitively Identify Cell states 

Across Treatments (ICAT) in scRNA-seq data. In contrast to integration approaches that minimize 

differences between samples, ICAT uses a novel approach that relies on self-supervised feature selection 

and control-guided clustering to identify cell states using biologically relevant features. While other 

methods exist to either identify shared clusters between treatments (Barron et al., 2018) or to leverage 

sparse features (Hua et al., 2020), to our knowledge, ICAT is the only method capable of doing both 

while also handling multiple experimental conditions. Our results show that, by emphasizing cell-state 

defining genes, ICAT accurately identifies cell states across scRNA-seq perturbation experiments with 

high accuracy. Importantly, ICAT does not require prior knowledge of marker genes or extant cell states, 

is robust to perturbation severity, identifies cell states with higher accuracy than leading integration 

workflows with both simulated and real scRNA-seq perturbation experiments, and operates reliably at 

low signal resolutions. 
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Materials and methods 

ICAT Algorithm overview 

To overcome the inability of 

current clustering algorithms to accurately 

detect cell identities in perturbation 

experiments (Fig. S1), we developed a 

two-step algorithm (Fig. 1A). Using the 

Louvain method (Blondel et al., 2008) by 

default, the first step separately clusters 

control cells to produce initial cluster 

labels for each cell. Cluster labels are then 

used to weight genes by their ability to 

predict the previously generated labels 

using Neighborhood Component Feature 

Selection (NCFS) (Yang et al., 

2012). NCFS weights genes by 

using gradient ascent to maximize a 

regularized leave-one-out 

classification accuracy metric. By 

the nature of regularization, most 

gene weights converge to zero, 

leaving only the most predictive 

genes with weights greater than 1. 

Applying the learned gene weights 

to the original expression matrix 

Figure 1. Overview of the ICAT algorithm. A. The schematic 
illustrates the ICATC implementation of ICAT. To identify cell states 
across treatments, ICAT first performs self-supervised feature 
weighting to find genes that discriminate cell identities among control 
cells alone, followed by semi-supervised clustering using the newly 
transformed expression matrix. To learn feature weights, ICAT clusters 
control cells using Louvain community detection, then uses the newly 
generated cluster labels as input into NCFS to weight genes by their 
predictiveness. After applying the learned gene weights to the original 
gene expression matrix, ICAT clusters both treated and control cells 
together using a semi-supervised implementation of Louvain 
community detection. During this process, ICAT holds the previously 
identified cluster labels for the control cells immutable. B. The 
schematic illustrates the ICATC+T implementation, which expands 
feature weighting to treated cells to identify asymmetrical populations 
between treatments. Cells are split along treatments and independently 
clustered using the Louvain method, then cluster labels are used to learn 
gene weights using NCFS in each treatment set independently. To 
retain asymmetrically informative genes, weights for each treatment are 
concatenated row-wise and subsequently reduced to the maximum 
weight using a row-wise maxpool function. The reduced weight vector 
is then used to transform the original count matrix. 
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with both control and treated cells transforms the matrix into a “cluster-defined” space, where the 

distances between cells are dominated by highly weighted marker genes. After this transformation, ICAT 

retains previously identified cluster labels for control cells, then performs semi-supervised Louvain 

community detection (Blondel et al., 2008; Traag, 2021), whereby control labels are held immutable (Fig. 

1A). 

This strategy achieves two goals: 1. ICAT makes comparing treatment effects on cell states 

straightforward. By implementing semi-supervised clustering with immutable control labels, ICAT 

ensures identities discovered in control cells are retained when treated cells are introduced. 2. ICAT 

produces easily interpreted embeddings. Because NCFS is a sparse method, it overtly separates 

informative and non-informative genes. Thus, the expression patterns of a few, highly weighted genes 

directly account for cell location in the NCFS-transformed space. This is a noted benefit over typical 

integration methods, where transformations are obscured behind neighbor-based approaches (Stuart and 

Satija, 2019; Hie et al., 2019). These two features together produce interpretable results that ease 

compositional analysis between treatments.  

While similar in approach, ICAT provides several advantages compared to identifying shared cell 

states via marker gene mapping: first, ICAT does not require previously known marker genes, making 

ICAT appropriate for situations with previously uncharacterized cell states. Second, by clustering control 

and treated cells together, ICAT takes advantage of the structure in both datasets compared to clustering 

both independently. This alleviates issues with imperfect matches between marker genes. Third, by 

foregoing common marker gene presence-absence comparisons to map cell types, ICAT accurately 

identifies activated states, which is otherwise difficult. Finally, by generating cell state labels through a 

clustering step rather than a classification approach, ICAT is able to group cells with treatment-specific 

phenotypes and identify out-of-sample states. 

One caveat of our approach is that if asymmetrical populations exist in treated cells, but not 

controls, their identifying genes will likely be collapsed by the control-only feature-weighting step. 

Depending on the preferred cell-state resolution, this may or may not be desirable. To account for both 
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resolution levels, researchers can choose to perform feature-weighting in all treatment types to identify 

asymmetrical populations in each condition (Fig. 1B, Fig. 2A, Fig. 3A). To reduce gene weights to a 

single gene-weight vector, only the maximum gene weight among the conditions is retained. During semi-

supervised clustering, labels for control cells are retained during label initialization, while treated cells are 

re-initialized as singleton clusters. 

Data simulation 

To assess ICAT, we initially tested performance in simulated single-cell RNAseq data (Fig. 2A, 

3A-E). We simulated data using a zero-inflated Negative Binomial distribution to model gene counts per 

Büttner and colleagues (Büttner et al., 2019). To simulate perturbations and apply system-wide 

disruptions to gene expression patterns, we randomly selected genes as perturbation targets and 

subsequently sampled  scalar multipliers from a 𝛤(2,2) distribution to alter average expression values for 

each disrupted gene. To generate distinct cell types, we randomly selected a separate set of genes to act as 

markers for each population. Selected marker genes had their average expression shifted by a scalar 

multiplier following a 𝛤(3,3)	distribution to create population substructure. 

ICAT analysis real datasets 

To assess ICAT’s ability to correctly cluster cells in real perturbation experiments, we made use 

of three publicly available datasets (Tian et al., 2019; Kagohara et al., 2020; Kang et al., 2017). While no 

true benchmark datasets currently exist for defining cell identities in perturbation experiments, we 

selected datasets that either contain genotyped cell lines, or are from well-studied cell types with 

confidently labeled cells. Because NCFS feature-weighting is a computationally intensive task, and since 

the Kagohara and Kang datasets each contain > 20,000 cells, it was necessary to subselect cells for feature 

weighting (Fig. S2). To this end, ICAT selects a representative sample of cells via submodular 

optimization using the apricot (Schreiber et al., 2020) Python package. Submodular optimization via 

apricot was able to effectively represent the data space using only a small number of cells (Fig. S3).  

We further validate ICAT’s predictions in vivo using a newly generated sea urchin scRNA-seq 

dataset consisting of one control and two experimental conditions. Treatment-unique cell states were first 
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identified using ICAT. Using fluorescence in situ hybridization (FISH), we then validate both cell-state 

defining expression patterns and the predicted changes in relative cell state abundance between 

treatments.  

Benchmarking ICAT’s performance 

To benchmark ICAT against other general workflows for identifying cell states in multi-condition 

scRNA-seq experiments, we compared four general approaches: (1) ICAT, (2) integrating datasets across 

treatments followed by clustering cells via Louvain clustering, (3) integrating datasets across treatments 

followed by clustering cells via ICAT, and (4) naive clustering where we tested the “No Integration” 

scenario in which cells were clustered using Louvain clustering without accounting for treatment status 

(Fig. S4). Each workflow focuses on identifying cell states, making them intrinsically comparable despite 

algorithm differences. 

 In our evaluation we tested two state-of-the-art integration methods: Seurat (Stuart and Satija, 

2019; Satija et al., 2015) and Scanorama (Hie et al., 2019). Seurat was chosen for its ubiquity in single-

cell analysis and generally good performance, while Scanorama was chosen due to its top performance in 

rigorous benchmarks comparisons (Luecken et al., 2022). Accordingly, we also evaluated clustering 

performance for two extended workflows: ICATSeurat and ICATScan, whereby data from cells was first 

integrated using Seurat or Scanorama prior to clustering with ICAT. While ICAT is relatively robust to 

parameter choice (Fig. S5), we used standardized nearest neighbor and resolution parameters for each 

method during clustering for appropriate comparisons (Supplemental Methods). 

When evaluating cell state labels produced in simulated experiments, we considered three criteria 

reflecting “good” clustering between control and treated cells: 1. Global label conservation: the extent of 

mapping between cluster labels and known cell identities, which is ideally one-to-one to reflect accurate 

detection of cell identities, was assessed with the Adjusted Rand Index (Hubert and Arabie, 1985) (ARI). 

2. Treatment mixing: the local homogeneity of shared cell types without undo isolation by treatment 

status was assessed with the Local Inverse Simpson’s Index (Korsunsky et al., 2019) (LISI); 3. Unique 

label separation: the accurate detection of populations-of-interest was measured using population-specific 
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F1 measures (Luecken et al., 2022). Such metrics were used to measure the ability to accurately detect 

asymmetric populations that exist only in single conditions (F1-Unique), the ability to discriminate 

stimulated cell states from non-stimulated analogues (F1-Stim), and the identification of rare cell types 

(F1-Rare). ARI, LISI, and all F1 metrics were standardized between 0 and 1, where 1 indicated stronger 

performance.  

Because cell identity is resolution dependent and likely imperfect in real datasets (Luecken and 

Theis, 2019; Lähnemann et al., 2020), when evaluating performance using real data, we also calculated 

the label-free Davies-Bouldin (DB) metric to assess the density of clusters produced by each method 

(Davies and Bouldin, 1979). The DB metric measures similarity between a cluster and the next most 

similar cluster. To facilitate comparison, each score was scaled between 0 and 1 such that 1 represents 

better clustering while 0 represents worse clustering. 

Results 

ICAT accurately clusters cells in perturbation experiments regardless of compositional 

asymmetries 

To validate the general ICAT workflow (Fig. 1), we compared ICAT to naively clustering cells 

using Louvain community detection without accounting for treatment status (Fig. 2A). To initially 

validate the general approach of ICAT, we first performed a set of simple experiments consisting of equal 

size populations to compare ICAT to naive Louvain clustering (Fig. 2A, top row). Subsequently, we 

tested four different simulated experiments with each condition consisting of a different number of shared 

and unique populations between control and treated cells (Table S1). ICAT exhibited near perfect 

clustering with ARI scores near 1 across five different simulated experiments (Fig. 2B). Without 

accounting for the systematic noise introduced by perturbations, naive Louvain clustering erroneously 

separates cell states by treatment status (Fig. 2A) and only produced accurate cluster labels when no 

shared cell states between control and treated cells existed (Fig. 2B). These results not only demonstrate 
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the necessity of accounting 

for treatment status while 

identifying cell states in 

perturbation experiments, 

but also provide validation 

for ICAT’s novel approach. 

ICAT is robust to 

perturbation severity and 

better resolves cell states at 

lower resolutions than 

leading integration 

workflows. 

To further challenge 

ICAT’s ability to robustly 

detect cell states in more 

complex scenarios, we 

simulated five populations 

of cells: three that are 

present in both control and 

treated cells, with one of 

these exhibiting elevated 

marker gene expression upon treatment and referred to as “stimulated” (population C1 and P(C1)+), and 

two treatment-only populations (populations P4 and P5) (Fig. 3A-B). These populations were simulated 

under varying conditions to assess ICAT’s robustness to varying conditions, such as perturbation severity, 

degree of cell state separation, and different population abundances.  

Figure 2: ICAT correctly identifies cell states in distinct experimental 
compositions. A. UMAP projections of different cellular compositions in 
simulated datasets. Each dot represents a cell with circles representing control cells 
and crosses denoting treated cells. Dots are colored by ground truth identity (left 
column), cluster label produced by performing Louvain community detection on 
the raw count matrix (middle column), and clusters labeled produced by ICAT 
(right column). B. Average agreement between ground truth label and cluster 
labels produced by clustering the raw data (blue) and ICAT (orange) as measured 
by the Adjusted Rand Index (ARI). Error bars represent the 95% confidence 
intervals for the mean ARI for each method. Five different cellular composition 
conditions were simulated: “All same”, both control and treated cells share the 
same two cell states; “Rx Unique”, treated cells contain a treatment-unique cell 
state; “Control Unique”, control cells contain a unique cell state; “Both Unique”, 
both treated and control cells contain treatment-specific cell states; and “None 
Same”, no shared cell states between treated and control cells. Each condition was 
simulated fifteen times (n = 15). Simulations were evaluated using the ICATC 
implementation. 
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We first assessed 

ICAT’s robustness against 

increasing perturbation 

severity, testing five 

conditions with varying 

proportions of perturbed 

genes, ranging from 1% to 

25% (Fig. 3C, Table S2). 

Next, we assessed 

performance with 

changing resolutions 

between cell states by 

simulating 10 different 

experimental conditions 

with a varying number of 

average marker genes per 

cell type. Mean 

marker gene 

numbers ranged 

from 10-105 per 

population (0.67-

7.0% of total 

genes) (Fig. 3D, 

Table S3). In both 

cases, each 

experiment was 

Figure 3. ICAT outperforms current methods for cell state identification and is robust 
to experimental conditions. A. UMAP projections of raw (left), ICATC processed (middle), 
and ICATC+T processed count matrices for the simulated data. Projections show ICATC and 
ICATC+T correctly mix shared populations (red and green), while only ICATC+T isolates 
asymmetrical populations (purple, yellow). ICAT performance for simulated data was further 
evaluated using the ICATC+T implementation only. B. Select marker and perturbed gene 
expression patterns are displayed as violin plots for three simulated control cell types (1-3) 
under normal (C) and perturbed (P) conditions. P(C1)+ is a stimulated and perturbed version 
of cell type 1; perturbation-specific cell types P4 and P5 express distinct marker genes. C. 
The percentage of perturbed genes used to assess robustness to perturbation severity is 
shown; values range from 1-25%. D. The average number of marker genes per cell identity 
used to assess robustness to signal strength is shown; values range from 10 to 105 (0.7 - 7% 
of total genes). E. The set of cell identity proportions used to test the ability to identify rare 
cell states is shown. The number of cells per treatment-label pair ranges from 50 to 175. F. 
Method performance is compared as the fraction of perturbed genes increases (left), and as 
the average number of marker genes per population increases (right). Results are depicted as 
averages with 95% confidence intervals shown by shading. G. Method performance is 
compared as the proportion of cell types is varied (left). The Gini coefficient reflects the 
degree of population size disproportion among cell states. H. The performance of integration 
methods alone or in combination with ICAT (as ICATSeurat or ICATScan) is compared across 
the same metrics for the perturbation (H1) and signal strength experiments (H2). 
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simulated 15 times, for a total of 90 independent datasets in the first case (Fig. 3C) and 150 in the second 

case (Fig. 3D). Finally, to test performance as cell type proportions deviate from equality, we simulated 

three different experimental conditions with varying distributions of each cell type. Experiments ranged 

from the most similar, with all cell types having 100 cells per treatment, to the most disparate where the 

minimum and maximum population size per treatment were 50 and 150, respectively (Fig. 3E, Table S4). 

To isolate the effect of differential cell abundance, proportion simulations did not include an activated cell 

type, and instead were composed of three shared populations and two treatment-unique populations (Fig. 

3E).  

When we tested perturbation severity or variable numbers of marker genes (Fig. 3C-D), ICAT 

outperformed both Scanorama and Seurat across all metrics while exhibiting highly stable performance 

across both increasing perturbation intensities and at varying cell-state resolutions (Fig. 3F). ICAT 

provides near-perfect treatment mixing, with LISI scores nearing 1 for all signal levels. In contrast, 

Scanorama and Seurat only approach 0.5 LISI scores at the highest signal levels, indicating that ICAT 

exhibits a substantially improved ability to correctly and robustly mix cell identities across treatments, 

even at low signal levels at which the standard integration algorithms fail (Fig. 3F). 

 Scanorama offered comparable performance to ICAT in global label conservation (ARI) and in 

the ability to detect asymmetrical populations (F1-Unique) (Fig. 3F), while ICAT was uniformly better at 

accurately distinguishing the stimulated population from its non-stimulated analogue (Fig. 3F, F1-Stim). 

Seurat underperformed both Scanorama and ICAT in label conservation and asymmetrical population 

detection (ARI, F1-Unique), and offered comparable treatment-mixing performance to Scanorama (LISI), 

indicating that Seurat does not accurately separate known populations relative to Scanorama or ICAT 

(Fig. 3F). 

 For each of the perturbation severity tests and with low marker gene numbers, Seurat was 

surprisingly outperformed by the no-integration scenario for ARI (Fig. 3F) which can be explained by 

Seurat’s general under-clustering of cells (Fig. S6A). Scanorama exhibited a similar drop in ARI 

performance at low marker numbers, but consistently outperformed no integration (Fig. 3F). These results 
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show ICAT more accurately and robustly resolves cell identities across experimental conditions than 

either Seurat or Scanorama integration workflows.  

ICAT most accurately detects rare populations. 

ICAT was unaffected by differences in cell identity proportions as assessed by global and rare 

population label conservation via ARI and the F1-Rare metric, respectively, while Seurat and Scanorama 

each exhibited decreased performance as the disparity in proportions increased (Fig. 3G, left). The 

performance of ICAT was robust and stronger than both Scanorama and Seurat in each measure.  

ICAT improves and stabilizes the performance of integration workflows. 

Clustering cells in integrated datasets with ICAT, in lieu of traditional Louvain community 

detection, produced overall higher quality clusters compared to standard integration workflows. 

Compared to the typical Seurat workflow, ICATSeurat led to significant improvements in all three 

simulated experiments, leading to greater robustness to perturbation (Fig. 3H1, left), increased signal 

sensitivity (Fig. 3H2, left), and better isolation of rare cells (Fig. 3G, middle). When compared to 

Scanorama, ICATScan better isolate rare cells (Fig. 3G, right), and improved performance in some metrics 

in perturbation and signal experiments. Gains were more modest compared to ICATSeurat, primarily since 

Scanorama with Louvain clustering already exhibits strong performance (Fig. 3H1-2, right). In particular, 

ICATScan substantially improved treatment-mixing (LISI) across conditions compared to Scanorama with 

Louvain (Fig. 3H1, right). Interestingly, at both signal extremes, stand-alone ICAT scored higher in the 

F1-Stim metric than either combined or integration method, whether combined with Louvain or ICAT for 

clustering (Fig. 3H2), indicating that ICAT preserves discriminatory signals better than either integration 

algorithm.  

In summary, the results from simulated data demonstrate that ICAT offers robust and accurate 

cell state identification that exceeds both Seurat and Scanorama, two current state-of-the-art integration 

algorithms, across a range of simulated conditions including severe perturbations, low marker gene 

numbers, and variations in relative cell abundance. Further analysis shows that identifying cell states with 

ICAT following integration produces higher quality clusters compared to either current integration 
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workflow alone. Thus, the novelty of using learned feature weights combined with control-guided 

clustering offers a significant performance improvement over state-of-the-art integration approaches in 

accurately defining the cellular compositions of single-cell datasets; moreover, the results show that, 

unlike integration approaches, ICAT's performance is robust across a range of conditions. 

ICAT produces higher quality clusters in real datasets compared to integration methods. 

To evaluate ICAT in real scRNA-seq datasets, we first used the CellMix dataset generated by 

Tian et al. (Tian et al., 2019). The dataset that was produced by creating various mixtures of nine cells 

from combinations of H2228, HCC827, and H1975 adenocarcinoma cell lines, sequencing the cell 

mixtures, then downsampling the resulting counts to produce pseudo-cells that are in-line with true 

single-cell data. While the Tian dataset was developed to test integration across batch effects, we 

reasoned that variance introduced by batch effects offers an imperfect substitute for a perturbation. To 

better mimic distinct phenotypes, we selected only four cell “types”, consisting of pure H2228, HCC827, 

and H1975 cells, along with a single mixture with equal proportions of each cell line, denoted “Mixed” 

(Fig. S7, Table S5). The second dataset from Kagohara et al. (Kagohara et al., 2020) offers a simple 

perturbation experiment in which three genotyped cell lines of head and neck squamous carcinoma cells 

were treated with either PBS (control) or the chemotherapeutic cetuximab (Table S5). Finally, we 

assessed performance in a peripheral blood mononuclear cell dataset collected by Kang et al. (Kang et al., 

2017) with eight cell types in control and IFN-β-stimulated conditions (Table S5). Prior to analysis, each 

dataset was preprocessed by normalizing cell counts and selecting highly variable genes using Scanpy. To 

ensure each tested algorithm analyzed the same input data, we provided the same Scanpy preprocessed 

data to each method.  

In the Tian dataset, ICAT outperformed both existing integration methods in LISI and DB metrics 

and was comparable to both in ARI, in which ICAT was slightly worse than Seurat and Scanorama (Fig. 

4A-B, Table S6). ICAT outperformed both integration methods in the Kagohara and Kang datasets (Fig. 

4A-B). Aside from ARI in the Kagohara dataset, in which Scanorama and ICAT scored equally well (Fig. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.05.26.493603doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.26.493603
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4B), ICAT produced the highest scores for 

ARI, LISI, and DB metrics (Fig. 4B). Overall, 

ICAT generated higher quality clusters in real 

datasets compared to existing integration 

algorithms (Fig. 4A-B, Table S6).  

Compared to Scanorama, ICATScan led 

to greater ARI, LISI and DB scores across the 

three analyzed datasets (Fig. 4C, Table S6), 

aside from ARI in the Kagohara dataset where 

Scanorama and ICATScan scored equally well 

(Fig. 4C). For Seurat, ICATSeurat resulted in 

improvements that exhibit dataset and metric 

dependence: cell states were more readily 

identified in the Kagohara dataset, shown by 

the dramatic increase in ARI scores, and 

clusters were tighter and better separated as 

shown by large increases in DB scores (Fig. 

4C). In contrast, ARI scores were maintained or 

marginally reduced with ICATSeurat compared to 

traditional Seurat + Louvain workflows for the 

Tian and Kang datasets. The results 

demonstrate that ICAT offers a marked 

improvement in cell state identification in multi-condition scRNA-seq experiments compared to the 

current integration workflows Seurat and Scanorama. Thus, the performance of ICAT with real data is 

substantially improved compared to conventional integration + clustering workflows, in agreement with 

ICAT's performance in simulated data. 

Figure 4: ICAT outperforms current integration 
methods in identifying cell states across treatments in 
real datasets. scRNA-seq data from Tian, Kagohara, and 
Kang studies is compared. A. Spider plots compare the 
performance for each algorithm within each dataset for ARI, 
LISI, and DB quality metrics. B. Lollipop plots highlight the 
differences in the metrics for each method across the same 
datasets. C. Spider plots comparing Seurat to ICATSeurat and 
Scanorama to ICATScan, respectively. All metrics are scaled 
from 0 to 1, where 1 is best (closest to the apex of each 
corner). Abbreviations: DB Davies-Bouldin metric, and 
otherwise as in Fig. 2. ICAT performance for the Tian 
dataset was evaluated using the ICATC+T implementation, 
while Kagohara and Kang datasets were evaluated using the 
ICATC implementation. 
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ICAT alone accurately predicts subpopulation response to perturbation in vivo. 

To empirically test ICAT predictions on cell state compositions following perturbation, we 

generated scRNA-seq data using the SMART-Seq2 protocol (Picelli et al., 2014). Specifically, we 

isolated and sequenced the skeletogenic lineage in sea urchins known as primary mesenchyme cells 

(PMCs) at 18 hours post-fertilization to compare cells from control embryos and embryos subjected to 

chemical treatments that perturb skeletal patterning, specifically, MK-886 (MK) and chlorate (Pidgeon et 

al., 2007; Simionato et al., 2021; Piacentino et al., 2016). PMCs are of interest because this population of 

cells receives patterning cues during development that cause their diversification into subsets; since MK 

and chlorate each perturb distinct patterning cues, we reasoned that these differences would be reflected 

in PMC subpopulation composition (Piacentino et al., 2016; Lyons et al., 2014; Sun and Ettensohn, 2014; 

Piacentino et al., 2015). After quality control and cell filtering, we retained expression data for 435 cells 

(147 control, 134 MK886, and 154 chlorate-treated cells). 

ICAT clustered the combined PMC expression profiles into five distinct cell states (Fig. 5A1). 

The impacts of MK exposure were more dramatic than those of (Fig. 5A2); we therefore focused on the 

effects of MK. Two clusters showed stark compositional differences between control and MK-treated 

cells, in that cluster 3 lacks MK cells compared to controls, while clusters 2 and 4 show significant 

enrichment for MK cells (G-test fdr < 0.05, post hoc Fisher’s Exact test fdr < 0.05; Fig. 5A2, Table S7-8). 

Since MK-treated cells dominated cluster 4 such that it appears to be an asymmetric population, we more 

closely examined clusters 3 and 4. Investigating highly predictive genes identified by ICAT found that 

clusters 3 and 4 were distinguished by inverse expression of genes pks2 and sm50 (Fig. 5A3-4), such that 

cluster 3 displayed a sm50+/pks2- phenotype, while cluster 4 exhibited a reciprocal sm50-/pks2+ pattern. 

To experimentally validate ICAT’s predicted enrichment of the sm50-/pks2+ cell state and 

depletion of sm50+/pks2 cells, in MK886-treated PMCs, we performed single molecule fluorescence in 

situ hybridization (FISH) to quantify expression levels for both genes in DMSO (control) and MK-treated 

embryos (Choi et al., 2018) (Fig. 5B, Fig. S8). To accurately map FISH signals to PMCs, embryos were 

stained for PMCs using the PMC-specific 6a9 antibody. Using Ilastik (Berg et al., 2019), we trained a 
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random forest classifier (out-of-bag error = 

0.14) to predict and segment individual PMCs 

in each confocal image stack (Fig. 5B1-2, Fig. 

S9). Following methods for relative FISH 

quantification from the original paper (Choi et 

al., 2018), we calculated cell-level expression 

values for each PMC by first restricting 

fluorescence signal to PMC-labeled voxels, 

then calculated the average relative intensity 

for each gene in every PMC (Fig. 5B3-4, Fig. 

S8). Across embryos, we labeled individual 

PMCs as sm50+ or sm50- if their standardized 

sm50 expression values were above the 75th or 

below the 25th percentiles of all PMCs, 

respectively (Fig. S10). The procedure was 

repeated for pks2 to determine pks2+ and pks2- 

PMCs. We found that MK-treated embryos 

Figure 5: ICAT most accurately defines subpopulation response to perturbation. SMART-seq2 was 
performed on cells isolated from controls or from embryos treated with the perturbants chlorate or MK-886. A. 
ICAT predicts five clusters from the combined data (A1), with treatment-dependent subpopulation compositions 
(pairwise Fisher’s Exact test, fdr < 0.05) (A2). ICAT-calculated gene weights plotted by rank show sm50 and pks2 
as highly informative for cell-state membership, with 37 total genes being considered informative (weight > 1) 
(A3). MK-induced differences are defined by reciprocal expression patterns of ICAT-identified genes, sm50 and 
pks2, in subpopulations 3 (sm50+/pks2-) and 4 (sm50-/pks2+) (A4). B. ICAT predictions for control (B1,3,5) and 
MK-866 (B2,4,6) are validated by HCR FISH analysis. Automated detection and segmentation of PMCs in vivo 
from 3-D image data is shown as various colors; each color represents an individual cell (1-2). The expression of 
sm50 (red) and pks2 (cyan) transcripts are shown in the same embryos; arrowheads indicate PMCs that express 
only sm50 or only pks2 (3-4). MK-866 treated embryos exhibit statistically significantly fewer sm50+/pks2- PMCs 
(B5) and more sm50-/pks2+ PMCs (B6) than controls, consistent with the predictions from ICAT (A). Dot plot 
error bars denote 95% confidence intervals of the mean with each dot representing an individual embryo (nDMSO = 
26, nMK886 = 37; B5 (Binomial GLM, 𝜇DMSO= 3.59%, 𝜇MK886= 1.91%; βMK886= -0.71, p < 10-3; B6 Binomial GLM, 
𝜇DMSO= 0.19%, 𝜇MK886= 2.71%; βMK886= 2.60, p < 10-4). C. Integration methods fail to identify the MK886-enriched 
sm50+/pks2- subpopulation (ICAT cluster 4). UMAP projections display clusters generated by Seurat (C1) or 
Scanorama (C2) for the same data, showing the cells that comprise the MK866-specific asymmetric sm50+/pks2- 
population (ICAT cluster 4, black dots) are distributed across multiple clusters (colored regions) in each case. 
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displayed both a significant loss of the sm50+/pks2- phenotype, as well as a significant enrichment of the 

sm50-/pks2+ cell state relative to controls (adjusted p < 0.05; Fig. 5B5-6, Table S9-10): verifying the 

ability of ICAT to correctly identify affected cell states in scRNA-seq datasets from perturbed samples. 

Integrating the PMC scRNA seq data using either Seurat or Scanorama failed to identify the 

enriched sm50-/pks2+ cell state in MK-treated embryos, and instead incorrectly merged those cells with 

other cell states (Fig. 5C, Fig. S11). In fact, Seurat failed to identify any dependence of cell state 

composition on treatment status (G-test fdr > 0.05; Fig. S11A2, Table S11). Scanorama, on the other 

hand, correctly identified the depletion of sm50+/pks2- PMCs in MK embryos (Fig S11B2-3, Table S12-

13; G-test fdr < 0.05, post hoc Fisher’s Exact test fdr < 0.05), but importantly, failed to identify sm50-

/pks2+ enrichment in MK embryos (Fig. S11B2-3, Table S12-13; G-test fdr > 0.05). ICAT is the only 

method among these three to correctly identify the cell-state specific sm50 and pks2 responses to MK 

exposure, which accounts for most of the differences in cell groupings between the methods (Jaccard 

similarity, Fig. S11A3, B3). Of the compared methods, Seurat failed to detect the MK-specific cell 

identity; moreover, Seurat failed to produce even qualitatively correct results since it did not identify any 

treatment-specific effects on PMCs (Fig. S11A2), contradicting the known disruptions to PMCs in 

response to disruption of the ALOX signaling pathways (Piacentino et al., 2016). Together, these results 

demonstrate that ICAT’s novel combination of learned feature weighting combined with control-guided 

clustering significantly improves the computational capability to accurately detect and describe cellular 

responses to perturbation in scRNA-seq data compared to conventional integration workflows.  
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Discussion 

One of the key promises of scRNA-seq technology is to more accurately define complex 

biological systems by offering a more finely resolved perspective on transcriptional landscapes than was 

previously possible. However, due to technical and biological noise, taking advantage of such a powerful 

tool in diverse biological conditions has proven to be challenging. We therefore developed the ICAT 

algorithm to improve the accuracy of cell state identification from scRNA-seq data that includes 

perturbation treatments. By combining sparse feature weighting with semi-supervised Louvain 

community detection, ICAT not only correctly identifies shared and disparate cell states, but also 

produces interpretable results that aid in understanding analytical outcomes and selecting the most 

suitable downstream analyses. 

When comparing the performance of ICAT to state-of-the-art integration algorithms in simulated 

datasets, we found that ICAT performs more robustly in response to perturbation severity, readily 

identifies cell states at lower signal levels, better isolates asymmetrical and activated cell states, and more 

readily identifies rare cell populations when compared to either Seurat or Scanorama. ICAT also 

outperforms Seurat and Scanorama in three benchmark datasets, further solidifying ICAT’s ability to 

better identify cell states across biological conditions compared to either integration method alone. By 

testing ICAT on datasets with > 20,000 cells (Kang et al., 2017; Kagohara et al., 2020), we demonstrated 

ICAT’s ability to analyze the large datasets, necessary for any practical scRNA-seq tool. Depending on 

the experimental system, researchers may still elect to use integration algorithms. Excitingly, the choice 

between ICAT and integration methods is not mutually exclusive; we show that following Scanorama or 

Seurat with ICAT produces higher quality clusters compared to either of these integration workflows 

alone. 

By experimentally validating two uniquely predicted cell states in a developmental model using 

single molecule FISH, we empirically demonstrated that the capability of ICAT to accurately identify 

perturbed cell states surpasses current state-of-the-art integration workflows. ICAT was the only method 

among the three tested that correctly identified these distinct states and their perturbation responses, 
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whereas both Seurat and Scanorama integration workflows failed, highlighting ICAT as a substantial 

advancement in identifying and describing cell state behaviors across biological conditions and 

perturbations. 

With the growing ubiquity of scRNA-seq experiments and the development of ever more 

sophisticated experimental designs, we anticipate that ICAT will play an important role in highly 

resolving cell state-specific responses to treatments and differing biological conditions. In the future, the 

ICAT framework can easily be extended to operate on other single-cell modalities, such as scATAC-seq, 

and will offer a potential route to intelligently cluster multi-modal data from heterogeneous conditions. 
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available as a SnakeMake workflow at (github.com/BradhamLab/ICAT_manuscript). Archived data files 

for both simulated and real data are also available at the same repository. The pipeline to align and 

quantify SMART-seq2 reads is freely available at (github.com/BradhamLab/scPipe), and the raw 

sequencing data is available at GEO accession GSE164240. Likewise, all scripts to segment PMCs and 
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Figure Legends 
 
Figure 1. Overview of the ICAT algorithm. A. The schematic illustrates the ICATC implementation of ICAT. To 
identify cell states across treatments, ICAT first performs self-supervised feature weighting to find genes that 
discriminate cell identities among control cells alone, followed by semi-supervised clustering using the newly 
transformed expression matrix. To learn feature weights, ICAT clusters control cells using Louvain community 
detection, then uses the newly generated cluster labels as input into NCFS to weight genes by their predictiveness. 
After applying the learned gene weights to the original gene expression matrix, ICAT clusters both treated and 
control cells together using a semi-supervised implementation of Louvain community detection. During this process, 
ICAT holds the previously identified cluster labels for the control cells immutable. B. The schematic illustrates the 
ICATC+T implementation, which expands feature weighting to treated cells to identify asymmetrical populations 
between treatments. Cells are split along treatments and independently clustered using the Louvain method, then 
cluster labels are used to learn gene weights using NCFS in each treatment set independently. To retain 
asymmetrically informative genes, weights for each treatment are concatenated row-wise and subsequently reduced 
to the maximum weight using a row-wise maxpool function. The reduced weight vector is then used to transform the 
original count matrix. 

 
Figure 2: ICAT correctly identifies cell states in distinct experimental compositions. A. UMAP projections of 
different cellular compositions in simulated datasets. Each dot represents a cell with circles representing control 
cells and crosses denoting treated cells. Dots are colored by ground truth identity (left column), cluster label 
produced by performing Louvain community detection on the raw count matrix (middle column), and clusters 
labeled produced by ICAT (right column). B. Average agreement between ground truth label and cluster labels 
produced by clustering the raw data (blue) and ICAT (orange) as measured by the Adjusted Rand Index (ARI). Error 
bars represent the 95% confidence intervals for the mean ARI for each method. Five different cellular composition 
conditions were simulated: “All same”, both control and treated cells share the same two cell states; “Rx Unique”, 
treated cells contain a treatment-unique cell state; “Control Unique”, control cells contain a unique cell state; “Both 
Unique”, both treated and control cells contain treatment-specific cell states; and “None Same”, no shared cell states 
between treated and control cells. Each condition was simulated fifteen times (n = 15). Simulations were evaluated 
using the ICATC implementation. 

 
Figure 3. ICAT outperforms current methods for cell state identification and is robust to experimental 
conditions. A. UMAP projections of raw (left), ICATC processed (middle), and ICATC+T processed count matrices 
for the simulated data. Projections show ICATC and ICATC+T correctly mix shared populations (red and green), 
while only ICATC+T isolates asymmetrical populations (purple, yellow). ICAT performance for simulated data was 
further evaluated using the ICATC+T implementation only. B. Select marker and perturbed gene expression patterns 
are displayed as violin plots for three simulated control cell types (1-3) under normal (C) and perturbed (P) 
conditions. P(C1)+ is a stimulated and perturbed version of cell type 1; perturbation-specific cell types P4 and P5 
express distinct marker genes. C. The percentage of perturbed genes used to assess robustness to perturbation 
severity is shown; values range from 1-25%. D. The average number of marker genes per cell identity used to assess 
robustness to signal strength is shown; values range from 10 to 105 (0.7 - 7% of total genes). E. The set of cell 
identity proportions used to test the ability to identify rare cell states is shown. The number of cells per treatment-
label pair ranges from 50 to 175. F. Method performance is compared as the fraction of perturbed genes increases 
(left), and as the average number of marker genes per population increases (right). Results are depicted as averages 
with 95% confidence intervals shown by shading. G. Method performance is compared as the proportion of cell 
types is varied (left). The Gini coefficient reflects the degree of population size disproportion among cell states. H. 
The performance of integration methods alone or in combination with ICAT (as ICATSeurat or ICATScan) is compared 
across the same metrics for the perturbation (H1) and signal strength experiments (H2). 
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Figure 4: ICAT outperforms current integration methods in identifying cell states across treatments in real 
datasets. scRNA-seq data from Tian, Kagohara, and Kang studies is compared. A. Spider plots compare the 
performance for each algorithm within each dataset for ARI, LISI, and DB quality metrics. B. Lollipop plots 
highlight the differences in the metrics for each method across the same datasets. C. Spider plots comparing Seurat 
to ICATSeurat and Scanorama to ICATScan, respectively. All metrics are scaled from 0 to 1, where 1 is best (closest to 
the apex of each corner). Abbreviations: DB Davies-Bouldin metric, and otherwise as in Fig. 2. ICAT performance 
for the Tian dataset was evaluated using the ICATC+T implementation, while Kagohara and Kang datasets were 
evaluated using the ICATC implementation. 

 
Figure 5: ICAT most accurately defines subpopulation response to perturbation. SMART-seq2 was performed 
on cells isolated from controls or from embryos treated with the perturbants chlorate or MK-886. A. ICAT predicts 
five clusters from the combined data (A1), with treatment-dependent subpopulation compositions (pairwise Fisher’s 
Exact test, fdr < 0.05) (A2). ICAT-calculated gene weights plotted by rank show sm50 and pks2 as highly 
informative for cell-state membership, with 37 total genes being considered informative (weight > 1) (A3). MK-
induced differences are defined by reciprocal expression patterns of ICAT-identified genes, sm50 and pks2, in 
subpopulations 3 (sm50+/pks2-) and 4 (sm50-/pks2+) (A4). B. ICAT predictions for control (B1,3,5) and MK-866 
(B2,4,6) are validated by HCR FISH analysis. Automated detection and segmentation of PMCs in vivo from 3-D 
image data is shown as various colors; each color represents an individual cell (1-2). The expression of sm50 (red) 
and pks2 (cyan) transcripts are shown in the same embryos; arrowheads indicate PMCs that express only sm50 or 
only pks2 (3-4). MK-866 treated embryos exhibit statistically significantly fewer sm50+/pks2- PMCs (B5) and more 
sm50-/pks2+ PMCs (B6) than controls, consistent with the predictions from ICAT (A). Dot plot error bars denote 
95% confidence intervals of the mean with each dot representing an individual embryo (nDMSO = 26, nMK886 = 37; B5 
(Binomial GLM, 𝜇DMSO= 3.59%, 𝜇MK886= 1.91%; βMK886= -0.71, p < 10-3; B6 Binomial GLM, 𝜇DMSO= 0.19%, 
𝜇MK886= 2.71%; βMK886= 2.60, p < 10-4). C. Integration methods fail to identify the MK886-enriched sm50+/pks2- 
subpopulation (ICAT cluster 4). UMAP projections display clusters generated by Seurat (C1) or Scanorama (C2) for 
the same data, showing the cells that comprise the MK866-specific asymmetric sm50+/pks2- population (ICAT 
cluster 4, black dots) are distributed across multiple clusters (colored regions) in each case.  
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