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ABSTRACT
We study a production lot-sizing problem inspired by a veterinary pharmaceutical plant in which
demands are uncertain. First, we develop a deterministic capacitated lot-sizing model for the pro-
duction of animal pesticides, performed in three machine-specific stages. Second, we propose a
traditional robust optimisation formulation following the popular budget-of-uncertainty approach.
Third, we derive a novel fragility-based approach that circumvents well-known issues with tra-
ditional robust optimisation approaches, such as the estimation of budgets of uncertainty, the
over-conservatism of robust solutions and the sensitivity of solutions to the decision maker’s risk
attitude. The fragility-based approach is grounded in the idea of minimising violations, over the
full uncertainty support, from a user-specified cost target. It avoids the estimation of budgets of
uncertainty and produces less conservative solutions via explicit modelling of constraint violation.
We demonstrate the effectiveness of our approach on instances built upon real data provided by
our industrial partner, a major player in the Brazilian veterinary pharmaceutical sector. The results
show that our fragility-based approach reduces average total costs across all instances and main-
tains greater model stability under different target estimations. It also preserves cost savings when
bottlenecks are introduced in production and when inventory costs and capacities are varied.
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1. Introduction

Lot-sizing is one of the most important pillars of pro-
duction planning. It typically involves the optimal timing
and sizing of production quantities in order to max-
imise profit or minimise cost while serving customer
demands (Brahimi et al. 2017; Clark, Almada-Lobo, and
Almeder 2011). In this paper, we investigate production
lot-sizing in the process industry, inspired by the case of a
real-world plant that produces more than 200 veterinary
pharmaceutical items to fulfill demands of clients inmore
than 14 countries. Typically, production in the veterinary
pharmaceutical industry, as inmany other sectors such as
food, steel, and paper, is resource-intensive and presents
constraints associated with the specific operational limi-
tations at the production facility (Mehrotra et al. 2011).
In addition, accurate information is hard to come by,
as products are seasonal and rather dependent on both
weather conditions and the agricultural production cycle,
which makes its production planning particularly chal-
lenging (Alem,Oliveira, andRuiz Peinado 2020;Marques
et al. 2020).

Given the uncertainties related to demand forecasting
that typically arise in the addressed context, we propose

CONTACT Aakil M. Caunhye aakil.caunhye@ed.ac.uk The University of Edinburgh Business School, 29 Buccleuch Place, EH8 9JU Edinburgh, UK

robust optimisation (RO) approaches, which assume that
nominal and deviation values are known a priori and
belong to an uncertainty set. RO has emerged as a pow-
erful technique to deal with uncertainties due to its non-
parametric nature and potential computational advan-
tages over purely stochastic programming approaches.
This means that, in contrast to stochastic programming,
RO operates without the assumption of an input proba-
bility distribution. It imposes minimal restraints on the
behaviour of uncertainty. A classical RO model requires
only the range of data variations, whereas a stochas-
tic programming model needs an assumed probability
distribution whose fitting on historical data typically
entailsmaximum likelihood estimations of scale/location
parameters. Even if the sample average approximation
of a stochastic programming model is used, a proba-
bility distribution assumption remains necessary, with
the additional challenge of solving over large numbers
of scenarios to achieve convergence via Law of Large
Numbers, which is generally computationally cumber-
some even for small size combinatorial problems. The
decisions prescribed by RO tend to be less sensitive to
data variations, which is accomplished by optimising
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worst-case performances over data within an uncertainty
set, whereas stochastic programming, on top of sensitiv-
ity to input data, has an added sensitivity to the chosen
probability distribution.

1.1. Motivation

The seminal RO approach by Bertsimas and Thiele
(2006) in lot-sizing under uncertainty achieved its pio-
neering success by avoiding probability assumptions
and allowing protection against all realisations from
an uncertainty set while maintaining high tractabil-
ity. The adjustable RO method (Aharon, Boaz, and
Shimrit 2009; Gorissen and Hertog 2013) further con-
tributed to robust lot-sizing by allowing a subset of
decisions to be made after uncertainty revelation (also
called ‘wait-and-see’ decisions), while maintaining the
same protection against uncertainty as the seminal RO
approach. The method also avoids probability assump-
tions and it ensures tractability by modelling wait-
and-see decisions as affine functions of uncertainty.
More recent advances in the area of distributionally
robust lot-sizing (Zhang, Shen, and Song 2016) have
allowed the enrichment of uncertainty sets with descrip-
tive statistics such as moments and covariances. The
tractability depends on the descriptive statistics used.
For instance, covariances typically lead to conic robust
counterparts when the deterministic lot-sizing model is
linear.

The lot-sizing literature widely acknowledges that the
seminal RO approach produces over-conservative solu-
tions (Aurélie 2004; Bienstock and Özbay 2008; Bohle,
Maturana, and Vera 2010; Chu, Huang, and Thiele 2019;
Gorissen and Hertog 2013). Furthermore, both the RO
and adjustable RO approaches rely on the budget of
uncertainty, a parameter that controls the size of the
uncertainty set and to which the conservatism of pre-
scribed solutions is notably sensitive (Alem and Mora-
bito 2012; Ardjmand et al. 2016; Curcio et al. 2018; Rocco
and Morabito 2016). Estimating budgets of uncertainty
is not straightforward or even intuitive, as it requires
the decision-maker to quantitatively assess their aver-
sion to more/less conservative solutions, which is funda-
mentally subjective and often impossible to attribute an
accurate numerical value to. Furthermore, by restricting
the size of the uncertainty set, the budget of uncertainty
evidently offers protection against limited uncertainty
realisations, which translate to a lack of guarantee on out-
of-sample performances, meaning that if data fall out-
side the uncertainty set, performances may suffer uncon-
trollably. Approaches to address the over-conservatism,
such as through adversarial approach (Bienstock and
Özbay 2008), constraint aggregation (Bohle, Maturana,

and Vera 2010), all still rely on estimations of budgets of
uncertainty.

In the lot-sizing context, over-conservatism translates
to costly setups and production levels in order to over-
come high demands at minimal holding/backlogging
costs. Evaluating the budget of uncertainty amounts to
estimating a parameter that will rule out high cumula-
tive demands in each time period. In addition to the
lack of intuition surrounding this parameter value, the
dynamic nature of lot-sizing requires this estimation to
be carried out for every time period, which further com-
plexifies the task. Even if the decisionmaker were to have
reasonable bases to estimate the budget of uncertainty,
its impact on the conservatism of the resulting lot-sizing
solution is unclear. We therefore ask the research ques-
tion: can we develop a robust lot-sizing methodology that
avoids the estimation of budgets of uncertainty, relies on
(more) intuitive parameter inputs, and explicitly models
the impact of uncertainty on the lot-sizing solution,without
compromising the tractability of the robust counterpart?

1.2. Related papers

Table 1 gives an overview on lot-sizing problems via
robust optimisation, focusing on their main character-
istics, such as type and production environment, robust
optimisation method, and eventual downsides of their
approach. The reader interested in an up-to-date review
of stochastic lot-sizing problems is referred to Alem,
Oliveira, and Ruiz Peinado (2020); Bindewald, Dunke,
and Nickel (2023) and references therein. The first line of
Table 1 also shows our intended contribution as a matter
of comparison. Most papers develop pure robust optimi-
sation (RO)models with budget of uncertainty à la (Bert-
simas and Thiele 2006) to primarily deal with demand
uncertainty (and eventually other parameters such as
costs, returns, and production times) in a multitude of
lot-sizing variants, including inventory-routing (Golse-
fidi and Jokar 2020; Solyali, Cordeau, and Laporte 2012);
lot-sizing with remanufacturing (Attila et al. 2021; Wei,
Li, andCai 2011); lot-sizingwith cutting-stock (Alemand
Morabito 2012; Curcio et al. 2022); lot-sizing with sup-
plier selection (Buhayenko and Hertog 2017; Thevenin,
Ben-Ammar, and Brahimi 2022); lot-sizing with dete-
rioration/perishability (Coniglio, Koster, and Spieker-
mann 2016, 2018; Santos, Agra, and Poss 2020); lot-sizing
and scheduling (Alem et al. 2018; Curcio et al. 2018;
Hu and Hu 2020); as well as other variants involving
crop planning (Rocco andMorabito 2016), pricing (Ard-
jmand et al. 2016), order acceptance (Aouam et al. 2018),
Make-To-Order policy (Agra, Poss, and Santos 2018),
and amulti-plant lot-sizing perspective (Jalal et al. 2022).
Not surprisingly, only a few studies derive adjustable
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Table 1. Literature summary of lot-sizing problems via robust optimisation.

Problem Production Setup Further/practical Uncertainty Main Other aspects Sector or Real-life Drawbacks or
type environment type characteristic source method of the method type of industry data challenges of the approach

This paper CLSP MI/MP/MM ST/SC Three production Demand Fragility-based Fragility measure, Veterinary Yes Estimating cost target,
stages RO constraint violation

modelling
pharmaceutical choosing constraint violation

measure

Agra (2023) CLSP SI/MP/SM ST/SC No Demand RO Adversary policy NA No Potential intractability
Metzker et al. (2023) CLSP SI/MP/SM ST/SC No Production

yield
RO Budget of

uncertainty
NA No Estimating proper budgets of

uncertainty
Thevenin, Ben-Ammar,
and Brahimi (2022)

ULSP SI/MP/SM No Supplier selection Lead time RO Budget of
uncertainty

NA No Potential intractability

Curcio et al. (2022) CLSP MI/MP/SM No Cutting-stock Demand RO+SP Budget of
uncertainty

NA No Estimating proper budgets
of uncertainty/generating
scenarios

Jalal et al. (2022) CLSP MI/MP/SM ST/SC Multi-plant Demand,
processing/
setup times

RO Budget of
uncertainty

NA No Estimating proper budgets of
uncertainty

Gentile, Pinto, and
Stecca (2022)

CLSP SI/MP/SM ST/SC No Demand RO Forecasting Waste
management

Yes Estimating proper budgets
of uncertainty/forecasting
method

Attila et al. (2021) CLSP SI/MP/SM ST/SC Remanufacturing Demand and
return

RO Adversarial
problem

NA No Complexity of the adversarial
problem/ estimating proper
budgets of uncertainty

Hu and Hu (2020) CLSP MI/MP/SM ST/SC Scheduling Demand and
overtime
cost

RO+SP Scenario
generation

Braking equipment No Estimating proper budgets
of uncertainty/generating
scenarios

Santos, Agra, and
Poss (2020)

CSLP SI/MP/SM No Perishability Demand RO Adjustability NA No Estimating proper budgets
of uncertainty/potential
intractability

Golsefidi and
Jokar (2020)

CLSP MI/MP/SM ST/SC Routing Demand RO Budget of
uncertainty

NA No Estimating proper budgets of
uncertainty

Coniglio, Koster, and
Spiekermann (2018)

CLSP SI/MP/SM ST/SC Inventory losses Demand RO Two-stage with
affine decision
rules

Power supply
system

Yes Estimating proper budgets
of uncertainty/potential
intractability

Curcio et al. (2018) CLSP MI/MP/SM ST/SC Scheduling Demand RO+SP Adjustability NA No Estimating proper budgets
of uncertainty/ generat-
ing scenarios/ potential
tractability

Agra, Poss, and
Santos (2018)

CLSP MI/MP/SM ST/SC Make-to-Order
policy

Demand RO Budget of
uncertainty

NA Not clear Estimating proper budgets of
uncertainty

Aouam et al. (2018) CLSP SI/MP/SM ST/SC Order acceptance Demand RO Budget of
uncertainty

NA No Estimating proper budgets of
uncertainty

Alem et al. (2018) CLSP MI/MP/SM ST/SC Scheduling Demand RO+SP Budget of
uncertainty

NA No Estimating proper budgets
of uncertainty/generating
scenarios

(continued)
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Table 1. Continued

Problem Production Setup Further/practical Uncertainty Main Other aspects Sector or Real-life Drawbacks or
type environment type characteristic source method of the method type of industry data challenges of the approach

This paper CLSP MI/MP/MM ST/SC Three production Demand Fragility-based Fragility measure, Veterinary Yes Estimating cost target,
stages RO constraint violation

modelling
pharmaceutical choosing constraint violation

measure

Buhayenko and
Hertog (2017)

ULSP SI/MP/SM No Supplier selection Demand RO Adjustability NA No Estimating proper budgets
of uncertainty/potential
intractability

Zhang, Shen, and
Song (2016)

CLSP SI/MP/SM ST/SC No Demand DRO Data-driven (moments) NA No Estimating the moments
of the probability dis-
tribution/potential
intractability

Solyali, Cordeau, and
Laporte (2016)

CLSP SI/MP/SM ST/SC No Demand RO Adjustability and
reformulation

NA No Estimating proper budgets of
uncertainty

Ardjmand et al. (2016) CLSP MI/MP/SM ST/SC Pricing Demand RO Budget of uncertainty Textile
manufacturing

Not clear Estimating proper budgets of
uncertainty

Coniglio, Koster, and
Spiekermann (2016)

CLSP SI/MP/SM ST/SC Storage
deterioration

Demand RO Budget of uncertainty Power and heat
generation

Not clear Estimating proper budgets of
uncertainty

Rocco and
Morabito (2016)

CLSP MI/MP/SM No Crop planning Tomato brix
and crop
yield

RO Budget of uncertainty Tomato processing Yes Estimating proper budgets of
uncertainty

Klabjan, Simchi-Levi,
and Song (2013)

ULSP SI/MP/SM No No Demand DRO Data-driven (chi-square
distance)

NA No Estimating the moments
of the probability dis-
tribution/potential
intractability

Alem and
Morabito (2012)

CLSP MI/MP/SM ST/SC Cutting-stock Demands and
costs

RO Budget of uncertainty Furniture Yes Estimating proper budgets of
uncertainty

Solyali, Cordeau, and
Laporte (2012)

CLSP SI/MP/SM No Routing Demand RO Adjustability NA No Estimating proper budgets of
uncertainty

Zhang (2011) ULSP SI/MP/SM SC No Demand RO Adjustability NA No Potential intractability
Wei, Li, and Cai (2011) ULSP SI/MP/SM No Remanufacturing Demand and

return
RO Budget of uncertainty NA No Estimating proper budgets of

uncertainty
Aharon, Boaz, and
Shimrit (2009)

ULSP SI/MP/SM No No Demand Globalised Robust
Counterpart

Adjustability/budget of
uncertainty

NA No Estimating proper budgets of
uncertainty

Note: ULSP: uncapacitated lot-sizing problem; CLSP: capacitated lot-sizing problem; SI: single item; MI: multi-item; SP: single period; MP: multi-period; SM: single machine; MM: multi-machine; ST: set-up time; SC: set-up cost;
RO: robust optimisation; SP: stochastic programming; DRO: distributionally robust optimisation;
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robust optimisation formulations (ARO) and/or distri-
butionally robust optimisation approaches (DRO), most
probably to avoid losing computational performance
in already difficult combinatorial problems. In general,
these approaches are applied to simpler and/or more
standard lot-sizing problems, such as the uncapacitated
case, single item, and no setup. Notably, there is only
a handful of studies whose models are tailored for a
specific sector/industry, showing that there is definitely
room for investigating lot-sizing in practical contexts and
validating them using real data. Notice also that, as afore-
mentioned, estimating proper budgets of uncertainty and
computational intractability are often regarded as poten-
tial drawbacks of the existing robust lot-sizing problems.
In special, the few papers that derive approaches to cir-
cumvent typical RO issues such as over-conservatism (via
ARO, DRO and other data-driven methods) end up with
harder-to-solve formulations, often requiring specialised
solution methods.

1.3. Research gaps

The methodology that comes closest to answering our
research question in lot-sizing is from Aharon, Boaz,
and Shimrit (2009) who proposed an approach called
the Globalised Robust Counterpart (GRC). The GRC
allows uncertainty to vary over the entire support and
omits the budget of uncertainty restriction. It minimises
a target cost while allowing violations from that tar-
get, such that these violations follow a user-defined
unit cost times a distance measure. This results in high
tractability when the distance measure is polyhedral,
meaning that the robust counterpart is a linear pro-
gram if the deterministic model is also linear. The
main issue with the GRC is that it needs a user-input
unit cost of target violation, which is not intuitive to
estimate.

All mainstream robust lot-sizing models, including
the GRC, have cost minimisation objectives. In the GRC,
the cost takes the form of a target, whereas in the remain-
ing literature focuses on worst-case holding and back-
logging costs under polyhedral uncertainty sets con-
strained by budgets of uncertainty. A recent theoret-
ical development in RO was proposed by Long, Sim,
and Zhou (2023), called fragility-based robust optimisa-
tion, whose philosophy is to minimise the cost of viola-
tion of uncertainty-affected constraints from preset tar-
gets. Instead of budgets of uncertainty, the approach
requires the decision-maker to set a target for the over-
all cost, which is considerably less subjective and is better
grounded in business performance. For instance, the tar-
get would be a nominal price the business is willing to pay
for all operations. This is considerably easier to conceive

than a conservatism level which depends on individ-
ual decision-makers’ personal traits, or a cost of con-
straint violation which lacks intuitive bases. In addition,
while current robust lot-sizing models immunise plan-
ning constraints against uncertainty, they do not model
how uncertainty affects the constraints. The fragility-
based approach allows an explicit modelling of constraint
violations under uncertainty variations and concurrently
gives the decision-maker a sense of the extent of per-
formance departures from preset targets as uncertainty
varies. Moreover, as the model does not restrict varia-
tions within budgets of uncertainty, it yields better out-
of-sample performances.

To the best of our knowledge, this paper is the first
time the fragility-based approach is being applied to lot-
sizing or production planning. Our approach is not to
merely undertake a direct translation of the theoretical
framework conceived by Long, Sim, and Zhou (2023),
but also to tailor the method according to the speci-
ficities of capacitated lot-sizing models – especially with
regards to backlogging/holding costs – so as to yield
better solutions while maintaining tractability. More pre-
cisely, while the direct translationwould yield a nonlinear
robust counterpart, we provide a reformulation that is
linear and follows the same problem class as the deter-
ministic model, thereby avoiding a loss of tractability
over traditional RO. Furthermore, we produce violations
that follow the logical relationships between backlog-
ging/holding and demand variations so as to strengthen
the fragility-based formulation andmaintain the intrinsic
attributes of lot-sizing models.

The main contributions of this study are as follows:

• We develop a deterministic capacitated lot-sizing
model to represent the production planning of ani-
mal pesticides whose manufacturing process usually
involves three stages: weighing, reactors, and filling.
As far as we are aware, modelling the animal pesti-
cide manufacturing process in this way has not been
done before. In addition, multistage lot-sizing prob-
lems (and/or in a multi-machine setting) have not
been tackled under the prism of robust optimisation,
as evidenced in Table 1. Our model portrays produc-
tion flow between stages, while enforcing time limits
on weighing and volume restrictions on reactors, as
well as allowing for reactor cleanup and for product-
specific formulas to be created from appropriate reac-
tors. This formulation is further extended to take into
account demand uncertainty based on the popular
robust optimisation with budget of uncertainty.

• We propose a novel fragility-based optimisation
approach for the lot-sizing problem of a veterinary
pharmaceutical plant. The approach relies on setting
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a cost target and allowing violations from the target as
demands depart from nominal. It is adapted from the
recent developments by Long, Sim, and Zhou (2023),
but we tailor it to the specificities of a capacitated lot-
sizing problem with backlogging and holding costs
considerations.

• In particular, specific modifications are proposed to
the original idea of Long, Sim, and Zhou (2023) to
ensure tractability of the final model and constraint
violations are redefined such that they follow back-
logging/holding schedules. The approach avoids the
estimation of budgets of uncertainty and offers less
conservative production planning since it does not
seek to optimise worst-case performances, thereby
tackling the two major issues that inhibit the efficacy
of traditional robust optimisation approaches.

The proposed approach, together with a determinis-
tic formulation and the traditional RO, are applied to
solve a real-world problem from a veterinary pharmaceu-
tical company. The results show that our fragility-based
approach reduces average total costs across all instances
andmaintains greater model stability under different tar-
get estimations. It also preserves cost savings when bot-
tlenecks are introduced in the production plant andwhen
inventory costs and capacities are varied.

The remainder of this paper is organised in the fol-
lowing way. In Section 2, we introduce the studied vet-
erinary pharmaceutical company’s problem. Section 3
describes the models developed in this work, including
a deterministic formulation, the traditional RO formula-
tion, and the novel fragility-based formulation. Section 4
describes the computational results of all proposed for-
mulations for the company. Section 6 summarises the
managerial insights obtained from our computational
experiments and discusses the limitations of the fragility-
based approach. Finally, Section 7 provides concluding
remarks, summarises our findings and propose some
future research directions.

2. Problem description

The inspiration of our investigation is a veterinary phar-
maceutical plant located in the State of São Paulo, Brazil.
This company is a major player in Latin America, being
responsible for providing more than 200 distinct items to
14 different countries, with an annual revenue of over 100
million dollars. The main production facility of the com-
pany is a large-scale plant with approximately 1000 work-
ers, where themajority of the items are produced. In gen-
eral, veterinary pharmaceutical items are seasonal, being
quite dependent on weather conditions and on the agri-
cultural production cycle. As the majority of the items

have their own seasonal demands, this sector requires
relatively flexible machines to prevent equipment from
going unused for most of the year. The case-study is built
upon the sector of animal pesticides that are usually used
for protection against parasites such as worms and ticks.
We chose this sector for our case-study for several rea-
sons: (i) the availability of high-quality data about the
production planning and processes of this sector, such
as item demands, average utilisation of machines, and
nominal capacities; (ii) the high amount of capital immo-
bilised in stocks due to poormanagerial decisions regard-
ing demand forecasting and production planning; (iii)
the fact that the animal pesticides sector operates inde-
pendently from the rest of the production plant. A total
of 27 individual items are produced in this sector using
11 different formulas. We define an item as a packed unit
ready to be sold, while a formula is the chemical com-
pound within the item. Different packages (in terms of
types and/or volumes) evenwith the same chemical com-
pound are considered different items for the company,
e.g. cans and bottles of soda.

Figure 1 illustrates the company’s production process
of animal pesticides in three stages. In the first stage,
the raw materials needed to make an item are collected
from storage and weighed in order to prepare the cor-
rect recipe for the formula. In the second stage, the raw
materials are assigned to the reactors where they will
be mixed to create the required formula. Although any
reactor can be used to produce any formula, the assign-
ment of formulas to reactors is usually made based on
the volume (in litres) to be synthesised. The animal pes-
ticides sector has four individual reactors, two with 5000
litres, one with 4000 litres, and another one with only 50
litres; all can operate in parallel. In the reactors, the for-
mulas are processed in batches. A setup is required to
clean up the machines whenever a new formula needs
to be synthesised. Although the cleaning step is usually
not required between batches of the same formula, san-
itary guidelines followed by the company state that any
reactor must be cleaned after five consecutive batches
of the same formula. The formulas are then transferred
to one of the filling lines in the third and last produc-
tion process stage, where it will be bottled into different
items. Each filling line operates with different volume
ranges and thus the item must be assigned to a spe-
cific line based on its volume and cannot be processed
by a non-compatible machine. The filling lines are ini-
tially adjusted to produce a specific item in a given bottle
size. At each item changeover, a setup related to clean-
ing and machine adjustment is required. After filled with
the formula, the recipient is labelled, sealed and packed
into the final product and send to the customer or to a
storage.
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Figure 1. Production process of animal pesticide.

Even though the reactors are often regarded as the
production process bottleneck, machines from stages
one and three, especially filling lines II and IV, may
present high levels of utilisation in some periods, there-
fore limiting the production of animal pesticides. Here,
machine’s utilisation is defined as the fraction of time
in which a given machine is busy, considering setups
and actual production. To represent the possible pro-
duction bottlenecks as consequence of the high util-
isation of some stages/lines, the proposed optimisa-
tion model takes into account the machine capacity of
all three production stages, as well as constraints to
ensure the production conservation flow across differ-
ent stages. The corresponding mixed-integer optimisa-
tionmodel considers that the planning horizon is divided
into T=12 periods (months) in which production plan-
ning decisions must be updated. The problem consists
of defining the optimal lot size levels for each item
and period in order to minimise the company’s inven-
tory and backlogging costs throughout the planning
horizon.

Our formulation does not consider work in process,
thus we only need to check the balance of production
between two consecutive stages. Unlike the filling lines,
where is possible to estimate the individual processing
time for any item, the reactors produce the formulas
in batches which roughly take similar processing times
independently of the volume produced. Furthermore, the
reactors must follow technical requirements related to
production volumes. A batch is not allowed to have a vol-
ume below a reactor’s minimum because it is unable to
mix the formulas properly. Similarly, it is also not possi-
ble for a batch to exceed the reactor’s maximum volume.
In addition, different items can be processed together in
the same batch as long as they are composed by the same
formula. Finally, the reactors not only need to be cleaned
before any formula changeover, but they also must be
cleaned after every five consecutive batches of the same
formula. On the other hand, the weighing and filling
lines do not operate in batches; thus, processing times
can be individually estimated. They do not have mini-
mum and maximum volume rules. Furthermore, a setup
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in machines from these stages is only required when an
item changeover occurs.

3. Mathematical models

LetT be the set of time periods;I be the set of items;L be
the set of formulas; Kw be the subset of machines in the
weighing stage; Kr be the subset of machines composed
exclusively by reactors; Kf be the subset of machines
composed exclusively by filling lines; and Lk be the sub-
set of formulas that can produce in reactor k ∈ Kr; K is
the set of all machines (Kw ∪ Kr ∪ Kf ). The data and
variables described below with superscript ‘w’ relate to
the weighing stage, those with superscript ‘r’ relate to
the reactors and the ones with ‘f ’ refer to the filling
lines. The parameters and decision variables are given as
follows.

Parameters

ch+it Unit holding costs of item i in period t
ch−it Unit backlogging cost of item i in period t
cswikt Setup cost of item i in weighing stage k in

period t
csrlkt Setup cost of formula l in reactor k in

period t
csfikt Setup cost of item i in filling line k in period t
d̄it Nominal demand for item i in period t
I+i0 Initial inventory for item i
I−i0 Initial backlog for item i
awik Processing time for item i in weighing

stage k
afik Processing time for item i in filling line k
blk Time needed to produce a batch of formula

l in reactor k
swik Setup time for item i in weighing stage k
srlk Setup time for formula l in reactor k
sfik Setup time for item i in filling line k
Cw
kt Production capacity in weighing stage k in

period t
Cr
kt Production capacity in reactor k in period t

Cf
kt Production capacity in filling line k in

period t
Vmin
k and Minimum and maximum volume of
Vmax
k reactor k

vil Volume of formula l needed to produce
item i

ulk Number of consecutive batches of formula l
that can be processed in reactor k before its
mandatory cleaning.
If l ∈ Lk, than this parameter assumes value
of 5; otherwise, ulk =0.

Decision variables

I+it Inventory level of item i in period t
I−it Backlogging level of item i in period t
xwikt Production level of item i in weighing stage k

in period t
xrikt Production level of item i in reactor k in

period t
xfikt Production level of item i in filling line k in

period t
ywikt = 1 if setup for item i in period t in weighing

stage k is performed;
= 0 otherwise

yfikt = 1 if setup for item i in period t in filling
machine k is performed;
= 0 otherwise

nlkt Number of times reactor k is used to produce
formula l in period t

n′
lkt Number of times a setup is needed to produce

formula l in reactor k in period t.

3.1. Deterministic model

The optimisation model is now posed as follows.

min
∑
i∈I

∑
t∈T

(
ch+it I+it + ch−it I−it

)
+
∑
i∈I

∑
t∈T

∑
k∈Kw

cswikty
w
ikt

+
∑
l∈L

∑
t∈T

∑
k∈Kr

csrlktn
′
lkt +

∑
i∈I

∑
t∈T

∑
k∈Kf

csfikty
f
ikt ,

(1)

subject to:

Stage I (Weighing)∑
k∈Kr

xrikt =
∑
k∈Kw

xwikt , i ∈ I , t ∈ T , (2)

xwikt ≤ ywikt
Cw
kt

awik
, i ∈ I , k ∈ Kw, t ∈ T , (3)

∑
i∈I

(xwikta
w
ik + ywikts

w
ik) ≤ Cw

kt , k ∈ Kw, t ∈ T , (4)

Stage II (Reactors)∑
k∈Kf

i

xfikt =
∑
k∈Kr

xrikt , i ∈ I , t ∈ T (5)

Vmin
k nlkt ≤

∑
i∈I l

vilxrikt ≤ Vmax
k nlkt , k ∈ Kr, l ∈ L,

t ∈ T , (6)

nlkt ≤ ulkn′
lkt , k ∈ Kr, l ∈ L, t ∈ T , (7)∑

l∈Lk

(nlktblk + n′
lktslk) ≤ Cr

kt , k ∈ Kr, t ∈ T , (8)
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Stage III (Filling Lines)

I+i0 − I−i0 +
∑
k∈Kf

i

xfikt − I+it + I−it = d̄it , i ∈ I , t = 1,

(9)

I+it−1 − I−it−1 +
∑
k∈Kf

i

xfikt − I+it + I−it = d̄it , i ∈ I ,

t ∈ T \ {1}, (10)

xfikt ≤ yfikt
Cf
kt

afik
, i ∈ I , k ∈ Kf , t ∈ T , (11)

∑
i∈I

(xfikta
f
ik + yfikts

f
ik) ≤ Cf

kt , k ∈ Kf , t ∈ T , (12)

nlkt , n′
lkt , I

+
it , I

−
it , x

w
ikt , x

r
ikt , x

f
ikt ≥ 0, i ∈ I ,

l ∈ L, k ∈ K, t ∈ T , (13)

ywikt , y
r
ikt , y

f
ikt ∈ {0, 1}, i ∈ I , k ∈ K, t ∈ T . (14)

The objective function (1) minimises the overall produc-
tion cost due to holding, backlogging and setup costs.
The weighing stage is represented by constraints (2)–(4).
The set of constraints (2) ensures the production flow
between the weighing stage and reactors by enforcing
that the total production of any item in this first stage
must be the same in the reactors in any period. Con-
straints (3) guarantee that a setup is performed at the
weighing stage in any time period where production
takes place. Finally, the weighing capacity is enforced by
constraints (4). These constraints compute the expected
time to execute the production plan in each period and
impose a production capacity limit in time units.

The second stage, where items are passed on to reac-
tors, is portrayed by constraints (5)–(8). Similar to con-
straints (2), the first constraints in the reactor stage (5)
are used to enforce production flow between the current
stage and the next one. In this way, during each period,
the total production of any item in the reactors must be
equal to the production in the filling lines. Constraints (6)
ensure that the minimum andmaximum volume of reac-
tors are respected. They do so by enforcing that the total
volume produced of any formula by any reactor k must
always be a value between multiples of its minimum and
maximum volumes. The number of times each reactor
must be cleaned for the production of formula l in each
period is computed by constraints (7). This is achieved by
enforcing that cleanup is required whenever a formula is
produced for the first time in the period in reactor r and
after every five (ukl ) batches of the same formula there-
after. Since parameter ukl assumes a value of 0 if formula l
cannot be produced in reactor k, constraints (6) together

with (7) have the additional function of ensuring that
formula l is produced in the correct reactor. Lastly, con-
straints (8) impose capacity restrictions for every reactor
in every period by computing the total time it takes to
produce the formula in that period and comparing it with
the machine production capacity in time units.

Finally, the filling stage is represented by con-
straints (9)–(12). Since the output of the machines from
this stage are the final items that are ready to be sold,
the formulation uses the total production of the filling
lines to compute the inventory balance between periods
in constraints (9) and (10). Constraints (9) represent the
balance for the first periodwhereas constraints (10) apply
to the remaining periods. The setup requirement of the
filling lines are imposed by constraints (11). The produc-
tion capacity limit, in time units, from each machine in
the filling stage is enforced by constraints (12). Finally,
constraints (13) and (14) set the domain of the decision
variables.

3.2. Baselinemodel with demand uncertainty based
on Bertsimas and Thiele (2006)

One of the most popular approaches to incorporate
demanduncertainty into lot-sizing problems is the robust
optimisation methodology proposed by Bertsimas and
Thiele (2006). This approach models demand variations
within a polyhedral uncertainty set, in which the demand
for an item i in a period t, dit , is conceived as a symmetri-
cal and bounded uncertain variable inside interval [d̄it −
d̂it , d̄it + d̂it], where d̄it is the nominal demand value and
d̂it is itsmaximumdeviation. In thismodelling paradigm,
decision-making conservatism is controlled by budgets
of uncertainty �it , such that �i1 ≤ �i2 ≤ · · · ≤ �i|T | and
�it ≤ �i(t−1) + 1, for all i ∈ I and 1 < t ≤ |T |. Its main
role is to limit the total historical deviation, as shown in
the following uncertainty set

Dit =
{
dti ∈ R

t : diτ = d̄iτ + d̂iτ ziτ ;
∑
τ≤t

|ziτ |

≤ �it ; −1 ≤ ziτ ≤ 1, τ ≤ t

}
, i ∈ I , t ∈ T ,

where zit = dit−d̄it
d̂it

is an associated scaled deviation

whose value ranges from −1 to 1 and dti = (di1, . . . , dit)
is the history of demand realisations. The robust optimi-
sation approach works by finding the production-setup
plan that gives the best worst-case inventory/backlogging
cost over the uncertainty set. This is achieved via a piece-
wise linear reformulation of the inventory balance con-
straints (9) and (10), where the constraints are replaced
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by (15) and (16), respectively and a new objective func-
tion is defined as in (17)

Hit ≥ −ch−it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − diτ
)]

,

dti ∈ Dit , i ∈ I , t ∈ T , (15)

Hit ≥ ch+it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − diτ
)]

,

dti ∈ Dit , i ∈ I , t ∈ T , (16)

min
∑
i∈I

∑
t∈T

Hit +
∑
i∈I

∑
t∈T

∑
k∈Kw

cswikty
w
ikt

+
∑
l∈L

∑
t∈T

∑
k∈Kr

csrlktn
′
lkt +

∑
i∈I

∑
t∈T

∑
k∈Kf

csfikty
f
ikt .

(17)

From Bertsimas and Thiele (2006), constraints (15)
and (16) can be reformulated as the following set of
linear inequalities (details of derivations are shown in
Appendix 3)

Hit ≥ −ch−it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)

− (qit�it +
∑
τ≤t

riτ t)
]
, i ∈ I , t ∈ T , (18)

Hit ≥ ch+it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)

+ qit�it +
∑
τ≤t

riτ t
]
, i ∈ I , t ∈ T , (19)

qit + riτ t ≥ d̂iτ , i ∈ I , τ ≤ t, t ∈ T , (20)

Hit , qit , riτ t ≥ 0, i ∈ I , τ ≤ t, t ∈ T . (21)

Thus, our baseline robust lot-sizing counterpart, here-
after referred to as BRLS, consists of objective func-
tion (17) and constraints (2)–(8), (11)–(14) and (18)–(21).

3.3. A novel fragility-based approach

A major issue with the previous approach is that while it
is known that violations of these constraints (15) and (16)
will happen when demand realisations are outside the
uncertainty set polyhedron, there is no explicitmodelling
of how these constraints will react to these violations,
whichmeans there is no conceptualisedmodel behaviour
outside the prescribed uncertainty set. In addition, iden-
tifying a value for�it , the budget of uncertainty, for every

time period and every product is particularly challeng-
ing as it requires the decision maker not only to evaluate
their level of conservatism for every product, but also to
numerically assess how this level will change over time.
Last but not least, robust optimisation via budgets of
uncertainty is often criticised for yielding overly con-
servative solutions and poor average performances. This
often happens because of the heavy focus on the optimi-
sation of the worst-case performance, which often leads
to overprotected decision plans.

To circumvent these issues, we adopt an approach
based on the fragility-based robust optimisation frame-
work proposed in Long, Sim, and Zhou (2023). The prin-
ciple of the fragility-based robust optimisation approach
is: (1) instead of cost minimisation, a target is set for
the cost; (2) target violation is allowed over the entire
uncertainty support via a distance measure, such that as
demands deviate from their nominal values, the allow-
able violation increases; and (3) a new objective is defined
whereby the ‘cost’ of constraint violation is minimised,
via a metric called the fragility measure.

The first step in formulating the fragility-based model
relies on a specified cost target ν that represents the total
(setup and backlogging/holding) cost that should not be
exceeded under nominal demands. The total cost met-
ric is then moved from the objective function to the
following constraint

∑
i∈I

∑
t∈T

(
Hit +

∑
k∈Kw

cswikty
w
ikt + 1

|I|
∑
l∈L

∑
k∈Kr

csrlktn
′
lkt

+
∑
k∈Kf

csfikty
f
ikt

⎞
⎠ ≤ ν + κ

∑
i∈I

∑
t∈T

d̂it|zit|,

∀z ∈ {|zit| ≤ 1, i ∈ I , t ∈ T }. (22)

This immunises the overall production cost incurred,
which includes the total setup cost, the total backlog-
ging/holding cost and a cost of constraint violation
(which will be explained next), against uncertainty reali-
sations that fall within the full box support of the uncer-
tainty. It sets a new objective function

min κ .

The variable κ is a measure of the fragility of the system
and can be viewed as a cost of allowing the total setup and
backlogging/holding cost to violate the pre-specified tar-
get. As κ decreases, smaller target violations are incurred
for the same sequence of demand deviations (fromnomi-
nal), indicating that the system is more resilient to uncer-
tainty. The rationale behind the fragility-based formu-
lation is that as the total demand deviates further from
nominal, the decision maker accepts greater violations to
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the cost target, while aiming to keep the cost of these vio-
lations low. At nominal demand (z = 0), the total setup
and backlogging/holding cost must not exceed the target,
which can be easily inferred from inequality (22) when
z = 0.

The fragility-based approach avoids the need of esti-
mating �it , while explicitly modelling constraint viola-
tions. In addition, target estimations are invariably more
intuitive than the estimations of conservatism levels since
they are easier to conceive in the context of the appli-
cation problem. The fragility-based model requires the
estimation of a single target value, whereas the baseline
(Bertsimas and Thiele 2006) approach needs estimations
of conservatism levels, �it , for every product in every
time period. A straightforward way of setting the target is
by using the formula (1 + α) times the optimal cost value
from the nominal model, where this nominal model is
simply the deterministic model with all demand values
set to be nominal.

While the fragility-based framework of Long, Sim, and
Zhou (2023) offers multiple advantages over the tradi-
tional robust optimisation approach, it cannot be directly
applied to our model and needs further reformulation
to produce a solvable robust counterpart. A difficulty in
movingH from the objective to the constraint (22) is that
this invalidates the backlogging/holding cost linearisa-
tion represented by constraints (15) and (16). The orig-
inal nonlinear formulation of the backlogging/holding
cost constraints are

Hit = max
{
g1
(
(xfikt)k∈Kf

i
, zti
)
, g2

(
(xfikt)k∈Kf

i
, zti
)}

,

i ∈ I , t ∈ T ,

where

g1
(
(xfikt)k∈Kf

i
, zti
)

= −ch−it

[
I+i0 − I−i0 +

∑
τ≤t( ∑

k∈Kf
i

xfikτ − d̄iτ
)

−
∑
τ≤t

d̂iτ ziτ
]
, i ∈ I , t ∈ T ,

g2
(
(xfikt)k∈Kf

i
, zti
)

= ch+it

[
I+i0 − I−i0 +

∑
τ≤t( ∑

k∈Kf
i

xfikτ − d̄iτ
)

−
∑
τ≤t

d̂iτ ziτ
]
, i ∈ I , t ∈ T ,

zti = (zi1, . . . , zit), i ∈ I , t ∈ T .

For ease of representation, we also define

w(vit) =
∑
k∈Kw

cswikty
w
ikt + 1

|I|
∑
l∈L

∑
k∈Kr

csrlktn
′
lkt

+
∑
k∈Kf

csfikty
f
ikt

where

vit = (ywikt ,∀k ∈ Kw, n′
lkt ,∀l ∈ L, k ∈ Kr, yfikt ,∀k ∈ Kf ).

We can therefore express constraint (22) as∑
i∈I

∑
t∈T

(
max

{
g1
(
(xfikt)k∈Kf

i
, zti
)
, g2

(
(xfikt)k∈Kf

i
, zti
)}

+w(vit) − κ d̂it|zit|
)

≤ ν,

∀z ∈ {|zit| ≤ 1, i ∈ I , t ∈ T },
which can be rearranged to give an uncertainty-free left-
hand side of ∑

i∈I

∑
t∈T

w(vit) − ν,

and an uncertainty-dependent right-hand side of∑
i∈I

∑
t∈T

(
κ d̂it|zit| − max

{
g1
(
(xfikt)k∈Kf

i
, zti
)
,

g2
(
(xfikt)k∈Kf

i
, zti
)})

.

Since we require the constraint ‘left-hand side ≤ right-
hand side’, to be valid ∀z ∈ {|zit| ≤ 1, i ∈ I , t ∈ T }, the
right-hand side becomes the auxiliary problem

min
|zit |≤1,i∈I,t∈T

{∑
i∈I

∑
t∈T

(
κ d̂it|zit|

−max
{
g1
(
(xfikt)k∈Kf

i
, zti
)
, g2

(
(xfikt)k∈Kf

i
, zti
)})}

,

⇔ min
|zit|≤1,i∈I,t∈T
0≤ρit≤1,i∈I,t∈T

{∑
i∈I

∑
t∈T

(
κ d̂it|zit| − ρitg1

(
(xfikt)k∈Kf

i
, zti
)

− (1 − ρit)g2
(
(xfikt)k∈Kf

i
, zti
))}

.

(23)

The equivalence exists because the solution of ρit will
always occur at an extreme point of the feasible region,
meaning that it will be either 0 or 1. Further improve-
ment to the fragility-based approach can be made by
considering the specifics of cost violation within the lot-
sizing context. For a product i at time t and a fixed pro-
duction level, if demand is being backlogged, i.e. when
cumulative demand is greater than the current produc-
tion level, any demand increase will worsen the back-
logging cost, whereas drops in demand will lower it. On
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the other hand, if the production level is greater than
the cumulative demand, which means inventory is being
held, any increase in the demand will lower the hold-
ing cost, whereas drops in demand will worsen it. This
indicates that we can achieve greater realism by making
the fragility measure product-and-time-dependent and
connecting demand deviations with whether inventory
is being held or demand is being backlogged, which is
portrayed in the reformulation of model (23) to

min
|zit|≤1,i∈I,t∈T
0≤ρit≤1,i∈I,t∈T

{∑
i∈I

∑
t∈T

(
κit d̂itzitρit − κit d̂itzit(1 − ρit)

−ρitg1
(
(xfikt)k∈Kf

i
, zti
)

−(1 − ρit)g2
(
(xfikt)k∈Kf

i
, zti
))}

. (24)

and the definition of a new objective function

min
∑
i∈I

∑
t∈T

κit

to replace min κ . When ρit = 1, the cost violation is
κit d̂itzit , which means that when the production plant
has existing backlogging, an increase in demand (zit >

0) leads to an increase in cost violation, whereas a
decrease in the demand (zit < 0) leads to a decrease in
cost violation. However, when ρit = 0, the cost viola-
tion is −κitd̂itzit , which means that when the produc-
tion plant has existing inventory being held, an increase
in the demand leads to a decrease in cost violation,
whereas a decrease in the demand leads to an increase
in cost violation. This is in line with the principle that
a plant with excess inventory benefits from increased
demands, whereas one with inventory shortage suffers
from increased demands. When fully expanded, the
model is

min
∑
i∈I

∑
t∈T

⎛
⎜⎝κit d̂itzitρit − κitd̂itzit(1 − ρit) + ρitch−it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)]

−ρitch−it
∑
τ≤t

d̂iτ ziτ − ch+it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)]

+ ch+it
∑
τ≤t

d̂iτ ziτ

+ρitch+it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)]

− ρitch+it
∑
τ≤t

d̂iτ ziτ

⎞
⎟⎠ ,

s.t. − 1 ≤ zit ≤ 1, i ∈ I , t ∈ T
0 ≤ ρit ≤ 1, i ∈ I , t ∈ T ,

which is bilinear and thus nonconvex. We apply
McCormick envelopes to derive the following convex
relaxation of the model:

min
∑
i∈I

∑
t∈T

⎛
⎜⎝2κit d̂itwitτ − κit d̂itzit + ρitch−it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)]

−ch−it
∑
τ≤t

d̂iτwitτ − ch+it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)]

+ ch+it
∑
τ≤t

d̂iτ ziτ

+ρitch+it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)]

− ch+it
∑
τ≤t

d̂iτwitτ

⎞
⎟⎠ ,

s.t. − 1 ≤ zit ≤ 1, i ∈ I , t ∈ T ,
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0 ≤ ρit ≤ 1, i ∈ I , t ∈ T
− ρit ≤ witτ ≤ ρit , i ∈ I , τ ≤ t, t ∈ T ,

ρit + ziτ − 1 ≤ witτ ≤ −ρit + ziτ + 1, i ∈ I , τ ≤ t, t ∈ T .

Dualizing, we obtain the model

max
∑
i∈I

∑
t∈T

⎛
⎜⎝−πA

it − πB
it − πC

it −
∑
τ≤t

(πF
itτ + πG

itτ ) − ch+it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)]⎞⎟⎠

s.t. πA
it − πB

it −
∑
τ≥t

(πF
iτ t − πG

iτ t) + πH
it − π I

it =
(∑

τ≥t
ch+iτ − κit

)
d̂it , i ∈ I , t ∈ T ,

− πC
it +

∑
τ≤t

(πD
itτ + πE

itτ ) −
∑
τ≤t

(πF
itτ + πG

itτ ) ≤ ch−it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)]

+ ch+it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)]

, i ∈ I , t ∈ T ,

πD
itτ − πE

itτ + πF
itτ − πG

itτ = −ch−it d̂iτ − ch+it d̂iτ + 2d̂itκit , i ∈ I , τ ≤ t, t ∈ T ,

πA
it ,π

B
it ,π

C
it ,π

D
itτ ,π

E
itτ ,π

F
itτ ,π

G
itτ ,π

H
it ,π

I
it ≥ 0, i ∈ I , τ ≤ t, t ∈ T .

Because strong duality applies (feasibility and bounded-
ness are evident), we can write the fragility-based robust
lot-sizing counterpart, hereafter referred to as FRLS, as

min
∑
i∈I

∑
t∈T

κit ,

s.t. constraints (2) − (8), (11) − (14),

∑
i∈I

∑
t∈T

⎛
⎝∑

k∈Kw

cswikty
w
ikt + 1

|I|
∑
l∈L

∑
k∈Kr

csrlktn
′
lkt +

∑
k∈Kf

csfikty
f
ikt

⎞
⎠− ν ≤

∑
i∈I

∑
t∈T

(
−πA

it − πB
it − πC

it

−
∑
τ≤t

(πF
itτ + πG

itτ ) − ch+it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)]⎞⎟⎠ ,

πA
it − πB

it −
∑
τ≥t

(πF
iτ t − πG

iτ t) + πH
it − π I

it =
(∑

τ≥t
ch+iτ − κit

)
d̂it , i ∈ I , t ∈ T ,

− πC
it +

∑
τ≤t

(πD
itτ + πE

itτ ) −
∑
τ≤t

(πF
itτ + πG

itτ ) ≤ ch−it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)]

+ ch+it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)]

, i ∈ I , t ∈ T ,

πD
itτ − πE

itτ + πF
itτ − πG

itτ = −ch−it d̂iτ − ch+it d̂iτ + 2d̂itκit , i ∈ I , τ ≤ t, t ∈ T ,

πA
it ,π

B
it ,π

C
it ,π

D
itτ ,π

E
itτ ,π

F
itτ ,π

G
itτ ,π

H
it ,π

I
it ≥ 0, i ∈ I , τ ≤ t, t ∈ T .
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We note that FRLS relies on the convex relaxation of
bilinear terms via McCormick envelopes. The original
bilinear constraint is∑
i∈I

∑
t∈T

w(vit) − ν ≤ min
|zit |≤1,i∈I,t∈T
0≤ρit≤1,i∈I,t∈T

{∑
i∈I

∑
t∈T

(
κit d̂itzit

ρit − κit d̂itzit(1 − ρit) − ρitg1((x
f
ikt)k∈Kf

i
, zti)

− (1 − ρit)g2((x
f
ikt)k∈Kf

i
, zti)

)}
.

Suppose that Z∗ is the value of the right-hand side model
and ZR∗ is the value of its relaxed linear model. We know
that ZR∗ ≤ Z∗. This means that

∑
i∈I

∑
t∈T w(vit) −

ν ≤ ZR∗ ≤ Z∗, which implies that the relaxed linear
model is a tighter bound on

∑
i∈I

∑
t∈T w(vit) − ν. The

term
∑

i∈I
∑

t∈T w(vit) represents the setup cost and
ν represents the total-cost target, and since the total
cost (and its target) is expected to be higher than the
setup cost, we expect

∑
i∈I

∑
t∈T w(vit) − ν ≤ 0. The

relaxed model therefore forces
∑

i∈I
∑

t∈T w(vit) − ν

to be more negative, and therefore the setup cost to
be lower. Lower setup leads to lower production and
therefore, to less conservative solutions. General subop-
timality gaps for McCormick relaxations are not avail-
able in the literature. However, there are proven rela-
tionships between the McCormick gap and the convex
hull gap (Boland et al. 2017) for [0, 1] bilinear prob-
lems, namely

√
N
4 × convexhullgap ≤ McCormickgap ≤

600
√
N × convexhullgap, whereN is the number of terms

involved in bilinear multiplications.
Although suboptimality gaps are not precisely known,

McCormick relaxation ensures the class of FRLS remains
the same as that of the deterministic model. Further-
more, the model has additional O(|I||T |2) constraints
and variables, where |I| and |T | denote the cardinality of
sets I and T , respectively, compared to the deterministic
model. This is the same as BRLS, which also has addi-
tionalO(|I||T |2) constraints and variables compared to
the deterministic model. FRLS thus maintains the same
model class as the deterministicmodel and shares similar
complexity to the baseline approach.

The user-specified target ν influences the value of the
fragility measure κ . The higher the target, the lower the
fragility measure. The following simple problem helps
better understand the relationship between the target and
the fragility measure.

Illustrative problem. Suppose we have the follow-
ing single-period, single-item uncapacitated robust lot-
sizing problem (the model and its fragility-based version
are assumed to be feasible and bounded)

min cpy + H

s.t. H ≥ ch+(x − d̄ − d̂z),−� ≤ z ≤ �,

H ≥ −ch−(x − d̄ − d̂z),−� ≤ z ≤ �,

x, y ≥ 0.

Its fragility-based version, as we can see from (24), is
given as

min κ

s.t. cpy − ν ≤ κ d̂zρ − κ d̂z(1 − ρ)

− ρ
(
−ch−(x − d̄ − d̂z)

)
− (1 − ρ)

(
ch+(x − d̄ − d̂z)

)
,

= z
(
2κ d̂ρ − κ d̂ + ρch−d̂ + (1 − ρ)ch+d̂

)
+ ρch−(x − d̄) − (1 − ρ)ch+(x − d̄),

− 1 ≤ z ≤ 1, 0 ≤ ρ ≤ 1,

κ , x, y ≥ 0.

We know that the optimal value of ρ is either 0
or 1. Suppose that the optimal value of κ is positive
(i.e. κ∗ > 0)

Case ρ = 1: If production is backlogged, ρ = 1 and
the model becomes

min κ

s.t. cpy − ν ≤ z
(
κ d̂ + ch−d̂

)
+ ch−(x − d̄),

− 1 ≤ z ≤ 1, κ , x, y ≥ 0,

�
min κ

s.t. cpy − ν ≤ min−1≤z≤1

{
z
(
κ d̂ + ch−d̂

)}
+ ch−(x − d̄),

κ , x, y ≥ 0,

�
min κ

s.t. cpy − ν ≤ −
(
κ d̂ + ch−d̂

)
+ ch−(x − d̄),

κ , x, y ≥ 0,

which gives κ ≤ ν−cpy+ch−(x−d̄−d̂)
d̂

. The first equivalence
holds because validity over all −1 ≤ z ≤ 1 is required.
The second equivalence follows because the coefficient of
z is positive.

Case ρ = 0, κ ≤ ch+: When the item is held, ρ = 0. If
κ ≤ ch+, the model becomes

min κ
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s.t. cpy − ν ≤ z
(
ch+d̂ − κ d̂

)
− ch+(x − d̄),

− 1 ≤ z ≤ 1, κ , x, y ≥ 0

�
min κ

s.t. cpy − ν ≤ −
(
ch+d̂ − κ d̂

)
− ch+(x − d̄),

κ , x, y ≥ 0,

which gives κ ≥ cpy−ν+ch+(x−d̄+d̂)
d̂

. Same as when ρ = 1,
the equivalence holds true because validity for all −1 ≤
z ≤ 1 is achieved at z=−1. Case ρ = 0, κ > ch+: On the
other hand, if κ > ch+,

min κ

s.t. cpy − ν ≤ z
(
ch+d̂ − κ d̂

)
− ch+(x − d̄),

− 1 ≤ z ≤ 1, κ , x, y ≥ 0

�
min κ

s.t. cpy − ν ≤
(
ch+d̂ − κ d̂

)
− ch+(x − d̄),

κ , x, y ≥ 0,

which gives κ ≤ ν−cpy−ch+(x−d̄−d̂)
d̂

. Here, validity for all
−1 ≤ z ≤ 1 is achieved at z=1, since the coefficient of z
is negative. We can summarise the bounds on κ via the
inequalities

0 ≤ κ ≤ ν − cpy + ch−(x − d̄ − d̂)

d̂
,

κ ≥ cpy − ν + ch+(x − d̄ + d̂)

d̂
if κ ≤ ch+,

κ ≤ ν − cpy − ch+(x − d̄ − d̂)

d̂
if κ > ch+,

=⇒ κ∗ = min

{
cpy − ν + ch+(x − d̄ + d̂)

d̂
, ch+

}
,

where the implication follows from the fact that the
fragility-based approach aims to minimise κ and we
assumed that the optimal κ is positive. We observe the
negative relationship between the fragility measure and
the target, in the case where there exists a fragility mea-
sure lower than the holding cost. In this case, a higher
target leads to a lower fragility measure. In addition, for
the same setup and production, a unit increase in the tar-
get reduces the fragilitymeasure by the factor 1

d̂
. This also

shows that under higher uncertainty levels (higher d̂), the
fragility measure becomes less sensitive to the target.

4. Computational experiments

The key objective of our computational study is to eval-
uate the performances of our fragility-based approach
vis-a-vis the deterministic approach and the tradi-
tional/baseline RO approach under different conditions
that represent alternate production planning environ-
ments. For this purpose, we construct 9 problem
instances that include a base case (all original com-
pany data maintained) and cases with cost or capacity
alterations that capture different economic realities. Our
computational experiments on every model (determinis-
tic/BRLS/FRLS) are conducted in a systematic manner.
For every instance, we solve the model in question to
obtain the optimal setup-and-production plan. Then, the
backlogging/holding costs incurred from this plan are
computed for 2000 randomly generated demand scenar-
ios. These two steps are repeated for different uncertainty
levels and different values of tuning parameters, i.e. the
conservatism level for BRLS and the cost target for FRLS.
All computational experiments are executed on a com-
puter with processor Intel Core i7-8700CPU@3.60MHz
and 16GB of RAM using the solver CPLEX v.20.1 coded
in GAMS 37.1 modelling language. We impose a time
limit of 3600 seconds for the solution of the models.

4.1. Problem instances

Table 2 summarises the 9 instances that were constructed
and their respective characteristics. In line with the prac-
tice of our industrial partner, a major company in the
Brazilian veterinary pharmaceutical sector, we use a plan-
ning horizon of one year, further divided into 12 time
periods for monthly decision-making. We are consider-
ing the data of a manufacturing cell that produces 27 dif-
ferent items/products using 11 formulas and 9 heteroge-
neous machines, among which 1 is a weighing machine,
4 are reactors, and 4 are filling machines. Most of the
data used in this study are taken directly from a spread-
sheet provided by the company, which we have consoli-
dated, as well as supplemented with estimates of missing
parameters, as shown in Table 3.

Table 2. Summary of the proposed instances.

Instance Main characteristic

F1 Base case
F2 Holding costs increased by 25%
F3 Backlogging costs increased by 25%
F4 Setup costs increased by 25%
F5 Capacity reduction of all machines by 25%
F6 Capacity increase of all machines by 25%
F7 Capacity reduction of machines from stage I by 50%
F8 Capacity reduction of machines from stage II by 50%
F9 Capacity reduction of machines from stage III by 50%
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Table 3. Summary of the parameters used in the model.

Parameter Provided Estimated Estimation method

ch+it �
ch−it �
cswikt � swik

awik
×EUPi

csrlkt � sfik
bflk

× EUPl

csfikt � sfik
afik

× EUPi

d̄it �
d̂it � d̄it × δ

I+i0 �
I−i0 �
awik and a

f
ik �

blk �
swik �

∑
t∈T ŷwikta

w
ik∑

t∈T
∑

i∈Ik ŷ
w
ikta

w
ik

× ESTk

srlk �
∑

t∈T n̂lktblk∑
t∈T

∑
l∈Lk n̂lktblk

× ESTk

sfik �
∑

t∈T ŷfikta
f
ik∑

t∈T
∑

i∈Ik ŷ
f
ikta

f
ik

× ESTk

Cwkt , C
r
kt and C

f
kt �

Vmink and Vmaxk �
vil �
ulk �

The most important missing information are item-
specific setup times and costs. Setup times are estimated
based on the historical company utilisation of individual
machines, by assuming that any downtime in machine k
is due to the machine undergoing a setup. We call this
value Estimated Setup Time for k or ESTk. As this value
is not item-specific, we multiply it by the proportion of
the overall processing time × number of setup spent on
item i. The rationale is that items with higher process-
ing times or that require more setups to start production
will consume a greater portion of the overall setup time.
Following notations that are consistent with our mathe-
matical programming formulation, let ŷwikt , n̂lkt and ŷfikt
be the company’s historical monthly number of setups
in the weighing, reactors and filling stages, respectively.
Using the weighing machine for illustration, the setup
time for item i is estimated as

∑
t∈T ŷwikta

w
ik∑

t∈T
∑

i∈Ik ŷ
w
ikta

w
ik

× ESTk,

where
∑

t∈T ŷwikta
w
ik∑

t∈T
∑

i∈Ik ŷ
w
ikta

w
ik
is the fraction of the total process-

ing time×number of setup spent on item i in the weighing
stage.

The cost for setting up machine k to process item i is
estimated as the company’s lost profit when the machine
is idle due to setups. To obtain this value, we compute the
number of units of item i that could have been produced
by machine k during its setup time and multiply that by
the item’s expected unit profit, denoted by EUPi, which
was obtained from the company’s annual report. For

example, suppose that item i has EUPi = 3 BRL (Brazil-
ian Reais) and that this item requires awik = 2 minutes to
be processed on weighing machine kwith corresponding
setup time of swik = 60minutes. Then, the estimated setup

cost incurred by the machine would be swik
awik

× EUPi =
60
2 × 3 = 90BRL, since theweighingmachine could have
processed 30 items during setup, each providing a 3 BRL
profit. For reactors, the unit profit on formula l is consid-
ered, rather than the profit on item i, and it is denoted
by EUPl. Additional information about the parameters
values are presented in Appendix 1.

4.2. Base case results and discussion

We first study the base case instance (F1), where the
original consolidated and supplemented company data
is used, and compare the performances of FRLS (the
fragility-based model) against BRLS (the baseline RO
model) and the deterministicmodel over different uncer-
tainty levels. Uncertainty levels are characterised via
demand deviations, d̂it , where for every i ∈ I , t ∈ T , we
set d̂it = δd̄it . Here, δ represents the percentage devia-
tion from nominal, meaning that the uncertain demand
falls within the range [(1 − δ)d̄it , (1 + δ)d̄it]. A higher δ

translates to an allowance for larger demand deviations,
which indicates a higher uncertainty level. All our exper-
iments are conducted over δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, but
we report the results on δ = 0.1, 0.3 and 0.5 for the
sake of conciseness. The performances of the robust
models BRLS and FRLS depend on their ‘robustifica-
tion/tuning’ parameters, which for BRLS is the level of
conservatism/budget of uncertainty and for FRLS is the
cost target. From here on, whenever we use the term
‘tuning’, we refer to running BRLS over different bud-
get of uncertainty values and running FRLS over different
cost targets. At every uncertainty level, we analyse BRLS
over �it = �̄ ∈ {1, 3, 5, 7, 10, 12}, for all i ∈ I and t ∈ T ,
and FRLS over different cost target values, where the tar-
get is set to α × ‘optimalvalueofdeterministicmodel′, and
α is assumed to be greater than 1. In addition, five cost
targets are chosen such that α ∈ {α1,α2,α3,α4,α5}. The
value of α1 is the first α (> 1 and to 1 decimal place)
for which FRLS is feasible. As an underlying princi-
ple of the fragility-based approach, we know that as the
cost target increases, the objective value decreases, since
smaller target violations are necessary across the support
of the uncertainty set. We use this principle and choose
α5 to be the first value (> α1) for which the optimal
FRLS objective function value is 0 (incrementing α in
steps of 0.1 whenever possible, or 0.01 whenever α = 1.2
gives an optimal objective function value of 0). In that
case,α5 × (optimalvalueofdeterministicmodel) represents
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theminimum target that remains non-violated across the
uncertainty support. To obtain the other three α values,
α2,α3,α4, such that all values are equally spaced,we apply
the formula

αk = α1 + (k − 1) × (α5 − α1)

4
, k ∈ {2, 3, 4}.

The resulting set of α values for each δ are shown in
Table 4.

The production planning results for instance F1 are
summarised in Table A14 in Appendix 2, which presents
the optimal setup costs, as well as the average (Avg),
standard deviation (Std Dev) and worst case values
(Worst) for the holding/backlogging and total costs over
2000 randomly generated demand scenarios, consider-
ing the range [(1 − δ)d̄it , (1 + δ)d̄it]. We compute the
holding/backlogging and total cost in each scenario by
fixing the production and setup values as in the solu-
tion provided by the respective model, and then solving
to optimality the deterministic model considering only
the demand of that scenario. All cost results are given
in Brazilian Reais (BRL). To better visualise the costs
presented in Table A14, we plot Figure 2 to show the
breakdown of the average total cost into setup, holding
and backlogging costs, for each uncertainty level.

The setup cost is considerably lower than the costs for
inventory holding/backlogging (≈ order of magnitude
10 times smaller). As the setup costs are relatively small,
and difficult to see, we have placed a table with their val-
ues next to each graph. Across all robust models, as the
uncertainty level increases, the relative contribution of
the setup cost to the overall cost further decreases, as it
is outpaced by surges in holding and backlogging costs.
Higher uncertainty levels mean more extreme demands
(highermaximumand lowerminimumdemands), which
translates to larger differences betweendemands andpro-
duction levels. As expected, both BRLS and FRLS out-
perform the deterministic model on the 2000 randomly
generated scenarios, across all tuning parameters and
uncertainty levels, giving lower average and worst-case
total costs, as well as smaller standard deviations on total
costs. This is because both BRLS and FRLS protect the
production plan against uncertainty, whereas the deter-
ministic model is not designed to hedge against uncer-
tainty. Because unit backlogging costs aremore expensive

Table 4. Values of α for the base case instance (F1).

α1 α2 α3 α4 α5

δ = 0.1 1.1 1.11 1.12 1.13 1.14
δ = 0.2 1.2 1.225 1.25 1.275 1.3
δ = 0.3 1.3 1.375 1.45 1.525 1.6
δ = 0.4 1.4 1.5 1.6 1.7 1.8
δ = 0.5 1.5 1.625 1.75 1.875 2

than unit holding costs, BRLS and FRLS achieve this pro-
tection by raising production levels, thereby holding more
inventory and backlogging less.

Amidst this overarching trend, we observe that FRLS
maintains greater model stability (in terms of production
planning) than BRLS during the tuning process. When
BRLS is tuned to different levels of conservatism, there
are significant changes in production levels, which is
shown bymarked differences in holding and backlogging
costs. Specifically, at δ = 0.1, holding costs for BRLS vary
from 2.37 × 107 at �̄ = 1 to 2.94 × 107 at �̄ = 12 (24%
increase), whereas the holding costs for FRLS vary from
2.27 × 107 to 2.32 × 107 (2.2% increase). Accordingly,
backlogging costs for BRLS decreases from 5.38 × 107 at
�̄ = 1 to 4.73 × 107 at �̄ = 12 (12% decrease), whereas
the backlogging costs for FRLS vary from 3.59 × 107
to 3.69 × 107 (3% decrease). This discrepancy in model
stability becomes even more prominent at higher uncer-
tainty levels, as we can see from the holding and backlog-
ging cost results shown in Table A14 (Appendix 2) across
different values of δ. This indicates that a decision maker
who is unsure of the exact value of �̄ that represents their
level of conservatism faces vastly different production plan-
ning outcomes, which is undesirable given the subjectivity
involved in quantifying conservatism, let alone in doing so
for every product and time period.

Despite the high sensitivity of optimal BRLS decisions
to the decision maker’s attitude towards uncertainty, the
average total costmaintains comparable stability to FRLS.
It varies in the range [7.96 × 107, 8.04 × 107], compared
to [7.67 × 107, 7.77 × 107] for FRLS, with similar levels
of stability preserved across uncertainty levels. However,
for every tuning parameter value at every uncertainty
level, the average total cost for FRLS is lower than that
of BRLS, showing that the fragility-based approach out-
performs BRLS across all base-case experiments regarding
average total costs. For δ = 0.1, 0.3 and 0.5, the average
total costs of the best-tuned BRLSmodels are 7.89 × 107,
1.24 × 108 and 1.71 × 108, respectively. For FRLS, these
values are 7.57 × 107, 1.18 × 108 and 1.67 × 108, respec-
tively, which is 3% to 5% cheaper. From Figure 2, we
recall the aforementioned trend that the robust models
seem to be ‘backlogging averse’, compared to the determin-
istic model, meaning that they tend to raise production
so as to lower backlogging levels as much as possible and
thus dampen the impact of their corresponding higher unit
costs. The figure also clearly shows that the fragility-
based approach is less backlogging averse than the base-
line RO approach, but more so than the deterministic
approach. FRLS is clearly a middle-ground approach that
avoids the well-known over-conservatism of BRLS, while
ensuring better protection against uncertainty than deter-
ministic planning. For δ = 0.1, 0.3 and 0.5, the best-tuned
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Figure 2. Cost breakdown of the solutions proposed by each model, considering each possible budget (� or α) and deviation (δ), for
the base case.

FRLS models have backlogging costs 4.3%, 2.4% and
1.8% higher than BRLS, respectively, but lower holding
costs by 11.5%, 16.0%, 8.3%, respectively, showing the
restraint imposed by FRLS on over-production and thus,
over-conservatism, in favour of heftier holding cost sav-
ings. This is because FRLS explicitly models cost violations
and aims to build a production plant whereby changes in
demands result in minimal cost violations, which leads to
a system that is neither over-sensitive to higher demands,
nor to lower demands, differently from BRLS whose focus
is optimising worst-case performances. The benefits of the

worst-case optimisation to worst-case costs in this case
are clearly shown in Figure 3, where BRLS outperforms
FRLS by 1.6%, 7.6% and 7.1% for δ = 0.1, 0.3 and 0.5,
respectively. For the same reason, BRLS tends to have
lower standard deviations in total costs.

4.2.1. Solution times and comparisonswith stochastic
programming
For comprehensive baseline comparison, we show the
results of the sample average approximation (SAA) of the
stochastic programming version of our model. The SAA
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Figure 3. Percentage change compared to the deterministic solution for the worst case total cost and standard deviation, considering
different budgets (� or α) and deviation (δ).

model can be written as

min
1
|S|
∑
i∈I

∑
t∈T

∑
s∈S

Hits +
∑
i∈I

∑
t∈T

∑
k∈Kw

cswikty
w
ikt

+
∑
l∈L

∑
t∈T

∑
k∈Kr

csrlktn
′
lkt +

∑
i∈I

∑
t∈T

∑
k∈Kf

csfikty
f
ikt

s.t. constraints (2) − (8), (11) − (14),

Hits ≥ −ch−it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̂iτ s
)]

,

i ∈ I , t ∈ T , s ∈ S,

Hits ≥ ch+it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̂iτ s
)]

,

i ∈ I , t ∈ T , s ∈ S,

where d̂its is demand data generated uniformly in the
range [(1 − δ)d̄it , (1 − δ)d̄it] for a scenario s ∈ S. We
denote the cardinality of S by |S|. The SAA model has
O(2|I||T ||S|) additional constraints and O(|I||T ||S|)
additional decision variables compared to the determin-
isticmodel. For the company data of 27 items and 12 time
periods, a 100-scenario model has almost 65000 addi-
tional constraints and 33000 additional decision vari-
ables. This compares to 4000 additional constraints and
4000 additional decision variables for our robust lot-
sizingmodels. Not surprisingly, CPLEX struggles to solve
the SAAmodel even when it is trained on small numbers
of scenarios. Performance comparisons of our determin-
istic and robust models against the 100-scenario SAA are
shown in Table 5. These comparisons are across 2000
randomly generated scenarios (these are out-of-sample
for SAA, i.e. none of the 100 scenarios used to train
SAA are part of the 2000 scenarios). At the lowest uncer-
tainty level (δ = 0.1), SAA performs better than FRLS
on the average cost, although its standard deviation and
worst-case costs are higher than FRLS. Its higher average

backlogging cost is outweighed by savings on the average
holding cost. SAA has inferior performances compared
to FRLS for all other uncertainty levels. It has higher aver-
age total costs, higher standard deviations of total costs
and higher worst-case costs than FRLS. The main reason
is that the costlier backlogging cost incurred by SAA can-
not be counterbalancedwith savings in inventory holding
when more extreme demands occurs. We also note that
solution times for SAA are much higher than the other
models. SAA also fails to find optimal solutions after 1
hour, with optimality gaps being around 1%.

4.3. Comparisons of best-tunedmodels across
instances F2–F9

In the previous subsection, we showed that the fragility-
based approach yields the cheapest production plans
on average, irrespective of the choice of tuning param-
eter values, and is also less sensitive to the decision
makers’s risk attitude. We also showed full results of
the tuning process where model-specific parameters
(�̄ for BRLS and α for FRLS) were varied and the per-
formances of resulting production plans were reported.
This section aims to comparemodel performances across
other instances considering different cost and capac-
ity values to show the power of the fragility-based
approach when faced with alternate production plan-
ning settings. From now on, we will compare best-
tuned models, showing differences between the best-
performing (best average total cost) BRLS and FRLS and
the deterministicmodel across instances F2-F9. Instances
F2, F3 and F4 portray situations with higher hold-
ing, backlogging and setup costs, respectively. Instances
F5 and F6 conceive situations where the overall pro-
duction capacity is reduced and increased, respectively.
Instances F7, F8 and F9 create bottleneck produc-
tion stages by enforcing significant capacity drops on
the weighing machine, reactors, and filling machines,
respectively.
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Table 5. Performance comparisons with sample average approximation (optimality gaps
for SAA are after 1 hour of solution time).

δ = 0.1

Deterministic BRLS FRLS SAA

Best �/α – 5.00 1.14 –
Setup 2.91 2.94 2.93 2.90

Holding Avg 22.1 27.5 23.2 22.4
Std. Dev. 9.15 12.7 10.8 10.1
Worst 34.2 43.0 36.7 35.5

Backlogging Avg 57.7 48.5 50.6 53.2
Std. Dev. 25.0 14.6 19.1 21.1
Worst 89.8 68.6 75.7 81.6

Total Avg 82.7 78.9 76.7 75.6
Std. Dev. 16.0 2.33 8.46 11.0
Worst 106 86.0 90.8 93.5

Solution time (sec)/Gap after 1 hour (%) 5 sec 18 sec 37 sec 1.06%
δ = 0.3

Deterministic BRLS FRLS SAA

Best �/α – 5.00 1.60 –
Setup 2.91 3.00 2.93 2.83

Holding Avg 38.0 51.5 43.3 40.1
Std. Dev. 27.5 37.8 32.3 30.8
Worst 74.8 97.9 84.9 80.1

Backlogging Avg 95.4 70.0 71.7 81.7
Std. Dev. 74.8 43.8 56.7 62.3
Worst 193 131 146 167

Total Avg 136 124 118 122
Std. Dev. 47.5 7.27 24.6 31.8
Worst 206 147 159 176

Solution time (sec)/Gap after 1 hour (%) 5 sec 17 sec 64 sec 0.90%
δ = 0.5

Deterministic BRLS FRLS SAA

Best �/α – 5.00 2.00 –
Setup 2.91 3.07 2.93 2.78

Holding Avg 55.0 75.0 68.8 58.7
Std. Dev. 46.1 63.0 56.9 51.3
Worst 118 153 143 127

Backlogging Avg 136 93.2 94.9 113
Std. Dev. 124 72.9 86.9 104
Worst 299 196 210 258

Total Avg 194 171 167 172
Std. Dev. 78.6 12.1 30.7 53.1
Worst 310 210 226 265

Solution time (sec)/Gap after 1 hour (%) 5 sec 19 sec 11 sec 0.98%

Note: All cost values, including standard deviations, are in millions.

4.3.1. Cost-based instances F2–F4
Full experimental results for cost-based instances F2–F4
are shown in Table A15 in Appendix 2 and visually sum-
marised in Figure 4. As in the base case, we also observe
the inherent backlogging aversion that comes with plan-
ning under uncertainty via BRLS and FRLS. As expected,
the aversion is more pronounced in instance F3, where
backlogging costs are increased by 25%. Indeed, when
backlogging costs are higher, BRLS/FRLS, being back-
logging averse, will aim to reduce backlogged inventory
even further. Interestingly, F3 is also the instance where
planning under uncertainty outperforms deterministic
planning the most. For F3, average total cost savings of
12% and 14% are observed for BRLS and FRLS, respec-
tively, with respect to the deterministic model. For F2,
the cost savings are 6% and 9% for BRLS and FRLS,

respectively and for F4, they are 9% and 12%. We can
also observe the mechanism via which FRLS reduces
the conservatism of BRLS. FRLS has fewer setups (indi-
cated by lower setup costs) than BRLS and therefore accepts
slightly higher backlogging costs (5% on average) in order
to achieve significant holding cost savings (15% on aver-
age), thus leading to improvements in average total costs
across all instances. Compared to the base case, where
the best-tuned BRLS and FRLS models make cost sav-
ings of 9% and 12%, respectively over the determinis-
tic model, planning under uncertainty maintains similar
benefits on the cost-based instances (9% and 12% for
BRLS and FRLS, on average, across instances F2–F4).
This shows that taking uncertainty into account results
in considerable cost savings even under economic sit-
uations that enforce higher costs on setup, holding or
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Figure 4. Cost breakdown for the cost-based instances.

backlogging. However, the over-protection prescribed by
BRLS because of the worst-case approach is still evident.
Across all cost-based instances, BRLS has total backlog-
ging cost 28% lower, but total holding cost 37%higher, on
average, than the deterministic model. In the base case,
the figures are 30% and 14% for backlogging and hold-
ing costs, respectively, showing that BRLS reacts to higher
costs by becoming evenmore backlogging-averse. On the
other hand, across all cost-based instances, FRLS low-
ers the over-production and incurs total backlogging cost
24% lower, but total holding cost 18% higher, on average,
than the deterministic model. Moreover, the base-case
figures are 25% and 10% for backlogging and holding

costs, respectively, showing the lower sensitivity of FRLS
to cost-increasing economic circumstances. FRLS there-
fore offers model stability across cost-based instances, in
the sense that it not only maintains superior performances,
but also keeps production plans more stable under higher
input costs. The trade-off remains that worst-case perfor-
mances for FRLS are more costly (8% on average) than
BRLS.

4.3.2. Production-capacity-based instances F5-F6
Table A16 in Appendix 2 details the experimental results
for instances F5 and F6, where the overall capacity is
reduced and increased by 25%, respectively. Figure 5
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Figure 5. Cost breakdown for the capacity-based instances.

gives a visual summary of the results. An eminent obser-
vation is that overall capacity loss significantly impacts
the performances of the prescribed production plans.
The average total cost across all best-tuned models and
all uncertainty levels for the base case is 1.28 × 108. For
the cost-based instances, this average increases to 1.38 ×
108 (8% rise), whereas for instance F5 (capacity decrease
by 25%), it experiences a significant surge to 1.87 ×
108 (46% rise, with respect to base case). Furthermore,
the benefits of employing our fragility-based approach
becomes even more pronounced. FRLS improves the
BRLS average total cost by 4%, compared to 3.6% for the
base case and 2.7% for cost-based instances. We observe
that in instance F5, FRLS shifts its holding-backlogging
balance. When the overall production capacity is 25%

lower, production levels are capped more tightly, leading
to inflated backlogging quantities and lower levels of held
inventory. Because of this, the fragility-based approach
understandably shifts its strategy to become more back-
logging averse than the baseline RO approach in order
to mitigate the effects of the inevitable rise in backlogged
items and thus reduce the overall average cost. This is
shown by the FRLS backlogging costs being lower than
BRLS for instance F5, which is contrary to what has been
observed so far in other instances. For example, when
the production capacity is 25% higher, FRLS reverts back
to its original strategy of reducing the over-aversion to
backlogging that the BRLS worst-case approach causes.
This is shown in the lessening of backlogging so as
to enable greater reductions in holding costs. Another
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important observation is on the impact of planning under
uncertainty. When the production capacity is reduced
by 25%, taking uncertainty into account has less pro-
nounced impacts on the performance of the production
plan, despite the fact that it still produces more eco-
nomical plans than deterministic planning (1% and 5%
cost savings on deterministic planning for BRLS and
FRLS, respectively). This is a consequence of the tight
capacity narrowing down the decision space of the mod-
els and therefore not allowing enough room for more
significant changes to the production plan. In compar-
ison, the average costs resulting from BRLS and FRLS
for the increased-capacity instance, F6, are considerably
lower than the deterministic solution, with 12% and 17%

cost savings, on average, for BRLS and FRLS, respec-
tively. When the production capacity is higher, robust
models have more leeway to protect the system by pro-
ducing higher quantities and thus reducing expensive
backlogging.

4.3.3. Bottleneck instances F7–F9
Having seen in the previous subsection that capacity
limitations have dramatic effects on model behaviours
(we saw a 46% rise in average costs when production
capacity was reduced by 25%), we now deepen the capac-
ity investigation by introducing bottlenecks in the pro-
duction plant. This is done through 3 instances F7, F8
and F9, where 50% capacity reductions are imposed on
the weighing machine, reactors, and filling machines,

Figure 6. Cost breakdown for the bottleneck instances.
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respectively. The experimental results are summarised
in Table A17 in Appendix 2 and visually illustrated
in Figure 6. Across all instances, the fragility-based
approach yields lower average total costs.We observe that
the total costs are less impacted by a bottleneck weigh-
ing machine than bottleneck reactors or filling machines.
This is because every reactor can only produce a subset of
the available formulas and both the reactors and the fill-
ing machines have longer processing times on items than
the weighing stage. When the weighing stage is made
bottleneck, FRLS remains less backlogging averse than
BRLS (rise of 5% on average on backlogging costs, in
order to cut holding costs by 13% and overall costs by
2.6%). When reactors or filling machines are made bot-
tlenecks, it is notable that BRLS only outperforms the
deterministic model by a small margin (0.3% on aver-
age) compared to FRLS (3.3%on average). This is because
the baseline RO approach aims to raise production lev-
els and reduce backlogging, but in a way that is limited,
not only by machine capacities, but also by the budget
of uncertainty. FRLS, on the other hand, does not have
budget-of-uncertainty restrictions and therefore has more
flexibility in its production planning strategies. While gen-
erally producing less backlogging averse plans, FRLS can
also produce plans that lower the backlogging levels of
BRLS when capacities are tight and significant cost savings
cannot be made on inventory holding. As a result, FRLS
outperforms BRLS even when bottlenecks are introduced.

5. Summary of managerial insights and
discussions on the limitations of the
fragility-based approach

Our tests were run across nine different instances repre-
senting different production realities. In this section, we
summarise themanagerial insights gathered in the previ-
ous section so as to facilitate their access to decisionmak-
ers. We then discuss the limitations of the fragility-based
approach. The main takeaways from our experiments
are:

(a) Protecting against uncertainty saves cost
Across all our experiments, robust lot-sizing

plans are less costly (on average, in the worst case,
and in terms of standard deviation as well) than the
deterministic plan. The robust models achieve this
improvement by raising production levels so as to
lower expensive backlogs.

(b) The traditional approach to robust lot-sizing is
sensitive to the decision maker’s risk aversion

Its performance varies greatly with the budget
of uncertainty. This sensitivity is not predictable,

but follows a pattern. From low to medium bud-
gets of uncertainty, the total cost decreases, and from
medium to high budgets of uncertainty, the total
cost increases. Higher budgets of uncertainty leads
to higher production levels, as the robust model pro-
tects the production plants against higher levels of
demand variations. This translate to lower backlog-
ging and higher holding. Beyond a certain budget
of uncertainty, surges in holding costs begin to out-
weigh savings on backlogging costs.

(c) Fragility-based lot-sizing offers greater cost sav-
ings, on average, than traditional robust lot-sizing

Across all our instances, we observe lower average
total cost from the fragility-based approach com-
pared to the baseline robust approach. The fragility-
based approach is less conservative than the baseline
robust approach, and it achieves this lower conser-
vatism via an adaptable production planning mech-
anism, which we detail below.

(d) The fragility-based approach is less backlogging-
averse than the traditional robust approach when
production capacity is not tight

It offers amiddle-ground between the overly con-
servative baseline robust approach and the deter-
ministic model. By explicitly modelling cost viola-
tions, the fragility-based approach leads to a produc-
tion plan that is not over-sensitive to either high or
low demands. The baseline approach, on the other
hand, pushes for the best worst-case performance
without heed for performances outside the worst
case.

(e) The fragility-based approach ismorebacklogging-
averse than the traditional robust approach when
production capacity is tight

Tight production capacity inevitably leads to
higher backlogs. The fragility-based approach shifts
its strategy and becomes more backlogging-averse
than the baseline robust approach in order to mit-
igate the impact of the inevitable rise in backlogged
production.

Fragility-based lot-sizing has its limitations. It requires
a pre-specified distance measure to portray cost vari-
ations with departures from nominal uncertainty. The
choice of distance measure impacts the tractability of
the resulting model. Furthermore, the theoretical rela-
tionship between the distance measure and the optimal
solution is still unknown. This contrasts the baseline
robust optimisation approach, where bounds on proba-
bilities of constraint violations are known (although loose
and difficult to use in practical problems) and linked to
the budget of uncertainty. The fragility-based approach,
understandably, has worse worst-case performances than
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the baseline robust approach. It has worst-case costs
ranging between 2% and 16% higher than the baseline
approach. On average across all instances, the worst-case
cost is 8%higher than the baseline approach. In situations
where protection against worst-case performances is pri-
mordial, even at the expense of average performances,
the over-conservatism of the baseline approach can be
beneficial. Although the fragility-based approach is less
sensitive to target estimation than the baseline approach
is to the budget of uncertainty, the relationship is as yet
empirical. As far as we are aware, there are no known
theoretical results on the sensitivities of both approaches.
We therefore recognise that the observations we provide
regarding this issue are based on the veterinary pharma-
ceutical lot-sizing problem we study in this paper and
that care must be exercised before generalisation to other
problems.

6. Concluding remarks

In this paper, we develop a novel lot-sizing approach
for the production planning problem typical of veteri-
nary pharmaceutical companieswhose production stages
involve weighing, mixing and filling steps. We propose
a fragility-based optimisation approach, where the deci-
sion maker specifies a target cost and the model aims to
minimise violations from this cost over the entire support
of the uncertainty set. This differs from traditional robust
optimisation approaches because it requires the choice
of a cost target, instead of the hard-to-estimate budgets
of uncertainty, and explicitly models constraint viola-
tions. Computational experiments across nine different
problem instances show that our fragility-based approach
unanimously reduces average total costs and maintains
greater model stability under different target estimations.
This is in contrast to the budget-of-uncertainty approach
which has well-established high sensitivity to the budget
of uncertainty and therefore, to the risk attitude of the
decisionmaker. Our fragility-based model also preserves
cost savings when bottlenecks are introduced in the
production plant and when inventory costs and capac-
ities are varied. Cost savings are achieved by mitigat-
ing the over-conservatism of the budget-of-uncertainty
approach and providing beneficial balance in holding-
backlogging costs so as to cut back overall costs. As a gen-
eral rule, while the budget-of-uncertainty approach aims
to optimise worst-case performances, our fragility-based
approach aims to minimise the sensitivity of our produc-
tion plan to demands that depart from nominal values,
which makes the overall production plant less ‘fragile’
and more resilient to demand variations. There are inter-
esting future research directions to explore with regards
to the fragility-based lot-sizing approach. The first one is

on the impact of using the Wasserstein distance within
the fragility-based approach. TheWasserstein distance is
known to possess interesting theoretical features, one of
which being that it offers a data-driven approach tomod-
elling uncertainty, with asymptotic optimality guarantees
on large datasets. The second research direction involves
understanding the link between the distance measure,
out-of-sample performances and the fragility measure.
This research directionwill lead to tailored distancemea-
sures for different lot-sizing problems, in such a way that
less fragile systems are further encouraged.
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Table 1. Sets of periods, items, formulas, and machines.

T {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12}
I {i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14, i15, i16, i17, i18, i19, i20, i21, i22, i23, i24, i25, i26, i27}
L {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11}
K {k1, k2, k3, k4, k5, k6, k7, k8, k9}
Kw {k1}
Kr {k2, k3, k4, k5}
Kf {k6, k7, k8, k9}

Table 2. Set of items
synthesised by each
formula.

I l

f1 i24
f2 i1
f3 i10, i11, i12, i13
f4 i3
f5 i16, i22
f6 i2
f7 i17, i18, i19, i20, i21
f8 i4, i5
f9 i14, i15, i27
f10 i6, i7, i8, i9, i26
f11 i23, i25

Table 3. Set of formulas
that can be produced in
each reactor.

Lk

k2 f1, f3, f4, f5, f8, f9, f10, f11
k3 f1, f3, f4, f5, f8, f9, f10, f11
k4 f2, f6
k5 f7

Table 4. Set of items that can be pro-
duced in each filing line.

K′ f
i

k6 i3, i4, i6, i13, i14, i15, i16, i22, i23, i24, i25, i26, i27
k7 i5, i7, i9, i10, i11
k8 i1, i2
k9 i17, i18, i19, i20, i21

indexes; for example, there are 12 periods/months (t1, . . . , t12),

Table 5. Capacity of the machines in seconds.

Cw
kt Cr

kt Cf
kt

k1 k2 k3 k4 k5 k6 k7 k8 k9
576000 576000 576000 576000 576000 576000 576000 576000 576000
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Table A6. Minimum and max-
imum volume in litres of each
reactor.

k2 k3 k4 k5
Vmink 3300 3300 2640 33
Vmaxk 5000 5000 4000 50

27 end-products (i1, . . . , i27), 11 formulas (f1, . . . , f11), and so
forth.

The remaining tables (Tables 5–A13) provide the value for
all relevant parameters. Table 5 shows the capacity, in sec-
onds, of each machine. Note that this capacity does not change
between periods. Table A6 presents the minimum and maxi-
mum volume in liters each reactor can process in each batch
and Table A7 shows the volume of formula in liters required to
produce each item. Table A8 has the processing times, in sec-
onds, for each item on stages I and III machines and Table A9
presents the time, in seconds, needed to produce a batch of
each formula on each reactor in stage II. Table A10 presents the
setup costs and times, in seconds, for stages I and III machines
and A11 shows these values for stage II machines. Table A12
details the holding and backlogging costs for each item, and
the initial inventory and backlog at the start of the instance’s
planning horizon.Note that the holding, backlogging and setup
costs do not change between periods. Finally, Table A13 shows
the items demand for each period.
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Table A7. Volume of formula required to produce each item in litres.

vil f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11
i1 1
i2 1
i3 1
i4 1
i5 0.04
i6 1
i7 0.1
i8 0.25
i9 0.025
i10 1
i11 0.1
i12 0.25
i13 0.025
i14 1
i15 2
i16 1
i17 0.00402
i18 0.00032
i19 0.00067
i20 0.00134
i21 0.00268
i22 5
i23 1
i24 1
i25 5
i26 1
i27 5

Table A8. Processing times in production stages I
and III in seconds.

awik afik

k1 k6 k7 k8 k9
i1 1.26 0.00 0.00 4.74 0.00
i2 0.90 0.00 0.00 4.74 0.00
i3 0.68 1.85 0.00 0.00 0.00
i4 0.00 2.18 0.00 0.00 0.00
i5 0.00 0.00 1.19 0.00 0.00
i6 0.00 2.18 0.00 0.00 0.00
i7 0.00 0.00 0.60 0.00 0.00
i8 0.00 0.00 0.30 0.00 0.00
i9 0.00 0.00 0.94 0.00 0.00
i10 0.00 0.00 1.18 0.00 0.00
i11 0.00 0.00 0.64 0.00 0.00
i12 0.00 0.00 0.33 0.00 0.00
i13 0.00 2.18 0.00 0.00 0.00
i14 0.49 2.02 0.00 0.00 0.00
i15 0.97 1.80 0.00 0.00 0.00
i16 1.05 2.56 0.00 0.00 0.00
i17 0.34 0.00 0.00 0.00 4.60
i18 0.23 0.00 0.00 0.00 4.00
i19 0.47 0.00 0.00 0.00 6.00
i20 0.45 0.00 0.00 0.00 5.00
i21 0.45 0.00 0.00 0.00 3.00
i22 1.05 1.56 0.00 0.00 0.00
i23 1.13 2.15 0.00 0.00 0.00
i24 0.00 2.17 0.00 0.00 0.00
i25 5.63 1.56 0.00 0.00 0.00
i26 0.00 2.18 0.00 0.00 0.00
i27 0.00 2.14 0.00 0.00 0.00
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Table A9. Time to process a batch of each formula in
production stage II in seconds.

blk

k2 k3 k4 k5
f1 15750.0 15750.0 15750.0 15750.0
f2 13320.0 13320.0 13320.0 13320.0
f3 11250.0 11250.0 11250.0 11250.0
f4 9000.0 9000.0 9000.0 9000.0
f5 11250.0 11250.0 11250.0 11250.0
f6 13320.0 13320.0 13320.0 13320.0
f7 13433.0 13433.0 13433.0 13433.0
f8 12150.0 12150.0 12150.0 12150.0
f9 9000.0 9000.0 9000.0 9000.0
f10 11250.0 11250.0 11250.0 11250.0
f11 11250.0 11250.0 11250.0 11250.0

Table A10. Setup costs (BRL) and times (seconds) for production stages I and III.

cswikt csfikt swik sfik

k1 k6 k7 k8 k9 k1 k6 k7 k8 k9
i1 1126.74 – – 1795.93 – 1179.6 – – 2347.4 –
i2 1224.75 – – 1394.4 – 842.5 – – 2347.4 –
i3 1213.67 888.05 – – – 631.9 913.1 – – –
i4 – 979.2 – – – – 1077.9 – – –
i5 – – 734.62 – – – – 589.9 – –
i6 – 1680.06 – – – – 1077.9 – – –
i7 – – 3602.35 – – – – 297.0 – –
i8 – – 14811.04 – – – – 148.4 – –
i9 – – 669.82 – – – – 515.0 – –
i10 – – 14407.82 – – – – 583.5 – –
i11 – – 6314.47 – – – – 314.7 – –
i12 – – 17538.52 – – – – 163.2 – –
i13 – 231.56 – – – – 1077.9 – – –
i14 1469.27 708.4 – – – 455.0 997.8 – – –
i15 1547.71 1671.53 – – – 909.9 890.8 – – –
i16 2055.24 1693.4 – – – 985.8 1265.0 – – –
i17 2047.54 – – – 829.26 316.0 – – – 2474.6
i18 1760 – – – 594 210.6 – – – 1979.7
i19 902.47 – – – 364.41 441.0 – – – 3464.4
i20 1090.72 – – – 588.99 421.3 – – – 2474.6
i21 1266.3 – – – 1139.64 421.3 – – – 1484.7
i22 5055.96 6429.87 – – – 985.8 819.6 – – –
i23 2881.89 3014.53 – – – 1053.2 1064.6 – – –
i24 – 2661.76 – – – – 1073.5 – – –
i25 1623.93 11032.14 – – – 5265.9 819.6 – – –
i26 – 1700.07 – – – – 1077.9 – – –
i27 – 2627.87 – – – – 1060.1 – – –

Table A11. Setup costs (BRL) and times (seconds) for production stage II.

csrlkt srilk

k2 k3 k4 k5 k2 k3 k4 k5
f1 21220.49 21220.49 18837.43 6279.14 9686.3 9686.3 7816.8 2605.6
f2 8975.08 8975.08 8756.99 2919 7925.4 7925.4 7029.8 2343.3
f3 40435.07 40435.07 39852.81 13284.27 5838.8 5838.8 5231.5 1743.8
f4 6963.42 6963.42 6694.63 2231.54 5760.0 5760.0 5034.2 1678.1
f5 14838.04 14838.04 13204.38 4401.46 1557.0 1557.0 1259.6 419.9
f6 6663.92 6663.92 6223.44 2074.48 7579.1 7579.1 6434.6 2144.9
f7 42916.53 42916.53 41401.58 13800.53 8274.8 8274.8 7257.0 2419.0
f8 20758.14 20758.14 19705.7 6568.57 8055.5 8055.5 6951.9 2317.3
f9 5497.72 5497.72 5194.79 1731.6 5508.0 5508.0 4731.4 1577.1
f10 27411.92 27411.92 24212.95 8070.98 7796.3 7796.3 6260.4 2086.8
f11 17470.41 17470.41 15758.31 5252.77 5838.8 5838.8 4787.8 1595.9
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Table A12. Holding and backlogging costs
(BRL) as well as initial inventory and backlogging
levels.

ch+it ch−it I+i0 I−i0
i1 11.78 37.83 2149 0
i2 11.27 41.1 2236 0
i3 11.12 33.9 7186 0
i4 23.29 41.41 742 0
i5 1.99 4.59 3470 0
i6 30.19 78.62 1199 0
i7 4.39 10.86 2522 0
i8 8.95 22.25 1194 0
i9 1.4 3.49 42408 0
i10 1.96 99.97 2659 0
i11 6.93 19.07 606 0
i12 14.2 31.26 1692 0
i13 50.75 6.73 10198 0
i14 14.19 26.46 6292 0
i15 26.11 52.35 1731 0
i16 51.53 87.88 2100 0
i17 4.24 18.44 339 0
i18 3.86 11.41 3492 0
i19 3.75 11.63 3095 0
i20 5.51 13.04 1891 0
i21 5.77 15.89 538 0
i22 246.92 324.32 502 0
i23 75.88 130.46 209 0
i24 43.22 94.25 627 0
i25 373.49 511.31 171 0
i26 29.04 61.64 1627 0
i27 92.35 139.45 526 0

Table A13. Nominal demands in units.

d̄it t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
i1 6080 7230 27557 24620 19610 10930 11220 14989 9127 9128 9057 7793
i2 5270 6846 89820 8906 13666 29023 21998 21400 91160 22350 28780 30400
i3 31188 24168 11750 20214 21171 65462 35658 36933 74393 55130 90767 64165
i4 5330 181 837 2251 5185 27993 5566 8025 3375 5479 4621 17096
i5 11004 7224 6540 9516 8829 17220 8112 11225 11383 13907 17872 14279
i6 6341 6199 6263 10072 10767 12367 9955 17316 13870 13669 12406 12552
i7 29902 23323 19504 34282 42502 74210 42747 77577 62323 73187 55034 68897
i8 9223 8436 6669 13535 12987 29178 14671 23807 30617 23168 23085 26656
i9 120636 158544 141871 212148 220248 478296 348426 538331 447163 345757 342550 472599
i10 2514 4235 8078 7020 5409 5856 3217 68933 15201 9279 10210 12101
i11 2247 2828 3018 1981 2135 2743 2220 7601 4113 4455 4866 4384
i12 2501 2233 2981 2954 2794 3611 2598 4962 3530 5098 5102 4310
i13 10764 9504 12960 12384 14436 17280 10368 46272 24630 20813 24606 20261
i14 18864 20991 22550 27100 30963 55700 38137 67454 63274 78890 86645 66206
i15 5166 3156 6018 10944 9540 8832 6318 19870 13163 16190 13439 8645
i16 1990 3703 3143 3607 4187 6755 4751 7305 6035 7606 6201 7091
i17 384 6585 267 54 168 120 3936 504 1704 1512 8976 864
i18 1656 36572 3547 2065 3228 4848 58986 4920 9069 4992 38904 4368
i19 1968 57555 1826 1256 1308 3672 43710 2520 10416 5568 74952 4392
i20 1800 26194 952 318 752 1968 21731 1416 7504 4152 29664 2976
i21 1560 18688 756 126 984 1104 14517 912 3792 2928 19320 2280
i22 642 1387 1929 2184 2516 2403 1935 6475 3898 3888 3230 2173
i23 380 392 436 314 355 315 418 508 250 560 482 506
i24 4970 7692 8870 4196 3219 4071 4889 4171 4176 4496 4796 4720
i25 107 231 297 296 180 489 164 788 319 514 646 536
i26 13874 17784 23268 18761 20274 14208 15522 16646 20516 20910 23031 19900
i27 1184 1755 1876 3334 2580 2924 2709 5674 5464 4091 4325 4233
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Appendix 2 – Case study results tables

Table A14. Results for the base case.

δ = 0.1

Holding costs Backlogging costs Total costs

Model Setup Avg Std. Dev. Worst Avg Std. Dev. Worst Avg Std. Dev. Worst

Deterministic – 2.91E+06 2.21E+07 9.15E+06 3.42E+07 5.77E+07 2.50E+07 8.98E+07 8.27E+07 1.60E+07 1.06E+08
BRLS �̄ = 1 2.92E+06 2.37E+07 1.03E+07 3.69E+07 5.38E+07 2.05E+07 8.07E+07 8.04E+07 1.03E+07 9.67E+07

�̄ = 3 2.93E+06 2.62E+07 1.18E+07 4.08E+07 5.00E+07 1.66E+07 7.24E+07 7.91E+07 5.01E+06 8.94E+07
�̄ = 5 2.94E+06 2.75E+07 1.27E+07 4.30E+07 4.85E+07 1.46E+07 6.86E+07 7.89E+07 2.33E+06 8.60E+07
�̄ = 7 2.96E+06 2.84E+07 1.31E+07 4.43E+07 4.78E+07 1.34E+07 6.66E+07 7.91E+07 1.36E+06 8.45E+07
�̄ = 10 2.96E+06 2.93E+07 1.35E+07 4.56E+07 4.73E+07 1.25E+07 6.51E+07 7.95E+07 1.67E+06 8.40E+07
�̄ = 12 2.97E+06 2.94E+07 1.36E+07 4.58E+07 4.73E+07 1.24E+07 6.49E+07 7.96E+07 1.82E+06 8.43E+07

FRLS α = 1.10 2.94E+06 2.27E+07 1.04E+07 3.59E+07 5.21E+07 2.02E+07 7.85E+07 7.77E+07 9.92E+06 9.36E+07
α = 1.11 2.94E+06 2.32E+07 1.09E+07 3.69E+07 5.14E+07 1.91E+07 7.67E+07 7.75E+07 8.37E+06 9.17E+07
α = 1.12 2.94E+06 2.29E+07 1.06E+07 3.64E+07 5.13E+07 1.95E+07 7.69E+07 7.72E+07 8.97E+06 9.19E+07
α = 1.13 2.93E+06 2.30E+07 1.07E+07 3.65E+07 5.10E+07 1.94E+07 7.64E+07 7.69E+07 8.81E+06 9.14E+07
α = 1.14 2.93E+06 2.32E+07 1.08E+07 3.67E+07 5.06E+07 1.91E+07 7.57E+07 7.67E+07 8.46E+06 9.08E+07

δ = 0.3

Holding costs Backlogging costs Total costs

Model Setup Avg Std. Dev. Worst Avg Std. Dev. Worst Avg Std. Dev. Worst

Deterministic – 2.91E+06 3.80E+07 2.75E+07 7.48E+07 9.54E+07 7.48E+07 1.93E+08 1.36E+08 4.75E+07 2.06E+08
BRLS �̄ = 1 2.95E+06 4.34E+07 3.13E+07 8.37E+07 8.28E+07 6.03E+07 1.63E+08 1.29E+08 2.93E+07 1.77E+08

�̄ = 3 2.98E+06 4.92E+07 3.55E+07 9.35E+07 7.36E+07 4.89E+07 1.40E+08 1.26E+08 1.39E+07 1.56E+08
�̄ = 5 3.00E+06 5.15E+07 3.78E+07 9.79E+07 7.00E+07 4.38E+07 1.31E+08 1.24E+08 7.27E+06 1.47E+08
�̄ = 7 3.04E+06 5.35E+07 3.95E+07 1.02E+08 6.90E+07 3.94E+07 1.25E+08 1.26E+08 4.16E+06 1.41E+08
�̄ = 10 3.07E+06 5.48E+07 4.05E+07 1.04E+08 6.79E+07 3.74E+07 1.22E+08 1.26E+08 5.26E+06 1.39E+08
�̄ = 12 3.08E+06 5.51E+07 4.07E+07 1.04E+08 6.76E+07 3.71E+07 1.21E+08 1.26E+08 5.49E+06 1.39E+08

FRLS α = 1.3 2.93E+06 4.18E+07 3.13E+07 8.21E+07 7.81E+07 5.94E+07 1.57E+08 1.23E+08 2.84E+07 1.70E+08
α = 1.375 2.95E+06 4.32E+07 3.29E+07 8.52E+07 7.46E+07 5.57E+07 1.49E+08 1.21E+08 2.31E+07 1.61E+08
α = 1.45 2.94E+06 4.41E+07 3.29E+07 8.62E+07 7.26E+07 5.53E+07 1.46E+08 1.20E+08 2.28E+07 1.59E+08
α = 1.525 2.92E+06 4.41E+07 3.26E+07 8.60E+07 7.19E+07 5.59E+07 1.45E+08 1.19E+08 2.36E+07 1.59E+08
α = 1.6 2.93E+06 4.33E+07 3.23E+07 8.49E+07 7.17E+07 5.67E+07 1.46E+08 1.18E+08 2.46E+07 1.59E+08

δ = 0.5

Holding costs Backlogging costs Total costs

Model Setup Avg Std. Dev. Worst Avg Std. Dev. Worst Avg Std. Dev. Worst

Deterministic – 2.91E+06 5.50E+07 4.61E+07 1.18E+08 1.36E+08 1.24E+08 2.99E+08 1.94E+08 7.86E+07 3.10E+08
BRLS �̄ = 1 2.97E+06 6.37E+07 5.24E+07 1.32E+08 1.14E+08 9.98E+07 2.47E+08 1.80E+08 4.79E+07 2.60E+08

�̄ = 3 3.03E+06 7.14E+07 5.94E+07 1.46E+08 9.94E+07 8.08E+07 2.10E+08 1.74E+08 2.24E+07 2.24E+08
�̄ = 5 3.07E+06 7.50E+07 6.30E+07 1.53E+08 9.32E+07 7.29E+07 1.96E+08 1.71E+08 1.21E+07 2.10E+08
�̄ = 7 3.07E+06 7.87E+07 6.55E+07 1.59E+08 9.01E+07 6.71E+07 1.85E+08 1.72E+08 7.11E+06 2.02E+08
�̄ = 10 3.11E+06 8.14E+07 6.71E+07 1.63E+08 8.79E+07 6.36E+07 1.79E+08 1.72E+08 7.78E+06 1.97E+08
�̄ = 12 3.14E+06 8.18E+07 6.74E+07 1.64E+08 8.75E+07 6.31E+07 1.78E+08 1.72E+08 8.17E+06 1.97E+08

FRLS α = 1.5 2.90E+06 6.22E+07 5.25E+07 1.31E+08 1.07E+08 9.78E+07 2.36E+08 1.72E+08 4.58E+07 2.48E+08
α = 1.625 2.94E+06 6.48E+07 5.51E+07 1.37E+08 1.01E+08 9.22E+07 2.24E+08 1.69E+08 3.77E+07 2.36E+08
α = 1.75 2.96E+06 6.60E+07 5.57E+07 1.39E+08 9.82E+07 9.04E+07 2.19E+08 1.67E+08 3.53E+07 2.31E+08
α = 1.875 2.94E+06 6.77E+07 5.65E+07 1.42E+08 9.60E+07 8.81E+07 2.14E+08 1.67E+08 3.22E+07 2.27E+08
α = 2.0 2.93E+06 6.88E+07 5.69E+07 1.43E+08 9.49E+07 8.69E+07 2.10E+08 1.67E+08 3.07E+07 2.26E+08
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Table A15. Experimental results for instances F2-F4.

Holding cost increase by 25% (F2).

δ = 0.1 δ = 0.3 δ = 0.5

Deterministic BRLS FRLS Deterministic BRLS FRLS Deterministic BRLS FRLS

Best �/α – 7.00 1.10 – 12.00 1.30 – 12.00 2.30
Optimal 6.13E+07 1.22E+08 1.79E+02 6.13E+07 2.69E+08 2.75E+02 6.13E+07 4.09E+08 1.51E+01
Setup 2.91E+06 2.96E+06 2.94E+06 2.91E+06 3.07E+06 2.96E+06 2.91E+06 3.16E+06 3.03E+06

Holding Avg 2.65E+07 3.26E+07 2.57E+07 4.63E+07 6.17E+07 4.88E+07 6.76E+07 9.26E+07 7.74E+07
Std. Dev. 1.13E+07 1.49E+07 1.22E+07 3.41E+07 4.56E+07 3.71E+07 5.73E+07 7.67E+07 6.26E+07
Worst 4.14E+07 5.18E+07 4.14E+07 9.10E+07 1.17E+08 9.70E+07 1.43E+08 1.85E+08 1.57E+08

Backlogging Avg 5.89E+07 5.00E+07 5.47E+07 9.64E+07 7.24E+07 8.18E+07 1.37E+08 9.56E+07 1.06E+08
Std. Dev. 2.52E+07 1.60E+07 2.11E+07 7.50E+07 4.61E+07 6.24E+07 1.25E+08 7.50E+07 9.42E+07
Worst 9.12E+07 7.22E+07 8.21E+07 1.94E+08 1.36E+08 1.63E+08 2.96E+08 2.10E+08 2.33E+08

Total Avg 8.83E+07 8.55E+07 8.34E+07 1.46E+08 1.37E+08 1.33E+08 2.07E+08 1.91E+08 1.86E+08
Std. Dev. 1.39E+07 1.84E+06 8.99E+06 4.11E+07 4.62E+06 2.57E+07 6.80E+07 7.75E+06 3.24E+07
Worst 1.09E+08 9.24E+07 9.83E+07 2.09E+08 1.54E+08 1.78E+08 3.08E+08 2.25E+08 2.51E+08

Backlogging cost increase by 25% (F3)

δ = 0.1 δ = 0.3 δ = 0.5

Deterministic BRLS FRLS Deterministic BRLS FRLS Deterministic BRLS FRLS

Best �/α – 5.00 1.20 – 7.00 1.60 – 5.00 2.30
Optimal 6.78E+07 1.20E+08 4.28E+01 6.78E+07 2.57E+08 2.41E+01 6.78E+07 3.41E+08 1.51E+01
Setup 2.91E+06 2.95E+06 2.90E+06 2.91E+06 3.04E+06 2.93E+06 2.91E+06 3.06E+06 3.03E+06

Holding Avg 2.31E+07 2.92E+07 2.48E+07 3.88E+07 5.90E+07 4.92E+07 5.57E+07 8.12E+07 7.74E+07
Std. Dev. 9.07E+06 1.35E+07 1.11E+07 2.74E+07 4.26E+07 3.58E+07 4.60E+07 6.70E+07 6.26E+07
Worst 3.50E+07 4.56E+07 3.86E+07 7.47E+07 1.09E+08 9.42E+07 1.16E+08 1.60E+08 1.57E+08

Backlogging Avg 7.10E+07 5.85E+07 6.02E+07 1.18E+08 7.98E+07 8.19E+07 1.68E+08 1.09E+08 1.06E+08
Std. Dev. 3.13E+07 1.60E+07 2.31E+07 9.29E+07 4.22E+07 6.16E+07 1.54E+08 8.08E+07 9.42E+07
Worst 1.11E+08 8.10E+07 8.96E+07 2.39E+08 1.39E+08 1.63E+08 3.65E+08 2.20E+08 2.33E+08

Total Avg 9.70E+07 9.07E+07 8.78E+07 1.59E+08 1.42E+08 1.42E+08 2.27E+08 1.93E+08 1.86E+08
Std. Dev. 2.23E+07 2.89E+06 1.21E+07 6.56E+07 4.64E+06 2.61E+07 1.09E+08 1.58E+07 3.24E+07
Worst 1.28E+08 9.90E+07 1.06E+08 2.53E+08 1.57E+08 1.55E+08 3.77E+08 2.35E+08 2.51E+08

Setup cost increase by 25% (F4)

δ = 0.1 δ = 0.3 δ = 0.5

Deterministic BRLS FRLS Deterministic BRLS FRLS Deterministic BRLS FRLS

Best �/α – 5.00 1.10 – 5.00 1.60 – 5.00 2.00
Optimal 5.81E+07 1.05E+08 6.69E+02 5.81E+07 1.99E+08 9.00E+00 5.81E+07 2.95E+08 3.28E+01
Setup 3.22E+06 3.27E+06 3.24E+06 3.22E+06 3.31E+06 3.23E+06 3.22E+06 3.37E+06 3.23E+06

Holding Avg 2.21E+07 2.75E+07 2.28E+07 3.80E+07 5.16E+07 4.31E+07 5.50E+07 7.51E+07 6.88E+07
Std. Dev. 9.14E+06 1.27E+07 1.04E+07 2.75E+07 3.78E+07 3.21E+07 4.60E+07 6.30E+07 5.69E+07
Worst 3.42E+07 4.31E+07 3.60E+07 7.39E+07 9.81E+07 8.45E+07 1.16E+08 1.50E+08 1.43E+08

Backlogging Avg 5.77E+07 4.84E+07 5.20E+07 9.54E+07 6.99E+07 7.18E+07 1.36E+08 9.31E+07 9.49E+07
Std. Dev. 2.50E+07 1.46E+07 2.02E+07 7.44E+07 4.35E+07 5.72E+07 1.24E+08 7.29E+07 8.70E+07
Worst 8.98E+07 6.85E+07 7.84E+07 1.92E+08 1.31E+08 1.46E+08 2.94E+08 1.91E+08 2.10E+08

Total Avg 8.31E+07 7.92E+07 7.80E+07 1.37E+08 1.25E+08 1.18E+08 1.94E+08 1.72E+08 1.67E+08
Std. Dev. 1.59E+07 2.33E+06 9.87E+06 4.72E+07 7.02E+06 2.54E+07 7.85E+07 1.21E+07 3.07E+07
Worst 1.06E+08 8.62E+07 9.38E+07 2.06E+08 1.47E+08 1.60E+08 3.06E+08 2.06E+08 2.26E+08
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Table A16. Experimental results for instances F5-F6.

Overall capacity decrease by 25% (F5)

δ = 0.1 δ = 0.3 δ = 0.5
Deterministic BRLS FRLS Deterministic BRLS FRLS Deterministic BRLS FRLS

Best �/α – 7.00 1.05 – 3.00 1.20 – 1.00 1.50
First Stage Optimal 1.23E+08 1.86E+08 2.70E+02 1.23E+08 2.48E+08 2.62E+02 1.23E+08 2.18E+08 2.94E+01

Setup 2.70E+06 2.72E+06 2.70E+06 2.70E+06 2.74E+06 2.68E+06 2.69E+06 2.74E+06 2.64E+06

Holding Avg 1.32E+07 1.66E+07 1.27E+07 2.70E+07 3.30E+07 2.62E+07 4.19E+07 4.63E+07 3.94E+07
Std. Dev. 7.55E+06 1.08E+07 7.36E+06 2.29E+07 2.87E+07 2.28E+07 3.87E+07 4.29E+07 3.62E+07
Worst 2.32E+07 3.04E+07 2.25E+07 5.73E+07 6.99E+07 5.68E+07 9.41E+07 1.05E+08 8.85E+07

Backlogging Avg 1.28E+08 1.24E+08 1.24E+08 1.61E+08 1.52E+08 1.51E+08 1.97E+08 1.86E+08 1.83E+08
Std. Dev. 2.88E+07 1.99E+07 2.78E+07 8.56E+07 6.86E+07 8.09E+07 1.42E+08 1.26E+08 1.38E+08
Worst 1.64E+08 1.50E+08 1.58E+08 2.70E+08 2.42E+08 2.52E+08 3.74E+08 3.45E+08 3.54E+08

Total Avg 1.44E+08 1.44E+08 1.39E+08 1.90E+08 1.88E+08 1.80E+08 2.41E+08 2.35E+08 2.25E+08
Std. Dev. 2.13E+07 9.15E+06 2.05E+07 6.29E+07 4.01E+07 5.83E+07 1.03E+08 8.29E+07 1.02E+08
Worst 1.72E+08 1.58E+08 1.66E+08 2.77E+08 2.48E+08 2.58E+08 3.79E+08 3.50E+08 3.60E+08

Overall capacity increase by 25% (F6)

δ = 0.1 δ = 0.3 δ = 0.5

Deterministic BRLS FRLS Deterministic BRLS FRLS Deterministic BRLS FRLS

Best �/α – 7.00 1.40 – 12.00 2.20 – 12.00 3.40
First Stage Optimal 2.88E+07 8.03E+07 2.14E+00 2.88E+07 2.08E+08 2.68E+01 2.88E+07 3.29E+08 2.57E+00

Setup 2.98E+06 3.03E+06 3.01E+06 2.98E+06 3.18E+06 3.07E+06 2.98E+06 3.32E+06 3.25E+06

Holding Avg 1.93E+07 2.69E+07 2.33E+07 3.72E+07 6.19E+07 4.90E+07 5.60E+07 9.70E+07 7.86E+07
Std. Dev. 9.97E+06 1.43E+07 1.22E+07 3.01E+07 4.48E+07 3.96E+07 5.04E+07 7.49E+07 6.93E+07
Worst 3.27E+07 4.49E+07 3.87E+07 7.65E+07 1.15E+08 9.97E+07 1.22E+08 1.86E+08 1.66E+08

Backlogging Avg 3.40E+07 2.15E+07 2.24E+07 7.49E+07 3.49E+07 4.32E+07 1.18E+08 5.01E+07 6.22E+07
Std. Dev. 2.30E+07 1.04E+07 1.56E+07 6.88E+07 2.73E+07 3.98E+07 1.16E+08 4.52E+07 5.90E+07
Worst 6.40E+07 3.74E+07 4.36E+07 1.66E+08 7.72E+07 9.98E+07 2.68E+08 1.29E+08 1.49E+08

Total Avg 5.63E+07 5.14E+07 4.87E+07 1.15E+08 9.99E+07 9.52E+07 1.77E+08 1.50E+08 1.44E+08
Std. Dev. 1.31E+07 4.16E+06 3.65E+06 3.89E+07 1.81E+07 4.02E+06 6.56E+07 3.07E+07 1.24E+07
Worst 7.62E+07 5.91E+07 5.73E+07 1.75E+08 1.26E+08 1.11E+08 2.76E+08 1.94E+08 1.73E+08
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Table A17. Experimental results for instances F7-F9.

Weighing capacity decrease by 50% (F7)

δ = 0.1 δ = 0.3 δ = 0.5

Deterministic BRLS FRLS Deterministic BRLS FRLS Deterministic BRLS FRLS

Best �/α – 5.00 1.10 – 5.00 1.50 – 7.00 2.00
First Stage Optimal 5.83E+07 1.05E+08 7.35E+02 5.83E+07 2.01E+08 1.12E+02 5.83E+07 3.45E+08 4.43E+01

Setup 2.87E+06 2.89E+06 2.90E+06 2.87E+06 2.91E+06 2.87E+06 2.87E+06 2.95E+06 2.86E+06

Holding Avg 2.24E+07 2.76E+07 2.35E+07 3.82E+07 5.09E+07 4.46E+07 5.51E+07 7.62E+07 6.62E+07
Std. Dev. 9.24E+06 1.26E+07 1.04E+07 2.76E+07 3.76E+07 3.26E+07 4.63E+07 6.42E+07 5.60E+07
Worst 3.45E+07 4.30E+07 3.66E+07 7.42E+07 9.72E+07 8.65E+07 1.16E+08 1.53E+08 1.39E+08

Backlogging Avg 5.76E+07 4.87E+07 5.20E+07 9.49E+07 7.05E+07 7.27E+07 1.35E+08 9.30E+07 9.71E+07
Std. Dev. 2.48E+07 1.47E+07 2.00E+07 7.45E+07 4.44E+07 5.57E+07 1.24E+08 7.04E+07 8.91E+07
Worst 8.96E+07 6.89E+07 7.81E+07 1.92E+08 1.33E+08 1.46E+08 2.93E+08 1.93E+08 2.16E+08

Total Avg 8.28E+07 7.91E+07 7.84E+07 1.36E+08 1.24E+08 1.20E+08 1.93E+08 1.72E+08 1.66E+08
Std. Dev. 1.57E+07 2.48E+06 9.67E+06 4.71E+07 7.94E+06 2.34E+07 7.81E+07 9.13E+06 3.37E+07
Worst 1.05E+08 8.63E+07 9.38E+07 2.05E+08 1.48E+08 1.60E+08 3.04E+08 2.06E+08 2.27E+08

Reactor capacity decrease by 50% (F8)

δ = 0.1 δ = 0.3 δ = 0.5

Deterministic BRLS FRLS Deterministic BRLS FRLS Deterministic BRLS FRLS

Best �/α – 1.00 1.05 – 1.00 1.10 – 1.00 1.30
First Stage Optimal 1.80E+08 2.02E+08 7.25E+01 1.80E+08 2.45E+08 7.89E+02 1.80E+08 2.88E+08 5.04E+01

Setup 2.78E+06 2.79E+06 2.78E+06 2.78E+06 2.81E+06 2.71E+06 2.78E+06 2.82E+06 2.62E+06

Holding Avg 1.15E+07 1.22E+07 8.95E+06 2.56E+07 2.69E+07 2.03E+07 4.15E+07 4.28E+07 2.69E+07
Std. Dev. 6.66E+06 7.31E+06 4.41E+06 2.15E+07 2.27E+07 1.69E+07 3.81E+07 3.92E+07 2.37E+07
Worst 2.07E+07 2.20E+07 1.54E+07 5.57E+07 5.78E+07 4.38E+07 9.45E+07 9.62E+07 6.20E+07

Backlogging Avg 1.86E+08 1.85E+08 1.84E+08 2.15E+08 2.13E+08 2.13E+08 2.48E+08 2.44E+08 2.46E+08
Std. Dev. 3.28E+07 2.91E+07 3.47E+07 9.56E+07 8.57E+07 9.49E+07 1.56E+08 1.40E+08 1.68E+08
Worst 2.26E+08 2.21E+08 2.26E+08 3.35E+08 3.18E+08 3.29E+08 4.41E+08 4.18E+08 4.48E+08

Total Avg 2.00E+08 2.00E+08 1.96E+08 2.44E+08 2.43E+08 2.36E+08 2.92E+08 2.90E+08 2.75E+08
Std. Dev. 2.62E+07 2.18E+07 3.03E+07 7.42E+07 6.32E+07 7.82E+07 1.19E+08 1.01E+08 1.44E+08
Worst 2.34E+08 2.29E+08 2.33E+08 3.42E+08 3.24E+08 3.35E+08 4.47E+08 4.25E+08 4.54E+08

Filling line capacity decrease by 50% (F9)

δ = 0.1 δ = 0.3 δ = 0.5

Deterministic BRLS FRLS Deterministic BRLS FRLS Deterministic BRLS FRLS

Best �/α – 1.00 1.01 – 1.00 1.05 – 1.00 1.10
First Stage Optimal 2.65E+08 2.86E+08 1.05E+03 2.65E+08 3.28E+08 4.03E+02 2.65E+08 3.71E+08 2.71E+02

Setup 2.36E+06 2.39E+06 2.38E+06 2.36E+06 2.41E+06 2.36E+06 2.35E+06 2.45E+06 2.38E+06

Holding Avg 7.65E+06 8.17E+06 6.96E+06 1.89E+07 2.11E+07 1.79E+07 3.15E+07 3.58E+07 2.89E+07
Std. Dev. 5.47E+06 6.28E+06 5.34E+06 1.74E+07 1.99E+07 1.64E+07 3.03E+07 3.48E+07 2.75E+07
Worst 1.50E+07 1.64E+07 1.41E+07 4.33E+07 4.88E+07 4.07E+07 7.40E+07 8.38E+07 6.72E+07

Backlogging Avg 2.72E+08 2.71E+08 2.69E+08 2.99E+08 2.95E+08 2.90E+08 3.29E+08 3.23E+08 3.12E+08
Std. Dev. 3.47E+07 3.12E+07 3.34E+07 1.02E+08 9.11E+07 9.94E+07 1.66E+08 1.47E+08 1.65E+08
Worst 3.14E+08 3.09E+08 3.10E+08 4.25E+08 4.06E+08 4.10E+08 5.31E+08 5.05E+08 5.12E+08

Total Avg 2.82E+08 2.81E+08 2.79E+08 3.20E+08 3.18E+08 3.10E+08 3.63E+08 3.61E+08 3.43E+08
Std. Dev. 2.92E+07 2.50E+07 2.81E+07 8.43E+07 7.14E+07 8.31E+07 1.36E+08 1.13E+08 1.38E+08
Worst 3.19E+08 3.13E+08 3.14E+08 4.29E+08 4.09E+08 4.14E+08 5.35E+08 5.09E+08 5.16E+08



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 37

Appendix 3 – Derivation of baseline robust
optimisationmodel

In the piecewise linear reformulation, Hit is a new continuous
decision variable that represents the costs related to backlog-
ging/holding of item i in period t, respectively. Thus, con-
straints (15) compute the backlogging costs for each item i and
period t and constraints (16) compute the corresponding hold-
ing costs, with the understanding that when the right-hand
sides of constraints (15) are positive, those of constraints (16)
will be negative, and vice versa. Under the uncertainty set Dit ,
constraints (15) and (16) are equivalent to

Hit ≥ −ch−it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)

− max∑
τ≤t ziτ ≤�it

0≤ziτ ≤1,τ≤t

(∑
τ≤t

d̂iτ ziτ
)]

, i ∈ I , t ∈ T , (A1)

Hit ≥ ch+it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − diτ
)

+ max∑
τ≤t |ziτ |≤�it

−1≤ziτ ≤0,τ≤t

(∑
τ≤t

d̂iτ ziτ
)]

, i ∈ I , t ∈ T , (A2)

respectively. Note that the worst-case backlogging costs in con-
straints (A1) are only achieved at demand realisations that are
greater than the nominal value. Conversely, worst-case holding
costs in constraints (A2) are achieved at demands that are lower
than nominal, which means that only negative deviations from
nominal demands need to be considered. Applying standard
duality on the innermaximisation problems in constraints (A1)
and (A2), given that they are clearly feasible and bounded (and
thus, strong duality applies), the following linear reformulation
is obtained:

Hit ≥ −ch−it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)

− (qit�it

+
∑
τ≤t

riτ t)
]
, i ∈ I , t ∈ T , (A3)

Hit ≥ ch+it

[
I+i0 − I−i0 +

∑
τ≤t

( ∑
k∈Kf

i

xfikτ − d̄iτ
)

+ qit�it

+
∑
τ≤t

riτ t
]
, i ∈ I , t ∈ T , (A4)

qit + riτ t ≥ d̂iτ , i ∈ I , τ ≤ t, t ∈ T , (A5)

Hit , qit , riτ t ≥ 0, i ∈ I , τ ≤ t, t ∈ T . (A6)
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