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ABSTRACT
We implement a novel approach to automatic harmonic analysis using a clustering 
method on pitch-class vectors (chroma vectors). The advantage of this method is 
its lack of top-down assumptions, allowing us to objectively validate the basic music 
theory premise of a chord lexicon consisting of triads and seventh chords, which is 
presumed by most research in automatic harmonic analysis. We use the discrete 
Fourier transform and hierarchical clustering to analyse features of the clustering 
solutions and illustrate associations between the features and the distribution of 
clusters over sections of the sonata forms. We also analyse the transition matrix, 
recovering elements of harmonic function theory.
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1 INTRODUCTION

Automatic harmonic analysis has been a goal of music 
information retrieval and music cognition researchers 
since the infancy of the fields. The first attempts (such 
as Winograd, 1968; Maxwell, 1992) drew heavily upon 
the robust pre-existing music theory assumptions about 
the goals and methods of harmonic analysis. According 
to that practice, harmony in tonal music consists of a 
framework of triads and seventh chords drawn from 
the basic scales of a series of keys, which follow certain 
rules of succession. In actual music, such triads and 
seventh chords might be imperfectly realized, with 
certain notes missing, or “implied,” and other incidental 
notes, “non-harmonic tones,” not belonging to the 
basic framework. Harmonic analysis of notated music is 
therefore usually understood as a three-stage process 
of key estimation, identification of non-harmonic tones, 
and chord labeling according to a lexicon provided by 
traditional music theory.

Micchi et al. (2020) demonstrate the challenges 
in distinguishing harmonic from non-harmonic tones 
and show that there is often not a clear ground truth 
concerning such distinctions. The identification of 
non-harmonic tones is sometimes an explicit stage in 
automatic harmonic analysis algorithms and sometimes 
implicit in the choice of a limited set of chord types in 
a predetermined harmonic lexicon, as in Pardo and 
Birmingham (2002).

There are many studies that use unsupervised 
methods, such as neural networks and hidden Markov 
models (HMMs) to perform harmonic analysis and 
non-harmonic tone identification tasks (Raphael and 
Stoddard, 2004; Ju et al., 2017; Chen and Su, 2018, 2019). 
Typically, however, these define restricted chord lexicons 
for these tasks, and require training data that reflect the 
norms of Roman numeral analysis. As Devaney et al. 
(2015) demonstrate, such human annotations display a 
considerable amount of variability.

Research on harmonic identification from music 
audio also typically requires a given chord lexicon. 
The elements of these chord vocabularies are usually 
expressed as binary pitch-class vectors, the equivalent of 
pitch-class sets (Pauwels et al., 2019). Deng and Kwok 
(2016) critique the limited chord lexicon of earlier studies 
and promote an expanded lexicon. McFee and Bello 
(2017) demonstrate some of the challenges of applying 
machine learning approaches with this kind of expanded 
lexicon. In studies of popular music, these lexicons 
represent chord labels used by musicians in practice, 
unlike in studies of Western art music where chord labels 
represent an analytical practice, not a compositional 
one. Nonetheless in both cases these lexicons derive 
from music theory, rather than empirical evaluations of 
musical corpora.

In another large body of research, the main goal is 
characterizing harmonic successions. In such contexts 
researchers usually avoid the need for automatic 
harmonic analysis through the use of human annotators. 
This method has been used for Bach chorales (Jacoby et. 
al, 2015; Rohrmeier and Cross, 2008), textbook examples 
of common-practice tonal harmony (Temperley, 
2001, 2009), Mozart’s piano sonatas (Tymoczko, 2011; 
Henschel et. al., 2021), Mozart and Beethoven piano 
variations (Devaney et al., 2015), Beethoven’s string 
quartets (Moss et al., 2019), and popular music (Harte et 
al., 2005; Burgoyne et al., 2013; DeClercq and Temperley, 
2011; Temperley, 2018; Temperley and DeClercq, 2013), 
and comparative analysis of multiple such corpora (Sears 
and Forrest, 2021). An exception is Tompkins (2017), 
who studies a seventeenth-century guitar corpus in 
which chord labels are directly notated as part of the 
musical practice.

Another strategy that has been used for simplifying 
the process of harmony identification in order to study 
norms of harmonic succession is to focus exclusively 
on music with simple textures, especially the chorale 
repertoire (Conklin, 2002; Tymoczko, 2003; Rohrmeier 
and Cross, 2008; Quinn and Mavromatis, 2011; Jacoby 
et al., 2015; White and Quinn, 2016; Ju et al., 2017). 
Because of the relatively homophonic and rhythmically 
simple nature of chorales, with four voices essentially 
always sounding, the task of harmonic identification 
becomes much more manageable. However, there are 
also dangers to this approach: the chorale repertoire is 
small and highly idiosyncratic, and there is reason to 
believe that aspects of harmonic usage in it would not 
generalize to other music. The voice-leading constraints 
and rapid harmonic rhythm of chorales, for instance, are 
not shared by most contemporaneous music.

In most empirical research on harmony, then, chord 
lexicons of traditional triads and seventh chords serve as 
prior assumptions backed by music theoretic traditions 
rather than empirical verification. A smaller body of 
research exists that empirically tests such lexicons by 
making fewer theoretically freighted initial assumptions 
about what kinds of harmonic objects qualify as chords, 
inspired by Quinn (2010). Quinn and Mavromatis (2011) 
define chords as intervals above a bass in an HMM 
analysis of harmonic succession in two chorale corpora, 
while White and Quinn (2018) define chords as pitch-
class sets in their HMM analysis of the Bach chorales. 
These methods have the virtue of deriving the elements 
of the harmonic language directly from the musical 
data. The results suggest that the harmonic language 
of chorales consists mostly of triads and seventh chords, 
as we would expect, but not exclusively so. However, in 
extending these results to more complex textures, the 
problem of excessively large chord vocabularies requires 
some more sophisticated reduction technique. White 
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(2013a, b) has extended the approach to more texturally 
diverse music by means of a harmonic “spell-checking” 
procedure which simplifies the problem by making some 
relatively neutral assumptions and bootstrapping on a 
large dataset.

In the present study, we explore a different method 
of investigating chord identity and succession in a 
corpus without prior assumptions about the chord 
vocabulary. Unlike the HMM-based approaches just 
described, which infer chord identities from norms 
of harmonic succession, we use a clustering-based 
approach which makes no inferences from chord 
succession, but instead requires a fixed temporal 
segmentation relying on metrical conventions of the 
repertoire. This clustering process may be seen as an 
alternative to a filtering process as applied by Sears 
and Widmer (2021), with a potential advantage 
being the possibility of grouping chords with similar, 
but not equivalent, pitch-class content into a single  
category.

The primary distinguishing strategy of this approach 
is to represent the basic harmonic object not as a simple 
set of pitches or pitch-class sets, but as a twelve-place 
vector that assigns a weight to each pitch class. This kind 
of mathematical object, known as a pitch-class vector 
or “chroma vector,” is standard for representing keys in 
music cognition research (Aarden, 2003; Krumhansl and 
Cuddy, 2010; Lieck and Rohrmeier, 2020; Temperley, 
2007; Sapp, 2005, 2011), and as a feature in many 
studies of automated harmonic analysis of audio 
(Pauwels et al., 2019). Pitch-class vectors have been used 
to represent harmony by Duane and Jakubowski (2018), 
whose clustering method is similar to the one used here. 
In the model of a musical key, these weights represent 
either the likelihood of (or frequency of) occurrence of 
that pitch class in the given key, or its perceived stability 
in the key. These turn out to be very similar, though 
not quite equivalent (Huron, 2006). Pitch-class vectors 
discard register, voicing, and spelling, and therefore an 
analysis based on them may miss aspects of harmonic 
function that depend on these parameters. By the same 
token, it can show what aspects of harmony generalize 
over them.

In the present study we take pitch-class counts 
over quarter-note beats, a timescale associated with 
harmonies as opposed to keys, and apply k-means 
clustering to these to arrive at a set of harmonic objects. 
We then investigate the resulting clusters, how their 
usage varies over formal sections, and whether there 
are typical patterns of succession between them. We 
chose a corpus of Mozart piano sonata movements, 
due to their relative harmonic simplicity, their generally 
acknowledged canonical status as examples of typical 
tonal harmonic practice of the later eighteenth century, 
and their formal predictability. Ultimately, a procedure of 

this kind can produce a style-specific chord lexicon that 
allows for continuous weightings of pitch classes and 
integrates elements of harmonic function and key into 
that lexicon.

A basic assumption in traditional theories of tonal 
harmony is what we might call level discreteness. At one 
level harmony consists of keys, which are made up of 
chords, which are made up of individual pitch classes. 
The inadequacy of this three-leveled model is tacitly 
acknowledged by additional levels that have crept into 
our theoretical lexicon: “true keys” are distinguished 
from more local “tonicizations” (secondary or applied 
chords), and between these “extended tonicizations” are 
transitory but involve more than a few chords. Similarly, 
more “structural” harmonies might be decorated by 
“passing,” “neighboring,” and “embellishing” harmonies, 
which exist somewhere between true harmonies and 
collections of non-harmonic tones. The present study 
suggests a more systematic solution to the problems 
of the three-level model, using pitch-class vectors to 
replace the level-discrete model with a level continuum, 
similar to Sapp (2005, 2011) and Lieck and Rohrmeier 
(2020). Pitch-class vectors allow for continuous variation 
between the note and chord and chord and key levels, 
with note, chord, and key represented by the same type 
of object.

The present study is primarily exploratory with the 
most important conclusion being the efficacy of this 
method. We organize it into three parts, an analysis of 
the clustering solution (Experiment 1), an analysis of 
the distribution of clusters across parts of the sonata 
forms (Experiment 2), and an analysis of first-order 
transitions between clusters (Experiment 3). While 
the results largely confirm traditional music theory, 
Experiment 1 suggests a chord lexicon that differs 
substantially from the lists of binary-valued triads 
and seventh chords that serve as the starting point 
for most research in automatic harmonic analysis. A 
relatively small number of triads and seventh chords 
are needed to classify harmony in the corpus, but the 
central harmonic functions, tonic and dominant, come 
in multiple forms. Experiments 2 and 3 show that the 
same triads can have different functions, identifiable 
in transition data and the distribution across formal 
sections, and these distinct functions are actually 
discernable on the basis of pitch-class content (they 
are associated with distinct clusters).

We also show that applying the discrete Fourier 
transform (DFT) on pitch-class vectors produces an 
effective map of keys and harmonic functions. This 
method has previously been used to characterize 
musical keys (Cuddy and Badertscher, 1987; Krumhansl, 
1990; Yust, 2017b), as a feature description for musical 
audio (Harte et al., 2006; Ramiréz et al., 2020), and 
as a tool for computational analysis of musical works 
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and large corpora (Yust, 2019; Novarro-Cáceres et al., 
2020; Harding, 2020, 2021; Chiu, 2021; Viaccoz et al., 
2022; Harasim et al., 2022). In our Experiment 1 we 
use the DFT to classify clusters into three basic types 
(triadic, tetradic, and scalar). In Experiments 2 and 3 
we show that it is effective in sorting harmonies by 
key and function, and thus could serve as a simplified 
feature representation for this kind of harmonic  
lexicon.

2 EXPERIMENT 1: CLUSTERING

2.1 METHOD
2.1.1 Corpus
Our corpus consists of seventeen movements from 
Mozart’s Piano Sonatas. These were chosen for the 
relative simplicity and conventionality of their harmony, 
and their status as standards of the classical “common 
practice” norms of harmony and form. They also stand 
out for a diversity of texture that makes automatic 
harmonic analysis a difficult task. The harmonic 
successions of this repertoire also have been previously 
studied by Tymoczko (2011, pages 228–230) and Jacoby 
et al. (2015), using a procedure that involves human 
annotation.

Because our method requires isolating beats, we 
restricted our dataset to movements with quarter-
note beats, meaning meters of 2/4, 3/4, or 4/4. To 
take advantage of the conventions of sonata form in 
analyzing the data, we also restricted to movements in 
major-mode sonata form or closely related forms—one 
exposition-recapitulation (also known as sonata without 
development) and one sonata-rondo movement are 
included. We omitted minor mode pieces because 
there are very few minor mode pieces in this corpus 
making a representative sample unavailable. We 
used data from the Yale Classical Archives (White and 
Quinn, 2016).1 Because the rhythmic information in this 
corpus is not always reliable (DeClercq, 2016), we checked 
each of these movements manually and retained only 
those where the quarter-note beats consistently line up 
with integer offset numbers. The movements included 
are given in Table 1. We transposed all pieces to C major 
before analysis.

The method of parsing scores by quarter notes is not 
ideal because the quarter note might have a different 
meaning at different tempos and in different movement 
types. However the present corpus is fairly uniform and 
mostly consists of allegro-type first movements, so 
we expected this convenient parsing to be reasonably 
effective. In future research it would be worth exploring 
coupling our procedure here with automatic parsing 
methods.

2.1.2 Clustering Method
The k-means algorithm is an iterative algorithm that 
divides a data set into k predefined distinct, non-
overlapping subgroups which are called “clusters” 
where each data point belongs to only one group. It 
is a type of unsupervised learning that minimizes sum 
of variances within each cluster, through the following 
procedure. First, define k centers, one for each cluster, 
and assign each data point from the dataset to the 
nearest center. Then re-calculate k new centroids 
based on these cluster assignments and reassign data 
points to clusters, minimizing distances to these new 
centroids. This step is repeated until the clustering 
is stable.

We applied the k-means algorithm to the total set of 
pitch-class vectors, one for each quarter note of each of 
the 16 pieces in the corpus.2 The weights of each pitch 
class indicate the number of distinct octaves in which 
that pitch class appears within the beat. This method 
of weighting is relatively simple and avoids undue 
influence from textural factors such as repetitive attacks 
on the same pitch (e.g., in a trill) or staccato articulation 
(Temperley, 2007). Octave doubling has been shown 
to be a reliable proxy for the harmonic importance of a 
pitch-class (Huron, 1993). Figure 1 illustrates how the 
procedure works on the first two measures of Piano 

PIECE KEY
QUARTER 
NOTES METER MEASURES

0 K279 i C major 546 4/4 136

1 K279 ii F major 306 3/4 102

2 K279 iii C major 426 2/4 213

3 K280 i F major 593 3/4 198

4 K282 i E♭ major 276 4/4 69

5 K283 i G major 356 3/4 119

6 K284 i D major 1010 4/4 252

7 K309 i C major 1174 4/4 294

8 K311 i D major 584 3/4 195

9 K330 i C major 719 2/4 360

10 K330 iii C major 703 2/4 352

11 K332 i F major 665 3/4 222

12 K332 ii B♭ major 160 4/4 40

13 K333 i B♭ major 658 4/4 164

14 K545 i C major 267 4/4 67

15 K570 i B♭ major 600 3/4 200

16 K576 ii A major 200 3/4 67

Table 1 Dataset. All pieces are piano sonata movements by 
W.A. Mozart.
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Sonata no. 1, K.279. Each beat is reduced to a 12-place 
vector as shown. The resulting cluster indices come 
from the Manhattan clustering solution described in the 
next section.

The k-means method requires a method of defining 
distance between two vectors. We ran the algorithm 
with two different methods for comparison, Manhattan 
and Euclidean. The Manhattan metric simply sums 
the absolute differences of pitch-class weights. The 
Euclidean metric is a 12-dimensional Euclidean distance 
(the square root of the sum of squared differences).

To find an optimal number of clusters, we used the 
within cluster sum of squares (WCSS) method, which 
sums the squared distance of all the points within a 
cluster to the cluster centroid. As the number of clusters 
increases, the WCSS value of the model decreases. We 
determined that 20 is an optimal number of clusters by 
plotting the WCSS by the number of clusters and finding 
the inflection point of the elbow-shaped curve.

2.1.3 Evaluation using discrete Fourier transform
We used the discrete Fourier transform on pitch-class 
vectors (Amiot, 2016) in order to systematically sort 
the clusters into triadic, scalar, and other types. The 
DFT converts a pitch-class vector into a vector of twelve 
complex-valued DFT coefficients, of which the zeroth 
(â0) simply sums the weights and the last five duplicate 
the information of the first through the sixth (â1–â6). The 
indexes of these coefficients denote equal divisions of the 
octave. Their magnitudes are transposition independent 
and indicate how strongly the vector weights that 
division of the octave, and the transposition-dependent 
phase values correspond to the nearest transposition 
of that division of the octave. The fifth coefficient, â5, 
corresponds to the weighting of the pitch-class vector 
on the circle of fifths, what can be called its diatonicity 
(similarity to a diatonic scale or typical diatonic subset). 
This is an important property of tonal harmony. Similarly, 
â1 gives a weighting on the pitch-class circle. Other 
important coefficients, â3 and â4, indicate when a vector 
is concentrated around some division of the pitch-class 

circle by three or four respectively, and so are useful for 
identifying triads and seventh chords. Previous research 
(Yust, 2017b, 2019; Bernardes et al., 2016) has shown 
that two dimensions of the DFT, â3 and â5, are effective in 
estimating the key of passages of tonal music and sorting 
harmonic functions. Because typical pitch-class profiles 
of major and minor keys have most of their energy in â3 
and â5, a two-dimensional space on the phases of these, 
denoted φ3 and φ5, can serve as a map of key relatedness 
(Krumhansl, 1990; Yust, 2017b).

We sorted the clusters using their DFT spectra, the 
magnitudes of the six independent Fourier coefficients, 
to determine whether certain harmonic qualities were 
significant across all clusters, or to a specific subset of 
clusters. We began by finding the pair of DFT coefficients 
that most frequently appear as one of the three largest 
for each cluster. We predicted that â5 and â3, the 
coefficients that dominate pitch-class profiles for keys 
(according to Aarden, 2003; Cuddy and Badertscher, 
1987; Krumhansl and Cuddy, 2010; Sapp, 2011; Yust, 
2017b, 2019) would also be principal qualities for most 
of the cluster centroids. For the remaining clusters 
which did not have these two coefficients among 
the top three, we found another pair that accounted 
for most of these. Finally, we found a third pair of 
coefficients that best characterized the remaining 
clusters and sorted all clusters into three groups on this 
basis. With the clusters sorted into three groups, we 
then plotted them in two-dimensional toroidal phase 
spaces using the phases of the relevant parameters. 
These spaces are analogous to Krumhansl’s (1990) 
tonal space.

2.1.4 Hierarchical clustering
For low-dimensional data, it is possible to visualize 
clusters using coordinates, but this is difficult for 
12-dimensional data. We used hierarchical clustering 
to produce a dendrogram relating the clusters obtained 
by the k-means procedure. Specifically, we applied the 
aggregation approach with Ward’s minimum variance. 
The distance between clusters A and B is determined 
by how much the sum of squares increases when 
merging:
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 is the center of cluster C, nc the number of 
vector points in cluster C, and Δ(C1,C2) the merging cost 
of combining the clusters C1 and C2.

2.1.5 Historical trends
We also examined the possibility that Mozart’s usage of 
harmonies in the different clusters may have evolved 

Figure 1 Reduction and clustering procedure illustrated on mm. 
1–2 of K.279.

0  (3,0,0,0,1,0,0,1,0,0,0,1)   5
1 (2,0,0,0,0,0,0,0,0,0,0,1)   5
2 (1,0,1,0,1,0,0,0,0,0,0,0)  11
3  (0,0,0,0,1,1,0,1,0,0,0,0)    6

4 (0,0,1,0,0,3,0,0,0,2,0,0)   7
5 (0,0,1,0,1,1,0,1,0,0,0,0)   9
6 (1,0,0,0,2,0,0,0,0,0,0,1)  18
7 (0,0,1,0,0,2,0,1,0,0,0,1)   4

0 1 2 3 4 5 6 7t:

t    Pitch-class vector         Cluster (see Fig. 2a)
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over time, from 1774 to 1788. We ran simple regressions 
between the dates of pieces and the frequency of each 
cluster, and found no significant correlations, so we did 
not pursue this any further.

2.2 RESULTS
Figure 2a shows the twenty centroids that resulted 
from the clustering using the Manhattan metric, and 
Figure 2b shows the twenty centroids that resulted 
from using the Euclidean metric. In each case they are 
numbered 0–19 in order of the phase of the â5 coefficient 
of their DFTs, from flat to sharp (see below). Each is given 
a short-hand name according to the following rules. If a 
pitch class has a weight greater than the average for that 
centroid, it appears in the name; if it exceeds one and a 
third standard deviations for that centroid, it appears at 
the beginning of the name, otherwise it is in parentheses 
at the end. This gives an approximation to the pitch-
class content good enough to give each of the twenty 
centroids a unique name.

The two metrics gave similar results. Both include 3–4 
clusters for C major and G major triads, two for F major 
triads, one for an A minor triad, and one or two for D 
major triads or seventh chords. They also both include 
4–6 clusters for C or G major scales or scale segments, 
and one for a D minor scale or C♯ diminished seventh. The 
Manhattan solution also has an F♯ diminished seventh 
cluster (0). Overall, this suggests that Mozart’s harmony 
largely consists of I, IV, V, ii, and viio7/V chords in the home 
key (C major) and dominant key (G major), and that there 

are multiple forms of I and V, distinguishable by the 
weightings of chord tones and non-harmonic tones.

The analysis of centroid spectra resulted in groups for

• â3 and â5,
• â4 and â5, and
• â1 and â5.

This confirmed the hypothesis that â3 and â5 would be 
principal dimensions for most clusters. In particular, â5 
appears to be pervasive, reflecting the strong diatonicity 
of the style, while the other dimensions of harmonic 
activity, defined by â4 and â1, may sometimes take 
precedence over â3. We will refer to the three groups as 
triadic, tetradic, and scalar respectively. Since â3 is the 
coefficient of a function dividing the octave into three 
parts, it will tend to be large for triads or subsets of triads, 
hence the term “triadic.” The term “tetradic,” by analogy, 
refers to a division of the octave into four parts and the 
fact that â4 will tend to be large for seventh chords or 
their subsets. Where the groups overlap, we choose 
the larger of â3, â4, or â1 to classify clusters. Only one 
cluster in each solution does not have â5 in its top three 
(Manhattan number 0 and Euclidean number 16), and 
both of these have â4 as the top coefficient, so we classify 
them as tetradic. Cluster 0 of the Manhattan solution 
clearly represents a diminished seventh chord and is 
dominated by â4. (Cluster 16 of the Euclidean solution is 
less clear.) Figure 3 gives the spectra of the centroids, the 
magnitudes of â1–â6, divided up into the three groups.

Figure 2 Centroids of the twenty clusters resulting from applying k-means with a Manhattan (a) and Euclidean (b) metric.
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As the name implies, the triadic group captures the 
clusters that are clearly centered around some major or 
minor triad. The tetradic group mostly includes clusters 
near a dominant or diminished seventh chord. The scalar 
clusters center on contiguous sets of three or four notes 
from the C major or G major scale and probably represent 
moments in the music where only a melodic line is 
present, or the harmony is represented by a single note 
rather than a complete chord.

Figures 2 and 3 demonstrate that basic features of 
both k-means solutions are very similar, and for the rest 
of the paper, we will use the Manhattan solution, since it 
is somewhat simpler to interpret.

Figure 4 plots the cluster centroids for triadic, tetradic, 
and scalar clusters in three phase spaces, φ3/φ5, φ4/φ5, and 
φ1/φ5, respectively (φk is the phase of coefficient k) for the 
Manhattan solution only. Cluster centroids are triadic if â3 
is among the top three coefficients in magnitude, tetradic 
if â4 is among the top three, and scalar if â1 is among 
the top three, and these groups overlap. In general, the 
phase value for a given coefficient, φk, is more meaningful 

if the size of the coefficient |âk| is larger. (Nonetheless any 
centroid can be plotted in any of the spaces and we will 
take advantage of this fact in sections 3 and 4.)

The space for triadic clusters, φ3/φ5, is essentially 
Krumhansl’s (1990) tonal space. Phase values are cyclic, 
so this space is toroidal: the left edge is glued to the 
right and top to bottom. The φ5 dimension separates the 
clusters by position on the circle of fifths or sharpness 
and flatness. In all three groups, the values of φ5 are 
limited to a narrow region, about 1/3 of the entire cycle. 
This reflects the overall conservatism of the harmonic 
style of this corpus and underlines the importance of the 
diatonic dimension for tonal harmony. In contrast, the 
centroids spread out fairly evenly in the other dimensions 
(â3, â4, and â1).

The φ3 and φ4 dimensions in Figure 4 sort harmonies 
roughly according to the conventional functional 
categories of subdominant, dominant, and tonic (as 
observed by Bernardes et al., 2016; Yust, 2017a, 2019). 
The spread in these dimensions therefore reflects the 
representation of all functional categories in each group. 

Figure 3 Spectra of the centroids of the 20 clusters, grouped according to whether |â3| (a–b), |â4| (c–d), or |â1| (e–f) is larger, for the 
k-means solutions by Manhattan (a, c, e) and Euclidean (b, d, f) metrics.
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The φ1 dimension represents locations in the octave, 
which are also relatively evenly represented across 
scalar clusters.

Figure 5 shows the hierarchical clustering solution. 
Each group is labeled according to the group centroid, 
using the same rule as for the cluster centroids in Figure 2. 
The initial division into four large groups fits a circle-of-
thirds logic, as illustrated in the middle of the figure, with 

each group concentrated in a distinct region of the circle. 
This is a logical outcome considering that most clusters 
have most of their weight on a 2–4 note stack of thirds in 
C major or a closely related key. The main division of the 
circle of thirds is roughly symmetrical around the tonic, C 
(between F and A on one side and E and G on the other).

3 EXPERIMENT 2: HARMONIC 
DIFFERENCES BETWEEN FORMAL 
SECTIONS

3.1 METHOD
All the pieces included in the corpus except two are in 
sonata form, and we expected that certain clusters 
would be characteristic of certain parts of the form since 
these are characterized by a conventional modulatory 
scheme. A typical sonata form begins with a main 
theme in the home key (C major) and then modulates 
to the key of the dominant (G major) for a subordinate-
theme section. This is called the exposition. Then there 
is a tonally ambiguous development section likely to 
include music in the relative minor (A minor). Finally, 
a recapitulation restates main theme material, and 
subordinate theme material transposed to the home 
key (C major). Since Mozart’s typical practice involves 
clear conventionalized markers dividing the three 
main formal sections (exposition, development, and 
recapitulation) and preceding the subordinate themes 
within the exposition and recapitulation (the “medial 
caesura”), we can unambiguously divide each piece into 
five stages: (1) Main theme (MT) and transition of the 
exposition, (2) Subordinate theme (ST) of the exposition, 
(3) Development, (4) Main theme of the recapitulation, 
(5) Subordinate theme of the recapitulation. These 
divisions were marked by hand by the first author. We did 
not attempt to divide the first stage into main theme and 
transition, because this point of division varies in its clarity 
and may be located differently by different analysts.

To investigate whether clusters were characteristic 
of certain formal sections, we recorded the probability 
of observing each cluster for a given formal section. We 
then made a correlation matrix of these probabilities 

Figure 4 Phase space plot for centroids of (a) triadic, (b) 
tetradic, and (c) scalar clusters from the Manhattan k-means 
solutions. The vertical axis is the phase of â5, in all cases, while 
the horizontal axis is the phase of â3, â4, and â1 respectively. 
Ranges show the circular variance for each cluster:  
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for the 20 clusters and grouped clusters with large (>.5) 
correlations. We then plotted the cluster centroids in 
φ3/φ5 space to investigate possible associations between 
the pattern of occurrence across formal sections and 
regions in this space.

3.2 RESULTS
The cluster probabilities across formal sections grouped 
very clearly into three patterns, shown in Figure 6. 
The “subordinate key” clusters are more common in 
expositions, especially exposition second theme areas 
which are in the key of the dominant (the subordinate 
key). The “development” clusters are most common 
in developments. The “home key” clusters are most 
common in exposition main themes and both parts of the 
recapitulation. We verified these by running correlations 
between the patterns for all clusters and grouping 
any with high correlations (>.75). There were only two 
moderate correlations across groups: clusters 1 and 12 
(0.63), and clusters 1 and 19 (0.64). One cluster (18) did 
not have any large correlations (its highest correlation, 
0.42, was with a member of the home key group).

The resulting grouping clearly relates to the standard 
modulatory scheme of sonata form: clusters typical of 
the exposition are those associated with the dominant 
key, and are relatively infrequent in recapitulations. 
Clusters typical of developments are those associated 
with common minor keys: A minor (cluster 16), D minor 
(cluster 1), and G minor (cluster 0). Home key clusters 
are particularly infrequent in the subordinate themes 
of expositions, and reflect harmonies characteristic 
of C major, especially the subdominant (F major) and 
dominant seventh (G7).

The grouping of clusters based on formal section is 
consistent with their positioning in the φ3/φ5 space, shown 
in Figure 7. Clusters with a similar pattern of usage in the 
different formal sections are in similar regions of the space, 
corresponding to the main tonic and dominant keys. The 
subordinate key group, common in the dominant-key 
subordinate theme, are consistently higher in φ5 and 
concentrate in one half of the full φ3 cycle, with the other 
half occupied by the home key group. Clusters typical of 
developments appear in peripheral parts of the space, 
reflecting the use of minor keys which have a greater φ5 
spread. The use of Cluster 10 in developments probably 
reflects the conventional concluding dominant pedal.

4 EXPERIMENT 3: TRANSITION 
PROBABILITIES

4.1 METHOD
A topic of widespread interest in research on eighteenth-
century tonal harmony is harmonic succession, which 
is often described by cognitive music theorists as a kind 
of syntax (Rohrmeier, 2011; Sears and Widmer, 2021; 

Figure 6 Probability of each cluster appearing in each of five 
parts of a sonata form, split into three groups.
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Figure 7 The twenty cluster centroids in the phase space for 
â5 and â3, with regions grouping clusters that have a similar 
frequency profile over the five main sections of a sonata form.

SK

HK

Dev

Dev
16.A(CE)

18.E(GC)

14.ABC(D)

11.CE(G)

9.DF(EG)
8.G(CE)

5.C(E)
6.FG(EA)

3.FAC
2.F(D)

7.FA(D)

0.C(EbF#) 1.GBb(C#D)

10.G

13.G(BD)

19.B(DG)

15.D(GB)

12.D

17.DF#A(C)

4.FG(BD)



122Yust et al. Transactions of the International Society for Music Information Retrieval DOI: 10.5334/tismir.114

Tymoczko, 2011; White and Quinn, 2018). We analyzed 
transitions between clusters as a contribution to this 
body of knowledge.

The complete transition data are a 20-by-20 
matrix, giving the probability of cluster j following 
cluster i. We reduced this space in two ways in order 
to analyze the data, first dividing up the clusters into 
the form-based groups from experiment 2, and second, 
grouping the clusters according to similar transition  
patterns.

To analyze the transitions in the two form-based 
groups (the subordinate key and home key groups 
described above, omitting the development group which 
contains only four clusters) we constructed smaller 
transition matrices containing only the clusters in each 
group. We eliminated diagonals since transitions from a 
cluster to itself only indicate when harmonies last longer 
than a single quarter note. We then renormalized so that 
transitions could be interpreted as percentages within 
the smaller group.

We converted these to sum and difference matrices by 
adding and subtracting the transpose. The sum matrices 
are symmetrical and represent how often representatives 
of two clusters are juxtaposed, regardless of order. The 
difference matrix is anti-symmetrical and represents 
how much more often a representative of cluster i will 
precede cluster j instead of following it. For the difference 
matrix we considered only those exceeding 1 standard 
deviation above the mean for the given matrix. For the 
sum matrix, we considered values that exceeded the 
average plus the average standard deviation of their row 
and column.

In our second analysis we grouped clusters based on 
similar transition behavior and constructed a transition 
matrix on the resulting groups. To make these groups we 
first made a correlation matrix by calculating Pearson’s r 
between each pair of rows in the full 20-by-20 difference 
matrix. We filtered this to only the correlations exceeding 
two standard deviations. We then added the rows for 
correlated clusters together to make a reduced matrix 
and repeated the process on the new matrix. When 
we exhausted the two standard deviation criterion, we 
repeated the process with a one and a half standard 
deviation criterion and repeated this until we had a 
relatively small number of groups.

We analyzed the resulting matrix in the same way as 
the form-based matrices. We eliminated the diagonal, 
renormalized, and took sum and difference matrices. 
For the sum matrix, we considered values that exceeded 
the average of their row and column plus the average 
standard deviation of their row and column. For the 
difference matrix, we considered values in excess of one 
standard deviation.

Finally, for each of these we plot the resulting 
transitions in a φ4/φ5 space, which we found to be the 
most suitable for illustrating these results.

4.2 RESULTS
4.2.1 Form-based grouping
Figure 8 shows the sum and difference matrices of the 
subordinate key and home key groups. Transitions always 
go from row to column. Figure 9 plots these in φ4/φ5 
space, with heavy arrows for large values in both the sum 
and difference matrices, lighter arrows for values that 
appear only in the difference matrix, or double-headed 
for those only in the sum matrix. Typical predominant–
dominant (16–17, 3–4, 7–9) and dominant–tonic (17–13, 

Figure 8 Sum and difference matrices for subordinate key and 
home key clusters in percentages over just the transitions 
involving these clusters and excluding trivial transitions. Values 
exceeding 1 standard deviation are highlighted. Redundant 
values (given by symmetry and antisymmetry) are excluded (in 
difference matrices we retain just the positive values).
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14–13, 4–5, 9–5) functional successions of the C major 
and G major keys, directed from left to right, are evident. 
(The term “predominant” refers to chords that typically 
lead to the dominant, such as IV, ii, or V/V.) Both keys 
also include a cadential 6–4 progression, going right-to-
left from a fifth-heavy tonic triad to a dominant.

4.2.2 Transition-based reduction
The reduction process for the 20×20 matrix resulted in 6 
groups of clusters with 4 clusters remaining ungrouped. 
The six groups reflect identifiable functions: tonic (ton), 
dominant (dom), and predominant (pd) functions in the 
two keys, home key (HK) and subordinate key (SK):

• SKdom: 0.C(E♭F♯), 14.ABC(D), 17.DF♯A(C)
• SKpd: 1.GB♭(C♯D), 11.CE(G), 15.D(GB), 16.A(CE), 

18.E(CG).
• HKpd: 3.FAC, 7.FA(D), 8.G(CE)
• HKdom: 4.FG(BD), 9.DF(EG)
• HKton: 5.C(E)
• SKton: 10.G, 13.G(BD)

The remaining four are ungrouped clusters: 2.D(F), 
6.FG(EA), 12.D, and 19.B(DG).

Comparing these groups to the hierarchical clustering 
solution shown in Figure 5, we find that the tonic and 
dominant groups combine clusters with similar pitch-
class content, but the predominant groups include 
clusters with disparate pitch-class content.

Figure 10 gives the grouped sum and difference 
matrices, and Figure 11 shows the resulting transitions 
in a φ4/φ5 plot. Dotted lines connect the clusters to the 
group label, except for the cadential 6–4 chords (8 in 
the HKpd and 15 in the SKpd group) which are not close 
to the rest of their group. Other than the cadential 
6–4 chords, the space effectively sorts the six primary 
functions: home key below and dominant key above, 
and the three within-key functions arranged left-to-
right such that functional motion always cycles in 
this direction. As in Figure 9, when groups appear in 
both the sum and difference matrices, we use larger  
arrows.

The functional logic is apparent from the patterns in 
Figure 11, with strong dominant-tonic and predominant-
dominant motions in each key. These always go left to 
right in the space. The only strong motion between the 
keys is between the predominants, which also matches 
functional logic (for instance the SKpd group contains 
chords that could function as vi or viio7/ii in the home 
key). The only retrograde motion is the weaker tendency 
to convert tonic of the SK to a dominant of the HK (e.g., 
by adding a seventh, F, to a G major triad). Of the four 
ungrouped clusters (besides HKton), only one makes an 
appearance in the sum and difference matrices, cluster 
19, a third-weighted G major triad. This largely behaves 
like SKton, except that it has a more symmetrical 
relationship with SKdom, and therefore remains separate 
from that group.

Figure 9 Transition data for subordinate key and home key groups, plotted in φ4/φ5 space. Large arrows show high values in both the 
difference and sum matrices, small arrows in the sum or difference matrices only (double-headed for sum).
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Figure 10 Sum and difference matrices for cluster groups. Values exceeding 1.5 standard deviations are highlighted. Redundant 
values (given by symmetry and antisymmetry) are excluded (in difference matrices we retain just the positive values).
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5 DISCUSSION

Pitch-class vectors, which have been shown by a wealth 
of previous research to be effective representatives of 
keys (Krumhansl and Cuddy, 2010) and harmony in 
music audio (Pauwels et al., 2019), have been shown 
here to also be potentially effective models of chords, 
if we are willing to abandon chord lexicons that simply 
map conventional triads and seventh chords onto simple 
pitch-class sets (i.e. binary-valued pitch-class vectors).

The present study is primarily preliminary and 
exploratory, and details of the results are clearly 
dependent on the chosen corpus. Nonetheless, we can 
already draw some significant conclusions about efficacy 
of a weighted pitch-class model of tonal harmony and 
derive some implications for music theory.

Music theory conventions make a few implicit claims 
about how tonal harmony works. First, Roman numeral 
conventions limit the possible harmonic objects to a set 
of triads and seventh chords drawn from common tonal 
scales. They also tend to imply that, except for differences 
of inversion, all such triads and sevenths are unitary 
objects. Second, as a partial redress to the shortcomings 
of the Roman numeral conventions, theories of harmonic 
function typically highlight certain elements of the 
Roman numeral lexicon as being of special significance, 
such as tonic and dominant, and will also sometimes 
assign multiple functions to a single harmonic object 
(e.g., IV as “subdominant” vs. “predominant”).

In broad strokes, our results support this received music 
theory in many respects. First, the majority of clusters we 
found can be reliably associated with triads and seventh 
chords, supporting the basic Roman numeral convention. 
Second, we found that a small handful of these triads and 
seventh chords are very prevalent, while the majority are 
either not common or distinct enough to be detected by 
the clustering procedure. On the other hand, for the more 
important tonic and dominant functions, the clustering 

solution distinguished three or four varieties of the same 
triad. These all behave differently—in no case did our 
transition-based grouping procedure combine any of the 
four C major triad clusters, or three G major triad clusters. 
This generally supports the notion from function theory 
that the same harmonic object can function in multiple 
ways, although our data supports this idea for tonic and 
dominant triads where function theory tends to focus 
more on multiple functions for other kinds of triads.

This support for music theory conventions, however, 
is only in broad strokes. When we consider details, 
our results show that the implications of music theory 
conventions are imprecise and in some respects may 
oversimplify the reality.

First, the idea of limiting harmony to triads and seventh 
chords is largely, but not entirely, supported. In the 
clusters obtained using the Manhattan metric, we found 
four “scalar” clusters (Figure 3e). Two of these, 10.G and 
12.D, emphasize a single pitch class, while the other two, 
6.FG(EA) 14.ABC(D), are approximately four-note scale 
segments. This suggests that certain single pitch-classes 
and scale segments are distinguishable as harmonic 
objects in this repertoire, whereas many hypothetically 
possible triads and seventh chords are not. Of course, 
these harmonies may not be “functional” in the sense 
of having distinct syntactical meaning. In our analysis of 
transition data, one of them, 14.ABC(D), was assimilated 
to a subordinate-key dominant group, suggesting that 
it might be a distinct variety of dominant chord, similar 
to 4.FG(BD), which could also be described as “scalar” 
although it had a large enough fourth DFT coefficient to 
be grouped with the tetradic harmonies in our analysis. 
The other scalar harmony, 6.FG(EA), was not assimilated 
on the basis of transition data, and its only significant 
feature in the transition data was an association with 
one of the home key subdominant clusters, 7.FA(D). The 
12.D cluster, on the other hand, did not assimilate with 
other groups and did show some reliable behavior in a 
tendency to move to cluster 19.B(DG).

Second, the results support the idea from function 
theory that two triadic harmonies, tonic and dominant, 
are overwhelmingly the most important in this 
repertoire. They also support the idea of three functions, 
predominant, dominant, and tonic, one of which 
(predominant) is based on similarity of behavior, not 
on similarity of pitch-class content. In the groupings of 
clusters based on transition data (section 4.2), tonic and 
dominant categories group chords close together in the 
hierarchical clustering solution of Figure 5, while the two 
predominant groups combine clusters that are dispersed 
throughout the hierarchical clustering solution.

Third, the results support the idea of multiple functions 
for individual triads, especially for tonic and dominant 
triads. The clustering solution identified four C major 
triads (clusters 5, 8, 11, 18), and three G major triads 
(clusters 13, 15, and 19). None of these were grouped 

Figure 11 Transition data for the cluster groups plotted in φ4/φ5 
space. Group labels are positioned roughly in between their 
members, which are connected by dotted lines (with the 
exception of clusters 8 and 15 for clarity). Heavy arrows show 
high values in both the difference and sum matrices, lighter 
arrows in the sum or difference matrices only (double-headed 
for sum).
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on the basis of transitions in section 4.2. Some might be 
associated with distinct inversions, especially numbers 
8 and 15, which appear to be cadential 6–4 chords. Our 
analysis also suggested that cluster 11 represents IV of 
G major, distinguishing it from the other C major clusters 
as tonics of C major. Taking this one step farther, then, 
we might conjecture that clusters 18 and 19 represent 
first-inversion triads. If this is the case it means that 
first-inversion triads have distinct function, specifically 
in the case of tonic triads, but also that these distinctly 
functioning chords are identifiable purely through 
registral weighting of pitch classes, without necessarily 
separating out the bass line. This might be possible due 
to the dependency of doubling on inversion observable, 
e.g., in Aarden and Von Hippel’s (2004) results, which may 
be stronger when we isolate tonic and dominant chords.

That these functional distinctions emerge is remarkable 
since, unlike in a hidden-Markov algorithm, as applied, for 
example, by Mavromatis (2009), Quinn and Mavromatis 
(2011), White (2013a, b), or White and Quinn (2018), 
the clustering algorithm itself has no information about 
transitions, and only makes these distinctions based on 
different weightings of pitch classes. It seems likely that 
our weighting procedure, which depends on appearing in 
multiple octaves and ignores rearticulations of notes, is 
crucial to this success in sorting different functions for 
the same triads.

We have also found that applying the DFT to pitch-
class vectors provides an effective dimensional reduction 
in which aspects of similarity in pitch-class content and 
harmonic function remain observable. This recommends 
its use as a feature representation in studies of harmony 
in notated music, much as Harte et al. (2006) and Ramiréz 
et al. (2020) have applied it to chroma vectors from 
musical audio. Specifically, we have found the equivalent 
of Krumhansl’s (1990) tonal space, φ

3/φ5 space, effective 
in sorting harmonies by key, and a different φ4/φ5 space 
useful for observing the norms of harmonic succession, 
and magnitudes of â1, â3, and â4 useful for sorting scalar, 
triadic, and tetradic chord types. Extrapolating from this, 
we might conjecture that scalar types (high |â1|) are 
generally incidental and non-functional, triadic types 
(high |â3|) important for defining key, and tetradic types 
(high |â4|) important for local functional succession.

This study suggests further research in a few 
directions. The corpus we used is relatively limited, and 
different results could be expected from a larger or more 
harmonically expansive or varied corpus. The results 
also depend upon musical texture, so a corpus featuring 
different kinds of textures (such as more contrapuntal 
textures) would make a valuable comparison. One 
limitation of the present study is that the quarter-note 
parsing used throughout does not necessarily optimally 
isolate individual harmonies. A method of parsing based 
on similarity of pitch-class content may greatly improve 
the clustering method.

NOTES
1 http://ycac.yale.edu.

2 We used python’s sklearn library for all machine learning 
methods. Code is available at https://github.com/peachsky1/
ClusteringBasedApproach_HarmonicAnalysis.
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