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This paper develops a unified linear theory of local cross-field plasma instabilities,
such as the Farley-Buneman, electron thermal, and ion thermal instabilities, in col-
lisional plasmas with fully or partially unmagnetized multi-species ions. Collisional
plasma instabilities in weakly ionized, highly dissipative, weakly magnetized plasmas
play an important role in the lower Earth’s ionosphere and may be of importance in
other planet ionospheres, star atmospheres, cometary tails, molecular clouds, accre-
tion disks, etc. In the solar chromosphere, macroscopic effects of collisional plasma in-
stabilities may contribute to significant heating — an effect originally suggested from
spectroscopic observations and relevant modeling. Based on a simplified 5-moment
multi-fluid model, the theoretical analysis presented in this paper produces the gen-
eral linear dispersion relation for the combined Thermal-Farley-Buneman Instability
(TFBI). Important limiting cases are analyzed in detail. The analysis demonstrates
acceptable applicability of this model for the processes under study. Fluid-model
simulations usually require much less computer resources than do more accurate ki-
netic simulations, so that the apparent success of this approach to the linear theory
of collisional plasma instabilities makes it possible to investigate the TFBI (along
with its possible macroscopic effects) using global fluid codes originally developed for

large-scale modeling of the solar and planetary atmospheres.



I. INTRODUCTION

This paper develops a unified linear theory of local cross-field plasma instabilities, such
as the Farley-Buneman instability (FBI)!?, electron thermal instability (ETI)*, and ion
thermal instability (ITI)™®. These instabilities may occur in weakly ionized and highly
dissipative plasmas embedded in crossed electric and magnetic fields. Such conditions are
typical for the lower (E-region) Earth’s ionosphere, solar chromosphere, other planetary
ionospheres, and they could exist in such weakly ionized gaseous objects as cometary tails,
molecular clouds, accretion disks, etc. The above local instabilities, along with the nonlocal
gradient drift instability (GDI)> ! generate waves of acoustic-like plasma density pertur-

bations coupled with turbulent electrostatic fields.

All these instabilities have been mostly studied with respect to the E-region ionosphere,
but the emphasis of this paper is on the solar chromosphere. The chromosphere is a rel-
atively cool interface between the warmer photosphere and very hot corona. Any energy
transferred from the surface of the Sun to the corona necessarily goes though the chromo-
sphere. Therefore, it is crucial to understand this region and properly model its behavior.
The solar chromosphere is a highly complex and dynamic region where microphysics may
play a significant role. Recently, large improvements in observations and modeling have been
made. Radiative MHD models capture a large variety of chromospheric dynamics, such as
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12,13 , and flux emergence or local dynamos'¢.

, spicules'#15

magneto-acoustic shocks

However, when comparing chromospheric observable profiles, such as MgII from IRIS
observations'” and Call from ground-based observatories, with synthesis from the above
models, the synthetic profiles typically turn out to be narrower than the profiles deduced
from observations!®. This discrepancy could have come from the lack of turbulence in models,
but the additional OI lines indicate that this is insufficient'®. Another possible scenario to
explain the discrepancy is mass load or heating. Comparison between IRIS and ALMA
observations with radiative MHD single-fluid models, which included ion-neutral interaction
effects and non-equilibrium ionization, suggests that spicules in the models are still up to a

few thousand degrees lower?’.

Fontenla et al.21?2 proposed a new heating mechanism that has not been included in the
previous models. This heating mechanism involves plasma turbulence and is based on the

analogy between the solar chromosphere and the lower Earth’s ionosphere. In the latter,



collisional cross-field instabilities leading to palpable plasma turbulence have been studied
extensively using radar and rocket observations, analytic theory, and supercomputer sim-
ulations. These instability-driven turbulence produces an important macroscopic effect of

23,24

strong anomalous electron heating detected by radars=“*. This effect has been explained

25-27 ] 21,22

using analytic models and kinetic simulations . Fontenla et a suggested that the

chromosphere may include similar heating processes. These and other analyses?® 32 sug-
gested that the collisional cross-field plasma instabilities can really be developed under the
chromosphere conditions, so that the proposed heating mechanism is plausible. The accu-
rate theory of the relevant plasma instabilities should help explain how, and by how much,

this mechanism could contribute to the chromospheric heating. The linear theory of these

instabilities, developed in this paper, is a necessary step in that direction.

In a number of important aspects, the physical conditions of the solar chromosphere
are similar to those of the E-region ionosphere. Among the common features are the low
ionization and prevalence of plasma-neutral collisions in such a way that electrons are still
magnetized, while ions are partially or fully unmagnetized due to their frequent collisions
with neutral particles (by magnetized s-species plasma particles we mean particles whose
gyrofrequency €2, is much larger than the ion-neutral mean collision frequency v,, while
by unmagnetized or partially unmagnetized s-species we mean the opposite case of 0y <
Vsn). The energy source for the instabilities is the DC electric field E, perpendicular to the
magnetic field B'O, in the frame of reference attached to the neutral-particle flow. If Ey is
strong enough then the above magnetization conditions lead to cross-field instabilities. In
the Earth’s ionosphere, strong electric fields are either generated by a neutral-atmosphere
dynamo (in the equatorial E region) or are mapped from the magnetosphere down to the
high-latitude E region during geomagnetic storms and other intense events. In the core of
the solar chromosphere, where the ideal MHD conditions do not apply, high-speed neutral
flows decoupled from the magnetic field and crossing the latter under a significant angle
may exist® 3¢, This translates to the occurrence of strong electric fields in the neutral-flow

frame of reference.

On the other hand, the E-region ionosphere and solar chromosphere have noticeable
distinctions, such as the differences in the ion and neutral compositions. In the E-region
ionosphere, the two major ion species have fairly close molecular masses and collision char-

acteristics, so that to a reasonable accuracy they can be treated as one unified ion species. A



totally different situation takes place in the solar chromosphere. The ion composition there
may be quite diverse. While the neutral part is mostly H (for simplicity, we ignore here a

3738)  the dominant ions are not necessarily protons, H*.

small contribution of neutral He
The ion composition is often dominated by ionized metal and other heavy impurities (C*,
Mg™, Sit, Fe™, etc.) because the ionization potentials of the corresponding neutral atoms
are usually significantly lower than that of H. As a result, the magnetization of various ions
may differ dramatically. At a given location, some ion species can be magnetized, while
other species are fully or partially unmagnetized®'??. The multi-species ion composition
with different magnetization characteristics modifies the conditions of the plasma instability
development and complicates their analysis.

Additionally, unlike the lower Earth’s ionosphere where the dominant ions (O3, NOT)
and neutrals (N, Oy) are molecules, the solar chromosphere consists mostly of atoms. In
the E-region ionosphere, within the characteristic range of the characteristic low energies
< 0.3 eV, electron collisions with neutral molecules, due to the excitation of rotational and
vibrational molecular levels, lead to mostly inelastic energy losses. In the solar chromosphere,
the electron collisional energy losses are supposed to be mostly elastic since, within the
relevant energy range of < 1 eV, the excitation of the atomic electron levels is almost
negligible. Using the same arguments, we can safely presume that the contribution of the

39741 5 also relatively small. This has serious implications for the

non-equilibrium ionization
electron temperature balance and instability generation, as we discuss in Sec. III.

Finally, the chromospheric magnetic fields are much larger than the geomagnetic field, as
well as the chromospheric values of the plasma and neutral temperatures are significantly
higher than those in the Earth’s ionosphere. However, these and similar parameters are
scalable, so that this quantitative distinction is not a real problem for the theory.

To simulate the above instabilities in both the initial (linear) and later (nonlinear) stages,
one can use fluid-model, kinetic, or hybrid approaches. Most accurate is the kinetic approach,
especially that based on particle-in-cell (PIC) codes®”#242 41 Such codes usually include all
relevant physics, but they typically require substantial computer resources. At present time,
the PIC codes can simulate only restricted local plasma volumes during a limited time dura-
tion, and those scales are still orders of magnitude smaller than the chromospheric features

observed with the current resolution. At the same time, simulations based on simplified

fluid-model equations are usually much less restrictive and can efficiently model even global
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plasma environments, such as, e.g., supergranular scales of the lower solar atmosphere and
even entire planetary ionospheres.

Typical wave periods and wavelengths of turbulence generated as a result of collisional
plasma instabilities are usually larger than the inverse collision frequencies and mean free
paths, respectively. Plasma processes with such temporal and spatial scaling are usually
reasonably well described by fluid-model equations, though particle kinetics can sometimes
be of paramount importance. Indeed, the growth rate v of the pure FBI increases with
the wavenumber k as v o< k? until the wavelength becomes comparable to the inverse ion-
neutral collisional mean free path. For shorter wavelengths (i.e., larger k), the kinetic effect
of ion Landau damping overcomes the k2 increase of v and sharply turns it down to negative
values, thus providing total stabilization of the short-wavelength waves, see, e.g., Ref. 45.
As a result of this competition, the maximum instability growth rate is typically reached at
an intermediate spectral range between the highly and weakly collisional bands which are
determined by the low and high ratios of the wavelength to the collisional mean free path,
respectively.

The theoretical approach of this paper is based on a simplified 5-moment multi-fluid set
of equations. This model includes automatically all relevant mechanisms of the instability
driving and dissipation, except the Landau damping and a number of other, mostly incon-
sequential, factors. For the ionospheric conditions, in the framework of the two-fluid model
(electrons and single-species ions) such fluid-model analysis has been performed recently in
a series of papers by Makarevich, see Ref. 46 and references therein. Makarevich studied
the linear theory of the FBI, GDI, and ITI (but not the ETT) for arbitrary wavelengths,
regardless of the fact that the short-wavelength band is beyond the applicability of the fluid
model.

In this paper, bearing in mind mostly the conditions of the solar chromosphere, we
analyze the general case of multi-species ions with an arbitrary degree of the ion-species
magnetization. Furthermore, in the E-region research it is usually implied that the FBI
is the dominant and the most energetically efficient instability, solely responsible for the
anomalous electron heating. The main reason why we also included in our present theory
the thermal instabilities is as follows. Our recent PIC simulations of plasma instabilities
under the chromospheric conditions revealed, to our surprise, that the ETT is very important

and can even dominate in some regions of the solar chromosphere®?. As far as the ITI is



concerned, our previous research has demonstrated that the ion thermal driving usually

[8:43

accompanies the FB and hence needs to also be included for consistency.

Our theoretical analysis produces the general linear fluid-model dispersion relation for
the combined Thermal-Farley-Buneman Instability (TFBI) that includes all relevant driving
mechanisms (except the nonlocal GDI). Our major thrust is on the long-wavelength limit
in which all collisional plasma instabilities reach their minimum threshold. This limit is
of special importance because if at a given location the driving electric field is below the
minimum threshold value then this location is linearly stable for any waves. Although
the fluid model is rigorously valid only in the long-wavelength limit, in some cases it is
possible, following Makarevich?, to extend the fluid-model treatment to all wavelengths.
In Appendix A, we demonstrate that in spite of the total absence of Landau damping
the simplified 5>-moment model provides stabilization of sufficiently short-wavelength waves
(though the fluid-model results may be inaccurate there). This fact allows one to safely use
fully fluid-model equations to simulate all instabilities without fearing that the corresponding
code might “explode” within the short-wavelength band because of the absence of Landau
damping.

This analytical theory provides predictions of the instability generation threshold con-
ditions and growth rates, depending on the specific local parameters of the plasma media.
Also, we demonstrate that the fluid-model approach for simulating the TFBI is reasonably
well justified, even without including the important kinetic effect of Landau damping. This
guarantees that the global fluid codes developed for the large-scale modeling can be applied
to the simulation of the small-scale cross-field plasma instabilities as well. The results of
this analytic theory can serve as a guide for such simulations and help analyze their results.

This paper is organized as follows. In Sec. II, we introduce the initial equations. In
Sec. III, we describe the background plasma affected by the given imposed electric field
in the neutral frame of reference. More specifically, we describe the mean particle flows
(Sec. IITA) and ohmic heating (Sec. IIIB). The knowledge of the accurate values of these
background parameters is crucial for the instability linear theory. In Sec. IV, we consider
this linear theory and derive the general multi-fluid dispersion relation for the TFBI. In
Sec. V, which is central to this paper, we study the most important limit of long-wavelength
waves, which is responsible for the minimum instability threshold. In this limit, to the

zeroth-order approximation, we derive the wave phase-velocity relation, which is common



for all instabilities (Sec. V A). To the first-order approximation, in Sec. V B, we derive the
instability driving/damping rates, where separate terms describe the driving mechanisms
for each distinct collisional instability and for the total losses. Section V C discusses the
most important quantitative result of the linear theory of instabilities, i.e., the instability
threshold. Section VI discusses the general dispersion relation for arbitrary wanelengths.
Section VII summarizes the paper results. Appendix A discusses the short-wavelength limit
of the general dispersion relation. The analysis of the short-wavelength limit guarantees that
the employed fluid model, even without Landau damping, can be safely used for instabillity
modeling at all wavelengths with no need for additional damping mechanisms to stabilize the

wave behavior at short wavelengths. Appendix B lists major notations used in the paper.

II. INITIAL EQUATIONS

In weakly ionized plasmas, the dominant neutral component is usually weakly disturbed
by the plasma turbulence, so that within small and short-duration characteristic spatiotem-
poral scales of instabilities we assume the neutral atmosphere to be spatially uniform and
stationary. For simplicity, we will consider the constant neutral background composed of a
single-species gas.

The simplest, 5-moment, multi-fluid model includes the continuity, momentum, and
energy-balance equations. In the frame of reference moving with the local neutral flow
(assumed to be spatially uniform and stationary, as stated above), for each plasma species

fluid marked by the subscript s, these equations can be written as

ong

oy +V - (n,V,) =0, (1a)
DV, Lo o V(T L
mg Dt :qS(E+VS XB)_%_msVsn‘/& <1b>
D T 2 -
2/3 S S _ 2 -
TLS E (ng/g - g Msnysn‘/s 5snysn(Ts Tn); (10)

where D;/Dt = 0/0t + V, -V is the substantial derivative along the s-flow; ng, my, g,
T,, and V, are the s-species particle number density, mass, electric charge, temperature (in
energy units), and mean fluid velocity, respectively; v, is the mean momentum transfer
frequency of an s-particle collision with a neutral (n) particle, My, = msm,/(ms + m,,) is

the corresponding effective mass, and Jg, is the mean collisional energy-loss fraction (the
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notation dg, should not be confused with the Kronecker delta function). For purely elastic
collisions, we have d5, = 2my/(ms + m,). In the lower Earth’s ionosphere, however, the
energy losses are dominated by inelastic electron-neutral (e-n) collisions determined mostly
by low-energy molecular rotational and vibrational excitations, so that d., can be electron-
velocity dependent and significantly larger than the elastic value (though still d., < 1). In
the solar chromosphere, we presume d,, to be close to its elastic value. Further, E and B
are the total electrostatic field and an imposed external magnetic field respectively (both
in the neutral-gas frame of reference). Implying sufficiently small-scale and short-period
wave perturbations, we assume the large-scale local background magnetic field B (7, t) to be
spatially uniform, stationary, and sufficiently strong, so that its wave perturbations caused
by turbulent electric currents and non-electrostatic electric fields can be neglected, B ~ B,.
For electrons, the particle charge is ¢. = —e, where e is the elementary charge. In the lower
ionosphere, the ions are singly charged, ¢; = e. For the solar chromosphere, however, we
cannot exclude the possibility of multiply charged ions, so that we will keep the general
average charge ¢; for each ion species j. Within a given ion species there may be the whole
spectrum of discrete particle charges, so that, in principle, the average charge ratio ¢;/e may

have a non-integer value > 1.

The simplified fluid-model set of Eq. (1) implies that the s-particle velocity distribution,
along with its wave perturbations, are reasonably close to Maxwellian. This set of equations
includes all essential factors crucial for the instability generation and damping, such as the
particle inertia in the left-hand side (LHS) of Eq. (1b), Lorentz force, pressure gradients, and
collisional friction (—m,vs,V;) in the right-hand side (RHS) of Eq. (1b), the heat advection
and adiabatic heating/cooling in the LHS of Eq. (1c), as well as even more important local
collisional heating and cooling in the RHS of Eq. (1¢). The somewhat unconventional form
of energy-balance Eq. (1c¢) with its LHS proportional to the substantial derivative of the
specific enthropy (7’ /ng/ %) is more convenient for our purposes. In particular, this form
explicitly shows that in the absence of the collisional heating and cooling — the first and
second terms of the right-hand side (RHS) respectively — the particle temperature obeys the

adiabatic temperature regime, Ty ng/ 3,

Equation (1) neglects a number of known factors that are largely inconsequential for
the processes under study, largely due to the aforementioned constraints on the typical

turbulence spatial and temporal scales. Among the major neglected factors are: Coulomb



collisions between the charged particles, slow processes of ionization and plasma annihilation
(recombination), pressure anisotropy (viscosity), higher moments of the particle velocity
distributions, the gravity force, and heat conductivity.

In the equatorial and high-latitude E-region ionospheres, the electrojet instabilities are
driven by an imposed significant DC electric field Ey. Its scales of spatial and temporal
variation are usually much larger than the characteristic wave scales, so that one may treat
EO as spatially uniform and constant. In the solar chromosphere, neutral flows that originate
from below the chromosphere may decouple from the magnetic field and cross the magnetic
field lines. In a local frame of the neutral low moving with the neutral mass velocity V, across
a given magnetic field, éo, we have an external large-scale DC electric field Eo = —Vn X Eo.
Then the total electrostatic field is E = Eo — V&, where ® is the electrostatic potential

produced by plasma turbulence. Poisson’s equation for ®(r,t),

1 p
V2P = Py (ene - qun]) : (2)
j=1

closes the electrostatic description of plasma dynamics (here the integer p is the total number
of the ion species; € is the permittivity of free space). Typical turbulent wavelengths are
much larger than the Debye lengths. This usually allows one to employ the quasi-neutrality
relation, en, = Z?:l g;n;, which eliminates the need for Poisson’s equation and simplifies the
treatment. Bearing in mind, however, that even small deviations from the quasi-neutrality
in plasma waves may sometimes be of importance (as we discuss below), for the linear waves
generated by the instabilities we will use Eq. (2). For the large-scale background plasma

density ny = ng, we will assume the full local charge neutrality,

p
eney = Z q;Mjo- (3)
j=1

III. BACKGROUND FLOWS AND MEAN OHMIC HEATING

The driving force of all collisional plasma instabilities is the external DC electric field,
EQ L EO, that must exist in the frame of reference attached to the neutral atmosphere. The
collisional plasma response to this driving field is twofold: the external field creates distinct
electron and ion particle flows (leading to an anisotropic electric current) and it also heats

the plasma through the friction caused by collisions of the plasma with the neutral particles.



On the one hand, the stronger is the field Ej the faster are the particle flows and the
better should be the conditions for the instability excitation. On the other hand, a stronger
field EO results in larger mean ohmic heating of the plasma. The elevated electron and
ion temperatures increase the plasma diffusion within the waves and, through the increased
instability threshold, make the heated plasma more resistive to the instability excitation.
If, nonetheless, the driving field magnitude, F, = |EO|, exceeds the increased instability
threshold, Ery,, then the linear instability will develop, but saturated plasma turbulence will
be less intense than it might be without such macroscopic heating. In the non-linear stage,
the turbulent electric field additionally heats up plasma particles, affecting the saturated
level of developed turbulence. In this paper, however, we deal only with the initial linear

stage of instabilities.

A. Mean particle flows

Consider the undisturbed background plasma embedded in the external macroscopic elec-
tric (Ep) and magnetic (By) fields. For a given plasma species s (electrons or j-species ions),
Eq. (1b) yields the following mean fluid velocity:

. E . E Ey x b
Vso=<qs : +f~e§‘/o>/(1+m§):“5( o+ #sBo x b) (4)

MVsp, (1+ k2)By

Here . . L
— EO X BQ Eo )

Vo = = 5)

0 B2 By (5)

is the Eo X Eo drift velocity, where b = EO /By is the unit vector in the direction of EO,

Qg = qsBo/ms is the s-species gyrofrequency, and

Q. B
K, = -2 — B0 (6)

VS’VZ mS Vsn

is the corresponding magnetization parameter. In this paper, we mostly imply strongly mag-
netized electrons, x2 > 1, while a multi-species positive-ion population, s = j, may contain
both unmagnetized or magnetized ions. In other words, we allow the ion magnetization to

be weak, k; < 1, or moderate, x; 2 1, but not strong (not x; > 1). Strongly magnetized

ions are of no interest for the collisional instabilities, since for x; > 1 the FBI mechanism
becomes stabilizing with the stabilization facor increasing proportionally with (FL? — 1), see

Ref. 8.
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For each ion species j, we introduce the difference between the undisturbed electron
and ion drift velocities, ﬁj = ‘760 — X7j0. We will actively use this parameter in the following
sections. Strongly magnetized electrons move with almost the EO X éo drift velocity, 1760 ~ 170,
so that Eq. (4) yields

- — — %—I{'E_:[)/BO E;()XB—K,'E:O
U ~ Vo — Vi = ! - J
/ 00 1+ #3 (1 + &3)Bo

(7)

Comparing the expression for the ion drift velocity from Eq. (4) (s = j) with Eq. (7), we
easily find that ‘7}0 and ﬁj are mutually orthogonal and relate to each other as ‘7j0 xb = Kj U -
Bearing in mind that to the same accuracy [jj + ‘73‘0 = ‘70, we obtain that the absolute values

of \70, X7j0, and (jj relate to each other as

Vi
Vio = k;Uj, Uj = ——— (8)

\/1+ K3
Through the magnetization parameter x;, the above relations depend on the ion-neutral
collisional frequency, vj,. In the general case, v;, might be temperature-dependent and
hence could be modified by the ohmic heating. However, throughout this paper we assume
temperature-independent ion-neutral collision frequencies, as we discuss right below.

For two colliding particles — a charged particle s and a neutral particle n — the approx-
imation of the constant collision frequency, vy, = n,04,Vs, is called “Maxwell molecule
collisions” (MMC) approximation!” (here n, is the n-particle density, Vi, is the relative
speed of the two colliding particles during their initial remote approach for a given collision,
and oy, is the V;,-dependent s-n collisional cross-section). After averaging over the entire
particle velocity distributions, this leads to the temperature-independent mean collision fre-
quency vs,. For plasma-neutral collisions, the MMC approximation is usually based on the
assumption that the collision cross-sections are mostly determined by the charged-particle-
induced polarization of the neutral collision partner (the corresponding interaction potential

4

¢, where 7y, is the inter-particle distance). This results in the s-n collision cross-

is o< 1/r
section oy, o< 1/Vj,, so that the kinetic collision frequency vy, becomes velocity-independent.
In the solar chromosphere where neutral particles are predominantly hydrogen atoms, within
the low-energy range of < 1 eV the MMC approximation should work reasonably well for
both e-n and i-n collisions, except proton-hydrogen (H"-H) collisions, which are strongly

affected by the charge exchange. However, even for the latter, the MMC approximation still
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works reasonably well. For both HT-H and e-H collisions, this can be verified, e.g., from
the o+, and o, data presented in Ref. 48, Fig. 1 and 4 (after smoothening in Fig. 1 the
curves over frequent quantum oscillations, see also Ref. 38). Assuming plasma collisions with
hydrogen atoms to be elastic, we will employ in the chromosphere the MMC approximation
for all j-n and e-n collisions. In the E-region ionosphere, however, the dominant neutral
particles are molecules. Within the relevant low-energy range < 0.3 eV, collisional losses of
electron energy are dominated by inelastic excitation of rotational and vibrational molecular
levels. As a result, in the ionosphere, the MMC approximation does not work for the e-n
collisions?®, but for the ion-neutral collisions it generally works reasonably well*”. In this
paper, bearing in mind mostly the chromospheric conditions with predominantly elastic e-n

collisions, we will assume constant v, for all e-n and i-n collisions.

B. Ohmic heating

Now we discuss the large-scale frictional heating of plasma particles in the crossed Eo
and B, fields. For the background temperature of charged particles, Eqgs. (1c) and (8), lead
to 21,2 21,2
where the far right approximate expression applies only to purely elastic collisions with
Osn = 085 = 2m_/(m, + m,). Equation (9) describes the background ohmic caused by the
driving electric field EO.

For strongly magnetized electrons, x2 > 1, Eq. (9) reduces to
2m V§ N m, Vi

Te = Tn + ~ In )
0 30en 3

(10)

where, as above, the far right expression applies only to elastic electron-neutral collisions
With 6 = 0¢85 ~ 2m, /m,,.

Equation (10) has a serious implication for the instability driving. To drive a collisional
instability, like the FBI, one needs to apply an external DC electric field Ey L By. This field
amplitude, Ey, must exceed the minimum threshold value, EX" assuming that instability
driving overcomes the regular plasma diffusion caused by the plasma pressure gradients
within the generated waves. For example, in a single-species ion (SSI) plasma (j = i), the

minimum FBI threshold field corresponds to the EO X EO speed close to the isothermal ion
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acoustic speed, Cj,

Lot o T’O)m (11)

m;

VO%CSE(

According to Egs. (9) (for s = ¢) and (10), the driving field heats both ions and electrons,
increasing the instability threshold. Under the optimum conditions for the FBI with essen-
tially unmagnetized ions, £? < 1, the ion heating is usually moderate and not detrimental

for the instability excitation.

A totally different situation takes place for electrons. For the E-region Earth’s ionosphere
with dominant molecular ions (NO™, OF) the electron energy loss rate, d.,, is determined
mostly by inelastic losses caused by collisional excitation of low-energy rotational and vi-
brational molecular levels. The corresponding inelastic temperature-dependent parameter,
Oen = 0:2¢still remains small, 62! ~ (2-4) x 1073, see Ref. 49, but two orders of magnitude
larger than the corresponding elastic value, 69 ~ 2m,/m,, ~ 3.5 x 1075 (assuming the Ny,
O,-dominated Earth’s neutral atmosphere). The corresponding ohmic heating described by
the middle expression in Eq. (10) with d., = 62 is noticeable, but still not detrimental
for the FBI excitation. A drastically different situation, however, should take place in the
atomic gas atmosphere, such as the solar chromosphere where the hydrogen (H) prevails
in the neutral atmosphere. Atoms have no rotational or vibrational losses, and for typical
chromospheric temperatures below 1 eV we expect no significant excitation of the electronic
levels. Indeed, excitation of the lowest excited atomic state requires 10.2 eV, so that for
T. = 11,600 K (corresponding to 1 eV), the fraction of Maxwellian superthermal electrons
that may provide such excitation is ~ 1/10.2 exp(—10.2) ~ 10, The fraction of electrons
that can ionize the neutral H atoms is even smaller, ~ 13.6 exp(—13.6) ~ 2 x 10~°. The frac-
tions of the total energy losses corresponding to these inelastic processes are roughly given
by the same numbers. As a matter of fact, relevant chromospheric temperatures are usually
smaller, < 0.5 eV, so that the inelastic energy loss fractions are even exponetially smaller
than those estimated above. Comparing these small fractions with the mean elastic energy
loss fraction §¢%5 ~ 2m, /my =~ 1073, we see that inelastic electron-energy losses, including

those associated with the non-equilibrium ionization3% 4!

, can be neglected. Under these
assumptions, the collisional energy loss fraction é., should be reasonably close to its elastic
value, 6925, Then the corresponding ohmic heating is determined by the far right expression

in Eq. (10). According to it, the ratio of Ey to the temperature-modified minimum FBI
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threshold, E¥n is determined by

EO _ E _ 3mz (Te - Tn) (12)
Emin (O my (T, +T;)

If all ions were created by ionizing the dominant neutral gas atoms or molecules, with no
further chemical reactions, then we would have m; = m,,. In such cases, regardless of how
strong is the driving electric field Ejy, the ratio E, J/EmM could not exceed a fairly modest
value of v/3 ~ 1.73 (corresponding to T, — oc). In the lower ionosphere, even in spite
of the slightly different neutral and ion molecular compositions, the approximate equality,
m; =~ my,, holds. This means that if there were no rotational and vibrational energy losses
then ohmic heating by the driving field would be so high that the FBI could only be excited
within a narrow altitude range with only a moderate increase of the driving field above
the temperature-modified threshold value. However, in the solar chromosphere, where the
neutral composition is mostly H, but small impurities with the low ionization potential
become ionized much easier than H, the much heavier metal ions can become a significant,
if not dominant, fraction of the ionized component. As a result, the average ion mass m;
may exceed m,, by a noticeable factor. This helps the ratio Fy/E® reach far larger values
than v/3 and hence lead to more intense plasma turbulence.

This discussion is based on a simplified model that assumes just one kind of instability
(FBI), but the same basic idea applies to the more general and complicated situation. The
important point is that one has to self-consistently account for possible modifications of the
background plasma caused by the driving field itself because some of these modifications

can improve or aggravate the instability driving conditions.

IV. LINEAR WAVE PERTURBATIONS

Now we start developing the linear theory of dissipative instabilities, assuming the
neutral-flow local frame of reference. The thrust of this section is the derivation of the
general dispersion relation using the 5-moment multi-fluid model equations.

For all varying vector or scalar quantities, we will assume small harmonic wave pertur-
bations oc exp[i(lg -7 — wt)], where the vector k is real, while the wave frequency, w, can be
a complex number: w = w, + iy (with real w, and 7). In this ansatz, the linear instability

means positive v (the growth rate), while a stable situation means negative v (the damping
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rate). In what follows, we will denote small linear perturbations of any scalar or vector
quantity by adding 0 to the corresponding variable notation, bearing in mind that every
perturbation, denoted like A, represents just one isolated harmonic wave with the complex
amplitude.

For any isolated linearized harmonic wave perturbation, we have 9/0t — —iw, V — il;,

and 0/0t + ‘730 -V — —iwps, where
Wps =w —k -V (13)

is the Doppler-shifted wave frequency in the frame of reference moving with the s-species
mean flow, ‘7;0. We will separate the wavevector k to its parallel (to B% = BOZA)) and
perpendicular components, k= k”l;—i- k.. In what follows, we will assume field-aligned wave
perturbations, k, = |k | > |ky|, so that k; = k = |k|. Non-field-aligned wave modes with
|ky| ~ k1 are usually situated deeply within the linearly stable range and are of no interest
for the linear instability analysis. However, even the small parallel component k| should
be included in the theory because it may be of importance for the electron dynamics and
heating, see Ref. 25 and references therein.
Temporarily introducing dimensionless variables,

_0ng eod 0T,

s — 3 ) s = ) 14
" 50 ¢ TeO E TsO ( )

and linearizing the s-particle number density, velocity, temperature, and electrostatic po-
tential against their background values (discussed in the preceding section), from continuity

Eq. (1a), we obtain

k- oV,
. | 15
e == (15)
Similarly, thermal Eq. (1c) yields
2 4Msn SN /Y7 7
_ist <Ts - g ns) - TSIO/(V;O ' 5‘/;) - 65717/5717_5 (16)

Below we show that in the dimensionless variables (14) the fluid velocity perturbation 8V,

is proportional to the linear combination (as¢ + ns + 75), where

_ TeO qs

g =
Tsoe ’

(17)

so that (5‘7; = (s +ns + Ts) [?s, where the vector I?s will be determined later using mo-
mentum Eq. (1b).

15



Indeed, for each species we can separate in the RHS of Eq. (1b) the two velocity-
independent forces, i.e., the electric field and the pressure-gradient forces. The remaining
two velocity-dependent forces, i.e., the magnetic component of the Lorentz force and colli-
sional friction, can be re-arranged to the LHS. The combined linearized wave component of
the velocity-independent forces is proportional to (as¢ + ns + 7s) /2, while the corresponding
harmonic component o< 5V, in the re-arranged LHS determines the linear tensor response to
that. Explicitly resolving this linear response, we obtain 5V, = (s +ns + 75) K, and find
the vector K,, whose explicit expressions will be given below by Eqs. (25) and (26).

In terms of still unspecified K,, Egs. (15) and (16) yield

Ns = (as¢ + Ns + Ts) Asa (18&)
2
MsTs — 5 Ns = (as(b + Ns + Ts) BS7 (18b)
where
E' [?s 4Msn sn ‘75 : Xs '5571 sn
A, = , B, =1 Van(Vao ), ,uszl+l Ysn. (19)
WpDs 3TSOWDS Wps

Solving Eq. (18) for 7, and 7, in terms of ¢, we obtain

1 /2 B
s— — \ 5 == S5 s — st ) 20
T Ms<3+As)n ns = asNso (20)
where )
94, +3B,\ ~
N, = (1 — A, — ;) As. (21)
Slts
Then, linearizing Poisson’s Eq. (2) in these variables, we obtain:
- 4;njo0
D o —ne=kXpo,  py= L2, (22)
€ENeo

j=1
where A\p, = [e0T.0/(€?ne0)]"/? is the “electron” Debye length. Using Eq. (21), we express
all 75 in terms of ¢ and then substitute the results to Eq. (22). This gives us an interim

dispersion relation,

b 2132

pia;N; _ K"AD

D D ey (23)
7=1

in terms of the parameters A and By defined by Eq. (19).
The ultimate dispersion relation requires explicit expressions for A, and B,. To determine

these expressions, we have to find 8V, from momentum Eq. (1b). Linearizing Eq. (1b), we
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obtain: .
s = 7 7 k 2
(1 —1 “D ) oV, — /15(5‘/8 X b) — st (Ozs¢ +1s + Ts) ) (24)

I/STL sn

where Vi, = (Ty/ms)'/? is the mean chaotic speed of the s-particle velocity distribution.

Then for the parallel components of linearly related 5V, and [?5, we obtain

K. = Wy i, BV, (25)
el as¢+ns +7—s Vsn (1 _ist/Vsn)'

After applying a “cross’-product xb to Eq. (24) and then eliminating 5V, x b from both

equations, we obtain for the dominant perpendicular components:

. SVar V2 (1= iwps/Ven) ki + re(kL x D) (26)
= = :
sl Oés¢+773 + 75 Vsn (1 — z'st/Vsn)Q +/€§
From these expressions, we obtain now the explicit general expressions for A, and Bi:
V2 1 — iwps/Ven) k2 ki
As 1 Ts ( Wp /V 2) 1 : I 7 (27)
VsnWpDs (1 — ist/Vsn) + K)g 1— Zst/Vsn
B. — 4mn (1 - Z-(JJDS/I/sn) (EJ_ : ‘_/;O) - RSEJ_ : (‘730 X 8) (28)
* 3wps (My +my) (1— iOJDS/Usn)2 + K2 ’

valid for all plasma species s. Specifically for the strongly magnetized electrons, 2 > 1, we

obtain simpler expressions:

BVE (1= iwpe/ve)” + 2K /12

A~ — , 29
' VenwDeHg(l - iwDe/”en) ( a)
4k | V; WDe .
B, ~ — 0 1— 20 ) s — Kesinf| | (29b)
3wpek? Ve

where 6 is the angle from Vy to k (often called the ‘flow’ angle). Similarly, for j-species ions,

we have
4k;kUym, (1 —idwp;/vj,)sin x; — K; cos x;

B. = , 30
7 Bwpj (M +my) (1 — iwp; /vin)® + K2 o

where the angle x; = 0 + arctan x; is unambiguously determined by relations:

E~U'j cos ) — k;sin 6
CoS Xj = = ,
kU; 1+ r2

-

. EVJ sin + k; cos
sin x; = = )
kV; ~/1+/£J2'
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Recall that according to Eq. (8) we can also express U; in (30) in terms of Vj = Ey/By as
U; = Vo/(14x2)"/2. Using Egs. (27)-(31) and substituting all A,, B, into (23), we obtain the
general dispersion relation for w(lg) This general equation was published earlier®? without
the derivation and further theoretical analysis. In the following section, assuming the limit
of sufficiently long-wavelength waves, we reduce this equation to a simpler form, more useful
for the physical analysis and simple estimates.

Equation (23), where us, N;, A, and By are given by Egs. (19), (21), (27), and (28),
represents the general dispersion relation. We caution that in the short-wavelength range
this expression is physically deficient due to lack of crucial Landau damping. The major
value of this equation, however, is that it allows one to simulate instabilities for the entire
wave spectrum using the cheaper fluid code, just ignoring a non-physical behavior at the
short-wavelength band. For many years researchers, including ourselves, were afraid that a
fluid code without Landau damping may blow-up at short-wavelength waves. In Appendix
A, however, we demonstrate that there is no need to be afraid of that. Below we present
the long-wavelength limit solution, which is not physically deficient because in this limit the

missed kinetic effect of Landau damping plays no role.

V. LONG-WAVELENGTH LIMIT (LWL)

This section discusses the most important limiting case of the long-wavelength limit
(LWL). We define this limit as the w, k-band, in which £~ are much larger than both the
collisional mean free paths and the Debye lengths, Ap,, while the wave frequencies are small

compared to the ion-neutral collision frequencies,
lw|, EViax, lwps| K Vjn, K Ven, K2\, < 1. (32)

Here Viyax is the largest between the mean flow speeds, U; = |17j|, and ion thermal speeds,
(Vaw); = (Ty/my) ">,

We give special attention to the LWL for three major reasons:

1. The minimum threshold for all collisional plasma instabilities is usually reached within
the LWL. If at a given location in space there is no linear instability within the LWL

then this location is linearly stable for all w,E—waves.
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2. As we mentioned above, fluid-model Eqgs. (1a)—(1c) are strictly valid only within the
LWL. Outside this limit, a stabilizing effect of ion Landau damping becomes crucial,
so that the rigorous treatment requires employing there a more physically consistent

kinetic approach.

3. In the LWL, all different instability-driving mechanisms are linearly separated (see

below). This makes the analysis of each physical mechanism much easier.

One can easily verify that in the LWL the absolute values of A,, B.; (but not the
ratio A;/A.) are automatically small. To the first-order accuracy with respect to the small

quantities
lwns| K

Al 1Bl K ADs < 1, (33)

Ven 7%7
from Eq. (21) we have

2A, + 3B,
Ns% (]-—I—As—l_;) Asy

s
so that general dispersion Eq. (23) reduces to

p
> ijéjAj 2AJ+3B] 2Ae+3-Be
Dw, k) =1 —— |14+ A, — A, —
(wa ) +; Ae ( + J + 3,“/] SNe
2y2
L EA, 1_Ae_2Ae—|—BBe o (34)
A, Slle

where A;. and B;. are given by Eqs. (29)-(31) and p, are defined in Eq. (19).

Reduced Eq. (34) has certain advantages over general Eq. (23). First, in the LWL the
quantity |Im D(w, k)| turns out to be automatically small compared to |Re D(w, k)|, as
well as the growth/damping rate, |y|, becomes automatically small compared to the real
wave frequency, w,. This allows one to treat the wave phase-velocity relation for wr(/;)
(the “zeroth-order” approximation) separately from the instability driving (the “first-order”
approximation). Second, as we already mentioned, Eq. (34) allows one to explicitly separate
all instability driving mechanisms and diffusion losses, making the instability analysis much
easier.

Under condition of |y| < w;, if we also neglect all first-order small terms in the RHS of
Eq. (34) and use w ~ w, in the highest-order terms, D(w, k) ~ Re D(w,, k) = Do(w,, k), we

- -

obtain the equation for w, (k). Real solutions of Dy(w,, k) = 0 will provide the zeroth-order
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phase-velocity relations for the linear harmonic waves. To the next-order approximation,
adding the small imaginary parts and solving the first-order equation with 77, included in the
complex wave frequency w, we obtain an approximate expression for the growth/damping

rate, B
Im D(w, k
e aDO(w,( E)/;w o (35)
Below we implement all these procedures. In Sec. V A, we discuss the zeroth-order ap-
proximation for the dominant real part of the Doppler-shifted wave frequency wp, = w—Fk -170.
This real part is responsible for the wave phase-velocity relation. For arbitrarily magnetized
multi-species ions, the explicit analytical solutions for wp. ~ Rewp, can be found only in
some particular cases. Bearing in mind the actual physical conditions (especially in solar
chromosphere), we find approximate solutions that have fairly broad field of applicability. In
Sec. V B, we find the explicit expressions for the instability growth rates for each component
of the TFBI and damping mechanisms in terms of wp.. Section V C, discusses the major
result of the linear theory, i.e., the instability threshold. We obtain the general expression

for the threshold electric field EThr (or the corresponding EThr X B% speed) and discuss

particular cases.

A. Zeroth-order approximation: wave phase-velocity relation

The zeroth-order relation for the dominant real part of the wave frequency is obtained
by neglecting in the RHS of Eq. (34) all terms proportional to A; and By, except their ratio
A;/A.. This yields the following equation:

D(w, k) = Do(wy, k) = 1+ZR (pﬂo‘f )

p
Pj
=1+ wpe B =0, (36)
; (14 K5)(Qe + k- Uyt
where p; = (g;/€)(nj0/ne0),
R N 37
Y = ok + W ) (37)

and by wpe = w— k- ‘70 we imply here and throughout the remainder of the text the dominant

real part of the Doppler-shifted wave frequency, wp, ~ w, — k- V.
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For the particular case of single-species ions (SSIs, 7 — i), Eq. (36) reduces to a much

simpler equation, 1 + wp./[(1 + K2 wDe—l—E-[ji ;| = 0, yieldin
pler eq : /1( ; 0 Y g
(1+ K2) (k- Uy
B k-U
E‘[V()JF(lWL’f?)%ViO]

1+ (14 £2) 9 ’

in full agreement with the previously published results, see, e.g., Refs. 8 and 25 and references

WDe:Wr_k'VE):_

wDi:wDe—i—k-Ui

(38)

Wy =

therein. For the linearly unstable waves with k- U, > 0, the Doppler-shifted wave frequency
in the electron-fluid frame of reference, wp., is negative, while the Doppler-shifted wave
frequency in the ion-fluid frame, wp;, is positive. Physically, this means that electrons move
somewhat ahead of the wave, while ions lag behind it. This feature is important for the
self-consistent formation of the long-lived compression/rarefaction waves, which in weakly
ionized highly dissipative plasmas can only be sustained by an external DC electric field Ej.

The solution of Eq. (36) simplifies dramatically also in the case of unmagnetized multi-
species ions, k; < 1. If all ions are essentially unmagnetized (as, e.g., in the E-region iono-
sphere at altitudes below 115 km and, perhaps, at some cold regions in the mid-chromosphere
of the quiet sun) then all relative e-i velocities are almost equal, ﬁj ~ ‘70 = EO X l;/ By. In
this case, all ion Doppler-shited frequencies wp; are shifted from wp. approximately by the

same k-dependent quantity k- Vy,
Wpj &~ Wpi = Wpe + k- V. (39)

This reduces general Eq. (36) to an easily solvable equation

p
wpe b

1—|——_,_,
WDe+k"/E)j:1 wj

— 0. (40)

This means that all different p roots of Eq. (36) degenerate into a single root for wp., with

all wp; equal to the same common value for all ions, wp;,

(k- Vo)w k- Vo
e:——, i: ; 4]_
wp 1+ U WDi = 1y (41)

where the parameter

v

(Z ”—) _ (42)
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generalizes the parameter ¢); = 9; in the standard SSI solution (since 2§:1 p; = 1, in the
SSI case ¥ = 1);).

Before looking at more general cases, it is useful to rewrite, in accord with Egs. (7) and
(31), the scalar product - (7]- as

cosx;  cosf — r;sinf
(1—1—55)1/2 N 1+/<;j2.

k-U; =GkVy, G (43)

where the dimensionless parameter G; is independent of k and V;. Accordingly, the electron
Doppler-shifted frequency, wp., as a solution of Eq. (36), and hence wp; = wp, + k- ﬁj,

should be similarly written in proportion to £V},
Wpe = gekvba Wpj = Cjk%7 Cj = Ce + Gj' (44>

As a result, Eq. (36) reduces to an equation for the dimensionless variable (.,

p

Py _
D Dy e (43)

that involves neither k nor V. This equation depends only on the k-direction (via ) and
local magnetization parameters x;, ;.

In the general case of multi-species ions with different k- ﬁj (i.e., with different G;),
Eq. (36) can be reduced to a polynomial equation of degree p, where p is the total number
of the ion species. For arbitrary p, this equation is either analytically unsolvable (for p > 5)
or has cumbersome exact solutions (for p = 2,3,4). Apart from degenerate cases, Eq. (36)
has exactly p real negative roots for wp. = (.kVj, while all corresponding wp; = (;kV; are
positive.

To illustrate the latter statement, it is useful to rewrite Eq. (45) as

Ce = F(ge)v (46)

where

F(C) = - (Z €—J> S UJ)W a; = —Gj. (47)

Figure 1 shows schematically the two sides of Eq. (46) for a generic set of different &; and
aj. All p roots of (. = F((.) are given by the intersections of the diagonal y = (. with the

curve y = F((.). For any integer p > 1, the entire curve y = F((.) represents p isolated
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FIG. 1. An example of the graphic solution of Eq. (46). Solid curves show p isolated segments
of y = F(x), where p vertical dashed lines mark « = b;. All p solutions of Eq. (46) correspond
to the intersections of the solid curves with the diagonal red line y = x. The total number of
ion species (p = 5) and the specific values of a; used in this example serve only to illustrate the
general behavior of the solutions; they do not correspond to any real physical situation in the solar

chromosphere or elsewhere.

segments y = F((.), separated by p — 1 singularities of the 1/({, — bs)-kind (bear in mind
that by # as). The vertical values of each segment boundary span the entire (—oo, c0) range
of the y-value, either in semi-infinite {, domains (for the two edge segments) or within finite
domains between two adjacent singularities. Each singularity, (., = bs, in turn, is situated
between two adjacent zeroes of F'((.), ((.)s = as and (()s+1 = as+1. All p zeroes of F((,),
(Ce)s = as, as well as all p — 1 singularities, ((.)s = bs, are negative. This pertains to all p
roots (. of equivalent Eqgs. (45) and (46).

Thus, if all k- (7]- = G;kV, are different then the solution of Eq. (46) has exactly p
negative roots of wp.. In the general case, these roots can be found numerically. Each root
corresponds to a separate wave mode. However, we will be interested only in one solution
that corresponds to the minimum instability threshold field (if there are more than one
linearly unstable modes). Based on particular cases described below, we may suppose that

this solution has the minimum value of |(.| corresponding to the largest values of (; = (.+G;.

Now we consider particular cases that will allow us to obtain explicit analytic solutions.
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First, if all ions are essentially unmagnetized (x; < 1, see above) then all G; =~ cosf, so
that Eq. (45) reduces to 1 + (./[(¢. + cos0)¥] = 0 with the obvious solution

WU cos cos 6

“TTUve YT

where VU is defined by Eq. (42). This solution is equivalent to Eq. (41). However, if at least
one ion species is partially magnetized, x; 2 1, then the situation is less simple.

As a second particular case, we consider partially magnetized ion species, assuming first
that x; 2 1 holds for all ions (more accurate conditions will be discussed below). For
partially magnetized ions, the quantities k- ‘7]»0 are not negligibly small. Being unable to
find the general exact solution of Eq. (45) or (46), one can utilize an approximate approach,

implemented earlier for the pure FBI3!. This approach is based on the existence of a small

K Mel,
0,=,/-2L= ==, 48
1=\ T\ s (48)

For example, throughout the E-region ionosphere, ©; = Oy ~ 1.4 x 1072, see Refs. 8 and

parameter

25. In the solar chromosphere, dominated by ion collisions with the light atomic hydrogen,
the values of ©; are typically larger (see below), but they always obey a slightly weaker
inequality, @]2- < 1.

Fletcher et al.?! used the following idea. Restricting the treatment to strictly perpendic-
ular waves, k| = 0, for which we usually expect the minimal threshold field, one can write
the parameter ¢; defined by Eq. (37) as ¢; = ©7/k7. Then for partially magnetized ion
species, assuming :‘ijz > @?, one automatically has ¢; < 1. In the E-region ionosphere, at
altitudes where 1; = ¢ < 1 (usually, above 100 km of altitude), this automatically provides
|C| < 1. Expecting a similar inequality to hold for all multi-species ions in other media,
one can easily solve Eq. (45) by neglecting |(.| compared to G; in all denominators. This
reduces the original high-order polynomial equation to a linear one with the simple (and

unique) solution,

_ » -1
e ™ Z (cosf — k;sin H)wj]

_ » —1
Py
= — , 49a
; (14 #3)1/24; cos Xj] (492)
cosf — Kk;sin @
T~ G = J 49h
C] J 1 +/€? ) ( )
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for each ion species j. The condition for this approximate solution, |(.| < |G|, requires

i < | cos b — k; sm9| (50)
COS@—KJ sin 0)1; 1+ k7

j=1
Assuming both | cosf — «;sinf| and 7 to be of order unity, we reduce Eq. (50) to a much
simpler criterion: ¥ < 1. If the wave direction is such that for some specific ion species the
flow angle 6 is close to tan! k; (leading to |cosf — k;sinf] — 0) then the corresponding

contribution to the summation, j = ¢, dominates, reducing the Eq. (50) to

O2
== <L (51)

J
The above two cases of low-magnetized ions, k; < 1 (equivalent to ¢; > @?) and the
low-1); case, 1; < 1 (equivalent to /'i? > @3) overlap under fairly broad conditions of
@? < 1; < 1, equivalent to 1 > /i? > @]2. These two overlapping cases together cover
a significant domain of the collisional plasma parameters, but they still do not encompass
all possible situations. The reason is that the relevant ion-magnetization conditions were
imposed for all ions. However, there is a possibility that at a given location the conditions

k; < 1 and k; 2 1 are satisfied separately for different ion species. In those cases, Eq. (45)

does not necessarily reduce to a simple linear equation for (.. In some cases, if the ratios
pj/w; with small ¢; < 1 dominate over all the others with ¢, 2 1 then this case can
be approximately reduced to the above low-1; case. If, however, the corresponding ion
concentrations p; are too small, p; < 1;, then the situation is more complicated.

For the solar chromosphere, however, the general situation simplifies dramatically if we
assume that for both e-n and i-n collisions the MMC approximation holds (see Sec. IITA).
In this approximation, for elastic i-n or e-n collisions (assuming first no charge exchange
between the colliding ions and atoms of different materials), the expression for the s-n

collision frequency is given by347,

2.21 nllin n 2 n 2 n
vy = 2ol [ Oy 96, Tt T (52)
ms + my 47T€OMsn €oMs (ms + mn)

where pg, = mgm,,/(ms + m,,) is the reduced mass of the two colliding particles, n,, is the

neutral particle density, €y is the permittivity of free space, and «,, is the neutral-particle
polarizability. In the solar chromosphere, the dominant neutral component is the atomic

hydrogen (H) for which we have a,, ~ ay =~ 0.67 x 1072* cm?, see Ref. 47.

25



Elastic-collision Eq. (52) applies there only to i-H collisions of heavy ions like C*, Mg*,
Fe™, etc. (s = j* # HT), whose mass is significantly larger than the atomic mass of the
neutral collision partner H (m,, = my; recall that here we ignore any contribution of He).
For these heavy ions, one can neglect the hydrogen mass my compared to m;+, so that

Hi+H = My and

apeimy 5 Mu ny -1
QHETH 511 % 10 ( ) . 53
60777,?4_ mj+ 1020 m—3 > ( )

Vi+H ~ 196nH

The inverse proportionality of v+ to the ion mass directly follows from the fact that heavy
chromospheric ions collide predominantly with the much lighter neutral atoms (H).

For the HT-H collisions, to a reasonable accuracy, one can also use the MMC approxi-
mation, i.e., assume nearly constant vy+y, but not the specific elastic-collision expression
given by Eq. (52). Using Figure 1 from Ref. 48 (after smoothing the corresponding curve
over frequent oscillations), we approximately obtain

ny _
v ~ 2% 10° (o )57 (54)
Note that Eq. (52) would result in about twenty times smaller value for vy+y. The charge-
exchange process is the major reason for the much higher total HT-H collision frequency.

For the e-H collisions, using Eq. (52), we obtain:

2

vear 7 1.96m, [ 220 % 0,905 x 10 <W> s, (55)

Figure 4 from Ref. 48 provides a value of v,y reasonably close to this.
The fact that the collision frequency vj+y for j© # H' is inversely proportional to the
ion mass means that the magnetization ratio x;+ = Q;+/v;+n has approximately the same

common value for all heavy-ion collisions with the neutral hydrogen,

O51B0 €0 BO 1020 Il'l_3
= R N N ~ 0.45 . 56
" H]_‘— ny agmy (10 G> < nH ( )

Due to this, for all heavy ions with m;+ > my, we have equal values of the parameter

1 e

Yito = ——
Vi ’
Kelj+ K7

K+ mel,
@i = @j+¢H+ = I = e—eH (57)
\/ Ke mj;+Vi+H
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with the subscript i applying only to the heavy ions. For these ions, the parameter ©7 is

fairly small,
Me

Q

62

1

~ 2.334 x 1072, (58)
mu

For the H"-H collision magnetization parameter, we obtain

By 1020 m—3
~ 4. 1072 .
K+ 79 x 10 (10 G) ( - (59)

This value is an order of magnitude smaller than k; = k;+. Accordingly, ©7, turns out to

be an order of magnitude smaller than ©7,

Ry+

0%, = ~ 2.4646 x 1072 (60)

Ke

We will use the smallness of the parameters ©7 and 07, below.
Thus, instead of p totally different values of ion magnetization parameters, under condi-
tions of m; > my we have only two distinct values of the ion magnetization parameter: x;

for all heavy ions and kg+ for HT. As a result, Eq. (45) reduces to a much simpler equation:

<e§H+ + Cegi

1+ =0, 61
where, in accord with Eqgs. (8) and (31),
s = pH+"112{+ _ PRy
T (1+ k50008 (1+e267)07
2
Pit; _
51'5 PIVavE Pi = pi+:1—pH+.
(1+ K7)O; i+;+
G = k- [71 _ cosf — r;sind
TRV, 14k
k- ﬁm cos ) — ek;sind
Gu+ = = . 62
i kEVy 1+ e2k? (62)
Here ¢ is a small dimensionless parameter,
@2
e =M _ Y o 0.1056. (63)

2
%

K
According to Eq. (62), given constant k, 6, Vi, py+ and the small parameters ©7 and &
defined by Egs. (58) and (63), all remaining quantities in Eq. (61) are expressed in terms
of only one parameter, 2, which varies with the total hydrogen density and magnetic field

according to Eq. (56).
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In an obvious way, Eq. (61) reduces to a quadratic equation for (., = wp./(kVp),
(14 &ue + &)+ [(1+ &us )G + (14 &) Gur )G + Gur Gy = 0, (64)

1,2 .
whose two exact roots, Cé ), can be written as

a _ 2Gy+G;
7= (I+&ur)Gi+(1+&)Gur + 27 (65a)
2 _ _ (1+&u)Gi+(1+&)Gur + Z
Ce 20+ E T ) , (65b)
where

We have written the two roots of a quadratic equation in an unconventional, but equivalent,
form which makes perfectly clear that each solution for (. is real and negative. Besides, in
the large-¢; i limit (see below), the conventional form of the solution for Ce(l) would result in
subtraction of two major terms, while Eq. (65a) allows one to avoid that.

The above exact solution of simplified Eq. (64) remains complicated for analysis. Below,
using the specific parameter relations found above, we will construct a much simpler, but
still reasonably accurate, approximate solution.

First, assuming 7 < 1, so that automatically k%, = £?k7 < 1, we reduce this case to
the fully unmagnetized case described above. In the specific case of U o~ U+ ~ 170, Eq. (61)
yields o

k- Vo
Wpe & — R (67)
For (7]- ~ U+ =~ Vj, this solution also follows from Eq. (65a).

Now we consider a broader span of the ion magnetization parameters that includes x7 2> 1.
In this, more general, case, one should no longer expect ﬁj ~ Ups ~ \_/;), though |ﬁ]| and
|(7H+] usually have comparable values. Indeed, only for strongly magnetized ions, k? > 1,
while £2x? < 1, we would have \[7]\ < |[7H+\ ~ Vo, but this case is of no interest to us
because the large-x? is linearly stable, as discussed above. In all other cases, we typically
have |U;| ~ |Ug+| ~ Vo. Assuming in Eq. (61) |¢.| to be small compared to G; ~ G+ (the
condition will be discussed below) and neglecting (. in both denominators, we obtain

(e m — (é—+§;) . (68)
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FIG. 2. Solution of Eq. (61) given by Eq. (65a) for three values of the flow angle € (the solid curves)
and for five different values of the heavy-ion fraction, p; = 1 — py+, along with the corresponding
interpolations given by Eq. (69) and described in the text (the dashed curves). In the interpolation

curves, the red, yellow, and green curves correspond to a; equal to 0, 0.5, and 1, respectively.

From Eq. (68), assuming G+ ~ G, we obtain that the presumed condition of |(.| < G+ ~
G requires & g+ > 1. It can be easily verified that the approximate solution given by (68)
follows from Eq. (65a) if one neglects the “unity” compared to both &g+ and ;. According
to Eq. (62), unless the fraction of heavy ions is too small (p; < ©? ~ 0.02), the condition
of & ~ pik?/O? > 1 is automatically fulfilled for x? ~ 1. Similarly, unless py+ is too small
(pur S ©7/e ~ 0.2), the condition g+ ~ epp+k?/OF > 1 is also automatically fulfilled
< 1, so that 1 cannot

~Y

for the same range of k7 ~ 1. In principle, if py+ < 0.2 then &+
be dropped compared to &g+. However, this does not really matter since the corresponding
second term, &g+ /Gp+, in Eq. (68) is small in itself (compared to the first term, &;/G;). The
inaccuracy of this small term is largely inconsequential.

The two approximate solutions given by Egs. (67) and (65) match within the overlap
range of ©7?/p; < Kk < 1, where both conditions of Gg+ ~ G; ~ cosf and & > 1 are
fulfilled simultaneously. For the most interesting cases, one can construct an interpolation

between the two solutions, using the simple ansatz:

-1
gez_(a1+§i+1_al+€H+) 7 (69)

Gj GH+
where the specific value of the numeric parameter o can be chosen between 0 and 1. This
simple interpolation works well mostly within the range of flow angles 6 between —45° (the
optimal angle for the pure ETT) and 0° (the optimal angle for the pure FBI).

Figure 2 shows the solution of Eq. (61) given by Eq. (65a) for three values of the flow

angle #. This solution (normalized to kVj) is shown by solid curves for five different values
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of the heavy-ion fraction, p; = 1 — pg+ (shown near the curves). Around these curves, there
also interpolations given by Eq. (69) (shown by the dashed color curves) for three different
values of the fitting parameter a; (oy = 0, 0.5, 1). For § = —0° and § = —22.5°, the
2> 0.25, the

~

ansatz of Eq. (69) works reasonably well with any values of a4, so that for p;
interpolations are almost indistinguishable from the exact solution. For —22.5° < 6 < 0°,
the interpolation works reasonably well for all values p;, even for p; as low as 0.02. For
0 = —45°, the interpolation starts deviating from the exact solution, though the specific
value of a; matters only for low concentrations, p; < 0.1, and mostly for low-magnetized
ions, k; < 0.5. Generally, for most interesting cases of # within —45° to 0° range, the
choice of a1 = 1 — a; = 0.5 seems to be optimal. For all these cases, Eq. (69) can serve
as a reasonably accurate and a more practical alternative to the cumbersome exact solution
given by Eq. (65). Unfortunately, for angles beyond the domain of —45° < 6 < 0°, the
simple interpolation of Eq. (69) often does not work well, so that one needs to apply there

the full solution given by Eq. (65a).

In this analysis, we have considered only one root of Eq. (64), namely (. = Ce(l). The
reason is that only this root provides an accurate transition to the well-established SSI
solution. The other root, (. = Céz) has no SSI analog. Besides, the corresponding value of

G = @4 G becomes fairly small and inefficient for driving the instabilities (see below).

To conclude this section, we note that in the long-wavelength limit, the highest-order ap-
proximation to the reduced dispersion relation (34) describes the linear wave phase velocity

relation

wp ~ k- Vo + wpe(k) = [cos 0 + (o (0)] kVa. (70)

where (. is the proper solution of Eq. (45) discussed above. In the LWL, this relation is
common for all stable or unstable waves, whatever the specific mechanism of wave generation.
Notice the linear k-scaling of the real wave frequency (and hence of all Doppler-shifted
frequencies, wps). The next-order approximation provides the instability growth/damping
rates, which are different for different physical mechanisms. The corresponding analysis will

be performed in the following section.
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B. First-order approximation: instability growth/damping rates. Different

physical mechanisms

To determine specific mechanisms of instability generation, we need to consider the next,
i.e., first-order, approximation with respect to the small parameters |A, ;| , | B ;| , kﬁ/ki, k2)\%,
introduced by Eq. (33). To find the instability growth/damping rates, || < w,, according
to Eq. (35), we need to linearize the RHS of Eq. (34) with respect to the above small
parameters and retain only the imaginary part of D(w, E) (The real part of the first-order
term in the Taylor expansion of D(w, E) will provide just a small correction to the wave
phase velocity relation and will be of no interest to us.) Given the known solution for
wpe(k) = C.(0)kVj, and hence for all ij(E) = Wpe + k- (jj = [¢.(0) + G;(0)]kVp, finding the
growth/damping rates becomes a straightforward procedure.

We start by calculating the denominator in the RHS of Eq. (35). According to Eq. (36)

and (38), where wp, and all wp; are known functions of w ~ w, determined to the leading

(zeroth-order) accuracy (see above), we obtain:

ODo(wr k) <~ pi(k-T))
- . 71
ow, ; (1+ K?)W%jw]’ (71)

Calculating the numerator in the RHS of Eq. (35), i.c., Im D(w, k), is a more cumbersome
procedure. In the RHS of Eq. (34), the standalone terms o< Ay, B; given by Egs. (27)—(31) are
small and can be used to the leading-order accuracy, while the ratio A;/B; requires a better
accuracy. Neglecting small terms o< iwpe/Ven, but keeping the first-order approximation

with respect to |Q;] /vj, = |w — k- Vi|/Vin, and bearing in mind that usually ve, > v;,, we

obtain
ajA; Wpek2VenMe(1 — iwp;/Vin)
A wWp;Vinmi(1 + Hikﬁ/ki)[(l - iij/an)Q + H?]
1 — k2 ,
~ WDW:’(L;: 7 (1 +i Té%) :
so that » b 2)
i A 1 —K%)p;wpe
tm (1 * ; %> ~ ; T Pty )

Substituting Eq. (72) into Eq. (71) and slightly redistributing the terms in the RHS of

Eq. (35), we obtain the following interim expression for the instability growth rate:
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where w,; = (e*neo/ eomj)l/ ® is the plasma frequency of the j-th ion species. The labels

over the braces, along with the corresponding acronyms in the subscripts at the bottom
line of Eq. (73), show the physical interpretation of each term. They have a straightfor-
ward meaning. The Farley-Buneman (“FB”) instability term originates from Eq. (72). The
label “Charge Separation” (“CS”) means a small deviation from quasi-neutrality; the cor-
responding term stems from the k?A%/A. term in the RHS of Eq. (34), though without
the corresponding multiplier in the square bracket (the terms o< A, and B, multiplied by
k*X\%_/A. would lead to negligibly small, second-order corrections). The label “Diffusion
Losses” (“DL”) denotes the diffusion losses caused by density gradients formed within the
given compression /rarefaction wave. Depending on the parameters and wave characteristics,
the “FB”, “ET”, and “I'T” mechanisms are responsible for driving the FBI, ETI, and ITTI,
respectively, while the “DL” and “CS” are stabilizing (damping) mechanisms.

Before proceeding with the explicit expressions for the above terms, we briefly discuss
the physical mechanisms behind the wave damping and instabilities. We start by discussing
the wave damping mechanisms. The major of the damping mechanisms, the diffusion losses
of given particles of species s are caused by the ambipolar diffusion of the particles from the
wave density crests to the nearby wave troughs. This plasma particle diffusion is caused by
the wave spatial gradients of the regular particle pressure, V(n,Ts) o iETsoéns (assuming
for simplicity the isothermal regime). Within a given density wave, the particle diffusion is
always stabilizing. In the absence of instability excitation mechanisms, the particle diffusion

would eventually smear out any initially created wave density perturbations, leading to the
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total wave disappearance. The linear instability means that there should exist some physical
mechanisms that are able to reverse the stabilizing effect of the ambipolar diffusion and lead
to an exponential growth of the initial small wave perturbation. For a physical explanation

of the charge separation (CS) effect, see the appendix of Ref. 50.

Now we briefly discuss the instability driving mechanisms. The FBI is driven by the
ion inertia. In the wave frame of reference, this inertia, through the ms(‘_/; . V)‘z—term
hidden within the msD,V, /Dt-term of Eq. (1b), creates an additional “kinetic” pressure
perturbation, mS(VS . V)Vs — V(m,V2/2) imgk - (‘73 — ‘Z)h)ﬂ_/;, where Vph is the wave
phase velocity. For sufficiently strong driving electric field, Ey, and properly oriented (with
respect to Eo and B%) wavevector lZ, this additional pressure may be in antiphase to the
wave perturbation of the regular plasma pressure oc Tyo0n,, overpower the latter, and hence

drive the linear instability.

For the two thermal-driven instabilities, ETI and ITI, the additional pressure is created
by wave modulations of the total ohmic heating described by the first term in the RHS of
Eq. (1c). The modulated heating of plasma particles is caused by the wave electrostatic
field, SE. Balanced by collisional cooling, this heating leads to local modulations of the
corresponding species temperature, 07,. Similarly to the FBI, for the properly oriented
wavevector E, the additional pressure o< ny 07T, may reverse the sign of the total wave

pressure perturbation o (Ts0mns + ns07s) and drive the instability.

The explicit expressions for the specific partial growth/damping rates, calculated to the

leading-order accuracy, are given by
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YFB — YCS
p

S p;(—wpe) [1—’%2_(1 } Z p]/f U)) | (74a)

p (1+ ﬁ?)yjnqu 1+ Ii? p] (1+ Ii wD]@/J

— _i pik*VE; [Teowj W Z pi (k- Uy) (74D)
= (1 + H?)ijijjn 7}'0 1 + KZ UJDJ —|— fi CL)D] ’

T =

B P Am,, pi(—wpe)kjkU;(k; cos x; — sin x;) Z p;i( (k - U (74¢)
— 3(m; + my) (14 #2)%wpjthi0jmVin (14 #3 WDM ’
_ AkVidenVen sin

T 3R, + 02 e

% i pJWDe 1— TeOkVTijew]"ie i p] k U (74(1)

]:1 (1+ /{ Jwp;Y; 2T50vin VoOenVen st oy (1+ ,@ WD] >

where the angles x;(#) are defined by Eq. (31). As discussed in Sec. VA, for any allowed
linear-wave modes, wp, is always negative, while all corresponding wp; = wpe + k- ﬁj are
positive. The diffusion loss rate, ypr, is always negative, whereas in order to drive the FBI
(vrB — Yos > 0) the square bracket in the RHS of Eq. (74a) has to be positive.

In Eq. (74a), we have combined the Farley-Buneman driving mechanism (vpg, see the
first term in the square brackets) with the charge-separation losses (vcs, see the second
term in the square brackets) in order to emphasize the possible detrimental effect of small
deviations from quasi-neutrality on the FBI®!. In the Earth’s ionosphere, due to a sufficiently
high plasma density, the CS effect is usually negligible (1/ < w ), although it always should
be taken into account in PIC simulations*®. In the solar chromosphere, we cannot exclude

the efficiency of the CS effect in some regions. For a sufficiently low plasma density leading

2
to Vi > m’

the FBI cannot be excited regardless of the imposed electric-field strength.
The finite ion magnetization, H? 2 1, only aggravates the situation, especially for /ﬁj > 1,
when even the FBI mechanism itself becomes stabilizing®. For other instabilities, the ITI

and ETI, the CS effect increases the instability threshold, but it is not totally detrimental,
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regardless of the ratio vj,/wy;.

Being interested mostly in the minimal instability threshold, we can simplify our treat-
ment further by extending the assumed LWL to even longer wavelengths that obey stronger
conditions:

kU;, |wps| < OenVen- (75)

Usually 0¢pVen, < Vjy, so that the wavelengths obeying these conditions are typically much
longer than those defining the LWL, see Eq. (32). We will name the new limit imposed by
Eq. (75) the superlong-wavelength limit (SLWL). In accord with the SLWL conditions, we

can neglect in Eq. (74d) w?, compared to 42 as well as the second term in the first-

summation parentheses compared to 1. This will minimize the threshold-field value along
any given k-direction (i.e., for given 0). According to zeroth-order Eq. (36), the remaining
summation in the numerator of Eq. (74d) equals —1, so that in the SLWL gt reduces to a
much simpler expression,

4kV,ysin 0 k: U
VET =~ — 0 /Z pj . (76>

30enVenke 1+ /{ wDJ

Now we check the SSI case, p =1 (j — 7). In that case, Eq. (74b) rate reduces to

WDik2Vilgi |:Te¢i _ Wpe }

oL = — (77)

T; (1 + K3)wp;
Using the expressions for wp.; from Eq. (38) and combining Eq. (77) with similarly cal-

culated vpp and ycg we obtain the SSI expression for the combined growth/damping rate

which includes no thermal driving:

YFB — Yos + VpL

Viw?, k% C? (l + K202,
T+ /52)2/14}1/- Loni - w? w? ’ (78)
i t]7n Di P

where wp; = k- U;/[1 + (1 + 52) 1], while C, is the isothermal ion-acoustic speed defined
by Eq. (11). Equation (78) agrees with the previous results for the arbitrary ion magneti-
zation, see, e.g., Eq. (6) from Ref. 25, except for the last term in the square brackets which
generalizes the CS term from Ref. 51 to 7 ~ 1.

Now we note that in the SLWL all driving/damping rates =, except vgr (see below), have
a simple quadratic k-scaling: 75 oc k2. To establish this, it is sufficient to assume the linear

k-dependence of w, o< k. This is clear from wps o k, in full consistency with Eq. (36) and
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its solutions (discussed in Sec. VA). Setting wps o k in Eq. (74) with Eq. (74d) replaced
by Eq. (76), one can easily establish the 7, oc k? scaling. This common scaling for all v, = 0
automatically makes the threshold field along the given k-direction to be k-independent —
the well-established fact for the pure FBI in the LWL fluid-model approximation, see, e.g.,
Refs. 52 and 53. If the FBI is the dominant instability driver, as in most of the E-region
ionosphere, then within the entire LWL the growth rate v o< k2, so that its maximum is
usually reached beyond the LWL (see also Appendix A).

If the dominant instability driver is the ETI, as we observed in our recent PIC simulations
for some solar chromosphere parameters®?, then the growth rate maximum is reached within
the LWL due to the competition between the two terms within the parentheses under the

first summation in Eq. (74d). In the SSI case of pure ETI driving, we have

ek U) AkVebenvensin® [ Tkwp Vs (79)
L 1+ (14 s2)Y;]2 3(w?, + 62 12 )k, 2T Vin VoOenVen sin b | -
7 De en”en

The first term in parentheses (i.e., 1) reflects the local heating-cooling balance, which is the
crucial factor for the ETI. The second term o< kwp, o< k? is responsible for the nonlocal
temperature spread within the wavelength due to the heat advection. Since wp, is negative
(see Sec. VA), total ygr can be positive for some k within the negative sector, while for k
within the positive sector of 6, the rate vgr is always negative, regardless of the E, value.
In the SLWL of kUj, wps < denlVen, neglecting x21);, and taking (7, 2 ‘7{) (assuming also
k7 < 1), we obtain a much simpler relation:

4ap;k*VZ sin 0 cos 0
3(1+1:)? Kebenlen

YET &= — (80)

For m,, = m;, 6; = 1, (1 + k2)1; — 15, and bearing in mind that x2; = k;/k. < 1, Eq. (81)
agrees with Eq. (30) from Ref. 8. To the accuracy of the factor of order unity, this agrees
with the previous results, see, e.g., Eq. (38) from Ref. 8, neglecting the term oc S? originated
there from the electron-temperature dependence of v.,. Recall that, assuming elastic e-n
collisions determined mostly by the electron polarization of the colliding neutral particle, in
this paper we ignore any temperature dependence of v,,. We note that ignoring the oc S?
term leads to the absence of the additional destabilizing ETI mechanism, which is, unlike
that in Eq. (80), symmetric with respect to the sign of 6, see Refs. 3 and 4.

Finally, we check the SSI case for the ion thermal driving. In the SSI case, Eq. (74c)
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reduces to

Ak UM (ki cos X;) (K cos X — sin x;)
T TR (U ) m)oin

(81)

which also agrees with the previous results®.

C. Threshold electric field

The threshold electric field for the combined instability (the FBI, ETI, and ITT) is deter-

mined by equating the total growth rate to zero,

Y =B — Ycs + 7oL + Nt + YET = 0. (82)

where all v5 are given by Eq. (74). For a given wave mode determined by its wavevector k, we
have obtained above the zeroth-order solution for the real negative electron Doppler-shifted
frequency wpe &~ wper = (kVh, see Eq. (65a) or its simplified versions given by Eqs. (67)-
(69). The parameters in these solutions are expressed in terms of kU ; = G;kVy, where G
is defined in Eq. (43), and kU; = kVo/(1 + £%)'/, see Eq. (7) and (8), i.e., eventually, in
terms of the driving-field amplitude, Ey = V5 By and the wavevector k. Then the quantities
wpj = (¢ + G;) kVp, involved in all vg, become also functions of Ey. Given k and the proper
solution for (., by solving Eq. (82) we obtain the instability threshold Fy = Ery,. Bearing in
mind the minimal threshold fields, we will restrict our further treatment of wavelengths to
the SLWL, in which the scaling v oc k? holds for all instability driving and loss mechanisms.
This will allow us to cancel all k-related factors and obtain the general, k-independent,
minimum value of the threshold field. While the k-dependence of Ery,, disappears, the
dependence on the k angles still holds and is crucial. Note that total absence of real positive
roots for Ey,, within a given parameter domain means the linearly stable regime, regardless

of the strength of the imposed electric field Ep.

To apply Eq. (82), we express wpe;, k - U; and U; = Vo /(1 + k3)!? in terms of (. and
Vo. Leaving out in Eq. (74) the inconsequential common denominator »7_, pi(k-T;)/[(1+

K3 )wh;], along with the remaining k-factor, we obtain

37



p 2 2 2
pj 1 —&j (1+“j)”jn}

e s % Vil [ - | 83a
e ’ JZ (L+£)bjvpn (14K Wi (55

p]VT] lTewj Ce ]
X — — , 83b
DL Z 1 + ,i (:]‘/qujyjn T; (1 + H?)Cj ( )
Vit Ep: dmn pi(k; cos x; — sin x;)k; (83¢)

NT X —Voie ’
e I R e s
4V sin 6

_ AVgsing 83d
fYET OC 366711/6771/{’8 ( )

Here §; = (. + G, G; = (cosx;)/(1 4 £3)"/2, and the symbol “x” has a stronger meaning
that just “proportionality”; it implies a dropped common factor for all ~5. Given the proper
solution of Eq. (82) for the negative variable (., as discussed in Sec. VA, we obtain the
general expression for the total instability threshold field in the SLWL:

1/2
Erny & pjv’lgj Tel/Jj ge :|
Vi = LT _ _ RV 84
B, {; I+ aDvwnG L T (L+EDG (84

where

— (o) Z 1—r3 (14 k3)v5, 4(kjcosx; — sinx;)muk; _ 4sind
¢ (1+ /<; wjl/]n ?

w127j 3(m] + mn)(l + /ﬁ:?)3/26jn<=j 356n7/en"</e .
(85)

We imply here only positive values of R. If some wave and plasma parameters lead
to R < 0 then Vg, becomes imaginary. As mentioned above, this means that this group
of parameters corresponds to a totally stable situation, regardless of how strong is the
driving electric field. The SLWL solution for Viry,, provides the absolute combined-instability
threshold minimum for the entire range of k. In the general multi-species ion case, however,
it is usually hard to find explicit analytical expressions for the optimal k-direction. For a

given set of parameters, the optimal angle can be found numerically.

Below we discuss two particular cases that provide significant simplifications: (1) single-

species ions and (2) multi-species, but fully unmagnetized ions.
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1. Single-species ions

In the SSI case, p =1, p; = 1, j — i, using the relation ¢; = (. + (cos x;)/(1 + x?)Y/? (see
above) and Eq. (31), we obtain
(cos @ — k;sin @)1,

1+ 1+ 62

cosf — k;sin @

“T TR e

Then the SSI threshold field reduces to
B 1A+ ] 1+ kD20

Ce:_

V r T - . 9
B By (cos® — k;sinf) P
p— 1—r?  (1+ kK3, 4dmy,k; sin 0
|1+ k2 w?; 3(mi + my) (1 + K£2)0inGi
AL+ #7) [+ (14 #7) ] vin sin 6] (56)
3enVenke (COS 0 — K;sinf) ’
where C, = [(T, + T;)/m;]"/? is the conventional isothermal ion-acoustic velocity (already

invoked in Sec. III B).

2. Unmagnetized ions

For unmagnetized, but multi-species, ions, x; < 1, we have equal G; ~ cos for all ion
species. According to Eqs. (41) and (42), in the limit of totally neglected ion magnetization,
k; = 0, all p roots of linear Eq. (36) for (. degenerate into a single root with all ; equal to
the same common value (; = (. + cosf,

W cos 6 cos

“ET e YT iyw

(87)

Furthermore, for x; < 1 the ITI driving term, 7p, is small and can be neglected. As a
result, after additionally canceling the common factor k, Eqs. (83a)—(83d) reduce to much

simpler relations:

UV, cos ) & P ( I/]Zn)
YFB — Vs X ==, (88a)
1 + \Ij JZI ¢jyjn ng
1+0 & piVE (Te \If)
DL X — — 4+ — 5 (88b>
Vo cos 0 = Vpn T, Y,
4V, sin 6
/yET O< B 35677,]/677/"{‘6 ‘ <88C>
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Introducing temporary notations
P 2

IOjVTj Te v

K = L2 —

S (L,

M:@i:”'c—ﬁﬂ, y = A0+ (89)

- )
36671”671"{‘:6

we write the instability threshold for unmagnetized ions as

o B 140 K 12
Thr = By  cosf \ M — Ntan#

9K 1/2
M (1 + cos26) — N sin 20]

_ 1+ { (90)

Here, the term o< M stems from the FBI driving (combined with the charge-separation
damping oc v, /w?;), while the term oc N stems from the ETI driving. Equation (90)
keeps virtually the same flow-angle restrictions for the instability as does the simpler SSI
model®®52, In particular, for the pure FBI the cone of allowed angles # is symmetric around
the EO X Eo—drift direction # = 0°, while for the pure ETI the allowed cone is situated
around the negative bisector of # = —45°. At the positive domain of 6, the ETI mechanism
becomes stabilizing (as does the FBI mechanism for v;, > w,;), regardless of the electric-field
strength.

The case of unmagnetized ions allows one to explicitly obtain the optimal angles of k
corresponding to the minimum values of Vry,, (or Ery.). In the main semi-quadrant of 6,

where cos > 0, the optimum angle 6, is unambiguously determined by

N
Oopt = — 3 arctan i (91)

with the corresponding minimum threshold values given by

(Ethr) s K
Vi) oo = ———8 —9(1 + U . 92
( Th )mm BO ( ) M+ \/W ( )

As might be expected, in the limiting cases of N = 0 (the pure FBI) or M = 0 (the pure ETI)
the optimal angles reduce to O, = 0° or O,y = —45°, respectively. The SLWL instability
threshold values given by Eq. (92) represent the global minimum of the combined instability

threshold for the unmagnetized multi-species ions in the entire range of k.
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VI. ARBITRARY WAVELENGTHS

In this section, we briefly discuss the general dispersion relation for arbitrary wavelengths
and give examples of its numeric solution.
First, we summarize the general multi-fluid model dispersion for arbitrarily magnetized

particles, see Eqgs. (23), (27)—(31). It can be re-written in a more compact way as

- )‘%ij 242
1+Z)\2—F =k )\DeFe, (93)
j=1 De™ €
where
2 B,
FS:AS{l—(lJr )AS——S} , (94a)
3pts s
V2 W, k2 ki
As - Ts sV I 94b
1 o, (WE e + W) (94D)
Ay |Wi(EL - Vao) = ko1 - (Vi D)
B, = , (94c¢)

3wps (M, +myg) (W2 + k2)

B 1Wps _ Ry o €0lso
Wy=1-— . Wps =w—k- Vi, A, = o (95a)
— SE — SB
V30=<q O+/€§V0>/(1+/€§), Ky = 2 0 (95b)
mSVSTL mSVSn
2 s¥sn .58771 sn
g =1 4i —slon e =y Wenlen, (95c¢)
(Mg 4 My )wWps WpDs

and Ej is the Ey x By-drift velocity. Here, the subscript j describes different ion species,
j = 1,2,...p, while the more general subscript s includes each ion species (s = j) and
electrons (s = e).

All variables and parameters in Eq. (93) are written in the neutral-component frame
of reference. If the neutral flow, presumed locally uniform, shearless, and quasi-stationary,
moves in a laboratory frame with the non-relativistic velocity Vn, then the electric field in Eq.
(95), in terms of the electric field in the laboratory frame, Eé, is given by Ey ~ Eé —V, x By
(|E6|, Ey < ¢Byp). In the same laboratory frame, the Doppler shifted wave frequency, ', is
given by w’ ~ w + k-V,.

Before presenting examples of the real wave frequency and growth rates found by nu-

merically solving Eq. (93), we discuss distinct signatures of the pure thermal instabilities
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versus the pure Farley-Buneman instability. Waves driven by the pure ETI has three dis-
tinct features: (1) for unmagnetized ions, the preferred wavevectors tend to group around
the bi-sector between the directions of the EO X Eo-drift velocity and the —EO direction,
i.e., where the corresponding growth rate is maximized, while the preferred direction for the
FBI-driven waves is along the Eo X éo—drift velocity, (2) the wave perturbations of the elec-
tron temperature are mostly in anti-phase to the wave perturbations of the plasma density,
while for the FBI-driven waves the corresponding wave perturbations are mostly in phase,
(3) the typical wavelengths of the ETI-driven waves are usually much longer than those

of the FBI-driven waves*

. For the pure ITI-driven waves, feature (1) is more complicated
than for the pure ETI because the I'TI is mostly pronounced if ions are partially magne-
tized, feature (2) stays the same as for the ETI, while feature (3) does not hold for the
ITI-driven waves (the typical wavelengths of these waves are comparable to the wavelengths
of the FBI-driven waves®). The phase shift between the temperature perturbations (feature
2) can be identified in simulations of the instability (such nonlinear simulations are beyond

the scope of this paper), while the preferred wavevector directions and wavelengths can be

traced directly from the predicted growth rates.

Figures 3 and 4 show examples of the numerical solution of Eq. (93) for the real and
imaginary parts of the wave frequency, respectively, w, using different values of the driving
electric field. The other parameters used here correspond to those employed for our recent
fluid-model solar chromosphere simulations using the fluid-model Ebysus code®®. The major
parameters used in these calculation are listed in the Table 1 of Ref. 55. The minimum
threshold field for the chosen parameters is about Ery,, ~ 4.4 eV. These figures show that
as long as the driving field is not very far above the Ery,, the ETI seems to be a dominant
instability mechanism. This can be easily seen from the above signatures (1) and (3):
the preferred k-directions tend to the —45° bisector and waves tends to smaller k (longer
wavelengths). As the driving field increases, the entire unstable region expands with the
maximum growth rate shifting to larger & (shorter wavelengths), while the preferred k-
directions start deviating initially closer to the horizontal Ey x By-direction (typical for the
FBI-driven waves) and then rotating further up to the vertical Eg-direction. The latter
has no simple explanation. At the driving field of Ey = 35.62 V/m, which exceeds the
minimum threshold field by an almost order of magnitude, we see two overlapping, but

distinct, areas of short-wavelength unstable waves. It is possible, however, that this feature
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FIG. 3. Examples of a numerical solution of Eq. (93) for the real part of the wave frequency,

w, = Re(w), for several values of the driving electric field Fy = |E| shown on top of each plot.

Only the areas where v > 0 are shown. The driving electric field Eo is directed along the vertical

k,-axis, while the EO X go—drift velocity is directed along the horizontal k,-axis.

is a consequence of the restrictive fluid-model treatment. A more accurate kinetic approach

may result in smearing these distinct areas. The main point, however, is that even our purely

fluid-model treatment leads to a restricted area of linearly unstable waves in the k-space (in

full agreement with the analysis of Appendix A. This gives one a solid possibility to safely

simulate E x E instabilities, using fluid-model codes without fear that such simulation may

“blow up” at the short-wavelength band.

VII. SUMMARY AND CONCLUSIONS

This paper presents a theoretical analysis of a combined Thermal-Farley-Buneman In-

stability (TFBI). This combined instability includes the following components: the Farley-

Buneman instability (FBI), electron-thermal instability (ETI), and ion-thermal instability
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FIG. 4. Examples of a numerical solution of Eq. (93) for the imaginary part of the wave frequency,
v = Im(w), for the same values of the driving electric field as in Fig. 3. Only the areas where v > 0

are shown.

(ITI). All these low-frequency, electrostatic, and inherently collisional plasma instabilities
are developed in weakly ionized, highly dissipative, and moderately magnetized media, such
as the solar chromosphere, lower Earth’s ionosphere, the corresponding regions of other star
and planetary atmospheres, and potentially in cometary tails, molecular clouds, accretion
disks, etc. In this paper, we restrict our analytic treatment to the linear theory of the TFBI.
This theory is developed in the framework of the 5-moment multi-fluid set of equations, see
Eq. (1), separately for electrons and each ion species. These equations are complemented
by Poisson’s Eq. (2) for the electrostatic potential.

Rigorously speaking, the 5-moment fluid model given by Eq. (1) is invalid beyond the
long-wavelength limit (LWL) defined by Eq. (32) and discussed at length in Sec. V, since oth-
erwise the kinetic effects of Landau damping [not included in Eq. (1)] start playing a crucial
role by suppressing the instability within a sufficiently short-wavelength range. Nonetheless,

exploring the general dispersion relation given by Eq. (93) for arbitrary wavelengths, even
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with no regard for kinetic effects, still makes sense because the fluid-model description is
generally much more popular than is a more rigorous kinetic one. Most importantly, fluid-
model simulations require much less computer resources than do kinetic simulations and
they can cover much larger spatial scales. This would allow one to use global fluid-model
codes developed for large-scale processes for analyzing the small-scale plasma instabilities
as well.

Bearing in mind such possibilities, it is imperative to study the instability driving con-
ditions within the entire domain of l;, including the limit opposite to the LWL. The short-
wavelength limit has been explored in Appendix A with an important conclusion that suf-
ficiently short-wavelength waves are always stable, regardless of how strong is the driving
electric field. It is especially important that this short-wavelength wave stabilization takes
place even in spite of the fact that the fluid equations lack Landau damping. The unavoid-
able consequence of the short-wavelength stabilization is the fact that somewhere between
the long-wavelength limit with positive v o< k? and the linearly stable short-wavelength
limit with v < 0 there necessarily exists an absolute maximum of the instability growth rate
(although the position of this maximum in the l;—space may differ significantly from that
determined by a more accurate kinetic analysis).

The general dispersion relation for the multi-fluid plasma with arbitrarily magnetized
ions, see Eq. (23) or (93), describes the entire span of wavevectors, but the major thrust
of this paper is on the long-wavelength limit (LWL) explored in Sec. V. In addition to the
fact that this is the only limit fully justified for the fluid-model approach, this limit also
provides the minimum threshold field for all instabilities. Note that the threshold value for
the ETI requires even stronger wavelength restrictions given by Eq. (75). The LWL also
allows one to separate different instability driving and damping mechanisms as separate
linear contributions to the total growth/damping rate, see Egs. (73) and (74). This makes
the physical analysis of the instability drivers much easier.

The major result of any linear theory is the instability threshold because only if the
instability driver exceeds the minimum threshold value then the instability develops. We
present the 5-momentum multi-fluid model calculations of the instability threshold field in
Sec. V C, along with the simpler particular cases. When the minimum instability threshold
is exceeded and hence the instability develops, the largest values of the growth rate indicate

which modes are, at least initially, the fastest growing. The corresponding wavevectors
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usually depend on how well above the threshold is the driving field. In the framework of
our model, however, the position of the fastest growing mode may be physically inaccurate
because we have not included the kinetic effect of Landau damping. This is especially
important for the FBI (and, to some degree, for the ITI) driving because the ETI driving
is automatically maximized at a loose interface between the superlong-wavelength limit
(SLWL) and the LWL, i.e., assuredly within the field of applicability of the fluid model.

Using a fully kinetic PIC code, recently we simulated collisional instabilities for the solar
chromosphere parameters and, to our total surprise, found that ETI may be a dominant
instability in the solar chromosphere3?, The paper by Gogoberidze et al.?® has also stressed
the importance of the ETI in solar chromosphere, albeit from a somewhat different perspec-
tive (unlike Ref. 30, we have not included Coulomb collisions in this model). According to
our analysis, one can safely assume that the purely multi-fluid description of the ETI, unlike
the FBI, driving is reasonably accurate.

Results of these studies can be used for simple predictions of collisional instabilities in var-
ious weakly ionized plasma media, like the solar chromosphere. One of the most important
findings is the statement that the 5-moment fluid-model equations will necessarily provide
damping of sufficiently short-wavelength waves, regardless of the driving field strength. This
allows one to safely employ global fluid codes developed for modeling large-scale processes
to model small-scale collisional plasma instabilities, even though the kinetic effect of Lan-
dau damping is not included. Using the multi-fluid code Ebysus®, we have already started
such modeling for the solar chromosphere®. Reference 55 also includes comparison with the

analytic theory.

Appendix A: SHORT-WAVELENGTH LIMIT

This appendix discusses the short-wavelength limit of the general dispersion relation.
This analysis is important because its results assure that the employed fluid model, even
without Landau damping, can be safely used for instabillity modeling with no need for
additional damping mechanisms to stabilize the wave behavior at short wavelengths.

We define the short-wavelength limit (SWL) by assuming

w, vaj, EVh,wps > vep Z dsnVsn, (96)
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while, for simplicity, the wavelength remains still much longer than the Debye lengths,
kAps < 1. Under conditions of Eq. (96), using d4, < 1, we have

1 . 5enVen 1 . (5jann

7 .

—=r1—1 , — =~ 1-

He WDe Mg Wpj

(97)

Since 0., < 1, in what follows we will neglect the electron cooling, 1/u. = 1, but will retain
the ion cooling with the energy loss fraction, d;, = 2m;/(m; +m,,), typically of order unity.
In what follows, we neglect the thermal instability drivers described by By since thermal
perturbations easily spread out over the short-wavelength waves due to the heat advection,
even within the LWL, as we discussed in Sec. V, and hence will not be destabilizing within
the SWL. The heat conductivity, not included in Eq. (1c), will even increase this temperature
spread. This leaves us with the only instability driver, namely, the FBI one.

For small |vg,/wps|, in accord with the conditions imposed by Eq. (96), we obtain

T k*VZ2 ), ' E2V2. s
Ae%— T]w] (1+Zyen>7 AJ% Ty <1_ZVJ7’L>7

2
,-rjyjnyen Wpe ij Wpyj
so that
PiA; PjVinVen (Ven | Vin
A 77w, N\ o))
e ijDj e ij

1—[1+2/(3u)] A _ 1+5T/(3T}) (1 + ien/wpe) k°VEY;/(VjnVen)
T (14 2/ Grg)] Ay 1= (5/3)VE, [1— i (11 205/5) Vyueong] /2
As a result, Eq. (93) becomes
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in the long numerator of Eq. (98) we neglect the term v;,ve,/1;. Then, keeping the same

linear accuracy with respect to vy, /wps as above, we reduce Eq. (98) to a simpler relation:

P 5p;T 11— (an/ij)] k2ngj
3T; sz - (5/3)k2VT2j 1 —i(1+265,/5) vjn/wp;

D(wp,) =1— =0. (100)
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A. Phase-velocity relations (the zeroth-order approximation)

To the zeroth-order approximation, after neglecting all small terms proportional to iv,,
the dispersion relation (100) reduces to
- 5pjTe k:2v7%j
3T; w%j — (5/3)14:2‘/7%

D(wh;) = Do(wh;) =1 — = 0. (101)

j=1

This provides the lowest-order approximation for wp; which also automatically becomes its
dominant real part, (wp;), = Re(wp;).

For single-species ions (SSI), 7 — ¢, p = 1, p; = 1, we obtain the standard phase-velocity

expression for ion-acoustic waves,

(i), = kChy  Cos= [g (

where (4 is the ion-acoustic speed for both electrons and ions in the adiabatic regime (in

T+, 1/2
- )] | (102)

my

the isothermal regime, 5/3 would be replaced by 1). Equation (102) can be interpreted
as the phase-velocity relation because it provides the expression for the wave frequency
w = (wps)r + k- V.o and the corresponding wave phase velocity (\7ph),; = w/k;.

Similarly to the zeroth-order equation discussed in Sec. V A, in the general case of multi-
species ions, Eq. (101) reduces to the p-th order polynomial equation for the unknown
quantity w? y (p is the total number of ion species). Different values of Vﬁj make the analytical
solution of Eq. (101) either complicated (for p = 2,3,4) or, in general, impossible (p > 5).
As will be seen below, the specific values of w%j play no role for the main conclusion of this

appendix.

B. Growth/damping rates (the first-order approximation)

To the next-order accuracy, we include the terms proportional to the small parameters
iVsn/wps as first-order additions. This will give rise to the small imaginary addition to the
wave frequency, wps = (wps)r + 17, i.e., to the wave growth/damping rate (since ~ is the
imaginary part of w it is the common imaginary part of all wps). Within the small terms
X Vg, /wps, We can replace wp, by its dominant real parts (wps),, though for the sake of
brevity we will keep for the latter the simplest notation, wps. When and where wp, are the
full complex Doppler-shifted wave frequencies or when they mean their dominant real parts

will be clear from the context.
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Note that the simple procedure of separation of the dominant real part and the small
imaginary part becomes only possible because in the SWL the absolute value of the
growth/damping rate, ||, automatically turns out to be small compared to (wps),. This
situation is similar to the opposite long-wavelength limit, wp, < v,, formally for the same
mathematical reasons, but under different physical conditions. In the intermediate range of
lwps| ~ ven, where the instability growth rate often reaches its maximum, we should not
necessarily expect |y| to always be much less than (wps),. Note also that any first-order
real corrections to the zeroth-order values of wpg will be of no interest to us because they
would lead only to small corrections in the wave phase-velocity relation without affecting in
any appreciable way the growth/damping rates.

Now we return to the full reduced dispersion relation (100). Linearizing it by including
the remaining small terms o ivg, /wps, as well as iy within the dominant real parts of the

equation, we can rewrite this equation as

p : 2172
op;Te [1 — i (vjn/wpj)] K2V
F: (WD'> = 1, F: (WD') == J . J . (103)
jzl I I Ty 3wh,; — 5k2VE [1 =i (14 205,/5) vjn/wpj]

To the first-order accuracy with respect to the small parameters ivy,/wps and iy /wps, €x-

panding each Fj(wp;t) in Taylor series to the first-order (linear) terms, we obtain

OF

8ij wp;

+iIij(ij>,

=(wpj)r

Fj (wpj) = Fjo(wp;) + iy

where F}jj is the function Fj(wp;) with neglected terms o vy, /wps, Fjo(wp;) = Re Fj((wpj)r),
while the argument of iIm F;(wp;) still includes full wp; with linear ivy,/wps correc-
tions. Assuming that we know all roots wp; = (wp;), of the zeroth-order equation

?:1 Re Fj(wp;) = 1, for each of these n roots we have the equation

;) 3
wz +ZZIij(ij):O,
j=1 =1

aij

yielding
?:1 Im Fj(wp;)
?:1 8ReFj/8ij ’

wpj=(wpj)r

S (104)

where Im Fj(wp;) with wp; = (wpj), contain only small linear terms o vy, /wps.
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According to Eq. (103), we have

5p;T.k*V2,
Re Fj = Fjo(wp;) = T (105)
T; (3wh, — 5k2VE)
yielding
850 . 30pjTek52ngijj _ 6ij‘F}0 (ij) (106)
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Expanding the expression for Fj (wp;) in Taylor series to the linear term o ivj,/wp;, we

obtain
v, 3w,23j + kaVﬁjéjn

Im F} )~ —
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so that Eqs. (104)-(107) yield
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In particular, in the SSI case (p =1, j — i), we have
v; (3w?, + 2k*V26in
v R — ( Di Ti ) (109)

6w
These expressions clearly demonstrate that in the SWL the growth /damping rate - is always
negative, regardless of the driving electric field amplitude. This means that in the large-k
limit all waves are absolutely stable. Hence, somewhere in the intermediate range between
the LWL and SWL, there must be some optimal values of k where the instability growth
rate reaches one or several maxima and then goes down to the negative values described
by Egs. (108) or (109). This leads to the conclusion that the employed fluid model can be
safely used for instabillity modeling with no need for any additional damping mechanisms
at short wavelengths to stabilize there wave behavior. Though this analysis has neglected
a few minor factors, such as the charge separation, etc., the neglected factors are mostly

wave-stabilizing and could not change the main conclusion.

APPENDIX B: LIST OF MAJOR NOTATIONS

A, is defined by Eq. (19), see also Eq. (27);

20



Bg, is defined by Eq. (19), see also Eq. (28);

By is the external magnetic field (By = |Bo|):

b= B, /By is the unit vector along B%;

Cs is the isothermal ion-acoustic speed [see Eq. (11)];

D(w, k) is the dispersion function in the LWL, see Eq. (34) [Do(w,, k) is the dominant real
part of D(w, k), Eq. (36)];

Ejy is the external electric and magnetic field (Ey = |Ep|):

Ery, is the instability threshold field;

Emin is the temperature-modified minimum FBI threshold field [see Eq. (12)];

Ny is defined by Eq. (21);

F(G.), see Bq. (47);

G, is the quantity defined in Eq. (43);

K, = (5175/ (asp 4 ms + 75) is a temporary notation used in Sec. IV;

k is the wavevector (k = |k| is the wavenumber);

My, = mgmy,/(ms + my) is the effective mass of the two colliding particles (s and n);

my is the s-species particle mass;

ns is the s-species particle number density;

p is the total number of the ion species;

gs is the s-species particle electric charge (¢. = —e);

R is defined by Eq. (85);

T is the s-species particle temperature (in energy units);

U = Vo — \7j0 is the difference between the undisturbed electron and ion drifts [see Eq. (7)];
170 is the EO X Eg—drift velocity;

1730 is the s-species mean fluid velocity;

Vrs = (Tyo/ms)"/? is the mean thermal speed of the s-species particles;

Voh = w/ k is the wave phase velocity

as = Teqs/(Tsoe) is a temporary parameter introduced in Eq. (17);

a, is the neutral-particle polarizability, Eq. (52);

7 is the wave growth/damping rate;

§A o expli(k-7—wt)] denotes a harmonic wave perturbation of any scalar or vector quantity

A (Ap is the undisturbed value);
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sn is the mean collisional energy-loss fraction (8, = 0% = 2m,/(m, + m,) for elastic
collisions);

€o is the permittivity of free space;

¢ is a small parameter, see Eq. (63);

(s = Q/kVp is a normalized quantity introduced in Sec. V A (there Q4 ~ €, );

ns is a normalized perturbation of the s-species particle density, ny [see Eq. (14)];

0, = (k;/Kc)"/? is a small parameter introduced in Sec. (48);

0 is the angle (in radians) from Vj to k (the ‘flow’ angle);

Ks = Wes/Vspn 18 the magnetization ratio of the s-species particles;

Aps = [e0Ts0/(€2n40)]*/? is the ‘partial’ Debye length of the s-species;

s is a complex quantity introduced in Eq. (19);

Ven 18 the mean collision frequency of the s-species particles with neutrals;

&;, see Eq. (47);

pj = (gj/€)(njo/neo) is introduced in Eq. (22);

O 18 the s-n collisional cross-section;

7T, is a normalized perturbation of the s-species particle temperature, T [see Eq. (14)];

® is the electrostatic potential;

¢ is a normalized perturbation of the electrostatic potential ® [see Eq. (14)];

X; = 0 + arctan x; is an angle (in radians), see also Eq. (31);

1, is the quantity defined by Eq. (37);

VU is the quantity defined by Eq. (42);

Wps =W — k - ‘730 is the Doppler-shifted frequency in the frame of reference moving with the
s-species mean flow, Vg [see Eq. (13)];

Q) is the gyrofrequency of the s-species particles;

w = w, + 47y is the wave frequency (both w, and =y are real);

Subscripts || and L relate to the vector components parallel and perpendicular to éo, re-

spectively.
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