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Abstract

The tuning of stochastic gradient algorithms (SGAs) for optimization and sampling is often based on
heuristics and trial-and-error rather than generalizable theory. We address this theory–practice gap by
characterizing the large-sample statistical asymptotics of SGAs via a joint step-size–sample-size scaling
limit. We show that iterate averaging with a large fixed step size is robust to the choice of tuning
parameters and asymptotically has covariance proportional to that of the MLE sampling distribution. We
also prove a Bernstein–von Mises-like theorem to guide tuning, including for generalized posteriors that
are robust to model misspecification. Numerical experiments validate our results and recommendations in
realistic finite-sample regimes. Our work lays the foundation for a systematic analysis of other stochastic
gradient Markov chain Monte Carlo algorithms for a wide range of models.

1 Introduction
Stochastic gradient algorithms, which were originally proposed as optimization and root finding methods

by Robbins and Monro [1951], have become the standard approach to large-scale optimization in statistics
and machine learning. Their success can be attributed to the reduction in per-iteration computational
complexity from subsampling outweighing the accuracy loss from stochastic approximation for empirical
objectives. Hence, stochastic gradient algorithms scale more favourably with the sample size and model
complexity than their deterministic counterparts [Moulines and Bach, 2011, Goodfellow et al., 2016]. Over
the past decade, this scalability has also lead to tremendous growth in the use of stochastic gradient Markov
chain Monte Carlo sampling algorithms, particularly in machine learning [Welling and Teh, 2011, Nemeth
and Fearnhead, 2021].

Most analyses of stochastic gradient optimization procedures such as stochastic gradient descent (SGD)
focus on the parameter error or the optimality gap [e.g., Moulines and Bach, 2011, Kushner and Yin, 2003,
Nemirovski et al., 2009, Reddi et al., 2018], while analyses of stochastic gradient sampling procedures such as
stochastic gradient Langevin dynamics (SGLD) focus on how well the empirical distribution of the iterates
approximates the posterior [e.g., Teh et al., 2016, Vollmer et al., 2016, Brosse et al., 2018, Baker et al., 2019,
Nemeth and Fearnhead, 2021, Raginsky et al., 2017, Durmus and Moulines, 2017, 2019]. These results often
rely on settings for tuning parameters that fall outside of standard practice. It is an important challenge
to explain why, empirically, stochastic gradient algorithms appear successful with previously unvalidated
tunings (e.g., large step size and small batch size). The lack of an explanatory theory forced users to rely
on heuristic and problem-specific approaches to tuning parameters.

We take a step toward closing this gap between theory and practice when the step size is fixed across
iterations but decreases with the sample size. The fixed–step-size setting proves to be practically relevant
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for optimization because convergence to a near-optimum is rapid and robust to the precise step size choice
[Moulines and Bach, 2011, Dieuleveut et al., 2020] while for sampling, using a fixed–step-size leads to better
mixing time behaviour: the number of iterations until the next approximately independent sample is con-
stant, unlike in the decreasing-step size regime where the number of iterations until the next approximately
independent sample increases without bound [Teh et al., 2016, Vollmer et al., 2016].

Our main result characterizes the statistical scaling limits of stochastic gradient algorithms as the sample
size tends to infinity. We show that the sample paths of a very general class of preconditioned stochastic
gradient algorithms converge to the sample paths of an Ornstein–Uhlenbeck process under relatively mild
conditions. The class of algorithms includes stochastic gradient descent with and without additional Gaussian
noise, momentum, and/or acceleration. Notably, however, while the asymptotic guarantees in the decreasing
step size case often require an impractically large number of iterates, numerical experiments show that our
constant step size averaging result can hold after a small number of passes over the dataset. For sampling,
we show that it is even possible to leverage stochastic gradients to sample modifications to the posterior
that have better robustness to model misspecification. This result suggests that stochastic gradients have
a potentially beneficial (or at least benign) role to play, rather than one that creates accuracy problems in
exchange for computational efficiency.

Because the guarantees we provide are asymptotic in the sample size, it is possible that they may not
be representative for a particular dataset. Therefore, we complement our asymptotic results with three
numerical experiments to demonstrate that the limiting behaviour often predicts actual performance. These
include a simulation study with a Gaussian location model, and two real-data experiments (a logistic
regression example with 1 million observations, and a misspecified Poisson regression example with 150,000
observations).

1.1 Implications for sampling
Nemeth and Fearnhead [2021] recently identified several key areas for stochastic gradient MCMC (SG-

MCMC) research. Our work makes significant strides in two of these areas for fixed–step-size variants of
SGLD through our analysis of their large-sample asymptotics. One key area they identify is the need for
general theoretical results beyond the log-concave regime that are not asymptotic in the number of iterations.
We move beyond the log-concave regime by using large-sample asymptotics, analogous to the applicability
of the Bernstein-von Mises theorem regardless of the convexity of the likelihood. Under tuning regimes
relevant to statistical inference, our results apply after a constant number of epochs (i.e., passes over the full
dataset). Another key area identified by Nemeth and Fearnhead [2021] is the need for methods for robust
and/or adaptive tunings. Ideally, tunings ought to be automatable for non-experts to use. We use our
results to make recommendations on the tuning of these methods in the large-sample setting (see Table 1),
which is especially relevant in practice since stochastic gradient MCMC algorithms are typically used when
the sample size is large. In particular, a large class of bad tunings whose large-sample asymptotics do not
match the large-sample asymptotics of the target, or whose large-sample asymptotic local mixing is very
slow, can be immediately identified and ruled out. Good tunings with the correct large-sample asymptotics
and rapid asymptotic local mixing can also be identified as candidates for use and possibly fine-tuned using
other methods [e.g., Coullon et al., 2023]. The guidance we derive in this way does not require additional
expertise to use and could be implemented in an automated way. Moreover, our statistical perspective on
the large-sample asymptotics of these methods leads to the insight that other benefits can be obtained by
targeting statistically robust modifications of the posterior distribution, a direction not foreseen by Nemeth
and Fearnhead.

We illustrate the implications of our results with two recent applications of SG-MCMC in the statistics
literature.

Example 1. Pollock et al. [2020] benchmark their subsampling-based MCMC algorithm against SGLD.
They tuned SGLD using the best-available-at-the-time theoretical guidance [Teh et al., 2016] and other best
practices, including variance-reduced stochastic gradients [Baker et al., 2019]. However, their implementation
of SGLD mixes slowly and does not appear to be sampling from the posterior. This can be attributed to two
causes. First, because they use a decreasing step size, each nearly independent sample takes an increasing
number of epochs to reach. Second, even if they were to use a fixed–step-size—or to run the Langevin diffusion
for the posterior directly—it would have mixed slowly due to ill-conditioning of the posterior distribution.
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Based on the scaling limit we derive, the poor approximation quality due to ill-conditioning would have
been foreseen, and a fixed–step-size sampler could have been appropriately tuned. Our theory predicts that,
because SGLD was not preconditioned adequately, mixing would be very slow—and how much slower it is
relative to the optimal preconditioner. Furthermore, since the optimal preconditioner according to our theory
was used in the implementation of their method, the numerical comparison overstates the relative benefits
of their proposed method versus SGLD. We demonstrate this on the same data as used by Pollock et al.
[2020] in our Section 5.2. In short, this example exhibits how our results are directly exploitable: our tuning
recommendations would have resolved the mixing problems of SGLD seen by Pollock et al. [2020], and led to
a more meaningful comparator to their method.

Example 2. Nemeth and Fearnhead [2021, Section 6.3] compare various SG-MCMC algorithms on a chal-
lenging matrix factorization problem. Due to the lack of actionable tuning advice in the literature, they use
the kernel Stein discrepancy (KSD) to select the step size. They initialise the variance-reduced SG-MCMC
algorithms at the maximum a posteriori solution. Due to a pathology of the KSD [Coullon et al., 2023],
this results in selection of the smallest possible step size of 10−10, which leads to the variance-reduced chains
essentially remaining at their initialization. As a result, Nemeth and Fearnhead [2021, Figure 6] incorrectly
suggests the that the variance-reduced algorithms had much lower predictive error than other SG-MCMC
algorithms, when in fact it illustrates that the maximum a posteriori solution provides small test error—but
of course no uncertainty quantification. Our theory predicts the observed poor approximation to the posterior
and lack of meaningful uncertainty quantification from the “stuck” chains. Using our recommendations would
have avoided the undetected pathological slow-mixing behaviour resulting from the use of the KSD.

1.2 Implications for optimization and frequentist inference
Our theory provide rigorous foundations and new insights into the use of iterate averaging with fixed–

step-size SGAs. Our main result differs from the seminal works on scaling limits in stochastic approximations
[Kushner and Huang, 1981, Pflug, 1986, Walk, 1977, Kushner and Yang, 1993, Kushner and Yin, 2003] in
both the nature of our analysis and the required regularity conditions. We analyze the setting where the
source of the stochastic gradients is itself random and undergoes stochastic convergence. This is an important
distinction because this joint limit is the pivotal object that we study in the present work and is required
to address our research questions. In further contrast to our work, Kushner and Huang [1981], Pflug [1986],
Kushner and Yang [1993], Kushner and Yin [2003] require restrictive assumptions that are not readily lifted
to this “doubly stochastic convergence” case. The assumptions required by our analysis, on the other hand,
are quite weak. We allow the batch size used to compute the stochastic gradient to be constant or depend
on the dataset size, and allow the batches to be sampled with or without replacement. We only require
the local maximizer to converge in probability and we do not assume the model is correctly specified. At
the same time, our results are stronger than those achieved by previous analyses since we characterize both
the sample paths of the iterates and the complete stationary distribution. For example, Walk [1977] only
considers decreasing step sizes and demonstrates asymptotic normality of the marginal distribution, unlike
our a functional/path limit results. Characterising the sample-path distribution is critical to analysing not
just iterate averages but also the mixing time.

Despite not directly applying to the statistical setting with fixed step size, the work of Kushner and
Huang [1981], Pflug [1986], Walk [1977], Kushner and Yang [1993], Kushner and Yin [2003] has been an
important source of motivation for more recent methodological developments. We highlight two examples.

Example 3. Li et al. [2018] propose a method for constructing samples from a local asymptotic fiducial
distribution (one whose credible regions are asymptotic confidence sets at the same significance) by magnifying
the deviations of SGD from the mode. They point out that the intuition underlying their results aligns with
the Ornstein–Uhlenbeck scaling limit of stochastic gradient algorithms (including references to [e.g., Kushner
and Huang, 1981, Pflug, 1986]). However, the rigorous proof of their results does not leverage the continuous-
time limit, and uses stronger assumptions – such as weak strong convexity (equivalently, strong convexity of
the composite objective) – than we require. The gap between the seminal work on Ornstein–Uhlenbeck limits
of SGAs and the intuition they formed is, again, the need for a joint stochastic limit of the decreasing step
size and stochastically varying objective function. Using our results, their heuristic explanation based on the
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continuous-time limit could be made rigorous and their findings and methods could be extended beyond weak
strong convexity.

Example 4. A special case of the scaling limit we derive, and some of resulting the tuning recommenda-
tions, was conjectured by Mandt et al. [2017] based on the heuristic combination of statistical asymptotics
of the posterior distribution (Bernstein–von Mises) and results from the stochastic approximation literature.
However, being led mainly by heuristics, Mandt et al. [2017] arrive at an erroneous conclusion on the effect
of iterate averaging that. In particular, they claim that “there exist conditions [on the data-generating process
and sample size] under which iterate averaging generates one true posterior sample per pass over the data.”
However, their heuristic approach fails to account for “low order” terms, which our analyses in Section 4.2
reveal are not actually low-order when only making a single pass over the dataset. This difference is observed
empirically in the numerical experiments we present in Section 5.1. Our results also go far beyond those
conjectured by Mandt et al. [2017], broadening the applicability of this category of result, including fixed
and growing batch-size regimes, non-traditional spatial scalings and concentration rates, and incorporating
comparison to other asymptotic target distributions of interest.

Another practical benefit of our rigour for the stochastic limit of stochastic processes is that we can
clearly distinguish previous heuristics which can be turned into precise claims (the functional Bernstein–von
Mises results, for instance), and those which require additional qualification or restricted application (such
as mixing time results).

1.3 Notation
Let M1,+ (A) denote the set of probability measures on the measure space A and let N := {1, 2, . . .} denote

the natural numbers. For n ∈ N, define [n] := {1, . . . , n}. For d ∈ N, denote the d-dimensional Gaussian
distribution with mean µ ∈ Rd and (positive semi-definite) covariance matrix Σ ∈ Rd×d by Nd(µ,Σ). For
vectors a, b ∈ Rd, define the outer product a ⊗ b ∈ Rd×d given by (a ⊗ b)ij = aibj and write a⊗2 := a ⊗ a.
Let ∇ ⊗ ∇ = ∇⊗2 denote the Hessian operator. For random elements (ξk)k∈N and ξ, we write ξk ⇝ ξ to
denote convergence in distribution; that is, ξk ⇝ ξ if and only if for every bounded continuous function f ,
E{f(ξk)} → E{f(ξ)} as k → ∞. We write L(ξ) for the distribution (law) of a random element ξ, and Lν(ξ)
for the conditional distribution of ξ given another random element ν. For a square matrix M , define the
symmetrization operator as Sym(M) := (M +M⊤)/2. For a function f : A → L with A a set and (L, ∥·∥)
a normed linear space, define ∥f∥∞ := supa∈A ∥f(a)∥.

2 Stochastic Gradient Optimization and Sampling
Let X(n) = (Xi)

n
i=1 ∈ Xn denote a dataset with observationsXi independently and identically distributed

(i.i.d.) from an unknown distribution P . For parameter θ ∈ Θ ⊆ Rd, consider the potential U (n)(θ) :=
r(θ) +

∑n
i=1 ℓ(θ;Xi), where typically ℓ represents a log-likelihood or a negative loss function, and r(θ)

represents a regularizer or a (possibly improper) log prior density log π(0)(θ) that is everywhere positive on
Θ.

If −U (n)(θ) is interpreted as a (possibly regularized) loss, perhaps the most popular estimator for the
(locally) optimal population parameter θ⋆ satisfying E{∇ℓ (θ⋆;X1)} = 0, is the M-estimator θ̂(n) satisfying
the first-order optimality condition ∇U (n)(θ̂(n)) = 0. If −U (n)(θ) is interpreted as the negative log of the
joint model density or as a generalized Bayesian loss [Bissiri et al., 2016], the quantity of interest is (usually)
an expectation with respect to the (generalized) posterior density π(n)(θ) ∝ exp{−U (n)(θ)} of a function
f : Θ → Rℓ, which we denote π(n)(f). In either case, when n is large relative to the computational
cost of evaluating ℓ(θ;Xi), classical optimization methods for approximating θ̂(n) (e.g., gradient descent
or Newton–Raphson) and sampling methods for estimating π(n)(f) (e.g., Metropolis–Hastings algorithms)
become computationally prohibitive.

Stochastic gradient algorithms provide a means of reducing the per-iteration computational cost of op-
timization and sampling methods. To generate a sequence of iterates θ(n)1 , . . . , θ

(n)
k , . . . ∈ Θ, rather than

computing exact gradients of n−1U (n) using the full dataset, at iteration k a small batch of subsampled data
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is used instead to compute an unbiased gradient estimate

Ĝ
(n)
k := 1

n∇r
(
θ
(n)
k

)
+ 1

b(n)

∑b(n)

j=1 ∇ℓ
(
θ
(n)
k ; X

I
(n)
k (j)

)
, (1)

where (I
(n)
k )k∈N ∈ ([n]

b
)N are an independent and identically distributed (i.i.d.) sequence of uniform random

samples from {1, . . . , n} of size b(n), which are formed either with or without replacement.1
For optimization, the canonical approach is stochastic gradient descent (SGD), which has one-step update

θ
(n)
k+1 = θ

(n)
k +

h
(n)
k

2
Ĝ

(n)
k , (2)

where (h
(n)
k )k∈N is a sequence of positive step sizes. While optimal tuning of the last-iterate error is challeng-

ing, averaging the iterates can provide automatic optimal uncertainty quantification [Polyak and Juditsky,
1992, Kushner and Yang, 1993, Kushner and Yin, 2003]. More precisely, when hk ∝ k−ς for ς ∈ (0, 1), the
iterate average θ̄(n)k := 1

k

∑k
k′=1 θ

(n)
k′ satisfies

lim
n→∞

lim
k→∞

kCov(θ̄
(n)
k ) = J−1

⋆ I⋆J−1
⋆ = lim

n→∞
nCov(θ̂(n)), (3)

where I⋆ := E {∇θℓ(θ⋆;X)⊗∇θℓ(θ⋆;X)} and J⋆ := −E{∇⊗2
θ ℓ(θ⋆;X)} are, respectively, the first- and

second-order Fisher information matrices. Such results are, however, very sensitive to the choice of step size
schedule, leading to impractically slow convergence rates [Moulines and Bach, 2011, Toulis et al., 2021].

For sampling, the canonical approach is stochastic gradient Langevin dynamics [SGLD; Welling and
Teh, 2011], with one-step update

θ
(n)
k+1 = θ

(n)
k +

h
(n)
k

2 Ĝ
(n)
k +

√
h
(n)
k

β ξk, (4)

where ξk ∼ Nd(0, I) is independent standard Gaussian noise and β ∈ (0,∞] is the inverse temperature, which
is usually taken to be n.2 The benefits of introducing stochastic gradients into an MCMC procedure are less
clear than for optimization since retaining exactness would require an accept/reject step using the full-sample
likelihood in the Metropolis–Hastings adjustment. While SGLD can be asymptotically exact when run with
a decreasing step size, the optimal choice of step sizes results in a slow k−1/3 convergence rate [Teh et al.,
2016, Vollmer et al., 2016]. Further, these results do not directly guarantee finite-time accuracy [Brosse et al.,
2018]. Despite these limitations, variants of SGLD has been an active area of methods development and seen
adoption in practice [Ahn et al., 2012a, Chen et al., 2014, Ma et al., 2015, Baker et al., 2019, Nemeth and
Fearnhead, 2021].

3 Stochastic gradient algorithms and their scaling limits
In this section we develop a comprehensive framework that accurately predicts the large-sample behaviour

of stochastic gradient algorithms with fixed step sizes for inference and parameter estimation, including in
cases where the model is misspecified. We develop our methods and theory in the framework of a stochastic
gradient meta-algorithm with one-step update

θ
(n)
k+1 = θ

(n)
k +

h(n)Γ

2
Ĝ

(n)
k +

√
h(n)Λ

β(n)
ξk, (5)

where Γ ∈ Rd×d is the (not necessarily positive semi-definite) gradient preconditioner, Λ ∈ Rd×d is the
positive semi-definite diffusion anisotropy matrix, ξk are i.i.d. Nd(0, Id), and Ĝ(n)

k implicitly depends on the
batch size b(n) (which in turn may vary with the sample size n). Unless otherwise noted take the parameter
space Θ = Rd. The meta-algorithm subsumes the SGD and SGLD algorithms described in Section 2. It also
includes momentum-based methods; see Appendix A.1 for details in the case of the underdamped stochastic
Langevin dynamics.

1“With replacement” means (I
(n)
k )k∈N

iid∼ Unif([n]b), and “without replacement” means (I
(n)
k )k∈N

iid∼
Unif({I ∈ [n]b : (j1 ̸= j2 ⇒ I(j1) ̸= I(j2))}).

2We take β−1 to mean 0 when β = +∞, in which case we recover SGD from Eq. (2).
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3.1 Scaling limit of the stochastic gradient meta-algorithm
We now characterize the behaviour of the sample path of the iterates of Eq. (5) in the region about

θ̂(n), which will enable us to determine the limiting distribution of the iterate average (for optimization),
the asymptotic stationary distribution of the iterates (for optimization and sampling), and the mixing speed
(for sampling). Our approach is to obtain a functional central limit theorem by taking the scaling limit of
the piecewise-constant, continuous-time process

ϑ
(n)
t := w(n)

(
θ
(n)

⌊α(n)t⌋ − θ̂(n)
)
, (6)

where w(n) → ∞ determines the spatial scaling and α(n) → ∞ determines the temporal scaling. Since it
suffices for practical application, we assume polynomial scaling of all tuning parameters as a function of
sample size: h(n) = chn

−h for h > 0, b(n) =
⌊
cbn

b
⌋

for b ≥ 0, and β(n) = cβn
t for t ∈ R. Given these tuning

parameters, in order to have a stable and non-trivial3 limit, we must take the time scaling to be α(n) = nh

and the spatial scaling to be w(n) = nw for w = min {b+ h, t} /2. In this setting we have the following result,
under Assumptions 1 to 5 discussed in Section 3.2. All proofs are deferred to the Supplementary Materials.

Theorem 1 (Scaling limit of the meta-algorithm). If Assumptions 1 to 5 hold, there exists θ⋆ ∈ Θ such that
θ̂(n)

p→ θ⋆, and there exists ϑ0 ∈ M1,+ (Θ) such that ϑ(n)0 ⇝ ϑ0, then (ϑ
(n)
t )t∈R+

⇝ (ϑt)t∈R+
in the Skorohod

topology4 in probability, where (ϑt)t∈R is an Ornstein–Uhlenbeck process given by

dϑt = −1

2
Bϑt dt+

√
AdWt, (7)

with Wt a d-dimensional standard Brownian motion, B := chΓJ⋆ the drift matrix, A := I[b+h≤t]
c2hcb
4cb

ΓI⋆Γ⊤+
I[t≤b+h]

ch
cβ
Λ the positive semi-definite diffusion matrix, and cb := 1 − cbI[b=1 and “no replacement”] the batch

constant.

Remark 1 (Assumptions). Assumptions 1 to 5 are quite weak and notably do not require convexity or
bounded gradients. We require that the sequence of empirical critical points of the log-likelihood converges
to a critical point of the expected log-likelihood. The critical point does not even need to be a minimizer,
though in the case of a limiting critical point where the hessian is not positive definite, the paths of the
process will move away from the critical point instead of towards it (hence the need for the Hurwitz condition
for existence of the stationary distribution below). Further, we do not require a specific rate of convergence
for the empirical critical point to the limiting one, but there is a trade-off determined by our proof strategy
between this rate and the number of moments we must assume exist for various derivatives of the likelihood.

Remark 2 (Effects of stochastic gradient noise). As expected, the mini-batch noise contributes in the large-
sample regime when h + b ≤ t. This exactly corresponds to when the mini-batch noise in a single step is
on the same order (=) or dominates (<) the noise from the Gaussian innovations, ξk. We can interpret
the phase transition as occurring because the variance of the mini-batch gradient scales as n−2h−b while
the variance of update due to the Gaussian innovations scale as n−h−t. The spatial scaling is chosen as
w = min {b+ h, t} /2 to ensure that at least one of (a) the mini-batch noise or (b) the Gaussian innovations
contribute to the limit, as otherwise the limit would be a gradient flow instead of Ornstein–Uhlenbeck process,
and hence fail to capture the asymptotically dominant local stochastic behaviour around θ̂(n).

Remark 3 (SGLD with control variates). Modifications to SGLD that include control variates can be an-
alyzed using similar techniques. These methods seek to reduce the variance of stochastic gradients using a
control variate. In Appendices A.2 and H we examine the SGLD-FP algorithm [Baker et al., 2019, Na-
gapetyan et al., 2017], where the control variate is given by the random gradient function evaluated at (the
current estimate of) the MLE. Formally, in an idealized setting where the MLE is known, it modifies the
meta-algorithm by replacing Eq. (1) with

Ĝ
(n)
k :=

1

n
∇r
(
θ
(n)
k

)
+

1

b(n)

b(n)∑
j=1

{
∇ℓ
(
θ
(n)
k ; X

I
(n)
k (j)

)
−∇ℓ

(
θ̂(n); X

I
(n)
k (j)

)}
. (8)

3By non-trivial here, we mean that the limiting SDE should have both non-zero drift and non-zero diffusion terms if possible.
4See Appendix B.3 for further discussion.
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We find that, when a non-trivial amount of additional Gaussian noise is included (β > 0), the use of control
variates is sufficient to reduce the variance in minibatch gradients so much that at all non-trivial scalings
the gradient noise is 0. Hence, Theorem 1 holds for SGLD-FP except with w = t/2, and A = ch

cβ
Λ.

Based on Theorem 1, we can establish the following corollaries which we will further leverage to explain
the empirical behaviour of stochastic gradient methods and to make recommendations for how these methods
could be best tuned. First, we have a characterization of the marginal and (when it exists) the stationary
covariance of the limiting process, including conditions under which simplified forms are possible. A square
matrix M is said to be Hurwitz (or stable) if every eigenvalue of M has negative real part.

Corollary 1 (Marginal and stationary covariances). In the setting of Theorem 1, the following hold:

1. For any initial parameter ϑ0, at time t the marginal distribution is Lϑ0(ϑt) = Nd

(
e−sB/2ϑ0, Qt

)
, with

Qt := Cov(ϑt|ϑ0) =
∫ t

0

e−sB/2Ae−sB⊤/2ds.

2. If −ΓJ⋆ is Hurwitz, then Q∞ := limt→∞Qt exists and the stationary distribution of (ϑt)t∈R is ν :=
Nd(0, Q∞). In this case, Q∞ solves the equation

1

2
BQ∞ +

1

2
Q∞B

⊤ = A. (9)

Let ν(n) denote the stationary measure of the stochastic gradient algorithm when the sample size is n, if it
exists. The previous corollary leads to conditions for a Bernstein–von Mises-type result for these stationary
measures.

Corollary 2 (Bernstein–von Mises-type theorem). In the setting of Theorem 1, if −ΓJ⋆ is Hurwitz and the
collection {ν(n)}n∈N is uniformly tight, the stationary-distributed parameters θ(n) ∼ ν(n) satisfy nw(θ(n) −
θ̂(n))⇝ Nd(0, Q∞) in probability.

We can interpret Corollary 2 as saying that if there is a subsequence of the stationary measures where
no probability mass “escapes to infinity” along that subsequence, then that subsequence converges weakly to
the stationary distribution of the limiting process.

3.2 Discussion of assumptions
Assumptions 1 to 5 are fairly mild. Assumption 1 requires that the likelihood has a minimal number

of continuous derivatives, and that the regularizer is smooth in the optimization theory sense of having
Lipschitz gradients.

Assumption 1. ∇r is L0-Lipschitz, and ℓ(·;x) ∈ C2(Θ) for each x ∈ X .

Assumption 2 ensures that the gradient value of the log-likelihood at the limiting parameter is not too
volatile via a moment condition.

Assumption 2. h−w− a/3 > 0 and E [∥∇ℓ(θ⋆;X1)∥p2 ] <∞ for some p2 > 1
h−w−a/3 .

Assumption 3 ensures that the random likelihood functions from each data sample are sufficiently smooth
via a moment condition on the random smoothness parameter.

Assumption 3. For some q3 ∈ [0,w) and p3 := 1
h+q3−w−a/3 , ∥θ̂

(n) − θ⋆∥ ∈ op(1/n
q3), and E

[∥∥∇⊗2ℓ(·;X1)
∥∥p3

∞

]
<

∞.

Assumptions 4 and 5 require convergence of the first-and second-order empirical Fisher information
matrices Î(n)(θ) = 1

n

∑
i∈[n][∇ℓ(θ; Xi)]

⊗2 and Ĵ (n)(θ) = 1
n

∑
i∈[n][−∇⊗2ℓ(θ; Xi)]. For any r > 0, define the

ball B(n)(r) := {θ ∈ Θ :
∥∥∥θ − θ̂(n)

∥∥∥ ≤ r/nw}.
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Assumption 4. There is a non-decreasing sequence rJ ,n
n→∞−→ ∞ such that supθ∈B(n)(rJ ,n)

∥∥Ĵ (n)(θ)− J (θ⋆)
∥∥ p→

0.

Assumption 5. There is a non-decreasing sequence rI,n
n→∞−→ ∞ such that sup

θ∈B(n)
(
rI,n

)∥∥Î(n)(θ)− I(θ⋆)
∥∥ p→

0.

The assumptions all hold, for example, for generalized linear models with bounded covariates and either
Lipschitz inverse-link functions, or suitably constrained parameter domains. Several sufficient conditions for
each of Assumptions 4 and 5 are given in Appendix E.

4 Practical implications of the scaling limit
We now turn to assessing the implications of our statistical scaling limit on the large-sample behavior of

stochastic gradient algorithms used for optimization and sampling.

4.1 Mixing time
Because we characterize the full-path behavior of the meta-algorithm, we can obtain insights into its

mixing speed. Let ν̂(n)k (f) := k−1
∑k

k′=1 f(θ
(n)
k′ ) denote the Monte Carlo estimate of ν(n)(f). We can use the

mixing time (or worst-case integrated autocorrelation time) τ (n) := supf inf{k : Var
ν̂
(n)
k

(f)/Varν(n)(f) ≤ 1}
to characterize the efficiency of MCMC algorithms. For the limiting process, define the “Monte Carlo
average” ν̂t(f) := t−1

∫ t

0
f(ϑs) ds and the mixing time τ := supf inf{t : Varν̂t

(f)/Varν(f) ≤ 1}. When
the limiting process is reversible, standard results5 allow us to upper bound τ by the reciprocal of the
spectral gap of the limiting process. Since the spectral gap of the Ornstein–Uhlenbeck process is λmin(B)/2,
where λmin(B) denotes its minimum eigenvalue of B, we may heuristically conclude then that the limiting
mixing time is τ (n) = 2α(n)/λmin(B) iterations. This mixing time corresponds to 2α(n)b(n)/λmin(B) =
2b(n)/{h(n)λmin(ΓJ⋆)} likelihood evaluations, or equivalently 2b(n)/{h(n)λmin(ΓJ⋆)} epochs. Even when the
limiting process is not reversible, the spectral gap is still a useful metric for the large-time rate of mixing of
the process, and is given by the same formula, while the integrated autocorrelation time becomes intractable.

The reason these arguments are heuristic is because weak converge of the processes and stationary
distributions is insufficient to conclude that the mixing times converge. In Appendix J, we provide further
details and describe a possible approach to making the mixing result rigorous. We note, however, that
comparison between the mixing time of a scaling limit and the mixing time of the corresponding pre-limiting
processes is standard is MCMC tuning, even though it is technically only a heuristic. This is, for example,
the nature of widely celebrated results in the optimal scaling literature [e.g., Gelman et al., 1997, Roberts
and Rosenthal, 2001]. Thus, as a practical matter, a user with a dataset of size n can conclude that using a
step size h and batch size b, will result in a mixing time of roughly

2b

h λmin{ΓĴ (n)(θ̂(n))}
(10)

epochs, thereby providing a valuable constraint when tuning b, h, and Γ. Some example tuning parameter
combinations that lead to limiting stationary distributions of interest, and the corresponding mixing times
of the limit process, are given in Table 1.

4.2 Optimization
The key implication of our results for optimization concern the average θ̄(n)k = 1

k

∑k
j=1 θ

(n)
j of the first k

iterations of the algorithm. The accuracy of the iterate average is characterized by its covariance Q̄(n)
k :=

Cov(θ̄
(n)
k ). We can approximate Q̄(n)

k in terms of the covariance of the averaged limiting process, which is
defined as ϑ̄t := t−1

∫ t

0
ϑs ds. The following result is similar in spirit to Theorem 2.1 of Kushner and Yang

[1993].
5Apply the spectral theorem for self-adjoint operators [Rudin, 1991] to the Poincaré inequality [Bakry et al., 2014]

8



Proposition 1 (Path averaging). For (ϑt)t∈R+ defined by Eq. (7), assuming −B is Hurwitz and ϑ0 ∼
N(0, Q∞), the covariance of the averaged limiting process is

Q̄t := Cov
(
ϑ̄t
)
=

4

t
B−1AB−⊤ − 8

t2
Sym

(
B−2

{
I − e−tB/2

}
Q∞

)
(11)

=

{
Q∞ − t

6A+O(t2) if t≪ 7 ∥B∥2
∥∥B−2Q∞

∥∥1/2
4
tB

−1AB−⊤ +O(t−2) if t≫ 3
∥∥B−2Q∞

∥∥1/2 . (12)

If either (i) b+ h < t or (ii) b+ h = t and cβ = +∞, then 4
tB

−1AB−⊤ = cb
tcb

J−1
⋆ I⋆J−1

⋆ .

The proof of this result is in Appendix F. Using Proposition 1, we can characterize large-sample behaviour
of θ̄(n)k for k = k(n) :=

⌊
mα(n)/cb

⌋
=
⌊
mnh/cb

⌋
, which corresponds to making m passes over the dataset.

Corollary 3 (Bernstein–von Mises-type theorem for iterate averaging). Suppose Assumptions 1 to 5 all
hold. If b + h ≤ t ≤ 1 and L(ϑ(n)0 ) ⇝ N(0, Q∞), then nb+h(θ̄

(n)

k(n) − θ̂(n)) converges in distribution to a
zero-mean Gaussian and

nb+h Cov
(
θ̄
(n)

k(n)

)
→ 4cb

chm
Sym

(
(ΓJ⋆)

−1
Q∞

)
− 8c2b
c2hm

2
Sym

(
(ΓJ⋆)

−2
{
I − e−mΓJ⋆/(2cb)

}
Q∞

)
(13)

in probability. If in addition b+ h = 1 and cβ = +∞, then

nCov
(
θ̄
(n)

k(n)

)
→ 1

m
J−1
⋆ I⋆J−1

⋆ +R(m) in probability, where ∥R(m)∥ ≤ 8c2b
c2hm

2

∥∥∥(ΓJ⋆)
−2
Q∞

∥∥∥. (14)

It follows from Eqs. (3) and (14) that for m sufficiently large, iterate averaging with potentially large
step size of order n−h (“large” constant-in-time step sizes here means that h ≪ 1, while the results apply
for any h ≤ 1) and batch size of order n1−h has numerical error Cov

(
θ̄
(n)

k(n)

)
≈ 1

m Cov(θ̂(n)) for estimation of
θ̂(n). This error is optimal, in the sense that after m ≫ 1 passes over the dataset, it is small compared to
the statistical error Cov(θ̂(n)). It is instructive to consider two idealized cases:

1. Take Γ = Λ = I and assume that J⋆ and I⋆ commute. The bound on the remainder term simplifies
to ∥R(m)∥ ≤ 2cb

chm2

∥∥J−1
⋆

∥∥. Hence, we should only expect the remainder term to be small when
m2 ≫ 2cb

ch

∥∥J−1
⋆ I⋆J−2

⋆

∥∥.
2. Take Γ = Λ = J−1

⋆ . The bound on the remainder term simplifies to ∥R(m)∥ ≤ 2cb
chm2

∥∥J−1
⋆ I⋆J−1

⋆

∥∥.
Hence, we should only expect the remainder term to be small when m2 ≫ 2cb

ch
.

In either case, a large step size constant ch relative to the batch size constant cb leads to the remainder
term being small even for small m. However, particularly without preconditioning, this regime may lead to
numerical instability.

4.3 Sampling
Sampling from the posterior. The Bernstein-von Mises theorem states that the posterior-distributed

parameter θ(n) ∼ π(n) satisfies n1/2(θ(n) − θ̂(n))⇝ Nd

(
0,J−1

⋆

)
in probability. In order for the large-sample

stationary distribution of Eq. (5) to match the Bernstein–von Mises limit of the posterior, we must first
enforce that w = 1/2. Then, there are several ways to ensure that the limiting process has the same
distribution as the limiting, six of which using various forms of SGD, SGLD, and SGLD-FP are shown in
Table 1.

In terms of the number of gradient queries per unit mixing time the cases where h ̸∈ o(b/n) are the
most efficient as the query-count scales linearly with the dataset size (since h + b = 1), while for the cases
where h ∈ o(b/n) it scales super-linearly (h+ b > 1). In practice, options involving preconditioning matrices
(Γ ̸= I) or control variates (SGLD-FP) first require an estimate of θ̂(n) to, respectively, construct estimates
of the preconditioner Γ = Ĵ (n)(θ̂(n))−1 ≈ J−1

⋆ and/or construct the control variates ∇ℓ(θ̂(n);Xi). The latter
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Target Target Asymp. Cov. Algo. Γ Λ β h Mix. Time (Epochs)
Posterior J−1

⋆ SGD I−1
⋆ n.a. n.a. 4b/n λ−1

min (I−1
⋆ J⋆)

Posterior J−1
⋆ SGLD J−1

⋆ J−1
⋆ cβn

4b(1−cβ)
ncβ

cβ
(1−cβ)

Posterior J−1
⋆ SGLD J−1

⋆ J−1
⋆ n o(b/n) b

nh ∈ ω(1)

Posterior J−1
⋆ SGLD I I n o(b/n)

bλ−1
min (J⋆)

nh ∈ ω(1)
Posterior J−1

⋆ SGLD-FP I I n 4b/n λ−1
min (J⋆)

Posterior J−1
⋆ SGLD-FP J−1

⋆ J−1
⋆ n 4b/n 1

Bagged Posterior w1J−1
⋆ + w2J−1

⋆ I⋆J−1
⋆ SGLD J−1

⋆ J−1
⋆

n
w2

4w1b
n 1/w1

Local Fiducial J−1
⋆ I⋆J−1

⋆ SGD J−1
⋆ n.a. n.a. 4b

n 1

Table 1: Tuning parameter combinations for various target distributions, and their corresponding mixing
times in epochs. If the mixing time is ω(1) (in n), then in the limit the process does not mix in a constant
number of epochs.

option is more appealing, particularly if d is large, as no matrix inversion or per-iteration multiplication is
required. In either case, however, preconditioning with Ĵ (n)(θ̂(n))−1 will minimize the mixing time. Methods
for estimating J⋆, I⋆, their inverses, and sparse approximations have been explored extensively in other work
[e.g., Haario et al., 2001, Ahn et al., 2012b, Mandt et al., 2017, Pollock et al., 2020, Chen et al., 2020].

Alternative uncertainty quantification. When the model is misspecified or when generalized Baye-
sian inference based on a loss function is used [Bissiri et al., 2016], the (generalized) posterior distribution may
provide less-than-robust uncertainty quantification because the (local) M-estimator θ̂(n) is itself asymptoti-
cally normal, centered at the true parameter θ⋆, with covariance equal to the “sandwich” covariance matrix,
J−1
⋆ I⋆J−1

⋆ [Kleijn and Van der Vaart, 2012, Müller, 2013]. If the model is well-specified (i.e., P = Qθ for
some θ ∈ Θ), then J⋆ = I⋆, and so J−1

⋆ I⋆J−1
⋆ = J−1

⋆ . However, if the model is misspecified (i.e., P ̸= Qθ

for any θ ∈ Θ), then the sandwich may differ from J−1
⋆ [Huber, 1967, White, 1982]. In this case, posterior

credible sets are not asymptotically well-calibrated frequentist confidence sets [Kleijn and Van der Vaart,
2012, Müller, 2013] and predictions (or other decision-theoretic quantities) can become unstable [Huggins
and Miller, 2019, 2023].

The question of how to account for misspecification in the Bayesian setting has been addressed in a
number of ways [e.g., Royall and Tsou, 2003, Müller, 2013, Stafford, 1996, Grünwald and Van Ommen, 2017,
Huggins and Miller, 2019]. For example, we may want to match the sandwich covariance, as prescribed
by Müller [2013], which by definition is robust to model misspecification in a frequentist sense. Or we may
want to combine the sandwich and Bernstein–von Mises covariances, as in the bagged posterior [Huggins and
Miller, 2019]. Either of these desiderata can be obtained by setting Γ = Λ = J−1

⋆ , and any valid h+b = 1 = t.
With this tuning, for any w1, w2 > 0, taking ch = 4w1cb and cβ = w−1

2 , gives Q∞ = w1J−1
⋆ I⋆J−1

⋆ +w2J−1
⋆ .

This matches the asymptotic distribution of the bagged posterior with re-sampling rate w1 when w1 = w2

[Huggins and Miller, 2019]. This is summarized in the “Bagged Posterior” row of Table 1. Moreover, we can
obtain any convex combinations of the uncertainty quantification from the posterior and the asymptotics of
the M-estimator by taking w1+w2 = 1. This enables interpolation between frequentist-like and Bayesian-like
forms of inference and results in a mixing time of 1/w1 epochs. Hence in principle we can use SGD (by
setting w1 = 1, w2 = 0, and cβ = +∞) to obtain the sandwich covariance and minimize the mixing time
to be a single pass over the dataset. This can be interpreted as an asymptotic local fiducial distribution for
the parameter, as it has credible sets which match frequentist confidence sets asymptotically. This tuning is
summarized in the “Local Fiducial” row of Table 1.

5 Numerical Experiments
We present results for three experiments using both simulated and real data that show our theory

closely reflects finite-sample behavior. Source code for experiments is at https://github.com/jnegrea/
stat-infr-sgas.
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(a) No preconditioning (b) J−1
⋆ -precond. SGD (c) J−1

⋆ -precond. SGLD

(d) SGD Iter. Avg., 8 epochs (e) SGD Iter. Avg., 1 epoch
Figure 1: Results of experiment 1. The empirical results follow the theoretical predictions based on scaling
limits. For preconditioned SGLD, w = 1/2.

5.1 Experiment 1: Gaussian simulation study
First we demonstrate the effect of model misspecification on tuning, highlighting both the sampling impli-

cations (Section 4.3 and Table 1) and the iterate averaging behaviour relevant to optimization (Section 4.2).
We choose the combination of the data-generating distribution and likelihood function specifically to ensure
that J⋆ ̸= I⋆, so that the effect of misspecification would be apparent. We run SGD with no preconditioning
and with preconditioning by J⋆, and SGLD with preconditioning by J⋆. For SGLD we use the inverse tem-
perature β(n) = n, which corresponds to the canonical choice that would be made when not using stochastic
gradients. We also compute iterate averages for SGD with no preconditioning over 1 epoch and 8 epochs.
Exact specifications for the experiment are in Table 3 in the supplemental material.

We interpret our results using our scaling limit with parameters w = 1/2, h = 1, b = 0, which corresponds
to the standard statistical local scaling and a fixed batch size. Figure 1 shows plots for the joint density
of the first and last coordinates of the parameter vector for each of the five tunings. The density for the
empirical run of the algorithms is given by a 2D kernel density estimate. The density for the predicted
behaviour is given by the stationary distribution of the limiting process. As predicted by our results in
Section 4.3, specifically in the “Local Fiducial” row of Table 1, preconditioning by J⋆ leads to an empirical
distribution for the iterates of the algorithm matching the covariance of the MLE (an asymptotic locally
fiducial distribution), not preconditioning leads to behaviour that matches neither (but is still predictable
using our results), and preconditioning by J⋆ for SGLD leads to an empirical distribution for the iterates
of the algorithm matching the asymptotics of a bagged posterior, which is given by a linear combination of
the covariance of the MLE and the covariance of the posterior. Furthermore, as predicted by the results in
Section 4.2 (in particular Eq. (14)), and in contrast to the predictions in Mandt et al. [2017], iterate averaging
for a “large” number of epochs (8) is closely approximated by the scaled sandwich covariance, while iterate
averaging over a “small” number of epochs (1) is not sufficient for the approximation by the scaled sandwich
covariance to be accurate. Finally, Table 2 shows that the mixing times predicted by our theory closely
match their empirical counterparts.

5.2 Experiment 2: Large-scale inference for airline delay data—logistic regres-
sion

Next we examine the same airline dataset and model as in Pollock et al. [2020] using their pre-processed
data so we can directly compare our recommended settings to the results they obtained with suboptimal
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tuning parameters (see Example 1). The responses are binary and there are 3 covariates. We use the full
dataset (≈ 120 million observations) to estimate the “ground truth” quantities (θ⋆,J⋆, I⋆), and we apply the
stochastic gradient algorithms using a random subsample of size 1 million from the full dataset.

For the results regarding the marginal distribution of the iterates, we compare SGLD without precon-
ditioning to SGD preconditioned by I⋆. For this example, the matrices J⋆ and I⋆ are numerically indis-
tinguishable, and hence all three preconditioned methods we examined yield essentially identical results,
and all are materially different from not preconditioning. Again, we interpret this using our scaling limit
with parameters w = 1/2, h = 1, b = 0. An experimental finding of Pollock et al. [2020] was that (non-
preconditioned) SGLD had relatively poor mixing performance as compared with the ScaLE algorithm they
introduce. Figures 2 and 4 and Table 2 similarly show that, without preconditioning, SGLD fails to prop-
erly quantify uncertainty in the true parameter (marginally for coordinate 4, and jointly) and mixes slowly.
Furthermore, SGLD without preconditioning mixes materially more slowly than preconditioned methods,
as evidenced by the jagged histogram from its run (Fig. 2) and the contour plot (Fig. 4). Our numerical
results also show that their findings would have been significantly different had they used the appropriate
preconditioning as predicted by our results showing that preconditioning accelerates the mixing of SGLD
considerably and leads to more accurate uncertainty quantification. These findings are consistent with our
theoretical developments in Sections 4.1 and 4.3 (in particular, Eq. (10), and the preconditioned SGD and
non-preconditioned SGLD and SGLD-FP rows of Table 1). Thus, we can conclude that the poor relative
mixing of non-preconditioned SGLD-FP observed in Pollock et al. [2020], and the fast mixing with precondi-
tioning could both have been predicted using our results. In particular, fixed–step-size preconditioned SGD
would have been much more competitive with that work’s proposed method than the non-preconditioned
decreasing step size SGLD that was used.

To further explore the value of our tuning guidance, we also consider the behavior of iterate averaging
when using the preconditioner diag(J⋆)

−1, which is less computationally demanding in high dimensions, and
examine different combinations of the step size and batch size scaling powers that both lead to statistically
relevant scaling limits (in particular (h, b) ∈ {(1, 0), (1/2, 1/2)}). In both cases the iterate averages are
computed for one epoch. As shown in Figs. 2 and 5, since this is a “small” number of epochs, the higher
order approximation from Eq. (13) is required to have an accurate approximation. In particular, Fig. 5
confirms that one epoch is not sufficient for Eq. (14) to be accurate in this case. This is consistent with our
theoretical developments in Section 4.2.

5.3 Experiment 3: Large-scale inference for airline delay data—Poisson regres-
sion

Finally, to validate the value of our tuning recommendations in a more complex, clearly misspecified
model, we examine the the original airline dataset [United States Department of Tansportation, 2008]
that the experiments in Pollock et al. [2020] were based upon. In this case the responses are non-negative
integers and significantly zero-inflated (relative to a Poisson distribution), and we have opted not to model
the zero-inflation to magnify the effect of misspecification. The model has 25 parameters. We use the full
2008 data (≈ 1.5 million observations) to estimate the “ground truth” quantities (θ⋆,J⋆, I⋆), and we apply
the stochastic gradient algorithms to a dataset consisting of a random subsample of size 150,000 from the
full 2008 dataset. For this example, the matrices J⋆ and I⋆ differ significantly in scale, and hence both

Experiment 1 Experiment 2 Experiment 3
Method Emp. Pred. Emp. Pred. Emp. Pred.
SGD, no preconditioning 3.2 3.2 150 480 - -
J−1
⋆ -preconditioned SGD 1.1 1.0 1.2 1.0 1.5 1.0

I−1
⋆ -preconditioned SGD 2.3 2.8 1.0 1.0 - -

J−1
⋆ -preconditioned SGLD 2.2 2.0 2.3 2.0 3.0 2.0

Table 2: Comparison of empirical and predicted mixing times (in epochs) for all experiments measured by
integrated autocorrelation times (IACT). The empirical value is computed numerically from the run. The
predicted value is computed following Table 1.
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(a) (b) (c) (d)

Figure 2: Results of experiment 2. Figs. 2a and 2b show the univariate results for the marginal distributions
of parameters 1 and 4 respective when (h, b) = (1, 0), and b = 0. Figs. 2c and 2d show the predicted
and actual entries of the variance-covariance matrix for iterate averages when (h, b) is (1, 0) and (1/2, 1/2)
respectively. The predictions for the iterate average are based upon Eq. (13).

(a) Parameter 2 (b) Parameter 3 (c) Parameter 24 (d) Parameter 25

Figure 3: Univariate results for experiment 3.

preconditioned methods we examine yield materially different uncertainty quantification for the parameter.
The non-preconditioned methods are numerically unstable at the comparable step sizes and quickly diverge.
Figure 3 and Table 2 show that both preconditioned methods behave exactly as predicted by the asymptotic
theory in Sections 4.1 and 4.3, and the results directly confirm the predictions made in, and support the
recommendations implied by, Table 1.

6 Discussion
Given their ubiquity, stochastic gradient methods for optimization and sampling have been analyzed

from a range of mathematical perspectives. Our work represents a convergence between non-statistical,
continuous-time analyses [e.g, Kushner and Yin, 2003] (and also an often heuristic machine learning litera-
ture), statistical, discrete-time characterizations [e.g., Toulis and Airoldi, 2017], and Markov chain analyses
of constant–step-size algorithms [e.g., Dieuleveut et al., 2020].

By focusing on the practically relevant fixed–step-size, large-sample setting, we are able to characterize the
stationary distributions of the limiting stochastic processes. In combination with our statistical perspective,
we are able to derive Bernstein–von Mises theorems: Corollary 2 for the marginal iterates, which is relevant
to sampling applications, and Corollary 3 for iterative averages, which is relevant to optimization. The latter
result complements analogous characterizations of iterate averages with decreasing step size schedules and
fixed data [Polyak and Juditsky, 1992, Kushner and Yin, 2003]. Both results show that iterate averaging is
robust to the choices of tuning parameters, including preconditioning, and can provide statistically optimal
numerical estimates of the optimum. Our Bernstein–von Mises theorems offer insight into misspecified
settings and clarify potential benefits of using stochastic gradients—something present in previous work
from the statistical, discrete-time perspective, but limited to the marginal behaviour of individual iterates
[Toulis and Airoldi, 2017].

Compared to previous heuristic arguments, our theory provides a more precise delineation of when
continuous-time approximations are applicable [c.f. Mandt et al., 2017, Li et al., 2018]. For example
we show that (a) there is no requirement for batch sizes to be large enough that single iteration increments
are approximately Gaussian, and (b) these scaling limits exist for much broader combinations of joint scaling
of step size and sample size leading to different rates of contraction. At the same time, the precise nature of
our results allow us to more clearly understand the limitations of scaling limit analyses: heuristic calculations
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involving the behaviour across a large number of iterations can be replaced with corresponding approxima-
tions from the limiting process precisely when the time horizon involved is O(1) on the limiting time scale.
Our iterate averaging results provide a case in point: in order to have the same rate of contraction as the
posterior distribution and/or the MLE, we must carefully choose the scaling of the step size and batch size
together to ensure the spatial scaling is of order 1/

√
n. Furthermore, Corollary 3 shows that, in general,

iterate averaging must be done over m ≫ 1 epochs for the covariance of the iterate average to accurately
approximate the (rescaled) covariance of the MLE (which is in contrast to the claims of Mandt et al. [2017]).

Our results are advances in two of the key stochastic gradient MCMC research areas identified by Nemeth
and Fearnhead [2021]. Namely, by invoking a large-sample limit we are able to provide results that circum-
vent strong convexity assumptions, and we are able to provide comprehensive analyses of various tuning
combinations and to make tuning recommendations that can be implemented by or for practitioners. Using
this new-found understanding, we were able to explain the empirical results of some critiques of SGLD-like
methods and to show that with adequate tuning (that we identify) they would have performed significantly
better.

Overall, our rigorous, continuous-time statistical approach to analyzing stochastic gradient algorithms
complements existing work, yielding new insights into the practical effectiveness of stochastic gradient meth-
ods, and opens new avenues for future research. Because our results are expressed in terms of the joint
scaling/choice of dataset size, step size, batch size, and other algorithm parameters, users can gain insight
into a stochastic gradient algorithm’s statistical behavior for specific choices of these values, which is not
possible when taking the limit with the dataset size fixed.

Besides the concrete guidance for tuning SGAs and the explanations of prior work’s empirical observa-
tions, our methods also lay the foundation for similar analyses of other SGAs and data generating models.
Two such examples would be hierarchical models where the parameter dimension depends on the sample
size and nonparametric models. Such analyses would allow for a systematic and fair comparison between
inference methods and provide a better understanding of when stochastic gradient methods are effective.
Another interesting new line of inquiry is to quantify in which finite-sample regimes our asymptotic results
hold, which would enable more precise guidance for use in practice.
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A Further applications and extensions
We now discuss applications and extensions of our scaling limit to more complex, practically relevant

stochastic gradient algorithms. The poor approximation accuracy of SGLD with uninformed tunings has
led to the proposal of many alternatives [e.g., Pollock et al., 2020, Nemeth and Fearnhead, 2021, Vollmer
et al., 2016]. Of particular note are two approaches which are used to reduce the error of both stochastic
optimization and sampling. First, momentum-based methods such as (stochastic) heavy ball [Gupal and
Bazhenov, 1972] and underdamped (stochastic gradient) Langevin dynamics [An et al., 2018, Lessard et al.,
2016, Cyrus et al., 2018, Ma and Yarats, 2018] aim to improve on SGLD by decreasing the mixing time of
the stochastic process being discretized, typically by moving to a non-reversible process which can in general
mix faster than a reversible one. Second, variance reduction methods aim to improve the accuracy of the
approximate posterior obtained by improving the stochastic estimates of the gradients used in the update
formula at each step. For example Nagapetyan et al. [2017] and Baker et al. [2019] do this with a clever
choice of control variates. Lastly, in practice, often parameter spaces are constrained, and we show that this
does not affect the scaling limit.

A.1 Applications to momentum-based algorithms
Special cases of our results include momentum-based acceleration of SGD such as the quasi-hyperbolic

momentum algorithm of Ma and Yarats [2018], which includes many momentum-based algorithms as special
cases (e.g., Nesterov’s accelerated gradient, PID control algorithms [An et al., 2018], and more; see [Ma
and Yarats, 2018, Table 1]). As an example, we show how we can express underdamped stochastic gradient
Langevin dynamics in terms of our general stochastic gradient algorithm. We lift the parameter space to
a phase space given by Θ̃ = Θ × Rd, for θ̃ = (θ, ψ) ∈ Θ̃, we extend the log-likelihood to the phase space
according to ℓ̃(θ̃;x) = ℓ(θ;x) − ψ⊤M−1ψ/2, and lift the prior to phase space using the (improper) prior
π̃(0)(θ̃) = π(0)(θ). For (stochastic) heavy ball and underdamped (stochastic gradient) Langevin dynamics
(cf., e.g., Duncan et al. [2017, Eqs. 4 and 5]), the lifted Hamiltonian preconditioner Γ̃ and the lifted diffusion
matrix Λ̃ are Γ̃ =

[
0 −I
I Γ

]
and Λ̃ = [ 0 0

0 Γ ]. This yields a combined parameter update formula of

θ
(n)
k+1 = θ

(n)
k +

h(n)

2
M−1θ̃

(n)
k , ψ

(n)
k+1 =

(
I − h(n)Γ

2
M−1

)
ψ
(n)
k +

h(n)

2
Ĝ

(n)
k +

√
h(n)

β(n)
Γ ξk. (15)
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The corresponding limiting process is dϑ̃t = − 1
2 B̃ϑ̃tdt +

√
ÃdW̃t, where W̃t is a 2d-dimensional stan-

dard Brownian motion, and the drift and diffusion matrices are, respectively, B̃ = ch

[
0 −M−1

J⋆ ΓM−1

]
and

Ã = I[b+h≤t]
c2hcb
4cb

[
0 0
0 I⋆

]
+ I[t≤b+h]

ch
cβ

[ 0 0
0 Γ ] .

A.2 Extension to control variates
SGLD methods with control variates aim improve the reliability of SGLD as an MCMC method to reduce

the variance caused by mini-batching by introducing a “zero variance control variate” [Baker et al., 2019,
Nagapetyan et al., 2017]. Because this modification corresponds to a data-dependent change in the structure
of the way stochastic gradients for the potential function are generated, this algorithm does not fit into
the framework of Section 3. However, our analysis can be easily modified to apply to these control variate
methods, as we show in Appendix H. We find that the scaling limit for SGLD with control variates is nearly
the same as without control variates, except that the diffusion term corresponding to mini-batch noise is
always 0. This is because the average drift is (by design) not affected by the control variate, the additional
Gaussian innovations have the same contribution as before, and the mini-batch noise is now always lower
order. Hence, the spatial scaling can always be chosen so that the noise from Gaussian innovations persists
in the limit by taking w = t/2, where the corresponding limiting process takes the form of Eq. (7) with
B = chΓJ⋆ and A = ch

cβ
Λ.

A.3 Extension to constrained parameter spaces
If Θ ⊊ Rd, then the iterations given by Eq. (5) may exit Θ, resulting in undefined behaviour. The

typical way to handle this case is to impose boundary dynamics. The two most common examples of such
boundary dynamics are reflecting and projecting. Projecting maps iterates that would exit Θ to the nearest
point within Θ. Reflecting, defined when the boundary is sufficiently smooth, treats the dynamics between
two iterates as the motion of a particle in constant speed linear motion over a fixed time, and when the
particle reaches the boundary it collides elastically and “bounces” off. In either case the new iterate is a
measurable function of the previous iterate and the vector between the previous iterate what the new iterate
would have been without adjusting for the constraint. Moreover, these conditions both satisfy that the
distance between iterates is constrained by what the distance would have been without adjusting for the
constraint. In Appendix I we consider boundary dynamics satisfying a generalized version of this property.
When Θ ⊊ Rd and θ⋆ ∈ interior(Θ) the proof is essentially the same because, intuitively, the assumption
that ϑ(n)(0)⇝ ϑ(0) ensures that the processes we consider all start near θ⋆ and away from the boundary of
Θ, and thus the spatial scaling drives the boundary of Θ outside any bounded set.

B Additional Definitions and Technical Results
Before presenting proofs of the various results of this work, we introduce some additional miscellaneous

notations, definitions, and technical results that we will use.

B.1 Bernstein-von Mises under misspecification
Definition 1. The first and second order Fisher information matrices, I and J respectively, are defined for
a log-likelihood function ℓ and probability distribution P by

I(θ) = E
X∼P

[∇θℓ(θ;X)⊗∇θℓ(θ;X)] , and J (θ) = − E
X∼P

∇⊗2
θ ℓ(θ;X).

Let X be a Polish space with σ-field ΣX , M1,+ (X ) denote the set of probability measures on X , and
suppose that P ∈ M1,+ (X ). Suppose that X(N) := (Xi)i∈N ∼ P⊗N. Let n ∈ N denote a sample size, let
[n] := {1, . . . , n}, and let X(n) := (Xi)i∈[n] ∼ P⊗n be an I.I.D. sample of size n from P .

Let Θ ⊆ Rd be open and nonempty, let Q be a regular conditional distribution from Θ to (X ,ΣX ); i.e.:

(i) for all θ ∈ Θ, Qθ ∈ M1,+ (X ), and
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(ii) for all A ∈ ΣX , Q·(A) : θ 7→ Qθ(A) is measurable6.

Suppose there exists a σ-finite measure, µ, on X , such that for all θ ∈ Θ, Qθ ≪ µ. Let qθ denote a version of
dQθ/dµ for each θ ∈ Θ. Let ℓ(θ;x) := log qθ(x) for all θ ∈ Θ and x ∈ X . We consider M := {Qθ | θ ∈ Θ} to
be a model for P . The model is well-specified when P ∈ M, and is misspecified otherwise. The pseudo-true
parameter of the model is defined as θ⋆ := argmaxθ∈Θ E

X∼P
ℓ(θ;X). If µ≪ P then

θ⋆ = argmax
θ∈Θ

E
X∼P

ℓ(θ;X) = argmin
θ∈Θ

KL (P ∥Qθ) .

Let Π(0) ∈ M1,+ (Θ) be any distribution on Θ. Let PΠ(0),M ∈ M1,+

(
Θ⊗XN), given by

PΠ(0),M(A×B) :=

∫
I[θ∈A]

[∫
I[x(N)∈B]Qθ

N(dx(N))

]
Π(0)(dθ)

denote the joint distribution of the data and the parameter according to the model and the prior, where
Qθ

N(dx(N)) denotes the law of an I.I.D. sequence from Qθ (an infinite product measure on the cylinder
σ-field). Let EΠ(0),M denote the expectation under PΠ(0),M. The posterior for θ under the model M given
data X(n) is the random probability measure on Θ given by

Π(X(n))(A) := EX(n)

Π(0),M
[
I[θ∈A]

]
,

where for a random variable or σ-field G, an expectation operator E and a random variable Y , EG(Y ) is the
conditional expectation of Y given G. The posterior Π(X(n)) can be viewed as a probability kernel from Xn

to Θ.
Let λ denote the Lebesgue measure. If Π(0) ≪ λ with dΠ(0)/dλ =: π(0), then Π(X(n)) ≪ λ with

dΠ(X(n))/dλ = π(X(n)) given by

π(X(n))(θ) ∝ π(0)(θ)
∏
i∈[n]

qθ(Xi) = π(0)(θ) exp

∑
i∈[n]

ℓ(θ;Xi)

 . (16)

Let θ̂(n) := argmaxθ∈Θ

∑
i∈[n] ℓ(θ;Xi) denote the maximum likelihood estimator (MLE) of θ⋆ given the

data X(n). Posterior distributions have a general tendency to concentrate around the MLE as the sample size
increases. Therefore, we will often reparameterize the model by considering a local parametrization, where
to each parameter θ ∈ Θ we associate a local parameter, ϑ ∈

√
n
(
Θ− θ̂(n)

)
based on the identification

ϑ =
√
n
(
θ − θ̂(n)

)
and the local model is given by

M(X(n)) :=

{
Qθ̂(n)+ 1√

n
ϑ | ϑ ∈

√
n
(
Θ− θ̂(n)

)}
.

The random localization map is given by

locX(n) : θ 7→
√
n
(
θ − θ̂(n)

)
For a measurable function f : A → B and a measure µ on A, the pushforward of µ through f is the

measure f♯µ on B defined by [f♯µ](B) = µ(f−1(B)) for all measurable B ⊂ B.

Proposition 2 (BvM under model misspecification, Kleijn and Van der Vaart [2012]). Under regularity
conditions, ∥∥∥[locX(n) ]♯Π

(X(n)) − Φ
∥∥∥

TV

P→ 0.

with θ⋆ = argmaxθ∈Θ E
X∼P

ℓ(θ;X), J⋆ = − E
X∼P

[
∇⊗2ℓ(θ⋆; X)

]
, and Φ = N

(
0,J−1

⋆

)
.

6Θ is equipped with the Borel σ-field inherited from Rd
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B.2 Convergence modes of measures and operators
Let A be a measurable space, and let B(A) denote the collection of bounded measurable functions on A.

For a function f : A → L with (L, ∥·∥) a normed linear space, define

∥f∥∞ := sup
a∈A

∥f(a)∥ .

For a sequence of probability measures, {µn}n∈N and a probability measure µ on a measurable space A, we
have the following modes of convergence:

• µn converges in total variation to µ, denoted by µn
TV→ µ, if and only if

sup
f∈B(A)

|µnf − µf |
∥f∥∞

→ 0.

• if A is also a topological space and the σ-field on A is the Borel σ-field, then µn converges in distribution
(also called weakly) to µ, denoted by µn ⇝ µ, if and only if for all f ∈ C(A), |µnf − µf | → 0.

Clearly (
µn

TV→ µ
)

=⇒
(
µn

s→ µ
)

=⇒ (µn ⇝ µ)

while the converses do not hold in general.
For a Banach Space L with norm ∥·∥ denote its dual space (the space of all bounded linear operators

on L) by L′. L′ is a Banach space with norm ∥y∥ := supx∈L\{0} |fx| / ∥x∥ for all f ∈ L′. Denote the set
of bounded linear operators from L to itself by B(L). B(L) is also a Banach space with norm given by
∥T∥ = supx∈L\{0} ∥Tx∥ / ∥x∥.

For a sequence of bounded linear operators, {Tn}n∈N, and a bounded linear operator, T , all mapping a
Banach Space L to itself, we have the following modes of convergence:

• Tn converges in norm to T if and only if

∥Tn − T∥ = sup
(x,y)∈L×L′

|⟨y, (Tn − T )x⟩|
∥x∥ ∥y∥

→ 0 (17)

• Tn converges strongly to T , denoted Tn
s→ T if and only if for all x ∈ L

sup
y∈L′

|⟨y, (Tn − T )x⟩|
∥y∥

→ 0 (18)

Clearly
(∥Tn − T∥ → 0) =⇒

(
Tn

s→ T
)

while the converse does not hold in general.

B.3 Operator Semigroups and Weak Convergence of Markov Processes
For a Banach space, (L, ∥·∥), let B(L) denote the collection of all bounded linear operators from L to

itself, and let I denote the identity operator. An operator semigroup on L is a function T : R+ → B(L) such
that

i) T (0) = I,

ii) T (t+ s) = T (t)T (s) for all t, s ∈ R.

An operator semigroup is strongly continuous if

iii) limt→0+ ∥Ttf − f∥ = 0 for all f ∈ L.
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An operator semigroup is contractive if

iv) ∥Tt∥ ≤ 1 for all t ∈ R+.

The infinitesimal generator (or just generator, for brevity) of the semigroup T is the (possibly unbounded)
linear operator defined by

Af = lim
t→0+

Ttf − f

t

for f ∈ dom(A) = {f ∈ L | limt→0+ (Ttf − f) /t exists}. Let

Ĉ(Rd) =

{
f ∈ C(Rd) | ∀ϵ > 0 ∃Kf,ϵ ⊂ Rd compact with sup

θ ̸∈Kf,ϵ

|f(θ)| ≤ ϵ

}

Then Ĉ(Rd) is a Banach space under the norm ∥f∥∞ = supθ∈Rd |f(θ)|. The dual space of Ĉ(Rd) is the space
of bounded signed measures under the total variation norm

∥µ∥TV = sup
f∈Ĉ(Rd)
∥f∥∞≤1

∣∣∣∣∫ f(θ)µ(dθ)

∣∣∣∣ .
We will work with (L, ∥·∥) =

(
Ĉ(Rd), ∥·∥∞

)
. A semigroup on

(
Ĉ(Rd), ∥·∥∞

)
is positive if

v) f ≥ 0 =⇒ Tf ≥ 0.

A semigroup on
(
Ĉ(Rd), ∥·∥∞

)
is Feller if it is strongly continuous, contractive, and positive.

Semigroups naturally model the forward operators of Markov processes in continuous time. If Xt is a
Markov process with transition kernels kt(·, ·) then the forward operator corresponding to the Markov process
(equivalently, corresponding to its transitio kernels) is defined by

Ttf(x) = Exf(Xt) =

∫
f(y)kt(x, dy) (19)

where Ex denotes expectation under the law of the Markov process given when X(0) = x almost surely. The
semigroup property is then equivalent to the Kolmogorov forward equation.

The generator, A, of a Feller semigroup T has a dense domain; dom(A) is dense in Ĉ(Rd). A Markov
process for which the corresponding forward operators form a a Feller semigroup is called a Feller process.
Feller processes have a richly developed theory; see, for example, Ethier and Kurtz [2009] or Kallenberg
[2006]. The following facts will be useful to us. First, every Feller process on Rd has a version with càdlàg
(a.k.a right continuous with left limits, or rcll) paths, that is for all t > 0, lims→t− X(s) exists and lims→t+ Xt.
Second for each I ∈ {[0, T ] | T > 0}∪{R+}, the collection of all càdlàg functions from I to Rd is a separable
and complete metric space under the Skorohod metric [Kallenberg, 2006, Theorem A2.2]. The formula for the
Skorohod metric is not particularly illuminating, so is omitted here and may be found in the reference. This
space is denoted by D(I,Rd). The Borel σ-field generated by the Skorohod metric is equal to σ({πt | t ∈ I ′})
where πt(X) = Xt are the projection maps, and I ′ is any dense subset of I.

Let C∞
c (Rd) be the set of functions Rd → R with compact support and with continuous derivatives of all

orders. C∞
c (Rd) is dense in C(Rd).

Proposition 3 (Approximation of Markov Chains (compiled from Ethier and Kurtz [2009]). Let A :
C∞

c (Rd) → C(Rd) be linear and suppose that the closure of the graph of A (with respect to the graph norm
defined by ∥f∥A = ∥f∥∞ + ∥Af∥∞ for all f ∈ L) generates a Feller semigroup T on Rd. Let (ϑt)t∈R+

be a

Markov process with forward operator semigroup T . Let
(
(θ

(n)
k )k∈N∪{0}

)
n∈N

be a sequence of (discrete-time)

Markov chains on Rd with respective transition kernels (U (n))n∈N. Suppose that 0 < α(n) → ∞, and let

A(n) = α(n)
(
U (n) − I

)
T

(n)
t =

(
U (n)

)⌊α(n) t⌋
ϑ
(n)
t = θ

(n)

⌊α(n) t⌋.

If
∥∥A(n)f −Af

∥∥
∞ → 0 for all f ∈ C∞

c (Rd), then
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(a) T
(n)
t

s→ Tt for each t > 0, and

(b) If ϑ(n)(0)⇝ ϑ(0) then ϑ(n)(·)⇝ ϑ(·) in the Skorohod metric.

Proof of Proposition 3. (a) Follows from Chapter 1, Theorem 6.5 of Ethier and Kurtz [2009]. (b) Follows by
combining Chapter 4, Theorem 8.2, Corollary 8.5, and Corollary 8.9 of Ethier and Kurtz [2009].

B.4 Miscellaneous notation and definitions
Definition 2 (Convergence in Probability to a constant). Let (Ω,F ,P) be a probability space, let (X , τ)
be a topological space endowed with the σ-field FX = σ(τ), let (Xn)n∈N be a sequence of X -valued random
elements, and let x ∈ X . Then Xn converges to x in probability as n → ∞, denoted Xn

p→ x, when for
every neighbourhood x ∈ U ∈ τ we have

lim
n→∞

P(Xn ∈ U c) = 0.

Lemma 1. Let (Ω,F ,P) be a probability space, let (X , τ) be a topological space endowed with the σ-field
FX = σ(τ), let (Xn)n∈N be a sequence of X -valued random elements, and let x ∈ X .

If for every sub-sequence nm there is a sub-sub-sequence nmk
such that Xnmk

→ x almost surely as k → ∞
then Xn

p→ x.
If (X , τ) is first-countable then the converse also holds; if Xn

p→ x then for every sub-sequence nm there
is a sub-sub-sequence nmk

such that Xnmk
→ x almost surely as k → ∞.

The proof of this result is the same as in Durrett [2019, Theorem 2.3.2], generalizing the metric space
definition of convergence in probability and replacing a sequence of balls of vanishing radius with a countable
neighbourhood basis.

C Proof of Theorem 1
In this section we prove Theorem 1, as well as an additional result along with what was stated, since

both follow from the same premises. The full statement of what we prove is given below. Item 2 below is
used in the proof of Corollary 2.

Theorem 2 (Scaling Limits of SGD/SGLD/LD (Full)). Suppose that (θ
(n)
k )k∈N evolves according to the

gradient-based algorithm in Eq. (35) with step size h(n) = chn
−h, b(n) =

⌊
cbn

b
⌋
, β(n) = cβn

t, all other
tuning parameters constant in n. Let θ⋆ ∈ Rd. Let X(N) = (Xi)i∈N ∼ P⊗N, and θ̂(n) be a critical point of
the log-likelihood function

∑n
i=1 ℓ(·, Xi) for each n ∈ N; that is

∑n
i=1 ∇ℓ(θ̂(n), Xi) = 0 for all n ∈ N.

Let ϑ(n)t = w(n)
(
θ
(n)
⌊α(n)t⌋ − θ̂(n)

)
, where w(n) = nw, α(n) = na, w ∈ (0, 1),

a = min {h, (t+ h− 2w) , (b+ 2h− 2w)} .

If Assumptions 1 to 5 all hold, a > 0, and ϑ(n)(0)⇝ ϑ(0) then

1. (ϑ
(n)
t )t∈R+

⇝ (ϑt)t∈R+
in the Skorohod topology in probability, where (ϑt)t∈R follows the Ornstein–

Uhlenbeck process:
dϑt = −cd

2
ΓJ (θ⋆)ϑtdt+

√
cgΛ + cmbΓI(θ⋆)Γ′ dWt,

with

cd =

{
ch a = h

0 a < h
, cg =

{
ch
cβ

a = h+ t− 2w

0 a < h+ t− 2w

and

cmb =


c2h(1−cb)

4cb
a = 1 + 2h− 2w and b = 1 and no replacement

c2h
4cb

a = b+ 2h− 2w and (b ̸= 1 or replacement)
0 a < b+ 2h− 2w.
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2. If T (n) and T are defined as in Proposition 3, then under the conditions above, every subsequence of(
T (n)

)
n∈N, then

(
T (nm)

)
m∈N, has a further sub-subsequence,

(
T (nmk

)
)
k∈N, such that with probability

1, T (nmk
)

t
s→ Tt for all t > 0.

Before beginning the proof of this result, Theorem 2, we require the following lemma, which is used to
turn the moment conditions in our assumptions into bounds on the magnitudes of certain random variables
that hold all but finitely often with probability 1.

Lemma 2. Let α : R+ → R+ be non-decreasing, right continuous with left limits, with α(0) = 0, and
limt→∞ αt = ∞. Let Zi ∼ µ for all i ∈ N (possibly not independent) with Z1 ≥ 0 almost surely such that
E [α(Z1)] <∞. Let α+ : u 7→ inf {t ≥ 0 s.t. αt ≥ u} be the generalized inverse of α. Then

P

(
max
i∈[n]

Zi ≥ α+(n) i.o.

)
= 0.

Proof of Lemma 2. Let St = P(Z1 > t) be the survival function of µ, and let Wn = α(Zn) for each n ∈ N.
Note that P(W1 > t) = S(α+

t ). Then

∞ > E [(α(Z1))] =

∫ ∞

0

P(W1 > t)dt ≥
∞∑

n=1

P(W1 > n) =

∞∑
n=1

P(Wn > n)

Therefore, from the Borel–Cantelli lemma P(Wn > n i.o.) = 0, and equivalently P(Wn ≤ n a.b.f.o.) = 1.
Now, whenever Wn ≤ n for all but finitely many n, then there exists K ∈ N and I1, . . . IK ∈ N with
Wn ≤ n for all n ∈ N \ {Ij : j ∈ [K]}. Therefore, for all n ≥ maxj≤K WIj , maxi≤nWi ≤ n. Therefore
P(maxi≤nWi ≤ n a.b.f.o.) = 1, and equivalently P(maxi≤nWi > n i.o.) = 0. Finally, Wi > n if and only
if Zi > α+(n), hence

P(max
i≤n

Zi > α+(n) i.o.) = 0.

C.1 Proof of Theorem 2
Let J⋆ = J (θ⋆) and I⋆ = I(θ⋆).
The proof proceeds in the following stages. In Appendix C.1.1, we will reduce the problem of weak

convergence in the Skorohod topology in probability to one of weak convergence in the Skorohod topology
almost-surly along subsequences and construct appropriate such subsequences. In Appendix C.1.2 we intro-
duce notation that will be useful in the remainder of the proof. In Appendix C.1.3 we discuss what is needed
to apply Proposition 3 to establish the processes converge weakly in the Skorohod topology almost-surely.
This amounts to showing that the difference between the approximate generator and limiting generator eval-
uated a smooth test function with compact support vanishes uniformly. We will examine this difference in
two regimes. First, in Appendix C.1.4, we will consider arguments sufficiently far from the support of the
test function. Then, in Appendix C.1.5, we will consider arguments in or close to the support of the test
function, and use a Taylor series expansion of the approximate generator to divide this into three types of
non-zero terms. The first type is non-remainder terms that vanish and have no corresponding term in the
limiting generator; these are handled in Appendix C.1.6. The second type is terms that do not vanish and
do have corresponding terms in the limiting generator; these are handled in Appendices C.1.7 to C.1.9. The
third type of term is the remainder term, which is handled in Appendix C.1.10. Putting all of this together
allows us to apply Proposition 3 along our subsequences, establishing the main result.
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C.1.1 Reduction to almost-sure convergence on subsequences

Let
Υ(n) = max

(
Υ

(n)
1 ,Υ

(n)
2 ,Υ

(n)
3

)
,

Υ
(n)
1 = nq3

∥∥∥θ̂(n) − θ⋆

∥∥∥ ,
Υ

(n)
2 = supθ∈B(θ̂(n),rJ ,n/nw)

∥∥∥Ĵ (n)(θ)− J (θ⋆)
∥∥∥ ,

Υ
(n)
3 = supθ∈B(θ̂(n),rI,n/nw)

∥∥∥Î(n)(θ)− I(θ⋆)
∥∥∥ .

Each of the Υ terms corresponds to the important quantity that vanishes in probability for one of the
assumptions. For example, Υ(n)

1 controls how quickly the local MLE converges under Assumption 2 which
lets us use a weaker moment assumption for the sup-norm of the Hessian of the log-likelihood.

By assumption, Υ(n) p→ 0. Then, by Lemma 1, for every subsequence (nm)m∈N there is a further sub-
subsequence (nmk

)k∈N so that this convergence is almost sure. Along an arbitrary such sub-subsequence, we
will verify that (ϑ(nmk

))t∈R+
⇝ (ϑt)t∈R+

in the Skorohod topology almost surely. Since weak convergence
is metrizable (e.g., by the Levi–Prokhorov metric, and hence corresponds to a topology on probability
distributions), and since for any subsequence (nm)m∈N we will have shown a further subsequence (nmk

)k∈N

such that (ϑ(nmk
)

t )t∈R+
⇝ (ϑt)t∈R+

a.s., by Lemma 1 it must hold that (ϑ(n)t )t∈R+
⇝ (ϑt)t∈R+

in probability.
Now, let (nm)m∈N be an arbitrary subsequence7 of N such that Υ(nm) a.s.→ 0. Let Ω denote the underlying

probability space. Let

Ω(0) =

3⋂
i=1

Ω(i),

Ω(1) =
{
Υ(nm) → 0

}
,

Ω(2) =

{
max
i∈[n]

∥∇ℓ(θ⋆;Xi)∥ ≤ n1/p2 a.b.f.o

}
,

Ω(3) =

{
max
i∈[n]

∥∥∇⊗2ℓ(·;Xi)
∥∥
∞ ≤ n1/p3 a.b.f.o.

}
.

By assumption, and by applying Lemma 2 to power functions of the form α : t 7→ tp and random variables
∥∇ℓ(θ⋆;Xi)∥ and

∥∥∇⊗2ℓ(·;Xi)
∥∥
∞, Ω(0) is a sure set.

C.1.2 Additional notation used in the proof

We notate the increments of the localized iterative algorithms (given that ϑ(n)0 = ϑ) due to the Gaussian
innovation (ξ), the gradient step contribution of the prior (π(0)), the mini-batch gradient step based on the
log-likelihood (ℓ), and the total increment, respectively, as

∆
(n)
ξ := w(n)

√
hβ−1Λ ξ1,

∆
(n)

π(0)(ϑ) :=
hw(n)Γ

2n
∇ log π(0)

(
θ̂(n) + (w(n))−1ϑ

)
,

∆
(n)
ℓ (ϑ) :=

hw(n)Γ

2b(n)

∑
j∈[b(n)]

∇ℓ
(
θ̂(n) + (w(n))−1ϑ; X

I
(n)
1 (j)

)
, and

∆(n)(ϑ) := ∆
(n)
ξ +∆

(n)

π(0)(ϑ) + ∆
(n)
ℓ (ϑ).

We define the sequence of operators A(n) by

[A(n)f ](ϑ) = α(n)
(
EX(N)

[
f(ϑ+∆(n)(ϑ))

]
− f(ϑ)

)
. (20)

7Since every sub-subsequence is itself a subsequence, we can simplify our notation from here onward.
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for all n ∈ N, and all f ∈ C∞
c (Rd), where α(n) = n. The generator of the (presumed, at this point) limiting

OU process is given by

[Af ](ϑ) = −
〈cd
2
ΓJ⋆ϑ, ∇f(ϑ)

〉
+

1

2

(
cgΛ + cmbΓI⋆Γ′) : ∇⊗2f(ϑ) (21)

C.1.3 How Proposition 3 is applied

Consider a single realization of X(N) ∈ Ω(0). Our goal, now, is to apply Proposition 3, treating X(N) as
fixed. To do so, it suffices to show that for each f ∈ C∞

c (Rd) we have

lim
m→∞

sup
ϑ∈Rd

∣∣∣[A(nm)f ](ϑ)− [Af ](ϑ)
∣∣∣ = 0.

For an arbitrary test function, f ∈ C∞
c (Rd), with compact support K0, we will show this in two parts. First

we will identify a compact extension, K1 ⊃ K0 to the compact support of f such that

lim
m→∞

sup
ϑ∈Kc

1

∣∣∣[A(nm)f ](ϑ)− [Af ](ϑ)
∣∣∣ = 0.

Then we will separately show that

lim
m→∞

sup
ϑ∈K1

∣∣∣[A(nm)f ](ϑ)− [Af ](ϑ)
∣∣∣ = 0.

C.1.4 Convergence away from the test function support

For all ϑ ∈ Kc
0, f(ϑ) = 0, ∇f(ϑ) = 0, and ∇⊗2f(ϑ) = 0. Therefore, for any K1 ⊃ K0,

sup
ϑ∈Kc

1

∣∣∣[A(nm)f ](ϑ)− [Af ](ϑ)
∣∣∣

≤ α(nm) ∥f∥∞ sup
ϑ∈Kc

1

PX(N)
[
ϑ+∆(nm)(ϑ) ∈ K0

]
.

(22)

Let R0 = supϑ∈K0
∥ϑ∥. Let K1 =

{
ϑ ∈ Rd s.t. ∥ϑ∥ ≤ 2R0 + 2c0

}
, where

c0 =
ch ∥Γ∥

2

(
3 +

∥∥∥∇ log π(0) (θ⋆)
∥∥∥)+√ch/cβ ∥Λ∥.

Then, using Eq. (22) and ∆(nm)(ϑ) = ∆
(nm)
ξ (ϑ) + ∆

(nm)

π(0) (ϑ) + ∆
(nm)
ℓ (ϑ),

sup
ϑ∈Kc

1

∣∣∣[A(nm)f ](ϑ)− [Af ](ϑ)
∣∣∣

≤ α(nm) ∥f∥∞ sup
∥ϑ∥>2R0+2c0

PX(N)
[∥∥∥ϑ+∆(nm)(ϑ)

∥∥∥ ≤ R0

]
≤ α(nm) ∥f∥∞ sup

∥ϑ∥>2R0+2c0

PX(N)
[∥∥∥∆(nm)

ξ

∥∥∥ ≥ ∥ϑ∥ −
∥∥∥∆(nm)

π(0) (ϑ)
∥∥∥− ∥∥∥∆(nm)

ℓ (ϑ)
∥∥∥−R0

]
.

(23)

For ϑ ∈ Kc
1, using the assumption that ∇ log π(0) is L0-Lipschitz and h(n) = chn

h and w(n) = nw,∥∥∥∆(nm)

π(0) (ϑ)
∥∥∥ ≤ h(nm)w(nm) ∥Γ∥

2nm

∥∥∥∇ log π(0)
(
θ̂(nm) + (w(nm))−1ϑ

)∥∥∥
≤ h(nm)w(nm) ∥Γ∥

2nm

(∥∥∥∇ log π(0) (θ⋆)
∥∥∥+ L0

∥∥∥θ̂(nm) − θ⋆

∥∥∥+ L0 ∥ϑ∥
w(nm)

)
≤ chn

w−h−1
m ∥Γ∥

2

(∥∥∥∇ log π(0) (θ⋆)
∥∥∥+ L0

∥∥∥θ̂(nm) − θ⋆

∥∥∥+ L0 ∥ϑ∥
nwm

)
,
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and similarly∥∥∥∆(nm)
ℓ (ϑ)

∥∥∥
≤ h(nm)w(nm) ∥Γ∥

2b(nm)

∥∥∥∥∥∥∥
∑

j∈[b(nm)]

∇ℓ
(
θ̂(nm) + (w(nm))−1ϑ; X

I
(nm)
1 (j)

)∥∥∥∥∥∥∥
≤ chn

w−h
m ∥Γ∥
2b(nm)

∑
j∈[b(nm)]

(∥∥∥∇ℓ(θ⋆; XI
(nm)
1 (j)

)∥∥∥+ L(X
I
(nm)
1 (j)

)
∥∥∥θ̂(nm) − θ⋆

∥∥∥+ L(X
I
(nm)
1 (j)

) ∥ϑ∥
nmw

)

≤ chn
w−h
m ∥Γ∥
2

(
L⋆(X

(nm)) + L(X(nm))
∥∥∥θ̂(nm) − θ⋆

∥∥∥+ L(X(nm))
∥ϑ∥
nmw

)
where we define the (random) Lipschitz constants L(Xi), L⋆(X

(nm)), and L(X(nm)) by:

L(Xi) :=
∥∥∇⊗2ℓ(·;Xi)

∥∥
∞ ,

L⋆(X
(nm)) := max

i≤nm

∥∇ℓ (θ⋆; Xi)∥ , and

L(X(nm)) := max
i≤nm

L(Xi).

Using that X(N) ∈ Ω(0), so that Υ(nm) → 0 etc., if m is large enough that all of the following hold:

sup
m′≥m

Υ(nm) ≤ min(1, L−1
0 ),

1 ≥ sup
m′≥m

L⋆(X
(nm′ ))

n
1/p2
m′

,

nm ≥ max((2ch ∥Γ∥)1/(1/p3−h)
, (2chL0 ∥Γ∥)

1
h+1−a−w ), and

1 ≥ sup
m′≥m

L(X(nm′ ))

n
1/p3
m′

;

then, using that 0 < w < 1,∥∥∥∆(nm)

π(0) (ϑ)
∥∥∥ ≤ ch ∥Γ∥

2

(∥∥∥∇ log π(0) (θ⋆)
∥∥∥+ 1

)
+

1

4
∥ϑ∥ ,

and ∥∥∥∆(nm)
ℓ (ϑ)

∥∥∥ ≤ chn
−h+w
m ∥Γ∥

2

(
n1/p2
m + n1/p3

m Υ(nm) + n1/p3−w
m ∥ϑ∥

)
≤ ch ∥Γ∥

2

(
n1/p2−h+w
m + n1/p3−h+w

m Υ(nm) + n1/p3−h
m ∥ϑ∥

)
,

≤ ch ∥Γ∥+
1

4
∥ϑ∥ .

Therefore, for ϑ ∈ Kc
1 (and hence ∥ϑ∥ > 2R0 + 2c0),

∥ϑ∥ −
∥∥∥∆(nm)

π(0) (ϑ)
∥∥∥− ∥∥∥∆(nm)

ℓ (ϑ)
∥∥∥−R0

≥ 1

2
∥ϑ∥ − ch ∥Γ∥

2

(
3 +

∥∥∥∇ log π(0) (θ⋆)
∥∥∥)−R0

≥
√
ch/cβ ∥Λ∥.
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Therefore, combining this with Eq. (23) and the definition of ∆(nm)
ξ (ϑ),

lim
m→∞

sup
ϑ∈Kc

1

∣∣∣[A(nm)f ](ϑ)− [Af ](ϑ)
∣∣∣ ≤ lim

m→∞
α(nm) ∥f∥∞ PX(N)

(
∥ξ1∥ ≥ nh/2+t/2−w

m

)
≤ lim

m→∞
α(nm) ∥f∥∞ d PX(N)

(
|ξ1,1| ≥

1√
d
nh/2+t/2−w
m

)
≤ lim

m→∞
2nam ∥f∥∞ d exp(−nh+t−2w

m /2d)

= 0.

since h+ t− 2w ≥ a > 0.

C.1.5 Taylor expansion near the test function support

Recalling the definition of A(nm) in Eq. (20), using the definition of the time-scaling factor α(n) = na,
taking a second-order Taylor expansion of the test function f ∈ C∞

c , and applying the decomposition
∆(nm)(ϑ) = ∆

(nm)
ξ (ϑ) + ∆

(nm)

π(0) (ϑ) + ∆
(nm)
ℓ (ϑ),

[A(nm)f ](ϑ)

= α(nm)
(
EX(N)

[
f
(
ϑ+∆(nm)(ϑ)

)]
− f(ϑ)

)
= namEX(N)

〈
∇f(ϑ), ∆(nm)

ξ

〉
︸ ︷︷ ︸

[1.ξ](nm) (ϑ)=0

+namEX(N)
〈
∇f(ϑ), ∆(nm)

π(0) (ϑ)
〉

︸ ︷︷ ︸[
1.π(0)

](nm)
(ϑ)

+namEX(N)
〈
∇f(ϑ), ∆(nm)

ℓ (ϑ)
〉

︸ ︷︷ ︸
[1.ℓ](nm) (ϑ)

+ namEX(N)
〈
1

2
∇⊗2f(ϑ)∆

(nm)
ξ , ∆

(nm)
ξ

〉
︸ ︷︷ ︸

[2.ξξ](nm) (ϑ)

+namEX(N)
〈
∇⊗2f(ϑ)∆

(nm)

π(0) (ϑ), ∆
(nm)
ξ

〉
︸ ︷︷ ︸[

2.π(0)ξ
](nm)

(ϑ)=0

+ namEX(N)
〈
∇⊗2f(ϑ)∆

(nm)
ℓ (ϑ), ∆

(nm)
ξ

〉
︸ ︷︷ ︸

[2.ℓξ](nm) (ϑ)=0

+namEX(N)
〈
1

2
∇⊗2f(ϑ)∆

(nm)

π(0) (ϑ), ∆
(nm)

π(0) (ϑ)

〉
︸ ︷︷ ︸[

2.π(0)π(0)
](nm)

(ϑ)

+ namEX(N)
〈
∇⊗2f(ϑ)∆

(nm)
ℓ (ϑ), ∆

(nm)

π(0)

〉
︸ ︷︷ ︸[

2.ℓπ(0)
](nm)

(ϑ)

+namEX(N)
〈
1

2
∇⊗2f(ϑ)∆

(nm)
ℓ (ϑ), ∆

(nm)
ℓ (ϑ)

〉
︸ ︷︷ ︸

[2.ℓℓ](nm) (ϑ)

+ namEX(N)
[
1

6

[
∇⊗3f(ϑ+ S∆(nm)(ϑ))

] (
∆(nm)(ϑ),∆(nm)(ϑ),∆(nm)(ϑ)

)]
︸ ︷︷ ︸

[3.R](nm) (ϑ)

for some S ∈ [0, 1] depending on f, ϑ,∆(nm)(ϑ), where ∇⊗3f(ϑ) is the trilinear from of third order partials
of f at ϑ (and hence is linear in each of its three arguments). Terms that are linear in ∆

(nm)
ξ have mean

0 and can be eliminated outright, as indicated in their corresponding underbraces. Terms are labelled by
the order of the term, followed by the increments that appear in the term; for example [2.ℓξ]

(nm)
(ϑ) is the

second order term involving a likelihood increment and a Gaussian noise (innovation) increment. The R in
[3.R]

(nm)
(ϑ) denotes that it is the remainder.

Recall that

[Af ](ϑ) = −
〈cd
2
ΓJ⋆ϑ, ∇f(ϑ)

〉
︸ ︷︷ ︸

[I.ΓJ⋆] (ϑ)

+
cg
2
Λ : ∇⊗2f(ϑ)︸ ︷︷ ︸
[II.Λ] (ϑ)

+
cmb
2
ΓI⋆Γ′ : ∇⊗2f(ϑ)︸ ︷︷ ︸[

II.ΓI⋆Γ
′] (ϑ)

.

We have similarly labelled these terms, with the roman numeral denoting the order and the subsequent
symbol denoting the coefficient matrix (up to scaling factors). Thus, after eliminating terms which are linear

27



in ∆
(nm)
ξ , and thus have mean 0, the difference of approximate and limiting generator applied to the test

function can be expressed as∣∣∣[A(nm)f ](ϑ)− [Af ](ϑ)
∣∣∣

≤
∣∣∣∣[1.π(0)

](nm)

(ϑ)

∣∣∣∣+ ∣∣∣∣[2.π(0)π(0)
](nm)

(ϑ)

∣∣∣∣+ ∣∣∣∣[2.ℓπ(0)
](nm)

(ϑ)

∣∣∣∣
+
∣∣∣[1.ℓ](nm)

(ϑ)− [I.ΓJ⋆] (ϑ)
∣∣∣

+
∣∣∣[2.ξξ](nm)

(ϑ)− [II.Λ] (ϑ)
∣∣∣

+
∣∣∣[2.ℓℓ](nm)

(ϑ)− [II.ΓI⋆Γ′] (ϑ)
∣∣∣

+
∣∣∣[3.R](nm)

(ϑ)
∣∣∣ .

We will show that each of these seven terms vanish uniformly on K1. The first three terms listed above, those
non-remainder terms with no corresponding term in the limiting generator, will be handled first. Then we
will handle each of the terms which corresponds to part of the limiting generator, and lastly we will handle
the remainder term.

C.1.6 Terms that do not contribute to the limit

∣∣∣∣[1.π(0)
](nm)

(ϑ)

∣∣∣∣ = nam

∣∣∣EX(N)
〈
∇f(ϑ), ∆(nm)

π(0) (ϑ)
〉∣∣∣

≤ chn
a−h+w−1
m ∥Γ∥

2

∣∣∣EX(N)
〈
∇f(ϑ), ∇ log π(0)

(
θ̂(nm) + n−w

m ϑ
)〉∣∣∣

≤ chn
a−h+w−1
m ∥Γ∥

2
∥∇f∥∞

(∥∥∥∇ log π(0) (θ⋆)
∥∥∥+ L0

(
Υ(nm) +

2R0 + 2c0
nwm

))
,

which vanishes uniformly on K1, since a+w− h− 1 ≤ w− 1 < 0.∣∣∣∣[2.π(0)π(0)
](nm)

(ϑ)

∣∣∣∣
=

∣∣∣∣namEX(N)
〈
1

2
∇⊗2f(ϑ)∆

(nm)

π(0) (ϑ), ∆
(nm)

π(0) (ϑ)

〉∣∣∣∣
≤ nam

∥∥∇⊗2f
∥∥
∞

(
chn

w−h−1
m ∥Γ∥

2

)2

×
(∥∥∥∇ log π(0)(θ⋆)

∥∥∥+ L0

∥∥∥θ̂(nm) − θ⋆

∥∥∥+ L0
2R0 + 2c0

nwm

)2

which vanishes uniformly since a+ 2w− 2h− 2 ≤ (2w− 2)− h < 0 (which follows from h ≥ a and w < 1).∣∣∣∣[2.ℓπ(0)
](nm)

(ϑ)

∣∣∣∣
=

∣∣∣∣nam2EX(N)
〈
1

2
∇⊗2f(ϑ)∆

(nm)
ℓ (ϑ), ∆

(nm)

π(0) (ϑ)

〉∣∣∣∣
≤ 2nam

∥∥∇⊗2f
∥∥
∞

(
chn

w−h−1
m ∥Γ∥

2

)(
chn

w−h
m ∥Γ∥
2

)
×
(∥∥∥∇ log π(0)(θ⋆)

∥∥∥+ L0Υ
(nm) + L0

2R0 + 2c0
nwm

)
×
(
n1/p2
m + n1/p3

m Υ(nm) + n1/p3−w
m

)
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which vanishes uniformly due to the assumptions of the relationship between h, a,w, p3, p2 under each as-
sumption.

C.1.7 Convergence of the drift term

Third, using that
∑

i∈[nm] ∇ℓ
(
θ̂(nm); Xi

)
= 0,

[1.ℓ]
(nm)

(ϑ)

= namEX(N)
〈
∇f(ϑ), ∆(nm)

ℓ (ϑ)
〉

= EX(N)

〈
∇f(ϑ), chn

a+w−h
m Γ

2b(nm)

∑
j∈[b(nm)]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; X

I
(nm)
1 (j)

)〉

=

〈
chΓ

†

2
∇f(ϑ), na+w−h−1

m

∑
i∈[nm]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)〉

=

〈
chΓ

†

2
∇f(ϑ),

∫ 1

0

na−h−1
m

∑
i∈[nm]

∇⊗2ℓ

(
θ̂(nm) +

s

nwm
ϑ; Xi

)
ds

〉
(24)

Now, for all nm large enough that rJ ,nm ≥ R0 + c0∣∣∣∣∣∣
〈
chΓ

†

2
∇f(ϑ),

∫ 1

0

n−1
m

∑
i∈[nm]

∇⊗2ℓ

(
θ̂(nm) +

s

nwm
ϑ; Xi

)
ds + J⋆

ϑ

〉∣∣∣∣∣∣
≤ ch ∥Γ∥ ∥∇f∥∞ (R0 + c0)

∥∥∥∥∥∥
∫ 1

0

n−1
m

∑
i∈[nm]

∇⊗2ℓ

(
θ̂(nm) +

s

nwm
ϑ; Xi

)
+ J⋆

 ds
∥∥∥∥∥∥

≤ ch ∥Γ∥ ∥∇f∥∞ (R0 + c0) ·Υ(nm),

and thus vanishes uniformly on K1.
When a > h, so cd = 0 and hence [I.ΓJ⋆] (ϑ) = 0 (where [I.ΓJ⋆] (ϑ) is the drift term appearing in the

definition of the limiting generator A in Eq. (21)), then the drift term will be inactive in the limit. We show
this by using the fact that [1.ℓ]

(nm)
(ϑ) is a vanishing distance from a sequence that vanishes:∣∣∣[1.ℓ](nm)

(ϑ)− [I.ΓJ⋆] (ϑ)
∣∣∣

≤ nh−a
m

∣∣∣∣∣∣
〈
chΓ

†

2
∇f(ϑ),

∫ 1

0

n−1
m

∑
i∈[nm]

∇⊗2ℓ

(
θ̂(nm) +

s

nwm
ϑ; Xi

)
ds + J⋆

ϑ

〉∣∣∣∣∣∣
+ nh−a

m

∣∣∣∣〈chΓ†

2
∇f(ϑ), J⋆ϑ

〉∣∣∣∣ ;
and hence vanishes uniformly on K1.

When a = h, then the drift term is active in the limit, and we show that [1.ℓ]
(nm)

(ϑ) converges to the
drift term from the limiting process [I.ΓJ⋆] (ϑ):∣∣∣[1.ℓ](nm)

(ϑ)− [I.ΓJ⋆] (ϑ)
∣∣∣

= nh−a
m

∣∣∣∣∣∣
〈
chΓ

†

2
∇f(ϑ),

∫ 1

0

n−1
m

∑
i∈[nm]

∇⊗2ℓ

(
θ̂(nm) +

s

nwm
ϑ; Xi

)
ds + J⋆

ϑ

〉∣∣∣∣∣∣
vanishes uniformly on K1.
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C.1.8 Convergence of the diffusion term corresponding to Gaussian noise

∣∣∣[2.ξξ](nm)
(ϑ)− [II.Λ] (ϑ)

∣∣∣
=

∣∣∣∣namEX(N)
〈
1

2
∇⊗2f(ϑ)∆

(nm)
ξ , ∆

(nm)
ξ

〉
− ch

2cβ
Λ : ∇⊗2f(ϑ)

∣∣∣∣
If a + 2w − h − t = 0 then, the corresponding diffusion term is active in the limit. Using the definition of
∆

(nm)
ξ and that β(n) = cβn

t, βh = chn
h, and βw = nw∣∣∣[2.ξξ](nm)

(ϑ)− [II.Λ] (ϑ)
∣∣∣

≤ ch
2cβ

∣∣∣na+2w−h−t
m EX(N)

〈
∇⊗2f(ϑ)

√
Λξ1,

√
Λξ1

〉
− Λ : ∇⊗2f(ϑ)

∣∣∣
= 0

If a + 2w − h − t < 0 then the corresponding diffusion term is inactive in the limit, and so cg = 0 and so
[II.Λ] (ϑ) = 0. In that case we show that [2.ξξ]

(nm)
(ϑ) vanishes uniformly.∣∣∣[2.ξξ](nm)

(ϑ)− [II.Λ] (ϑ)
∣∣∣

≤ ch
2cβ

na+2w−h−t
m

∣∣∣EX(N)
〈
∇⊗2f(ϑ)

√
Λξ1,

√
Λξ1

〉∣∣∣
=

ch
2cβ

na+2w−h−t
m ∥Λ∥F

∥∥∥∥∇⊗2f
∥∥
F

∥∥
∞ ,

which vanishes uniformly.

C.1.9 Convergence of the diffusion term corresponding to minibatch noise

∣∣∣[2.ℓℓ](nm)
(ϑ) - [II.ΓI⋆Γ′] (ϑ)

∣∣∣
=

∣∣∣∣namEX(N)
〈
1

2
∇⊗2f(ϑ)∆

(nm)
ℓ (ϑ), ∆

(nm)
ℓ (ϑ)

〉
− cmb

2
ΓI⋆Γ′ : ∇⊗2f(ϑ)

∣∣∣∣
=

1

2

∣∣∣∣[namEX(N)
[(

∆
(nm)
ℓ (ϑ)

)⊗2
]
: ∇⊗2f(ϑ)− cmb

2
ΓI⋆Γ′ : ∇⊗2f(ϑ)

]∣∣∣∣
≤
∥∥∇⊗2fF

∥∥
∞

2

∥∥∥∥[namEX(N)
[(

∆
(nm)
ℓ (ϑ)

)⊗2
]
− cmb

2
ΓI⋆Γ′

]∥∥∥∥
F

≤
√
d

∥∥∇⊗2fF
∥∥
∞

2

∥∥∥∥[namEX(N)
[(

∆
(nm)
ℓ (ϑ)

)⊗2
]
− cmb

2
ΓI⋆Γ′

]∥∥∥∥
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Now,
EX(N)

na
m

(
∆

(nm)
ℓ (ϑ)

)⊗2

=
c2hn

a+2w−2h
m

4(b(nm))2
Γ

EX(N) ∑
j∈[b(nm)]

∇ℓ

(
θ̂(nm) +

1

nw
m

ϑ; X
I
(nm)
1 (j)

)⊗2

Γ′

+
c2hn

a+2w−2h
m

4(b(nm))2
Γ

(
EX(N) ∑

j∈[b(nm)]

∑
j′∈[b(nm)]\{j}

∇ℓ

(
θ̂(nm) +

ϑ

nw
m

; X
I
(nm)
1 (j)

)

⊗∇ℓ

(
θ̂(nm) +

ϑ

nw
m

; X
I
(nm)
1 (j′)

))
Γ′

=
c2hn

a+2w−2h
m

4b(nm)
Γ

 1

nm

∑
i∈[nm]

∇ℓ

(
θ̂(nm) +

1

nw
m

ϑ; Xi

)⊗2
Γ′

+
c2hn

a+2w−2h
m

4(b(nm))2
Γ

(
EX(N) ∑

j∈[b(nm)]

∑
j′∈[b(nm)]\{j}

∇ℓ

(
θ̂(nm) +

ϑ

nw
m

; X
I
(nm)
1 (j)

)

⊗∇ℓ

(
θ̂(nm) +

ϑ

nw
m

; X
I
(nm)
1 (j′)

))
Γ′

If the mini-batches are drawn with replacement, then

EX(N) ∑
j∈[b(nm)]

∑
j′∈[b(nm)]\{j}

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; X

I
(nm)
1 (j)

)
⊗∇ℓ

(
θ̂(nm) +

1

nwm
ϑ; X

I
(nm)
1 (j′)

)

=
b(nm)(b(nm) − 1)

n2m

∑
i∈[nm]

∑
i′∈[nm]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)
⊗∇ℓ

(
θ̂(nm) +

1

nwm
ϑ; Xi′

)

= b(nm)(b(nm) − 1)

 1

nm

∑
i∈[nm]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)⊗2

= b(nm)(b(nm) − 1)

 1

nm

∑
i∈[nm]

∫ 1

0

∇⊗2ℓ

(
θ̂(nm) +

s

nwm
ϑ; Xi

)
ds

1

nwm
ϑ

⊗2

Thus, if a+ 2w− 2h− b = 0, so that cmb ̸= 0 and the corresponding term is active in the limit, and the
minibtaches are drawn with replacement, then combining the past several equations gives:∣∣∣[2.ℓℓ](nm)

(ϑ) - [II.ΓI⋆Γ′] (ϑ)
∣∣∣

≤
√
d ∥Γ∥2

∥∥∇⊗2fF
∥∥
∞

2

∥∥∥∥∥∥ c
2
h

4cb

cbn
b
m

⌊cbnbm⌋

 1

nm

∑
i∈[nm]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)⊗2
− cmbI⋆

∥∥∥∥∥∥
+

√
dc2h ∥Γ∥

2 ∥∥∇⊗2fF
∥∥
∞ n−2w

m

8

∥∥∥∥∥∥∥
 1

nm

∑
i∈[nm]

∫ 1

0

∇⊗2ℓ

(
θ̂(nm) +

s

nwm
ϑ; Xi

)
ds ϑ

⊗2
∥∥∥∥∥∥∥
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For ϑ ∈ K1, and for all nm large enough that rJ ,nm ≥ R0 + c0

n−2w
m

∥∥∥∥∥∥∥
 1

nm

∑
i∈[nm]

∫ 1

0

∇⊗2ℓ

(
θ̂(nm) +

s

nwm
ϑ; Xi

)
ds ϑ

⊗2
∥∥∥∥∥∥∥

= n−2w
m

∥∥∥∥∥∥ 1

nm

∑
i∈[nm]

∫ 1

0

∇⊗2ℓ

(
θ̂(nm) +

s

nwm
ϑ; Xi

)
ds ϑ

∥∥∥∥∥∥
2

≤ (2R0 + 2c0)
2

n2wm

(
∥J⋆∥+Υ(nm)

)2
,

which vanishes uniformly.
Since the mini-batches are drawn with replacement, using the definition of cmb, for all nm large enough

that rI,nm
≥ R0 + c0∥∥∥∥∥∥ c

2
h

4cb

cbn
b
m

⌊cbnbm⌋

 1

nm

∑
i∈[nm]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)⊗2
− cmbI⋆

∥∥∥∥∥∥
≤ c2h

4cb

cbn
b
m

⌊cbnbm⌋

∥∥∥∥∥∥
 1

nm

∑
i∈[nm]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)⊗2
− I⋆

∥∥∥∥∥∥
+

∣∣∣∣ c2h4cb cbn
b
m

⌊cbnbm⌋
− c2h

4cb

∣∣∣∣ ∥I⋆∥
≤ c2h

4cb

cbn
b
m

⌊cbnbm⌋
Υ(nm) +

∣∣∣∣ c2h4cb cbn
b
m

⌊cbnbm⌋
− c2h

4cb

∣∣∣∣ ∥I⋆∥ .
And, if a+ 2w− 2h− b < 0 and the mini-batches are drawn with replacement, so that cmb = 0, and the

corresponding diffusion term is inactive in the limit and [II.ΓI⋆Γ′] (ϑ) = 0, then∣∣∣[2.ℓℓ](nm)
(ϑ)− [II.ΓI⋆Γ′] (ϑ)

∣∣∣
≤
∣∣∣∣EX(N)

nam

(
∆

(nm)
ℓ (ϑ)

)⊗2

− na+2w−2h−b
m

c2h
4cb

I⋆
∣∣∣∣+ na+2w−2h−b

m

∣∣∣∣ c2h4cb I⋆
∣∣∣∣

which vanishes uniformly by the previous arguments.
Therefore, when the mini-batches are drawn with replacement, we find that∣∣∣[2.ℓℓ](nm)

(ϑ) - [II.ΓI⋆Γ′] (ϑ)
∣∣∣

vanishes uniformly on K1.
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If the mini-batches are drawn without replacement.

EX(N) ∑
j∈[b(nm)]

∑
j′∈[b(nm)]\{j}

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; X

I
(nm)
1 (j)

)
⊗∇ℓ

(
θ̂(nm) +

1

nwm
ϑ; X

I
(nm)
1 (j′)

)

=
b(nm)(b(nm) − 1)

nm(nm − 1)

∑
i∈[nm]

∑
i′∈[nm]\{i}

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)
⊗∇ℓ

(
θ̂(nm) +

1

nwm
ϑ; Xi′

)

=
b(nm)(b(nm) − 1)

nm(nm − 1)

∑
i∈[nm]

∑
i′∈[nm]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)
⊗∇ℓ

(
θ̂(nm) +

1

nwm
ϑ; Xi′

)

− b(nm)(b(nm) − 1)

nm(nm − 1)

∑
i∈[nm]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)⊗2

= b(nm)(b(nm) − 1)
nm

nm − 1

 1

nm

∑
i∈[nm]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)⊗2

− b(nm)(b(nm) − 1)

nm(nm − 1)

∑
i∈[nm]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)⊗2

,

and so,

EX(N)
nm

(
∆

(nm)
ℓ (ϑ)

)⊗2

=
c2h

4b(nm)

nm − b(nm)

nm − 1
Γ

 1

nm

∑
i∈[nm]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)⊗2
Γ′

+
c2h

4(b(nm))2
Γ

b(nm)(b(nm) − 1)
nm

nm − 1

 1

nm

∑
i∈[nm]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)⊗2
Γ′

In this case, for all nm large enough that rI,nm
≥ R0 + c0∥∥∥∥∥∥ c2h

4b(nm)

nm − b(nm)

nm − 1

 1

nm

∑
i∈[nm]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)⊗2
− cmbI⋆

∥∥∥∥∥∥
≤ c2h

4b(nm)

nm − b(nm)

nm − 1

∥∥∥∥∥∥
 1

nm

∑
i∈[nm]

∇ℓ
(
θ̂(nm) +

1

nwm
ϑ; Xi

)⊗2
− I⋆

∥∥∥∥∥∥
+

∣∣∣∣ c2h
4b(nm)

nm − b(nm)

nm − 1
− cmb

∣∣∣∣ ∥I⋆∥
≤ c2h

4b(nm)

nm − b(nm)

nm − 1
Υ(nm) +

∣∣∣∣ c2h
4b(nm)

nm − b(nm)

nm − 1
− cmb

∣∣∣∣ ∥I⋆∥ ,
Thus, when the mini-batches are drawn without replacement, we find that∣∣∣[2.ℓℓ](nm)

(ϑ) - [II.ΓI⋆Γ′] (ϑ)
∣∣∣

vanishes uniformly on K1.
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C.1.10 Convergence of the Remainder Term

∣∣∣[3.R](nm)
(ϑ)
∣∣∣

= namEX(N)
[
1

6

[
∇⊗3f(ϑ+ S∆(nm)(ϑ))

] (
∆(nm)(ϑ),∆(nm)(ϑ),∆(nm)(ϑ)

)]
≤ nam

6

∥∥∇⊗3f
∥∥
∞ EX(N)

∥∥∥∆(nm)(ϑ)
∥∥∥3

≤ 27nam
6

∥∥∇⊗3f
∥∥
∞

(
EX(N)

∥∥∥∆(nm)
ξ

∥∥∥3 + EX(N)
∥∥∥∆(nm)

π(0) (ϑ)
∥∥∥3 + EX(N)

∥∥∥∆(nm)
ℓ (ϑ)

∥∥∥3) ,
Now

EX(N)
∥∥∥∆(nm)

ξ

∥∥∥3 ≤
(
ch
2cβ

n−h−t+2w
m ∥Λ∥

)3/2

EX(N)
∥ξ1∥3

= n−3/2 (h+t−2w)
m

(
ch
2cβ

∥Λ∥
)3/2

23/2
Γ
(
d+3
2

)
Γ
(
d
2

) ,

where Γ is the gamma function. Note that α− 3/2 (h+ t− 2w) ≤ −1/2 (h+ t− 2w) ≤ −a/2 < 0
Second,

∥∥∥∆(nm)

π(0) (ϑ)
∥∥∥3 ≤

(
chn

−h+w−1
m ∥Γ∥

2

)3(∥∥∥∇ log π(0)(θ⋆)
∥∥∥+ L0

∥∥∥θ̂(nm) − θ⋆

∥∥∥+ L0
2R0 + 2c0

nwm

)3

.

Note that a− 3h+ 3w− 3 ≤ −2h− 3(1−w) < 0.
Third,

EX(N)
∥∥∥∆(nm)

ℓ (ϑ)
∥∥∥3

≤
(
chn

−h+w
m ∥Γ∥

2

)3 (
n1/p2
m + n1/p3

m Υ(nm) + n1/p3−w
m

)3
≤
(
ch ∥Γ∥

2

)3 (
n1/p2−h+w
m + n1/p3−h+w

m Υ(nm) + n1/p3−h
m

)3
Therefore,

∣∣∣[3.R](nm)
(ϑ)
∣∣∣ vanishes uniformly.

D Proof of Corollary 2
Proof of Corollary 2. To verify that that the stationary measures, ν(nm) of T (nm) converge weakly in proba-
bility to ν, we need to verify that every sub-subsequence ν(nmk

) has a sub-sub-subsequence ν
(nmkj

)
converg-

ing weakly to ν almost surely. Since weak convergence of probability measures is metrizable, then applying
Lemma 1 yields the desired result.

By the second part of Theorem 2, every sub-subsequence of
(
T (nm)

)
m∈N,

(
T (nmk

)
)
k∈N, has a further

sub-sub-subsequence,
(
T

(nmkj
))

j∈N, such that with probability 1, T
(nmkj

)

t
s→ Tt on C(Rd) for all t > 0.

Applying Ethier and Kurtz [2009, Part 4, Theorem 9.10], we have that every weak limit of
{
ν
(nmkj

)}
j∈N

is stationary for T . As a consequence of the assumption that the spectrum of ΓJ (θ⋆) is a subset of
{x ∈ C s.t. ℜ(x) > 0}, T has a unique stationary distribution (see, for example, Karatzas and Shreve [2014]),
ν = N(0, Q∞). Thus every weak limit of

{
ν
(nmkj

)}
j∈N must be ν.

Since
{
ν(nm)

}
m∈N is assumed to be tight, then all of its sub-subsequences have a weakly converging

sub-sub-subsequence, concluding the proof.
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E Sufficient conditions for Assumption 4 and Assumption 5
In this section we provide some sufficient conditions that ensure Assumptions 4 and 5. For each of

the two assumptions, we one sufficient condition based on convergence of the corresponding information
matrix empirical process, one sufficient condition based on equicontinuity of the derivatives of the likelihood
function, and one sufficient condition based expected Lipschitz or local Lipschitz constants for the derivatives
of the likelihood.

Proposition 4 (Sufficient conditions for Assumption 4). Each of the following imply Assumption 4.

a) there exists a δ1 > 0 with supθ∈Bδ1
(θ⋆)

∥∥∥ 1
n

∑
i∈[n] ∇⊗2ℓ(θ;Xi) + J (θ)

∥∥∥ p→ 0 and J is continuous at θ⋆,

b)
{
∇⊗2ℓ(·;x) | x ∈ X

}
is equicontinuous at θ⋆,

c) there exists a δ1 > 0 with

E

[
sup

θ∈Bδ1
(θ⋆)

∥∥∇⊗2ℓ(θ;X1)−∇⊗2ℓ(θ⋆;X1)
∥∥

∥θ − θ⋆∥

]
<∞,

Proof of Proposition 4.

a) Let rJ ,n = δ1n
w/2/2. Then B

(
θ̂(n), rJ ,n/n

w
)
⊆ B

(
θ̂(n), δ1/2

)
.

Given that θ̂(n) p→ θ⋆, any subsequence of indices nm has a further sub-subsequence of indices nmk

where both θ̂(nmk
) → θ⋆ and

sup
θ∈Bδ1

(θ⋆)

∥∥∥ 1

nmk

∑
i∈[nmk ]

∇⊗2ℓ(θ;Xi) + J (θ)
∥∥∥→ 0 a.s.

Then there is a k0 such that if k ≥ k0 then
∥∥∥θ̂(nmk

) − θ⋆

∥∥∥ ≤ δ1/2. Therefore if k ≥ k0 then

B
(
θ̂(nmk

), rJ ,n/n
w
mk

)
⊆ B (θ⋆, δ1).

Thus, for k ≥ k0,

sup
θ∈B(θ̂(nmk

)
,rJ ,n/nw

mk
)

∥∥∥Ĵ (nmk
)(θ)− J (θ⋆)

∥∥∥
≤ sup

θ∈B(θ̂(nmk
)
,rJ ,n/nw

mk
)

∥∥∥Ĵ (nmk
)(θ)− J (θ)

∥∥∥+ sup
θ∈B(θ̂(nmk

)
,r/nw

mk
)
∥J (θ)− J (θ⋆)∥

≤ sup
θ∈B(θ⋆,δ1)

∥∥∥Ĵ (nmk
)(θ)− J (θ)

∥∥∥+ sup
θ∈B

(
θ̂
(nmk

)
,δ1/n

w/2
mk

) ∥J (θ)− J (θ⋆)∥

≤ sup
θ∈B(θ⋆,δ1)

∥∥∥Ĵ (nmk
)(θ)− J (θ)

∥∥∥+ sup
θ∈B

(
θ⋆,∥θ̂(nmk

)−θ⋆∥+δ1/n
w/2
mk

) ∥J (θ)− J (θ⋆)∥

a.s.→ 0.

Therefore, every subsequence of Sn = supθ∈B(θ̂(n),rJ ,n/nw)

∥∥∥Ĵ (n)(θ)− J (θ⋆)
∥∥∥ has a further sub-subsequence

converging almost surely to 0, and hence Sn converges in probability to 0.

b) Equicontinuity implies there is a function ρJ⋆
: R+ → R+ with limt→0 ρJ⋆

(t) = 0, and

sup
x∈X

sup
ϑ∈Bδ(θ⋆)

∥∥∇⊗2ℓ(ϑ;x)−∇⊗2ℓ(θ⋆;x)
∥∥ ≤ ρJ⋆

(δ).
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Let rJ ,n = nw/2. Then

sup
θ∈B(θ̂(n),rJ ,n/nw)

∥∥∥Ĵ (n)(θ)− J (θ⋆)
∥∥∥

≤ sup
θ∈B(θ̂(n),n−w/2)

∥∥∥Ĵ (n)(θ)− Ĵ (n)(θ⋆)
∥∥∥+ ∥∥∥Ĵ (n)(θ⋆)− J (θ⋆)

∥∥∥
≤ sup

θ∈B(θ⋆,∥θ̂(n)−θ⋆∥+n−w/2)

∥∥∥Ĵ (n)(θ)− Ĵ (n)(θ⋆)
∥∥∥+ ∥∥∥Ĵ (n)(θ⋆)− J (θ⋆)

∥∥∥
≤ ρJ⋆

(∥∥∥θ̂(n) − θ⋆

∥∥∥+ n−w/2
)
+
∥∥∥Ĵ (n)(θ⋆)− J (θ⋆)

∥∥∥
p→ 0.

In the last step we used that the first term vanishes in probability because θ̂(n) p→ θ⋆, and the second
term vanishes in probability by the weak law of large numbers.

c) Let

Qn =
1

n

∑
i∈[n]

[
sup

θ∈Bδ1
(θ⋆)

∥∥∇⊗2ℓ(θ;Xi)−∇⊗2ℓ(θ⋆;Xi)
∥∥

∥θ − θ⋆∥

]
, and

q = E

[
sup

θ∈Bδ1
(θ⋆)

∥∥∇⊗2ℓ(θ;X1)−∇⊗2ℓ(θ⋆;X1)
∥∥

∥θ − θ⋆∥

]
.

By the weak law of large numbers, Qn
p→ q and Ĵ (nmk

)(θ⋆)
p→ J (θ⋆). Let rJ ,n = δ1n

w/2/2. As in part
a), given that θ̂(n) p→ θ⋆, any subsequence of indices nm has a further sub-subsequence of indices nmk

where both θ̂(nmk
) → θ⋆, Qnmk

→ q, and Ĵ (nmk
)(θ⋆) → J (θ⋆) almost surely. Then there is a k0 such

that if k ≥ k0 then
∥∥∥θ̂(nmk

) − θ⋆

∥∥∥ ≤ δ1/2. Therefore if k ≥ k0 then B
(
θ̂(nmk

), rJ ,n/n
w
mk

)
⊆ B (θ⋆, δ1).

Thus, for k ≥ k0,

sup
θ∈B(θ̂(nmk

)
,rJ ,n/nw

mk
)

∥∥∥Ĵ (nmk
)(θ)− J⋆

∥∥∥
≤
∥∥∥Ĵ (nmk

)(θ⋆)− J (θ⋆)
∥∥∥+ sup

θ∈B
(
θ̂
(nmk

)
,δ1n

−w/2
mk

/2
)
∥∥∥Ĵ (nmk

)(θ)− Ĵ (nmk
)(θ⋆)

∥∥∥
≤
∥∥∥Ĵ (nmk

)(θ⋆)− J (θ⋆)
∥∥∥

+
(∥∥∥θ̂(nmk

) − θ⋆

∥∥∥+ δ1n
−w/2
mk

/2
)

sup
θ∈B

(
θ̂
(nmk

)
,δ1n

−w/2
mk

/2
)
∥∥∥Ĵ (nmk

)(θ)− Ĵ (nmk
)(θ⋆)

∥∥∥
∥θ − θ⋆∥

≤
∥∥∥Ĵ (nmk

)(θ⋆)− J (θ⋆)
∥∥∥

+
(∥∥∥θ̂(nmk

) − θ⋆

∥∥∥+ δ1n
−w/2
mk

/2
)

sup
θ∈B(θ⋆,δ1)

∥∥∥Ĵ (nmk
)(θ)− Ĵ (nmk

)(θ⋆)
∥∥∥

∥θ − θ⋆∥

≤
∥∥∥Ĵ (nmk

)(θ⋆)− J (θ⋆)
∥∥∥

+
(∥∥∥θ̂(nmk

) − θ⋆

∥∥∥+ δ1n
−w/2
mk

/2
)

sup
θ∈B(θ⋆,δ1)

1

nmk

∑
i∈[nmk ]

[∥∥∇⊗2ℓ(θ;Xi)−∇⊗2ℓ(θ⋆;Xi)
∥∥

∥θ − θ⋆∥

]

≤
∥∥∥Ĵ (nmk

)(θ⋆)− J (θ⋆)
∥∥∥+ (∥∥∥θ̂(nmk

) − θ⋆

∥∥∥+ δ1n
−w/2
mk

/2
)
Qnmk

a.s.→ 0

Therefore, every subsequence of Sn = supθ∈B(θ̂(n),rJ ,n/nw)

∥∥∥Ĵ (n)(θ)− J (θ⋆)
∥∥∥ has a further sub-subsequence

converging almost surely to 0, and hence Sn converges in probability to 0.
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Proposition 5 (Sufficient conditions for Assumption 5). Each of the following imply Assumption 5.

a) there exists a δ2 > 0 with supθ∈Bδ2
(θ⋆)

∥∥∥ 1
n

∑
i∈[n] ∇ℓ(θ;Xi)

⊗2 − I(θ)
∥∥∥ p→ 0 and I is continuous at θ⋆,

b)
{
∇ℓ(·;x)⊗2 | x ∈ X

}
is equicontinuous at θ⋆,

c) E
[∥∥∇⊗2ℓ(·;X1)

∥∥2
∞

]
<∞,

Proof of Proposition 5.

a), b) The proofs are the same as for Proposition 4 a), b).

c) Let Qn = 1
n

∑
i∈[n]

∥∥∇⊗2ℓ(·;Xi)
∥∥2
∞, q = E

∥∥∇⊗2ℓ(·;X1)
∥∥2
∞, and let rI,n = nw/2. By the weak law of

large numbers, Qn
p→ q, and Î(n)(θ⋆)

p→ I(θ⋆). Starting with

sup
θ∈B(θ̂(n),rI,n/nw)

∥∥∥Î(n)(θ)− I⋆
∥∥∥ ≤

∥∥∥Î(n)(θ⋆)− I(θ⋆)
∥∥∥+ sup

θ∈B(θ̂(n),n−w/2)

∥∥∥Î(n)(θ)− Î(n)(θ⋆)
∥∥∥ ,

we can bound the second term with a Taylor series and Cauchy-Schwartz as∥∥∥Î(n)(θ)− Î(n)(θ⋆)
∥∥∥

≤ 1

n

∑
i∈[n]

∥∥∥(∇ℓ (θ⋆; Xi) +

∫ 1

0

∇⊗2ℓ (θ⋆ + s(θ − θ⋆); Xi) ds (θ − θ⋆)
)⊗2

−∇ℓ (θ⋆; Xi)
⊗2
∥∥∥

≤ 2

n

∑
i∈[n]

∥∇ℓ (θ⋆; Xi)∥
∥∥∥∫ 1

0

∇⊗2ℓ (θ⋆ + s(θ − θ⋆); Xi) ds (θ − θ⋆)
∥∥∥

+
1

n

∑
i∈[n]

∥∥∥(∫ 1

0

∇⊗2ℓ (θ⋆ + s(θ − θ⋆); Xi) ds (θ − θ⋆)

)⊗2∥∥∥
≤ 2

n

∑
i∈[n]

∥∇ℓ (θ⋆; Xi)∥
∥∥∇⊗2ℓ(·;Xi)

∥∥
∞ ∥θ − θ⋆∥+

1

n

∑
i∈[n]

∥∥∇⊗2ℓ(·;Xi)
∥∥2
∞ ∥θ − θ⋆∥2

≤ 2 ∥θ − θ⋆∥

√√√√ 1

n

∑
i∈[n]

∥∇ℓ (θ⋆; Xi)∥2
√√√√ 1

n

∑
i∈[n]

L(Xi)2 + ∥θ − θ⋆∥2Qn

≤ 2 ∥θ − θ⋆∥
√

Tr(Î(n)(θ⋆))
√
Qn + ∥θ − θ⋆∥2Qn,

Plugging this back in,

sup
θ∈B(θ̂(n),rI,n/nw)

∥∥∥Î(n)(θ)− I⋆
∥∥∥

≤
∥∥∥Î(n)(θ⋆)− I(θ⋆)

∥∥∥+ sup

θ∈B

(
θ̂(n),n−w/2

)(2 ∥θ − θ⋆∥
√
Tr(Î(n)(θ⋆))

√
Qn + ∥θ − θ⋆∥2Qn

)

≤
∥∥∥Î(n)(θ⋆)− I(θ⋆)

∥∥∥+ 2
(∥∥∥θ̂(n) − θ⋆

∥∥∥+ n−w/2
)√

Tr(Î(n)(θ⋆))
√
Qn +

(∥∥∥θ̂(n) − θ⋆

∥∥∥+ n−w/2
)2
Qn

p→ 0.
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F Proof of Proposition 1
Recall that

dϑt = −1

2
Bϑt dt+

√
AdWt, (25)

which implies

ϑt = exp(−B/2)ϑ0 +
∫ t

0

exp(−B(t− s)/2)A1/2dWs. (26)

Assuming stationarity, ϑt ∼ N (0, Q∞) where Q∞ =
∫∞
0

exp(−Bs/2)A exp(−Bs/2)ds, we have

Cov

(∫ t

0

ϑs ds

)
= E

(∫ t

0

∫ t

0

ϑsϑ
T
r dsdr

)
=

∫ t

0

∫ s

0

E(ϑsϑTr )drds+
∫ t

0

∫ r

0

E(ϑsϑTr )dsdr. (27)

We focus on the first term since the second term can be written similarly:∫ t

0

∫ s

0

E(ϑsϑTr )drds =
∫ t

0

∫ s

0

E
[(

exp(−B(s− r)/2)ϑr +

∫ s

r

exp(−B(s− u)/2)A1/2dWu

)
ϑTr

]
drds

=

∫ t

0

∫ s

0

exp(−B(s− r)/2)E(ϑrϑTr )drds

=

∫ t

0

∫ s

0

exp(−B(s− r)/2)Q∞drds

=

∫ t

0

−2B−1(exp(−Bs/2)− 1)Q∞ds

=
[
4B−2(exp(−Bt/2)− 1) + 2tB−1

]
Q∞.

(28)

We can write
∫ t

0

∫ r

0
E(ϑsϑTr )dsdr similarly and combine the two results

Cov
(
ϑ̄t
)
=

1

t2
Cov(

∫ t

0

ϑs ds) =
1

t2

[∫ t

0

∫ s

0

E(ϑsϑTr )drds+
∫ t

0

∫ r

0

E(ϑsϑTr )dsdr
]

=
4

t
Sym

(
B−1Q∞

)
− 8

t2
Sym

(
B−2

{
I − e−tB/2

}
Q∞

)
,

(29)

which verifies Eq. (11).
Using Taylor’s theorem and the assumption that −B is Hurwitz, we obtain

e−tB/2 − I =

ℓ∑
k=1

1

k!

(
−tB
2

)k

+Rℓ(t), (30)

where ∥Rℓ(t)∥ ≤ ∥tB/2∥ℓ+1

(ℓ+1)! . Taking ℓ = 3 yields

4

t
B−1AB−⊤ − 8

t2
Sym

(
B−2

{
I − e−tB/2

}
Q∞

)
=

4

t
B−1AB−⊤ +

8

t2

{
−
(
t

2

)
Sym

(
B−1Q∞

)
+

1

2

(
t

2

)2

Q∞ − 1

6

(
t

2

)3

Sym (BQ∞) + Sym
(
B−2R3(t)Q∞

)}
= Q∞ − t

6
A+ R̃3(t),

(31)
where

∥∥∥R̃3(t)
∥∥∥ ≤ t2

48 ∥B∥4
∥∥B−2Q∞

∥∥, and we have used that Sym(B−1Q∞) = B−1AB−⊤ and Sym (BQ∞) =

A, and that B−1 and Rℓ(t) commute.
For any t > 0, we have∥∥∥∥ 8

t2
Sym

(
B−2

{
I − e−tB/2

}
Q∞

)∥∥∥∥ =

∥∥∥∥ 8

t2
Sym

({
I − e−tB/2

}
B−2Q∞

)∥∥∥∥
≤ 8

t2
∥∥Sym (B−2Q∞

)∥∥ ≤ 8

t2
∥∥B−2Q∞

∥∥ , (32)
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which is small when t≫ 3
∥∥B−2Q∞

∥∥1/2.
G Proof of Corollary 3
Proof. For Eq. (13), we have

Q̄
(n)
k = Cov

(
θ̄
(n)

⌊mn/b(n)⌋

)
≈ 1

(w(n))2
Cov

(
ϑ̄mn/(b(n)α(n))

)
=

4

m

α(n)b(n)

n(w(n))2
Sym

(
{chΓJ⋆}−1

Q∞

)
− 8

m2

(α(n)b(n))2

(nw(n))2
Sym

(
{chΓJ⋆}−2

{
I − exp

[
− chmn

2b(n)α(n)
ΓJ⋆

]
Q∞

})
.

Now, given b+ h ≤ t,

lim
n→∞

nQ̄
(n)
k =

4cb
m

Sym
(
{chΓJ⋆}−1

Q∞

)
− I[b+h=1]

8c2b
m2

Sym
(
[chΓJ⋆]

−2
[
I − e

− chm

2cb
ΓJ⋆

]
Q∞

)}
The rest follows by combining this with Proposition 1 and the simplifications following it, and by noting
that since h+ b ≤ 1 and h > 0 we must have b < 1, and hence cb = 1.

H Sketch Proof of Scaling Limit for SGLD with Control Variates
We argue that the mini-batch noise is always lower order for SGLD with control variates. In SGLD-FP,

the stochastic gradient ∇ℓ (θ; XI) is replaced by ∇ℓ (θ; XI)−∇ℓ (θ⋆; XI). By construction this stochastic
gradient is still unbiased, but its significantly lower variance leads to materially different behaviour in the
asymptotic analysis. Specifically, the corresponding [2.ℓℓ]

(nm)
(ϑ) from the proof of Theorem 1 in Appendix C

is vanishing under any scaling limit where the drift term [1.ℓ] does not vanish.
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namEX(N)
〈
1

2
∇⊗2f(ϑ)∆

(nm)
ℓ (ϑ), ∆

(nm)
ℓ (ϑ)

〉
︸ ︷︷ ︸

[2.ℓℓ](nm) (ϑ)

= namEX(N) 1

2
∇⊗2f(ϑ) :

(
∆

(nm)
ℓ (ϑ)

)⊗2

= namEX(N) 1

2
Γ∇⊗2f(ϑ) :

hw(n)Γ

2b(n)

∑
j∈[b(n)]

(
∇ℓ
(
θ̂(n) + (w(n))−1ϑ; X

I
(n)
1 (j)

)
−∇ℓ

(
θ̂(n); X

I
(n)
1 (j)

))
⊗2

=
c2h
c2b
na−2h+2w−2b
m

1

2
Γ∇⊗2f(ϑ)Γ⊤

: EX(N)

 ∑
j∈[b(n)]

(
∇ℓ
(
θ̂(n) + (w(n))−1ϑ; X

I
(n)
1 (j)

)
−∇ℓ

(
θ̂(n); X

I
(n)
1 (j)

))
⊗2

≈ c2h
c2b
na−2h+2w−2b
m

1

2
Γ∇⊗2f(ϑ)Γ⊤ : EX(N)

 ∑
j∈[b(n)]

∇⊗2ℓ
(
θ̂(n); X

I
(n)
1 (j)

)
(w(n))−1ϑ


⊗2

=
c2h
c2b
na−2h−2b
m

1

2
Γ∇⊗2f(ϑ)Γ⊤ : EX(N)

 ∑
j∈[b(n)]

∇⊗2ℓ
(
θ̂(n); X

I
(n)
1 (j)

)
ϑ


⊗2

≈ na−2h−2b
m

1

2
Γ∇⊗2f(ϑ)Γ⊤ :

[
b(n)(b(n) − 1)J⋆ϑϑ

⊤J⋆ + b(n)K(θ⋆;ϑ)
]

where K(θ⋆;ϑ) =
∫
∇⊗2ℓ(θ⋆;x) ϑ

⊗2 ∇⊗2ℓ(θ⋆;x)P (dx).
Now, we recall that for the drift term to be non-zero in the limit, we need a = h. However, at any such

scaling the [2.ℓℓ]
(nm)

(ϑ) term is O(n−h−2b), and so is always 0 in the limit.

I Sketch Proof for constrained parameter spaces
Let P : Θ× (Rd)3 → Θ be a measurable function such that:

(i) P is faithful to Θ, meaning that if Conv(θ, θ +∆π(0) +∆ℓ +∆ξ) ⊂ Θ then

P(θ,∆π(0) ,∆ℓ,∆ξ) = θ +∆π(0) +∆ℓ +∆ξ, (33)

where Conv(θ1, θ2) is the line segment from θ1 to θ2.

(ii) P is local, meaning that there exists cP > 0 such that for all (θ,∆π(0) ,∆ℓ,∆ξ) ∈ Θ× (Rd)3

∥P(θ,∆π(0) ,∆ℓ,∆ξ)− θ∥ ≤ cP (∥∆π(0)∥+ ∥∆ℓ∥+ ∥∆ξ∥) . (34)

We will consider the iterative algorithm on Θ given by

θ
(n)
k+1 = P

θ(n)k ,
hΓ

2n
∇ log π(0)

(
θ
(n)
k

)
,
hΓ

2

1

b

∑
j∈[b]

∇ℓ
(
θ
(n)
k ; X

I
(n)
k (j)

)
,
√
hβ−1Λ ξk

 . (35)

The key idea is that, if θ⋆ ∈ interior(Θ), there is a r > 0 with θ⋆ ∈ B(θ⋆, r) ⊂ interior(Θ), and for any
compactly supported test function f and compact extension of its support, K1, for sufficiently large sample
sizes n, K1 ⊆ B(0, w(n)r). In the proof of the Θ = Rd case we found that, along sub-sequences (nmk

), the
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increments from the log-likelihood and from the prior vanish uniformly within a sufficiently large extension
of the support of f . Combining this with faithfulness of P (defined in Appendix A.3) and an application
of the Lebesgue dominated convergence theorem to handle truncation of the Gaussian increments shows
that the Anm

f → Af uniformly within the extension of the support of f when Θ ̸= Rd. Moreover, the
local property of the boundary condition (defined in Appendix A.3) ensures that for sufficiently large sample
sizes, if the process were far enough outside of the support of f then it cannot re-enter the support via an
arbitrarily large jump caused by the boundary condition. Thus, outside of the extension of the support of f ,
the deviation of Anm

f from 0 is essentially indistinguishable from the unconstrained case. Using those two
facts we can rely on the faithfulness of the boundary dynamics to ensure that the process converges weakly
to the same Ornstein-Uhlenbeck limit as in the unconstrained case.

J Further discussion of asymptotics of mixing times
The discussion of the implications on the mixing time from Section 4.1 is only a heuristic because, even

if the process converge weakly and the stationary distributions converge weakly, it is insufficient to conclude
that the mixing times converge. Instead the mixing time of limiting process corresponds to fixing a duration
of scaled time for which to run the process, say T , then computing the limit of the covariance of an estimator
based on the run up to time T , then letting T tend to infinity. The mixing time of the limit is of more
practical relevance for our understanding of the local process since it accurately reflects the time needed for
the limiting stationary distribution to provide a good approximation to a sample from the local process. On
the other hand the limit of mixing times determines how long it would take to visit other modes if they
exist, and would often tend to ∞ with sample size. This can be seen by considering a simple non-identifiable
model, for example Gaussian location clustering, for which there would be two identical optimal solutions
which differ only by permutations of the clusters. The limit of mixing times corresponds to the time it takes
to explore both modes, while the mixing time of the limit corresponds to the time needed to explore the
model closer to which the process is started. Even if there was not a second equally good mode, a second
suboptimal mode that persists (though shrinking) at all sample sizes, and is moving farther away as the
process is re-scaled, could lead to mixing times that do not converge.

In future work, we plan to introduce a more rigorous characterization of the correspondence between
limit of mixing times and the mixing time of the limiting process. In particular, Atchadé [2021] introduces
the ζ-spectral gap, defined as

SpecGapζ := inf

{
π[f2]− ⟨f, Pf⟩L2(π)

π[f2]− ζ/2

∣∣
f ∈ L2(π), πf = 0, π[f2] > ζ, ∥f∥L2(π) <∞

}
.

(36)

We conjecture that for any ζ > 0, under appropriate scaling (corresponding to the time rescaling factor
α(n)), if the sequence of posterior distributions is tight, then the ζ-spectral gap will converge to that of the
OU-process for all ζ > 0. This is supported by the intuitive interpretation of the ζ-spectral gap; that it
corresponds to the mixing time of the process within a local region containing most of the probability mass
of the stationary distribution. Under the tightness assumption we expect that this is sufficient to rule out
the types of pathological behaviour described in the previous paragraph.

K Additional Details for Experimental Results
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Experiment 1 Experiment 2 Experiment 3
true distribution N10

(
0, 12I +

1
211

′) unknown unknown
log-likelihood ℓ(·; θ)

∑10
i=1

(xi−θi)
2

√
i

yx⊤θ − log(1 + ex
⊤θ) yx⊤θ − exp(x⊤θ)

log-prior log π(0)(θ) 0 0 0
sample size n 1000 1000000 150000
batch size b 1 1000 250
number of steps k 10000n/b 1000n/b 1000n/b
step size (SGD) h 4b/n 4b/n 4b/n
step size (SGLD) h 2b/n b/n 2b/n
inv. temp. (SGLD) β 2 1 2

Table 3: Settings for experiments 1, 2, & 3. When the true distribution is unknown it is approximated by
the empirical distribution on a larger version of the dataset for these experiments.

(a) SGLD without Preconditioning (b) SGD Preconditioned by I⋆

Figure 4: Joint results of experiment 2: Parameters 1 and 4

Figure 5: Further result for experiment 2 comparing the scaled sandwich covariance estimator Eq. (13) to
the predicted values variance-covariance matrix based upon Eq. (14) for iterate averages when h+b = 1. We
see that the higher order correction is material in this case, as expected based upon the theoretical results.
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