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Review

Translation-coupled mRNA quality control
mechanisms
Laura Monaghan , Dasa Longman & Javier F C�aceres*

Abstract

mRNA surveillance pathways are essential for accurate gene
expression and to maintain translation homeostasis, ensuring the
production of fully functional proteins. Future insights into mRNA
quality control pathways will enable us to understand how cellular
mRNA levels are controlled, how defective or unwanted mRNAs
can be eliminated, and how dysregulation of these can contribute
to human disease. Here we review translation-coupled mRNA qual-
ity control mechanisms, including the non-stop and no-go mRNA
decay pathways, describing their mechanisms, shared trans-acting
factors, and differences. We also describe advances in our under-
standing of the nonsense-mediated mRNA decay (NMD) pathway,
highlighting recent mechanistic findings, the discovery of novel
factors, as well as the role of NMD in cellular physiology and its
impact on human disease.
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Introduction

Translation-coupled RNA quality control mechanisms sense ribo-

some stalling, or premature translation stops and elicit mRNA degra-

dation and ribosome recycling. In eukaryotic cells, there is an

intricate relationship between mRNA turnover and active translation

(Fig 1A). This was recently confirmed in mammalian cells in cul-

ture, with the use of single-molecule imaging approaches that

revealed translation-dependent destabilization of mRNA (Dave

et al, 2023). In addition, the presence of a series of non-optimal

codons can negatively influence protein production by decreasing

ribosome translocation rates leading to ribosome collisions that

have the potential to trigger RNA quality control pathways and lead

to mRNA decay (Hanson & Coller, 2018; Wu & Bazzini, 2023). This

process, known as codon optimality-mediated mRNA decay

(COMD), allows the cell to distinguish between variation in normal

translation speeds and terminal ribosome stalling, which triggers

alternative RNA quality control pathways (Fig 1B) (Wu et al, 2019;

D’Orazio & Green, 2021).

Two major pathways of co-translational mRNA surveillance, no-

go mRNA decay (NGD) and non-stop mRNA decay (NSD),

sense aberrant translation by monitoring the stalling of ribosomes

and/or ribosomes that fail to encounter a stop codon, respectively

(Fig 1C and D). A common feature of both NGD and NSD is that

upon sensing defective ribosome translocation, these pathways acti-

vate mechanisms leading to mRNA and nascent peptide degrada-

tion, and ribosome recycling (Brandman & Hegde, 2016; Powers

et al, 2020). NGD and NSD use similar factors, but differ mainly in

their substrate mRNAs and initial triggering mechanism (Simms

et al, 2016). In both pathways, ribosome stalling is followed by

recruitment of nucleases leading to degradation of mRNA (Powers

et al, 2020). By contrast, the nonsense-mediated mRNA decay

(NMD) pathway senses inappropriate translation termination

(Kervestin & Jacobson, 2012; Hug et al, 2016) (Fig 1E). NMD elimi-

nates mRNAs that harbor premature termination codons (PTCs),

thus, preventing the synthesis of truncated proteins. Significantly,

NMD has a more global role in post-transcriptional regulation of

gene expression and also regulates the stability of many cellular

non-mutated transcripts, which do not harbor PTCs. These non-

canonical functions of the NMD pathway, which do not represent

RNA quality control per se, are important for the regulation of many

cellular pathways, including differentiation, neurogenesis, synaptic

control, as well as the response to viral infections and stress (Jaffrey

& Wilkinson, 2018; Kurosaki et al, 2019).

In this review article, we will focus primarily on three

translation-coupled RNA quality control mechanisms: NGD, NSD,

and NMD. We will review similarities and differences among these

pathways and cover recent advances related to their mechanisms,

targets, and trans-acting factors that ensure a tight control of aber-

rant RNAs that fail to be properly translated.

No-go mRNA decay

Initially discovered in S. cerevisiae, the no-go mRNA decay (NGD)

pathway is triggered when ribosomes move slowly or stall during

translation elongation, leading to ribosome collisions with trailing

ribosomes, forming disomes (Doma & Parker, 2006; Harigaya & Par-

ker, 2010). Ribosome stalling can be triggered by a number of
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stimuli, such as the presence of stable stem loops, pseudoknots, GC-

rich sequences, or damaged RNA bases (Shoemaker & Green, 2012).

Persistent collisions trigger a two-pronged cellular response that

aims to inhibit translation re-initiation on the problematic mRNA,

and simultaneously remove faulty mRNAs and nascent peptides,

and recycle the ribosomes (Fig 2).

Initially, translational repression is mediated by EDF1, which

binds to collided ribosomes and recruits the translational repressor

complex GIGYF2-4E2 (Syh1-Smy2 in S. cerevisiae) (Hickey et al,

2020; Sinha et al, 2020; Veltri et al, 2022). Upon ribosome collision,

leading and trailing ribosomes form a ‘rotated’ interface of 40S sub-

units recognized by the E3 ubiquitin ligase ZNF598 (Hel2 in yeast)

that ubiquitinates ribosomal proteins eS10 and uS10 and acts inde-

pendently of the GIGYF2-4E2 branch (Juszkiewicz et al, 2018;

Ikeuchi et al, 2019) to initiate a degradation pathway. Ubiquitination

of the 40S subunit is critical for the recruitment of an endonuclease,

which cleaves mRNAs in the middle of a stalled disome, exposing

fragmented mRNA to further degradation by XRN1 and potentially

Figure 1. Translation-coupled mRNA quality control mechanisms.

(A) Stability of mRNAs is affected by translation. Several layers of regulation monitor the efficiency of mRNA translation, including the translation rate, amino acid
composition, and mRNA secondary structures. (B) The mRNA translation rate is slowed down when the ribosome encounters sub-optimal codons leading to a decrease
in mRNA stability. (C) No-go mRNA decay (NGD) is triggered by the presence of mRNA secondary structures leading to ribosome stalling. (D) The absence of a stop codon
results in slowing of the ribosome reading through the poly (A) tail triggering the non-stop mRNA decay (NSD) pathway. (E) Recognition of a PTC sets in motion a cas-
cade of event involving the UPF family of proteins, resulting in mRNA degradation by the nonsense-mediated mRNA decay (NMD) pathway.
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the exosome. A genetic screen in yeast recently identified the endo-

nuclease Cue2 as a component of the NGD pathway (D’Orazio

et al, 2019). Cue2 is a low-abundance protein that cleaves mRNA at

the A site of the rotated collided ribosome in a Hel2-dependent man-

ner and has homologues in C. elegans (NONU1) and in mammalian

cells (N4BP2; D’Orazio et al, 2019; Glover et al, 2020; Monem

Figure 2. Steps and factors involved in no-go and non-stop mRNA decay.

Flow chart depicting steps and trans-acting factors shared or unique to these two RNA quality control pathways from initial ribosome collision, ubiquitination and endo-
nucleolytic cleavage to ultimate mRNA degradation and ribosome recycling. S. cerevisiae homologs are indicated in brackets.
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et al, 2023). As a consequence of mRNA cleavage, stalled ribosomes

appear near the 30 end of mRNA, which favors the binding of an

evolutionarily conserved complex formed by PELOTA (PELO) and

its GTPase cofactor HBS1 (Dom34/Hbs1 in yeast; Doma & Par-

ker, 2006; Pisareva et al, 2011). Despite structural similarities with

release factors eRF1/eRF3, instead of detecting a stop codon, the

PELO/HBS1 complex preferentially binds an empty ribosomal A

site. This induces ribosome splitting into 40S bound to the mRNA,

and 60S with the attached nascent peptide, and is mediated by the

ribosome recycling factor ABCE1 (Rli1 in yeast; Shoemaker

et al, 2010). The nascent peptide is subsequently targeted for

Listerin-mediated ubiquitination and degraded by the proteasome as

part of the ribosome quality control (RQC) pathway (Shao

et al, 2013). However, despite widespread conservation of the Cue2-

Dom34/Hbs1 pathway, recent evidence suggests that this represents

a secondary decay method in NGD and may only be required when

the capacity of the XRN1-mediated degradation pathway is saturated

(Juszkiewicz et al, 2020). In the majority of mRNAs with ribosome

stalls within the open reading frame (ORF), Hel2-mediated 40S

ubiquitination of disomes recruits the ribosome quality control trig-

ger (RQT) complex containing the RNA helicase Slh1 in yeast, with

the homologous complex ASC-1 performing the same role in mam-

mals (Matsuo et al, 2017). Upon 40S ubiquitination of collided ribo-

somes, the RNA helicase ASCC3 (part of the ASC-1 complex)

selectively disassembles the lead ribosome in an ATP-dependent

manner, in a process not requiring PELO/HBS1 activity (Juszkie-

wicz et al, 2020; Matsuo et al, 2020). After removing the roadblock

of the lead stalled ribosome, normal elongation can resume, or in

case of persistent stalls, subsequent ribosome collisions induce fur-

ther quality control and mRNA is subjected to XRN1-mediated deg-

radation, likely with a contribution of the PELO/HBS1 branch

of NGD.

Non-stop mRNA decay

The non-stop mRNA decay pathway (NSD) degrades mRNAs that

lack a stop codon, ensuring the degradation of mRNAs that will fail

to be properly translated (Frischmeyer et al, 2002; van Hoof

et al, 2002). It can be initiated by a number of aberrant translation

events which promote readthrough into the poly(A) tail resulting

from lack of an in-frame stop codon or polyadenylation within the

ORF. Poly(A) translation within the coding region slows down when

the nascent poly(lysine) peptide (encoded by poly(A)) interferes

with the ribosomal exit tunnel. This attenuation of translation elon-

gation allows stretches of poly(A) to adopt a conformation that

impedes further mRNA decoding at the ribosome A site resulting in

stalling of the translating ribosome (Ito-Harashima et al, 2007;

Chandrasekaran et al, 2019; Tesina et al, 2020). Interestingly, hin-

dered elongation can induce ribosome sliding on poly(A) sequences

causing frameshifting that may lead to an out-of-frame PTC and sub-

sequent triggering of NMD-mediated mRNA degradation (Koutmou

et al, 2015). Importantly, elongation stalling causes collisions with

trailing ribosomes and the resulting disomes are recognized and

ubiquitinated by the ZNF598 E3 ubiquitin ligase with subsequent

Cue2-mediated endonucleolytic cleavage, steps that are also com-

mon to NGD, as described above (Juszkiewicz & Hegde, 2017; Pow-

ers et al, 2020).

In yeast, 80S ribosomes stalled at the 30end of an mRNA lacking

a stop codon are bound by the SKI complex, leading to recruitment

of the exosome by the exosome-associated factor SKI7, resulting in

degradation of the aberrant mRNA in a 30 to 50 direction. SKI7 binds

the empty A site of the stalled ribosome at the 30 end of mRNA and

directs mRNA degradation through an eRF3-like domain (Saito

et al, 2013). This process also requires the RNA helicase SKI2

(SKIV2L in mammals) to guide RNA molecules to the exosome com-

plex, triggering mRNA degradation upon ribosome stalling on A-rich

sequences (Tuck et al, 2020). In mammalian cells where SKI7 is not

present, bridging the SKI complex to the exosome is carried out by

HBS1, its closest homologue. This triggers the interaction with

Dom34/Pelota-Hbs1 complex shared with NGD and acts to dissoci-

ate the stalled ribosome with the help of ribosome recycling factors

Rli1 (yeast)/ABCE1 (mammals; Tsuboi et al, 2012; Saito et al,

2013).

Fundamentally, NGD and NSD are parallel mRNA quality control

pathways that share many similarities, such as ubiquitination of

crucial ribosome sites, Cue2-mediated endonucleolytic cleavage,

activation of mRNA decay, and ribosome recycling; however, they

have some key differences (Fig 2). The NSD helicase SKI2 is highly

related to the NGD helicase Slh1 in yeast/ASCC3 in mammals; how-

ever, the Ski complex directly recruits the exosome, thus directly

linking mRNA degradation and ribosome recycling. Conversely, in

NGD, the Slh1/ASCC3 complex removes stalled ribosomes first,

resulting in mRNA degradation mediated by XRN1. NSD has been

implicated in the development of several human diseases, highlight-

ing the physiological importance of this RNA quality control path-

way. For example, non-stop mutations in the Dysferlin gene (DYSF)

lead to degradation of its mRNA and a subsequent reduction in

Dysferlin expression, contributing to the progression of muscular

dystrophy (Cacciottolo et al, 2011). Insufficient NSD activity can

also lead to disease, such as mutations which eliminate the stop

codon in the skeletal muscle alpha actin (ACTA1) gene. Here,

incomplete NSD fails to remove mRNAs encoding 47 additional

amino acids that are translated within the 30UTR, leading to large

protein aggregates that are responsible for the development of

severe skeletal myopathy (Wallefeld et al, 2006).

Nonsense-mediated mRNA decay

NMD is an RNA quality control mechanism that targets mutated

mRNAs harboring PTCs for degradation, but also regulates the sta-

bility of many cellular transcripts. As such, NMD modulates the

phenotypic outcome of genetic disorders caused by frameshift or

nonsense mutations that generate PTCs (Bhuvanagiri et al, 2010;

Karousis & M€uhlemann, 2022). In contrast to NGD and NSD, which

are triggered by the collision of elongating ribosomes, NMD initiates

mRNA degradation in response to faulty translation termination

events. Similar to NGD and NSD, NMD degrades mRNAs co-

translationally, leading to production of truncated nascent peptides.

In the case of NGD and NSD, these potentially toxic peptides are

rapidly degraded by the RQC pathway. By contrast, peptides pro-

duced from PTC-containing transcripts are targeted by an ubiquitin

proteasome system, which specifically targets peptides remaining

tethered to the ribosome following decay of a nonsense mRNA

(Inglis et al, 2023).
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The function of NMD in preventing the accumulation of trun-

cated proteins can have a positive or negative cellular effect,

depending on whether the truncated protein has a deleterious domi-

nant negative function, or whether it retains at least partial function,

elimination of which by NMD could be detrimental. For example,

inhibition of NMD by antisense oligonucleotides (ASOs) targeting

the W1282X mutation in the CFTR gene increases production of a

partially functional protein that enhances the CFTR-mediated chlo-

ride current in human bronchial cells (Kim et al, 2022). On the other

hand, failure of NMD to degrade b-globin transcripts harboring a

PTC in the last exon leads to expression of truncated, dominant-

negative protein causing severe beta-thalassemia (Hall & Thein,

1994). The effect of NMD must be carefully considered in the devel-

opment of any therapeutic approach for diseases caused by PTC

mutations. Importantly, NMD also has a role in many physiological

processes, for example in the regulation of the stress response and

as a modulator of neural development (Jaffrey & Wilkinson, 2018;

Kurosaki et al, 2019).

In mammals, NMD is linked to the process of pre-mRNA splic-

ing via the exon junction complex (EJC), a multi-subunit protein

complex that is deposited 20-24 nucleotides upstream of most

exon-exon junctions (Le Hir et al, 2000a, 2000b). The splicing fac-

tor CWC22 interacts with the core EJC factor eIF4AIII and links

splicing with EJC deposition, leading to NMD activation (Alexan-

drov et al, 2012; Barbosa et al, 2012; Steckelberg et al, 2012).

Mechanistically, the NMD response is coupled to mRNA transla-

tion since EJCs remain bound to mRNAs until they are displaced

by the translation machinery. Initially, it was suggested that NMD

activation occurs as a consequence of ribosome stalling at the ter-

mination codon (TC). However, recent data challenge this model

and revealed that NMD activation in humans is not necessarily

linked to stable stalling of ribosomes at TCs (Karousis et al, 2020).

A ribosome terminating prematurely at a PTC located ≥ 50–55

nucleotides upstream of the final exon–exon junction will not

remove an EJC (Nagy & Maquat, 1998; Thermann et al, 1998) and

this initiates the NMD response (Metze et al, 2013; Kurosaki

et al, 2019).

Core NMD factors
A central player in the NMD pathway is the ATP-dependent RNA

helicase of the SF1 superfamily, Upstream Frameshift 1 (UPF1),

which harbors an amino-terminal cysteine-and histidine-rich (CH)

domain and a carboxy-terminal RNA helicase domain (Fig 3; Kim &

Maquat, 2019).

UPF1 is activated by phosphorylation carried out by the SMG1c

complex, comprised of the phosphoinositide 3-kinase (PI3K)-like

kinase, SMG1, and two additional subunits, SMG8 and SMG9, that

negatively regulates its activity (Yamashita et al, 2001, 2009;

Fern�andez et al, 2011; Langer et al, 2021). SMG1 phosphorylates

UPF1 at multiple SQ and TQ motifs located in the amino- and

carboxy-terminal domains (Yamashita et al, 2001). Until recent

years it was widely accepted that initially, the association of UPF1

with SMG1 and the eukaryotic release factors eRF1 and eRF3 form

the surveillance complex (SURF) in the vicinity of the PTC (Kashima

et al, 2006) (Fig 4). Subsequently, interaction of the SURF complex

with UPF2 and UPF3B and an EJC downstream of the PTC leads to

the assembly of a decay-inducing complex (DECID), where UPF1 is

phosphorylated and eRF1 and eRF3 are released (Kashima et al,

2006; Chamieh et al, 2008; L�opez-Perrote et al, 2016). In addition to

this, a central role for UPF3B in translation termination has been

highlighted. A fully reconstituted in vitro translation system showed

the predominance of the interaction of UPF3B with ribosome release

factors, to delay translation termination and dissociate post-

termination ribosomal complexes that are devoid of the nascent

peptide. UPF1 was shown to interact transiently with the termina-

tion factors and UPF3B to initiate the subsequent mRNA decay

(Neu-Yilik et al, 2017). Despite the lack of mammalian in vivo data,

a recent in vivo study in yeast re-established the central role of the

UPF1:80S interaction for translation termination and NMD initiation

(Ganesan et al, 2022).

Under normal conditions UPF1 has low basal helicase activity;

however, upon recognition of a PTC and subsequent binding of

UPF1 to UPF2, this activity is greatly increased. Alongside this, a

large conformational change of the CH inhibitory domain modifies

the RNA-binding properties and the catalytic activity of UPF1, caus-

ing a switch from an RNA-clamping mode to an RNA-unwinding

mode (Chakrabarti et al, 2011). The active UPF1 helicase functions

as an RNPase translocating along the mRNA with a 50 to 30 polarity,
acting to resolve secondary structures, remove proteins from

mRNA, and provide access to nucleases (Franks et al, 2010; Fiorini

et al, 2015). Importantly, NMD can also be elicited on mRNAs that

do not have a downstream EJC, although the mechanism of non-

EJC dependent NMD is less well defined (B€uhler et al, 2006; He &

Jacobson, 2015). Interestingly, alternative branches of the NMD

pathway that act independently of UPF2, UPF3B, or the EJC have

also been described (Gehring et al, 2005; Chan et al, 2007; Ivanov

et al, 2008). In mammals, there are two highly related UPF3 para-

logs, UPF3A and UPF3B (also called UPF3X due to its location in

chromosome X). Recent studies have shown that UPF3A and UPF3B

perform redundant functions and can activate NMD without EJC

binding, suggesting that UPF3 paralogs play a more active role in

NMD than simply bridging the EJC and the UPF complex. UPF1

almost exclusively associates with UPF3B and only minimally with

UPF3A; however, when UPF3B is mutated or removed, the associa-

tion of UPF1 with UPF3A is enhanced 4-6 times, independent of

RNA. Thus, UPF3A seems almost dispensable for NMD; however, it

performs a compensatory role and can maintain NMD in the

absence of UPF3B (Wallmeroth et al, 2022; Yi et al, 2022; Chen

et al, 2023). In cells lacking both UPF3 paralogs, although NMD is

not completely abrogated, its activity is reduced significantly

(Bufton et al, 2022; Yi et al, 2022).

A current model postulates that UPF1 binding to mRNAs does

not inevitably mark mRNAs for NMD-mediated degradation. Use of

CLIP (cross-linking and immunoprecipitation) revealed that UPF1

binds target RNAs prior to mRNA translation. Once translating ribo-

somes are engaged, they displace UPF1 from coding sequences,

leading to UPF1 enrichment at 30UTRs (Hurt et al, 2013; Z€und

et al, 2013). By contrast, binding of phosphorylated UPF1 (P-UPF1)

marks mRNAs for NMD-mediated degradation, since P-UPF1 is

enriched on endogenous transcripts degraded by NMD, whereas

unphosphorylated UPF1 is released from non-targeted transcripts in

an ATP-dependent manner (Kurosaki et al, 2014; Lee et al, 2015).

Interestingly, UPF1 mutants with substantially impaired processing

and slower unwinding rates are still functional in NMD and still

have the capacity to restore NMD functionality upon loss of WT

UPF1 (Fig 3) (Chapman et al, 2022).
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In addition to a rapidly increasing number of NMD regulators, it

was recently shown that UPF1LL, an alternative mammalian-specific

isoform of the core NMD factor UPF1 (UPF1SL), harbors a regulatory

loop that is 11-residues longer and preferentially binds and down-

regulates a different subset of NMD targets through a reduction in

the RNA dissociation potential (Fig 3) (Gowravaram et al, 2018;

Fritz et al, 2022). Canonical NMD is mediated by UPF1SL that repre-

sents >75% of the total UPF1 pool and is inhibited by moderate

translational repression. By contrast, the UPF1LL isoform triggers

NMD in response to activation of the integrated stress response

(ISR), and repression of translation, targeting novel mRNA,

including stress response genes (Fritz et al, 2022). Interestingly,

UPF1LL requires translation termination events; however, due to its

improved RNA-binding capacity in the presence of ATP compared

to UPF1SL, its sustained RNA interaction favors a reduced frequency

of termination events in conditions of attenuated translation. There-

fore, under conditions of moderate translation inhibition where

NMD is inhibited, UPF1LL activity is enhanced, changing the speci-

ficity of NMD in response to stress conditions (Fritz et al, 2022).

UPF1 phosphorylation represents a non-reversible point in NMD

progression during which the transcript is committed for degrada-

tion, leading to repression of further translation initiation, a key step

in the NMD pathway (Isken et al, 2008). This phosphorylation event

leads to the recruitment of additional NMD factors, namely the

phospho-binding proteins SMG6 and/or SMG5/SMG7, which func-

tion in two independent, yet overlapping pathways, and lead to fur-

ther recruitment of nucleases to elicit mRNA degradation. The SMG6

endonuclease cleaves NMD targets in the vicinity of the PTC (Hunt-

zinger et al, 2008; Eberle et al, 2009) and generates a 50 cleavage
product that is most likely degraded 30 to 50 by the exosome and/or

DIS3L2 (DIS3-like exonuclease 2; Kurosaki et al, 2018). The resulting

30 cleavage product is cleared of protein components by UPF1 to pro-

vide access to the exoribonuclease XRN1 (Kurosaki et al, 2019).

Alternatively, the heterodimer SMG5/SMG7 binds to P-UPF1 and

recruits the CCR4/NOT complex to promote deadenylation, leading

to 30 to 50 decay (Loh et al, 2013) and decapping, resulting in XRN1-

catalyzed 50 to 30 degradation (Unterholzner & Izaurralde, 2004).

Transcriptome profiling revealed that SMG6 and SMG7 act on

Figure 3. UPF1 structure, binding sites, and known mutations.
Diagram depicting the domain structure of the canonical UPF1SL isoform, highlighting key residues for its phosphorylation and ATP binding capacity. An isoform
generated via alternative splicing, UPFLL, includes an extra 11 amino acid extended regulatory region, while all other structural elements remain the same. Mutations
and their effect on UPF1 function are indicated by the colored boxes. Some mutations in UPF1 have the capacity to eliminate NMD function, whilst some mutations
sustain functional NMD. All residue numbers relate to the canonical UPF1SL isoform.
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essentially the same transcripts, suggesting extensive redundancy

between the endo- and exonucleolytic decay pathways (Colombo

et al, 2017). There is a tight regulation between these two RNA

degrading pathways, since inactivation of the SMG5-SMG7 pathway

also abrogates the SMG6-dependent mechanism, supporting a mech-

anism that involves UPF1 phosphorylation and SMG5-SMG7 recruit-

ment to access SMG6 activity (Boehm et al, 2021).

Additional NMD factors
Core NMD factors SMG1-7 were initially discovered using genetic

screens in C. elegans and in S. cerevisiae and were later found by

homology searches in other species, including Arabidopsis, Drosoph-

ila, and mammals. Since then, a variety of experimental approaches

have been employed to identify novel regulators of this pathway,

most of which are still being investigated and therefore do not fea-

ture in models of NMD (Table 1) (Hug et al, 2016).

We developed RNAi screens in C. elegans that resulted in the

identification of novel NMD factors, including smgl-2/DHX34 and

smgl-1/NBAS that are conserved throughout evolution and function

in NMD in nematodes, zebrafish, and human cells (Longman

et al, 2007, 2013; Anastasaki et al, 2011). DHX34, a DExH/D box

RNA helicase, forms a complex with SMG1 and UPF1 and activates

NMD by promoting the transition from the surveillance to the

decay-inducing complex (Hug & C�aceres, 2014; Melero et al, 2016).

Heterozygous mutations in DHX34 were identified in four families

affected with inherited acute myeloid leukemia (AML) and myelo-

dysplastic syndrome (MDS). These mutations map to different

domains of DHX34, and all germline variants identified in these

families abrogated NMD activity (Rio-Machin et al, 2020). DHX34 is

also associated with the human spliceosomal catalytic C complex

and regulates a large number of alternative splicing (AS) events in

mammalian cells in culture, establishing a dual role for DHX34

in both NMD and pre-mRNA splicing (Hug et al, 2022).

Neuroblastoma amplified sequence (NBAS) encodes a protein

localized to the endoplasmic reticulum (ER) that is a component of

the Syntaxin 18 complex and fulfils a role in Golgi-to ER retrograde

transport, which is independent of its function in NMD (Aoki

et al, 2009; Longman et al, 2020; discussed below in the “Localized

NMD and the stress response” section).

Interactome studies, RNAi screens, and newer CRISPR screens in

mammalian cells in culture have led to the identification of novel

NMD regulators, which are still being characterized (Table 1). The

RNA helicase MOV10, a member of the UPF1-like group helicase

superfamily 1 (SF1), interacts with UPF1 and promotes degradation

of UPF1-regulated mRNA transcripts (Gregersen et al, 2014). An

interactome of the SMG1 protein kinase identified the AAA ATPases,

RuVB-like 1 (RUVBL1) and RuVB-like 2 (RUVBL2). These proteins

are involved in a variety of cellular functions, including transcrip-

tion and DNA repair, and were previously shown to have a role in

the early stages of NMD (Izumi et al, 2010). We recently showed

that RUVBL1/2 also interact with DHX34, coupling their ATPase

activity to the assembly of factors required to initiate the NMD

response (L�opez-Perrote et al, 2020).

A genome-wide RNAi screen in human cells identified ICE1, an

EJC-associated factor that promotes the interaction of UPF3B with

the EJC and activates NMD (Baird et al, 2018). CRISPR screens iden-

tified several candidate NMD genes (Alexandrov et al, 2017) and

highlighted a role for the ribosome recycling factor ABCE1 in NMD

(Annibaldis et al, 2020; Zhu et al, 2020). A CRISPR screen in K562

cells identified the translational repressors GIGYF2 and EIF4E2,

suggesting a model wherein recognition of a stop codon as prema-

ture leads to its translational repression mediated by GIGYF2 and

EIF4E2, a process shared with the NGD pathway (Zinshteyn

et al, 2021). Finally, a haploid-cell genetic screen for NMD effectors

identified several components of the AKT signaling pathway. It was

shown that AKT-mediated phosphorylation of the UPF1 CH domain

at T151D overcomes auto-inhibition of UPF1 helicase activity, which

is critical for NMD and decreases the dependence of helicase activity

on ATP. AKT also promotes formation of EJCs that contain AKT at

the expense of UPF2, potentially facilitating a UPF2 independent

branch of NMD (Cho et al, 2022). Interestingly, AKT1 had been

independently shown to phosphorylate UPF1 and activate NMD

(Palma et al, 2021; Table 1).

NMD factors have also been shown to display additional cellular

functions. This is particularly prominent in the case of UPF1 that

not only functions in genome stability (Azzalin & Lingner, 2006),

but also contributes to several RNA decay pathways (Kim &

Figure 4. Mechanism of NMD activation.
Schematic depicting the widely accepted molecular events leading to the
assembly of the surveillance complex (SURF), its transition to the decay-
inducing complex (DECID) leading to UPF1 phosphorylation and recruitment
of SMG6 and/or SMG5/SMG7 that elicit mRNA degradation.
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Maquat, 2019). These include the Staufen-mediated decay pathway

(SMD), which involves UPF1 recruitment to stem-loops in the

30UTRs of mRNAs bound by the RNA-binding proteins STAUFEN1

and its paralog STAUFEN 2 (Kim et al, 2005; Park et al, 2013), and

in the degradation of histone mRNAs, where UPF1 is recruited to

target mRNAs via the stem-loop binding protein (SLBP) (Kaygun &

Marzluff, 2005). Interestingly, UPF1 has also been proposed to act

as an E3-ubiquitin ligase and promote degradation of the truncated

polypeptide produced by translation of a PTC-containing transcript

(Takahashi et al, 2008; Feng et al, 2017), establishing a link between

RNA degradation and protein decay (Kim & Maquat, 2019; Inglis

et al, 2023). In S. cerevisiae, UPF1 facilitates proteasome degradation

of truncated polypeptides in a ubiquitin dependent manner. The

truncated protein product gets released from the ribosome following

NMD-mediated mRNA degradation, but remains associated with

UPF1 which directs it to the proteasome for removal, thus leading to

a protein and mRNA turnover coupled process (Kuroha et al, 2013).

NMD targets
Despite decades of research, it is still not entirely clear what consti-

tutes a bona fide NMD target. The introduction of a mutation, such

as a single nucleotide variant, which gives rise to a PTC, represents

the most obvious target for NMD. However, transcriptome profiling

to identify NMD targets in cells of different species revealed that the

majority of NMD-sensitive transcripts do not contain PTCs but are

rather mRNAs coding for full-length proteins. This led to the

hypothesis that a combination of NMD-inducing and NMD-

antagonizing features will contribute to determine NMD susceptibil-

ity for any given mRNA. Some of the common features that render

mRNAs susceptible to NMD include the presence of a PTC located

at least 50-55 nucleotides upstream of an EJC (Colombo et al, 2017),

mRNAs with upstream ORFs (uORFs; Calvo et al, 2009), and the

presence of a long 30UTR (Hogg & Goff, 2010). However, recent use

of cDNA Nanopore sequencing combined with short RNA-seq

allowed the detection of full-length NMD substrates that are highly

unstable and only display an increase in RNA levels when NMD is

inhibited. This analysis identified NMD target mRNAs derived

mainly from alternative exon usage, yet it did not identify long

30UTRs as a common feature for NMD regulated mRNAs (Karousis

et al, 2021). RNA-seq allows for the analysis of steady-state changes,

which are influenced by stability, degradation, and transcription

rates. Recently, SH-linked alkylation for the metabolic sequencing of

RNA (SLAM-seq) using 4-thiouracil pulse-chase labeling (Herzog

et al, 2017) was used to accurately measure changes in RNA half-

lives and to identify new targets of the NMD pathway in S. cerevisiae

(Alalam et al, 2022). SLAM seq analysis of Smg5-7 genetic knock-

outs in mouse ESCs revealed that NMD controls expression levels of

the translation initiation factor Eif4a2 and its alternative splicing

Table 1. Factors involved in nonsense-mediated mRNA decay.

Protein Role in nonsense-mediated mRNA decay References

SMG1 A phosphoinositide 3-kinase (PI3K)-like kinase that phosphorylates UPF1 Yamashita et al (2001), Kashima
et al (2006)

SMG8/9 Two subunits of the SMG-1 complex which negatively regulate SMG-1 kinase activity Yamashita et al (2009)

UPF1 An ATP-dependent RNA helicase of the SF1 superfamily, which undergoes cycles of
phosphorylation and dephosphorylation

Sun et al (1998), Bhattacharya
et al (2000), Kim and Maquat (2019)

UPF2 Recruited following recognition of a PTC leading to conformational changes in UPF1 and
formation of the DECID complex

Serin et al (2001), Chamieh et al (2008)

UPF3A/B UPF3 paralogs that bridge the EJC and the surveillance complex Serin et al (2001), Neu-Yilik et al (2017)

SMG5/7 A heterodimer that binds to phosphorylated UPF1 and recruits the exonucleolytic RNA
degrading machinery

Unterholzner and Izaurralde (2004), Loh
et al (2013)

SMG6 An endonuclease that cleaves NMD targets in the vicinity of the PTC Huntzinger et al (2008), Eberle
et al (2009)

DHX34 A DExH/D box helicase that activates NMD by promoting a transition from the SURF to
DECID complex

Hug and C�aceres (2014)

NBAS NMD factor localized at the membrane of the ER that recruits UPF1 to activate a local
NMD response

Longman et al (2007, 2020)

MOV10 A 50 to 30 RNA helicase that contributes to UPF1-mediated mRNA target degradation Gregersen et al (2014)

RUVBL1/2 AAA+ adenosine triphosphatases involved in the early stages of NMD that interact with
SMG-1 and promote the formation of the SURF complex

Izumi et al (2010)

ICE1 An EJC-associated protein that promotes UPF3B recruitment to the EJC and provides a
link between splicing and NMD

Baird et al (2018)

GIGYF2/EIF4E2 Mediate translational repression following recognition of a PTC Zinshteyn et al (2021)

AKT AKT signaling leads to formation of alternative EJCs where AKT replaces UPF2. AKT-
mediated phosphorylation of UPF1 activates NMD.

Palma et al (2021), Cho et al (2022)

CWC22 Essential splicing factor which interacts with eIFA3 to activate NMD Alexandrov et al (2012), Barbosa
et al (2012), Steckelberg et al (2012)

ABCE1 Responsible for ribosome recycling necessary to initiate translation termination and
initiation of NMD via SMG6-mediated endonucleolytic pathway

Annibaldis et al (2020), Zhu et al (2020)
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isoform that harbors a PTC-encoding isoform (Eif4a2PTC). Upon

NMD inhibition, aberrant expression of the eIF4A2PTC elicits

increased mTORC1 activity and translation rates and causes differ-

entiation delays, highlighting a role of RNA stability regulation in

development (Huth et al, 2022).

NMD regulation
The NMD pathway is dynamic and subject to regulation and impacts

several physiological processes, such as the stress and immune

responses. A correct magnitude of NMD activity is particularly

important for proper brain function and indeed, NMD activity is

extensively regulated during neural development (Jaffrey & Wilkin-

son, 2018). It was shown that NMD activity in human neuroblas-

toma cells is attenuated by fragile X protein FMRP, which is

recruited to NMD targets by UPF1. FMRP acts as an NMD repressor

in neural cells and in its absence, NMD is hyperactivated, leading to

widespread transcriptome changes which contributes to intellectual

disability and autism (Kurosaki et al, 2021). Recently, a conditional

Smg6 mutant mouse model revealed that the NMD pathway has a

role in controlling circadian clock regulation (Katsioudi et al, 2023).

The NMD response varies within and across cell lines (Sato &

Singer, 2021), in different cell tissues (Zetoune et al, 2008), and

even among individuals (Nguyen et al, 2014; Rivas et al, 2015).

NMD is tightly regulated by a negative feedback network that leads

to a large proportion of core NMD factors being regulated by NMD

itself in several organisms, including mammalian cells, nematodes,

zebrafish, and plants (Huang et al, 2011; Yepiskoposyan et al, 2011;

Longman et al, 2013). NMD can occur with equal probability during

each round of translation of an mRNA molecule; however, this

probability is variable and linked to sequence features, including the

exon sequence downstream of the PTC, the PTC-to-intron distance,

and the number of introns both upstream and downstream of the

PTC. Furthermore, a subpopulation of mRNAs can escape NMD, fur-

ther contributing to variation in NMD efficiency (Hoek et al, 2019).

Use of a single-cell approach comprising a bi-directional NMD

reporter expressing two b-globin genes with or without a PTC in the

same cell, allowed the characterization NMD efficiency in individual

cells. This revealed a broad range of NMD efficiencies in the popula-

tion (where some cells degraded essentially all mRNAs and others

escaped NMD almost completely) and was correlated to the differen-

tial level of SMG1 expression and P-UPF1. Mechanistically, this

escape occurred either by translational read-through at the PTC or

by inefficient mRNA degradation following translation termination

at the PTC (Sato & Singer, 2021).

Localized NMD and the stress response
The decay of NMD reporters in mammalian cells occurs in the cyto-

plasm (Trcek et al, 2013) and is closely linked to mRNA translation

(Kervestin & Jacobson, 2012). We previously identified two novel

NMD factors, NBAS and SEC13, which localize to the ER, raising the

possibility that they could be involved in a localized NMD pathway

(Longman et al, 2007; Casadio et al, 2015). There are precedents for

a localized NMD response in neurons that regulate the expression of

dendritic and axonal mRNAs upon the activation of their localized

mRNA translation (Colak et al, 2013). It has been shown that

mRNAs coding for secreted or transmembrane proteins are trans-

lated only when they encounter the ER (Wu et al, 2016). However,

it remained largely unknown how NMD regulates the stability of

RNAs translated at the ER, which due to their intrinsic localized

translation, will not have sufficient exposure to cytoplasmic NMD

surveillance. NBAS is a member of the Syntaxin 18 complex as part

of the COPI vesicle and is involved in Golgi-to-ER retrograde trans-

port (Aoki et al, 2009). We showed that NBAS fulfils a second, inde-

pendent function and recruits the core NMD factor UPF1 to the

membrane of the ER and activates a local NMD response that regu-

lates RNAs associated with cellular stress and membrane trafficking

(Fig 5; Longman et al, 2020). Loss-of-function mutations in NBAS

have been found in diseases affecting bone, connective tissue, and

acute liver failure (Hug et al, 2016; Staufner et al, 2020). We identi-

fied compound heterozygous variants in NBAS as a cause of atypical

osteogenesis imperfecta (Balasubramanian et al, 2017). It remains

to be seen whether the phenotype of NBAS mutations is due to

faulty NMD response and/or defective Golgi-to-ER retrograde trans-

port (Haack et al, 2015).

The Unfolded Protein Response (UPR) senses and responds to

excessive amounts of misfolded proteins in the ER, that cause ER

stress (Walter & Ron, 2011). Inappropriate UPR activation contrib-

utes to many human pathologies, most notably related to neurode-

generation (Hetz & Mollereau, 2014), therefore the fidelity of UPR

activation must be tightly regulated. Accordingly, a role for NMD in

regulating the UPR has been proposed (Karam et al, 2015; Goetz &

Wilkinson, 2017). In particular, mRNAs encoding UPR components,

including the UPR sensor IRE1a, as well as ATF-4 and CHOP that

are activated by PERK branch signaling, are regulated by NMD and

thus control the threshold of cellular stress that is necessary to acti-

vate the UPR (Gardner, 2008; Karam et al, 2015; Sieber et al, 2016).

A feed-back loop mechanism operates, wherein NMD ensures a cor-

rect activation threshold for the UPR response and the activity of

NMD is in turn down-regulated by the UPR (Karam et al, 2015). It is

likely that limiting the chronic activation of the UPR has a protective

effect in neurodegenerative diseases. Along those lines, a

protective role for UPF1 was shown in rodent primary neuronal

models of amyotrophic lateral sclerosis (ALS) and frontotemporal

Figure 5. Localized NMD response at the ER.
NBAS localizes to the outside membrane of the endoplasmic reticulum (ER), in
the vicinity of the translocon, where it recruits the core NMD factor UPF1 to
activate a local NMD response at the ER (Longman et al, 2020).
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dementia (FTD; Barmada et al, 2015) and in a rat ALS paralysis

model (Jackson et al, 2015).

It is also possible that modulation of ER-NMD activity could be

crucial to regulate ER stress (Longman et al, 2020). In such a sce-

nario, NMD-mediated degradation of RNA targets would decrease

ER load by suppressing aggregation of truncated and/or misfolded

proteins in the ER, limiting UPR activation. The newly identified

UPF1LL that, upon ISR activation and impaired translation, regulates

a new subset of NMD targets, can be a key to the appropriate cellu-

lar stress response (Fritz et al, 2022).

NMD in human disease
In vertebrates, NMD activity is essential for proper development,

and loss of NMD leads to embryonic lethality (Chousal et al, 2022).

There are several reports of mutations in core NMD factors that lead

to human disease. Two consanguineous families with homozygous

loss-of-function mutations in SMG9, a component of the SMG1c

complex, display a multiple congenital anomaly syndrome, that

includes heart and eye defects, and brain malformation (Shaheen

et al, 2016). Four consanguineous families with four deleterious

homozygous variants in SMG8 display a phenotype that resembles

that found in patients with SMG9 mutations, including global devel-

opmental delay, microcephaly, facial dysmorphism, and variable

congenital heart and eye malformations. These patients display

increased phosphorylation of UPF1, which most likely reflect the

loss of SMG8-mediated inhibition of SMG1 kinase activity (Alzah-

rani et al, 2020). NMD has also an important role in neuronal devel-

opment as demonstrated by the fact that mutations, as well as copy

number variations in UPF2 and UPF3B, lead to intellectual disability

and/or neurodevelopmental disorders in humans, including schizo-

phrenia and autism spectrum disorder (Jolly et al, 2013; Nguyen

et al, 2013; Jaffrey & Wilkinson, 2018). Altered levels of NMD activ-

ity were also implicated in the pathogenesis of C9orf72-linked ALS/

FTD (Xu et al, 2019; Ortega et al, 2020; Sun et al, 2020) and other

neurodegenerative diseases (Kurosaki et al, 2021). For example, loss

of the fragile X protein FMRP leads to intellectual disability and

autism, and FMRP deficiency results in a hyperactivated NMD

response in human cells (Kurosaki et al, 2021). UPF3B mutations

cause intellectual disability with impairment of neural stem cell dif-

ferentiation and reduction in neuronal branching, through a loss of

UPF2 interaction leading to NMD abrogation (Bufton et al, 2022).

Altogether, these data suggest that an imbalance in NMD activity

could lead to neurodegeneration. Interestingly, NGD and NSD com-

ponents Pelo and HBs1l are critical for cerebellum neurogenesis in

mice but expendable for survival of these neurons after develop-

ment (Terrey et al, 2021). Similar effects were observed upon dele-

tion of the core NMD factor, Upf2. This suggests that several RNA

quality control pathways may interact or have compensatory roles

to drive early development.

The role of NMD in cancer is complex, since it can display both

tumor suppressing and tumor enhancing roles (Wang et al, 2011; Tan

et al, 2022). Cancer cells can exploit the NMD response through intro-

duction of selective tumor suppressor mutations that initiate mRNA

decay or via the introduction of NMD-insensitive mutations in onco-

genes to prevent their targeting (Lindeboom et al, 2016). For exam-

ple, tumor cells are known to hijack the NMD system to suppress the

expression of potent tumor suppressors such as WT1, BRCA1/2 and

p53, inducing uncontrolled cell growth (Mort et al, 2008; Nogueira

et al, 2021). A therapeutic potential for the treatment of cancer was

suggested in a number of studies. Abrogating NMD in cancer may

lead to the expression of tumor-specific proteins that can increase

natural immune responses directed against the tumor (Pastor

et al, 2010). Furthermore, attenuation of NMD facilitates the response

to cancer therapeutics, as shown in human breast cancer cells, sub-

ject to NMD inhibition. Combining this with the front-line chemother-

apeutic doxorubicin promotes a faster and more robust cancer-cell

killing by apoptosis (Popp & Maquat, 2015).

Conclusions

Translation-coupled RNA quality control pathways play a central

role in ensuring accurate gene expression. There is a great variety of

such mechanisms that link defective mRNA translation with mRNA

decay and degradation of truncated proteins. We have highlighted

here three main pathways, NGD, NSD, and NMD. The first two

share common features and trans-acting factors and mainly differ in

features present in the target mRNAs that trigger these pathways.

NMD is the most studied mRNA surveillance system, both in terms

of mechanism and trans-acting factors, mostly due to its high impact

as a potent buffering system for human disease. Given that the

NMD pathway affects the phenotype of approximately one third of

all genetic diseases (Holbrook et al, 2004; Mort et al, 2008), a better

understanding of its regulation and factors that influence its func-

tion in vivo could be of importance for designing strategies to modu-

late the NMD response for therapeutic use. Challenges for the future

involve the identification of all factors required for NMD regulation

in a physiological setting, as well as a better understanding of what

constitutes an NMD target.
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