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State space methods for phase 
amplitude coupling analysis
Hugo Soulat1,4, Emily P. Stephen2, Amanda M. Beck3 & Patrick L. Purdon1*

Phase amplitude coupling (PAC) is thought to play a fundamental role in the dynamic coordination 
of brain circuits and systems. There are however growing concerns that existing methods for PAC 
analysis are prone to error and misinterpretation. Improper frequency band selection can render 
true PAC undetectable, while non-linearities or abrupt changes in the signal can produce spurious 
PAC. Current methods require large amounts of data and lack formal statistical inference tools. We 
describe here a novel approach for PAC analysis that substantially addresses these problems. We 
use a state space model to estimate the component oscillations, avoiding problems with frequency 
band selection, nonlinearities, and sharp signal transitions. We represent cross-frequency coupling in 
parametric and time-varying forms to further improve statistical efficiency and estimate the posterior 
distribution of the coupling parameters to derive their credible intervals. We demonstrate the method 
using simulated data, rat local field potentials (LFP) data, and human EEG data.

Neural oscillations are thought to play a fundamental role in the dynamic coordination of brain circuits and 
 systems1. At individual frequencies, oscillations reflect the temporal coordination of activity across popula-
tions of neurons, and can be observed experimentally in neuronal spiking time series, multi-unit activity, local 
field potentials (LFP), and even non-invasively using magnetoencephalogram or electroencephalogram (EEG) 
recordings. In the past decade, a major advance has been the realization that oscillating neural activity can have 
higher-order interactions in which oscillations at different frequencies  interact2–4. This cross-frequency coupling 
(CFC) appears to be nearly as ubiquitous as oscillations themselves, occurring during learning and memory, 
varying across different states of arousal and unconsciousness, and changing in relation to neurological and psy-
chiatric  disorders2,4–15. If distinct oscillations stem from specific neural circuit architectures and time  constants16, 
it seems plausible that cross-frequency coupling could serve as a way of coordinating activity among otherwise 
disparate circuits and  systems2. Amplitude–Amplitude17 and Phase-Phase  coupling3,18 have been reported, but 
phase-amplitude coupling (PAC), in which the phase of a slower wave modulates the amplitude of a faster one, 
remains the most frequently described phenomenon.

The explosion of interest in CFC has led to the growing concern that existing methods for analysis may be 
prone to error and misinterpretation. In a recent article, Aru and  colleagues19 point out that existing cross-
frequency coupling analyses are very sensitive to frequency band selection, noise, sharp signal transitions, and 
signal nonlinearities. Depending on the scenario, true underlying CFC can be missed, or spurious coupling can 
be detected. For example, temporal signals with sharp transitions, such as square or triangular waves, cannot 
be represented by a single sinusoidal component. Their Fourier decompositions include multiple phase locked 
harmonics that are not independent oscillations. Methods have been proposed to handle such non-sinusoidal 
EEG signals but they rely on multi-region  comparison20 or multiple band pass filters, whose parameters can be 
difficult to establish, to target and remove harmonic  content21. In addition, cross-frequency coupling methods 
tend to be statistically inefficient, requiring substantial amounts of data, making them unsuitable for time-
varying scenarios or real-time applications. Finally, in the absence of an appropriate statistical model, analysts 
typically employ surrogate data methods for statistical inference on cross-frequency coupling, making it difficult 
to properly answer even basic questions about the nature of the coupling, such as the size of the effect or its 
confidence or credible interval.

We describe here a novel method to estimate PAC that addresses these problems. A major source of error in 
existing methods stems from their reliance on traditional bandpass filtering. These filters can remove meaning-
ful oscillatory coupling components (i.e., sidebands), and introduce spurious transients that resemble cross-
frequency coupling. In our approach, we use a state space oscillator model to separate out the different oscillations 
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of interest. These models can preserve the relevant coupling terms in the signal and are resilient to noise and sharp 
signal transitions. We choose a particular model formulation, ingeniously proposed by Matsuda and  Komaki22, 
that makes it straightforward to estimate both the phase and amplitude of oscillatory components. To further 
improve statistical efficiency, we introduce a parametric representation of the cross-frequency coupling relation-
ship. A constrained linear regression estimates modulation parameters which can in addition be incorporated 
into a second state space model representing time-varying changes in the modulation parameters. Finally, we 
combine these statistical models to compute credible intervals for the observed coupling via resampling from 
the estimated posterior distributions. We demonstrate the efficacy of this method using simulated data, rat LFP 
data, and human EEG data.

We show that our method accurately estimates the parameters describing the oscillatory and modulation 
dynamics, provides improved temporal resolution, statistical efficiency, and inference compared to existing 
methods. Furthermore, we show that it overcomes the common problems with existing PAC methods described 
earlier, namely, band selection and spurious coupling introduced by sharp signal transitions and nonlinearities. 
The improved performance and robustness to artifacts should help improve the efficiency and reliability of PAC 
methods, and could enable novel experimental studies of PAC as well as novel medical applications.

Results
Overview of the state-space PAC (SSP) method. In the conventional approach to phase and ampli-
tude estimation, the signal is bandpass filtered to estimate the slow and fast components. The Hilbert trans-
form is then applied to synthesize their imaginary counterparts. Finally, the slow component phase and the fast 
component amplitude are computed and used to calculate a Phase Amplitude Coupling (PAC) metric. In our 
approach, we use a state space model to estimate the oscillatory components of the signal, using the oscillation 
decomposition framework described by Matsuda and  Komaki22. We assume, for the moment, that the observed 
signal yt ∈ R is a linear combination of latent states representing a slow and a fast component xst and xft ∈ R

2 . 
Note that we introduce our method with two latents but provide a general derivation for an arbitrary number 
of oscillations (and their harmonics) as well as model selection tools and illustrative experiments below and in 
Supplementary Materials (see for example S1). Each of the 2 dimensional latent states are assumed to be inde-
pendent and their evolution over a fixed step size is modeled as a scaled and noisy rotation. For j = s, f

where

is a 2-dimensional rotation of angle ωj (the radial frequency), aj is a scaling parameter and σ 2
j  the process 

noise variance. An example of this state space oscillation decomposition is shown in Fig. 1a–d. This approach 
eliminates the need for traditional bandpass filtering since the slow and fast components are directly estimated 
under the model. Perhaps more importantly, the oscillations’ respective components can be regarded as the real 
and imaginary terms of a phasor or analytic signal. As a result, the Hilbert transform is no longer needed. Thus 
the latent vector’s polar coordinates provide a direct representation of the slow instantaneous phase φs

t  and fast 
oscillation amplitude Af

t (Fig. 1f–g). We note xt = [x
s⊺
t x

f⊺
t ]⊺ and obtain a canonical state space  representation23

where � ∈ R
4×4 is a block diagonal matrix composed of the rotations described earlier, Q the total process noise 

covariance, R the observation noise covariance and M ∈ R
1×4 links the observation with the oscillation first 

coordinate. We estimate (�,Q,R) using a Expectation-Maximization (EM) algorithm whose general formulation 
(multiple oscillations and harmonics) is derived in the Supplementary Materials S1.

The standard approach for PAC analysis uses binned histograms to quantify the relationship between phase 
and  amplitude24 which is a major source of statistical inefficiency. Instead, we introduce a parametric representa-
tion of PAC based on a simple amplitude modulation model used in radio communications. To do so, we consider 
a linear regression problem of the form

where X(φs
t ) =

[

1 cos(φs
t ) sin(φs

t )
]

 . We term β ∈ R
3 the modulation vector and impose the additional constraint 

(β2
1 + β2

2 ) < β2
0 on its component. Defining Kmod =

√

β2
1 + β2

2/β0 , φmod = tan−1(β2/β1) and A0 = β0 . Equa-
tion (4) becomes

Kmod controls the strength of the modulation while φmod is the preferred phase around which the amplitude 
of the fast oscillation xft  is maximal (Fig. 1h–j). For example, if Kmod = 1 and φmod = 0 , the fast oscillation is 
strongest at the peak of the slow oscillation. On the other hand, if φmod = π , the fast oscillation is strongest at 
the trough or nadir of the slow oscillation.

(1)x
j
t = ajR (ωj)x

j
t−1 + u

j
t , u

j
t ∼ N(0, σ 2

j I2×2) ,

(2)R (ωj) =

(

cos(ωj) − sin(ωj)

sin(ωj) cos(ωj)

)

,

(3)
yt = Mxt + vt , vt ∼ N(0,R)

xt = �xt−1 + ut , ut ∼ N(0,Q) ,

(4)Af
t = X(φs

t )β + εt , εt ∼ N(0, σ 2
β ) ,

(5)
{

Af
t = A0[1+ Kmod cos(φs

t − φmod)] + εt , , εt ∼ N(0, σ 2
β )

Kmod ∈ [0, 1)
.
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Finally, instead of relying on surrogate  data19 to determine statistical significance, which decreases efficiency 
even further, our model formulation allows us to estimate the posterior distribution of the modulation parameters 
p(Kmod,φmod|{yt}t) and to deduce the associated credible intervals (CI) (Fig. 1f–j).

We refer to our approach as the State-Space PAC (SSP) method. Because physiological systems are time vary-
ing, we apply it over multiple non-overlapping windows. In a variation of our method, we model the temporal 
continuity on the modulation parameters across windows. To do so, we fit an autoregressive (AR) model with 
noisy observations to the modulation vector β by solving and optimizing Yule-Walker type equations numerically 
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Figure 1.  The oscillation decomposition for an EEG time-series from a human subject during anesthesia-
induced unconsciousness using propofol. From the raw EEG trace (a), we extract a 6 s window (b) and 
decompose it into a slow (c) and a fast (d) oscillation using our state space model (e). We then deduce the slow 
oscillation phase (f) and the fast oscillation amplitude (g). Finally, we use a linear model (e) to regress the alpha 
amplitude (j) and to the estimate modulation parameters (h,j) and their distributions. Here, we used 200× 200 
resampled series (dark grey) to compute the 95% CI.
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(see Supplementary Materials S1), yielding what we term the double State Space PAC estimate (dSSP). In other 
words, given Qβ and Rβ process and observation covariances, and, for a time-window T, we model

where βSSP

T
 represents the modulation vector estimated in (4) in time window T and βdSSP

T
 represents the smoothed 

modulation vector.

Human EEG data. To demonstrate the performance of our methods we first analyzed EEG data from 
a human volunteer receiving propofol to induce sedation and unconsciousness (Fig.  2). As expected, as the 
concentration of propofol increases, the subject’s probability of response to auditory stimuli decreases. The 
power spectral density changes during this time, developing beta (12.5–25 Hz) oscillations as the probability of 
response begins to decrease, followed by slow (0.1–1 Hz) and alpha (8–12 Hz) oscillations when the probability 
of response is zero (Fig. 2d) as  in25. Here, the spectrogram is estimated using our model parameters (and Eq. (44) 
from Supplementary Materials S1) but we compare it to multitaper spectral  estimation38 in Fig. S2. For a window 
T, we estimate the modulation strength Kmod

T  and phase φmod
T  (and CI) with dSSP (Fig. 2f) and we gather those 

estimates in the Phase Amplitude Modulogam: PAM(T ,ψ) (Fig. 2e). For a given window T, PAM(T , .) is a prob-
ability density function (pdf) having support [−π ,π ] . It assesses how the amplitude of the fast oscillation is dis-
tributed with respect to the phase of the slow oscillation. When the probability of response is zero, we observe a 
strong ”peak-max” ( Kmod

T ≈ 0.8 , φmod
T ≈ 0 ) pattern in which the fast oscillation amplitude is largest at the peaks 

of the slow oscillation. During the transitions to and from unresponsiveness, we observe a ”trough-max” pattern 
of weaker strength ( Kmod

T ≈ 0.25 , φmod
T = ±π ) in which the fast oscillation amplitude is largest at the troughs 

of the slow oscillation. Note that the coefficient of determination R2 for the modulation relationship mirrors the 
coupling strength Kmod since Af

t is better predicted by our model when the coupling is strong.
When averaged over long, continuous and stationary time windows, conventional methods provide good 

qualitative assessments of PAC. However, in many cases, analyses over shorter windows of time may be neces-
sary if the experimental conditions or clinical situation changes rapidly. In previous  work25, we analyzed PAC 
using conventional methods with relatively long δt = 120 s windows, appropriate in this case because propofol 
was administered at fixed rates over ∼ 14 min intervals. The increased statistical efficiency of the SSP and dSSP 
methods makes it possible to analyze much shorter time windows of δt = 6 s, which we illustrate in two sub-
jects, one with strong coupling (Fig. 3) and another with weak coupling (Fig. S3). To do so, we compare SSP, 
dSSP and standard methods used with δt = 120 s or δt = 6 s based on the modulogram and on the Modulation 
Index (MI) estimates. The latter assesses the strength of the modulation by measuring, for any window T how 
different PAM(T , .) is from the uniform distribution. The Kullback-Leibler Divergence is typically used for this 
purpose. Thus, any random fluctuations in the estimated PAM will increase MI, introducing a bias. Our model 
parametrization is used to derive PAM, MI and associated CI but standard non-parametric analysis typically 

(6)

βSSP

T
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T
+ γT , γ T ∼ N(0,Rβ)

βdSSP

T
=

p
∑

k=1

hkβ
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Figure 2.  Propofol-induced unconsciousness in a human subject monitored with EEG. Increasing target 
effect-site concentrations of propofol were infused (a) while loss and recovery of consciousness were monitored 
behaviorally with an auditory task from which a probability of response was estimated (b). R2 value of our 
modulation regression (c). dSSP was used to estimate the parametric spectrogram (d), the phase amplitude 
modulogram (e) and the modulation parameters (f) Kmod and φmod alongside their CI computed with 
200× 200 samples.
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rely on binned histogram. As a results they estimate statistical significance by constructing surrogate datasets 
and reporting p-values19.
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Figure 3.  The phase amplitude coupling profile of a subject infused with increasing target effect site 
concentrations of propofol. Left: response probability curves (a) aligned with modulograms (c) (distribution of 
alpha amplitude with respect to slow phase) computed with standard (top) and state-space parametric (bottom) 
methods. Right: propofol infusion target concentration (b) aligned with corresponding modulation indices (d). 
Standard technique significance was assessed using 200 random permutations and CI where estimated using 
200× 200 samples.
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Both subjects exhibit the typical phase amplitude modulation profile previously described when they transi-
tion in and out of unconsciousness. Nevertheless, since SSP more efficiently estimates phase and  amplitude22 and 
produces smooth PAM estimates even on short windows, MI estimates derived from SSP show less bias that the 
standard approach. For the same reasons, φmod estimates show less variance than the standard approach. The 
dSSP algorithm provides a temporal continuity constraint on the PAM, making it possible to track time-varying 
changes in PAC while further reducing the variance of the PAM estimates. Finally, our parametric strategy 
provides posterior distributions for Kmod , φmod and MI, making it possible to estimate CI for each variable and 
assesses significance without resorting to surrogate data methods.

Rat LFP data. To illustrate the performance of our approach in a different scenario representative of inva-
sive recordings in animal models, we analyzed rat LFP during a learning task hypothesized to involve theta (6–10 
Hz) and low gamma (25–60 Hz) oscillations. We applied dSSP on 2 s windows (Fig. 4) and confirmed that theta-
gamma coupling in the CA3 region of the hippocampus increases as the rat learned the discrimination task, as 
originally reported in Tort et al.4. In our analysis using dSSP, we did not pre-select the frequencies of interest, nor 
did we specify bandpass filtering cutoff frequencies. Rather, the EM algorithm was able to estimate the specific 
underlying oscillatory frequencies for phase and amplitude from the data, given an initial starting point in the 
theta and gamma ranges. Thus we illustrate that our method can be applied effectively to analyze LFP data, and 
that it can identify the underlying oscillatory structure without having to specify fixed frequencies or frequency 
ranges.

Simulation studies. To test our algorithms in a more systematic way as a function of different modulation 
features and signal to noise levels, we analyzed multiple simulated data sets. By design, these simulated data 
were constructed using generative processes or models different than the state space oscillator model; i.e., the 
simulated data generating processes were outside the ”model class” used in our methods. Here, we focus on slow 
and alpha components to reproduce our main experimental data cases. In doing so, our intent is not to provide 
an exhaustive characterization of the precision and accuracy of our algorithm, since this would strongly depend 
on the signal to noise ratio, the signal shape, etc. Instead, we aim to illustrate how and why our algorithm out-
performs standard analyses in the case of short and noisy time-varying data sets.

We first compare the resolution and robustness of dSSP with conventional techniques on broadband signals 
with modulation parameters varying on multiple time scales. Results are reported for different generative param-
eters (See Methods, �f

gen
s = �f

gen
f  , σs and σf  ) in Fig. 5 and Fig. S4 and associated signal traces are illustrated 

Fig. S5. Although robust when averaged on long windows with stationary coupling parameters, standard tech-
niques become ineffective when the modulation parameters vary rapidly across windows. The modulation cannot 
be resolved when long windows are used. However if we reduce the window size to compensate, the variance 
of the estimates increases significantly. A trade-off has to be found empirically. On the other hand, we see that, 
applied on 6-s windows, (d)SSP can track the rapid changes in amplitude modulation even in the case of a low 
signal to noise ratio. The dSSP algorithm also provides estimates of the posterior distribution of the modulation 
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parameters, making it straightforward to construct CI and perform statistical inference. By comparison, the 
surrogate data approach becomes infeasible as there are fewer and fewer data segments to shuffle.

In a recent paper, Dupré la Tour et al.26 designed an elegant nonlinear PAC formulation, described as a driven 
autoregressive (DAR) process, where the modulated signal is a polynomial function of the slow oscillation. The 
latter, referred to as the driver, is filtered out from the observation around a preset frequency and used to esti-
mate DAR coefficients. The signal parametric spectral density is subsequently derived as a function of the slow 
oscillation. The modulation is then represented in terms of the phase around which the fast oscillation power is 
preferentially distributed. A gridsearch is performed on the driver, yielding modulograms for each slow central 
frequency over a range of fast frequencies. The frequencies associated with the highest likelihood and/or strongest 
coupling relationship are then selected as the final coupling estimate.

This parametric representation improves efficiency, especially in the case of short signal windows, but because 
it relies on an initial filtering step, it also shares some of the limitations of conventional techniques. As we will 
see, spurious CFC can emerge from abruptly varying signals or nonlinearities. Additionally, this initial filtering 
step might contaminate PAC estimates from short data segments with wideband slow oscillations.

To compare our methods with standard techniques and the DAR method, we generated modulated signals 
with the scheme described in Dupré la Tour et al.26 (Eq. (13), � = 3 , and φmod = −π/3 ) using different frequen-
cies of interest ( fs and ff  ) spectral widths ( �f

gen
s  ) and Signal to Noise Ratios (SNR). Typical signal traces for 

those generating parameters are reported in Figs. S7 and S8. We then compare how well these methods recover 
the slow oscillation and the fast oscillation (Figs. S7 and S8) or the modulation phase (Fig. 6 and Fig. S6). Con-
trary to the other methods presented here, SSP does not compute the full comodulograms to select frequencies 
of interest but rather identifies them by fitting the state space oscillator model. Coupling is only estimated in 
a second step. Although we used tangible prior knowledge in previous sections to initialize the algorithm, we 
adapt an initialization procedure  from27 (See Supplementary Materials S1) to provide a fair comparison. For each 
condition, we generated 400 six-second windows. When necessary, the driver was extracted using �f filts = �f

gen
s .

We find that our algorithm better retrieves fast frequencies in each case (Figs. S7 and S8) especially when the 
slow oscillation is wider-band. It also outperforms the other methods when estimating modulation phase (Fig. 6 
and Fig. S6): our algorithm is stable in the case of broadband ( �f

gen
s = 3 Hz) or weak ( (σs, σs) = (0.7, 0.3) ) slow 

oscillations and φmod is estimated accurately with very few outliers and a smaller standard deviation in virtually 
all cases considered.

Overcoming key limitations of CFC analysis: sharp transitions, nonlinearities, and frequency 
band selection. Despite the central role that CFC likely plays in coordinating neural systems, standard 
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methods of CFC analysis are subject to many caveats that are a source of ongoing  concern19. Spurious coupling 
can arise when the underlying signals have sharp transitions or nonlinearities. On the other hand, true underly-
ing coupling can be missed if the frequency band for bandpass filtering is not selected properly. Here we illustrate 
how our SSP method is robust to all of these limitations. We also show how our method is able, counterintui-
tively, to extract nonlinear features of a signal using a linear model.

Signals with abrupt changes and/or harmonics. Oscillatory neural waveforms may have features such as abrupt 
changes or asymmetries that are not confined to narrow  bands28. In such cases, truncating their spectral content 
with standard bandpass filters can distort the shape of the signal and can introduce artefactual components that 
may be incorrectly interpreted as coupling.

The state space oscillator model provides an alternative to bandpass filtering that can accommodate non 
sinusoidal wave-shapes. In this section, we extend the model to explicitly represent the slow oscillatory signal’s 
harmonics, thus allowing the model to better represent oscillations that have sharp transitions and those that 
may be generated by nonlinear systems. To do so, we optimize h oscillations with respect to the same fun-
damental frequency fs (see Supplementary Materials S1). We further combine this model with information 
criteria (Akaike Information Criteria -AIC-29 or Bayesian Information Criteria -BIC-30) to determine (i) the 
number of slow harmonics h and (ii) the presence or the absence of a fast oscillation. We select the best model 
by minimizing �IC = IC−min(IC) . We only report AIC-based PAC estimation here although both AIC and 
BIC perform similarly. When multiple slow harmonics are favored, we use the phase of the fundamental oscil-
lation to estimate PAC.

We first simulated a non-symmetric abruptly varying signal using a Van der Pol oscillator (Eq. (14), 
ε = 5, ω = 5s−1 ) to which we added observation noise ( vt ∼ N(0,R) , 

√
R = 0.15 ). We then considered two 

scenarios: one with a modulated fast sinusoidal wave (Fig. 7a, Af
t = A0

(

1+ cosφs
t

)

 , A0 = 2
√
R and ff = 10Hz ), 

and one without (Fig. 7b). Because our model is able to fit the sharp transitions, both AIC and BIC (not shown) 
identify the correct number of independent components (Fig. 7a–c-4 : the minimum is reached for the correct 
number of components). As a consequence, when no clear fast oscillation is detected, no PAC is calculated 
(Fig. 7a-6). On the other hand, when no fast oscillation is present, standard techniques extract a fast component 
stemming from the abruptly changing slow oscillation, leading to the detection of spurious coupling (Fig. 7a-3).

Nonlinear inputs arising from signal transduction harmonics are a similar hurdle in CFC analysis. If we 
consider a slow oscillation xst = cos(ωst) non-linearly transduced as yt = g(xst ) , we can write a second order 
approximation

If ωs/(2π) = 1 Hz, bandpass filtering yt around 0.9–3.1 Hz to extract an oscillation peaking at ff = 2 Hz would 
 yield19

(7)yt ≈ xst + a
(

xst
)2

= cos(ωst)+ a[1+ cos(2ωst)]/2 .
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Figure 6.  Modulation phase φmod estimation and comparisons with standard methods (black), DAR (pink) 
and SSP (blue). 400 windows of 6 s were generated with: a slow oscillation (filtered from white noise around 
fs = 1 Hz with bandwidth �f

gen
s  , normalized to standard deviation σs ) and a modulated fast oscillation 

( φmod = −π/3 , modeled with a sinusoid fs = 10 Hz and normalized to σf ). We added unit normalized 
Gaussian noise and we used 3 Signal To Noise Ratio (SNR) conditions ( (σs, σs) = (2, 1.5) , (1, 0.6) and (0.7, 0.3)). 
We show typical signal traces for these different conditions Fig. S7.
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In such a case, standard CFC analysis infers significant coupling (Fig. 7c-3) while oscillation decomposition 
correctly identifies a harmonic decomposition without CFC (Fig. 7c-6).

This model selection strategy does not guarantee that the correct model will always be selected. Furthermore, 
the oscillation decomposition itself is often a non convex optimization problem. However, we observe that the 
(extended) state-space oscillator is better suited to model physiological signals than narrow band components. 
In addition, the model selection paradigm combined with prior knowledge of the signal content (e.g., propofol 
anesthesia slow-alpha or rodent hippocampal theta-gamma oscillations) allows us to study PAC in a more 
principled way.

Frequency band selection. If bandpass filters with an excessively narrow bandwidth are applied to a modulated 
signal, the modulation structure can be obliterated. Let us consider the following signal:

Developing yt yields 4 frequency peaks: the slow and fast frequencies ωs and ωf  and two sidelobes centered 
around ωf − ws and ωf + ωs

As a consequence, if the fast oscillation is extracted without its side lobes, no modulation is detected, as illus-
trated Fig. 8a–c. Our SSP algorithm uses a state-space oscillator decomposition which does not explicitly model 
the structural relationship giving rise to the modulation side lobes (Eq. (9)). Yet, we see that the modulation is 
successfully extracted, as observed in the fitted time series (Fig. 1) and in the spectra (Fig. 8d–f). The model is 
able to achieve this by making the frequency response of the fast component wide enough to encompass the side 
lobes. The algorithm does this by inflating the noises covariances R and σ 2

f  and σ 2
f  and deflating af  . In theory 

(8)xft = (1+ a cos(ωst)) cos(ωst) .

(9)yt = As cos(ωst)+ Af cos(ωft)[1+ Kmod cos(ωst + φmod)] + vt , vt ∼ N(0,R) .

(10)yt = As cos(ωst)+ Af cos(ωft)+ (AfKmod/2)[cos(ωft + wst)+ cos(ωft − ωst)] .
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Figure 7.  PAC analysis of 6-s signals with harmonic content using standard methods and SSP. The signal was 
either generated using a Van der Pol oscillator alone (a-1), a Van der Pol oscillator with a modulated alpha 
oscillation (b-1), or with a nonlinearity according to Eq. (7) (c-1). The standard method use conventional filters 
to extract the oscillation (0.1–1 Hz and 6–14 Hz (ab-2) and 0.6–1.2 Hz and 0.9–3.1 Hz (c-2)). SSP was combined 
with an Akaike Information Criteria (AIC, abc-4) to select the optimal number of independent oscillations 
(one, two or three) and the number of slow harmonics (abc-5). PAC is reported as the distribution of the fast 
amplitude with respect to the slow phase (abc-3,abc-6). For SSP 100 samples were drawn from the posterior to 
generate CI (b-6).
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it might be possible to use a higher order model like an ARMA(4,2) (which would represent the product of 2 
oscillations whose poles are in asafe±i(wf±ws) ), or to directly model coupling through a nonlinear observation. 
However, in both cases, we found that such models were difficult to fit to the data, and quickly became under-
constrained when applied to noisy, non-stationary, non-sinusoidal physiological signals. Instead, we found that 
our simpler model was able to extract the modulated high-frequency component robustly.

In summary, the first stage of our algorithm can extract nonlinearities stemming from the modulation before 
fitting them with a regression model in the second stage. The main consequence of this approach is to inflate the 
variance in the fast component estimation. See for example the wide CI in the fast oscillation estimate in Fig. 1g. 
In turn, we resample the fast oscillation amplitudes from a wider distribution than is actually the case. Although 
this does not affect the estimates of φmod , it does produce a conservative estimate when resampling Kmod , i.e., 
the credible intervals are wider than they might be otherwise. Even so, we find that our approach still performs 
better than previous methods (Figs. 3, 5 and 6).

Discussion
We have presented a novel method that integrates a state space model of oscillations with a parametric formula-
tion of phase amplitude coupling (PAC). Under this state space model we represent each oscillation as an analytic 
 signal22 to directly estimate the phase or amplitude. We then characterize the PAC relationship using a parametric 
model with a constrained linear regression. The regression coefficients, which efficiently represent the coupling 
relationship in only a few parameters, can be incorporated into a second state space model to track time-varying 
changes in the PAC. We demonstrated the efficacy of this method by analyzing neural time series data from a 
number of applications, and illustrated its improved statistical efficiency compared to standard techniques using 
simulation studies based on different generative models. Finally, we showed how our method is robust to many 
of the limitations associated with standard phase amplitude coupling analysis methods.

The efficacy of our method stems from a number of factors. First, the state-space analytic signal model pro-
vides direct access to the phase and amplitude of the oscillations being analyzed. This linear model also has the 
remarkable ability to extract a nonlinear feature (the modulation) by imposing ”soft” frequency band limits which 
are estimated from the data. The oscillation decomposition is thus well-suited to analyze physiological signals 
that are not confined to strict band limits. We also proposed a harmonic extension that can represent nonlinear 
oscillations (e.g., Van der Pol, Fig. 7), making it possible to better differentiate between true and spurious PAC 
resulting from bandpass filtering artifacts. The parametric representation of the coupling relationship can accom-
modate different modulation shapes and increases the model efficiency even further.
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Figure 8.  Decomposition (a,d), power spectral density (b,e) and modulogram (c,f). The top row shows the 
result of applying a narrow bandpass filter that removes the modulation side lobes. The bottom row shows 
the result of applying the oscillation decomposition used in SSP and dSSP, which preserves the modulation 
structure. ( Kmod = 0.6, φmod = −π/3 , R = 4 , As

t = 4 and Af
t = 1).



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15940  | https://doi.org/10.1038/s41598-022-18475-3

www.nature.com/scientificreports/

Overall, we addressed a majority of the significant limitations associated with current methods for PAC analy-
sis. The neural time series are processed more efficiently (Fig. 3), frequency bands of interest are automatically 
selected (Fig. 4), extracted (Fig. 8d–e), and more realistically modeled (Fig. 7). Contrary to standard methods, 
we do not need to average PAC-related quantities across time, reducing the amount of contiguous time series 
data required. Moreover, the posterior distributions of the signals of interest are well-defined under our proposed 
model. Sampling from them bypasses the need to build surrogate data, which can obscure non-stationary struc-
ture in the data and underestimate the false positive  rate19. Conversely, because SSP estimates the modulation 
parameters’ posterior distribution, we report CI and provide information on the statistical significance of our 
results as well as the strength and direction of the modulation. Our dynamic estimation of PAC hence makes 
it possible to base inference on much shorter windows—as short as 6 s for slow 0.1–1 Hz signals. Other novel 
models have been proposed to represent PAC, including driven autoregressive models (DAR)26 and generalized 
linear models (GLM)31. As we saw earlier, SSP performs better than the DAR and standard approaches, particu-
larly when the signal to noise is low. The GLM represents the modulation relationship parametrically as we do, 
but in a more general form, and provides confidence intervals using the  bootstrap31. Both the DAR and GLM 
approaches remain reliant on traditional bandpass filtering for signal extraction, and thus remain vulnerable to 
the crucial problems introduced by these  filters19. Our method is the first to use state space models combined 
with a parametric model of the modulation, the latter of which could be generalized in the manner described  by31.

Our methods could significantly improve the analysis of future studies involving CFC, and could enable medi-
cal applications requiring near real-time tracking of CFC. One such application could be EEG-based monitoring 
of anesthesia-induced unconsciousness. During propofol induced anesthesia, frequency bands are not only very 
well defined, but the PAC signatures strongly discriminates deep unresponsiveness (peak-max) from transition 
states (through-max), most likely reflecting underlying changes in the polarization level of the  thalamus32. Thus, 
PAC could provide a sensitive and physiologically-plausible marker of anesthesia-induced brain states, offering 
more information than spectral features alone. Accordingly, a recent  study33 reported cases in which spectral 
features could not perfectly predict unconsciousness in patients receiving general anesthesia. In this same data, 
CFC measures (peak-max) could more accurately indicate a fully unconscious state from which patients cannot 
not be  aroused34. In the operating room, drugs can be administered rapidly through bolus injection, drug infusion 
rates can change abruptly, and patients may be aroused by surgical stimuli, leading to corresponding changes 
in patients’ brain states over a time scale of  seconds35,36. These rapid transitions in state can blur modulation 
patterns estimated using conventional methods. Faster and more reliable modulation analysis could therefore 
lead to tremendous improvement in managing general anesthesia. Conventional methods are impractical since 
they require minutes of data to produce one estimate; in contrast our method can estimate CFC on a time-scale 
compatible with such applications.

Since CFC analysis methods were first introduced into neuroscience, there has been a wealth of data suggest-
ing that CFC is a fundamental mechanism for brain coordination in both health and  disease15,37. Our method 
addresses many of the challenging problems encountered with existing techniques for estimating CFC, while also 
significantly improving statistical efficiency and temporal resolution. This improved performance could pave the 
way for important new discoveries that have been limited by inefficient analysis methods, and could enhance the 
reliability and efficiency of PAC analysis to enable their use in medical applications.

Methods
All methods were carried out in accordance with relevant guidelines and  regulations4,25.

Data sets. Experimental design and procedure. (a) Human EEG
We analyzed human EEG data during loss and recovery of consciousness during administration of the anes-

thetic drug propofol. The experimental design and EEG preprocessing have been extensively described  in25. 
Briefly, 10 healthy volunteers (18–36 years old) were infused increasing amounts of propofol spanning 6 target 
effect site concentrations (0, 1, 2, 3, 4, and 5 µ g L −1 ). Infusion was computer controlled and each concentration 
was maintained for 14 min. To monitor loss and recovery of consciousness behaviorally, subjects were presented 
with an audio stimulus (a click or a verbal command - only the latter is reported here) every 4 s and had to 
respond by pressing a button. The probability of response and associated 95% credible intervals were estimated 
using Monte-Carlo  methods48 to fit a state space model to these data. Finally, EEG data were pre-processed using 
an anti-aliasing filter and downsampled to 250 Hz.

We computed spectrograms of the EEG using the parametric expression associated with oscillation decom-
position (derived in Supplementary Materials S1). Standard techniques for PAC analysis were applied on 6 and 
120 s windows for which alpha and slow component were assumed to be known and extracted using bandpass 
filters around 0.1–1 Hz and 9–12 Hz. Significance for the standard PAC method was assessed using 200 random 
permutations.

(b) Rat LFP
Rat LFP dataset was generously shared by Tort et al.4. Data were recorded from the CA3 region of the dorsal 

hippocampus of rats as they learned a spatial recognition task. The signal was sampled at 1000 Hz, bandpassed 
from 1 to 300 Hz and binned into non-overlapping 2 s time windows. The standard PAC analysis was performed 
using 6-10 Hz and 30–55 Hz filters to extract theta and gamma components, respectively. To replicate the original 
results, modulation indices were averaged over 20 trials.

Simulations. We tested our algorithm on simulated datasets generated by different models. We constructed 
each simulated signal by combining unit variance Gaussian noise, a slow oscillation centered at fs (= 1 Hz unless 
stated otherwise), and a modulated fast oscillation centered at ff  (= 10 Hz unless stated otherwise). It is impor-
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tant to note that we chose to generate these simulated signals using a method or “model class” that was differ-
ent from the state space oscillator model we use to analyze the data. For standard processing, significance was 
assessed with 200 random permutations, fs and ff  were assumed to be known, and components were extracted 
with bandpass filters with pass bands set to 0.1–1 Hz for the slow component and 8–12 Hz for the fast compo-
nent.

(a) Simulating the slow oscillation
Neural oscillations are not perfect sinusoids and instead have a broad band character. Using the approach 

described  in26, we simulated a broad band slow oscillation by convolving (filtering) independent identically 
distributed Gaussian noise with the following impulse response function

where ωs = 2π fs , c0 is a Blackman window of order 2
⌊

1.65fs/�f
gen
s

⌋

+ 1 . The smaller the slow frequency band-
width �f

gen
s  , the closer the signal is to a sinusoid. When necessary, we additionally use a π/2 phase-shifted filter: 

c̃(t) = c0(t) sin(ωst) to model an analytic slow oscillation xst from which we deduce the phase φs
t  . The resulting 

series is finally normalized such that its standard deviation is set to σs.
(b) Simulating the modulation
To assess the temporal resolution of our method and the standard method, we generated simulated data sets 

with different rates of time-varying modulation. First, to construct the modulated fast oscillation, we constructed 
a fast oscillation centered at ωf = 2π ff  and normalized to σf  as described above and modulated it by

Here, Kmod
t  and phase φmod

t  are time varying and follow the dynamics illustrated in Fig. 5 (and in Fig. S4). Rep-
resentative simulated EEG signal traces for different generative parameters are illustrated in Fig. S5.

We also generated simulated data using an alternative modulation function (Fig. 6 and Figs. S6, S7 and S8)

where u⊺
φmod =

[

cos(φmod) − sin(φmod)
]

 , described previously in described  in26.
(c) Simulated signals with abrupt changes
Signals with abrupt or sharp transitions can lead to artefactual phase-amplitude  modulation19. To assess the 

robustness of our state-space PAC method under such conditions, we used a Van Der Pol oscillator to generate 
a signal with abrupt changes. Here, the oscillation x is governed by the differential equation:

Equation (14) was solved using Euler method with fixed time steps.

State-space oscillator model. For a time series of length N sampled at Fs (unless stated otherwise 
Fs = 250 Hz and N/Fs = 6 s), we consider a time window {yt}Nt=1 ∈ R

N , and we assume, in this section, that yt 
is the sum of observation noise and components from two latent states xst and xft ∈ R

2N which account for a slow 
and a fast component. We use the oscillation decomposition model described by Matsuda and  Komaki22. For 
j = s, f  and t = 2 . . .N , each component follows the process Eq.

where aj ∈ (0, 1) and R (ωj) is a rotation matrix with angle ωj = 2π fj/Fs

and

As previously stated, the phase φj
t and amplitude Aj

t of each oscillation are obtained using the latent vector polar 
coordinates:

Each oscillation has a broad-band power spectral density (PSD) with a peak at frequency fj . The parametric 
expression for this PSD is derived in the Supplementary Materials S1.

Setting M =
[

1 0 1 0
]

 , xt = [x
s⊺
t x

f⊺
t ]⊺ , and Q and � to be block diagonal matrices whose blocks are Qj and 

ajR (ωj) , respectively, we find the canonical state space of Eq. (3).

(11)c(t) = c0(t) cos(ωst) .

(12)mt = 1+ Kmod
t cos(φs

t − φmod
t ) .

(13)mt =

(

1+ exp
(

−�xst u
⊺

φmod

))−1

(14)dx2

dt2
− εω0(1− x2)

dx
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+ ω2

0x = 0 .

(15)x
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j
t−1 + u

j
t , u

j
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(16)R (ωj) =
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cos(ωj) − sin(ωj)

sin(ωj) cos(ωj)

)
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(
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Given the observed signal yt , we aim to estimate both the hidden oscillations xt and their generating param-
eters (�,Q,R) . We do so using an Expectation-Maximization (EM) algorithm (see Supplementary Materials S1 
for a more general derivation). The hidden oscillations xt are estimated in the E-step of the EM algorithm using 
the Kalman filter and fixed-interval  smoother51, while the generating parameters are estimated in each iteration 
of the M-step.

Phase amplitude coupling model. Standard processing using bandpass filters and the Hilbert trans‑
form. Standard approaches for PAC analysis follow a procedure described in Tort, et al.24, which we briefly 
summarize here. The raw signal yt is first bandpass filtered to isolate slow and fast oscillations. A Hilbert trans-
form is then applied to estimate the instantaneous phase of the slow oscillation φs

t  , and instantaneous amplitude 
of the fast oscillation Af

t . At time t, the alpha amplitude Af
t is assigned to one of (usually 18) equally spaced phase 

bins of length δψ based on the instantaneous value of the slow oscillation phase: φs
t  . The histogram is constructed 

over some time window T of observations, for instance a ∼ 2 min epoch, which yields the phase amplitude 
modulogram (PAM)40:

For a given window T, PAM(T,.) is a probability distribution function which assesses how the fast oscillation 
amplitude is distributed with respect to the slow oscillation phase. The strength of the modulation is then usually 
measured with the Kullback–Leibler divergence with a uniform distribution. It yields the Modulation Index (MI):

Finally, under this standard approach, surrogate data such as random permutations are used to assess the statisti-
cal significance of the observed MI. Random time shifts �t are drawn from a uniform distribution whose interval 
depends on the problem  dynamics40 and phase amplitude coupling is estimated using the shifted fast amplitudes 
Af
t−�t and the original slow phase φs

t  . The MI is then calculated for this permuted time series, and the process 
is repeated to construct a null distribution for the MI. The original MI is deemed significant if it is bigger that 
95% of the permuted values. Overall, this method requires that the underlying process remains stationary for 
sufficiently long so that the modulogram can be estimated reasonably well and so that enough comparable data 
segments can be permuted in order to assess significance.

Parametric phase amplitude coupling. To improve statistical efficiency, we introduce a parametric representa-
tion of PAC. For a given window, we consider the following (constrained) linear regression problem:

where β = [β0 β1 β2]
⊺ , X(φs

t ) =
[

1 cos(φs
t ) sin(φs

t )
]

 and W(K) = {β ∈ R
3|

√

β2
1 + β2

2 < β0K} . If we define

we see that Eq. (21) is equivalent to:

Setting K = 1 ensures that the model is consistent, i.e., that the modulation envelope cannot exceed the ampli-
tude of the carrier signal. But this can be a computationally expensive constraint to impose. If the data have a 
high signal to noise ratio so that Kmod is unlikely to be greater than 1 by chance, we could also choose to solve 
the unconstrained problem ( K = +∞ ). Under the constrained solution, the posterior distribution for β is a 
truncated multivariate t-distribution47:

The likelihood, conjugate prior, posterior parameters β ,V , b, ν , and the normalizing constant Z are justified and 
derived in Supplementary Material S1. We refer to this estimate as State Space PAC (SSP) and we note

Posterior sampling. The standard approach relies on surrogate data to determine statistical significance, which 
decreases its efficiency even further. Instead, we estimate the posterior distribution p(β|{yt}t) from which we 
obtain the credible intervals (CI) of the modulation parameters Kmod and φmod . To estimate the posterior dis-
tribution, we sample from the posterior distributions given by (i) the state space oscillator model and (ii) the 
parametric PAC model.

(19)PAM(T ,ψ) =

∫ δt/2
−δt/2

∫ ψ+δψ/2
ψ−δψ/2 Af

tδ(φ
s
t − ψ ′)dtdψ ′

2π
∫ t+δt/2
t−δt/2 Af

tdt

(20)MI(T) =

∫ π

−π

PAM(T ,ψ) log2 [2πPAM(t,ψ)]dψ

(21)
{

Af
t = X(φs

t )β + εt , εt ∼ N(0, σ 2
β )

β ∈ W(K)

(22)Kmod =

√

β2
1 + β2

2/β0 , φ
mod = tan−1(β2/β1), and A0 = β0

(23)
{

Af
t = A0[1+ Kmod cos(φs

t − φmod)] + εt , , εt ∼ N(0, σ 2
β )

Kmod ∈ [0,K)
.

(24)p
(

β|{Af
t ,φ

s
t }t

)

=
1

Z

(

1+ ν−1
(

β − β
)⊺

(V/b)
(

β − β
))− ν+3

2
1{β∈W(K)} .

(25)βSSP = argmax p
(

β|{Af
t ,φ

s
t }t

)

.
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(i) The Kalman Filter used in the rth E-Step (see Supplementary Materials S1) of the EM algorithm provides 
the following moments, for t, t′ = 1 . . .N:

Therefore, we can sample l1 times series: X = {Xt}
N
t=1 using

where P is a 4N × 4N matrix whose block entries are given by (P)tt′ = PNt,t′.
(ii) For each X , we use Eq. (18) to compute the resampled slow oscillation’s phase ϕ and fast oscillation’s 

amplitude A . We then use Eq. (24) to draw l2 samples from p
(

β|A ,ϕ
)

 . As a result, we produce l1 × l2 samples 
to estimate:

We finally construct CI around βSSP using an L2 norm and in turn derive the CI of Kmod and φmod (Fig. 1h,i).

A second state‑space model to represent time‑varying PAC. We segment the time series into multiple non-over-
lapping windows of length N to which we apply the previously described analysis. We hence produce {βSSP

T
}T , a 

set of vectors in R3 accounting for the modulation where T denotes a time window of length N.
A second state-space model can be used to represent the modulation dynamics. Here we fit an autoregressive 

(AR) model of order p with observation noise to the modulation vectors βSSP

T
 across time windows. It yields the 

double State Space PAC estimate (dSSP):

We proceed by solving and optimizing Yule-Walker type equations numerically (see Supplementary Materials 
S1) and we select the order p with Bayesian Information  Criterion30. Finally, we can use the fitted parameters to 
filter the l1 × l2 resampled parameters to construct a CI for {βSSP

T
}T when necessary.

Equivalence. To better compare standard techniques with the SSP, we derive an approximate expression for the 
PAM under our parametric model (Supplementary Materials S1). For a window T:

Initialization of the expectation maximization (EM) algorithm. Although EM ensures conver-
gence, the log likelihood which is to be maximized is not always  concave22. To address this issue, Matsuda and 
Komaki initialize a signal composed of d oscillations with the parameters of the best autoregressive (AR) process 
of order p ∈ [|d, 2d|] . Nevertheless, because of the electrophysiological signal’s aperiodic component, such pro-
cedure might bias the initialization. Indeed, the aperiodic components are usually described by a 1/f χ power-law 
 function45,46 which might be regressed by the AR process. In such cases, the initialization could fail to account 
for an actual underlying oscillation.

To help mitigate this potential problem, we adapt Haller, Donoghue and Peterson’s FOOOF  algorithm27 to the 
state space oscillation framework. Our initialization algorithm aims to disentangle the oscillatory components 
from the aperiodic one before fitting the resulting spectra with the parametric PSD of the oscillation (Eq. 44). 
All fits in this initialization procedure use interior point methods to minimize L2 norms.

The power spectral density (PSD) for the observed data signal yt is estimated using the multitaper  method38. 
We set the frequency resolution rf  (typically to 1 Hz) which yields the time bandwidth product TW =

rf
2

N
Fs

 . The 
number of taper K is then chosen such that K << ⌊2TW⌋ − 1.

First of all, we estimate the observation noise R0 (used to initialized R) using:

and we remove this offset from the PSD.

(26)xNt = Er(xt |{yk}
N
k=1), P

N
t,t′ = covr(xt , xt′ |{yk}

N
k=1) .

(27)X |{yt}
N
t=1 ∼ N ({xNt }

N
t=1,P) ,

(28)

p(β|{yt}t) =

∫

X

p(β|X )p(X |{yt}t)

=

∫

A ,ϕ

p(β|A ,ϕ)p(A ,ϕ|{yt}t) .

(29)

βSSP

T
= βdSSP

T
+ γT , γ T ∼ N(0,Rβ)

βdSSP

T
=

p
∑

k=1

hkβ
dSSP

T−k
+ ηT , ηT ∼ N(0,Qβ)

.

(30)
PAM(T ,ψ) =

1

2π

(

1+
sin(δψ/2)

δψ/2
Kmod
T cos(ψ − φmod

T )
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−−−→
δψ→0

1

2π
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(31)10 log10
R0

Fs
= lim

f→∞
PSD(f )
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Regressing out the non oscillatory component. The aperiodic signal PSD in dB, at frequencies f is then modeled 
by:

χ controls the slope of the aperiodic signal, g0 the offset and f0 the ”knee” frequency. A first pass fit is applied to 
identify the frequencies corresponding to non oscillatory components: only f0 is fitted while χ and g0 are respec-
tively set to χ = 2 and g0 = PSD(f = 0) (Fig. 9a). We fix a threshold (typically 0.8 quantile of the residual) to 
identify frequencies associated to the aperiodic signals (Fig. 9b).

A second pass fit is then applied only on those frequencies from which we deduce g0 , f0 and χ (Fig. 9c). We 
remove g(f) from the raw PSD in dB and use it for the second step of the algorithm (Fig. 9d).

Oscillation initialization. From the redressed PSD, we fit a given number d0 (e.g d0 = 4 ) of independent oscil-
lations using the theoretical PSD given (Eq. 44). To do so, we identify PSD peaks of sufficient width (wider than 
rf /2 ) before fitting an oscillation theoretical spectra in a neighborhood of width 2rf  around this peak. For oscil-
lation j, we deduce (fj)0 , (aj)0 and (σ̃ 2

j )0 . Since (σ̃ 2
j )0 represents the offset of a given oscillation after removing the 

aperiodic component, we adjust it to estimate σ 2
j :

The resulting spectra PSDj are then subtracted and the process is repeated until all oscillations are estimated 
(Fig. 9e, blue). We finally estimate the power P j of an an oscillation j in the neighborhood of (fj)0 and estimate 
its contribution to the total power P 0 by −10 log10

(

1−
Pj

P0+2rf R0/Fs

)

.
Oscillation are sorted and the resulting parameters are used to initialize the EM algorithm with the d ∈ [|1, d0|] 

first oscillations.

Code availability
Code will be made public after publication.

(32)g(f ) = g0 − log
(

1+ (f /f0)
χ
)

.

(33)10 log10

(

(σ̃ 2
j )0

Fs

)

≈ 10 log10

(

(σ 2
j )0

Fs

)

+ g((fj)0) .
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Figure 9.  Steps for the initialization procedure. A first pass fit is applied to the raw multitaper power spectral 
density (PSD) estimate (a). We remove this fit from the raw PSD and fix a threshold to identify non-oscillatory 
components (b). A second pass fit is applied (c) which yields a redressed PSD (d). We then fit the parametric 
expression of the PSD for a fixed number of oscillations (d). The fitted parameters are then used to initialize the 
EM algorithm.
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